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Abstract

Over the years researchers have tried to frame the issue of brain con-
nectivity, a task which has proven to be difficult. The data and methods
used to evaluate such connectivity have varied enormously. Furthermore,
the actual computational algorithms and concepts used to define the values
of brain connectivity differ between studies and researchers. This is very
confusing since there is no easy way to combine the results from all these
methods and algorithms.

In this thesis we present an alternative way to study brain connectivity.
Actually, we describe how the fields of graph theory and graph drawing can
assist us produce a tool that can bridge all these studies. By using our
framework we provide the means to efficiently analyze, model and visualize
brain networks. The networks were produced by clinical experiments (Elec-
troencephalogram - EEG) on populations with schizophrenia and apilepsy.

The developed tool was useful to the doctors as they were able to verify
already known properties of brain networks and discover new ideas concern-
ing the reasons for some disorders.
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Chapter 1

Introduction

Over the years researchers have tried to frame the issue of brain con-
nectivity, a task which has proven to be difficult. However, the data and
methods used to evaluate such connectivity have varied enormously. Tech-
niques to assess brain connectivity have different spatial and temporal reso-
lutions and have focused on different levels of description [25]. The situation
is complicated still further since the actual computational algorithms and
concepts used to define the values of brain connectivity differ between stud-
ies and researchers. Nevertheless, functional brain connectivity has become
one of the most influential concepts in modern cognitive neuroscience.

Friston et al [27] defined functional connectivity as the temporal cor-
relation between spatially remote neurophysiological events expressed as
deviation from statistical independence across these events in distributed
neuronal groups and areas. This is a central and challenging conception
of brain connectivity for theories about neural interactions, when analyzing
functional neuroimaging data and when developing computer simulations.

The further understanding of brain dynamics will obviously rely upon
the development of suitable techniques to analyze neural data for evidence of
significant functional correlations. Which measure of functional connectivity
is the most useful for studying brain functioning? Treating the brain as a
dynamic system from which we are able to observe certain physiological
parameters over time, a temporal resolution in the order of milliseconds is
of special interest [43]. Here, the Electroencephalogram (EEG) provides
a satisfactory scale for accessing temporal evolution of the brain activity
associated with cognitive processes in health and disease [45, 59, 38].

According to the definition of functional connectivity the issue that is
central to this concept is correlated neurophysiological events, which can
be directly derived from EEG data. The question thus arises: which of
the known EEG measures of functional connectivity derives the informa-
tion about operations (discrete events) and estimates the inherent tempo-
ral/dynamical correlations among them? Traditionally, coherence has been
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the main method to assess the degree of functional connectivity between
brain areas [76]. However, mathematically, the coherence value indicates
only the linear statistical link between time-series curves in a frequency
band [11]. So, the use of methods that capture the linear and non-linear
statistical links would be of great importance. In Section 2.6 there is a
further descipton of these methods.

The next step should be to find a model that would best describe brain
EEG correlation networks, or brain networks for short. Many real-life com-
plex networks have a small-world topology [10] characterized by dense local
clustering or cliquishness of connections between neighboring nodes yet a
short path length between any (distant) pair of nodes due to the existence
of relatively few long-range connections, for details on small-world networks
see Section 3.4.2. This is an attractive model for the organization of brain
functional networks because a small-world topology can support both seg-
regated/specialized and distributed/integrated information processing.

In humans, there have been several recent reports of small-world [7] or
even scale-free [18] (for details on scale-free networks see Section 3.4.4) brain
functional networks, but there is much still to learn about the presumably
small-world, topology of these networks. For instance what is the real topol-
ogy of brain networks and what new metrics could help us identify important
or emergent properties of these networks.

This thesis is organized as follows: Chapter 2 presents background useful
to familiarize the reader with medical concepts. Chapter 3 presents some
basic information about graph theory and describes various models used in
the thesis. Chapter 4 discusses some results about the way the tool can
be used to analyse brain networks and presents results about the model
that could best describe these networks. Chapter 5 provides an overview of
the tool and the capabilities it provides. Finally, Chapter 6 discusses open
problems and future work.
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Chapter 2

Medical and Signal
Processing Background

This chapter will give a brief introductory review of the origins, the
physiology and techniques of performing quantitative analysis of the EEG.
It presents certain neurophysiology topics necessary for better understanding
and describing the electroencephalogram as applied to the study of epilepsy,
schizophrenia and electrical brain oscillations in general.

2.1 The Origins and evolution of the EEG

Technical developments in the field of electrical measurement and record-
ing in the last quarter of the 19th century, made possible one of the greatest
triumphs of modern neuroscience; the Electroencephalogram. The EEG was
discovered in the 1920′s and applied in humans by the German psychiatrist
Hans Berger [79]. He managed to measure small potential differences at the
scalp by using two large sheets of tinfoil, which served as electrodes. The
first was placed on the forehead and the other on the back of the head.
Currents inside the brain generate these potential differences.

The field was touted as likely to give the psychiatric professionals an
insight into the brain’s function. Since the times of Berger, it was known
that the characteristics of EEG activity change in many different situations,
particularly with the level of vigilance (alertness, rest, sleep and dreaming).
In the 1930′s, the electrical patterns were found to have neurological cor-
relates for some disorders, such as epilepsy and tumors [16]. The 1940′s
and 50′s found the instrumentation advancing, with commercially available
equipment, fostering establishment of laboratories throughout the world.

EEG can be roughly described as the measurement of the mean elec-
trical activity of the brain in different sites of the head. It is the sum of
extracellular current flows of a large group of neurons, as described in the
next section. EEG recording became possible by placing high conductivity
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electrodes (impedance < 5000Ω) in a fixed head mesh.
Electric potentials may be acquired either between pairs of active elec-

trodes, using the so called bipolar montage or in the case of monopolar
montage, with respect to a passive electrode known as the reference. The
placement of the electrodes can be either non-invasive superficial on the
head (scalp EEG) or introduced into the brain after surgical intervention
(intracranial EEG). To perform scalp EEG there have been established stan-
dards of electrode placement in 1949 when Rasmussen convened an interna-
tional committee and designed the international 10/20 electrode placement
system. Such system consists of 20 electrodes uniformly distributed along
the head generally referenced to two earlobe (A1, A2) electrodes [57]. Nor-
mal scalp EEG are routinely taken with the subject at relaxed state, that
is with eyes closed or open, or while the subject performs predefined cogni-
tive tasks. The major difficulty one encounters while performing scalp EEG
recordings are the artifacts. A variety of different in morphology artifacts
arise mainly due to head movements, eye blinking, muscle activity, electro-
cardiogram (ECG) recording and so on. On the other hand, intracranial
recordings using implanted electrodes achieve a significantly higher resolu-
tion since possible deviations or alterations of the source EEG signal in its
way from the originating neurons towards the scalp are overcome and arti-
facts are diminished. Mainly two types of intracranial electrodes are used.
The subdural electrodes typically arranged in grids or strips placed on the
brain and the deep electrodes arranged on a needle entering deep brain
structures. The latter involve a major surgery and their use is restricted to
pathological cases like the epileptic patients who undergo surgical resection.

2.2 The digital EEG processing era

In the 1960′s and the 1970′s the digitizing of the EEG was first attempted
and the computer was a valuable tool for data analysis. At that moment the
original aspiration of Berger and the whole psychiatric community began to
see the correlation of the EEG with psychiatric conditions, as well as the
brain’s detailed response to medication intended to treat these disorders.
Even though such medication effects where reported in the previous years,
they were often misleadingly interpreted as artifacts; but at this time EEG
begins to be systematically studied.

In order to take advantage of the superior computational power and flex-
ibility of computers, a fundamentally crucial step was missing; the analog-
digital converter (DAC). This electronic device takes the input of the contin-
uous variable wave and transforms it to discrete values with respect to the
amplitude of the input wave. This process is of repeated and is described
as the sampling operation. Sampling is performed in real time and each
EEG channel is processed in parallel. The sampling rate can vary according
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to specific measurement needs. Once the discrete signal is stored, one can
perform any mathematical operation like filtering, frequency and amplitude
analysis, as well as color mapping. The latter approach is known as quanti-
tative EEG and it differs from any previous analysis attempts to assess the
overall appearance of the waves in a qualitative manner.

2.3 EEG signal patterns

Even from his first publication on EEG, Berger mentioned the presence of
certain signal patterns (rhythms) that he called alpha and beta oscillations.
The patterns seen in the EEG, initiating from changes in the frequency am-
plitude with respect to time, have been divided into the standard bands
of delta, theta, alpha and beta, which are somewhat empirical frequency
limits. These rhythms are classified according to their location, frequency,
amplitude, morphology, periodicity, and behavioral and functional corre-
lates. Since the beginnings of electroencephalography these patterns have
been related with different brain arousal states, functions or pathologies
[57]. Although these patterns may found to vary across different individu-
als, the frequency was shown to remain similar. This remarkable note was
the spark that led to the definition of frequency bands. The frequency bands
are centered around the alpha range and it can be said that they are log-
arithmically scaled. However, these bands are to this day still not set as a
standard, resulting in noting the detailed frequency limits together with the
band names, in order to avoid any confusion.

Delta ( � ) band, (0 - 4 Hz): Commonly, the delta band starts as low as
the bandpass filter will allow, with the upper limit set at 3.5 or 4Hz.
It was described in 1936 by W. Gray Walter, while a patient was un-
dergoing neurosurgery for a malignant tumor. Electrodes placed over
the related area recorded very slow, high voltage potentials. Since that
time, focal delta activity was a reliable indicator of localized disease of
the brain. In general, delta waves are not present in the normal adult
waking, resting EEG. However, it may occur in elderly subjects in rel-
atively limited amounts, particularly in the temporal regions. Also, it
is considered a normal component in infants and young children. It
is also characteristic of deep sleep stages, while as noted before spe-
cific delta morphologies and localizations are correlated with different
pathologies.

Theta ( � ) band, (4 - 8 Hz): It Starts at 4 and goes to 7Hz or 8Hz and
is enhanced during sleep. It is of paramount importance during infancy
and diffused theta is usual during childhood; whereas in the vigilant
adult high theta activity found in only one location or predominant
over one hemisphere is likely considered abnormal and is related to
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an underlying brain structural disease. The lesion in this case usu-
ally is less malignant or extensive than in the case of delta band focal
activity. However symmetrically distributed theta is sometimes con-
sidered a normal non-pathological variant, especially when it appears
as a rhythmic activity in mid-temporal regions.

Alpha ( � ) band, (8 - 13 Hz): Starts at 7− 8Hz and goes to 12− 13Hz.
Neurologists commonly refer to Alpha as the background activity, since
it constitutes the principal background feature of the normal adult
brain. Its frequency limits are not determined in detail; rather it is
defined as the rhythmic posterior activity that attenuates with sen-
sory stimulation. It appears spontaneously during wakefulness, under
relaxation and mental idle conditions. It is mostly located in occip-
ital locations while the subject remains at rest with eyes closed, but
often distributes to the adjacent parietal and posterior temporal ar-
eas. Usually, alpha is more or less symmetrical but often is of higher
amplitude over the non-dominant hemisphere. If the subject is tensed
alpha may not even be recorded (may reach 2:1 ratio). Alpha asymme-
try is always pathological, meaning possible remote infraction in older
subjects or brain damage such as congenital hemiatrophy in younger
subjects.

