
Analysis of Server Throughput for Managed

Big Data Analytics Frameworks

Emmanouil Anagnostakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Polyvios Pratikakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

Heraklion, May 2023

Analysis of Server Throughput for Managed Big Data
Analytics Frameworks

Abstract

Managed big data frameworks, such as Apache Spark and Giraph demand a
large amount of memory per core to process massive volume datasets effectively.
The memory pressure that arises from the big data processing leads to high garbage
collection (GC) overhead. Big data analytics frameworks attempt to remove this
overhead by offloading objects to storage devices. At the same time, infrastructure
providers, trying to address the same problem, attribute more memory to increase
memory per instance leaving cores underutilized. For frameworks, trying to avoid
GC through offloading to storage devices leads to high Serialiation/Deserialization
(S/D) overhead. For infrastructure, the result is that resource usage is decreased.
These limitations prevent managed big data frameworks from effectively utilizing
the CPU thus leading to low server throughput.

In this thesis, we conduct a methodological analysis of server throughput for
managed big data analytics frameworks. More specifically, we examine, whether
reducing GC and S/D can help increase the effective CPU utilization of the server.
We use a system called TeraHeap (TH) that moves objects from the Java man-
aged heap (H1) to a secondary heap over a fast storage device (H2) to reduce the
GC overhead and eliminate S/D over data. We focus on analyzing the system’s
performance under the co-location of multiple memory-bound instances to utilize
all available DRAM and study server throughput. Our detailed methodology in-
cludes choosing the DRAM budget for each instance and how to distribute this
budget among H1 and Page Cache (PC). We try two different distributions for the
DRAM budget, one with more H1 and one with more PC to study the needs of
both approaches. We evaluate under 3 different memory-per-core scenarios using
Spark and Giraph with native JVM or JVM with TeraHeap. We do this to check
throughput changes when memory capacity increases.

Our experimental results show that increasing memory per core does not help
reach max server throughput for analytics. Effective solutions for this problem is
using systems like TeraHeap that offload objects from the managed heap without
increasing the CPU load. Moving large parts of the heap to fast storage, decreases
the DRAM GB per core needs and increases the utilization of the server. Finally,
we also include a cost estimation to show that using an approach like TeraHeap
could reduce monetary cost by up to 50% for running big data analytics in a world
cluster like Amazon’s EC2 or Google Cloud Platform or Microsoft Azure Cloud,
which are available to everyone.

Ανάλυση της απόδοσης του διακομιστή για πλαίσια

ανάλυσης μεγάλου όγκου δεδομένων

Περίληψη

Τα πλαίσια ανάλυσης μεγάλου όγκου δεδομένων, όπως το Apache Spark και το
Giraph απαιτούν μεγάλη ποσότητα μνήμης ανά πυρήνα για την αποτελεσματική επε-
ξεργασία μεγάλου όγκου σύνολων δεδομένων. Η πίεση μνήμης που προκύπτει από

την επεξεργασία μεγάλων δεδομένων οδηγεί σε υψηλές δαπάνες συλλογής σκουπι-

διών (GC) . Τα πλαίσια ανάλυσης μεγάλων δεδομένων προσπαθούν να αφαιρέσουν
αυτό το κόστος μετακινώντας αντικείμενα σε συσκευές αποθήκευσης. Ταυτόχρονα,

οι πάροχοι υποδομής, προσπαθώντας να αντιμετωπίσουν το ίδιο πρόβλημα, αποδίδουν

περισσότερη μνήμη για να αυξάνουν τη μνήμη ανά περίπτωση αφήνοντας τους πυ-

ρήνες αναξιοποίητους. Για τα πλαίσια, η προσπάθεια αποφυγής του GC μέσω της
μεταφόρτωσης σε συσκευές αποθήκευσης οδηγεί σε υψηλή επιβάρυνση Σειριοποίη-

σης/Αποσειριοποίησης (S/D) . Για τις υποδομές, το αποτέλεσμα είναι ότι η χρήση
πόρων μειώνεται. Αυτοί οι περιορισμοί εμποδίζουν τα πλαίσια ανάλυσης μεγάλων δε-

δομένων από το να χρησιμοποιούν αποτελεσματικά τον επεξεργαστή, οδηγώντας έτσι

σε χαμηλή απόδοση του διακομιστή.

Σε αυτή την μεταπτυχιακή εργασία, διεξάγουμε μια μεθοδολογική ανάλυση της

απόδοσης του διακομιστή για πλαίσια ανάλυσης μεγάλων δεδομένων. Πιο συγκεκρι-

μένα, εξετάζουμε, αν η μείωση του GC και του S/D μπορεί να συμβάλει στην αύξηση
της αποτελεσματικής χρήσης του επεξεργαστή του διακομιστή. Χρησιμοποιούμε ένα

σύστημα που ονομάζεται TeraHeap (TH) που μετακινεί αντικείμενα από το σωρό
της Java (H1) σε έναν δευτερεύοντα σωρό (H2) μέσω γρήγορης ελάφρυνσης για τη
μείωση της επιβάρυνσης του GC και την εξάλειψη του S/D στα δεδομένα. Εστιάζου-
με στην ανάλυση της απόδοσης του συστήματος υπό τη συντοποθεσία πολλαπλών

στιγμιοτύπων για τη χρήση όλης της διαθέσιμης μνήμης και τη μελέτη της συνολικής

απόδοσης του διακομιστή. Η λεπτομερής μεθοδολογία μας περιλαμβάνει την επιλογή

του προϋπολογισμού της μνήμης για κάθε περίπτωση και τον τρόπο διανομής αυτο-

ύ του προϋπολογισμού μεταξύ του H1 και της προσωρινής μνήμης σελίδων (PC).
Δοκιμάζουμε δύο διαφορετικές διανομές για τον προϋπολογισμό DRAM , μία με πε-
ρισσότερο H1 και ένα με περισσότερη PC για να μελετήσουμε τις ανάγκες και των
δύο προσεγγίσεων. Διεξάγουμε την αξιολόγηση σε 3 διαφορετικά σενάρια μνήμης

ανά πυρήνα χρησιμοποιώντας το Spark και το Giraph με εγγενή JVM ή JVM με
TeraHeap. Αυτό το κάνουμε για να ελέγξουμε τις αλλαγές απόδοσης όταν αυξάνεται
η χωρητικότητα της μνήμης.

Τα πειραματικά μας αποτελέσματα δείχνουν ότι η αύξηση της μνήμης ανά πυρήνα

δεν συμβάλλει στην επίτευξη της μέγιστης απόδοσης διακομιστή για αναλυτικά στοι-

χεία. Αποτελεσματικές λύσεις για αυτό το πρόβλημα προσφέρονται από συστήματα

όπως το TeraHeap που εκφορτώνουν αντικείμενα από τον διαχειριζόμενο σωρό χωρίς
αύξηση του φορτίου του επεξεργαστή. Η μετακίνηση μεγάλων τμημάτων του σω-

ρού σε συσκευές γρήγορης αποθήκευσης, μειώνει την ανάγκη αύξησης της μνήμης

ανα πυρήνα και αυξάνει την απόδοση του διακομιστή. Τέλος, συμπεριλαμβάνουμε και

μία εκτίμηση του χρηματικού κόστους των περιμάτων για να δείξουμε ότι η χρήση

μιας προσέγγισης όπως το TeraHeap θα μπορούσε να μειώσει το κόστος ενοικίασης
έως και 50% για την εκτέλεση περιμάτων με πλαίσια μεγάλων δεδομένων σε δημόσια

συστήματα νέφους όπως το EC2 της Amazon ή το Google Cloud Platform ή η
Microsoft Azure Cloud , τα οποία είναι διαθέσιμα σε όλους.

Αφιερώνω την εργασία στην οικογένεια μου για την αμέριστη στήριξη της σε όλα τα

χρόνια των σπουδών μου

Contents

1 Introduction 1

2 Background 5

3 Related Work 7
3.0.1 Works that examine the co-location of workloads 7
3.0.2 Other analyses on managed big data frameworks 7

4 Experimental Methodology 9
4.0.1 Workloads . 9

4.0.1.1 PageRank . 9
4.0.1.2 LinearRegression 10
4.0.1.3 Logistic Regression 10
4.0.1.4 Connected Component 10
4.0.1.5 Community Detection Label Propagation 10

4.0.2 Memory per core . 11
4.0.3 Choosing the configurations to run the co-located experiments 12
4.0.4 Cost estimation . 12

5 Evaluation 15
5.0.1 Native Spark Configuration 15
5.0.2 Native Giraph Configuration 15
5.0.3 Spark-Giraph configurations for TeraHeap 15

5.0.3.1 Spark Configuration 15
5.0.3.2 Giraph Configuration 16

5.0.4 Experiments with single instance 16
5.0.5 Experiments with co-located instances 25

5.0.5.1 4 GB DRAM per core 25
5.0.5.2 8 GB DRAM per core 36
5.0.5.3 16 GB DRAM per core 39
5.0.5.4 Realizations for other time 40
5.0.5.5 Realizations on performance difference between dif-

ferent memory per core scenarios 40
5.0.5.6 Interference with single instance 40

i

5.0.5.7 Does H1 or PageCache offer better performance? . 42
5.0.5.8 Accuracy of experiments 42

5.0.6 Is the CPU utilization of the application increasing by re-
ducing GC and S/D? . 42

5.0.7 What happens with monetary cost across different cloud
platforms? . 56

6 Future Work 57

7 Conclusion 59

Bibliography 61

ii

List of Tables

4.1 Configurations. WL = workload, FW = framework, DS = dataset,
Mem.= total memory, M/C = memory per core, Phys. Cores =
physical cores . 11

5.1 Interference for each configuration with co-located instances with
corresponding single instance experiment. FW = framework, Conf.
= configuration, M/C = Memory per core, I = Number of instances,
Interf. = interference . 41

5.2 Standard deviation for each configuration and number of co-located
instances. FW=framework, Conf. = configuration, M/C = memory
per core, I=number of instances, St. dev.=standard deviation . . . 43

5.3 Hourly costs for EC2, GCP and AZ=Azure Cloud 56

iii

iv

List of Figures

5.1 Execution time breakdown for single instances of Spark Page Rank
for the 4 GB memory-per-core scenario. 17

5.2 Execution time breakdown for single instances of Spark Linear Re-
gression for the 4 GB memory-per-core scenario. 17

5.3 Execution time breakdown for single instances of Spark Logistic
Regression for the 4 GB memory-per-core scenario. 18

5.4 Execution time breakdown for single instances of Spark Connected
Component for the 4 GB memory-per-core scenario. 18

5.5 Execution time breakdown for single instances of Spark Page Rank
for the 8 GB memory-per-core scenario. 19

5.6 Execution time breakdown for single instances of Spark Linear Re-
gression for the 8 GB memory-per-core scenario. 19

5.7 Execution time breakdown for single instances of Spark Logistic
Regression for the 8 GB memory-per-core scenario. 20

5.8 Execution time breakdown for single instances of Spark Connected
Component for the 8 GB memory-per-core scenario. 20

5.9 Execution time breakdown for single instances of Giraph Page Rank
for the 8 GB memory-per-core scenario. 21

5.10 Execution time breakdown for single instances of Giraph Commu-
nity Detection Label Propagation for the 8 GB memory-per-core
scenario. 21

5.11 Execution time breakdown for single instances of Giraph Page Rank
for the 16 GB memory-per-core scenario. 22

5.12 Execution time breakdown for single instances of Giraph Commu-
nity Detection Label Propagation for the 16 GB memory-per-core
scenario. 22

