
Computer Science Department
University of Crete

A Framework for Network Traffic Anonymization

Master’s Thesis

Dimitris Koukis

February 2006
Heraklion, Greece

2

A Framework for Network Traffic Anonymization

Dimitris Koukis

Master’s Thesis

Computer Science Department

University of Crete

Abstract

Lack of trust is one of the main reasons for limited cooperation between

different organizations. Private data is of paramount importance to admin-

istrators and organizations, which are reluctant to cooperate with each other

and exchange network traffic traces. The main reasons behind this reluc-

tance to exchange monitoring data are protecting users’ privacy and the fear

of infrastructure information leakage. Anonymization is a technique that

can be used to overcome this reluctance and enhance the cooperation be-

tween different organizations with the smooth exchange of monitored data.

Anonymization is performed by altering data in such a way that private

data and sensitive information are removed. Today, several organizations

provide network traffic traces that are anonymized by software utilities or

ad-hoc solutions that offer limited flexibility. The result of this approach is

the creation of unrealistic traces, inappropriate for use in evaluation exper-

iments. Furthermore, the need for fast on-line anonymization has recently

emerged as cooperative defense mechanisms have to share network traffic.

Our effort focuses on the design and implementation of a generic and flexi-

ble anonymization framework that provides extended functionality, covering

multiple aspects of anonymization needs, and allows fine-tuning of the pri-

vacy protection level. The core of the proposed framework is based on AAPI,

a flexible and expressive anonymization application programming interface.

Supervisor: Professor Evangelos Markatos

ii

��� ���������	
�	
�
 �������� �
� 	�� �
�	
����

��������� ��������� �
�	���

�������� �	
���

�
���������� �������

����� ��������� ��	�	������

���
�������	 ������

��������

� ������� ��	�
��

��� ����� ���� �	� ���� ��
���
� ������ ��� ��� 	�����

��
����
������
�� �����
 ������������ ������
���� �� ������� ��������

����� ���
���
���
���
���� ���!����
��� ���
���� ������
��
�" �� �	���

�� ����� ��
��������
�� ��
������
��
� �����
 ���� ��� �� ������ ����

�������� ����
��� # ��
���� ����� ��� ���$ ��� ��
�����������
��� ���

������$ ���������" ����� � 	��
��
�� ��� ��������� ��������� ��� !��
���

��� � ����� ��� ������$ 	���������� ��� ��� �������$ �	����$ ��� �������

��
� � % �������
�� ����$��
�� ��������� % (anonymization) ����� � ��!���$

	�� !��
���	������� ��� �� ��	���
��� ���$ � ��
����������� ��� �� ���
!��

&�� �
������
�� �����
 ������������ ������
��� �� ��� ����$ ��������$

��������� �	��$��
�� ����
��� � ��!���$ ���$ ���	�	���� �� �������� ��
�

�
�� �� ������&�
� �� ��������� 	���������� ��� ����
&��� ��������� '$���

�� 	����� ������
��� 	���!��� �������� ����
 ��� ������ !��
���	�������

�������� $ ����
!����� ��!����� 	�� 	��
������ 	������
����� ������������

�� �	�����
�� ����� � ���������� �� �����
����� ���������" ���� ����� ���

	���������$!�$
�� (�	���� � �� ��� ��� ��$���� �������	$ ��� ���������

iii

�	��&���� �	� �� ������" �!�� 	���
��� ��&�� ��!���
��� ����� �	����
�

��� ��������$ ��������� ����
��� '� ���$ ��� ������ �	�����������
��

���
!����
�� ��� ���	���
� ���� ������
 ��� ��������
 ��!���
��
 ��� ���

% �������
�� ����$��
�� ��������� % 	�� 	��
����� ���������� ��������������

��" ���
	������ 	����	��� �� ���� 	�� ������)�����
� ���� ��� ����� ���

�	����	�� ��� �����$ ��&���
�� ��� �	�	���� 	��
��
��� �$� �������������� #

	������������ ��!���
��� �	��������� �	� ��� 	����������
���$ ������
� ��

�� ����� AAPI�

�������� *�&����$� (� ������ +��� ���

iv

Acknowledgments

I am grateful to my supervisor, Evangelos Markatos, for his helpful co-

operation during all my studies, his guidance and patience. I would like to

thank Kostas Anagnostakis for his support through all these years and his

trust in me. Many thanks to Spiros Antonatos, Demetres Antoniades and

Panagiotis Trimintzios for their cooperation in the development of AAPI.

My best thanks to my friends and colleagues Spiros Antonatos, Mix-

alis Polychronakis, Manos Moschous, Giorgos Dimitriou, Manos Athanatos,

Demetres Antoniades, Antonis Papadogiannakis, Mixalis Foukarakis, Elias

Athanasopoulos for sharing with me the best years of my life, as well as the

whole Distributed Computing Lab.

I would like to thank my family for everything they have offered me and

helping me make my dreams come true.

Finally, my sweetest thanks to Stavroula for making my days brighter.

v

vi

����� ����	�
��

vii

viii

Part of this work will appear in the Proceedings of the 2006 IEEE Inter-

national Conference on Communications (ICC 2006), June 2006[20].

ix

x

Contents

1 Introduction 1

1.1 Thesis organization . 3

2 Related work 5

2.1 Research Efforts . 5

2.2 Anonymization Tools . 9

2.3 Anonymization Policies . 12

3 The Anonymization API 17

3.1 AAPI functions . 18

3.2 Anonymization of Application-level Streams 23

3.3 Function (Re-)Ordering . 24

3.4 Extensibility . 26

3.5 Anonymization Optimization 27

3.6 Input and Output Functionality 28

4 Integration with MAPI 31

4.1 Introduction to MAPI . 31

4.2 Architecture . 33

4.2.1 Existing mechanisms 33

4.2.2 Weaknesses of current scheme 36

xi

4.2.3 Authentication/Authorization mechanism 36

4.2.4 Advantages of the proposed approach 39

4.2.5 Anonymization as a transparent process 43

5 Performance Evaluation 47

5.1 Comparison with existing tools 47

5.1.1 Tcpdpriv . 47

5.1.2 Bro . 49

5.2 The Cost of Anonymization Functions 50

5.2.1 Complexity analysis 51

5.3 Optimizing Anonymization . 52

5.4 Usefulness of Anonymized Traces 53

6 Summary and Concluding Remarks 57

A Field Names 59

B Anonymization Functions 61

C Sample application using AAPI 65

D Anonymization using MAPI 67

xii

List of Figures

3.1 Function sets: Each packet is passed through each set

and for each set is processed by its functions. 19

3.2 Example of anonymization on network packets 21

3.3 The order of functions after applying reordering. . . . 26

3.4 Example of anonymization optimization. 28

4.1 Sample KeyNote policy. 34

4.2 Access control in MAPI. 35

4.3 Authorization architecture 38

4.4 Authentication and authorization steps in the pro-

posed architecture . 40

4.5 A new user joins MAPI 41

4.6 A new sensor joins MAPI 42

4.7 Current anonymization approach 44

4.8 Proposed anonymization approach 45

5.1 Optimization for a single policy. 53

5.2 Optimization for three policies. 54

xiii

xiv

List of Tables

2.1 List of anonymization tools. 12

2.2 Summary of most the commonly used anonymization policies. 15

5.1 Performance comparison between tcpdpriv and AAPI-based

anonymization. 48

5.2 Performance comparison between Bro and AAPI-based anonymiza-

tion. 49

5.3 Cost of basic anonymization functions 51

5.4 Number of alerts produced by Snort IDS for web trace 55

xv

xvi

Chapter 1

Introduction

Monitor network traffic and traces are a powerful means of evaluation exper-

iments (c.f., [31, 25, 17, 18]), allowing researchers to study network charac-

teristics and behavior. Furthermore, the use of network traces is extended

to the Internet security domain, in areas such as the evaluation of intrusion

detection systems. In the ideal case for the user, network traces should be

shared unchanged, providing full information. However, for both security and

privacy reasons, monitored network traffic and traces have to be modified be-

fore they become publicly available. This modification process is known as

anonymization. The aim of the anonymization is triple.

First, to protect the privacy of the monitored users. Revealing any sen-

sitive information about the users is totally prohibited. Examples of such

information are the web pages that a user has accessed, credit card numbers,

unencrypted sessions that might reveal passwords, peer-to-peer connections,

e-mails sent and received, etc. In fact, privacy protection is so complicated

that most administrators play on the safe side, taking the “reveal nothing”

policy. This approach instructs that parts of traffic that might reveal sensi-

tive information, such as the packet payload, are either completely removed

1

2 CHAPTER 1. INTRODUCTION

or replaced by random values.

Second, to hide any information about the internal infrastructure of the

network. Ideally, anonymized network traffic should not by any chance re-

veal the hosts inside the monitored network that are alive, neither any other

of their characteristics, such as their operating system. Also, people which

access to the monitored traffic should not be able to extract the monitored

network’s subnet formation – how many subnets exist and how many hosts

each one contains. In order to achieve this goal, existing approaches random-

ize the IP addresses, thus hiding the identity of hosts and subnet informa-

tion, and replace packet header fields, that might reveal any of the network

characteristics, with constant values. Other approaches, like encrypting IP

addresses in a prefix-preserving way [45], are subject to network information

leakage as described in [46].

Finally, anonymized monitored traffic has to be as realistic as possible,

i.e., as close as possible to the non-anonymized packet stream. Many evalua-

tion experiments done by researchers rely on network traffic traces, thus the

results have to be close to those taken using real network traffic. As most

anonymized traces that are currently publicly available are unrealistic, not

keeping the dymamics of the original and real traffic, most researchers collect

private traces to perform their experiments. However, the extrapolation of

their results to wide-area scale is difficult, if not impossible.

It is clear that a generic global anonymization scheme cannot exist since

different organizations have different needs. Network administrators should

be able to specify their anonymization policies at varying levels of detail. For

example, traffic from an anonymous ftp server needs only few modifications

(e.g client IPs) in order to be distributed publicly, while traffic from an orga-

nization’s internal network imposes several privacy threats and the need for

1.1. THESIS ORGANIZATION 3

strict anonymization arises. Existing anonymization tools are not adequate

to provide such flexibility and are not capable to address all anonymiza-

tion needs, since in most cases they were build having a specific range of

anonymization policies in mind. In all cases, they work on predefined fields

and most of them perform only header-level anonymization.

The anonymization framework that is presented and evaluated in this

thesis offers a wide range of anonymization functions that can be applied to

any field of a packet or a record, up to the application level. The expres-

siveness of the framework allows creation of anonymized traffic that is able

to express any balance between privacy protection and realism. In order to

simplify the development of anonymization tools and make anonymization

policy definition a quick and simple process, our framework provides an Ap-

plication Programming Interface (API) named AAPI. AAPI is very simple to

use as any anonymization policy is expressed as a set of function calls, with-

out having to use any unfamiliar scripting languages. Moreover, the frame-

work is extensible enough to provide the user with the ability to implement

new anonymization functions. Also, it is trivial to support anonymization

for new application level protocols and different traffic sources such as Net-

flow [8] records. To our knowledge, AAPI is the first framework available for

network traffic anonymization.

1.1 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents related

work. In Chapter 3 we describe the anonymization API and its design in

detail. Chapter 4 discusses integration of the anonymization in a network

monitoring framework. Chapter 5 presents the experimental evaluation and

Chapter 6 concludes the thesis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

In this chapter we present related work in the field of anonymization. First,

we review the research work that has been carried out on anonymization.

Next, we present the available anonymization tools, and finally we present

the most frequently used anonymization policies. These policies are mostly

used by the organizations and institutions that make traffic traces publicly

available.

2.1 Research Efforts

Several research efforts target on the broad field of anonymity (for example

[19, 15, 36]) but only few deal with anonymization in network monitoring.