Beta ( � ) band, (13 - 30 Hz): Being the desynchronized faster activity
above alpha, it is occasionally divided into beta subtypes, Beta-1 (

�-�
)

and Beta-2 (
�g�

). It is mostly located in central and frontal lobes and
has less amplitude compared to alpha waves but is enhanced upon
expectancy states or tension. If completely absent it may represent an
abnormality. Inter- hemispheric asymmetry and in particular the side
of reduced amplitude usually points to the pathological hemisphere,
but should always be considered in concert with other background
frequency asymmetries.

Gamma (   ) band (30 - 95 Hz): It was initially not regarded to play an
important role in interpreting EEG, but became of interest after the
cellular level experiments of Gray and Singer [33] and Gray et al.
[32] showing the link of stimulus features to a common perceptual
information known as the binding theory. Gamma band is also often
divided into Gamma-1 (

tD�
) and Gamma-2 - (

t-�
) subtypes.

2.4 Measuring the EEG

2.4.1 Electrodes

The electrodes play a significant role in the proper and accurate data ac-
quisition. The metal cap sitting at the end of the electrode wire can be made
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from a variety of materials. Gold disks are expensive, work well but must be
disposed when their surface is scratched. Electrode scratches introduce arti-
facts. Plated chloride on silver is a very stable electrode but surface scratches
again degrade their performance, whereas the more modern silver-silver chlo-
ride pellets of amalgamates small pieces avoids this problem. Attention must
be paid on the proper skin contact and preparation. Electrode-skin contact
below 10kΩ is essential. Skin preparation may be done with numerous com-
mercial surface cleaners. In everyday practice, cap systems are used. These
provide small holes to apply conductivity gel through them. Moist gel ap-
plication helps skin hydration and avoids skin damage. Finally one must
ensure the stability of the electrodes, because every movement changes the
conductivity and produces unreliable results.

2.4.2 Amplifiers and Filters

The potentials measured on the skin surface are in the order of a micro-
volt. Hence amplification is needed in order for the signals to be scaled and
drawn in the display. A certain electrode is used as a reference, like the CZ
electrode or maybe a montage of electrode mountings that mostly include
the linked ears or even more complex electrode formations that use all avail-
able or adjacent electrodes. Amplifier inputs are shielded with impedance
values capable of diminishing direct or static potentials contacted from the
patient. However, high impedance settings increase the sensitivity to field
effects.

Additionally, the amplifiers need to filter out those frequencies that are
higher or lower than the EEG spectrum (0 to over 1000Hz). High and
low pass filters combined (band pass filters) take care of this requirement.
Additionally, a notch filter is applied, in order to remove the 50Hz electrical
interference frequency from power lines.

2.4.3 Analog to Digital (ADC) conversion

An analog to digital converter is the device needed to convert the continu-
ous EEG signal (analog) to discrete (digital), which can be further processed
in computers. The digital signal consists of a number of equally spaced sam-
ples. The resolution of the ADC specifies the accuracy of the conversion.
A typical ADC resolution for the EEG is of 12 bits. However, a continuous
signal can be approximated from the samples under the conditions specified
by the sampling theorem [70]. This theorem assumes that a signal can be
reconstructed sufficiently, if the signal to be sampled is band limited and the
sampling frequency is greater than twice the highest frequency in the signal
to be sampled (Nyquist principle). If the sampling theorem is not fulfilled
the reconstructed signal is distorted. This effect is referred as aliasing [61].

7



InBrAiN: An Interactive Tool for Brain Analysis and Visualization

(a) Eye blinking artifacts (b) Muscle artifacts

Figure 2.1: Examples of EEG artifacts

2.4.4 Artifacts

Although EEG is designed to record cerebral activity, it also records elec-
trical activities arising from sites other than the brain. An EEG artifact can
be defined as the activity that even though registered in the EEG, does not
reflect cortical activity. EEG artifacts can be classified in three broad cat-
egories; those arising from physiological processes, the exogenous ones and
those coming from the Analog to Digital (A/D) conversion. Physiological
artifacts include eye blink and movement (Figure 2.1(a)), as well as mus-
cle (Figure 2.1(b)), pulse, cardioballistic and electrodermal artifacts. The
exogenous artifacts are introduced from movement, electrodes, electrical in-
terference, field effect and instrument related artifacts. Finally, the artifacts
coming from the A/D conversion include quantum noise, non-linearity of the
converter and thermal noise. In addition one should add the spectral leakage
or Gibbs’s artifact [31] that is introduced when a Fast Fourier Transform
(FFT) is attempted.

Several remedies are applied to ensure that the data will be arifact-free.
In everyday practice though it is utopic to assert that the data will not
contain artifacts. In our study, visual inspection is an extra step included
that ensures the rejection of the affected data. This manual process of
checking and carefully selecting epochs assures the credibility and accuracy
of any results based upon the EEG data.

2.5 The abnormal EEG

An EEG is characterized as abnormal not because it does not contain
any normal activity patterns, but because it does include abnormal EEG
patterns. Such EEG abnormal patterns are usually considered to be either
epileptiform activity, slow waves, amplitude abnormalities or specific devia-
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tions from normal motifs. Note that the basic abnormal EEG patterns even
though they correspond fairly well with a few anatomical and pathophysio-
logical kinds of cerebral lesions, they do not correlate directly with specific
neurological diseases. This is true for the reason that similar EEG patterns
may be produced by an extensive variety of neurophysiological diseases.
Furthermore, many diseases may produce more than one abnormal pattern.
Hopefully, there are a few specific patterns that considerably narrow the pos-
sible diagnosis. However, etiological diagnosis should not be drawn by the
EEG alone, but should be used in combination with complementally clinical
examinations such as psychiatric testing. The EEG only helps to establish
the presence, severity and cerebral distribution of any present neurological
disorders. In the next sections only two syndromes correlated with atypi-
cal EEG are briefly described since only these phenomena were addressed
and analyzed in this thesis. For extensive information and findings related
to numerous EEG abnormalities the reader may refer to clinically oriented
references and atlases [22, 67].

2.5.1 Epilepsy Syndrome

Epilepsy is a brain disorder that affects about 1% of the population and
is characterized by seizures. A seizure is an episode of sudden relatively
brief disturbances (lasting one or a few minutes) of mental, motor, sensory
or autonomic activity caused by an abnormal paroxysmal cerebral activity.
Chronic recurrent seizures characterize an epileptic patient. The cause of
epilepsy may be known (i.e., symptomatic epilepsy) or unknown (i.e., idio-
pathic or cryptogenic epilepsy). EEG analysis has been historically the most
useful tool for evaluating the nature of this disorder. The analysis is mostly
focused on interictal findings since ictal recordings (during the seizure) are
rarely recorded. In the clinical environment seizures may be provoked using
different methods, such as photostimulation, hyperventilation and so on, but
they do not necessarily share the same properties with the spontaneous ones.
However, proper counseling and selection of therapeutic plans is facilitated
by making the correct epilepsy syndrome diagnosis among different epilepsy
classifications.

Many classifications have been proposed comprising a debatable topic.
The most widely used is the one proposed by the Commission on Classifica-
tion and Terminology of the International League against Epilepsy, which is
based on the study of videotape recordings of simultaneously recorded EEG
together with the epileptic seizures. The classification is divided into the
following major categories.

Partial seizures: are those in which the first clinical and electrographic
changes indicate the initial involvement of a group of neurons limited
to part of one cerebral hemisphere.
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Simple partial seizure: is noted when consciousness is not impaired
during the attack i.e., amnesia for some or all of the events hap-
pened during the attack.

Complex partial seizure: is noted when consciousness is impaired
during the attack.

Generalized seizures: are those in which the first clinical and electro-
graphic changes indicate initial involvement of both cerebral hemi-
spheres. Loss of consciousness, bilateral motor activity or both is
usually produced. Generalized seizures may be further divided into:
absence, myoclonic, clonic, tonic, tonic-clonic and atonic seizures [60].

Unclassified epileptic seizures: include all kinds of seizures that cannot
be classified because of inadequate or incomplete data, or due to lack
of a consensus of opinion among investigators.

2.5.2 Schizophrenia Syndrome

Schizophrenia is a mental disorder characterized by impairments in the
perception or expression of reality based on physiciatric diagnosis. The
term schizophrenia coined from Eugene Bleuler in 1908 comes from the
Greek words “

f�V�T��Z�
” and “

w�XNmS[
” that translate to split or divide and mind,

respectively [9]. However, schizophrenia does not necessarily correlate with
dissociative identity disorder (multiple personality illusion) and there is no
predisposition toward aggressive behavior.

An untreated schizophrenic demonstrates disorganized thinking and ex-
perience dilutions or auditory hallucinations. Positive and negative symp-
toms are possible. As positive symptoms are characterized those diagnosed
additional to the normal experience and behavior such as dilutions, audi-
tory hallucinations, thought disorder and other psychosis manifestations. As
negative symptoms are characterized those diagnosed to decline in normal
experience or behavior, such as flat or constricted affect and emotion and
lack of motivation.

Diagnosis is mostly based on the self-reported experiences of the patient,
in combination with signs observed be a psychiatrist or a clinical physiolo-
gist. Differences in brain structure have been found between schizophrenics
and their healthy counterparts, but these tend to be reliable only on the
group level and due to the significant variability between each individual,
may not reliably represent a particular subject. However, the lack of objec-
tive laboratory test makes the possibility of EEG a prospective diagnostic
test at least for stabilized patients.

Schizophrenics often face social or occupational isolation and typically
live 10 to 12 years less than the healthy subjects due to high suicide rate
and increased physical health problems.

10



InBrAiN: An Interactive Tool for Brain Analysis and Visualization

2.6 Computing Correlations

As stated in Chapter 1 there is a need for measures that capture the lin-
ear and the non-linear links between time-series curves in a frequency band
in order to assess the degree of functional connectivity between brain areas.
Due to the lack of a globally accepted measure to quantify synchronous os-
cillatory activity based on different underlying assumptions we used several
linear and non-linear ones. Namely, the most widely used coherence, wavelet
coherence, a robust phase coupling measure known as PLV, a reliable way
of assessing generalized synchronization also in state-space also known as
RSS-GS and an unbiased alternative called Synchronization Likelihood. For
more details about these methods see Appendix A.
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Chapter 3

Graph Theory Background

When speaking about graph theory in mathematics and computer sci-
ence, one has to define the basic object which is the graph. Informally
speaking, a graph is a set of objects called points or vertices connected by
links called lines or edges. In a graph proper, which is by default undirected,
a line from point A to point B is considered to be the same as a line from
point B to point A. In a digraph, short for directed graph, the two directions
are counted as being distinct arcs or directed edges. Typically, a graph is
depicted in diagrammatic form as a set of dots (for the points, vertices, or
nodes), joined by curves (for the lines or edges). Brain and other networks
are conveniently described as a graph.

3.1 Definitions

A graph G is an ordered pair G = (V,E) such that:

• V = v1, v2, ...vn is a set of nodes.

• E is a set of unordered pairs of distinct nodes, called edges, where eij

denotes an edge between nodes vi and vj .

• The nodes belonging to an edge are called the endpoints of the edge.

We use n and m to denote the number of nodes and edges, respectively.
Hereafter, we assume vi ∈ V , where 1 ≤ i ≤ n.

