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Περίληψη

Οι επιδημίες έχουν υπάρξει μια τεράστια ανησυχία για την παγκόσμια υγεία. Όμως από τον 14ο
αιώνα μέχρι τώρα έχουν γίνει πολλές ανακαλύψεις για τον τρόπο που λειτουργούν. Ειδικότερα,
όταν εισήχθησαν μαθηματικές μέθοδοι ώστε να υποστηρίξουν τα δεδομένα.
Στα τέλη του 2019, ο ιός SARS-CoV-2 ή αλλιώς Covid-19 ξεκίνησε να εξαπλώνεται σε όλο τον κό-
σμο. Πολύ σύντομα, ο αριθμός των μολυσμένων που εμφάνισαν συμπτώματα καθώς και οι βαριά
άρρωστοι συνέτριψαν το σύστημα υγείας σε πολλές χώρες. Ακόμη αυτός ο ιός οδήγησε σε πάνω
από 4 εκατομμύρια θανάτους μέχρι τον Ιούλιο του 2020. Αυτή η πανδημία είχε τρομερές επιπτώ-
σεις στην παγκόσμια οικονομία λόγω της αύξησης της ανεργίας, της μείωσης του ειδοδήματος, τις
διαταραχές σε επιχειρήσεις.
Οι υπάλληλοι της δημόσιας υγείας χρησιμοποιούν επιδημιολογικά μοντέλα για την παρακολούθη-
ση ασθενειών και έρευνα για πιθανές εξάρσεις καθώς και για παρατηρητική μελέτη, προκειμένου
να εντοπιστούν οι παράγοντες κινδύνου και να εφαρμοστούν μέτρα ελέγχου της νόσου. Παρόλο
που τα δεδομένα είναι σχεδόν πάντα διαθέσιμα από εμφανιζόμενες επιδημίες, είναι συχνά ελλι-
πή λόγω ανεπαρκούς αναφοράς. Συγκεκριμένα, για την επιδημία Covid-19 υπάρχουν ολοένα και
περισσότερες ενδείξεις ότι μέρος της ταχείας εξάπλωσης αυτού του ιού οφείλεται σε ασυμπτωματι-
κές λοιμώξεις. Λόγω αυτής της έλλειψης αξιόπιστων δεδομένων, χρησιμοποιήθηκαν μαθηματικά
μοντέλα και προσομοιώσεις υπολογιστών για την εκτέλεση θεωρητικών πειραμάτων για την εκτί-
μηση των παραμέτρων του μηχανισμού μετάδοσης και της εξάπλωσης της νόσου. Επιπλέον, τέτοια
πειράματα μπορεί να είναι χρήσιμα στη σύγκριση των αποτελεσμάτων των προληπτικών μέτρων,
όπως η κοινωνική αποστασιοποίηση ή η καραντίνα.
Ένα από τα πιο γνωστά και επιτυχή επιδημιολογικά μοντέλα είναι το μοντέλο SIR, τα αποτελέσμα-
τα του οποίου είναι παρόμοια με αυτά που παίρνουμε χρησιμοποιώντας πραγματικά δεδομένα. Ο
σκοπός αυτής της εργασίας είναι η αναλυτική και αριθμητική μελέτη ενός γενικευμένου SIR μοντέ-
λου το οποίο περιλαμβάνει την κλάση των ασυμπτωματικών, και η σύγκριση των αποτελεσμάτων
του με τα πραγματικά δεδομένα για τον Covid-19 από την Ελλάδα και άλλες χώρες.
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Abstract