Most of them deal with algorithms that defeat attacks on the anonymization.

Peuhkuri [32] deals with two problems of packet traces, enormous storage

needs and anonymization. The algorithm proposed for anonymization of IP

addresses makes use of cryptography, thus the mapped address is produced

by merging a part of the original address with the encrypted value. Although

this approach is secure, as it is mentioned, an adversary can inject packets

into the trace which will be identified in the anonymized trace so mappings

5

6 CHAPTER 2. RELATED WORK

will be revealed. This attack is known as active fingerprinting [30].

Xu, Fan, Ammar et al. [45, 46] focus on the problem of prefix-preserving

IP address anonymization. Prefix-preserving means that IP addresses that

share a N bit common prefix, when anonymized will be mapped to addresses

that that have N bits of their prefix in common. Existing implementations,

such as in tcpdpriv [16], have many drawbacks like large memory require-

ments, inconsistent mappings across different anonymization sessions and

lack of parallel processing of traces1. The approach described in [45, 46] uses

stateless cryptography algorithms that have minimal memory requirements.

As long as the cryptographic key is the same, the anonymized addresses are

preserving their original prefix, that is if two real addresses belong to the

same subnet then the anonymized ones will also belong to the same –but dif-

ferent than the original– subnet. Since prefix-preserving mapping is a state-

less function applied to IP addresses, parallel anonymization is also feasible.

Moreover, the mapping is independent of the order that IP addresses appear

in the trace. An implementation for prefix-preserving anonymization, called

Crypto-PAn [9], is publicly available from Georgia Tech University. The au-

thors mention that their approach is as secure as the traditional approach

of prefix-preserving, where random bits are inserted to the mapping. On

the other hand, prefix preserving anonymization is less secure than random

one-to-one mapping of IPs, since if the mapping of one address is compro-

mised (for example in the case of a web fingerprinting attack [40]), then more

information can be revealed from IPs that share common prefixes.

Prefix-preserving anonymization has also been applied to Netflow [44],

Cisco’s protocol for collecting IP traffic information. A sofware package for

1Parallel processing here is the process of splitting a trace in multiple parts and

anonymize them in parallel in different CPUs

2.1. RESEARCH EFFORTS 7

IP address anonymization has been modified in order to generate the crypto-

graphic key that is used from a pass phrase. Anonymization is applied only

to IP addresses of flows, while all other fields are left unchanged. The authors

have extended their tool in [39] where the users are able to anonymize the

eight most common fields of a NetFlow record.

Anonymization has also been implemented in hardware, using network

processors [35]. Prefix-preserving anonymization has been used and a new

algorithm is proposed since existing methods consume either too much mem-

ory or too many CPU cycles, and therefore are not able to operate on Gigabit

links. The key idea is to pre-compute the entire anonymization function (that

is visualized as a binary tree) so that a mapping can be found quickly. In

order to minimize memory consumption, the same translation is used for

several prefixes, so only unique subtrees of the whole anonymization tree

are stored. Also, the most significant bits are hashed rather than being

anonymized using the anonymization tree in order to make anonymization

more resistant against attacks. Common prefixes are not preserved in these

bits. This work has been implemented using the IXP2400 network processor

and evaluation shows that the system can keep up with Gigabit links.

The most recent research work in anonymization deals with the creation

of a proper policy for packet header anonymization [29]. Starting from the

development of a new tool for anonymization, called tcpmkpub [24], the au-

thors try to find which fields of the packet headers should be anonymized

and in which way. Decisions are based on known attacks on privacy which

they try to defeat. Tcpmkpub is proposed for the implementation of the de-

fined policy and the use of meta-data is suggested in order to provide extra

information for the trace. Finally the information loss that the anonymiza-

tion process introduces is computed and the whole anonymization process is

8 CHAPTER 2. RELATED WORK

validated.

All aforementioned research works focus only on packet header anonymiza-

tion. Paxson and Pang in [30] introduce a way to anonymize payload and

remove sensitive information rather than removing the entire payload. Pack-

ets are reconstructed to flows and application level parsers modify the data

stream as specified by the policy. Finally, data is split again into pack-

ets and merged with packet headers, thus creating legitimate traffic as if

no anonymization/reconstruction had been applied. The algorithm that re-

generates packets is implemented in a way that keeps the properties and

dynamics of the original traffic as much as possible, but it is not always

feasible to retain one-to-one mapping between input and output since modi-

fications have taken place. However, this introduces several drawbacks. For

example, malicious traffic may contain overrun packets or a wrong value in

the checksum field. When packets are reconstructed, packet header values

are calculated so that these malicious packets will not appear in the output

trace as in the input. Also the idea of “knowledge separation” is introduced,

where a value is not consistently mapped to a certain value but changes ac-

cording to other parameters. For example, a client IP address is anonymized

based on the IP address of the server that it accesses. This way, even active

fingerprinting can be defeated, but, on the other hand, this is a trade-off be-

tween the information that remains in the trace and the risk of information

leakage.

Finally, a totally different approach on anonymization for network mon-

itoring is proposed by Mogul [27]. In this presentation it is mentioned that

traditional anonymization techniques are no longer effective because they ei-

ther leave much sensitive information, or leave few data, so traces are useless.

Instead, he suggests that the code should move to the data, meaning that

2.2. ANONYMIZATION TOOLS 9

central repositories of code should exist where users will be able to make their

experiments. Using this approach, it is clear that there should be a way to

check that the code does not use any sensitive information from traces neither

in an explicit nor in an implicit way. The main drawback of this approach is

that is difficult to be implemented.

2.2 Anonymization Tools

Few tools are publicly available for anonymization of network traffic traces.

Here we provide a brief description for each one of them.

Tcpdpriv [16] is the most known tool of its category. It works only on

traces written in tcpdump format and removes sensitive information by oper-

ating on packet headers. TCP and UDP payload is removed, while the entire

IP payload is discarded for other protocols. The program provides multi-

ple levels of anonymization, from leaving fields unchanged up to performing

more strict anonymization, like mapping of IP addresses to integers. Level 0

implements an one-to-one sequential mapping IP addresses to integers. Level

1 has similar functionality except that the address is treated as two different

portions of 16 bits, while in level 2 each byte of the address is manipulated

separately. Level 50 implements prefix-preserving anonymization and finally

level 99 leaves IP addresses unchanged. Similarly, the user can specify the

level of anonymization for information such as ports, IP class or multicast

addresses. Tatu Ylonen has written an article [47] that describes how an

adversary can obtain sensitive information from anonymized traces that are

created using tcpdpriv with -A50 option. No functionality is provided for

altering the TCP or UDP payload, for example replacing the URL with a

constant value or removing the username and password from an FTP session.

The NLANR traces [28] are anonymized by using tcpdpriv.

10 CHAPTER 2. RELATED WORK

There are some tools based on tcpdpriv’s code. Ip2anonip [12] is a sim-

ple filter that turn IP addresses into host names or anonymous IPs. Ipsum-

dump [13] dumps packets into ASCII format and uses tcpdpriv to anonymize

IP addresses if specified by the user. Tcpdpriv is also used in click router [4]

for anonymization of the source and destination IP addresses.

An implementation for prefix-preserving anonymization is available from

Georgia Tech University. The software is called Crypto-PAn [9] (Cryptography-

based Prefix-preserving Anonymization) and provides an API for prefix-

preserving anonymization. Using a simple tool that is provided with the

distribution, the user is able to anonymize the IP addresses of a packet trace

in a prefix-preserving manner.

The latest addition to the anonymizatin tools inventory is tcpmkpub [24],

a tool for packet header anonymization. Tcpmkpub has no built in support

for protocols and the user should specify the packet format using the tool’s

policy language. For each field the user specifies the function that will be

applied, choosing from the available (KEEP, ZERO) or by implementing

custom callbacks. It also included the functionality of exporting metadata

for the anonymized trace, providing more information that can be very useful

for analysis.

The main drawback of all the above tools is that they only work up to the

network level and cannot anonymize information on the application level, like

for example randomizing the URL field of an HTTP request. Furthermore,

they provide only a few anonymization primitives such as sequential mapping

or prefix preserving mapping which can be applied only to a few predefined

fields such as IP addresses and TCP ports. The proposed framework enable

the user to perform anonymization both on header and application level in

any protocol field, using a wide range of available anonymization functions

2.2. ANONYMIZATION TOOLS 11

Bro [22] is a Unix-based Network Intrusion Detection System (IDS). The

authors have implemented a plug-in that can be used to anonymize traces

using a high-level language [30]. Users can express sophisticated trace trans-

formations by writing short policy scripts. The tool is able to alter both

packet headers and payloads. Moreover, it can operate on application-level

and manipulate fields that exist in application messages such as filenames in

FTP traces or URL in HTTP. This way, the output trace contains payload

that is very useful but private information has been removed. Berkeley Na-

tional Laboratory, distributes publicly anonymized ftp traces [23] using this

software. Although their approach is quite flexible, it has several limitations

and drawbacks. First, it provides only a few anonymization primitives (con-

stant substitution, sequential numbering, hashing, prefix-preserving mapping

and adding random noise), forcing the user to write his own functions in Bro

language, a custom scripting language. Moreover, as Bro works with events,

a user can alter packet header fields only for those protocols which have a

registered event that supports trace transformation. That is, the anonymiza-

tion of the IP addresses of a trace would require non-trivial effort to write the

suitable policy scripts, one for each protocol (HTTP, FTP, telnet, etc.). The

proposed framework, provides a larger set of primitives that can be applied

to all packet fields up to and including the application level. Furthermore,

the usage of a simple, lightweight API for a standard programming language

is more practical and extensible. Finally, as it is shown in chapter 5 the

proposed framework is much faster than Bro.

12 CHAPTER 2. RELATED WORK

Name TCP/IP header

support

Application pay-

load

Anonymization

functions

tcpmkpub [16] IP addresses,

TCP/UDP ports,

TCP/IP options

No functionality Mapping, prefix-

preserving

tcpmkpub [24] Access to all fields,

user specified pro-

tocol

No functionality ZERO, KEEP, user

defined

Bro [22] Predefined fields

(e.g. IP addresses)

Access to HTTP

and FTP header

fields through

events

Mapping, prefix

preserving, user

defined

Table 2.1: List of anonymization tools.

2.3 Most Frequently Used Anonymization Poli-

cies

Several universities and research centers share public traces following differ-

ent anonymization policies. In this section, we provide an extensive descrip-

tion of current anonymization policies.

The most popular source of public traces is the Passive Measurement

and Analysis (PMA) site of the National Laboratory for Applied Network

Research (NLANR). NLANR provides daily traces from several sites in the

United States in tcpdump format. The NLANR traces [28] have packet

payload removed, source and destination IP addresses are mapped to integers,

while time-to-live and IP identification number have constant values. In

2.3. ANONYMIZATION POLICIES 13

case of TCP or UDP, the TCP or UDP payload accordingly is removed,

otherwise the whole IP payload is removed. All other fields, that is header

length, type of service, protocol number, fragment flags and offset, and total

length, remain intact. This form of anonymization is useful for processing

which requires only packet header fields, such as the counting of packet inter-

arrivals or determine a flow volume . As another example, we can perform

port-scanning and anomaly-based detection, which do not require access to

the payload. However, traces anonymized by NLANR cannot be used for

applications which require deep-packet inspection, such as zero-day worm

detection [38, 6] and signature-based intrusion detection [37, 22].

The University of California, Los Angeles (UCLA) traces [42] are not in

tcpdump format but are provided in simple text format. Each line describes

a packet where source and destination IP addresses are mapped to integers.