We define the neighborhood for a node vi as its immediately connected
neighbors, namely Ni = {vj} : eij ∈ E. The degree ki of a node is the
number of nodes in its neighborhood |Ni|. The average degree of a graph is
the average degree over all nodes, thus

K =

∑
vi∈V ki

n
(3.1)
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The clustering coefficient Ci for a node vi is the proportion of links
between the nodes within its neighborhood divided by the number of links
that could possibly exist between them. For an undirected graph, if a node
vi has ki neighbors, at most ki(ki−1)

2 edges could exist among the nodes
within the neighborhood, thus

Ci =
2|{ejk}|

ki(ki − 1)
: vj , vk ∈ Ni (3.2)

This measure is 1 if every neighbor connected to vi is also connected to
every other node within the neighborhood, and 0 if no node that is connected
to vi connects to any other node that is connected to vi. The clustering
coefficient for a graph is given by Watts and Strogatz [84] as the average of
the clustering coefficients over all nodes,

C =

∑n
i=1 Ci

n
, (3.3)

and is a measure of the tendency of graph nodes to form local clusters.
We define a path from vi to vj as an alternating sequence of nodes and

edges, beginning with vi and ending with vj , such that each edge connects its
preceding with its succeeding node. The shortest path (distance or geodesic
distance) dij between two nodes vi and vj is the minimum number of edges
we need to traverse in order to go from node vi to node vj . By definition,
dii = 0 for every vi , and dij = dji for vi, vj . There are several other
measurements defined in terms of distance such as the eccentricity of a
node, the radius and the diameter of a graph.

The eccentricity ε(v) of a node v in a connected graph G is the maximum
graph distance between v and any other node u of G

ε(v) = max{dvu : v, u ∈ V } (3.4)

For a disconnected graph, all nodes are defined to have infinite eccentricity.
The radius and the diameter of a graph is the minimum and the max-

imum eccentricity of any node in the graph respectively. The diameter
represents the greatest distance between any two nodes.

The average shortest path length

L =

∑
i,j∈V,i6=j dij

n(n− 1)
(3.5)

is the average shortest path (distance) connecting any two nodes of the graph
and is a measure of interconnectedness of the graph. Formally, the absence
of a path between vi and vj implies dij = ∞, but for our experiments we
choose dij = 1000. Let σij = σji denote the number of shortest paths from
vi to vj , where σii = 1 by convention. Let σij(v) denote the number of
shortest paths from vi to vj that contain v ∈ V .
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By embeding a graph into a plane we can visualize it’s nodes and edges.
This can be done by assigning (x, y) coordinates to every node. By doing so
we would place some nodes closer or further to other nodes in terms of carte-
sian distance. The geometric coefficient γi for a node vi is the proportion of
“geometric” edges between the nodes within its neighborhood, thus

γi =
|geometric edges|

ki
, (3.6)

where “geometric” edges are the edges that connect a node with nodes that
are close to it in terms of cartesian distance.

This measure is 1 if all edges connecting vi with its neighbors are “ge-
ometric”, and 0 if no edge connecting vi with its neighbors is “geometric”
or if ki = 0. The geometric coefficient for a graph is given as the average of
the geometric coefficients over all nodes,

γ =

∑n
i=1 γi

n
, (3.7)

and is a measure of the tendency of graph nodes to connect with nodes that
are geographically reachable.

3.2 Node Centrality Measures

Within graph theory and network analysis, there are various measures
of the centrality of a node that determine the relative importance of a node
within the graph. For example, the importance of a person in a social net-
work, or a room within a building or a road in an urban network. In other
words, the centrality of a node in a network is a measure of the structural im-
portance of the node. Such measures are the degree, closeness, betweenness
and bridging centrality which are analysed below. These measures attempt
to quantify the prominence of an individual node embedded in a network. A
central node, presumably, has a stronger influence on other network nodes as
it has high degree, close to all other nodes, so it is easily accessible, and lies
between other nodes, so it is part of several shortest paths. For interpretabil-
ity, i.e. to control for the size of the network, the above indices are usually
normalized to lie between zero and one. Though their definitions extend
naturally to directed or disconnected graphs, normalization then becomes a
problem with some of the above measures.

Degree Centrality: This is the simplest measure. A node is central
in a graph, if it is active enough in the sense that is has a lot of links to
other nodes. The degree centrality of v ∈ V is defined as follows:

CD(v) =
kv

n− 1
(3.8)
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Closeness Centrality: In 1966, Sabidussi [69] suggested that the most
central nodes according to closeness centrality can quickly interact to all
others because they are close to them. This measure is preferable to degree
centrality, because it does not take into account only direct connections
among nodes but also indirect connections. If the graph is not strongly
connected, we take only reachable nodes into account, but we weight the
result with the number of reachable nodes. The closeness centrality of v ∈ V
is defined as follows:

CC(v) =
n− 1∑
u∈V dvu

(3.9)

The smallest possible distance of the selected node from all other nodes is
obtained, if the node has all other nodes for neighbors. In this case the
closeness centrality is 1 indicating that a node can reach others on relatively
short paths.

Betweenness Centrality: In the case of brain or communication net-
works the most important property of a node is not the distance from other
nodes but the the amount of shortest paths it lies on. Such nodes have
control over the flow of information in the network. The idea behind be-
tweenness centrality is that a node is central, if it lies on several shortest
paths among other pairs of nodes. In 1977, Freeman [23] defined the be-
tweenness centrality of v ∈ V as follows:

CB(v) =

∑
s6=v 6=t∈V

σst(v)
σst

(n− 1)(n− 2)/2
(3.10)

Suppose that communication in a network always passes through shortest
available paths. Then betweenness centrality of v ∈ V is the sum of prob-
abilities across all possible pairs of nodes, that the shortest path between
s ∈ V and t ∈ V will pass through node v.

Bridging Centrality: A bridging node is a node lying between mod-
ules, i.e. a node connecting densely connected components in a graph. The
bridging centrality of v ∈ V is the product of the betweenness centrality
CB(v) and the bridging coefficient BC, which measures the global and local
features of node v respectively:

CR(v) = CB(v) ×BC(v) (3.11)

The bridging coefficient of a node determines the extent of how well the node
is located between high degree nodes. The bridging coefficient of v ∈ V is
defined as:

BC(v) =
1
kv∑

i∈Nv

1
ki

(3.12)

The bridging coefficient assesses the local bridging characteristics in the
neighborhood. The bridging coefficient understands a network as a simple
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electrical circuit. Intuitively, there should be more congestion on the smaller
degree nodes if an unit electrical current arrives on a node since the smaller
degree nodes have lesser number of outlets than the bigger degree nodes have.
So, if we consider the reciprocal of the degree of a node as the “resistance” of
the node, the bridging coefficient can be seen as the ratio of the resistance of
a node to the sum of the resistance of the neighbors. Critical bridging nodes,
typically representing rate limiting points in the network and because they
connect its densely connected regions, have high “resistance”. Thus, higher
CR(v) signifies that more information flows through node v, i.e., higher
betweenness centrality CB(v) and more resistance on node v, i.e., higher
bridging coefficient BC(v), by bridging densely connected regions.

Different centrality measures can give quite different results. Therefore
we must be very careful in choosing the appropriate centrality measure for
a particular network since some nodes may have low degree, but high be-
tweenness centrality.

3.3 Graph Centrality Measures

Nodes can also be aggregated to obtain a group-level centrality indices.
Centralization refers to the extent to which the network is concentrated on
a group of nodes or just one node. Empirically, a centralized network is one
that has few nodes, or just one, with considerably higher centrality scores
than others in the network, e.g. a large variability of individual centrality
scores. This inhomogeneity of a centrality index is used to define [24] the
centralization of a graph with respect to that index as follows:

CA =

∑
v∈V (C∗

A − CA(v))

max
∑

v∈V (C∗
A − CA(v))

(3.13)

where C∗
A is the highest value of selected node centrality measure over all

CA(v) in the set of nodes of a graph. Graph centralisation index is a number
between 0 and 1, thus the index is 0 if all nodes have equal centrality value
and 1 when few nodes, or just one node, completely dominates all other
nodes. In detail we get:

Graph Degree Centralization : CD =

∑
v∈V (C∗

D −CD(v))

n− 2
(3.14)

Graph Closeness Centralization : CC =

∑
v∈V (C∗

C − CC(v))

(n− 1)(n− 2)/(2n − 3)
(3.15)

Graph Betweenness Centralization : CB =

∑
v∈V (C∗

B − CB(v))

n− 1
(3.16)
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Figure 3.1: An example of a random Erdös and Rényi graph

A theoretical foundation for centrality measures not based on shortest paths
is given in [26]. See [81] for further details.

3.4 Network Models

Measuring some basic properties of a complex network is the first step
toward understanding its structure. The next step, is to develop a math-
ematical model with a topology of similar statistical properties, thereby
obtaining a platform on which mathematical analysis is possible. We lim-
ited our current study to five of the most widely used network models, i.e.
Erdös-Rényi (ER), Small-World (SW), Generalized Random (GR), Scale-
Free (SF) and Geometric Random (GEO). The reason for this is that these
models are very well established and are most extensively used for modeling
various real-world phenomena, so we wanted to evaluate how well each of
them models brain networks.

Note that other network models exist and new ones will certainly be
designed in the future to model the real-world phenomena better. It is not
possible to predict how many and which new models will appear in the
future; this will largely depend on the new data that need to be modeled.

3.4.1 Erdös-Rényi Model

The random graph developed by Rapoport [64, 65, 66] and independently
by Erdös and Rényi [19, 20, 21] can be considered the most basic model of
complex networks. In their paper published in 1959 [19], Erdös and Rényi
introduced a model to generate random graphs consisting of N vertices and
M edges. Starting with N disconnected vertices, the network is constructed
by the addition of L edges at random, avoiding multiple and self connections.
Another similar model defines N vertices and a probability p of connecting
each pair of vertices. The latter model is widely known as Erdös-Rényi (ER)
model. Figure 3.1 shows an example of this type of network. For the ER
model, in the large network size limit (N → ∞), the average number of
connections of each vertex 〈k〉, given by

〈k〉 = p(N − 1) (3.17)
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(a) Small-World construction proccess (b) A small-world
graph with N = 64
nodes, κ = 2 and
p = 0.1

Figure 3.2: The Small-World model of Watts and Strogatz

diverges if p is fixed. Instead, p is chosen as a function of N to keep 〈k〉
fixed: p = 〈k〉/(N − 1). For this model, the degree distribution P (k) is a
Poisson distribution.

3.4.2 Small-World Model

Many real world networks exhibit what is called the small world prop-
erty, i.e. most vertices can be reached from the others through a small
number of edges. This characteristic is found, for example, in social net-
works, where everyone in the world can be reached through a short chain
of social acquaintances [82, 83]. This concept originated from the famous
experiment made by Milgram in 1967 [46], who found that two US citizens
chosen at random were connected by an average of six acquaintances.