Epidemic outbreaks have been a major concern in public health throughout history. However from
the 14th century till now there have been a lot of discoveries about them. Especially when mathe-
matical methods were introduced to statistically support the data.
In late 2019 SARS-CoV-2 virus, or Covid-19 started spreading around the world. Soon after the
number of symptomatically infected and severely ill individuals overwhelmed the medical system
in many countries. It also lead to more than 4 million deaths by July 2020. This pandemic also
had severe consequences in the global economy due to disruption in manufacturing and services,
income reductions and rize of unemployment.
Public health officials use epidemiological models for disease surveilance and the investigation of
outbreaks, along with observational studies, in order to identify risk factors and implement disease
control measures. Although data are almost always available from occuring epidemics, they are
often incomplete due to underreporting. In particluar, for the Covid-19 epidemic there is mounting
evidence that some of the rapid spread of this virus has been driven by asymptomatic infections.
Due to this lack of reliable data mathematical modeling and computer simulations have been used
to perform theoretical experiments to estimate the parameters of the transmission mechanism and
the spread of the disease. Moreover, such experiments may be useful in comparing the effects of
preventive measures, such as social distancing or quarantine.
A well known epidemical model is the SIR model, as it gives results that are similar with the real
data.
The aim of this thesis is the analytical and computational study of an extended SIR model which
includes the class of asymptomatic individuals and compare its predictions with real Covid-19 data
from Greece and elsewhere.
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Chapter 1

Introduction

1.1 Epidemiology
Epidemiology is the study and analysis of the distribution and determinants of health-related events
in specified populations, and the application of this study to the control of health problems. The
word epidemiology comes from the Greek words ‘epi’,‘demos’ and ‘logos’, meaning ‘upon’, ‘peo-
ple’ and ‘study’, respectively, in other words, the study of ‘what is upon a population’. The math-
ematical aspect of Epidemiology is creating a model that can project how an infectious disease
progresses with time. This is a very useful tool because it helps to better understand the infection
and to make sure that the right interventions are being made.
The Greek physicist Hippocrates was the first epidemiologist,suggesting that a disease has a logic
behind it and that there is a relation between the disease, its spread and the environment. In the 16th
century an Italian doctor named Girolamo Fracastoro was the first one to propose that the particles
which cause a disease are alive. He also promoted that personal and environmental hygiene help to
prevent a disease. Not long after that physician Quinto Tiberio Angelerio published a manual with
57 rules that help to prevent a disease such as social distancing and washing produce.
In the 19th century John Snow, known as the father of epidemiology, investigated the causes of
cholera epidemics. He used chlorine to clean the water and he managed to end the outbreak. This
was a major event in the history of public health and it was the fist time that epidemiology helped to
shape public health policies around the world. The early 20th century was the first time that math-
ematical methods were used in epidemiology, adding statistical support to the field, by Ronald
Ross, Janet Lane–Clayton, Anderson, Gray, McKendrick, and others. Also at that time epidemiol-
ogists extended their methods to noninfectious diseases such as cancer, proving the suspicion that
smoking was linked to lung cancer. The latest epidemic outbreak still going on is the Coronavirus
disease.

1.2 Covid-19
The coronavirus disease,or Covid-19, is an infectious disease, caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) that started infecting people in December 2019. The
first confirmed case was in Wuhan, China and soon after it spread all over the world, making it
an ongoing pandemic. There are several symptoms but the most common ones are fever, cough,
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2 CHAPTER 1. INTRODUCTION

fatigue, breathing difficulties, and loss of smell and taste. However, there are several cases where
the infected person does not show any symptoms but is still able to spread the disease.
According to [12] from the people that do show symptoms about 81% develop mild symptoms,
14% develop severe symptoms and 5% develop critical symptoms. At least a third of the people
who are infected don’t develop any notable symptoms. The symptoms begin to show between 1 to
14 days after the exposure and they can last for more than 2 weeks in a lot of cases.
As of July 2021 there have been 185 million confirmed cases and 4 million deaths worldwide.
There have been several lockdowns worldwide in order to contain the outbreak. Vaccines against
the SARS-CoV-2 virus were granted marketing authorisation and use in the EU and USA in mid
2020 with the purpose of ensuring public health and controlling the epidemic.

1.3 Infection and Recovery rate
We will study briefly the main compartmental model called SIR. We divide the population into
three groups: Susceptible, Infected and Recovered individuals. In order to understand how it came
about we shall make the following, usual among epidemiological models, assumptions:

• After contacting the infection a person either dies or develops immunity to the disease

• The rate of infection is proportional to the number of contacts between Infected and Suscep-
tible individuals

• All individuals are equally vulnerable

• The total population is stable in the sense that we ignore births, but not deaths, and the latter
are included in the total

• If the total population is N, then each individual makes βN contacts per unit time

To find the infection and recovery rates, using the above assumptions, we argue as follows:
We denote by S(t) the susceptible individuals and by I(t) the infected individuals, with t denoting
time.
Firstly for the infection rate, we already know the number of contacts that each individual makes,
but we also need the probability of an Infected person tomake contact with a Susceptible individual.
This probability is p = S/N . Therefore, the number of new infections per unit time per infected
individual is βN S

N
I = βSI .