Only ports, flags, sequence numbers, acknowledgment numbers, and window

size are recorded. Packet payload is totally removed, thus leaving space only

for header processing, similar to the approach of NLANR. A similar form

of anonymization (sanitized traces in text format) is also followed by the

Lawrence Berkeley National Laboratory (LBL). LBL traces [23] keep even

less information; source and destination IP addresses are mapped to integers

and only source/destination ports and packet size are recorded. LBL also

provides some HTTP and FTP traces in tcpdump format, where the IP

addresses are mapped to integers, the rest of the header is unchanged, but

sensitive information in the payload like URLs, filenames, or passwords has

been replaced by constant values. While providing the payload for specific

protocols is better than always hiding it, replacing sensitive fields induces loss

of precision. For example, the CodeRed worm [5] attacked the web servers

by requesting a carefully crafted URL. If this URL is replaced by a constant

14 CHAPTER 2. RELATED WORK

value, such attacks will not be detected.

In the University of California, San Diego traces [43], tcpdpriv is used for

anonymization. Source and destination IP addresses are mapped to integers,

while packet payloads are filled with zero. All other header fields remain

unchanged. In the traces provided by the Dartmouth College [11], prefix-

preserving anonymization is used for source and destination IP addresses,

payload is completely removed but the rest of the fields are unchanged. Both

approaches share the same disadvantages with the one followed by NLANR.

However, in the case of Dartmouth College, IP addresses are anonymized in

a prefix-preserving way, unlike other approaches that map addresses to in-

tegers. Prefix-preserving anonymization reveals more information about IP

address as addresses that belong to the same real subnet will also belong to

the same subnet after anonymization. A brief summary of the anonymiza-

tion policies applied by the mentioned organizations and departments is is

presented in Table 2.2.

2.3. ANONYMIZATION POLICIES 15

Organization IP Source/Destination addresses Ports Payload Comments

NLANR [28] Mapped to integers Intact Removed IPid and TTL

replaced by

constant values

UCLA [42] Mapped to integers Intact Removed Provided as

text

LBL [23] Mapped to integers Intact Removed Provided as

text, only

IP, ports and

packet size

recorded

UCSD [43] Mapped to integers Intact Set to zero All other

header fields

unchanged

Dartmouth [11] Prefix-preserving Intact Removed All other

header fields

unchanged

Table 2.2: Summary of most the commonly used anonymization policies.

16 CHAPTER 2. RELATED WORK

Chapter 3

The Anonymization API

The need for anonymization may vary from simple policies, like removing

payload and sequential numbering of IP addresses, to complex ones, like for

example the case of altering multiple fields in the HTTP protocol. One should

be able to create a policy that reveals no private information but on the

other side is useful enough to meet his needs. The proposed Anonymization

Application Programming Interface (AAPI) addresses all these needs and

provides a flexible way to apply anonymization policies to both live traffic

and packet traces.

AAPI is an API for the C programming language that allows users to

apply anonymization primitives on traffic. The selection of the C language

was made for three reasons. From a design point of view, libraries that

capture traffic are also written in C, thus AAPI can directly communicate

with them. From a users’ point of view, it is much simpler to write a set of

function calls, rather than trying to describe a policy using unfamiliar script

notations. Finally, the performance of the anonymization process is very

critical, especially in case of anonymizing live traffic at very high speeds.

17

18 CHAPTER 3. THE ANONYMIZATION API

3.1 AAPI functions

The notion behind AAPI is that anonymization is a series of functions that

are applied to a traffic stream. The core functions of AAPI are divided into

three main categories. First, AAPI provides the anonymization functions

that alter fields of the packets or records in the given traffic stream, e.g

randomize or replace them, perform prefix-preserving anonymization on IP

addresses, etc. Second, the filtering functions BPF filters [26] and string

searching have been implemented. Filtering functions allow to distinguish

parts of the traffic stream and apply complex policies such as “leave all the

UDP packets unchanged but randomize the payload of all TCP packets”

or “anonymize all packets that contain the GNUTELLA-Connect pattern”.

Finally, application-level stream functionality has been intergrated in AAPI,

which is called cooking and uncooking, that provide the ability to compose

and decompose application-level streams.

The main function of AAPI is add function(set, function, ...),

where ‘...’ denotes a variable number of arguments, according to the

applied function. AAPI expresses each anonymization policy as a single or

multiple sets of functions. Each set is a logical group of functions that are

executed sequentially, in the order they had been applied. Sets are created

through the create set() function. Once a packet is captured, it is passed

through each set and for each set is processed by its functions. A function

can prevent the traversal of a packet in the subsequent functions by simply

returning zero. This behavior is extremely useful in cases of filtering func-

tions as we show in a following example. The combined flexibility of sets and

filtering functions allows the user to express “if-else” scenarios or even

different anonymization policies within the same program. The function sets

3.1. AAPI FUNCTIONS 19

 BPF_FILTER BPF_FILTER

ANONYMIZE

ANONYMIZE

ANONYMIZE

ANONYMIZE

ANONYMIZE

ANONYMIZE

STR_SEARCH

. . .

set 2

 set 1

Figure 3.1: Function sets: Each packet is passed through each set and

for each set is processed by its functions.

are visualized in Figure 3.1.

The argument function defines which specific function will be applied.

Natively, AAPI supports the following functions:

• “ANONYMIZE” (field anonymization)

• “BPF FILTER” (BPF filtering)

• “STR SEARCH” (string searching)

• “COOK” (stream reassembly)

• “UNCOOK” (splitting a stream to its original form).

As it will be shown in later sections, user functions can also be added in

order to extend the function support.

Whenever we apply the function “ANONYMIZE”, which is the main

anonymization function that the add function is refined as add function(set,

function, protocol, field, parameters). AAPI provides a variety of

anonymization functions, including:

• hashing (MD5, SHA, CRC32, AES and DES algorithms)

20 CHAPTER 3. THE ANONYMIZATION API

• random for generic fields and for filenames/URIs,

• mapping to either sequential values or based on some distribution

(uniform, Gaussian, etc.)

• replacing with constant integers or strings

• prefix-preserving for IP addresses (cryptographic and map based),

• regular expression substitution

• checksum adjustments for all protocols

• removing fields mainly used for application-level protocols.

Thus, AAPI provides a wealth of functionality for user needs. Moreover,

new functionality can be added by the user as described later. A complete

list of functions is provided in Appendix B.

The parameter protocol describes which specific protocol and layer the

anonymization function will work on. Our current implementation supports

IP, TCP, UDP, ICMP, HTTP and FTP. At the application level, we cur-

rently fully support HTTP (including HTTP/1.1 features such as persistent

connections) and FTP but the modular design of AAPI permits easily the

support for other protocols. The field parameter defines the field of the pro-

tocol on which the function will be applied. As an example, “time-to-live”

(TTL) and “source IP” are two valid fields for the IP protocol. A complete

list of fields for each protocol is provided in Appendix A.

Finally, the last argument, is a list of parameters that need to be passed

to the function. Note that we cannot apply all anonymization functions to

all fields. For example it does not make any sense to remove (STRIP) the

source address from the IP header since the packet will not be valid any more.

3.1. AAPI FUNCTIONS 21

139.91.70.101 139.91.70.40 10.1.0.1 10.1.0.2
….. …..

….. …..

….. …..

….. …..

GET /page1.html HTTP/1.1
….. …..

….. …..
HOST: www.myserver.com

GET /qopcf.html HTTP/1.1
….. …..

….. …..
HOST: XXXXXXX

ANONYMIZE, IP, SRC_IP, MAP
ANONYMIZE, IP, DST_IP, MAP

ANONYMIZE, HTTP, URI, FILENAME_RANDOM
ANONYMIZE, HTTP, HOST, REPLACE “XXXXXXX”

- Anonymize IP addresses by mapping to integers

- Anonymize HTTP fields by randomizing URI and replacing HOST with constants

Figure 3.2: Example of anonymization on network packets

A simple map to constant will have the same anonymization effect without

compromising the usefulness of the trace. Internally, AAPI performs such

sanity checks for each function applied before start processing packets and

inform the user for wrong usage of functions.

In Figure 3.2 we show how anonymization is performed using AAPI. In

the first example we want to anonymization the IP addresses of a packet by

mapping them to integers. In order to apply this anonymization we have to

instract AAPI to anonymize (ANONYMIZE) at the IP protocol (IP), the

source and destination address (SRC IP, DCT IP) using sequantial mapping

(MAP). We can see that AAPI transformed the IP address 139.91.70.101

to 10.1.0.1 thus anonymizing it. In the second example we present a more

complex anonymization. We anonymize the HTTP header (HTTP) and more

specially by randomizing (FILENAME RANDOM) the URL field (URI) and

replacing with a constant (REPLACE ”XXXXXXX”) the host field (HOST).

In the figure we can see how these fields are anonymized according to the

22 CHAPTER 3. THE ANONYMIZATION API

anonyzation policy we have specified above.

In the following example we will describe an anonymization policy and we

will show how it can be implemented with AAPI. The policy is: “remove the

TCP payload for TCP packets, remove of IP payload for all other packets,

all packets must have their IP addresses anonymized by mapping them to

random integers”.

Before we proceed to the AAPI code, we should note that this policy

divides the packets into two categories, TCP and non-TCP. It is thus very

useful to apply filtering functions to distinguish the packets and then for each

category apply the appropriate anonymization functions. “BPF FILTER”

function returns zero if the filter does not match, elsewhere returns one and

the packet is processed by subsequent functions. The given anonymization

policy is implemented as follows with our AAPI:

int set1=create_set();

int set2=create_set();

add_function(set1,"BPF_FILTER", "tcp");

add_function(set1,"ANONYMIZE", IP,SRC_IP,MAP);

add_function(set1,"ANONYMIZE", IP,DST_IP,MAP);

add_function(set2,"ANONYMIZE", TCP,PAYLOAD, STRIP);

add_function(set2,"BPF_FILTER", "ip and not tcp");

add_function(set2,"ANONYMIZE", IP,SRC_IP,MAP);

add_function(set2,"ANONYMIZE", IP,DST_IP,MAP);

add_function(set2,"ANONYMIZE", IP,PAYLOAD, STRIP);

3.2. ANONYMIZATION OF APPLICATION-LEVEL STREAMS 23

Note that each packet will match to only one set (it can be either TCP

or not) and in case of TCP the “STRIP” function is applied to the TCP

payload.

3.2 Anonymization of Application-level Streams

Information in high-level protocols, like HTTP or FTP, spans across multiple

packets, thus anonymization on this level should be performed on top of a

reassembled application stream instead of on a per-packet basis. AAPI has

the ability to reassemble packets in order to form a cooked packet, through

the “COOK” function 1 . It is thus strongly recommended that a “COOK”

function must precede the anonymization functions that work on high-level

protocols. Take as an example a user who wants to set the contents of

an FTP transfer to zero. The file being transferred is usually split into

multiple TCP/IP packets. If we try to apply anonymization without cooking,

then only the first packet of the transfer will be classified as “FTP-packet”

since it is the only one that contains the protocol headers. The rest of the

packets composing the actual file transfer cannot be classified as such, and

therefore cannot be anonymized. When cooking is applied, the whole transfer

is grouped in a single “application-level” packet so the contents of the whole

file can be set to zero.

However, one of the targets of anonymization is that the output should be

as close to the input as possible, in order to retain the usefulness of the trace.

Therefore, our approach is, after we perform cooking and anonymize the

application-level stream, to split the cooked stream back to the original series

of TCP/IP packets. Splitting is implemented as an AAPI function called

1For the reassembly functionality of COOK function, the libnids [34] library has been

used.