5.13 Execution time breakdown for co-located instances of Spark Page
Rank in the 4 GB memory-per-core scenario. 26

5.14 Execution time breakdown for co-located instances of Spark Linear
Regression in the 4 GB memory-per-core scenario. 26

5.15 Execution time breakdown for co-located instances of Spark Logistic
Regression in the 4 GB memory-per-core scenario. 27

5.16 Execution time breakdown for co-located instances of Spark Con-
nected Component in the 4 GB memory-per-core scenario. 27

v

5.17 Execution time breakdown for co-located instances of Spark Page
Rank in the 8 GB memory-per-core scenario. 28

5.18 Execution time breakdown for co-located instances of Spark Linear
Regression in the 8 GB memory-per-core scenario. 28

5.19 Execution time breakdown for co-located instances of Spark Logistic
Regression in the 8 GB memory-per-core scenario. 29

5.20 Execution time breakdown for co-located instances of Spark Con-
nected Component in the 8 GB memory-per-core scenario. 29

5.21 Execution time breakdown for co-located instances of Giraph Page
Rank in the 8 GB memory-per-core scenario. 30

5.22 Execution time breakdown for co-located instances of Giraph Com-
munity Detection Label Propagation in the 8 GB memory-per-core
scenario. 30

5.23 Execution time breakdown for co-located instances of Giraph Page
Rank in the 16 GB memory-per-core scenario. 31

5.24 Execution time breakdown for co-located instances of Giraph Com-
munity Detection Label Propagation in the 16 GB memory-per-core
scenario. 31

5.25 Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Page Rank. 32

5.26 Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Linear
Regression. 32

5.27 Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Logistic
Regression. 33

5.28 Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Connected
Component. 33

5.29 Native and TeraHeap Giraph average throughput as the number of
instances increases under 16 GB DRAM per core running Page Rank. 34

5.30 Native and TeraHeap Giraph average throughput as the number of
instances increases under 16 GB DRAM per core running Page Rank. 34

5.31 Native and TeraHeap Spark total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Page Rank. 44

5.32 Native and TeraHeap Spark total CPU utilization as the number
of instances increases under 8 GB DRAM per core running Linear
Regression. 44

5.33 Native and TeraHeap Spark total CPU utilization as the number
of instances increases under 8 GB DRAM per core running Logistic
Regression. 45

5.34 Native and TeraHeap Spark total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Connected
Component. 45

vi

5.35 Native and TeraHeap Giraph total CPU utilization as the number
of instances increases under 8 GB DRAM per core running Page
Rank. 46

5.36 Native and TeraHeap Giraph total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Community
Detection Label Propagation. 46

5.37 Native and TeraHeap Spark CPU cycles under 4 GB DRAM per
core running Page Rank. 47

5.38 Native and TeraHeap Spark CPU cycles under 4 GB DRAM per
core running Linear Regression. 47

5.39 Native and TeraHeap Spark CPU cycles under 4 GB DRAM per
core running Logistic Regression. 48

5.40 Native and TeraHeap Spark CPU cycles under 4 GB DRAM per
core running Connected Component. 48

5.41 Native and TeraHeap Spark CPU cycles under 8 GB DRAM per
core running Page Rank. 49

5.42 Native and TeraHeap Spark CPU cycles under 8 GB DRAM per
core running Linear Regression. 49

5.43 Native and TeraHeap Spark CPU cycles under 8 GB DRAM per
core running Logistic Regression. 50

5.44 Native and TeraHeap Spark CPU cycles under 8 GB DRAM per
core running Connected Component. 50

5.45 Native and TeraHeap Giraph CPU cycles under 16 GB DRAM per
core running Page Rank. 51

5.46 Native and TeraHeap Giraph CPU cycles under 16 GB DRAM per
core running Community Detection Label Propagation. 51

5.47 Native and TeraHeap Spark average user CPU utilization as the
number of instances increases under 8 GB DRAM per core running
Page Rank. 52

5.48 Native and TeraHeap Spark average user CPU utilization as the
number of instances increases under 8 GB DRAM per core running
Linear Regression. 52

5.49 Native and TeraHeap Spark average user CPU utilization as the
number of instances increases under 8 GB DRAM per core running
Logistic Regression. 53

5.50 Native and TeraHeap Spark average user CPU utilization as the
number of instances increases under 8 GB DRAM per core running
Connected Component. 53

5.51 Native and TeraHeap Giraph average user CPU utilization as the
number of instances increases under 16 GB DRAM per core running
Page Rank. 54

5.52 Native and TeraHeap Giraph average user CPU utilization as the
number of instances increases under 16 GB DRAM per core running
Page Rank. 54

vii

viii

Chapter 1

Introduction

With the exponential growth of data in various fields such as healthcare and social
media, managed big data frameworks (e.g, Apache Spark [32] and Apache Giraph
[28]) require large amount of DRAM per core for data processing. During the
processing, they generate large amount of objects in the managed heap that span
multiple computation stages. The memory pressure that arises in the managed
heap leads to frequent garbage collection (GC) cycles. Frequent GCs waste CPU
cycles and prevent application execution.

On the one hand, to reduce the frequency of GC and optimize performance,
big data frameworks offload objects from the managed heap to storage devices.
However, these objects need to be serialized to byte streams to be stored in the
storage device or to be deserialized into memory objects to be loaded back to
memory. This practice leads to high serialization/deserialization overhead. On the
other hand infrastructure providers, trying to address the same problem increase
memory per framework instance that runs in the server. This leaves CPU cores
underutilized.

Co-locating workloads aims to increase available resource utilization thus in-
creasing the throughput in server. In order to maximize throughput, the number
of instances increase to utilize all available DRAM. The result of this practice is
that the underlying machine runs out of memory, while the overhead of GC and
S/D is still high. The remaining GC and S/D overheads lead to the problem of
wasting the CPU resources to do unuseful work. This leads to the conclusion that
the avalaible memory per core is not enough for the Garbage Collector, S/D and
the application.

The memory per core problem can better be understood when looking at the
resource usage and the characteristics of the servers of big companies e.g. Alibaba
and Facebook. When looking at the results of Alibaba’s traces analyses ([18], [14],
[13]) we see that memory usage is at an average of 80%, while CPU usage stays
at 40%. This trace clearly shows that DRAM utilization is high, while the CPU
is under-utilized. In Facebook’s Twine presentation [30], they used a cluster of
machines where each machine had 40 cores and 80 GB DRAM. This means that

1

2 CHAPTER 1. INTRODUCTION

ratio of GB for memory per core was 2. The same ratio is shown in Facebook’s
Yosemite [16]. This shows that memory capacity for each core is low while DRAM
usage is high compared to the CPU usage. Most of the time many the CPU cores
are going to be idle because a few of them will be enough to carry out the work.

To address the problem of DRAM capacity limitation, recent work proposed
solutions that extend the managed heaps over local flash storage devices (e.g.,
NVMe SSD) or remote memory. On the one hand, TMO [31] offloads cold memory
to fast storage devices using a memory scheduling mechanism. On the other hand,
CFM [2] utilizes remote DRAM as swap memory in order to increase total memory
capacity and reduce memory pressure. Of both works, only CFM shows evaluation
against managed big data analytics frameworks. However, this evaluation includes
only one Spark workload and is not focused on analytics.

This thesis provides a methodological analysis of server throughput focused on
managed big data analytics frameworks. We investigate the off-heap direction of
offloading the objects from the managed heap to fast storage devices. Specifically,
we use TeraHeap (TH) [21], a secondary managed memory-mapped heap over an
NVMe storage device, which is used to hold the long lived objects instead of the
main managed Java Heap. TeraHeap 1) eliminates Serialization/Deserialization
overheads posed by this kind of frameworks when moving data off-heap to/from
fast storage devices 2) reduces GC pauses drastically over the secondary heap.
By using TeraHeap, we aim to investigate the impact of reducing GC and S/D
to server throughput compared to Native Spark and Giraph. We divide all the
available DRAM in our machine to 2,4 and 8 even budgets to run experiments
with co-located instances. We do this to utilize all available DRAM and then
check CPU utilization to understand throughput. First, we run each instance
isolated to analyze performance and be able to study the interference when adding
more co-located instances. We run each individual workload with a different Spark
or Giraph instance in a cgroup. We do this, to limit the memory budget for
each instance. Memory budget is the summary of Java Heap, IO Cache (Linux
Page Cache) and JVM native memory. We choose the Java Heap (H1) ratio over
the total DRAM budget based on RedHat’s decisions for running containers as
a baseline. We also run experiments with more Page Cache (PC) ratio than H1
to investigate Page Cache affection to the performance. We show performance of
both Native Spark-Giraph and Spark-Giraph with TH in 3 different memory per
core scenarios, 4 GB per core, which is the current trend and 8 and 16 GB per core
as possible future trends. We do this to study the changes to server throughput
as memory-per-core increases. We evaluate both offloading techniques by running
2 widely used managed big data frameworks, Apache Spark and Giraph. We
specificaly run 4 different workloads with Spark with 4 and 8 GB per core. We
run 2 different workloads with Giraph with 8 and 16 GB per core. We compare
TeraHeap with the native Spark and Giraph distributions under workload co-
location and analyze their performance using several metrics like GC, S/D, I/O,
CPU cycles and CPU utilization. Finally, we estimate the cost of running these
experiments in public world clusters like Amazon EC2, Google Cloud Platform

3

(GCP) and Microsoft Azure Cloud to see possible benefits of either of the two
techniques.

Our experimental results show that increasing memory per core does not guar-
antee reaching max throughput for managed big data frameworks. A solution is
to move the managed heap over fast storage devices in order to offload objects like
TeraHeap and Panthera [15]. Furthermore, reducing GC and S/D by offloading
the heap to fast storage devices improves effective CPU utlization up to 59% in
CPU cycles for Spark and also leaves place to run more co-located instances in
the server for both frameworks. Finally, we also include a cost estimation to show
that reducing GC and S/D could reduce monetary spendings by up to 50% for
running big data analytics, in a world cluster like EC2, GCP or Microsoft Azure
Cloud, which are available to the public.

To summarize, this thesis makes the following contributions:

� A detailed methodology for running co-located Apache Spark and Giraph
workloads with or without TeraHeap. We show the interference impact of
running multiple co-located managed big data frameworks workloads. We
also show that, increasing DRAM capacity is not the solution to the problem
of server throughput. First, DRAM density cannot scale further. Therefore,
increasing memory-per-core allows more instances to run in the server, but
the overheads of GC and S/D remain, because the heap size still is not
enough. This leads to the conclusion that these overheads are the obstacle
to reach max throughput. Moreover, decreasing GC and S/D, increases the
number of co-located instances that can be executed in the server as well.

� A cost estimation for running our experiments in real-world cloud platforms
like Amazon EC2, Google Cloud Platform and Microsoft Azure. This esti-
mation shows that decreasing GC and S/D leads to less spendings, because
money is not wasted to overheads.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this section, we describe how TeraHeap eliminates GC and S/D.
TeraHeap is a system that eliminates S/D and GC overheads for a large portion

of the data in managed big data analytics frameworks. TeraHeap extends the
Java virtual machine (JVM) to use a second, high-capacity heap (H2) over a
fast storage device that coexists alongside the regular heap (H1). It eliminates
S/D by providing direct access to objects in H2 and reduces GC by avoiding
costly GC scans over objects in H2. Frameworks use TeraHeap through its hint-
based interface without modifications to the applications that run on top of them.
TeraHeap provides a hint-based interface that uses key-object opportunism and
enables frameworks to mark objects and indicate when to move them to H2. During
GC, TeraHeap starts from root key-objects and dynamically identifies the objects
to move to H2.