Another property of many networks is the presence of a large number
of loops of size three, i.e. if vertex i is connected to vertices j and k, there
is a high probability of vertices j and k being connected (the clustering
coefficient, see Equation 3.3, is high); for example, in a friendship network,
if B and C are friends of A, there is a high probability that B and C are
also friends. ER networks have the small world property but a small average
clustering coefficient; on the other hand, regular networks with the second
property are easy to construct, but they have large average distances. The
most popular model of random networks with small world characteristics
and an abundance of short loops was developed by Watts and Strogatz
[84] and is called the Watts-Strogatz small-world model. They showed that
small-world networks are common in a variety of realms ranging from the
C. elegans neuronal system to power grids. This model is situated between
an ordered finite lattice and a random graph presenting the small world
property and high clustering coefficient.

To construct a small-word network, one starts with a regular lattice of
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N vertices (Figure 3.2(a)) in which each vertex is connected to κ nearest
neighbors in each direction, totalizing 2κ connections, where N � κ �
log(N) � 1. Next, each edge is randomly rewired with probability p. When
p = 0 we have an ordered lattice with high number of loops but large dis-
tances and when p → 1, the network becomes a random graph with short
distances but few loops. Watts and Strogatz have shown that, in an interme-
diate regime, both short distances and a large number of loops are present.
Figure 3.2(b) shows an example of a Watts-Strogatz network. Alternative
procedures to generate small-world networks based on addition of edges in-
stead of rewiring have been proposed [50, 55]. The degree distribution for
small-world networks is similar to that of random networks, with a peak at
〈k〉 = 2κ.

3.4.3 Generalized Random Model

A common way to study real networks is to compare their characteristics
with the values expected for similar random networks. As the degrees of the
vertices are important features of the network, it is interesting to make the
comparison with networks with the same degree distribution. Models to
generate networks with a given degree distribution, while being random in
other aspects, have been proposed.

Bender and Canfield [8] first proposed a model to generate random
graphs with a pre-defined degree distribution called configuration model.
Later, Molloy and Reed [48, 49] proposed a different method that produces
multigraphs (i.e. loops and multiple edges between the same pair of vertices
are allowed).

The common method used to generate this kind of random graph involves
selecting a degree sequence specified by a set ki of degrees of the vertices
drawn from the desired distribution P (k). Afterwards, each vertex i is
associated to a number ki of “stubs” or “spokes” (ends of edges emerging
from a vertex) according to the desired degree sequence. Next, pairs of such
stubs are selected uniformly and joined together to form an edge. When all
stubs have been used up, a random graph that is a member of the ensemble
of graphs with that degree sequence is obtained [52, 56, 54].

Another possibility, the rewiring method, is to start with a network
(possibly a real network under study) that already has the desired degree
distribution, and then iteratively choose two edges and interchange the cor-
responding attached vertices [47]. This rewiring procedure is used in some
results presented in Section 16.2.

Due to its importance and amenability to analytical treatment, many
works deal with this model, including the papers of Newman [53], Aiello et
al. [2], Chung and Lu [12] and Cohen and Havlin [13].
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Figure 3.3: An example of a scale-free graph

3.4.4 Scale Free Model

After Watts and Strogatz’s model, Barabási and Albert [5] showed that
the degree distribution of many real systems is characterized by an uneven
distribution. Instead of the vertices of these networks having a random
pattern of connections with a characteristic degree, as with the ER and SW
models (see Figure 3.1), some vertices are highly connected while others
have few connections, with the absence of a characteristic degree. More
specifically, the degree distribution has been found to follow a power law for
large values of k,

P (k) ∼ k−γ (3.18)

These networks are called scale-free networks. A characteristic of this kind of
network is the existence of hubs, i.e. vertices that are linked to a significant
fraction of the total number of edges of the network.

The Barabási-Albert network model is based on two basic rules: growth
and preferential attachment. The network is generated starting with a set of
m0 vertices; afterwards, at each step of the construction the network grows
with the addition of new vertices. For each new vertex, m new edges are
inserted between the new vertex and some previous vertex. The vertices
which receive the new edges are chosen following a linear preferential at-
tachment rule, i.e. the probability of the new vertex i to connect with an
existing vertex j is proportional to the degree of j,

P (i→ j) =
kj∑
u ku

(3.19)

Thus, the most connected vertices have greater probability to receive new
vertices. This is known as “the rich get richer” paradigm. (Figure 3.3 shows
an example of Barabási-Albert network).

3.4.5 Geometric Random Model

Complex networks are generally considered as lying in an abstract space,
where the position of vertices has no particular meaning. In the case of sev-
eral kinds of networks, such as protein-protein interaction networks or net-
works of movie actors, this consideration is reasonable. However, there are
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Figure 3.4: An example of a geometric random graph with N = 64 nodes

many networks where the position of vertices is particularly important as it
influences the network evolution. This is the case for geographical or spatial
networks, for example highway networks or the Internet, where the position
of cities and routers can be localized in a map and the edges between corre-
spond to real physical entities, such as roads and optical fibers [30]. Other
important examples of geographical networks are power grids [3, 42], airport
networks [6, 35, 36], subway [44] and neural networks [73]. In such networks,
the existence of a direct connection between vertices can depend on a lot of
constraints such as the distance between them, available resources to con-
struct the network, territorial limitation and so on. The models considered
to represent these networks should consider these constraints.

A simple way to generate geographical networks is to distribute N ver-
tices at random in a two-dimensional space Ω and link them with a given
probability which decays with the distance, for instance

P (i→ j) ∼ e−λsij (3.20)

where sij is the geographical distance of the vertices and λ fixes the length
scale of the edges. This model generates a Poisson degree distribution as
observed for random graphs and can be used to model road networks (see
Figure 3.4). Alternatively, the network development might start with few
nodes while new nodes and connections are added at each subsequent time
step (spatial growth). Such a model is able to generate a wide range of
network topologies including small-world and linear scale-free networks [39].
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Chapter 4

Analysing and Modeling
Brain Networks

In this chapter we describe how we construct the graphs from the input
data, show how we incorporate many of the metrics discussed in Chapter 3
into our framework and how this can be used to derive useful conclusions.
Furthermore, we present some of our findings and describe how it can be in-
teractively used in collaboration with the visualization techniques described
in Chapter 5.

4.1 From Correlations to Graphs

In our study two diseases were encountered, schizophrenia and epilepsy.
In the case of schizophrenia three different groups were tested. The first
group consists of 20 control university educated subjects (HE), the second
one consists of 20 control subjects without higher education (HU) and the
third one consists of 20 stabilized patients with schizophrenia (P). For all
subjects two different situations are considered: the control (Rest), where
subjects had the eyes fixed on a “star” on the computer screen and the
cognitive activation during working memory (WM) while performing a two-
back1 test using capital Greek letters. The testing hypothesis suggests that
a WM task requires considerable mental effort and the disconnection on
neuronal assemblies in patients could be visible. In order to acquire the
raw data the EEG signals in all three groups were recorded from N = 30
cap electrodes, according to the 10/20 international system [37], referred to
linked earlobe electrodes.

In the epilepsy case only one group was tested. It consists of 10 subjects
(Subjects) all of which were diagnosed with epilepsy and were scheduled
for surgical intervention. All individuals were tested during two different

1In the 2-back condition, the target letter was any letter that was identical to the one
presented two trials before it.
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situations: the control (OB), where subjects were calm and the Seizure
where the subjects were having an epileptic seizure. In order to acquire the
raw data the EEG signals in the group were recorded from N = 21 cap
electrodes. These electrodes were implanted under the subjects’ skull before
the operation took place in order to have a better knowledge regarding the
source of the epileptic seizure.

As stated in Chapter 1 there is no universally accepted method for as-
sessing the spatial pattern of functional connectivity. So, we used several
linear and non-linear methods to compute it, as discussed in Section 2.6.
All these methods yield a statistical measure ranging from 0 to 1, which is
an indication of how much a specific electrode is correlated with each of the
other electrodes. Thus, we come up with an N×N correlation matrix (CM)
with elements ranging from 0 to 1 formulated per task and subject. In order
to obtain a graph from a CM we need to convert it into an N × N binary
adjacency matrix, A. To achieve that we define a variable called threshold
T, such that T ∈ [0, 1]. The value A(i, j) is either 1 or 0, indicating the
presence or absence of an edge between nodes i and j, respectively. Namely,
A(i, j) = 1 if CM(i, j) ≥ T , otherwise A(i, j) = 0. Thus we define a graph
for each value of T. For the purposes of our work we calculated 1000 such
graphs, one for every thousandth of T.

4.2 Experimental Results

As was described in the previous section 1000 graphs were generated for
every subject and its correlation matrix. For each subject there are two
states, that is Rest and WM (or OB and Seizure in the epilepsy case), and
seven frequency bands, in terms of functional uniformity, namely delta[0.5−
4Hz], theta[4−8Hz], alpha1[8−10Hz], alpha2[10−13Hz], beta[13−30Hz],
gamma1[30 − 45Hz] and gamma2[45 − 90Hz]. This is a large number of
networks to be analysed.

For every such graph we conducted extended experiments measuring
most of the metrics described in Chapter 3 and the results were used in our
tool. This way we are able to observe the way these metrics alter as the
threshold increases. As we plot the average value, over all subjects belonging
to one group, of each metric we used a statistical test (student’s t-test)
to locate the threshold regions where the differences between the values of
different groups were statistically important. We used a dark vertical marker
to indicate this difference in the tool.

Our study focuses on gamma1 band wavelet coherence analysis. Signif-
icant coherent time-regions are transformed to the aforementioned binary
matrix A served as input. The values of the average degree K, the cluster-
ing coefficient C and the average shortest path length L during WM were
computed. These three graph measures K, C and L actually represent an
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HEALTHY EDUCATED

T K C L

0.651 26.94 ± 0.27 0.97 ± 0.00 4.40 ± 3.33

0.661 26.10 ± 0.28 0.95 ± 0.01 27.60 ± 8.83

0.671 25.25 ± 0.36 0.94 ± 0.01 37.50 ± 10.10

0.681 24.31 ± 0.48 0.92 ± 0.01 50.84 ± 9.40

0.691 23.22 ± 0.61 0.90 ± 0.01 70.72 ± 7.45

0.701 22.25 ± 0.73 0.87 ± 0.01 80.06 ± 11.79

0.711 21.18 ± 0.85 0.85 ± 0.02 86.53 ± 12.26

0.721 20.06 ± 0.94 0.83 ± 0.02 96.09 ± 12.48

0.731 18.73 ± 1.02 0.81 ± 0.02 117.48 ± 17.13

0.741 17.36 ± 1.11 0.78 ± 0.02 132.10 ± 21.66

0.751 16.14 ± 1.17 0.76 ± 0.02 147.98 ± 21.05

0.761 14.89 ± 1.23 0.73 ± 0.03 150.81 ± 22.31

0.771 13.67 ± 1.26 0.70 ± 0.03 174.50 ± 25.91

0.781 12.60 ± 1.27 0.69 ± 0.03 196.24 ± 31.37

0.791 11.56 ± 1.22 0.67 ± 0.03 210.75 ± 32.57

0.801 10.54 ± 1.19 0.63 ± 0.03 230.08 ± 35.12

0.811 9.48 ± 1.16 0.60 ± 0.03 243.48 ± 37.14

0.821 8.45 ± 1.10 0.59 ± 0.03 271.10 ± 38.40

0.831 7.46 ± 1.00 0.55 ± 0.03 294.93 ± 40.91

0.841 6.53 ± 0.90 0.53 ± 0.04 344.56 ± 43.36

0.851 5.63 ± 0.82 0.48 ± 0.04 395.30 ± 48.06

0.861 4.80 ± 0.74 0.46 ± 0.04 480.07 ± 53.76

0.871 4.08 ± 0.66 0.42 ± 0.04 542.51 ± 50.83

0.881 3.35 ± 0.59 0.38 ± 0.05 632.61 ± 47.67

0.891 2.75 ± 0.51 0.35 ± 0.05 695.45 ± 44.08

0.901 2.18 ± 0.44 0.31 ± 0.05 782.01 ± 41.65

Table 4.1: Healthy Educated values of K, C and L

overall signature of the graph topology. The values of these metrics for the
healthy educated and patient groups for selected thresholds are shown in
Table 4.1 and Table 4.2. For each case we show the average metric value
over all subjects of the group and the standard error of the mean, which is
equal to the standard deviation of the group devided by the square root of
the group’s size. Furthemore, the p-value, where 0 ≤ p ≤ 1, derived from the
t-test are presented in Table 4.3. In our experiments two sets are thought
to be statistically different when p ≤ 0.05.
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PATIENT