The calculation of the recovery rate is much simpler because it is not affected by the contacts
someone makes, therefore, it is simply αI . The important thing now is to understand what this
means. Assume that a group of people got infected at time t = 0 and u(s) are still infected at time
t = s. If a fraction α of them recovers per unit time then the equation for the recovery is u′ = −αu,
or, if we integrate,

u(s) = u(0)e−αs ⇒ u(s)

u(0)
= e−αs.

This means that the time that an individual remains infected follows the exponential distribution
with average value ∫ ∞

0

se−αsds =
1

α
.
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Therefore, the infection rate is the inverse of the recovery period.

1.4 The basic reproduction number
Τhe basic reproduction number, R0, is the expected number of secondary cases produced by a
single infection in a completely susceptible population. Therefore

R0 ∝ (
infection
contact

)(
contact
time

)(
time

infection
),

which means that R0 is a dimensionless number and not a rate. Another way of writing the expres-
sion for R0 is

R0 = τ ∗ c ∗ d,

where τ is the transmissibility, c is the average rate of contact between susceptible and infected
individuals and d is the duration of infectiousness.
In simpler models, R0 is usually calculated easily through the equations, but this is not the case for
all models. If we have a system of equations

x′
i = fi(x) = Fi(x)− Vi(x), 1 ≤ i ≤ m,

with m the number of components that we consider and Fi(x) is the rate of new infections in
compartment i, while Vi(x) is the rate of transfer of individuals in i minus the rate of transfer of
individuals out of i. We define

Fij = [
∂Fi

∂xj

(x0)] and Vij = [
∂Vi

∂xj

(x0)] with 1 ≤ i, j ≤ m.

Then,
R0 = ρ(FV −1),

where ρ(M) denotes the spectral radius of a matrix M.
There is a second method for calculating R0. If we have a system of equations x′

i = fi(x) ,
1 ≤ i ≤ m, we focus on the equations for the population groups that have the disease, whether
that is Asymptomatics, Symptomatics, Infected, Exposed, etc. Let’s assume that in our example
indicators 2 to m − 1 are the ones that we focus on. We calculate the Jacobian matrix for these
equations

Jij = [ ∂fi
∂xj

], where 2 ≤ i, j ≤ m− 1.

If we set the determinant of this matrix equal to zero, this gives us the crucial value R0 = 1.
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1.5 Ruth-Hurwitz stability criteria
The Ruth-Hurwitz criteria is a helpful tool that will be used in the upcoming chapters to determine
the sign of the roots of a polynomial equation. We will employ this lemma for second and third
degree polynomials.

Lemma 1.5.1.

1. The second-degree polynomial P (s) = s2 + α1s + α0 has both roots in the open left half
plane (and the system with characteristic equation P (s) = 0 is stable) if and only if both
coefficients satisfy αi > 0

2. The third-degree polynomial P (s) = s3 +α2s
2 +α1s+α0 has all roots in the open left half

plane if and only if α2, α0 are positive and α2α1 > α0



Chapter 2

The SIR Model

2.1 The basic model
One of the first successes of Mathematical Biology was the introduction of a model the results
of which agreed with the behaviour of epidemics.This model is the so-called SIR model and was
proposed by Kermack and McKendrick in 1927. In the SIR model the total population is divided
into three groups, Susceptible S(t), those who are capable of catching the disease, Infected I(t),
those who have the disease, and Recovered R(t), those who have had the disease and are now
immune to it. We shall assume that

• Infected individuals can transfer the disease to Susceptible individuals with a rate propor-
tional to the the contacts between those two groups

• Infected individuals recover with a rate proportional to their number

• We don’t have any deaths due to the disease

• The total population is stable, in the sence that births are neglected

Schematically the so called compartments of the SIR model and the transfer of individuals between
them are shown below:

5
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Our model is then
dS

dt
= −βSI, (2.1.1)

dI

dt
= βSI − αI, (2.1.2)

dR

dt
= αI. (2.1.3)

Here, β is the infection rate, α is the recovery rate, and the ratio ρ = α
β
is the relative recovery rate.