Furthermore, TeraHeap presents a unified heap with the aggregate capacity of
H1 and H2, where scans over H2 during GC are eliminated, to avoid expensive de-
vice I/O. To achieve this, TeraHeap organizes H2 into regions with similar-lifetime
objects. For space reclamation, the collector reclaims H1 objects as usual. For
H2 regions, unlike existing region-based allocators, TeraHeap resolves the space-
performance trade-off for reclaiming space differently. Existing allocators reclaim
region space eagerly by moving live objects to another region, which would gen-
erate excessive I/O for storage-backed regions. Instead, TeraHeap uses the high
capacity of NVMe SSDs to reclaim entire regions lazily, avoiding slow object com-
paction on the storage device.

5

6 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

We group the related work in the two following categories:

� Works that examine co-location of workloads

� Other analyses on managed big data frameworks

3.0.1 Works that examine the co-location of workloads

To our best knowledge there is limited work in investigating workload co-location
for managed big data frameworks. Here we refer to some works in this area.

Baig et al. in [1] investigate how Spark-based workloads are impacted by the
effects of NUMA-placement decisions. This is something we do not do in our work,
because we run our experiments in a single NUMA island to avoid NUMA effects
that could complicate the understanding of GC, S/D and the aspects of execution
that we investigate. Apart from that difference they investigate the performance
of co-located spark workers where each worker runs in a different NUMA island.
They count remote memory accesses and context switches in CPU. Chen et al. in
[12] analyze the characteristics of co-located workloads running in containers on
the same server from the perspective of hardware events. These events include
inctructions per cycle, branch prediction misses and dTLB misses. They also
show the execution time of co-located workloads, but they do not provide further
analysis or breakdown.

3.0.2 Other analyses on managed big data frameworks

Here we refer to other evaluation works targetting managed big data frameworks.
These works do not provide analyses for workload co-location.

Jiang et al. in [20] study the behavior of Spark Workloads in comparison
to those of Giraph, CloudSuite, SPEC CPU2006, TPC-C, and DesktopCloud on
system (i.e. disk utilization, memory bandwidth) and microarchitectural level (in-
structions per cycle). This work also provides an analysis for Spark and Giraph
examining the behaviour from a different scope than ours. However, it does not

7

8 CHAPTER 3. RELATED WORK

provide a breakdown to the execution time of the workloads (i.e. GC, S/D) or
CPU utilization analysis. Ousterhout et al. [25] provide a methodology based
on dynamic logging and profiling for quantifying performance bottlenecks in dis-
tributed computation frameworks, and use it to analyze the Spark’s performance.
They refer and measure S/D, GC and CPU utilization, but they don’t refer to the
co-located workloads or target other frameworks. Batarfi et al. [11] analyze the
performance of many graph processing frameworks includng Giraph. They pro-
vide results on RAM usage, CPU utilization and execution time. However, they
investigate a different aspect from execution time. They break it down to the time
taken by each phase of the workload execution. They also only show results for
graph processing and do not target other areas like machine learning as we do.
Furthermore, their work is evaluated only against Spark.

Chapter 4

Experimental Methodology

In this section we discuss our methodological decisions.
Our methodology answers the following questions:

� What workloads did we choose to run for our experiments and why?

� How do we investigate the memory per core problem?

� How do we choose the configurations for running the co-located experiments?

� Is cost a contributing factor to pursuing higher throughput for a server?

4.0.1 Workloads

For our experiments with Spark, we selected four specific workloads from two dif-
ferent categories of the Spark Bench suite [23]: Page Rank (PR) and Connected
Component (CC) from GraphX [4] and Linear Regression (LinR) and Logistic
Regression (LogR) from MLLib [5]. For Giraph, we choose PageRank and Com-
munity detection using label propagation (CDLP) from LDBC Graphalytics [19].
The primary reason for selecting these workloads for Spark is that they represent
different types of algorithms: PR and CC are graph-based workloads, while LinR
and LogR are machine learning workloads. Giraph is a graph processing frame-
work so we only used graph workloads. All of these workloads are well-established
and commonly used for benchmarking big data analytics systems, making them
a suitable choice for our experiments. Overall, the selection of these workloads
allows us to evaluate the performance of Spark and Giraph in a variety of con-
texts. Furthermore, it allows us to provide insights into the performance of both
frameworks with or without using TeraHeap.

4.0.1.1 PageRank

PageRank is a widely used graph-based algorithm that measures the importance
of nodes in a network. It has become a popular benchmark for evaluating the per-
formance of distributed systems, including big data analytics systems like Apache

9

10 CHAPTER 4. EXPERIMENTAL METHODOLOGY

Spark and Giraph. PageRank is computationally intensive and requires significant
memory and I/O resources, making it a suitable workload for evaluating perfor-
mance of managed big data frameworks. Additionally, PageRank is a common
algorithm in real-world applications, such as search engines and social networks,
making it relevant for practical use cases.

4.0.1.2 LinearRegression

LinearRegression is a machine learning algorithm that is used to predict numer-
ical values based on input data. It is a well-known and widely used algorithm
in machine learning, and is commonly used for regression analysis in fields such
as economics, finance, and engineering. LinearRegression is computationally in-
tensive and requires significant memory and I/O resources, making it a suitable
workload for evaluating the performance of managed big data frameworks.

4.0.1.3 Logistic Regression

LogisticRegression is a machine learning algorithm that is used to model the prob-
ability of a binary or categorical outcome based on one or more independent vari-
ables. It is commonly used in predictive analytics to classify data based on histori-
cal data. In Spark-bench, LogisticRegression is implemented as a machine learning
workload, where the dataset is represented as an RDD of feature vectors and la-
bels. The LogisticRegression workload involves training a logistic regression model
on the dataset, using an iterative optimization algorithm such as gradient descent.
The workload is computationally intensive and requires a significant amount of
memory to store the dataset and model parameters, therefore a suitable choise for
our experiments..

4.0.1.4 Connected Component

ConnectedComponent is a graph algorithm that is used to identify the connected
components of a graph. It is commonly used in social network analysis to identify
clusters of users with similar interests or relationships. In Spark-bench, Connect-
edComponent is implemented as a graph processing workload, where the graph is
represented as an RDD of edges and vertices. The ConnectedComponent work-
load involves iterating over the graph, identifying the connected components of
each node, and merging the components as necessary. The workload is computa-
tionally intensive and requires a significant amount of memory to store the graph,
therefore a suitable choise for our experiments.

4.0.1.5 Community Detection Label Propagation

The Community Detection using Label Propagation (CDLP) workload, another
key component of the Graphalytics benchmark, aims to identify communities
within a graph based on label propagation techniques. The CDLP workload assigns

11

labels to nodes iteratively, with each node adopting the most frequently occurring
label among its neighbors. This iterative process propagates labels throughout
the graph, eventually converging to stable communities. Community detection
is a fundamental task in graph analysis, enabling researchers to uncover groups
of nodes that exhibit strong internal connectivity. It has applications in social
network analysis, recommendation systems, and anomaly detection. The CDLP
workload in the Graphalytics benchmark provides a standardized evaluation of
graph processing systems’ performance in terms of community detection scalabil-
ity, convergence, and accuracy. By benchmarking CDLP, researchers and practi-
tioners can compare the efficiency and effectiveness of different graph processing
platforms and algorithms for community detection tasks.

4.0.2 Memory per core

Table 4.1: Configurations. WL = workload, FW = framework, DS = dataset,
Mem.= total memory, M/C = memory per core, Phys. Cores = physical cores

WL FW DS (GB) Mem. M/C #Phys. Cores

PR Spark 8 32 4 8
PR Spark 8 64 8 8
LinR Spark 64 32 4 8
LinR Spark 64 64 8 8
LogR Spark 64 32 4 8
LogR Spark 64 64 8 8
CC Spark 8 32 4 8
CC Spark 8 64 8 8
PR Giraph 13 64 8 8

CDLP Giraph 13 64 8 8
PR Giraph 13 128 16 8

CDLP Giraph 13 128 16 8

We investigate performance in three memory per core scenarios to check if
throughput increases as memory availability increases. Our main focus is 4 GB
per core which is the next possible trend in datacenters based on ??. The others
are 8 and 16 GB per core which is a possible future trend. For the 4 GB per core
scenario, we use 32 GB memory with 8 cores. In this setup, we run 4 workloads
with Native Spark and Spark using TH. Giraph can’t run with 4 GB per core with
any of the two configurations. For 8 GB per core, we use 64 GB memory with
8 cores. In this setup, we run 4 workloads with Native Spark and Spark using
TH and 2 workloads with Native Giraph and Giraph using TH. For the 16 GB
memory per core, we use 128 GB of memory with 16 cores. For this setup, we run
2 workloads with Native Giraph and Giraph using TeraHeap. We choose 16 GB
per core for Giraph, because it experiences more memory pressure than Spark and
it cannot even run with 4 GB DRAM per core. For 8 GB memory per core we are

12 CHAPTER 4. EXPERIMENTAL METHODOLOGY

able to run only a few experiments with TH. This happens, because it does not
have a very aggresive memory offloading mechanism and cannot offload the heap
properly. Table 4.1 summarizes all setups with the coresponding workloads and
datasets.

4.0.3 Choosing the configurations to run the co-located experi-
ments

To utilize all the available DRAM of the machine, we choose a simple method.
We divide the total DRAM of the machine by the number of co-located workloads
we run for each experiment. For simplicity and time management, we choose the
numbers 1,2,4,8. However, there are 2 problems with that decision than we need
to overcome. The first is that we need a number that is exactly divided by these
numbers to give the same amount of DRAM to all cgroups. The second is that we
need to leave memory to the OS for system tasks that are executed along with the
system reserved memory of 2 GB. For the 4 GB memory per core, we utilize 24
out of 32 GB total DRAM and leave the rest 8 GB to the OS for system reserved
memory and system tasks. For the 8 GB memory per core scenario, we utilize
56 GB out of 64 GB total DRAM and leave the rest 8 GB to the OS. For the
16 GB memory per core scenario we utilize 120 out of 128 GB total DRAM and
leave the rest 8 GB to the OS. In all scenarios, we choose the number closer to the
total DRAM. After having perfomed these calculations, we run each experiment
isolated and break down the execution time to know how each experiment performs
isolated. Then we run the co-located experiments and study the interference in
execution. For the co-located experiments, we run the same workload with the
same dataset size for all instances. We do this for simplicity of explaining the
results. For all experiments, we disable swap memory. We use cgroups [26] to
restrict the DRAM for all processes in a single instance of Spark and Giraph. For
cgroups, we choose as a baseline an 80% of total cgroup DRAM budget for H1 as
RedHat does for its cgroup containers from June 2023 [27]. The rest 20% remains
to the OS to be used as Page Cache. For TeraHeap, we also run experiments with
40% for H1 to investigate what happens when Page Cache dominates H1. In some
experiments TeraHeap requires more than 20% for OS so we make an adjustment
to the cgroup budget. For Native Spark and Giraph, we do not report results for
those experiments as we saw that Page Cache adjustments make no difference.