24 CHAPTER 3. THE ANONYMIZATION API

“UNCOOK”. The cooking function stores the list of headers of the original

packets that form the cooked packet. “UNCOOK” takes this list of headers

and adds to them the appropriate portion of the payload of the cooked and

anonymized packet. In that way, “UNCOOK” constructs as many TCP/IP

packets as there were originally in the incoming traffic, with each one having

the same header as before the application of cooking, although the payload

has been anonymized. It must be noted that after the uncooking, some of the

TCP/IP packets may not have any payload after the “UNCOOK” function,

although they originally had, when for example we are replacing the whole

application-level payload with a hash value.

3.3 Function (Re-)Ordering

Function (re-)ordering is an optional component of the anonymization frame-

work that can be selectively enabled or disabled by the user. The goal of

re-ordering is dual. Firstly, we want to automatically detect common pit-

falls in the list of the anonymization functions, both in which anonymization

functions are applied and in which order. Secondly, we want to ensure that

the semantics of anonymization process are correct. Function reordering is

done before we start processing any packet stream. There are three main

tasks:

• All anonymization functions except “CHECKSUM ADJUST”, which

adjusts the checksums to a correct value, that are applied on IP, TCP,

UDP or ICMP level are moved first. If they were placed between a

“COOK” and an “UNCOOK” function, then the headers stored by

“COOK” would not be anonymized and “UNCOOK” will emit non-

anonymized packets.

• “CHECKSUM ADJUST” and functions that alter the packet length

3.3. FUNCTION (RE-)ORDERING 25

fields are applied at the end of the anonymization. “CHECKSUM ADJUST”

is called last in order to reflect all changes, after the rest of the anonymiza-

tion functions have been applied. Updating the packet length is also

applied at the end because other anonymization functions may mod-

ify the original packet’s size. As a result, explicit modifications to the

packet length must be performed at the end.

• If the policy requires to use functions that modify an application-level

protocol (HTTP, FTP, etc.), they are all grouped together in order

to apply “COOK” and “UNCOOK” only once. If a “COOK” func-

tion exists, then it is placed before any application-level anonymization

function, otherwise it will automatically applied by AAPI. Similarly, if

an ‘UNCOOK” function exists, it is applied only after we have per-

formed all application-level anonymization, otherwise it is manually

applied. Having “COOK” before and “UNCOOK” after the functions

that work on HTTP or FTP level preserves both the correctness and

the transparency of the anonymization process. Additionally, if two or

more “COOK” or “UNCOOK” functions are accidentally added then

duplicate functions are removed in order to eliminate the overhead. We

should note here that since “COOK” is performed after all header level

modifications, certain fields such as TCP sequence number that are es-

sential for reassembly, should not be modified. Providing that no TCP

or IP header fields can be removed, altering fields such as IP addresses

or TCP ports using one-to-one mapping, does not affect reassemble.

Reordering also detects and removes common pitfalls in the anonymiza-

tion policy. For example, consider that a policy first hashes the URL and

then removes it. When reordering is applied, the first modification will be

26 CHAPTER 3. THE ANONYMIZATION API

CHECKSUM and PACKET_LENGTH modifications

UNCOOK

Application-level modifications

COOK

IP, TCP, UDP, or ICMP modifications

Figure 3.3: The order of functions after applying reordering.

removed since it is useless. The proper ordering of anonymization functions

is illustrated in Figure 3.3.

3.4 Extensibility

Extensibility is one of the main design goals of AAPI. Extensibility applies in

three different aspects of AAPI. It allows to easily a) add new anonymization

functions, b) support new protocols, and c) have as input different types of

traffic sources.

As far as the first issue is concerned, a user can easily add more anonymiza-

tion functions into the framework, taking advantage of its modular design.

As an example, one may add to AAPI a new anonymization function for IP

addresses that hashes the first 8 bits and randomizes the rest. Moreover, we

provide a callback functionality, meaning that the user can specify a function

that is called for each packet, thereby getting raw access to packets.

In our current implementation, the application-level protocols supported

are HTTP, FTP and NetFlow v10. It may be desirable to add new protocol

decoders in the framework. For example, users are able to write a Simple

Mail Transfer Protocol (SMTP) decoder in order to anonymize email message

contents.

3.5. ANONYMIZATION OPTIMIZATION 27

Finally, it is straightforward to add support for different input sources.

For example, snort alert logs [37] can be supported by simply adding a new

decoder that reads such records and provide references to each field. Since our

framework is generic in the sense that it just applies anonymization functions

to protocol fields, support for snort alert logs is as simple as adding a new

protocol, the “SNORT ALERT LOG” protocol, with its corresponding fields.

This way the framework can anonymize snort alert logs, without any other

change, using the same notation and anonymization functions described in

this work.

3.5 Anonymization Optimization

Taking advantage of the framework design, optimization of the anonymiza-

tion process is feasible. It is a common case where different applications have

approximate the same anonymization policy, or at least share a common sub-

set of the anonymization functionality.

For example, consider the case where two sets exist, one for anonymization

of HTTP traffic and the other for FTP traffic. These sets perform different

anonymization on application level, but the same on TCP/IP headers, for

example map IP addresses to integers and remove TCP options. Functions

that constitute the common subset, can be applied only once in incoming

packets and the anonymized packets that are produced will be delivered to

the subsequent functions of each set. In Figure 3.4 we present this example.

There are two anonymization sets including some anonymization functions.

The grey shaded boxes are the common group of functions that exist in both

sets. Since this functionality is the same in both sets, it can be performed

only once. As we can se in the figure, when anonymization is applied a

new set (called Optimization set) is created, that contains the group of

28 CHAPTER 3. THE ANONYMIZATION API

ANONYMIZE IP ADDRESES

ANONYMIZE TCP PORTS

ANONYMIZE TCP PAYLOAD

ANONYMIZE HTTP HEADER

ANONYMIZE IP ADDRESES

ANONYMIZE TCP PORTS

ANONYMIZE TCP PAYLOAD

ANONYMIZE FTP HEADER

ANONYMIZE FTP HEADER ANONYMIZE HTTP HEADER

ANONYMIZE IP ADDRESES

ANONYMIZE TCP PORTS

ANONYMIZE TCP PAYLOAD

Set1 Set2

Set1 Set2

Optimization set

Figure 3.4: Example of anonymization optimization.

common functions. The rest of each initial set after removing this common

subset remains as is (Set1 and Set2). The output of the Optimization set is

passed to each set for further processing.

Using optimization, the framework scales efficiently with the number of

different anonymization applications (in AAPI each application is a set).

3.6 Input and Output Functionality

AAPI works both offline with traces as well as on-line with real traffic. The

framework natively supports live traffic from standard Ethernet interfaces.

In case of offline traces, we support traces in the tcpdump format. In both

cases for the packet capturing functionality, the libpcap [3] library has been

used. The modular design of our framework permits the addition of other

sources both on-line or offline, as discussed in section 3.4. Currently, all sets

read traffic from a single source but we intend to support multiple sources in

3.6. INPUT AND OUTPUT FUNCTIONALITY 29

later versions.

The anonymized packets in AAPI can be recorded to an output trace (in

standard tcpdump [3] format). As it would be impractical to have a separate

output trace created for each anonymized set, sets can share their output

trace. The sharing is simply done by setting the same output filename in

multiple sets. For example, two sets can write their anonymized packets in

the same output file. In the absence of this functionality, the user would

have to merge the two traces using external tools. It should be noted that if

policy defines that a packet matches multiple sets, e.g no filtering functions

or not mutually excluded filters, then it would be recorded multiple times in

the shared output trace, probably with different form.

30 CHAPTER 3. THE ANONYMIZATION API

Chapter 4

Integration with Passive

Monitoring

In this chapter we present our efforts in order to integrate AAPI into a

network monitoring framework. We give a brief description of the passive

monitoring framework (MAPI) and we describe the design of an architecture

that enforce anonymization policies to users.

4.1 Introduction to MAPI

The Monitoring API (MAPI) [2] was designed within the IST project SCAMPI

[1], and is presented in [33]. It is an expressive programming interface, which

enables users to clearly communicate their monitoring needs to the underly-

ing traffic monitoring platform.

MAPI builds on a simple and powerful abstraction, the network flow, that

allows users to tailor measurements to their own needs but in a flexible and

generalized way. In MAPI, a network flow is generally defined as a sequence

of packets that satisfy a given set of conditions. These conditions can be

arbitrary, raging from simple header-based filters, to sophisticated protocol

31

32 CHAPTER 4. INTEGRATION WITH MAPI

analysis and content inspection functions.

The main novel abstraction of MAPI is that it elevates network flows to

first class status, allowing programmers to perform a set of standard opera-

tion on flows similar to other system abstractions such as files and sockets.

In particular, users may create or destroy flows, sample or count packets of a

flow, apply functions to flows, and retrieve other traffic statistics from a flow.

Where necessary and feasible, MAPI also allows the user to trigger custom

processing routines not only on summarized data but also on the packets

themselves, similar to programmable monitoring systems. The expressive-

ness of MAPI enables the underlying monitoring system to make informed

decisions in choosing the most efficient implementation, while providing a co-

herent interface on top of different lower-level elements, including intelligent

switches, high-performance network processors, and special-purpose network

interface cards.

AAPI is a stand-alone framework. We decided to integrate the frame-

work in MAPI in order to offer anonymization functionality in a monitoring

infrastructure and also to take advantage of the various optimizations and

hardware support that are already integrated in MAPI. MAPI is currently

deployed in a distributed monitoring infrastructure [41], so there is a strong

need for privacy. Using the AAPI integrated in MAPI, users can be sure that

no sensitive data is revealed to others.

Also AAPI can gain from the advantages of MAPI. MAPI supports the

collection of data from additional hardware interfaces -such as DAG cards

[14] or the SCAMPI card [10]. Also, some of the basic anonymization pro-

cedures could be implemented by hardware in the near future, so real-time

anonymization at very high speeds will become feasible.

4.2. ARCHITECTURE 33

4.2 Authentication & Authorization Archi-

tecture

The administrator of each MAPI sensor should be able to define access rights

for the users. That means he should be able to specify which users can access

the sensor and what privileges each will have. For example, a trusted user

from the same organization may be able to retrieve packets with no modifi-

cations, while another user should retrieve packets that have anonymized IP

addresses and their payload has been removed.

AAPI is able to express this need for flexible anonymization policies on a

per user basis. On the other hand there should be a mechanism that enforces

the anonymization policy to the users’ flow. This way, if a user does not apply

the appropriate anonymization, the flow could not be initialized. Therefore,

an authentication/authorization mechanism should be introduced in MAPI.

4.2.1 Existing mechanisms

Current authorization mechanisms in MAPI are based on local decisions.

That is, the local administrator of each monitoring sensor decides the access

level for each user.

Figure 4.2 illustrates the steps that must be performed by the administra-

tor of a monitoring sensor for the specification of the anonymization policy,

as well as the steps that take place during the authorization of a user, which

includes checking if the flow is compatible with the anonymization policies.

Initially, the administrator must specify the anonymization policy for

the monitoring sensor (step 1). The policy is expressed using KeyNote [7]

conditions. A sample KeyNote policy is shown in figure 4.1. This policy

denoted that the particular administrator enforce the particular user to apply

34 CHAPTER 4. INTEGRATION WITH MAPI

Authorizer: "RSA:abc123" # Admin’s key
Licensees: "RSA:xyz987" # User’s key
Conditions: ANONYMIZE == “defined” &&

ANONYMIZE.0.pos == 0 &&
ANONYMIZE.0.param.0 == TCP &&
ANONYMIZE.0.param.1 == PAYLOAD &&
ANONYMIZE.0.param.2 == STRIP;

Signature: "RSA-SHA1:234354f9“

remove
payload

Figure 4.1: Sample KeyNote policy.

the ANONYMIZE function with parameters TCP, PAYLOAD and STRIP,

meaning that the user will capture packets with removed payload.