T K C L

0.651 24.86 ± 0.72 0.92 ± 0.01 7.80 ± 4.58

0.661 23.19 ± 0.96 0.90 ± 0.02 17.62 ± 8.01

0.671 21.58 ± 1.11 0.88 ± 0.02 37.09 ± 12.78

0.681 20.11 ± 1.17 0.84 ± 0.02 74.55 ± 22.26

0.691 18.66 ± 1.20 0.81 ± 0.02 108.80 ± 25.68

0.701 17.37 ± 1.20 0.79 ± 0.03 139.00 ± 28.56

0.711 16.14 ± 1.20 0.77 ± 0.03 177.01 ± 32.75

0.721 14.96 ± 1.20 0.75 ± 0.03 194.84 ± 33.44

0.731 13.81 ± 1.17 0.72 ± 0.03 205.92 ± 35.13

0.741 12.68 ± 1.12 0.69 ± 0.03 223.07 ± 36.66

0.751 11.67 ± 1.11 0.67 ± 0.03 244.57 ± 42.90

0.761 10.77 ± 1.10 0.66 ± 0.03 269.06 ± 44.69

0.771 9.91 ± 1.08 0.63 ± 0.03 293.20 ± 48.19

0.781 9.09 ± 1.04 0.61 ± 0.03 327.30 ± 45.81

0.791 8.25 ± 1.00 0.58 ± 0.03 349.62 ± 45.45

0.801 7.45 ± 0.96 0.56 ± 0.03 374.56 ± 46.77

0.811 6.66 ± 0.91 0.53 ± 0.03 418.53 ± 45.09

0.821 5.88 ± 0.84 0.50 ± 0.04 448.18 ± 48.70

0.831 5.19 ± 0.77 0.47 ± 0.04 495.11 ± 49.52

0.841 4.48 ± 0.65 0.43 ± 0.04 530.93 ± 49.30

0.851 3.95 ± 0.60 0.39 ± 0.04 555.88 ± 51.02

0.861 3.32 ± 0.51 0.35 ± 0.04 629.29 ± 49.31

0.871 2.80 ± 0.45 0.33 ± 0.03 701.86 ± 42.76

0.881 2.37 ± 0.40 0.29 ± 0.04 763.19 ± 43.15

0.891 1.95 ± 0.34 0.26 ± 0.04 797.72 ± 44.21

0.901 1.65 ± 0.29 0.23 ± 0.04 824.45 ± 43.56

Table 4.2: Patient values of K, C and L
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p-value

THealthy TPatient K C L

0.651 0.651 0.01 0.01 0.55

0.661 0.661 0.01 0.02 0.41

0.671 0.671 0.00 0.02 0.98

0.681 0.681 0.00 0.00 0.34

0.691 0.691 0.00 0.00 0.17

0.701 0.701 0.00 0.00 0.07

0.711 0.711 0.00 0.01 0.02

0.721 0.721 0.00 0.01 0.01

0.731 0.731 0.00 0.02 0.03

0.741 0.741 0.01 0.02 0.04

0.751 0.751 0.01 0.03 0.05

0.761 0.761 0.02 0.07 0.03

0.771 0.771 0.03 0.12 0.04

0.781 0.781 0.04 0.07 0.02

0.791 0.791 0.04 0.05 0.02

0.801 0.801 0.05 0.09 0.02

0.811 0.811 0.06 0.10 0.00

0.821 0.821 0.07 0.07 0.01

0.831 0.831 0.08 0.12 0.00

0.841 0.841 0.07 0.07 0.01

0.851 0.851 0.11 0.11 0.03

0.861 0.861 0.11 0.05 0.05

0.871 0.871 0.12 0.09 0.02

0.881 0.881 0.18 0.18 0.05

0.891 0.891 0.20 0.17 0.11

0.901 0.901 0.32 0.18 0.49

Table 4.3: p-value for K, C and L between HE and P subjects

Our experiments indicated that K and C are getting lower and L is
getting higher while moving from healthy to schizophrenics, in the whole
threshold range. This is clear when observing the aforementioned tables
and the plots created by our tool (Figure 4.1). Instead of studying each
measure independently, we attempt to quantify their interaction.

Towards this direction we concentrated in different values of T , where the
values of K and C of schizophrenic patients were equal to those of healthy
subjects. For the above values of T , the respective values of L for patients
were much greater than those for controls. This can be seen by comparing
Table 4.4 and Table 4.5, where three selected different cases are presented.
This was a first indication for the connection between K, C and L. In order
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Figure 4.1: K, C and L plots for gamma1 band during WM

to make sure that the observed differences were important we conducted a
t-test. The results of the statistical test are shown in Table 4.6. Here it is
clear that for the selected thresholds the values of K and C are statistically
equal, as p ≥ 0.05, while the respective values of L are statistically different,
as p ≤ 0.05.

HEALTHY EDUCATED

T K C L

0.791 11.56 ± 1.22 0.67 ± 0.03 210.75 ± 32.57

0.801 10.54 ± 1.19 0.63 ± 0.03 230.08 ± 35.12

0.831 7.46 ± 1.00 0.55 ± 0.03 294.93 ± 40.91

Table 4.4: Healthy Educated having comparable K and C with Patients

PATIENT

T K C L

0.781 9.09 ± 1.04 0.61 ± 0.03 327.30 ± 45.81

0.791 8.25 ± 1.00 0.58 ± 0.03 349.62 ± 45.45

0.811 6.66 ± 0.91 0.53 ± 0.03 418.53 ± 45.09

Table 4.5: Patients having comparable K and C with Healthy Educated

Additionally, we investigated the opposite direction. That is we tried
to find values of T where the values of L for the patients and the healthy
were equal. We hypothised that the respective values of K and C would
be different. Again three selected cases are shown in Table 4.7 and Table
4.8. Additionally, we conducted a t-test to make sure that the results were
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p-value

THealthy TPatient K C L

0.791 0.781 0.13 0.15 0.05

0.801 0.791 0.15 0.26 0.04

0.831 0.811 0.56 0.68 0.05

Table 4.6: p-value for K, C and L with comparable K and C

statistically independent. As can be seen in Table 4.9 our assumption was
correct, as for L the p-values were greater than 0.05 while for K and C p-
values were less than 0.05, making it clear that there is an interdependence
between K, C and L.

HEALTHY EDUCATED

T K C L

0.651 26.94 ± 0.27 0.97 ± 0.01 4.40 ± 3.33

0.661 26.10 ± 0.28 0.95 ± 0.02 27.60 ± 8.83

0.671 25.25 ± 0.36 0.94 ± 0.01 37.50 ± 10.10

Table 4.7: Healthy Educated having comparable L with Patients

PATIENT

T K C L

0.651 24.86 ± 0.72 0.92 ± 0.01 7.80 ± 4.58

0.661 23.19 ± 0.96 0.90 ± 0.02 17.62 ± 8.01

0.671 21.58 ± 1.11 0.88 ± 0.02 37.09 ± 12.78

Table 4.8: Patients having comparable L with Healthy Educated

p-value

THealthy TPatient K C L

0.651 0.651 0.01 0.01 0.55

0.661 0.661 0.01 0.02 0.41

0.671 0.671 0.01 0.02 0.98

Table 4.9: p-value for K, C and L with comparable L

The physical meaning of this maneuver addresses the following two ques-
tions: Assuming both healthy and schizophrenic populations have the same
average degree and clustering coefficient, is the network proportionally effi-
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cient? According to Table 4.6 the answer is no, which means that for the
above values of T the respective values of K and C of the patients are sta-
tistically equal compared to those of healthy while the values of L of the
patients are statistically different and specifically much greater than those
of healthy. On the other hand assuming both healthy and schizophrenic
populations have the same average shortest path length, is the network pro-
portionally efficient? According to Table 4.9 the answer is also no, which
means that for the above values of T the respective values of L of the pa-
tients are statistically equal compared to those of healthy while the values
of K and C of the patients are statistically different and specifically much
smaller than those of healthy. These syllogisms lead to the suggestion that
schizophrenic patients need significantly more direct node (channel) connec-
tions in order to perform the same WM task.

4.3 Local Properties of Brain Networks

In the previous sections we analysed a graph’s properties using some
global metrics. Now, we try a different angle and we move to local network
metrics. As mentioned in Chapter 1 there is a debate about the kind of
model that would best describe brain networks. To this end we investigate
many such models (Section 3.4). In the following sections we describe the
metrics and models used to accomplish this and some interesting results are
presented.

In order to focus on the local structure of a network we use two metrics
trying to investigate how they can help us reveal the true model behind
brain networks. The first one is the graphlet frequency and the second is
the network graphlet degree distribution agreement. Let us first define these
two metrics.

The number of different connected networks on n nodes increases ex-
ponentially with n. For n = 3, 4 and 5, there are 2, 6 and 21 different
connected networks on n nodes, respectively. To avoid terminology con-
fusing network motifs with network subgraphs (motifs are special types of
subgraphs), we use the term graphlet to denote a connected network with a
small number of nodes. All 3−5-node graphlets are presented in Figure 4.2.
We use the graphlet frequency, i.e. the number of occurrences of a graphlet
in a network, as a new network parameter.

We generalize the notion of the degree distribution as follows. The degree
distribution measures, for each value of k, the number of nodes of degree k.
In other words, for each value of k, it gives the number of nodes “touching” k
edges. Note that an edge is the only graphlet with two nodes; henceforth, we
call this graphlet G0. Thus, the degree distribution measures the following:
how many nodes “touch” one G0, how many nodes “touch” two G0s, . . .,
how many nodes “touch” k G0s. Note that there is nothing special about
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Figure 4.2: All 3-node, 4-node and 5-node connected networks (graphlets),
ordered within groups from the least to the most dense with respect to the
number of edges when compared to the maximum possible number of edges
in the graphlet; they are numbered from 1 to 29

graphlet G0 and that there is no reason not to apply the same measurement
to other graphlets. Thus, in addition to applying this measurement to an
edge, i.e., graphlet G0, as in the degree distribution, we apply it to the
twenty-nine graphlets G1, G2, . . . , G29.