4.0.4 Cost estimation

Renting servers is a common practice for organizations requiring computational
resources, and the question arises as to whether reducing the monetary cost is
possible by achieving higher throughput and faster workload completion. The
relationship between cost reduction and achieving higher throughput on rented
servers is indeed significant. By optimizing server performance, efficiently utilizing

13

resources, implementing workload scheduling, and improving productivity, organi-
zations can realize cost savings. Achieving higher throughput and faster workload
completion can lead to a reduced rental duration, minimizing the time and asso-
ciated costs of server usage. Efficient resource utilization and workload schedul-
ing contribute to cost reduction by minimizing the number of servers required
and maximizing their utilization. Rental pricing models that take into account
resource utilization or data processed can further reduce costs for organizations
achieving higher throughput. Additionally, improved productivity resulting from
higher throughput and faster workload completion enhances overall efficiency, al-
lowing organizations to accomplish more work within the same rental period and
reducing rental expenses. Therefore, pursuing higher throughput and faster work-
load completion offers tangible benefits in terms of monetary cost reduction for
organizations renting servers.

We estimate the cost of our experiments in real-world public clusters, to show
that increasing throughput by decreasing GC and S/D leads to avoiding wasting
money in overheads when renting servers. We chose a variety of providers like
Amazon [3], Google [17] and Microsoft [22]. This way, we covered the most known
providers and platforms someone would choose to run their workloads on. We chose
3 machines from each platform identical to the specifications of our 32, 64 and 128
GB DRAM machines. These are the cheapest machines of that particular category
offered by the platform. We then used the platform’s pricing calculator to estimate
the cost of renting that machine for the time needed for each configuration to finish
execution of all instances. We noticed, that the price for renting the storage device
is really amenable to the cost for renting the machine.

14 CHAPTER 4. EXPERIMENTAL METHODOLOGY

Chapter 5

Evaluation

In this section we report and analyze our experiments and we also state our con-
clusions.

5.0.1 Native Spark Configuration

We use Spark v3.3.0 ([6], [10], [9], [7]) with Kryo Serializer [29], a state-of-the-art
highly optimized S/D Library for Java that Spark recommends. We run Spark
with Native OpenJDK8 [24] as a baseline. We use the Parallel Scavenge garbage
collector which is the one TeraHeap is implemented for. Parallel Scavenge is also
the go-to collector for applications that need high throughput like Spark. We use
one executor with 8 threads for each instance of Spark we deploy on our server
[21]. Spark storage level is configured to MEMORY-AND-DISK to place executor
memory (heap) in DRAM and cache RDDs [8] in the on-heap cache, up to 50% of
the total heap size. Any remaining RDDs are serialized in the off-heap cache over
an NVMe SSD. This device is also used by Spark for shuffling.

5.0.2 Native Giraph Configuration

We run Giraph with Native OpenJDK8 [24] as a baseline. We use the Parallel
Scavenge garbage collector. We use one executor with 8 threads for each instance
of Giraph we deploy on our server [21]. Native Giraph offloads messages and edges
to the storage device.

5.0.3 Spark-Giraph configurations for TeraHeap

5.0.3.1 Spark Configuration

The configuration for TeraHeap is pretty much the same as for Native Spark,
with some necessary differences. TeraHeap is mapped to a different storage device
(NVMe) than that Spark is using for shuffling. We do this in order for TeraHeap to

15

16 CHAPTER 5. EVALUATION

utilize its device to its fullest. MMIO allows TeraHeap Spark to run in MEMORY-
ONLY storage level as Spark remains unaware of using any device and the OS takes
control of the I/O.

5.0.3.2 Giraph Configuration

For Giraph, we map TeraHeap to a different NVMe storage device that the one
we use for Zookeeper. TeraHeap works in the same way as in Spark, thus Giraph
is unaware of the presence of a second heap.

5.0.4 Experiments with single instance

In this section, we run the single instance experiments and provide an explanation
of their performance to use it later to study the interference between single and
co-located experiments. These experiments map one to one to the co-located
experiments of the next section. DRAM per core is added to the figure titles to
show relation between this mapping, and not because it has any impact for single
instance performance. For all figures, each configuration is described with memory
capacity for H1 + memory for OS in GB and a label that denotes the division of
memory e.g. N2 is 1/2 of total DRAM for Native, N4 is 1/4 of total DRAM for
Native. TH H1 denotes 80% memory for H1 and TH PC denotes 40% memory
for H1 to investigate the PC scenario. LinR and LogR experiments with 10 GB
DRAM for H1 and 4 for OS for TH that do not match the 80% budget baseline
are conducted this way, because the OS needs 1 extra GB for cache. This is not an
Out of memory (OOM) error for H1 but an adjustment to memory budget. X axis
shows each configuration. Y axis shows execution time in seconds. All missing
configurations in the figure are OOM experiments.

Figure 5.1 shows single instance performance with Page Rank for Native and
TH Spark. These experiments correspond to the co-located runs of figure 5.13.
The first bar shows performance of Native Spark for 12 GB DRAM. The second
bar shows execution breakdown of TH Spark for 12 GB DRAM. This figure shows
that Native Spark suffers from GC, while TH absorbs this overhead.

Figure 5.2 shows single instance performance with Linear Regression for Native
and TH Spark. These experiments correspond to the co-located runs of figure 5.14.
The first bar shows performance of Native Spark for 12 GB DRAM. The second
bar shows execution breakdown of TH Spark for 12 GB DRAM. This figure shows
that Native Spark suffers from GC and S/D, while TH absorbs these overheads.

Figure 5.3 shows single instance performance with Logistic Regression for Na-
tive and TH Spark. These experiments correspond to the co-located runs of figure
5.15. The first bar shows performance of Native Spark for 12 GB DRAM. The
second bar shows execution breakdown of TH Spark for 12 GB DRAM. This fig-
ure shows that Native Spark suffers from GC and S/D, while TH absorbs these
overheads.

Figure 5.4 shows single instance performance with Connected Component for

17

Figure 5.1: Execution time breakdown for single instances of Spark Page Rank for
the 4 GB memory-per-core scenario.

Figure 5.2: Execution time breakdown for single instances of Spark Linear Regres-
sion for the 4 GB memory-per-core scenario.

18 CHAPTER 5. EVALUATION

Figure 5.3: Execution time breakdown for single instances of Spark Logistic Re-
gression for the 4 GB memory-per-core scenario.

Figure 5.4: Execution time breakdown for single instances of Spark Connected
Component for the 4 GB memory-per-core scenario.

19

Figure 5.5: Execution time breakdown for single instances of Spark Page Rank for
the 8 GB memory-per-core scenario.

Figure 5.6: Execution time breakdown for single instances of Spark Linear Regres-
sion for the 8 GB memory-per-core scenario.

20 CHAPTER 5. EVALUATION

Figure 5.7: Execution time breakdown for single instances of Spark Logistic Re-
gression for the 8 GB memory-per-core scenario.

Figure 5.8: Execution time breakdown for single instances of Spark Connected
Component for the 8 GB memory-per-core scenario.

21

Figure 5.9: Execution time breakdown for single instances of Giraph Page Rank
for the 8 GB memory-per-core scenario.

Figure 5.10: Execution time breakdown for single instances of Giraph Community
Detection Label Propagation for the 8 GB memory-per-core scenario.

22 CHAPTER 5. EVALUATION

Figure 5.11: Execution time breakdown for single instances of Giraph Page Rank
for the 16 GB memory-per-core scenario.

Figure 5.12: Execution time breakdown for single instances of Giraph Community
Detection Label Propagation for the 16 GB memory-per-core scenario.

23

Native and TH Spark. These experiments correspond to the co-located runs of
figure 5.16. The first bar shows performance of Native Spark for 12 GB DRAM.
The second bar shows execution breakdown of TH Spark for 12 GB DRAM. This
figure shows that Native Spark suffers from GC, while TH absorbs this overhead.

Figure 5.5 shows single instance performance with Page Rank for Native and
TH Spark. These experiments correspond to the co-located runs of figure 5.17. The
first two bars show performance of Native Spark for 28 and 14 GB DRAM. When
H1 decreases, Native suffers from longer and more frequent GC cycles, thus we see
an increment to Major GC. S/D and other time remain the same as Read/Write
traffic remains the same. The rest four bars show performance for TH Spark for 28
(80% and 40% for H1), 14 (80% and 40% for H1) and 7 (80% for H1) GB DRAM.
For TH PC there is no memory for the system. As we said in our methodology,
for TeraHeap we investigate setups with DRAM budgets where both H1 and PC
dominate. As H1 decreases for TeraHeap, we see an increase to Major GC in the
last 2 bars. Other time and S/D remain the same.

Figure 5.6 shows single instance performance with Linear Regression for Native
and TH Spark. These experiments correspond to the co-located runs of figure 5.18.
The first two bars show performance of Native Spark for 28 and 14 GB DRAM.
When H1 decreases, Native suffers from longer and more frequent GC cycles thus
we see an increment to Major GC. S/D has a slight increase because of increased
read traffic caused by memory pressure. Write traffic remains the same because
objects in Spark are immutable. The rest four bars show performance for TH
Spark for 28 (80% and 40% for H1) and 14 (71% and 40% for H1) GB DRAM.
As H1 decreases for TeraHeap, we see an increase to Major GC in the last 2 bars.
Other time shows slight differences because of cache size. That can be seen from
the second and third bar which have the same amount for H1 and a big difference
in cache. S/D remains the same.

Figure 5.7 shows single instance performance with Logistic Regression for Na-
tive and TH Spark. These experiments correspond to the co-located runs of figure
5.19. The first two bars show performance of Native Spark for 28 and 14 GB
DRAM. When H1 decreases Native, suffers from longer and more frequent GC
cycles, thus we see a significant increment to Major GC. S/D has a huge increase
of almost 30% because of increased read traffic caused by memory pressure. Write
traffic remains the same because objects in Spark are immutable. The rest four
bars show performance for TH Spark for 28 (80% and 40% for H1) and 14 (71%
and 40% for H1) GB DRAM. As H1 decreases for TeraHeap, we see some notable
differences to GC. Other time shows differences because of cache size. That can
be seen from the second and third bar which have the same amount for H1 and a
big difference in cache. S/D remains the same.

Figure 5.8 shows single instance performance with Connected Component for
Native and TH Spark. These experiments correspond to the co-located runs of
figure 5.20. The first two bars show performance of Native Spark for 28 and 14
GB DRAM. When H1 decreases, Native suffers from longer and more frequent
GC cycles, thus we see an increment to Major GC. S/D remains the same. Write

24 CHAPTER 5. EVALUATION

traffic remains the same because objects in Spark are immutable. The rest four
bars show performance for TH Spark for 28 (80% and 40% for H1) and 14 (80%
and 40% for H1) GB DRAM. As H1 decreases for TeraHeap, we see an increase
to Minor GC in the last bar. Other time and S/D remain the same.

Giraph cannot run at all with 4 GB memory per core.

Figures 5.9 and 5.10 show performance only for TH with 80% budget for H1,
because all other experiments are OOM, thus we cannot provide a comparison
with other experiments.

Figure 5.11 shows single instance performance with Page Rank for Native and
TH Giraph. These experiments correspond to the co-located runs of figure 5.23.
The first bar shows performance of Native Giraph for 60 GB DRAM. The rest
three bars show performance for TH Giraph for 60 (80% and 40% for H1) and
30 (80% for H1) GB DRAM. As H1 decreases for TeraHeap, we see an increase
to Major GC and Other time. Other time changes by both H1 and Page Cache
differences. We see that H1 affects writes in a significant way, because objects
are mutable in Giraph and decreasing H1 creates more traffic to TeraHeap. Page
Cache mostly affects read traffic. These can be seen from the progression of the
bars in other time.