A user that wants to use the monitoring sensor must first acquire the

necessary credentials for that sensor. Credentials delegate authority to a user

(or a user group) identified by a public key (or a set of public keys). Thus,

the user first has to deliver his/her public key to the administrator (step 2),

which is added into the Licensees field of the credentials. The administrator

then signs the credentials and stores them in the Policy Repository (step 3).

Since the credentials are digitally signed, they can be easily distributed over

untrusted networks, so the user can safely download them from the Policy

Repository (step 4), in order to use them for accessing the sensor(s). Note

that the credentials include the anonymization policy that this user should

adhere to.

According to the credentials given by the administrator, the user con-

figures the network flows in his/her application by applying any required

anonymization functions (step 5). Before creating a new network flow, the

user has to call mapi set authdata(), which informs the sensor which are

the credentials of the user, and which public key should be used to identify

him/her. The authentication in order to prove that he/she is really the user

4.2. ARCHITECTURE 35

Monitoring Sensor

organization remote user

9

6
MAPI

Application8

7
Monitoring
daemon

Admin
Policy Manager

31
4

2Policy
Repository

5

User

Policy
Editor

1. The Administrator specifies an
anonymization policy.
2. The user delivers his/her public
key.
3. Signed credentials are stored in
the Policy Repository.
4. The user obtains his/her
credentials.
5. User’s network flows are
configured to conform with the
policy.
6. Each network flow is instantiated.
7-8. authd evaluates the specification
of the flow for compliance with the
supplied credentials.
9. The flow is activated and the
relevant flow descriptor is returned
to the user.

Authorization
daemon

Figure 4.2: Access control in MAPI.

that corresponds to the public key is achieved by supplying a randomly gen-

erated integer, together with its encrypted form using the users private key.

If the encrypted value decrypted with the supplied public key equals the orig-

inal integer, the users request is authenticated. When the configuration of

the flow is completed, the user instantiates the flow by calling mapi connect()

(step 6). With the dashed arrow we denote the credentials sent to the server

while with the black arrow the flow data.

At this point, mapid (the monitoring daemon) has complete information

about the flow in question. The user has provided his/her public key and

credentials, while mapid is aware of the specification of the flow, as a result of

the consecutive mapi apply function() calls that the user issued to configure

it. All this information is sent to authd1 (step 7), which checks the authen-

tication and evaluates the specification of the flow for compliance with the

supplied credentials (i.e., which include the anonymization policy). authd

then returns the result of the evaluation to mapid (step 8). If the flow spec-

ification complies with the credentials and the authentication is successful,

1Authd is the authorization daemon

36 CHAPTER 4. INTEGRATION WITH MAPI

mapid activates the flow and returns the relevant flow descriptor to the user

(step 9), otherwise the flow is rejected. Steps 6-9 are repeated each time the

user wants to create a new flow.

4.2.2 Weaknesses of current scheme

In the current approach, the authorization mechanism is user-based and is

specific for one sensor only. If the user wants to access several sensors, for

example, he needs to obtain several credentials from several local administra-

tors: one administrator for each sensor. We see two major drawbacks in this

approach. First, this solution is not scalable with the number of users. Each

administrator of each monitoring sensor has to deliver credentials to each

user individually, which means excessive administrative overhead. To make

matters worse , when a sensor joins the infrastructure, its administrator has

to issue a separate credential for each existing user. Furthermore, deletion of

a user causes additional administrative cost since the user should be deleted

from each individual monitoring sensor. Finally, credentials from different

sensors may conflict, leaving the user to decide which the most suitable com-

bination is (if it is feasible). For example if a sensor specifies strip of payload

while another specifies hash of payload, there does not exist a combination

that can satisfy both sensors.

4.2.3 Authentication/Authorization mechanism

In order to overcome the weaknesses that were presented in the previous sec-

tion, we propose an architecture for authorization and authentication based

on the abstractions of Virtual Organization (VO) and Certification Author-

ity (CA), abstractions which have been successfully used in the area of GRID

Computing. Our vision is to simplify the authentication and authorization

mechanisms, to lower the administrative cost, and to free the user from deal-

4.2. ARCHITECTURE 37

ing with credentials. The proposed solution introduces a central authority

that will be used in order to authorize users that can use MAPIs’ sensors.

In MAPI, a VO represents a group of people of common access privi-

leges. People in the same group may also have common research interests,

and/or common needs. For example, assume researchers in the field of In-

ternet security that run a project to identify worm outbreaks. In order to

accomplish this, they need access to network traffic and more specifically to

packet payloads. To enable these researchers to use the MAPI infrastructure,

we propose to create a new VO, named wormTeam: all researchers will be

members of this VO. Every sensor that supports this VO should define a

policy which will apply to all the members of this wormTeam VO. When a

user is added to this VO, no individual sensor needs to change its policy for

the WormTeam VO. Similarly, when a user is deleted from this VO, again no

monitoring sensor needs to change its policy for the VO. As another exam-

ple, consider a sensor in FORTH, which supports two VOs: FORTHteam and

FORTHothers. The first VO would include people working in the FORTH

institute and have full access to network packets. All other users would be

assigned to the FORTHothers VO, which would have a policy that permits

access to anonymized packets only.

Each MAPI user can be a member of several VOs. When, however,

MAPI users try to access packets from a particular monitoring sensor, they

must specify one of the VOs they belong to. Thus, we need the appropriate

mechanisms for registering MAPI users with a VO and then mapping VOs

to specific policies.

The proposed approach is illustrated in Figure 4.3.

Initialization of CA When the CA is created, the VOs that are going

to be supported are decided. For each of these VOs, a separate policy is

38 CHAPTER 4. INTEGRATION WITH MAPI

Monitoring Sensor

organization

remote user

8

1 MAPI
Application7

2
Monitoring
daemon

3

Local VO
Policy

Repository
Cache

4

User

Certification Authority

6 5

CA Registration with CA

Registration phase

Once per flow creation

VO Policy
Repository

Periodic
Synchronization

Authorization
daemon

Figure 4.3: Authorization architecture

issued and stored in the VO Policy Repository. This policy will be the one

that each sensor will expect users belonging to that VO to respect, unless

the administrator overrides it (for example with a stricter one) specifically

for his sensor. This process is performed only once, during the deployment

of the MAPI infrastructure.

Registration phase: When a new user wants to use the MAPI infras-

tructure, the Certification Authority (CA) should be contacted. The user

should provide the CA with his public key and the VOs he wants to be part

of. This can be done for example by filling a form. The administrator of the

CA will evaluate the request and if it is accepted, the public key of the user

will be assigned to the VOs specified. At this point, the user is registered

within the MAPI infrastructure and can access data from all sensors which

support the Virtual Organizations the user is member of. We should note

4.2. ARCHITECTURE 39

here that this process is preformed only once.

Flow creation phase: When the user creates a flow (step 1), the user

has only to specify authorization data. Authorization data is the public key

of the user as well as the challenge as it was presented in the previous section.

Moreover, the user has to specify the VO he wants to use (in the case that the

user belongs in more than one VOs). No credentials have to be sent to the

sensor. The data (step 2) are forwarded to the authd which will perform the

authentication and authorization steps. Authentication data are sent to the

CA, which is responsible to authenticate the user and confirm that the user

belongs to the VO he has specified. Confirmation and VO are sent back (step

3). Then, authd performs a lookup in the local policy repository (step 4),

and retrieves (step 5) the policy for the specific VO. This step is performed

for optimization. The policies for VOs are stored in the CA but it is an

expensive process to query and retrieve it for each flow. Therefore we keep

a local cache of the policies in the sensor which is synchronized periodically

with the central repository. The credentials are returned to authd (step 6)

which evaluates the specification of the flow for compliance with the supplied

credentials (that are included in the policy), and returns the result of the

evaluation (step 7) to mapid. If the flow specification complies with the

credentials and the authentication is successful, mapid activates the flow and

returns the relevant flow descriptor to the user (step 8). Otherwise the flow

is rejected. The steps are summarized in Figure 4.4.

4.2.4 Advantages of the proposed approach

As mentioned in the introduction of this section, the goal of the proposed

approach is to lower the administration cost in MAPI. In the current architec-

ture, when a new user wants to use MAPI, he should contact all the sensors

40 CHAPTER 4. INTEGRATION WITH MAPI

Registration
User contacts CA in order to be included in one or more VOs.

Flow creation
1. Authentication data are been send to mapid (together
with flow specification).
2. Data are forwarded to authd
3. Authentication data are forwarded to CA which performs
the authentication and checks the user’s VO.
4. Confirmation is returned to authd.
5. Local policy repository is queried for user’s VO policy.
6. VO’s policy is returned to authd and evaluation of users’
flow takes place.
7. Evaluation is returned to mapid.
8. Flow descriptor is returned to application.

Figure 4.4: Authentication and authorization steps in the proposed

architecture

and the administrator of each of them should issue credentials for him. As

the number of users and sensors increases, this becomes a time consuming

process for both the user and the sensor administrator. On the contrary,

in the proposed architecture, the only action that should be performed for a

new user is to register with the CA. Using the centralized architecture of CA,

the user will issue just one request, will be included in one or more VOs and

no actions are required by the administrators of each sensor. The process in

both architectures is illustrated in Figure 4.5.

The same issues apply for the deletion of a user. In the proposed ar-

chitecture, the user is directly deleted from the CA which is much simpler

comparing to the current situation where each sensor should be contacted in

order to delete the user.

Moreover, when a new sensor joins MAPI, each existing MAPI user should

contact it in order to register and get credentials for the particular sensor.

Considering that there will be a large number of users, this becomes a time

consuming process for users but also for the administrator of the sensor.

Using the proposed architecture, when a new sensor joins the infrastructure,

4.2. ARCHITECTURE 41

Sensor

Sensor

Sensor

Sensor

Sensor

New User

Register

Register

Register

Register

Register

Sensor

Sensor

Sensor

Sensor

Sensor

New User

CA
Register

All
MAPI

 Sensors

All
MAPI

Sensors

Current
Architecture

Proposed
Architecture

Figure 4.5: A new user joins MAPI

no further actions should be performed either from the users, or from the

administrator. This process is shown in Figure 4.6.

The main simplification that the proposed new scheme provides is that

the local administrator of each sensor no longer has to create separate policies

for each user. Since the policies are created in the CA, the administrator no

longer has to create policies at all. The only responsibility each administrator

still has is to create an anonymization policy for each VO that wants to

support in a different way than the one that the CA policy specifies. Since

the number of VOs is much smaller than the number of users, we expect

that the proposed approach to significantly lower the administrative cost.

Moreover we should note that the definition of the anonymization policies

happen only once, contrary to what happens in the current architecture. As

mentioned in the previous chapter, the administrator of each sensor should

issue credentials every time a new user wants to use the sensor, which leads to

42 CHAPTER 4. INTEGRATION WITH MAPI

New
Sensor

User

Register

Register

Register

Register

Register
CA

All
MAPI
Users

Current
Architecture

Proposed
Architecture

User

User

User

User

New
Sensor

User

All
MAPI
Users

User

User

User

User

No
communication

needed

Figure 4.6: A new sensor joins MAPI

a considerable overhead as the number of users rise. This overhead is avoided

using the proposed architecture, since the registration process happens only

once in the centralized CA.

Finally, from the user’s perspective, it is no longer necessary to deal with

credentials during the creation of a flow. Only authentication data should

be sent to the sensor, which include the public key and VO of the user.

Moreover, since there is a single policy for a VO, no conflicts will appear

when an application contacts multiple sensors.

To sum up, it is clear that the proposed architecture simplifies the entire

authentication/authorization process, lowers the administrative cost needed

and therefore the whole infrastructure scales efficiently with the number of

users.