The model is supplemented with the initial conditions

S(0) = S0 > 0, I(0) = I0 > 0 and R(0) = 0.

The fact that the population is stable, is also clear from the model equations because if we add
equations (2.1.1)-(2.1.3) we have

(S + I +R)′ = 0 ⇒ N ′ = 0 ⇒ N = S0 + I0.

Here and in the sequel, prime will denote the derivative with respect to the variable t. From the
first equation it is clear that the number of susceptible individuals decreases with time. From the
second equation we see that the infected increase as long as S > α/β. If the initial number of
susceptibles is smaller than α/β then the infection dies out since

S0 < α/β ⇒ N − I0 < α/β ⇒ I0 >
α

β
(R0 − 1), (2.1.4)

where
R0 =

βN

α
=

1

ρ
N,

is the basic reproduction number. Using the previous definition of R0 we can see that for the SIR
model β = τc and d = 1/α. From the equation (2.1.4) it is obvious that we have a very important
phenomenon happening: if R0 > 1 the infection will spread, while if R0 < 1 the infection will die
out.
Since S(t) is a positive, decreasing function this means that the limit S∞ = limt→∞ S(t) exists.
Similarly R′(t) ≥ 0, therefore R(t) is an increasing function but because R ≤ N always, we have
that the limit R∞ = limt→∞ R(t) exists as well.Lastly, because the population is stable at all times
I(t) = N −R(t)− S(t), so that the limit I∞ = limt→∞ I(t) also exists.
If we combine the equations (2.1.1) and (2.1.3) we get that

dS

dR
= −β

α
S,

and with integration by parts we have

S = S0 exp(−
β

α
R) ≥ S0 exp(−

β

α
N),

which proves us that S∞ > 0, meaning that the infection will not die out due to the lack of suscep-
tibles.
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We will now deal with the equation (2.1.1) and (2.1.2) only since the Recovered individuals can
be found through the Susceptible and Infected. Every point of the I=0 axis is an equilibrium point
for the system (2.1.1),(2.1.2). Βecause of that, the only equilibrium that can occur is a disease free
equilibrium. The phase plane between I and S is

dI
dt
dS
dt

=
βSI − αI

−βSI
= −1 +

α

βS
⇒ I(S) = (N − S) +

α

β
log

S

S0

The solution curves in the SI phase plane are described by the equation ϕ(S, I) = S+I−ρ logS =
constant and are shown in 2.1. Since S(t) is decreasing all the curves are going from right to left.

Figure 2.1: SIR phase plane

As we can see from Figure 2.1, the Infected individuals reach a maximum when S = ρ. There-
fore we have that

Imax = (N − ρ) + ρ log
ρ

S0

.

However, from Figure 2.1 something really important can also be observed. If the initial condition
S0 satisfies S0 < ρ then the epidemic cannot occur, since I(t) goes to zero. However, if S0 > ρ
the number of infectives increases until S gets its maximum value at S = ρ and then falls to zero.
Since I∞ = 0, we have that S∞ = N − R∞ and by using the expresion for S and R we get that
S∞ is a root of the equation

z = S0exp(−
β

α
(N − z)).

If f(z) = S0 exp(−β
α
(N − z)) − z, then f(0) = S0exp(−β

α
N) > 0, and f(N) = S0 − N < 0

since N = S0 + I0 > S0. From the intermediate value theorem we see that there exist a root
z∗ of the equation f(z) = 0 in the interval (0, N). Moreover, f ′(z∗) = β

α
z∗ − 1 and f ′′(z) =

β2S0

α2 exp(−β
α
(N − z)) > 0. And since f(N) < 0 there is exactly one root and z∗ < ρ = α/β.

If we combine equations (2.1.1) and (2.1.2) we have that (S + I)′ = −αI < 0 meaning that it is a
decreasing function. Therefore, the limit limt→∞(S+I)(t) exists and limt→∞(S+I)′(t) = 0. This
means that I∞ = limt→∞ I(t) = 0, and limt→∞(S + I)(t) = limt→∞ S(t) = S∞. If we integrate
the sum of (2.1.1) and (2.1.2) we get

α

∫ ∞

0

I(t)dt = −
∫ ∞

0

(S + I)′(t) = S0 + I0 − S∞ = N − S∞.