Figure 5.12 shows single instance performance with Community Detection La-
bel Propagation for Native and TH Giraph. These experiments correspond to the
co-located runs of figure 5.23. The first bar shows performance of Native Giraph
for 60 GB DRAM. The rest three bars show performance for TH Giraph for 60
(80% and 40% for H1) and 30 (80% for H1) GB DRAM. As H1 decreases for Ter-
aHeap, we see an increase to Major GC and Other time. Other time changes by
both H1 and Page Cache differences. We see that H1 affects writes in a significant
way, because objects are mutable in Giraph, and decreasing H1 creates more traffic
to TeraHeap. Page Cache mostly affects read traffic. These can be seen from the
progression of the bars in other time.

In all Spark experiments we see that, H1 has significant impact for Native,
while for TeraHeapi, H1 is significant too, but not as significant as for Native.
For Native, we saw no differences with variable Page Cache sizes for any of the
experiments, thus we do not show them here. For TH, PC shows improvements
of 5% to 7% for ML workloads, except the LinR experiment that maps to the
co-located experiment for 8 GB per core. Number of GCs and Read/Write traffic
figures are not included because all preserve the same pattern described above.
For Native Spark the number of GCs and read traffic increases significantly as H1
decreases. For TH Spark, number of GCs also increase slightly as H1 decreases and
read/write traffic remains the same. Read traffic increases slightly as PC decreases
for TH. For Giraph, H1 also affects read/write traffic significantly for both Native
and TH and PC decreases read traffic significantly for TH.

25

5.0.5 Experiments with co-located instances

Here, we look at the co-located experiments of Spark and Giraph in all memory per
core categories. We run these experiments to see whether increasing memory-per-
core helps increasing server throughput by reducing GC and S/D for frameworks
and increasing number of instances for infrastructure. Any runs that are not shown
should be considered experiments that run Out of memory (OOM) for H1. We do
not include them in the figures, because they are exactly the same configurations
that run OOM in their corresponding single instance run. These can be seen in
the figures of the previous subsection. N2 (T for TeraHeap) means that we have
a co-located experiment with 2 instances of Native Spark or Giraph. Average
throughout is the result of the division of the result of the multiplication of the
number of instances with dataset size (same per instance) and the execution time
of the slowest instance in execution. Realizations on other time are included in
a different subsection. All results are rounded to the upper bound integer except
costs, because for monetary cost even small amounts are significant. X axis shows
each configuration. Y axis shows execution time in seconds.

We explain each figure from 4 aspects:

� The differences in the time breakdown while number of instances increase
for each configuration.

� A comparison between the different configurations while instances increase.

� Interference between the single instance and co-located instances

� A comparison between H1 and Page Cache dominating configurations

� Realizations on performance difference between different memory per core
scenarios

5.0.5.1 4 GB DRAM per core

Figure 5.13 shows execution time of co-located Native-TeraHeap Spark instances
running PageRank with 8 GB dataset per instance in the 4 GB DRAM per core
scenario. In the graph, we witness the performance of 2 runs. The first run is
with 2 co-located Native Spark instances. The other run is with 2 co-located TH
Spark instances with H1 dominating Page Cache. We could run the experiment
where PC dominates H1, but we did not, because of lack of time. Each instance
of the Native run uses 10 GB DRAM for H1 (Java Heap) and 2 GB for rest of the
services. The TH run uses 9 GB DRAM for H1 and 3 GB for Page Cache for each
instance.

Considering the first aspect, we do not have the needed runs to analyze it.
From the second aspect, we see that as Native Spark starves from more GC and

S/D, TeraHeap nearly eliminates these overheads. TeraHeap has 32% speedup and
33% more average throughput for 2 instances when compared to the corresponding
Native runs.

26 CHAPTER 5. EVALUATION

Figure 5.13: Execution time breakdown for co-located instances of Spark Page
Rank in the 4 GB memory-per-core scenario.

Figure 5.14: Execution time breakdown for co-located instances of Spark Linear
Regression in the 4 GB memory-per-core scenario.

27

Figure 5.15: Execution time breakdown for co-located instances of Spark Logistic
Regression in the 4 GB memory-per-core scenario.

Figure 5.16: Execution time breakdown for co-located instances of Spark Con-
nected Component in the 4 GB memory-per-core scenario.

28 CHAPTER 5. EVALUATION

Figure 5.17: Execution time breakdown for co-located instances of Spark Page
Rank in the 8 GB memory-per-core scenario.

Figure 5.18: Execution time breakdown for co-located instances of Spark Linear
Regression in the 8 GB memory-per-core scenario.

29

Figure 5.19: Execution time breakdown for co-located instances of Spark Logistic
Regression in the 8 GB memory-per-core scenario.

Figure 5.20: Execution time breakdown for co-located instances of Spark Con-
nected Component in the 8 GB memory-per-core scenario.

30 CHAPTER 5. EVALUATION

Figure 5.21: Execution time breakdown for co-located instances of Giraph Page
Rank in the 8 GB memory-per-core scenario.

Figure 5.22: Execution time breakdown for co-located instances of Giraph Com-
munity Detection Label Propagation in the 8 GB memory-per-core scenario.

31

Figure 5.23: Execution time breakdown for co-located instances of Giraph Page
Rank in the 16 GB memory-per-core scenario.

Figure 5.24: Execution time breakdown for co-located instances of Giraph Com-
munity Detection Label Propagation in the 16 GB memory-per-core scenario.

32 CHAPTER 5. EVALUATION

Figure 5.25: Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Page Rank.

Figure 5.26: Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Linear Regression.

33

Figure 5.27: Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Logistic Regression.

Figure 5.28: Native and TeraHeap Spark average throughput as the number of
instances increases under 8 GB DRAM per core running Connected Component.

34 CHAPTER 5. EVALUATION

Figure 5.29: Native and TeraHeap Giraph average throughput as the number of
instances increases under 16 GB DRAM per core running Page Rank.

Figure 5.30: Native and TeraHeap Giraph average throughput as the number of
instances increases under 16 GB DRAM per core running Page Rank.

35

Figure 5.14 shows execution time of co-located Native-TeraHeap Spark in-
stances running LinearRegression with 8 GB dataset per instance in the 4 GB
DRAM per core scenario. In the graph, we witness the performance of 2 runs.
The first run is with 2 co-located Native Spark instances. The other run is with
2 co-located TH Spark instances with H1 dominating Page Cache. We could run
the experiment where PC dominates H1, but we did not, because of lack of time.
Each instance of the Native run uses 10 GB DRAM for H1 (Java Heap) and 2 GB
for rest of the services. The TH run uses 8 GB DRAM for H1 and 4 GB for Page
Cache for each instance.

Considering the first aspect, we do not have the needed runs to analyze it.

From the second aspect, we see that as Native Spark starves from more GC and
S/D, TeraHeap nearly eliminates these overheads. TeraHeap has 58% speedup and
59% more average throughput for 2 instances when compared to the corresponding
Native runs.

Figure 5.15 shows execution time of co-located Native-TeraHeap Spark in-
stances running PageRank with 8 GB dataset per instance in the 4 GB DRAM per
core scenario. In the graph, we witness the performance of 2 runs. The first run is
with 2 co-located Native Spark instances. The other run is with 2 co-located TH
Spark instances with H1 dominating Page Cache. We could run the experiment
where PC dominates H1, but we did not, because of lack of time. Each instance
of the Native run uses 10 GB DRAM for H1 (Java Heap) and 2 GB for rest of the
services. The TH run uses 8 GB DRAM for H1 and 4 GB for Page Cache for each
instance.

Considering the first aspect, we do not have the needed runs to analyze it.

From the second aspect, we see that as Native Spark starves from more GC and
S/D, TeraHeap nearly eliminates these overheads. TeraHeap has 58% speedup and
59% more average throughput for 2 instances when compared to the corresponding
Native runs.

Figure 5.16 shows execution time of co-located Native-TeraHeap Spark in-
stances running PageRank with 8 GB dataset per instance in the 4 GB DRAM per
core scenario. In the graph, we witness the performance of 2 runs. The first run is
with 2 co-located Native Spark instances. The other run is with 2 co-located TH
Spark instances with H1 dominating Page Cache. We could run the experiment
where PC dominates H1, but we did not, because of lack of time. Each instance
of the Native run uses 10 GB DRAM for H1 (Java Heap) and 2 GB for rest of the
services. The TH run uses 9 GB DRAM for H1 and 3 GB for Page Cache for each
instance.

Considering the first aspect, we do not have the needed runs to analyze it.

From the second aspect, we see that as Native Spark starves from more GC and
S/D, TeraHeap nearly eliminates these overheads. TeraHeap has 32% speedup and
33% more average throughput for 2 instances when compared to the corresponding
Native runs.

36 CHAPTER 5. EVALUATION

5.0.5.2 8 GB DRAM per core

Figure 5.17 and 5.25 show execution time and average throughput of co-located
Native-TeraHeap Spark instances running PageRank with 8 GB dataset per in-
stance in the 8 GB DRAM per core scenario. Starting from the left of the graph,
the first 6 bars show the performance of 3 runs. The first run is with 2 co-located
Native Spark instances. Another run with 2 co-located TH Spark instances with
H1 dominating Page Cache, and a third run with 2 co-located TH Spark instances
where Page Cache dominates H1. Each instance of the first 2 runs uses 22 GB
DRAM for H1 (Java Heap) and 6 GB for rest of the services. The third run uses
11 GB DRAM for H1 and 17 GB for Page Cache for each instance. The next 12
bars show the performance of another 3 runs. The first run is with 4 co-located
Native Spark instances. Another run with 4 co-located TH Spark instances with
H1 dominating Page Cache, and a third run with 4 co-located TH Spark instances
where Page Cache dominates H1. Each instance of the first run uses 11 GB DRAM
for H1 (Java Heap) and 3 GB for rest of the services. The second run uses 11 GB
DRAM for H1 and 3 GB for Page Cache for each instance. The third run uses 6
GB DRAM for H1 and 8 GB for Page Cache for each instance. The last 8 bars
refer to 8 co-located instances of TeraHeap Spark only. We were unable to decrease
H1 enough to run 8 co-located instances of Native Spark, because JVM runs out
of memory. Each instance of the run uses 4 GB DRAM for H1 (Java Heap) and 3
GB for Page Cache.

Considering the first aspect, we see that Minor and Major GC increase dra-
matically for Native Spark along with significant increase to Other time. Minor
and Major GC differences are witnessed, because the heap capacity decreases and
that causes memory pressure. TeraHeap Spark shows a slight increase to Major
GC, while the number of instances increases. This is because of the decreasing
heap capacity. We suspect device throughput reaching its limit with increasing
number of instances, as the cause to other time for both Native and TH. S/D is
completely absorbed by MMIO. For Native Spark 2 co-located instances have 55%
speedup in execution time compared to 4 co-located instances, and provide 20%
more average throughput. For TH H1 2 co-located instances have 40% speedup in
execution time compared to 4 co-located instances and provide 14% more average
throughput. For TH 8 co-located instances have 50 and 83% speedup against 4
and 2 instances accordingly.

From the second aspect, as instances increase in the server the benefit gap
between Native and TeraHeap Spark becomes bigger. As Native Spark starves
from more GC and S/D, TeraHeap maintains its benefits. TeraHeap has 50 and
25% speedup for 2 and 4 instances when compared to the corresponding Native
runs. If we compare TeraHeap 8 instances to the 4 instances of Native TeraHeap
has 33% worse performance but 33% more average throughput.