4.2. ARCHITECTURE 43

4.2.5 Anonymization as a transparent process

Taking advantage of this architecture it is possible make anonymization even

more transparent to the user. According to the current design of MAPI, but

also the one that is proposed above, the user should apply anonymization

functions to each network flow in order to conform to the policy before (s)he

is able to receive any information from the network flow. In order to make

the usage of the MAPI infrastructure as simple as possible, it is possible to

free the user from specifying the anonymization functions. This is possible

since upon authentication of a user, the sensor ”knows” the anonymization

policy for the particular user (or the particular VO the user belongs to).

Therefore, instead of asking the user to apply the anonymization func-

tions and then check that they conform to a policy, an alternative approach

would be to make the sensor responsible for the anonymization of the traf-

fic. For example, the mapi daemon may create a virtual network device

for each anonymization policy that the underlying sensor supports. For ex-

ample, if the FORTH sensor has two policies for VOs (FORTHteam and

FORTHothers) it may also create two virtual devices for each real monitor-

ing sensor. For example, for network device eth0 there may also exist the

devices eth0 FORTHteam and eth0 FORTHother. Each of these devices will

provide the packets received from eth0, anonymized using the policy that

is assigned to the FORTHteam and the FORTHother virtual organizations,

respectively. This means that the appropriate anonymization functions will

always be applied to packets before they are given to the user’s application.

When a user wants to use a MAPI sensor, he has just to specify the

network device the user wants to open. After identifying the user and the

VO (s)he belongs to, mapid may open the appropriate virtual network device

for this user. This is feasible since the sensor knows the VO this user belongs

44 CHAPTER 4. INTEGRATION WITH MAPI

to, and using the mapping from VO to policies (and therefore to virtual

network devices) can open the right device for this user.

Let is illustrate the above using the following example. In order a user to

access a MAPI sensor, according to the current authentication/anonymization

scheme, one should write an application like the one shown in Figure 4.7.

1. For each sensor:

Register with sensor

2. Store credentials locally

3. Application

#create flow

fd = mapi_create_flow("eth0");

#apply anonymization

mapi_apply_function(fd,"ANONYMIZE", IP, SRC_IP, MAP);

mapi_apply_function(fd,"ANONYMIZE", IP, DST_IP, MAP);

mapi_apply_function(fd,"ANONYMIZE", IP, TTL, PATTERN_FILL,

INTEGER, 64);

mapi_apply_function(fd,"ANONYMIZE", IP, ID, PATTERN_FILL,

INTEGER, 242);

mapi_apply_function(fd,"ANONYMIZE", TCP, PAYLOAD, STRIP, 0);

mapi_apply_function(fd,"ANONYMIZE", UDP, PAYLOAD,STRIP, 0);

mapi_apply_function(fd,"ANONYMIZE", HTTP, URI, FILENAME_RANDOM);

mapi_apply_function(fd,"ANONYMIZE", HTTP, HOST, REPLACE,

"WWW_SERVER");

mapi_apply_function(fd,"ANONYMIZE", IP, CHECKSUM,

CHECKSUM_ADJUST);

#set authentication data

mapi_set_authdata(fd, "public_key", "private_key", "credentials");

#connect

mapi_connect(fd) ;

Figure 4.7: Current anonymization approach

4.2. ARCHITECTURE 45

If we use the scheme proposed in this document the same application can

be written as presented in Figure 4.8.

1. Register with CA (single step)

2. Application

#create flow

fd = mapi_create_flow("eth0");

#set authentication data

mapi_set_authdata(fd,"public_key","private_key","WormTeam");

#connect

mapi_connect(fd) ;

Figure 4.8: Proposed anonymization approach

We can see that in the second case, the program is much simpler. Apart

from this, the user no longer deals with anonymization functions. The code

dealing with anonymization that has ”disappeared” from the application, as

it is automatically applied by the mapid.

46 CHAPTER 4. INTEGRATION WITH MAPI

Chapter 5

Performance Evaluation

In this chapter we evaluate the performance of the anonymization API. First,

we compare the performance of our framework against existing anonymiza-

tion tools. Then, we evaluate the cost of individual anonymization functions

and how much the framework benefits from from several performance opti-

mizations. Finally, we discuss the usefulness of the produced traces.

5.1 Comparison with existing tools

In this section we compare the performance of AAPI with the existing anonymiza-

tion tools, tcpdpriv and Bro.

5.1.1 Tcpdpriv

In order to measure the performance of the framework, we have imple-

mented some simple anonymization policies both as AAPI applications, and

tcpdpriv processes. One simple anonymization policy we have implemented

states that: “IP addresses are mapped to sequential integers, IP and TCP

options fields are set to zero, the TCP/UDP payload is also zeroed, while the

packet’s checksums are updated”. This policy is similar to those that were pre-

47

48 CHAPTER 5. PERFORMANCE EVALUATION

policy tcpdpriv (sec) AAPI-based tool (sec)

MAP 10.78 7.41

Prefix-Preserving 10.85 9.39

MAP, no checksum 6.83 6.67

Table 5.1: Performance comparison between tcpdpriv and AAPI-based

anonymization.

sented in section 2.3. Also, in order to explore the performance of prefix pre-

serving anonymization schemes, which are commonly proposed for anonymiz-

ing IP addresses, we also applied the PREFIX PRESERVING MAP function

instead of the sequential mapping to IP addresses defined in the original pol-

icy.

AAPI allows us to implement the anonymization functionality in less than

40 lines of code as shown in Appendix C. In the experiment we used a In-

tel Pentium 4, running at 3.0 GHz with 512 MB main memory. We used

a 2 GB tcpdump trace (approximately 2.6 million packets) as traffic input

for anonymization, which consisted exclusively of TCP packets from a web

portal mirroring. In Table 5.1 we show the user time1 in seconds for both

the AAPI-based aplication and tcpdpriv. As it can be observed, our tool is

marginally faster than tcpdpriv. The main reason for this difference is the

poor implementation of checksum fix on tcpdpriv. If we remove the check-

sum fix functionality from both applications, their performance is equivalent.

Note that this result is indicative of the performance of AAPI-based tool

since tcpdpriv is a highly specialized tool for simple anonymization policies

1Only user time is measured since all tools including AAPI use the standard libpcap [3]

library for packet capturing. Therefore the overhead is the same for all tools and thus not

taken into account.

5.1. COMPARISON WITH EXISTING TOOLS 49

policy Bro (sec) AAPI-based tool (sec)

MAP 133.00 4.35

URL replace 134.48 58.85

Table 5.2: Performance comparison between Bro and AAPI-based

anonymization.

without offering all the functionality supported by AAPI.

5.1.2 Bro

We compared AAPI with the Bro system, which, in contrast to tcpdpriv,

has support for application-level anonymization. We conducted two experi-

ments. In the first, we implemented the same policy that we mentioned above

that also involves mapping the IP addresses to integers. In the second exper-

iment we implemented a policy that required application-level anonymiza-

tion: “replace the URL in HTTP packets with the string SAMPLE URL”.

In Table 5.2 we present the measured user time (in seconds) to complete the

anonymization of the same trace as in the previous expreriment.

Due to the limitations of Bro, as discussed in section 2.2, even for a

simple action like changing the IP address in a packet, it has to reassemble

the trace up to the HTTP level before it can anonymize the IP addresses.

In the case of mapping IP addresses, our approach is up to 30 times faster

than Bro, as we do not have to perform stream reassembly. In the case

of URL replacement, where both tools need to perform cooking, the AAPI

application needs about half the time required by Bro. AAPI is faster because

it is a framework specially designed for anonymization, in contrast with Bro,

which is an IDS system with additional functionality useless to anonymization

which introduces this overhead.

50 CHAPTER 5. PERFORMANCE EVALUATION

5.2 The Cost of Anonymization Functions

Having a complex anonymization policy with a long list of anonymization

functions does not come for free. In some cases, like simply setting the

Time-To-Leave (TTL) to zero, an anonymization function may be a fairly

lightweight process. On the other hand, some functions like “COOK” can

be very slow. So it is clear that the anonymization can be a time consuming

procedure. While for the non-realtime anonymization of traffic traces this

performance may not be an issue, the on-line anonymization of realtime

traffic has to be as fast as possible in order to keep up with the incoming

traffic from the high-speed Gigabit links.

Infrastructures that work with live traffic from diverse administrative

domains, such as zero-day worm detection systems [6, 38], demonstrate the

need for real-time anonymization. It is highly unlikely that organizations

would share their traffic without first anonymizing it. In order to have a

view of the cost of the various anonymization functions, in this section we

try to quantify this cost by testing the most commonly used functions and

various combinations of these functions. This will give an insight of what is

the performance penalty of each one of them. All experiments were performed

on a PC with an Intel Pentium 4, running at 3.0 GHz, with 512 MB main

memory. As input source we used the 2 GB tcpdump trace presented in

previous experiments.

Our results are summarized in Table 5.3. The metric we use is user time,

measured with the time command-line utility.

The prefix-preserving function is based on the Crypto-PAn package, while

prefix-preserving-map2 is a much simpler algorithm for prefix-preserving anonymiza-

2Prefix-preserving-map performs prefix-preserving anonymization using a mapping ta-

ble instead of cryptography

5.2. THE COST OF ANONYMIZATION FUNCTIONS 51

Function User time (sec)

Set TTL and IPid to constant 3.304

Map src/dst IP 4.356

Map IPs, set TTL and IPid constant 5.152

Prefix-preserving-map src/dst IP 7.068

No cooking,randomize URL 6.060

Map src/dst IP,randomize URL,

checksum adjust

12.777

Cooking 19.812

Cooking, URL replace, uncooking 28.580

Prefix-preserving src/dst IP 87.721

Table 5.3: Cost of basic anonymization functions

tion without using cryptographic methods. The prefix-preserving function

based on the Crypto-PAn package results in low performance. The optimiza-

tion of this function is left for future work.

As we can see, apart from cooking and cryptographic prefix-preserving,

most functions do not impose a large overhead and therefore can be used also

for on-line anonymization. It is also feasible for more complex anonymization

policies such as those that are presented in section 2.3 to be applied on-line.

5.2.1 Complexity analysis

Most anonymization functions are linear to the size of data that they process.

For example a hash function that is applied on payload is linear to the size

of payload. Mapping functions’ complexity is O(N/M) where N is the size of

input and M the size of the hash table which is used. The prefix-preserving

52 CHAPTER 5. PERFORMANCE EVALUATION

function does not depend on the size of data since it is applied only on

IP addresses therefore it’s complexity is O(1) but including a big constant

beacuse of cryptography. Finally the COOK/UNCOOK function’s is linear

to the number and size of packets that are processed.

5.3 Optimizing Anonymization

In this section we evaluate the performance enhancement delivered from opti-

mization. It should be noted that since optimization is performed (as noted

in section 3.5) when different anonymization sets share common subset of

anonymization functions, this feature in not of great interest for applications

made with AAPI. A typical application most of the times will include only

a small number of sets. On the other hand, in on-line systems that need

to perform anonymization and deliver traffic to multiple users with different

needs, like MAPI, optimization is necessary. This means multiple flows with

common subset of functions and an opportunity for optimization.

In the first experiment, we created a rather “heavy” policy with multiple

anonymization functions and applied it to all user flows. We anonymized a

400MB network trace (approximately 1.7 million packets , 75% TCP) while

increasing the number of concurrent users. We performed this experiment

both with and without optimization. In Figure 5.1 we present the time

needed in order to anonymize the trace against the number of concurrent

users. We can see that for 10 concurrent users, the time needed when using

optimization is one quarter of the time in the non-optimized case.