When we apply this measurement to graphlets G1, G2, . . . , G29, we need
to take care of certain topological issues. Lets take graphlet G1 for instance.
We ask how many nodes touch a G1; however, note that it is topologically
relevant to distinguish between nodes touching a G1 at an end or at the mid-
dle node. This is because nodes of a G1 belong to one automorphism orbit,
while the mid-node of a G1 belongs to another. In Figure 4.3, we illustrate
the partition of nodes of graphlets G1, G2, . . . , G29 into automorphism or-
bits (or just orbits for brevity); henceforth, we number the 73 different orbits
of graphlets G1, G2, . . . , G29 from 0 to 72 (see [62] for more information).
Analogous to the degree distribution, for each of these 73 automorphism
orbits, we count the number of nodes touching a particular graphlet at a
node belonging to a particular orbit. In this way, we obtain 73 distributions
analogous to the degree distribution (actually, the degree distribution is the
distribution for the 0th orbit, i.e., for graphlet G0). Thus, the degree distri-
bution, which has been considered to be a global network property, is one
in the spectrum of 73 “graphlet degree distributions (GDDs)” measuring
local structural properties of a network. Note that GDD is measuring local
structure, since it is based on small local network neighborhoods.

Having computed the 73 graphlet degree distributions for each network
we wish to compare we are ready to measure the GDD agreement between
them. Let G a network (i.e. a graph). For a particular orbit j, let dj

G(k) be
the sample distribution of the number od nodes in G touching the appro-
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Figure 4.3: Automorphism orbits 0, 1, 2, . . . , 72 for the thirty 2, 3, 4, and
5−node graphlets G0, G1, . . . , G29. In a graphlet Gi, i ∈ {0, 1, . . . , 29}, nodes
belonging to the same orbit are of the same shade

priate graphlet k times. That is dj
G represents the jth GDD. We define as

the “normalized distribution” N j
G(k) as the fraction of the total area under

the curve, over the entire GDD, devoted to degree k. Thus

N j
G(k) =

dj
G(k)

∑∞
k=1 d

j
G(k)

, (4.1)

where formally the upper limit of the sum is unbounded but in practice it is
finite due to the finite size of the graph. Finally, for two networks G and H
and a particular orbit j, we define the “distance” Dj(G,H) between their
normalized jth distributions as

Dj(G,H) =

( ∞∑

k=1

[N j
G(k) −N j

H(k)]2
) 1

2

, (4.2)

where again in practice the upper limit of the sum is finite due to the finite
sample. The distance is between 0 and 1, where 0 means that G and H have
identical jth GDDs and 1 means that their jth GDDs are far away. Next,
we reverse Dj(G,H) to obtain the jth GDD agreement:

Aj(G,H) = 1 −Dj(G,H) , (4.3)

for j ∈ {0, 1, . . . , 72}. Finally, the agreement between two networks G and
H is the arithmetic mean of Aj(G,H) over all j, i.e.

A(G,H) =
1

73

72∑

j=0

Aj(G,H) (4.4)
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4.4 Local Properties Experimental Results

We have conducted experiments measuring the graphlet frequency for
the schizophrenia and epilepsy data. Thus, we had 56.000 graphs, one for
each group, band, state and threshold. For each graph of the real data we
computed the same property for graphs that were generated according to
the random (ER), generalized random (GR), scale-free (SF) and geometric
random (GEO) models. For each model we generated 5 different graphs,
having an extra number of 280.000 graphs which is an enormous amount
of data to be analysed. We hypothized that our graphs should be better
modeled with the GEO model. To this end we used the geometricness of a
graph (Section 3.1) to help us identify the threshold regions that the graphs
should be more geometric. If our intuition was correct the graphlet frequency
metric should be approximated better from the GEO model.

Figure 4.4: Geometricness for the three schizophrenic groups

We examined the way the fit between the plots of graphlet frequency of
the real data and the four models altered as we increased the threshold. We
observed that in the threshold regions where the real data graphs were too
dense (T ∈ [0 − 0.3]) or too sparce (T ∈ [0.8 − 1.0]) the fit was poor. On
the other hand when T ∈ [0.3− 0.8] the fit was good and in some cases very
accurate.

We also observed the way the geometricness of the graphs changed as we
increased the threshold. We also found that there are three distinct threshold
regions. The first is when the graph is too dense and the geometricness
remains stable, the second when the graph is becoming sparce and the value
of the metric is rapidly decreasing from its maximum value and the third in
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the intermidiate case when the geometricness is increasing until it reaches
a maximum. To our surpise the threshold region where the geometricness
is increasing is approximately the same with the region where we had good
fit between the plots of graphlet frequency of the real data and the GEO
model.

As an example we illustrate the case of healthy educated group in gamma1
band during WM and T = 0.3, where geometricness remains steady, and
T = 0.6, where the geometricness is increasing (Figure 4.4). When we ob-
serve the graphlet frequency plot of the real data we notice that none of the
ER, GR and SF models can fit it. Figure 4.5(b) and Figure 4.5(a) support
this claim. On the other hand, as can be seen better in Figure 4.5(d) and
Figure 4.5(c), the GEO model produces a poor fit when T = 0.3 but a very
good fit when T = 0.6. This is true in the whole threshold range where
geometricness is increasing, i.e. when T ∈ [0.4 − 0.85].

(a) Real Data vs all models (T = 0.6) (b) Real Data vs all models (T = 0.3)

(c) Real Data vs GEO model (T = 0.6) (d) Real Data vs GEO model (T = 0.3)

Figure 4.5: Graphlet frequency screenshot
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Chapter 5

Tool Overview

In this chapter we describe ways to visualize and analyze the graphs
derived from EEG signals, by the technique mentioned in Section 4.1, using
several graph drawing techniques and incorporate them smoothly into an
easy-to-use framework in order to reveal and evaluate important properties
of brain networks. First, we develop a static method which helps the doctors
understand the inter-connectedness of the electrodes. Additionally, we in-
voke some well known graph algorithms in anticipation of a better, compared
to the static method’s, visualization outcome. These include force-directed
and circular drawing algorithms.

5.1 Static Visualization Method

As described in Section 4.1, 30 electrodes for schizophrenia and 21 for
epilepsy were used during the experiments. In order to visualize the topology
of the emerged network we create a static framework where each electrode
is depicted by a node placed in a position similar to the actual electrode’s
position on the human cortex. Thus, we manage to depict the brain network.
This resulted in 1000 graphs to depict for each of the 40 healthy (educated
and uneducated) and 20 patient subjects, for each of the two states, that
is during Rest and WM, and for each of seven frequency bands, in terms
of functional uniformity, acquired during the experiments. For the epilepsy
case we have respectively one group consisting of 10 subjects, two states,
namely OB and Seizure, and the same seven bands, namely delta[0.5−4Hz],
theta[4 − 8Hz], alpha1[8 − 10Hz], alpha2[10 − 13Hz], beta[13 − 30Hz],
gamma1[30−45Hz], gamma2[45−90Hz]. Figure 5.1 shows two screenshots
of the visualizations for the schizophrenia and epilepsy case.

At this point some extra information about the two panels are needed.
First, in Figure 5.1(a) we can see three subpanels numbered 1, 2 and 3. They
correspond to the static visualization of the three different schizophrenic
groups, namely HE, HU and P, respectively. In each of these panels a 2D
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(a) Schizophrenia panel

(b) Epilepsy panel

Figure 5.1: Static cortex coordinates screenshot
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(a) Property sheet

(b) Subject controls

(c) Common controls

Figure 5.2: Means to interact with the framework

representation of the human cortex is drawn as an oval shape. An arrow
indicates the place where the subjects’ eyes are. Inside this oval shape 30
circles exist that correspond to the electrodes placed on the subjects’ head
during the experiments. Each circle is named after the electrode it represents
and is colored with a color indicating the lobe, that is the same area in the
brain, it belongs.

Below them three other smaller panels exist numbered 4, 5 and 6. They
provide means to controls various aspects of the graphs visualized for the
three different schizophrenic groups (Figure 5.2(b) shows a detailed view of
the HU controls). For example you can decide which subject, or the mean
case for the group if you wish, band, state and specific threshold value to
visualize. This is accomplished from the respective drop-down menus and
slider present in each control panel. Additionally, you can choose to man-
ually alter the threshold value or let the system automatically iterate all
threshold values. Finally, a panel numbered 7 exists. From there we can
control how fast the threshold iteration might be by specifying the milisec-
onds the system should wait until it increases the threshold value. Any
change made to one group control panel can be applied to all three by se-
lecting the appropriate check-box shown in Figure 5.2(c).

We need a way to visually differentiate the edges between two nodes
based on the threshold. To this end we introduce a color coding shown
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Figure 5.3: Schizophrenia screenshot

in Fig. 5.2(c). An edge’s color turns to red if the nodes it connects are
highly correlated. On the other hand the edge’s color moves to blue. As
an additional aid the more correlated two nodes are, the thicker the edge
that connects them. So, when one iterates through the thresholds the most
correlated nodes can easily be spoted as the edges that connect them are
thicker and more red. In order to help this differentiation the more correlated
two nodes are the later we draw the edge that connects them making it
more visible than edges that correspond to lower correlations. Finally, many
visualzation and graph properties of a specific node and the hole graph can
be computed and presented to the user as shown in Figure 5.2(a). For an
example case see Figure 5.3 where we visualize the mean case of each group,
at gamma1 band during WM and T = 600.

Things are the same for the epilepsy case. As shown in Figure 5.1(b)
there are two panels numbered 1 and 2 that correspond to a subject’s OB
and Seizure state. Additionally, there are two panels numbered 3 and 4 that
control which subject, band, state and threshold value to visualize and a
panel numbered 5 that controls the common functionalities. From now on
we will only speek about the schizophrenia case as the same things hold for
the epilepsy case as well.

This visualization is very useful to the doctors as they can see how the
inter-connectedness in the brain changes and identify the critical thresholds
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Figure 5.4: Schizophrenia graph drawing static screenshot

where this happens. Furthermore, they are able to verify already known
properties and perhaps discover new ideas concerning the reasons for some
disorders.

The proposed graphical framework is particularly useful as compared to
the current clinical practice where the doctor can only observe the EEG
between two specific nodes and at best have a few such EEGs on the screen.
This is a severe drawback as they have to manually search for some promi-
nent pair of nodes that according to the literature are held responsible for
a specific disorder. Furthermore they can not focus at a specific threshold
and see what the brain network looks like.

5.2 Graph Drawing Methods

Our next thought is to use some of the best known graph drawing tech-
nques hoping for a clearer visualization outcome that could be of greater
assistance. An example case of the static visualization method is shown in
Figure 5.4. There are two extra panels numbered 1 and 2. The former can
be used to quickly determine the position of a specific node or set of nodes.
This is needed as the position of the nodes in all graph drawing methods is
not fixed as is in the static case. The selected node is highlighted making it
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(a) Node disjoint cliques “clouds”

(b) Kamada and Kawai algorithm

Figure 5.5: Schizophrenia graph drawing screenshots

easy to spot. The latter panel provides some functionality according to the
visualization algorithm chosen. From here you can find all the node disjoint
cliques. Around the nodes that belong to the same clique a small “cloud”
of the same color is drawn and the edges that connect these nodes will be
discarded (Figure 5.5(a)). Of cource you may change back to the normal
view any time.