Figure 5.18 and 5.26 show the execution time and average throughput of co-
located Native-TeraHeap Spark instances running LinearRegression with 64 GB
dataset per instance in the 8 GB DRAM per core scenario. Starting from the left

37

of the graph, the first 6 bars show the performance of 3 runs. The first run is with
2 co-located Native Spark instances. Another run with 2 co-located TH Spark
instances with H1 dominating Page Cache, and a third run with 2 co-located TH
Spark instances where Page Cache dominates H1. Each instance of the first 2 runs
uses 22 GB DRAM for H1 (Java Heap) and 6 GB for rest of the services. The
third run uses 11 GB DRAM for H1 and 17 GB for Page Cache for each instance.
The rest 12 bars show the performance of another 3 runs. The first run is with
4 co-located Native Spark instances. Another run with 4 co-located TH Spark
instances with H1 dominating Page Cache and a third run with 4 co-located TH
Spark instances where Page Cache dominates H1. Each instance of the first run
uses 11 GB DRAM for H1 (Java Heap) and 3 GB for rest of the services. The
second run uses 10 GB DRAM for H1 and 4 GB for Page Cache for each instance.
The third run uses 6 GB DRAM for H1 and 8 GB for Page Cache for each instance.

Considering the first aspect, we see that GC and S/D increase dramatically
for Native Spark along with significant increase to Other time. GC differences are
witnessed because the heap capacity decreases, and that causes memory pressure.
TeraHeap Spark shows a slight increase to Major GC while the number of instances
increases. This is because of the decreased heap capacity. We suspect device
throughput reaching its limit with increasing number of instances as the cause to
other time for both Native and TH. S/D is completely absorbed by MMIO. For
Native Spark 2 co-located instances have 71% speedup in execution time compared
to 4 co-located instances and provide 46% more average throughput. For TH H1 2
co-located instances have 50% speedup in execution time compared to 4 co-located
instances, and provide 8% more average throughput. For TH PC performance is
the same with TH H1.

From the second aspect, as instances increase in the server the benefit gap
between Native and TeraHeap Spark becomes bigger. As Native Spark starves
from more GC and S/D, TeraHeap maintains its benefits. That is shown by the
speedups where TeraHeap has 25% and 57% speedup and 48% and 66% more
average throughput for 2 and 4 instances when compared to the corresponding
Native runs.

Figures 5.19 and 5.27 show execution time and average throughput of co-
located Native-TeraHeap Spark instances running Logistic Regression with 64 GB
dataset per instance in the 8 GB DRAM per core scenario. Starting from the left
of the graph, the first 6 bars show the performance of 3 runs. The first run is with
2 co-located Native Spark instances. Another run with 2 co-located TH Spark
instances with H1 dominating Page Cache and a third run with 2 co-located TH
Spark instances where Page Cache dominates H1. Each instance of the first 2 runs
uses 22 GB DRAM for H1 (Java Heap) and 6 GB for rest of the services. The
third run uses 11 GB DRAM for H1 and 17 GB for Page Cache for each instance.
The next 12 bars show the performance of another 3 runs. The first run is with
4 co-located Native Spark instances. Another run with 4 co-located TH Spark
instances with H1 dominating Page Cache and a third run with 4 co-located TH
Spark instances where Page Cache dominates H1. Each instance of the first run

38 CHAPTER 5. EVALUATION

uses 11 GB DRAM for H1 (Java Heap) and 3 GB for rest of the services. The
second run uses 10 GB DRAM for H1 and 3 GB for Page Cache for each instance.
The third run uses 6 GB DRAM for H1 and 7 GB for Page Cache for each instance.

Considering the first aspect, we see that GC and S/D increase dramatically
for Native Spark along with significant increase to Other time. GC differences are
witnessed because the heap capacity decreases, and that causes memory pressure.
TeraHeap Spark shows a slight increase to Major GC while the number of instances
increases. This is because of the decreased heap capacity. We suspect device
throughput reaching its limit with increasing number of instances, as the cause to
other time for both Native and TH. S/D is completely absorbed by MMIO. For
Native Spark 2 co-located instances have 62% speedup in execution time compared
to 4 co-located instances and provide 27% more average throughput. For TH H1 2
co-located instances have 50% speedup in execution time compared to 4 co-located
instances and provides the same throughput. For TH PC performance is the same
with TH H1.

From the second aspect, as instances increase in the server, the benefit gap
between Native and TeraHeap Spark becomes bigger. As Native Spark starves
from more GC and S/D, TeraHeap maintains its benefits. TeraHeap has 57 and
40% speedup and 48% and 66% increased average throughput for 2 and 4 instances
when compared to the corresponding Native runs.

Figure 5.20 and 5.28 show execution time and average throughput of co-
located Native-TeraHeap Spark instances running Connected Component with 8
GB dataset per instance in the 8 GB DRAM per core scenario. Starting from the
left of the graph, the first 6 bars show the performance of 3 runs. The first run
is with 2 co-located Native Spark instances. Another run with 2 co-located TH
Spark instances with H1 dominating Page Cache and a third run with 2 co-located
TH Spark instances where Page Cache dominates H1. Each instance of the first 2
runs uses 22 GB DRAM for H1 (Java Heap) and 6 GB for rest of the services. The
third run uses 11 GB DRAM for H1 and 17 GB for Page Cache for each instance.
The next 12 bars show the performance of another 3 runs. The first run is with
4 co-located Native Spark instances. Another run with 4 co-located TH Spark
instances with H1 dominating Page Cache and a third run with 4 co-located TH
Spark instances where Page Cache dominates H1. Each instance of the first run
uses 11 GB DRAM for H1 (Java Heap) and 3 GB for rest of the services. The
second run uses 11 GB DRAM for H1 and 3 GB for Page Cache for each instance.
The third run uses 6 GB DRAM for H1 and 8 GB for Page Cache for each instance.

Considering the first aspect, we see that Minor and Major GC increase dra-
matically for Native Spark along with significant increase to Other time. Minor
and Major GC differences are witnessed because the heap capacity decreases, and
that causes memory pressure. TeraHeap Spark shows a slight increase to Major
GC while the number of instances increases. This is because of the decreasing heap
capacity. We suspect device throughput reaching its limit with increasing number
of instances, as the cause to other time for both Native and TH. S/D is completely
absorbed by MMIO. For Native Spark 2 co-located instances have 57% speedup in

39

execution time compared to 4 co-located instances and provide 27% more average
throughput. For TH H1 2 co-located instances have 54% speedup in execution
time compared to 4 co-located instances and provides 8% less throughput.

From the second aspect, as instances increase in the server, the benefit gap
between Native and TeraHeap Spark becomes bigger. As Native Spark starves
from more GC and S/D, TeraHeap maintains its benefits. TeraHeap has 21 and
15% speedup and 10% more throughput for 2 and 4 instances when compared to
the corresponding Native runs.

5.0.5.3 16 GB DRAM per core

Figures 5.21 and 5.22 show execution time only for TH Giraph with 80% budget for
H1, because all other experiments are OOM thus we cannot provide a comparison
with other experiments.

Figure 5.23 and 5.29 show execution time and average throughput of co-located
Native-TeraHeap Giraph instances running Page Rank with 13 GB dataset per
instance in the 16 GB DRAM per core scenario. Starting from the left of the
graph, the first 6 bars show the performance of 3 runs. The first run is with 2
co-located Native Giraph instances. Another run with 2 co-located TH Giraph
instances with H1 dominating Page Cache, and a third run with 2 co-located TH
Instances instances where Page Cache dominates H1. Each instance of the first 2
runs uses 48 GB DRAM for H1 (Java Heap) and 12 GB for rest of the services.
The third run uses 24 GB DRAM for H1 and 36 GB for Page Cache for each
instance. The rest 4 bars show the performance of another run. The run is with 4
co-located TeraHeap Giraph instances. Each instance uses 24 GB DRAM for H1
(Java Heap) and 6 GB for rest of the services.

Considering the first aspect Native Giraph does not scale to 4 instances and
runs out of memory. TeraHeap Giraph shows significant increase to Major GC
while the number of instances increases. This is because of the decreased heap ca-
pacity. We suspect device throughput reaching its limit with increasing number of
instances, as the cause to other time. For TH H1, 2 co-located instances have 57%
speedup in execution time, compared to 4 co-located instances, and provide the
same average throughput. For TH PC, 2 co-located instances have 51% speedup in
execution time compated to 4 co-located instances, and provide the same average
throughput.

From the second aspect, TeraHeap is able to scale to 4 instances, while Native
runs out of memory. TeraHeap has 11% speedup and 13% more average throughput
for 2 instances, when compared to the corresponding Native runs.

Figure 5.24 and 5.30 show execution time and average throughput of multiple
Native-TeraHeap Giraph instances running CDLP with 13 GB dataset per instance
in the 16 GB DRAM per core scenario. Starting from the left of the graph, the first
6 bars show the performance of 3 runs. The first run is with 2 co-located Native
Giraph instances. Another run with 2 co-located TH Giraph instances with H1
dominating Page Cache, and a third run with 2 co-located TH Instances instances

40 CHAPTER 5. EVALUATION

where Page Cache dominates H1. Each instance of the first 2 runs uses 48 GB
DRAM for H1 (Java Heap) and 12 GB for rest of the services. The third run uses
24 GB DRAM for H1 and 36 GB for Page Cache for each instance. The rest 4
bars show the performance of another run. The run is with 4 co-located TeraHeap
Giraph instances. Each instance uses 24 GB DRAM for H1 (Java Heap) and 6 GB
for rest of the services.

Considering the first aspect, Native Giraph does not scale to 4 instances and
runs out of memory. TeraHeap Giraph shows significant increase to Major GC,
while the number of instances increases. This is because of the decreased heap
capacity. We suspect device throughput reaching its limit with increasing num-
ber of instances, as the cause to other time. For TH H1, 2 co-located instances
have 63% speedup in execution time, compared to 4 co-located instances and pro-
vide 27% more average throughput. For TH PC, 2 co-located instances have 61%
speedup in execution time, compared to 4 co-located instances and 27% more aver-
age throughput. From the second aspect, TeraHeap is able to scale to 4 instances
while Native runs out of memory. TeraHeap has 9% speedup and 7% more average
throughput for 2 instances, when compared to the corresponding Native runs.

5.0.5.4 Realizations for other time

For both Spark and Giraph, we suspect device throughput reaching its limit with
increasing number of instances, as the cause to other time for both Native and TH.
TH has increased other time compared to Native, because of the IO granularity
of entire pages despite Native having increased read traffic to TH. Native knows
exactly what objects to read doing small reads while TeraHeap brings unuseful ob-
jects to memory. For Giraph, TeraHeap has increased read/write traffic, compared
to Native and both the difference in IO methods, and read/write traffic leads to
increased other time.

5.0.5.5 Realizations on performance difference between different mem-
ory per core scenarios

For Spark we see that 4 GB memory per core is a bound to run more than 2
instances. For Giraph, we see than Native is unable to run any experiments under
4 and 8 GB memory per core, while TH is able to run with 2 instances proving
that lacking enough memory per instance is a bound for execution, while avoiding
GC and S/D enables execution.