8 CHAPTER 2. THE SIR MODEL

From (2.1.1) we have S′

S
= −βI ⇒ ln(S)′ = −βI , which gives

ln
S0

S∞
= β

∫ ∞

0

I(t)dt =
β

α
(N − S∞) = R0(1−

S∞

N
).

Therefore, we have
ln

S0

S∞
= R0(1−

S∞

N
).

This is a relationship between the basic reproduction number and the final size of the disease.
Knowing this relation helps us find how many individuals will not get sick. This equation de-
fines unambiguously S∞. Indeed, let us define the function g(x) = ln S0

x
− R0(1 − x

N
). Then

limx→0+ g(x) > 0 and g(N) < 0.Therefore we have at least one solution between 0 and N.
g′(x) = R0

N
− 1

x
which is zero if x = N

R0
. If R0 ≤ 1 then g′(x) < 0 if 0 < x < N

R0
so we

have only one solution. If R0 > 1, then g is decreasing in (0, N
R0
) and increasing in ( N

R0
, N), there-

fore once again there is only one point where g(x) = 0, and this is S∞. In both cases we get that
S∞ < N

R0
and g( S0

R0
) = lnR0 − R0 +

S0

N
≤ lnR0 − R0 + 1 < 0, since lnx < x+ 1 if x > 0. This

gives us a simpler estimate

S∞ <
S0

R0

.

The Jacobian matrix along the axis I = 0 is

J =

(
0 −βS
0 βS − α

)
.

The eigenvalues of this matrix are the roots of the equation

λ2 + (α− βS)λ = 0.

One eigenvalue is zero. IfR0 < 1 then βN < α so then βS < α. The other eigenvalue is negative.
This means that the disease-free equilibrium is stable, but not asymptomatically stable. We recall
that an equilibrium is(locally) stable if initial conditions that start near an equilibrium point stay
near that equilibrium point and an equilibrium point is (locally) asymptotically stable if it is stable
and, in addition, the state of the system converges to the equilibrium point as time increases.
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2.2 The SIR model with deaths
The previous version of the SIR model did not take into account deaths due to the disease. In this
section the model will be slightly altered to include deaths. To do that, we assume:

• Infected individuals may die after a period of time with mortality rate δ

• We will not count dead individuals as part of the total population, making in not stable

• Because of the fact that the population is not stable, it makes sence to have a population-
dependent infection rate

With these assumptions in mind we consider the model

S ′ = −β(N)SI, (2.2.1)

I ′ = β(N)SI − (α + δ)I, (2.2.2)

R′ = αI. (2.2.3)

If we add those three equations we get

N ′ = −δI. (2.2.4)

The original population is N(0) = N0 = S0 + I0, and N(t) = S(t) + I(t) + R(t) for every t. In
this model the basic reproduction number is

R0 =
N0β(N0)

α + δ
.

Aswe can see from equation (2.2.2), in order for the infection to spread we need β(N)S−(α+δ) >
0. If we combine equations (2.2.1) and (2.1.2) we see that∫ ∞

0

I(s)ds =
1

α + δ
N0 −

1

α + δ
S∞.

Also, from equation (2.2.4) we have

N∞ = N0 − µ

∫ ∞

0

I(s)ds ⇒ N∞ =
α

α + δ
N0 +

δ

α + δ
S∞.

In analogy with the basic SIR model we can find the relationship between the basic reproduction
number and the final size of the disease. From (2.2.1) we have S′

S
= −β(N)I , which by integratiοn

gives

ln
S0

S∞
= −

∫ ∞

0

βN(t)I(t)dt < −βN(0)

∫ ∞

0

I(t)dt =
βN(0)

α + δ
N0 −

βN(0)

α + δ
S∞.

Therefore we have
ln

S0

S∞
< R0 −

βN(0)

α + δ
S∞ = R0(1−

S∞

N0

).
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This is very similar to the result that we got in the previous model, the only differences are that we
have an inequality instead of an equality, and we use the initial total population because this model
is not stable. As with the SIR model we also have the simpler estimate

S∞ <
S0

R0

.