5.2.1 Force Directed Algorithms

First of all, we also transfer the static visualization method in this con-
cept after embellishing it with some extra functionality. For example, you
are given the opportunity to move the nodes from their fixed location if this
is required. In the case where the graph is very dence you might want to see
what connections are active only for a specific node or small set of nodes.
This can be done by just clicking on the specisic node or nodes and only the
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adjacent edges will be drawn.
The previous approach is very useful for doctors as they can see the

topology of their patients’ brains and be able to interact in some degree.
Our next thought is to use some of the best known force-directed methods
hoping for a clearer visualization outcome that could be of greater assistance.
First of all, we use the Fruchterman and Reingold method [28], which is a
simple model based on a combination of springs and electrical forces. Next
we utilize the Kamada and Kawai method [41, 40], which is a more complex
method that attempts to draw graphs such that the Euclidean distance
between two vertices is near to the number of edges on the shortest graph-
theoretic path between the vertices. Furthermore, the method of Eades is
used [17]. Figure 5.5(b) shows an example case where we visualize the mean
case of each group, at gamma1 band during WM and T = 600 using the
Kamada and Kawai method.

The main drawback of using these methods is that the mapping of the
nodes and the exact position of the electrodes on the brain is lost. In order
to overcome this flaw, we color nodes that belong to the same lobe, which is
a specific area of the human cortex, with the same color. We also introduce
a tooltip with useful information about each node when one pauses over a
specific node. Finally, you can instantly spot a specific node by just selecting
it in the list present at the top right corner of the panel. What remains to be
clarified is whether this approach could be potentially helpful to the doctors.
The only knowledge that could be extracted from all the spring-embedder
methods is the number of connected components and a nice placement of
them.

5.2.2 Circular Drawing Algorithms

A circular graph drawing is a visualization of a graph with the following
charateristics:

1. The graph is partitioned into clusters

2. The nodes of each cluster are placed on the circumference of an em-
bedding circle

3. Each edge is drawn as a straight line segment

The problem of minimizing the number of crossings in a drawing is
the well-known NP-Complete crossing number problem [29]. The more re-
stricted problem of finding a minimum crossing embedding such that all
the nodes are placed onto the circumference of a circle and all edges are
represented with straight lines is also NP-Complete as proven in [68].

As described in [80, 71], a linear time technique, CIRCULAR, was intro-
duced to produce circular graph drawings of biconnected graphs on a single
embedding circle. In order to produce the drawings with fewer crossings,
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(a) Circular algorithm

(b) Double Circular algorithm

Figure 5.6: Schizophrenia graph drawing circular screenshots

the authors presented an algorithm which tends to place edges toward the
outside of the embedding circle while nodes are placed near their neighbors.
The worst-case time requirement of CIRCULAR is O(m), where m is the
number of edges. An important property of this technique is the guarantee
that it will find a zero-crossing drawing for a given biconnected graph in
case one exists.

In [80, 72] another linear time algorithm, CIRCULAR-Nonbiconnected,
was introduced for producing circular drawings of nonbiconnected graphs
on a single embedding circle. Given a nonbiconnected graph G, it was first
decomposed into biconnected components. In this technique, the layout of
the resulting block-cutpoint tree on a circle was first produced and then
the one for each biconnected component with a variant of CIRCULAR. The
worst-case time requirement for CIRCULAR-Nonbiconnected is O(m) if we
use a variant of CIRCULAR to layout each biconnected component. The
resulting drawings have the property that the nodes of each biconnected
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component appear consecutively. Furthermore, the order of the biconnected
components on the embedding circle are placed according to a layout of the
accompanying block-cutpoint tree and therefore the biconnectivity structure
of a graph is displayed even though all of the nodes appear on a single circle.

We incorporate the last algorithm in our framework. Since our networks
are clustered and these clusters are important in identifying the regions of
the brain that are active at the same time while performing a specific task.
We implement two variants of this technique. In the first variant (Simple-
Circular) we place the nodes according to the position assigned to them
by the CIRCULAR-Nonbiconnected algorithm (Fig. 5.6(a)). In the second
variant (Double-Circular) node-disjoint cliques in our graph are first iden-
tified and placed in the circumference of an inner cycle. These cliques can
be displayed as super-nodes or can be decomposed to the vertices that form
the clique, which are placed in a cycle with center the clique’s position. Ad-
ditionally, by pausing on a super-node one gets a useful tooltip that gives
information about the nodes that form the specific node and the lobe each
node belongs to. To find the cliques’ positions we apply the CIRCULAR-
Nonbiconnected algorithm in an effort to minimize the crossings among these
important clusters. This leads to a clearer drawing that helps us understand
how tightly the connected areas of the brain, that are active while perform-
ing a specific WM task, interact with other tightly connected areas. By
doing that we are able to determine a specific node or set of nodes that are
responsible for the poor connectivity or the disconnection of certain areas
of the brain with each other. The remaining nodes, that do not belong to a
clique, are placed in the circumference of an outer cycle. In order to main-
tain a clear drawing we place the nodes that are adjacent to some cliques in
their mean angle (Fig. 5.6(b)).

5.3 Analysis Features

As described before there are many graph properties that could help us
discriminate between different kind of networks and many of them can be
plotted using this framework (Figure 5.7(a)). Here you can see the plots of
three different metrics simultaniously in panels 1, 2 and 3. You can control
which metrics to plot from the check-buttons in rectangle 9. For each metric
you choose you can specify the group, band and condition to plot. This is
easily accomplished by selecting the appropriate check-button in rectangles
4, 5 and 6 that are the controls for the HE, HU and P groups respectively.
You can change the way each data point of each plot appears by using the
chack-buttons of rectangle 7. Specifically, you can show a shape at each point
or even fill it with the plots color. Additionally, you can invoke a crosshair
in all plots. You can alter many of the chart properties such as the title and
line-color by right-cliching on a chart. This will cause a property sheet to
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(a) Charts panel

(b) Statistical important threshold regions

Figure 5.7: Schizophrenia charts screenshots
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appear that will help you modify or inspect some of the chart properties.
Furthermore, by performing a statistical test, like t-test, to the input

data, you can identify the threshold regions, where a statistically important
difference exists. This is indicated by a vertical black marker as shown in
Fig. 5.7(b).

The last feature is particularly important. The statistically important
threshold regions only offer information about the overall behavior of the
network. For example in the case where the graph of the HE group has
greater C compared to the graph of the P group for some band, state and
threshold, the former graph has better local organization than the latter.
However, we do not get any details as to where this better organization lies
in the brain, which nodes make this happen, in what way these nodes are
connected to the rest of the graph and generally what the two networks
look like. In order to get this information and understand its impact to
the topology of the graph, one should be able to see a static or a graph
drawing visualization of the graph at these important threshold regions.
This is accomplished by clicking on the markers. Getting to the visualization
framework, it automatically focuses on the specified threshold. That reveals
the exact interconnectedness which results in the aforementioned difference,
making it easier for the doctors to discover where the problem might be.

Additionally, many local network properties can be visualized using the
tool (Figure 5.8(a)). Here you can plot the graphlet frequency, panel 1, and
the network GDD agreement, panel 2, for the real graph and the graphs
produced from four different models such as Erdös-Rényi, Generalized Ran-
dom, Scale-Free and Geometric Random. From panels 3, 4, 5, 6 and 7 you
can choose the group, band, state and model. Furthermore, the threshold
and the threshold region for which the frequency and the agreement would
be plotted are controled from panels 9 and 8. In Figure 5.8(b) you can see
the graphlet frequancy plot for the Healthy educated group in alpha1 band
during rest for T = 400 and the GDD agreement plot for T ∈ [1, . . . , 1000].

This feature is very useful as it provides the means to investigate the
way brain networks change, as the threshold alters. In the meantime you
are able to focus on the local structure of the network rather than global one.
This is very enticing as you have another option to study the exact intercon-
nectedness of brain networks. In combination with the other visualization
feautures it could reveal unknown properties.
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(a) Initial network panel

(b) Network panel

Figure 5.8: Network panel screenshot
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5.4 Designing the User Interface

The basic principles that can be applied to design an interactive ap-
plication in order to improve its usability can be organized in three main
categories [15] :

Learnability − the ease with which new users can begin effective interac-
tion and achieve maximal performance.

Flexibility − the multiplicity of ways in which the user and system ex-
change information.

Robustness − the level of support provided to the user in determining
successful achievement and assessment of goals.

In the following, we will subdivide these main categories into more spe-
cific principles.

5.4.1 Learnability

Learnability concerns the features on the interactive system that allow
novice users to understand how to use it initially and how to attain a max-
imal level of performance. Table 5.4.1 contains a summary of the specific
principles that support learnability.

Principle Definition

Predictability Support for the user to determine the effect of future
action based on past interaction history

Synthesizability Support of the user to access the effect of past
operations on the current state

Familiarity The extent to which the knowledge and experience of
a user in other real-world or computer-based domains
can be applied when interacting with the new system

Generalizability Support of the user to extend knowledge of specific
interaction within and a across applications to other
similar situations

Consistency Likeness in input-output behavior arising from
similar situations or similar task objectives

Table 5.1: Summary of principles affecting learnability

5.4.2 Flexibility

Flexibility refers to the multiplicity of ways the end-user and the system
exchange information. We identify several that contribute to the flexibility
of interaction and these are summarized in Table 5.4.2.
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Principle Definition

Dialog initiative Allowing user freedom from artificial constraints
on the input dialog imposed by the system

Multi-threading Ability of the system to support user interaction
pertaining to more than one task at a time

Task migratability The ability to pass control for the execution of a
given task so that it becomes either internalized
by the user or the system or shared between them

Substitutivity Allowing equivalent values of input and output to
be arbitrarily substituted for each other

Customizability Modifiability of the user interface
by the user or the system

Table 5.2: Summary of principles affecting flexibility

5.4.3 Robustness

In a work or task domain, a user is engaged with a computer in order to
achieve some set of goals. The robustness of that interaction covers features
that support the successful achievement and assessment of the goals. A
summary of the principles that support robustness is presented in Table
5.4.3.

Principle Definition

Observability Ability of the user to evaluate the internal state
of the system from its perceivable representation

Recoverability Ability of the user to take corrective action
once an error has been recognised

Responsiveness How the user perceives the rate of communication
with the system

Task conformance The degree to which the system services support all
of the tasks the user wishes to perform and in the
way that the user understands them

Table 5.3: Summary of principles affecting robustness

5.4.4 Heuristic Evaluation

A heuristic is a guideline or general principle or rule of thumb that can
guide a design decision or be used to critique a decision that has already
been made. To aid the process of discovering usability problems, a set of 10
heuristics were developed by Nielsen [58] and are presented below. In order
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to support the usability of the application during its design these heuristics
were followed.

1. Visibility of system status The system should always keep users
informed about what is going on, through appropriate feedback within
reasonable time.

2. Match between system and the real world The system should
speak the users’ language, with words, phrases and concepts famil-
iar to the user, rather than system-oriented terms. Follow real-world
conventions, making information appear in a natural and logical order.

3. User control and freedom Users often choose system functions by
mistake and will need a clearly marked “emergency exit” to leave the
unwanted state without having to go through an extended dialogue.
Support undo and redo.

4. Consistency and standards Users should not have to wonder whether
different words, situations, or actions mean the same thing. Follow
platform conventions.