In the previous experiment we assumed that there was only a single

anonymization policy for all users. A more realistic scenario is that there

is a certain number of policies and users are mapped in one of them (as de-

scribed in section 4.2.3). In this experiment we defined three policies and

5.4. USEFULNESS OF ANONYMIZED TRACES 53

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

T
im

e
(s

ec
)

Number of concurrent users

without optimization
with optimization

Figure 5.1: Optimization for a single policy.

when each user connected to the sensor, we chose randomly one of them. We

used the same trace as in the previous experiment. In Figure 5.2 we present

the time needed for anonymization against the number of concurrent users.

We can see that for a small number of users, enabling optimization in-

creases the time needed. This is due to the fact that optimization itself

introduces an unavoidable overhead in order to be applied, as it introduces

extra copies of packets. Since the number of users is the same as the number

of policies it is clear that this is not a case for optimization. As the num-

ber of users increases, we can see the performance enhancement. In on-line

systems, the number of users is expected to be orders of magnitude larger

than the number of policies (as desribed in chapter 4), so the performance

overhead will not appear.

5.4 Usefulness of Anonymized Traces

The anonymization policy defines the level of information hiding on traffic.

On one hand, we need anonymization which “hides” information, while on

54 CHAPTER 5. PERFORMANCE EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

T
im

e
(s

ec
)

Number of concurrent users

without optimization
with optimization

Figure 5.2: Optimization for three policies.

the other hand, the information we delete from a trace decreases its usefulness

in terms of the characteristics that researchers can find within that trace. In

this section we will look into this trade-off. We assume that the more flexible

anonymization policy and the more fine-grained it is, we get the most “useful”

trace, with the minimum lost information.

Existing tools do not provide enough flexibility for fine-grained policies,

thus their output is used in limited cases. The goal of the following experi-

ments is to demonstrate that our approach allows for fine-grained anonymiza-

tion policies that are able to produce output which hides as little information

as possible. The policy applied is “prefix-preserving anonymization of IP ad-

dress, set the TTL and IP identification number to constants, removal of the

HTTP payload — but not of HTTP headers”. The metric of usefulness that

we use is the number of alerts that were generated by the Snort [37] intrusion

detection system. Our input was a 400 MB trace (approximately 1.7 million

packets), which was collected during the DARPA evaluation test [21].

We anonymized the trace with both tcpdpriv and with a simple applica-

5.4. USEFULNESS OF ANONYMIZED TRACES 55

tion based on AAPI. Because of its flexibility, AAPI can express the policy

described above, in contrast with tcpdpriv that has only a hard coded pre-

defined policy. We passed both output traces from the Snort IDS [37] and

counted the number of alerts generated. We ran Snort with two different sets

of rules: one that contains header-only rules, and one with content rules, i.e.,

rules that require access to both headers and payload. The results are pre-

sented in Table 5.4. The last row denotes the sum of the two cases.

tcpdpriv AAPI Real trace

header-only rules 45 (100%) 45 (100%) 45

content rules 0 (0%) 527 (28%) 1892

complete snort ruleset 45 (2%) 572 (30%) 1937

Table 5.4: Number of alerts produced by Snort IDS for web trace

As we can see, tcpdpriv preserves only a small percentage on the initial

alerts, derived solely from header rules. AAPI on the other hand, uses a

less strict approach that creates a much more useful trace. We performed

the same experiment with other traces (from the same evaluation test) and

results where almost the same. We should note that the results depend on

the number of the alerts that the trace contains and the ratio between header

and content rules.

It is clear that this example is not realistic since the HTTP header may

contain sensitive information, for example URI or host fields, that should be

anonymized. Using AAPI, one could create a policy that does not anonymize

packets which contain attacks and anonymize those that do not. This way,

alerts will be preserved in the output trace and at the same time no private

information will be revealed since all other packets will be anonymized. Ap-

56 CHAPTER 5. PERFORMANCE EVALUATION

proaches with other tools are more rough, as in the case of content rules in

which the output trace could not produce any alerts. Even if we change the

policy, tcpdpriv will still generate zero alerts as it sets the payload to zero.

This experiment is indicative for the flexibility of AAPI, showing that it

enables the user to balance between usefullnes and privacy and not restricting

him to a hard coded policy, as tcpdpriv does.

Chapter 6

Summary and Concluding

Remarks

We have presented the design of a generic network traffic anonymization

framework. Its key point is configurability, which allows the user to define any

anonymization policy as a series of functions that are applied on packets. The

main design goal is to facilitate the development of custom anonymization

tools, that are able to implement both simple and complex policies in only

a few lines of simple code. AAPI is able to let the user balance privacy and

usefuness, and therefore the value of the output trace depends solely on the

decisions of the user and the anonymization policy that is defined and is not

addressed in this work.

The major advantage of our framework is that it works up to application-

level, offering a large set of anonymization primitives and in the same time

trying to optimize the necessary functions. All in all, to our knowledge

this work currently constitutes the most complete framework for anonymiza-

tion of realtime traffic and offline traces. Furthermore, the framework is

implemented in a modular way which makes it fully extensible in terms of

57

58 CHAPTER 6. SUMMARY AND CONCLUDING REMARKS

functionality, protocols and new traffic sources.

Through the integration of AAPI with a network monitoring infrastruc-

ture, we realized the need for a mechanism to enforce anonymization policies

transparently to users. The proposed architecture targets a distributed ver-

sion of MAPI, and simplifies the whole process of authentication/authorization.

Moreover, taking advantage of the design, anonymization becomes a trans-

parent process to the user since the appropriate policy is applied by the

sensor.

We evaluated the performance of our anonymization primitives and their

combination. Our results have shown that in most commonly used policies,

AAPI outperforms existing similar applications, which offer only a subset of

the AAPI functionality. Furthermore, as a result of the framework’s flexibil-

ity and expressiveness, we show that output traces can preserve much more

useful information compared to existing tools, without any sensitive data

leakage.

Future works on anonymization should target on the development and

support of more application level protocols, such as SMTP or DNS. Moreover,

the performance of some anonymization functions should be improved. A

possible solution would be a hardware implementation that cooperates with

AAPI. Finally, a study should be performed on evaluation of anonymization

policies, in terms of the usefulness of output trace and private data. This can

be used as a guide for the users that want to share network monitoring data,

help them find the appropriate balance between privacy and usefulness.

Appendix A

Predefined Protocol Field

Names

The following is the list of predefined names that can be used as the field description

parameter:

• Common to all protocols: PAYLOAD

• Common to IP, TCP, UDP, ICMP: CHECKSUM

• IP: SRC IP, DST IP, TTL, TOS, ID, IP PROTO, VERSION, IHL,

OPTIONS, FRAGMENT OFFSET, PACKET LENGTH

• Common to TCP and UDP: SRC PORT, DST PORT

• TCP: SEQUENCE NUMBER, ACK NUMBER, FLAGS, WINDOW,

TCP OPTIONS, URGENT POINTER, OFFSET AND RESERVED

• UDP: UDP DATAGRAM LENGTH

• ICMP: TYPE, CODE

59

60 APPENDIX A. FIELD NAMES

• HTTP: HTTP VERSION, METHOD, URI, USER AGENT, ACCEPT,

ACCEPT CHARSET, ACCEPT ENCODING, ACCEPT LANGUAGE,

ACCEPT RANGES, AGE, ALLOW, AUTHORIZATION,CACHE-CONTROL,

CONNECTION TYPE, CONTENT ENCODING, CONTENT TYPE,

CONTENT LENGTH, CONTENT LOCATION, CONTENT MD5, CON-

TENT RANGE, COOKIE, DATE, ETAG, EXPECT, EXPIRES, FROM

. HOST, IF MATCH, IF MODIFIED SINCE, IF NONE MATCH, IF RANGE,

IF UNMODIFIED SINCE, LAST MODIFIED, LOCATION, KEEP ALIVE,

MAX FORWRDS, PRAGMA, RANGE, REFERRER, RETRY AFTER,

SET COOKIE, SERVER, TE, TRAILER, TRANSFER ENCODING,

UPGRADE, USER AGENT, VARY, VIA, WARNING, WWW AUTHENTICATE,

X POWERED BY, RESPONSE CODE, PROXY AUTHENTICATE,

PROXY AUTHORIZATION, RESP CODE DESCR

• FTP: USER, PASS, ACCT, FTP TYPE, STRU, MODE, CWD, PWD,

CDUP, PASV, RETR, REST, PORT, LIST, NLST, QUIT, SYST,

STAT, HELP, NOOP, STOR, APPE, STOU, ALLO, MKD, RMD,

DELE, RNFR, RNTO, SITE, FTP RESPONSE CODE, FTP RESPONSE ARG

Appendix B

Anonymization Functions

The following is the complete list of useful functions that could be applied

to the various protocol fields.

• UNCHANGED: leaves field unchanged. This function takes no ar-

guments.

• MAP: maps a field to an integer. Each field will have different mapping

except SRC IP and DST IP which share common mapping as well as

SRC PORT and DST PORT. The rest of the fields share a common

mapping based on their length: fields with length 4 have a common

mapping, fields with length 2 have their own and finally fields with

length 1 share their own mapping. Mapping cannot be applied to

payload and IP/TCP options, only in header fields. This function

takes no arguments.

• MAP DISTRIBUTION: field is replaced by a value extracted from

a distribution like uniform or Gaussian, with user-supplied parameters.

The first parameter defines the type of distribution and can be UNI-

FORM or GAUSSIAN. If type is UNIFORM the next 2 arguments spec-

61

62 APPENDIX B. ANONYMIZATION FUNCTIONS

ify the range inside which the distribution selects uniformly numbers. If

type is GAUSSIAN the next 2 arguments specify the median and stan-

dard deviation. Similarly to MAP function, MAP DISTRIBUTION

can only be applied to IP, TCP, UDP and ICMP header fields, except

IP and TCP options.

• STRIP: removes the field from the packet. Optionally, STRIP may

not remove the whole field but can keep a portion of it. The user defines

the number of bytes to be kept. STRIP cannot be applied to IP, TCP,

UDP and ICMP headers except IP and TCP options and can be fully

applied to all HTTP and FTP fields.

• RANDOM: replaces the field with a random number. This function

takes no arguments.

• FILENAME RANDOM: a sub-case of RANDOM. If the field is

in a filename format, e.g. “picture.bmp” then the extension is left

untouched while the filename is replaced by random characters.

• HASH: field is replaced by a hash value. Supported hash functions are

MD5, SHA, SHA 2, CRC32 and AES and TRIPLE DES for encryption.

Note that MD5, SHA, SHA 2 and CRC32 may generate values with

less or greater length than the original field. The hash functions when

applied to IP, TCP, UDP and ICMP header fields, their last bytes are

used to replace the field. For all the other fields, the padding behavior

is supplied as a parameter. If the hashed value has less length, the user

can pad the rest bytes with zero by defining PAD WITH ZERO or can

strip the remaining bytes by defining STRIP REST as an argument to

the function. If the hashed values has length greater than the original

field, then the rest of packet contents are shifted accordingly. In all

63

cases, the packet length in protocol headers is adjusted to the new

length.

• PATTERN FILL: field is repeatedly filled with a pattern . The pat-

tern can be an integer or string. This function takes as a parameter

the type of pattern, INTEGER for integer and STR for strings, and

the pattern to be used.

• ZERO: a sub-case of pattern fill where field is set to zero. This function

takes no arguments

• REPLACE: field is replaced by a single value (a string). The packet

length is reduced accordingly, based on the length of the replace pat-

tern. The final length cannot exceed the maximum packet size. This

function takes the pattern to be used as an argument.

• PREFIX PRESERVING: can only be applied to source and desti-

nation IP addresses and performs a key-hashing, preserving the prefixes

of IP addresses.

• PREFIX PRESERVING MAP: can only be applied to source and

destination IP addresses and performs a preserving the prefixes of IP

addresses using mapping table.