5.0.5.6 Interference with single instance

Table 5.1 shows the percentage of interference i.e. speedup of single instance
against the corresponding co-located experiment. For Native Spark for 2 to 4 co-
located instances experiments there is 19 to 80% interference. For TeraHeap Spark
for 2 to 4 co-located instances experiments there is 32 to 84% interference. Both
offloading techniques have similar interference ranges which are more than 50% in

41

Table 5.1: Interference for each configuration with co-located instances with cor-
responding single instance experiment. FW = framework, Conf. = configuration,
M/C = Memory per core, I = Number of instances, Interf. = interference

FW Conf. M/C (GB) #I Interf. %

Spark PR Native 4 2 19
Spark PR TH 4 2 47
Spark PR TH H1 8 2 63
Spark PR TH PC 8 2 59
Spark PR TH H1 8 4 82
Spark PR TH PC 8 4 84
Spark PR TH 8 8 92
Spark LINR Native 4 2 45
Spark LINR TH 4 2 48
Spark LINR Native 8 2 32
Spark LINR Native 8 4 80
Spark LINR TH H1 8 2 52
Spark LINR TH PC 8 2 53
Spark LINR TH H1 8 4 78
Spark LINR TH PC 8 4 80
Spark LINR Native 8 2 49
Spark LOGR Native 4 2 46
Spark LOGR TH 4 2 48
Spark LOGR Native 8 2 45
Spark LOGR Native 8 4 71
Spark LOGR TH H1 8 2 44
Spark LOGR TH PC 8 2 44
Spark LOGR TH H1 8 4 73
Spark LOGR TH PC 8 4 75
Spark CC Native 4 2 40
Spark CC TH 4 2 51
Spark CC Native 8 2 56
Spark CC Native 8 4 75
Spark CC TH H1 8 2 66
Spark CC TH PC 8 2 66
Spark CC TH H1 8 4 84
Spark CC TH PC 8 4 76
Giraph PR TH 8 2 37
Giraph CDLP TH 8 2 27
Giraph PR Native 16 2 19
Giraph PR TH H1 16 2 21
Giraph PR TH PC 16 2 38
Giraph PR TH 16 4 55
Giraph CDLP Native 16 2 41
Giraph CDLP TH H1 16 2 45
Giraph CDLP TH PC 16 2 30
Giraph CDLP TH 16 4 67

42 CHAPTER 5. EVALUATION

half of the experiments. For Native Giraph there is 19% interference for PR and
41% for CDLP with 2 co-located instances. The first is really reduced compared
to the Native Spark 2 co-located instances experiments. For TH Giraph there is
21 to 67 % interference. For 4 co-located instances experiments TH Giraph has
significantly less interference than Spark. In conclusion we wee that interference
increases as number of instances increases for both Spark and Giraph. Experiments
with 2 co-located instances and an interference under 50% have better average
throughput than single instance and the same happens for experiments with 4
co-located instances with interference under 25%. The latter never happens.

5.0.5.7 Does H1 or PageCache offer better performance?

We don’t investigate Page Cache-dominated cgroup budgets for Native Spark or
Giraph, since we have seen that it does not make a difference. For TeraHeap Spark,
Page Cache provides slightly better average throughput for 2 co-located instances
in ML. In speedup, this is 5% for LinR and 6% for LogR, while for 4 instances H1
dominates PC. For the Spark GraphX experiments, we witness the same average
throughput for both 2 and 4 co-located instances experiments. For TH Giraph, H1
dominates PC in terms of average throughput. That is, because H1 affects Write
traffic in Giraph and Page Cache absorbs mostly reads. In conclusion, based on
average throughput, it seems someone would still choose H1 dominated setups for
TeraHeap as well.

5.0.5.8 Accuracy of experiments

We repeated all experiments for 8 and 16 memory per core with 2 and 4 instances
for Spark except with TH PC and 2 instances for Giraph a second time to estimate
standard deviation. We left these experiments out because of lack of time. Table
5.2 shows that all experiments have less than 7% standard deviation except one
experiment with Spark for 10%. Also co-located experiments have under 7% dif-
ference in-between the end of execution of each co-located instance except Native
Spark CC with 4 co-located instances under 4 GB DRAM per core with 14%. This
is important, because when one instance has finished the interference decreases for
the rest.

5.0.6 Is the CPU utilization of the application increasing by re-
ducing GC and S/D?

The main goal for co-locating tasks is to increase the CPU utilization and achieve
better throughput. In this section, we examine if the CPU utilization translates
to better application throughput. CPU utilization is split to 2 parts. User utiliza-
tion includes all CPU cycles that were executed in user-space threads. It includes
GC cycles, S/D cycles and cycles for mutator tasks except I/O. System utilization
includes all CPU cycles that were executed in kernel-space threads. This includes
I/O carried out by GC (TeraHeap) and mutator I/O. Therefore, we have to focus

43

Table 5.2: Standard deviation for each configuration and number of co-located
instances. FW=framework, Conf. = configuration, M/C = memory per core,
I=number of instances, St. dev.=standard deviation

FW Conf. M/C (GB) #I St. dev. %

Spark PR Native 8 2 2
Spark PR Native 8 4 6
Spark PR TH H1 8 2 1
Spark PR TH H1 8 4 1
Spark LINR Native 8 2 2
Spark LINR Native 8 4 3
Spark LINR TH H1 8 2 1
Spark LINR TH H1 8 4 2
Spark LOGR Native 8 2 10
Spark LOGR Native 8 4 0
Spark LOGR TH H1 8 2 3
Spark LOGR TH H1 8 4 5
Spark CC Native 8 2 2
Spark CC Native 8 4 7
Spark CC TH H1 8 2 3
Spark CC TH H1 8 4 0
Giraph PR TH H1 8 2 6
Giraph CDLP Native 16 2 4
Giraph CDLP TH H1 16 2 5

44 CHAPTER 5. EVALUATION

Figure 5.31: Native and TeraHeap Spark total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Page Rank.

Figure 5.32: Native and TeraHeap Spark total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Linear Regression.

45

Figure 5.33: Native and TeraHeap Spark total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Logistic Regression.

Figure 5.34: Native and TeraHeap Spark total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Connected Component.

46 CHAPTER 5. EVALUATION

Figure 5.35: Native and TeraHeap Giraph total CPU utilization as the number of
instances increases under 8 GB DRAM per core running Page Rank.

Figure 5.36: Native and TeraHeap Giraph total CPU utilization as the number
of instances increases under 8 GB DRAM per core running Community Detection
Label Propagation.

47

Figure 5.37: Native and TeraHeap Spark CPU cycles under 4 GB DRAM per core
running Page Rank.

Figure 5.38: Native and TeraHeap Spark CPU cycles under 4 GB DRAM per core
running Linear Regression.

48 CHAPTER 5. EVALUATION

Figure 5.39: Native and TeraHeap Spark CPU cycles under 4 GB DRAM per core
running Logistic Regression.

Figure 5.40: Native and TeraHeap Spark CPU cycles under 4 GB DRAM per core
running Connected Component.

49

Figure 5.41: Native and TeraHeap Spark CPU cycles under 8 GB DRAM per core
running Page Rank.

Figure 5.42: Native and TeraHeap Spark CPU cycles under 8 GB DRAM per core
running Linear Regression.

50 CHAPTER 5. EVALUATION

Figure 5.43: Native and TeraHeap Spark CPU cycles under 8 GB DRAM per core
running Logistic Regression.

Figure 5.44: Native and TeraHeap Spark CPU cycles under 8 GB DRAM per core
running Connected Component.

51

Figure 5.45: Native and TeraHeap Giraph CPU cycles under 16 GB DRAM per
core running Page Rank.

Figure 5.46: Native and TeraHeap Giraph CPU cycles under 16 GB DRAM per
core running Community Detection Label Propagation.

52 CHAPTER 5. EVALUATION

Figure 5.47: Native and TeraHeap Spark average user CPU utilization as the
number of instances increases under 8 GB DRAM per core running Page Rank.

Figure 5.48: Native and TeraHeap Spark average user CPU utilization as the num-
ber of instances increases under 8 GB DRAM per core running Linear Regression.

53

Figure 5.49: Native and TeraHeap Spark average user CPU utilization as the num-
ber of instances increases under 8 GB DRAM per core running Logistic Regression.

Figure 5.50: Native and TeraHeap Spark average user CPU utilization as the
number of instances increases under 8 GB DRAM per core running Connected
Component.

54 CHAPTER 5. EVALUATION

Figure 5.51: Native and TeraHeap Giraph average user CPU utilization as the
number of instances increases under 16 GB DRAM per core running Page Rank.

Figure 5.52: Native and TeraHeap Giraph average user CPU utilization as the
number of instances increases under 16 GB DRAM per core running Page Rank.

55

to User utilization, which includes the effective CPU cycles executed by the appli-
cation. We look at the CPU cycles performed by each configuration and compare
it with user and total CPU utilization and then come to our conlusion. CPU
cycles are calculated using the formula (total number of cores * cpu frequency *
execution time of slowest instance * cpu utlization achieved by all instances).

In the figures 5.37, 5.38, 5.39 and 5.40, we look at the CPU cycles under 4 GB
memory per core for Spark. We see that TH Spark executes in less CPU cycles
(56% for LinR,55% for LogR and 16% for CC) except for PageRank, where Native
executes in less cycles by 11%. In the same time, it has increased CPU utilization
compared to Native Spark by 40, 4, 13 and 7 % accordingly. This means that
reducing GC and S/D leads to more effective CPU utilization for all workloads
except PageRank. For PageRank, TH executes in more cycles thus we cannot be
sure about the benefit. In the figures 5.41, 5.42, 5.43 and 5.44, we look at the
CPU cycles under 8 GB memory per core for Spark. For PR, TH Spark executes
in less CPU cycles (6% for T2 H1, 14% for T2 PC, 25% for T4 H1, 21% for T4
PC). For LinR, TH Spark executes in less CPU cycles (23% for T2 H1, 24% for T2
PC, 58% for T4 H1, 59% for T4 PC). For LogR, TH Spark executes in less CPU
cycles (48% for T2 H1, 49% for T2 PC, 58% for T4 H1, 53% for T4 PC). For PR,
TH Spark executes in less CPU cycles for 4 co-located instances (22% for T4 H1,
21% for T4 PC), while Native Spark executes in less CPU cycles for 2 co-located
instances (7% against both T2 H1 and T2 PC). This means that reducing GC and
S/D leads to more effective CPU utilization for all workloads for 2 and 4 co-located
instances except for CC with 2 co-located instances. In the figures 5.45 and 5.46,
we look at the CPU cycles under 16 GB memory per core for Giraph. We see that
TH Giraph executes in more CPU cycles except for T2 PC in PR with speedup in
cycles by 14%. This means that reducing GC for Giraph does not necessarily lead
to more effective CPU utilization.

If we look at the figures 5.47, 5.48, 5.49, 5.50, 5.51 and 5.52, we witness User
utilization for 8 GB memory per core for Spark and 16 GB memory per core for
Giraph. TH has more User utilization in all scenarios. We also include the total
CPU utilization (User+System) in 5.31, 5.32, 5.33, 5.34, 5.35 and 5.36. For 4 GB
memory per core in Spark and for 8 GB memory per core for Giraph, we do not
include user utilization as the number of instances increases, since we cannot run
more than 2 instances, especially for Giraph, where Native is not able to run at all.
For Spark, TH increases User and and total CPU utilization accordingly to 8 and
16 GB memory per core. By combining cycles and user utilization, we come to the
conclusion that, since TH has increased User utilization in all scenarions, in the
ones, where it executes in less CPU cycles it has more effective CPU utilization.
That is because of reduced GC and S/D. In the scenarios where it executes in
more cycles we cannot say for sure, despite TH having more average throughput.
However, for Giraph, we see that decreasing GC and S/D, allows us to run more
instances in the server, because TH needs less memory per instance. In terms of
choosing what is best for TH, H1 or PC, we see from the CPU cycles that for
Spark there are no clear benefits for any side. For Giraph, in 5.45 we see that

56 CHAPTER 5. EVALUATION

Table 5.3: Hourly costs for EC2, GCP and AZ=Azure Cloud

Provider DRAM (GB) Cores Hourly cost ($)

EC2 128 8 0.67
EC2 64 8 0.4
EC2 32 8 0.27
GCP 128 8 –
GCP 64 8 0.36
GCP 32 8 0.27
AZ 128 8 1.05
AZ 64 8 0.48
AZ 32 8 0.33

with 4 instances PC executes in less cycles, but the execution time is the same
and CPU utilization is more for TH H1 so the benefit is not clear. To conclude
for Native Spark and Giraph, we see in most scenarios that the increment in CPU
utilization is not useful work, but more GC and S/D since the memory for each
instance decreases as the number of co-located instances increase.