5. Error prevention Even better than good error messages is a careful
design which prevents a problem from occurring in the first place.
Either eliminate error-prone conditions or check for them and present
users with a confirmation option before they commit to the action.

6. Recognition rather than recall Minimize the user’s memory load
by making objects, actions, and options visible. The user should not
have to remember information from one part of the dialogue to an-
other. Instructions for use of the system should be visible or easily
retrievable whenever appropriate.

7. Flexibility and efficiency of use Accelerators – unseen by the
novice user – may often speed up the interaction for the expert user
such that the system can cater to both inexperienced and experienced
users. Allow users to tailor frequent actions.

8. Aesthetic and minimalist design Dialogues should not contain in-
formation which is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant units of informa-
tion and diminishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors Error
messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.
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10. Help and documentation Even though it is better if the system can
be used without documentation, it may be necessary to provide help
and documentation. Any such information should be easy to search,
focused on the user’s task, list concrete steps to be carried out, and
not be too large.
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Chapter 6

Conclusions and Future
Work

An insight into the EEG correlation networks formed in the human brain
is given using the visualization methods mentioned in the previous section,
for the first time. The static method was a good initial attempt. It gave the
doctors the opportunity to see how all the nodes (electrodes) correlate with
each other in a visual, quick and easy to use way compared to the manual
and time consuming techniques used in the past. It would be interesting to
see if a 3-dimensional version of the static method could further assist the
doctors.

The visualizations yielded from the force directed methods still need to
be evaluated. Doctors were able to identify the structure of the underlying
network, as they revealed the connected components that formed the graphs
and made a clearer drawing of them possible.

However, the two circular variants were more useful. The first variant
showed with more detail the structure of the network, as doctors could easily
identify the biconnected components of the graph. The second variant was
of greater help as it revealed the important areas of the brain, which are
co-activated. Additionally, it showed the way these areas are linked to each
other and gave a hint as to where to search for the disorders present in
schizophrenia. An interesting modification of the second variant would be to
place in the inner cycle different kind of nodes rather than the node disjoint
cliques. These nodes could be the most highly ranked nodes according to
some metric or could even be user defined taking advantage of the doctors’
expertise.

Finally, the plotting framework gave the doctors the opportunity to see
how important metrics alter and how this influences the network’s topology
as one can change the focus from the graph’s overall state to the detailed
node interconnectedness. They were able to verify the assymetry in the
function of the frontal lobe as well as identify prominent disturbances dur-
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ing WM for the connections of the frontal and temporal lobes. Furtermore,
the extensive experiments on local network properties revealed the poten-
tial existence of a new model that may describe brain functional networks,
namely the geometric random model.

Future work includes:

• Further analysis to verify that brain networks are geometric

• New metrics/measures that could help us identify the control from
patient graphs

• Find properties that would best describe brain networks

• A new visualization algorithm that would take into consideration the
new measures and properties of brain networks
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Appendix A

Computing Correlations

A.1 Mean Squared Coherence (MSC)

Let us suppose we have two simultaneously measured discrete time series
xn and yn, n = 1 . . . N . The most commonly used linear synchronization
method is the cross-correlation function (Cxy) defined as:

Cxy(τ) =
1

N − τ

N−τ∑

i=1

(
xi − x

σx

)(
yi+τ − y

σy

)
(A.1)

where x and σx denote mean and variance, while τ is the time lag. MSC or
simply coherence is the cross spectral density function Sxy, which is simply
derived via the FFT of Eq. A.1, normalized by their individual autospectral
density functions. However, due to finite size of neural data one is able to ac-
tually estimate the true spectrum, known as periodogram, using smoothing
techniques (e.g. Welch’s method). Thus, MSC is calculated as:

γxy(f) =
|〈Sxy(f)〉|2

|〈Sxx(f)〉||〈Syy(f)〉|
(A.2)

Where 〈·〉 indicates window averaging in the case of Welch’s method.
The estimated MSC for a given frequency f ranges between 0 (no coupling)
and 1 (maximum linear interdependence).

A.2 The Continuous Wavelet Transform (CWT)

Over the past decade, the WT has been developed into an important tool
for time series analysis that contains nonstationary power (such as the EEG
signal) at many different frequencies [14]. The CWT of a discrete sequence
xn with time spacing δt and N data points (n = 0 . . . N − 1) is defined as
the convolution of xn with consecutive scaled and translated versions of the
wavelet function ψ0(η):
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WX
n (s) =

√
δt/s

N−1∑

n′=0

xn′ψ0 ∗ [(n′ − n)δt/s] (A.3)

ψ0(η) = π−1/4eiω0ηe−η2/2 (A.4)

where η and ω0 = 6 is a non-dimensional “time” parameter and fre-
quency, respectively. ψ0(η) describes the most commonly used wavelet type
for spectral analyses: the normalized complex Morlet wavelet (Eq. A.4).
The power spectrum of the WT is defined by the square of coefficients (Eq.

A.3) of the wavelet series as
∣∣WX

n (s)
∣∣2. The notion of scale s is introduced

as an alternative to frequency [1]. Thus, we may define frequency bands of
interest, such as gamma band, capable of encapsulating the different func-
tional frequencies of the brain.

A.3 Wavelet Coherence

In a similar way to the definition of coherence, given two time series X
and Y , with wavelet transforms WX

n (s) and W Y
n (s), one can initially define

the cross-wavelet spectrum as WXY
n (s) = WX

n (s)W Y ∗
n (s) , where ∗ denotes

the complex conjugate. The cross-wavelet power is given by |W XY
n (s)| . If

one closely resembles Eq. A.2 then the WC, R2
n, of two signals may be

defined as:

R2
n(s) =

∣∣S(s−1WXY
n (s))

∣∣2

S
(
s−1

∣∣WX
n (s)

∣∣2
)
· S

(
s−1

∣∣W Y
n (s)

∣∣2
) (A.5)

where S is a smoothing operator in time St and scale Ss such as S(W ) =
Ss(St(Wn(s))) which for the Morlet wavelet is given by a Gaussian and a
boxcar filter of width equal to 0.6, (the scale-decorrelation length) respec-
tively [78, 34]:

St(W, t) = Wn(s) ∗ c
−t2/2s2

1 (A.6)

Ss(W, s) = Wn(s) ∗ c2
∏

(0.6s) (A.7)

where c1 and c2 are normalization constants and
∏

is the rectangle function.

A.4 Robust state-space GS method (RSS-GS)

Alternatively, one may measure how neighborhoods (i.e., recurrences)
in one attractor maps into the other. This idea turned out to be the most
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robust and reliable way of assessing the extent of GS [4, 63]. First, we recon-
struct delay vectors [75] out of our time series; xn = (xn, . . . , xn−(m−1)τ ) and
yn = (yn, . . . , yn−(m−1)τ ), where n = 1 . . . N , and m, τ are the embedding
dimension and time lag, respectively. Let rn,j and sn,j, j = 1, . . . , k, denote
the time indices of the k nearest neighbors of xn and yn, respectively. For
each xn the squared mean Euclidean distance to its k neighbors is defined
as:

R(k)
n (X) =

1

k

k∑

j=1

(xn − xrn,j
)2 (A.8)

The Y-conditioned squared mean Euclidean distance R
(k)
n (X|Y ) is de-

fined by replacing the nearest neighbors by the equal time partners of the
closest neighbors of yn.

If the set of reconstructed vectors (point cloud xn) has an average squared

radius R(X) = (1/N)
∑N

n=1R
(N−1)
n (X), then R

(k)
n (X|Y ) ≈ R

(k)
n (X) �

R(X) if the systems are strongly correlated, while R
(k)
n (X|Y ) ≈ R(X) �

R
(k)
n (X) if they are independent. Hence, an interdependence measure is

defined as [4]:

S(k)(X|Y ) =
1

N

N∑

n=1

R
(k)
n (X)

R
(k)
n (X|Y )

(A.9)

Since R
(k)
n (X|Y ) � R

(k)
n (X) by construction, it is clear that S ranges

between 0 (indicating independence) and 1 (indicating maximum synchro-
nization). Another normalized and more robust version of S maybe defined
as [63] and is the one actually used in this study:

N (k)(X|Y ) =
1

N

N∑

n=1

Rn(X) −R
(k)
n (X|Y )

Rn(X)
(A.10)

A.5 Phase Locking Value (PLV)

One of the mostly used phase synchronization measures is the PLV ap-
proach. It assumes that two dynamic systems may have their phases syn-
chronized even if their amplitudes are zero correlated [51]. The PS is defined
as the locking of the phases associated to each signal, such as:

|nφx(t) −mφy(t)| = const (A.11)

However, in this case the phase locking ratio of n : m = 1 : 1, since both
signals arise from the same physiological system (i.e., the brain).
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In order to estimate the instantaneous phase of our signal, we transform
it using the Hilbert transform (HT), whereby the analytical signal H(t) is
computed as:

H(t) = x(t) + ix̃(t) (A.12)

where x̃(t) is the HT of x(t), defined as:

x̃(t) =
1

π
PV

∫ +∞

−∞

x(t′)

t− t′
dt′ (A.13)

where PV denotes the Gauchy principal value. The analytical signal phase
is defined as:

φ(t) = arctan
x̃(t)

x(t)
(A.14)

Therefore for the two signals x(t), y(t) of equal time length with instan-
taneous phases φx(t), φy(t) respectively the PLV bivariate metric is defined
given by:

PLV =

∣∣∣∣∣
1

N

N−1∑

j=0

ei(φx(j∆t)−φy(j∆t))

∣∣∣∣∣ (A.15)

where ∆t is the sampling period and N is the sample number of each signal.
PLV takes values within the [0, 1] space, where 1 indicates perfect phase
synchronization and 0 indicates lack of synchronization.

A.6 Synchronization Likelihood (SL)

Finally, the last measure (SL) used is an unbiased normalized synchro-
nization estimator, closely related to the previous idea and to represent a
normalized version of mutual information [74].

Supposing that xn, xv and yn, yv be the time delay vectors, SL actually
expresses the chance that if the distance between xn and xv is very small,
the distance between the corresponding vectors yn and yv in the state space
will also be very small. For this, we need a small critical distance εx, such
that when the distance between xn and xv is smaller than εx, x will be
considered to be in the same state at times n and v. εx is chosen such that
the likelihood of two randomly chosen vectors from x (or y) will be closer
than εx (or εy) equals a small fixed number pref , which is the same for x
and y, but εx need not be equal to εy. Now SL between x and y at time n
is defined as follows:
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SLn =
1

N ′

N∑

v=1

w1<|n−v|<w2

θ(εy,n − |yn − yv|)θ(εx,n − |xn − xv|) (A.16)

Here, N ′ = 2(w2−w1−1)Pref , | · | is the Euclidean distance and θ is the
Heaviside step function, θ(x) = 0 if x ≤ 0 and θ(x) = 1 otherwise. The value
of w1 is window equal to the Theiler correction for autocorrelation effects
and w2 is a window that sharpens the time resolution of the synchronization
measure and is chosen such that w1 � w2 � N [77]. When no synchro-
nization exists between x and y, SLn will be equal to the likelihood that
random vectors yn and yv are closer than εy; thus SLn = pref . In the case
of complete synchronization SLn = 1. Intermediate coupling is reflected
by pref < SLn < 1. Finally, SL is defined as the time average of the SLn

values.
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