• REGEXP: field is transformed according to regular expression. As an

example, performing anonymize(p, TCP, PAYLOAD, REGEXP, “(.*)

password:(.*) (.*)”,NULL,“xxxxx”,NULL) in a packet p we can sub-

stitute the value of a “password:” field with the “xxxxx” string. Each

“(.*)” in the regular expression indicates a match and the last argument

is a set of replacements for each match (NULL leaves match unmodi-

fied).

64 APPENDIX B. ANONYMIZATION FUNCTIONS

• CHECKSUM ADJUST: if we want the anonymized packet stream

to be used by other applications, the anonymization modifications to

each packet requires careful treatment of the checksum. This function

can be only applied to CHECKSUM field.

• SUBFIELD: with this function we can apply any of the functions

defined above to a subfield of the given field. Therefore the arguments

of SUBFIELD are the two offsets over the identified protocol field,

which are the bounds of the subfield, followed by any of the above field

anonymization functions with their parameters. The identified field

anonymization function which is passed as parameter to SUBFIELD

will be applied to the subfield that is bounded by the given offsets.

Appendix C

Sample application using AAPI

In this example, using AAPI, we create an application with similar function-

ality to tcpdpriv [16].

#include "aapi.h"

int main(int argc, char *argv[]) {

int sd;

if (argc < 3)

{

fprintf(stderr, "Usage %s input output\n", argv[0]);

return -1;

}

//create sets

sd1 = create_set();

sd2 = create_set();

//set traffic source

set_source(TCPDUMP_TRACE, argv[1]);

//set output

set_output(sd1, TCPDUMP_TRACE, argv[2]);

set_output(sd2, TCPDUMP_TRACE, argv[2]);

65

66 APPENDIX C. SAMPLE APPLICATION USING AAPI

//anonymization for tcp/udp traffic, map IPs

//zero TCP/IP options & TCP/UDP paylaod, fix checksums

add_function(sd1, "BPF_FILTER", "tcp or udp");

add_function(sd1, "ANONYMIZE", IP, SRC_IP, MAP);

add_function(sd1, "ANONYMIZE", IP, DST_IP, MAP);

add_function(sd1, "ANONYMIZE", IP, OPTIONS, ZERO);

add_function(sd1, "ANONYMIZE", TCP, TCP_OPTIONS, ZERO);

add_function(sd1, "ANONYMIZE", TCP, PAYLOAD, ZERO);

add_function(sd1, "ANONYMIZE", UDP, PAYLOAD, ZERO);

add_function(sd1, "ANONYMIZE", IP, CHECKSUM, CHECKSUM_ADJUST);

//anonymization for all other IP packets, map IPs

//zero IP options & IP payload, fix checksum

add_function(sd2, "BPF_FILTER", "ip and not (tcp or udp)");

add_function(sd2, "ANONYMIZE", IP, SRC_IP, MAP);

add_function(sd2, "ANONYMIZE", IP, DST_IP, MAP);

add_function(sd2, "ANONYMIZE", IP, OPTIONS, ZERO);

add_function(sd2, "ANONYMIZE", IP, PAYLOAD, ZERO);

add_function(sd2, "ANONYMIZE", IP, CHECKSUM, CHECKSUM_ADJUST);

//start processing packets

start_processing();

return 1;

}

The AAPI program is about 40 lines of code while the tcdpriv code is
about 2000 lines.

Appendix D

Anonymization using MAPI

This is a simple application that shows some basic anonymization features
of MAPI.

#include <stdio.h>

#include <mapi.h>

int main(int argc, char *argv[]) {

int fd;

fd=mapi_create_flow("eth0");

if(fd==-1) {

printf("Flow cannot be created. Exiting..\n");

exit(-1);

}

//Anonymization of TCP packets

mapi_apply_function(fd,"BPF_FILTER","tcp");

//map IP addresses to sequential integers (1-to-1 mapping)

mapi_apply_function(fd,"ANONYMIZE", IP, SRC_IP, MAP);

mapi_apply_function(fd,"ANONYMIZE", IP, DST_IP, MAP);

//replace with zero, tcp and ip options

mapi_apply_function(fd,"ANONYMIZE", IP, OPTIONS, ZERO);

mapi_apply_function(fd,"ANONYMIZE", TCP, TCP_OPTIONS, ZERO);

67

68 APPENDIX D. ANONYMIZATION USING MAPI

//remove payload

mapi_apply_function(fd,"ANONYMIZE", TCP, PAYLOAD, STRIP, 0);

//checksum fix in IP fixes checksums in TCP and UDP as well

mapi_apply_function(fd,"ANONYMIZE", IP,

CHECKSUM, CHECKSUM_ADJUST);

mapi_apply_function(fd, "TO_BUFFER");

/* connect to the flow */

connect_status = mapi_connect(fd);

if(connect_status < 0)

{

printf("Connect failed");

exit(0);

}

while(1) /*forever, wait for matching packets */

{

pkt = mapi_get_next_pkt(fd, fid);

do_something_with_packet(pkt);

}

return 0;

}

In the above example, we create a network flow that captures only TCP

packets. Then we apply anonymization on IP addresses, TCP/IP options,

TCP payload and finally we fix TCP/IP checksums.

Bibliography

[1] IST-SCAMPI project. http://www.ist-scampi.org.

[2] MAPI official homepage. http://mapi.uninett.no/.

[3] Tcpdump/libpcap official site. http://www.tcpdump.org.

[4] The Click Modular Router Project. http://www.pdos.lcs.mit.edu/click/.

[5] Code-red: a case study on the spread and victims of an internet worm. In

Proceedings of the Internet Measurement Workshop (IMW), 2002.

[6] P. Akritidis, K. Anagnostakis, and E. Markatos. Efficient content-based fin-

gerprinting of zero-day worms. In Proceedings of the International Conference

on Communications (ICC 2005), May 2005.

[7] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote

trust-management system version 2. Network Working Group, RFC 2704,

Sept. 1999.

[8] Cisco Systems, Inc. Netflow. http://www.cisco.com/warp/public/732/

Tech/nmp/netflow/index.shtml.

[9] College of Computing, Georgia Tech. Cryptography-based Prefix-preserving

Anonymization. http://www.cc.gatech.edu/computing/Telecomm/

cryptopan.

69

70 BIBLIOGRAPHY

[10] T. S. Consortium. Scampi architecture and components: Scampi deliverable

d1.2. http://www.ist-scampi.org.

[11] Dartmouth College. Archive of wireless-network trace data. http://cmc.cs.

dartmouth.edu/data/index.html.

[12] Dave Plonka. ip2anonip. http://dave.plonka.us/ip2anonip.

[13] Eddie Kohler. ipsumdump. http://www.cs.ucla.edu/∼kohler/ipsumdump.

[14] Endace. DAG Network Monitoring Interface Card. http://www.endace.

com/networkMCards.htm.

[15] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introducing tarzan, a peer-

to-peer anonymizing network layer. In Proceedings of the 1st International

Workshop on Peer-to-Peer Systems (IPTPS02), Cambridge, MA, March 2002.

[16] Greg Minshall. Tcpdpriv. http://ita.ee.lbl.gov/html/contrib/

tcpdpriv.html.

[17] H. Jiang and C. Dovrolis. Passive estimation of tcp round-trip times. Com-

puter Communications Review, July 2002.

[18] S. Jin and A. Bestavros. Sources and characteristics of web temporal locality.

In MASCOTS, pages 28–35, 2000.

[19] Katherine Deibel and Andrew Petersen and Andrew Schwerin. Cone of

Silence: A Layered Approach for Network-level Protocol Anonymization.

http://www.cs.washington.edu/homes/deibel/papers/cse561-cos/

cse561-cos.pdf.

[20] D. Koukis, S. Antonatos, D. Antoniades, P. Trimintzios, and E. Markatos.

A generic anonymization framework for network traffic. In To appear in In

Proceedings of the IEEE International Conference on Communications (ICC

2006), 2006.

BIBLIOGRAPHY 71

[21] M. L. Laboratory. Darpa intrusion detection evaluation data sets. http:

//www.ll.mit.edu/IST/ideval/data/data index.html.

[22] Lawrence Berkeley National Laboratory. Bro Intrusion Detection System.

http://www.bro-ids.org.

[23] LBL. LBL Internet Traffic Archive. http://ita.ee.lbl.gov/html/traces.

html.

[24] LBNL/ICSI Enterprise Tracing Project. tcpmkpub. http://www.icir.org/

enterprise-tracing/tcpmkpub.html.

[25] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of

the TCP congestion avoidance algorithm. ACM Computer Communication

Review, 27(3), July 1997.

[26] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for

user-level packet capture. In USENIX Winter, pages 259–270, 1993.

[27] J. Mogul. Trace anonymization misses the point. 2002.

[28] NLANR. PMA NLANR traces. http://pma.nlanr.net/PMA/Traces.

[29] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace

anonymization, January 2006.

[30] R. Pang and V. Paxson. A High-Level Programming Environment for Packet

Trace Anonymization and Transformation. In Proceedings of the ACM SIG-

COMM Conference, August 2003.

[31] V. Paxson and S. Floyd. Wide-area traffic: the failure of Poisson modeling.

pages 257–268. August 1994.

[32] M. Peuhkuri. A method to compress and anonymize packet traces. Internet

Measurement Workshop (San Francisco, California, USA: 2001), pages 257–

261, 2001.

72 BIBLIOGRAPHY

[33] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, and A. Øslebø. De-

sign of an application programming interface for ip network monitoring. In

Proceedings of the 9th IEEE/IFIP Network Operations and Management Sym-

posium (NOMS2004), April 2004.

[34] Rafal Wojtczuk. Libnids. http://libnids.sourceforge.net/.

[35] R. Ramaswamy, N. Weng, and T. Wolf. An IXA-based network measurement

node. In Proc. of Intel IXA University Summit, Hudson, MA, Sept. 2004.

[36] M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions.

ACM Transactions on Information and System Security, 1(1):66–92, 1998.

[37] M. Roesch. Snort: Lightweight intrusion detection for networks. November

1999. (available from http://www.snort.org/).

[38] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprint-

ing. In Proceedings of the ACM/USENIX Symposium on Operating System

Design and Implementation, Dec. 2004.

[39] A. Slagell, Y. Li, and K. Luo. Sharing network logs for computer forensics:

A new tool for the anonymization of netflow records. Computer Network

Forensics Research (CNFR) Workshop, 2005.

[40] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanabhan, and L. Qiu.

Statistical identification of encrypted web browsing traffic. In Proceedings of

IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 2002.

[41] P. Trimintzios, M. Polychronakis, A. Papadogiannakis, M. Foukarakis, E. P.

Markatos, and A. Øslebø. Dimapi: An application programming interface

for distributed network monitoring. In Proceedings of the 10th IEEE/IFIP

Network Operations and Management Symposium (NOMS), Apr. 2006.

[42] UCLA. UCLA CSD Packet Traces. http://lever.cs.ucla.edu/ddos/

traces/.

BIBLIOGRAPHY 73

[43] UCSD. Wireless LAN Traces. http://ramp.ucsd.edu/pawn/

sigcomm-trace/.

[44] A. S. J. Wang and W. Yurcik. Network log anonymization: Application of

crypto-pan to cisco netflows. NSF/AFRL Workshop on Secure Knowledge

Management (SKM), 2004.

[45] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance

of prefix-preserving ip traffic trace anonymization. Internet Measurement

Workshop (San Francisco, CA, USA: 2001), pages 263–266, 2001.

[46] J. Xu, J. Fan, M. Ammar, and S. B. Moon. Prefix-preserving ip ad-

dress anonymization: Measurement-based security evaluation and a new

cryptography-based scheme. ICNP 2002, 2002.

[47] T. Ylonen. Thoughts on how to mount an attack on tcpdpriv’s ”-a50” option.

http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html.