5.0.7 What happens with monetary cost across different cloud
platforms?

Tables 5.3 shows hourly cost for each machine configuration in Amazon Web Ser-
vices Cloud (EC2), GCP (Google Cloud Platform) and Microsoft Azure costs. We
witness that Amazon and Google providers offer a similar cost for identical ma-
chines to our server. Azure is more expensive, especially for the 16 GB memory
per core machine, which is 36% more expensive than EC2’s. Google does not offer
a 16 GB memory per core machine. Taking into account that we have an hourly
cost and that we have an estimation, reducing GC and S/D achieves benefits of
up to 50% for running co-located workloads in these clouds. The calculations are
very simple so we skip them. We multiply hourly cost by number of hours needed
to execute each experiment until all instances finish execution. The conclusion
is that reducing GC and S/D makes a huge difference in the execution time and
therefore running with TeraHeap decreases the hours needed to rent the machines.
This leads to not wasting money on overheads, but using it to do actual work.

Chapter 6

Future Work

While this analysis shows promising results and provides a methodology for un-
derstanding throughput for big data analytics workloads on Spark and Giraph
clusters, there are several avenues for future work to use it on and improve perfor-
mance and scalability.

Firstly, one potential direction for future work is to investigate the use of other
types of storage mediums such as the hybrid NVM. This medium could improve
the performance of Big data analytics further by combining the advantages of
memory and storage.

Secondly, another area for future work is to develop techniques for dynam-
ically adjusting the heap offloading decisions based on workload characteristics
and resource availability. For example, the offloading decision can be based on the
size of the input data or the availability of DRAM capacity in the cluster. Such
techniques can help maximize the performance gains achieved by offloading while
minimizing the cost of offloading.

Thirdly, an interesting direction for future work is to explore the use of heap of-
floading in environments where Spark-Giraph clusters are deployed across multiple
machines using RDMA to achieve communication between the different machines.
This can help utilize the DRAM, CPU and storage availability in more than one
machine and provide a more cost-effective solution for big data processing.

Finally, investigating the power consumption of our experiments would be very
interesting, because we would examine the trade-offs between better performance
and higher resource utilization with the cost in power.

57

58 CHAPTER 6. FUTURE WORK

Chapter 7

Conclusion

In this thesis, we conducted an analysis of throughput for managed big data ana-
lytics frameworks using Apache Spark and Giraph under workload co-location. We
investigated, if reducing GC and S/D for managed big data frameworks improves
application throughput by using an open-source system TeraHeap. We conducted
our experiments under 3 different memory-per-core scenarios, 4, 8 and 16 GB /
core, in order to see if increasing memory capacity helps increasing server through-
put. 4 GB / core is the current trend and 8 and 16 GB / core are possible future
trends. For simplicity, we divided total DRAM capacity to 2,4 and 8 even memory
budgets. We used each budget to run each instance isolated with Native Spark and
Giraph and Spark and Giraph using TH to study the execution breakdown. Then
we run experiments with 2,4 and 8 co-located instances using the above budgets for
each instance. We ran 4 Spark workloads (PR, LinR, LogR and CC) in the 4 and 8
GB / core scenario and 2 Giraph workloads (PR, CDLP) in the 8 and 16 GB / core
scenario. We ran Giraph under 16 GB / core, because it is more memory intensive
than Spark. We reported interference with single instance, execution breakdown
(GC, S/D, I/O), user and CPU utilization, CPU cycles and average throughput.
We also included a cost estimation of the experiments in several public clusters to
show that decreasing GC and S/D helps utilizating monetary budgets for renting
servers more effectively.

Our experimental results showed that reducing GC and S/D for Spark reduces
execution time and increases the effective CPU utilization by the applications
threads, where in Giraph that assumption is not confirmed. Furthermore, decreas-
ing GC and S/D allows a higher number of co-located instances to be executed
in the server, because of lower memory per instance needs. Overall, our analysis
showed that high CPU utilization does not always mean that useful work is done
by the CPU. Specificaly for managed big data frameworks like Spark and Giraph a
lot of CPU cycles are wasted on GC and S/D and even increasing H1 by increasing
memory-per-core does not guarantee optimal execution.

59

60 CHAPTER 7. CONCLUSION

Bibliography

[1] Marcelo Amaral, Jordà Polo, David Carrera, et al. Performance character-
ization of spark workloads on shared numa systems. In 2018 IEEE Fourth
International Conference on Big Data Computing Service and Applications
(BigDataService), pages 41–48. IEEE, 2018.

[2] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott
Shenker. Can far memory improve job throughput? In EuroSys 2020, Her-
aklion, Greece. Association for Computing Machinery, April 2020.

[3] Amazon. Aws pricing calculator. https://calculator.aws/#/, June 2023.

[4] Apache. Graphx. https://spark.apache.org/graphx/.

[5] Apache. Mllib. https://spark.apache.org/mllib/.

[6] Apache. Building spark (spark 3.4.0 - 2023 update). https://spark.apache.
org/docs/latest/building-spark.html, April 2023.

[7] Apache. Monitoring and instrumentation (spark 3.4.0 - 2023 update). https:
//spark.apache.org/docs/latest/monitoring.html, April 2023.

[8] Apache. Rdd programming guide (spark 3.4.0 - 2023 update). https://

spark.apache.org/docs/latest/rdd-programming-guide.html", 2023.

[9] Apache. Spark configuration (spark 3.4.0 - 2023 update). https://spark.

apache.org/docs/latest/configuration.html, April 2023.

[10] Apache. Tuning spark (spark 3.4.0 - 2023 update). https://spark.apache.
org/docs/latest/tuning.html, April 2023.

[11] Omar Batarfi, Radwa El Shawi, Ayman G Fayoumi, Reza Nouri, Seyed-
Mehdi-Reza Beheshti, Ahmed Barnawi, and Sherif Sakr. Large scale graph
processing systems: survey and an experimental evaluation. Cluster Comput-
ing, 18:1189–1213, 2015.

61

62 BIBLIOGRAPHY

[12] Wen-Yan Chen, Ke-Jiang Ye, Cheng-Zhi Lu, Dong-Dai Zhou, and Cheng-
Zhong Xu. Interference analysis of co-located container workloads: a per-
spective from hardware performance counters. Journal of Computer science
and Technology, 35:412–417, 2020.

[13] Yue Cheng, Ali Anwar, and Xuejing Duan. Analyzing alibaba’s co-located
datacenter workloads. In 2018 IEEE International Conference on Big Data
(Big Data), pages 292–297. IEEE, 2018.

[14] Yue Cheng, Zheng Chai, and Ali Anwar. Characterizing co-located datacenter
workloads: An alibaba case study. In Proceedings of the 9th Asia-Pacific
Workshop on Systems, pages 1–3, 2018.

[15] Wang et al. Panthera: Holistic memory management for big data processing
over hybrid memories. In PLDI 2019: Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
2019. https://dl.acm.org/doi/pdf/10.1145/3314221.3314650.

[16] Facebook. Facebook’s new front-end server design deliv-
ers on performance without sucking up power. https://

engineering.fb.com/2016/03/09/data-center-engineering/

facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/.

[17] Google. Google cloud platform pricing calculator. https://cloud.google.

com/products/calculator#id=, 2023.

[18] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao,
and Yungang Bao. Who limits the resource efficiency of my datacenter: An
analysis of alibaba datacenter traces. In Proceedings of the International Sym-
posium on Quality of Service, pages 1–10, 2019.

[19] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau
Prat-Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan
Sundaram, Michael Anderson, et al. Ldbc graphalytics: A benchmark for
large-scale graph analysis on parallel and distributed platforms. volume 9,
pages 1317–1328. VLDB Endowment, 2016.

[20] Tao Jiang, Qianlong Zhang, Rui Hou, Lin Chai, Sally A Mckee, Zhen Jia,
and Ninghui Sun. Understanding the behavior of in-memory computing work-
loads. In 2014 IEEE International Symposium on Workload Characterization
(IISWC), pages 22–30. IEEE, 2014.

[21] Iacovos G. Kolokasis, Anastasios Papagiannis, Polyvios Pratikakis, Angelos
Bilas, Foivos Zakkak, Giannos Evdorou, Shoaib Akram, and Christos Kozani-
tis. Teraheap: Reducing memory pressure in managed big data frameworks.
In ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada. Association
for Computing Machinery, March 2023.

BIBLIOGRAPHY 63

[22] Microsoft. Microsoft azure pricing calculator. https://azure.microsoft.

com/en-us/pricing/calculator/, 2023.

[23] Yandong Wang Li Zhang Min Li, Jian Tan and Valentina Salapura. Spark-
bench: A spark benchmarking suite characterizing large-scale in-memory data
analytics. In Cluster Computing 20, 2575-2589.

[24] Oracle. Java platform se 8. https://github.com/openjdk/jdk8, 2014.

[25] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-
Gon Chun. Making sense of performance in data analytics frameworks. In
12th {USENIX} symposium on networked systems design and implementation
({NSDI} 15), pages 293–307, 2015.

[26] RedHat. Introduction to cgroups. https://access.redhat.com/

documentation/en-us/red_hat_enterprise_linux/6/html/resource_

management_guide/ch01.

[27] RedHat. Setting the heap to 80% of total dram in cgroup con-
tainers. https://developers.redhat.com/articles/2023/03/07/

overhauling-memory-tuning-openjdk-containers-updates, 2023.

[28] Ibrahim Abdelaziz Sherif Sakr, Faisal Moeen Orakzai and Zuhair Khayyat.
Large-scale graph processing using apache giraph (1st ed.). springer publishing
company, incorporated.

[29] Esoteric Software. Kryo-serializer. https://github.com/

EsotericSoftware/kryo, 2013.

[30] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir
Gogia, Long Cheng, et al. Twine: A unified cluster management system
for shared infrastructure. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, pages 787–803, 2020.

[31] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang,
Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang,
and Dimitrios Skarlatos. Tmo: Transparent memory offloading in datacen-
ters. In ASPLOS ’22, Lausanne, Switzerland. Association for Computing
Machinery, February 2022.

[32] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and
Ion Stoica. Apache spark: A unified engine for big data processing. In Com-
munications of the ACM. Association for Computing Machinery, November
2016.

	90606f9df315ef7299daffd8562d1fbb36bead62a70a8917ee821a9bfa2304f4.pdf
	3d020770bd0ab300def62309746624e2c78c3f76474f7ae633615d8075bb3a44.pdf
	Untitled

	90606f9df315ef7299daffd8562d1fbb36bead62a70a8917ee821a9bfa2304f4.pdf