In this model we have only one equilibrium which is the disease free one since every point in the
I = 0 axis is an equilibrium point for the system (2.2.1)-(2.2.2). Along the axis I = 0 the Jacobian
matrix is

J =

(
0 −β(N)S
0 β(N)S − (α + δ)

)
.

The eigenvalues of this matrix are the roots of the equation

λ2 + (α + δ − β(N)S)λ = 0.

One eigenvalue is zero. If R0 < 1 then N0β(N0) < α + δ and so β(N)S < α + δ. Since the
population is decreasing with time, then the second equilibrium is negative. This means that the
disease-free equilibrium is stable, but not asymptomatically stable.
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2.3 The SIR model with vaccination
In this section, a version of the SIR model with vaccination,births and deaths will be introduced.
So we assume

• Susceptible individuals can get vaccinated

• All individuals are susceptible at birth

• Individuals in each population group may die from natural causes

• The birth and death rate are equal

We have the model
S ′ = −βSI + µ(N − S)− ϕS, (2.3.1)

I ′ = βSI − (α + µ)I, (2.3.2)
R′ = αI + ϕS − µR. (2.3.3)

As we can see from the equations N ′ = (S + I + R)′ = 0 which means that the population is
stable. For the system (2.3.1)-(2.3.2) we have two equilibrium points. The first one is the disease
free equilibrium (S∗, I∗) = ( µN

µ+ϕ
, 0) and the second one is the endemic equilibrium point (S∗, I∗) =

(α+µ
β

, µN
µ+α

− µ+ϕ
β

).
The basic reproduction number for this model is

R0 =
µβN

(µ+ ϕ)(µ+ α)
.

The Jacobian matrix at the point ( µN
µ+ϕ

, 0) is

J =

(
−µ− ϕ −βµN

µ+ϕ

0 βµN
µ+ϕ

− (α + µ)

)
.

The eigenvalues of this matrix are the roots of the equation

λ2 + λ(α + µ− βµN

µ+ ϕ
+ µ+ ϕ) + (α + µ)(µ+ ϕ)− βµN = 0.

If R0 < 1 then βµN < (µ + ϕ)(µ + α) so all the coefficients are positive and therefore all roots
have negative real parts. This means that the disease-free equilibrium is stable.
The Jacobian matrix at the point (α+µ

β
, µN
µ+α

− µ+ϕ
β

) is

J =

(
−βµN

µ+α
−(α + µ)

βµN
µ+α

− (µ+ ϕ) 0

)
.

The eigenvalues of this matrix are the roots of the equation

λ2 +R0(µ+ ϕ)λ+ (µ+ α)(µ+ ϕ)(R0 − 1) = 0.

If R0 > 1 then all the coefficients are positive and therefore all roots have negative real parts. This
means that the endemic equilibrium is also stable.
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Chapter 3

The SAIR model

3.1 Introduction of the model
In Covid-19 and many other diseases there are infected individuals that never show any symptoms,
collectively called Asymptomatics. In this section we will introduce a new model, similar to the
SIR model that includes this new group of individuals. We assume that:

• We have four groups of individuals, the Susceptibles, Asymptomatics, Infected and Recov-
ered

• Both Infected and Asymptomatics can spread the disease with the same infection rate

• A fraction of Asymptomatics become infected after some time

• Both Asymptomatic and Infected recover with the same rate

These assumptions are shown schematically below: This leads us to the model

dS

dt
= −βS(I + A), (3.1.1)

dA

dt
= βS(I + A)− (γ + α)A, (3.1.2)

dI

dt
= γA− αI, (3.1.3)

dR

dt
= α(I + A). (3.1.4)

13
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The population in this model is stable. The only equilibrium point is the point (N, 0, 0, 0). To find
R0 we need to calculate the determinant of the Jacobian matrix for the Asymptomatics and Infected
in the equilibrium point and see where it is zero. This gives us that R0 = βN

α
. For this model we

may only deal with the first three groups of people since the Recovered can be found from the other
ones.
It is important to note that in this model, if we set P = A+ I , then this combined population group
has the exact same behaviour as the Infected in the basic SIR model. This means that

P (S) = (N − S) +
α

β
ln

S

S0

,

and similarly we get the largest value for this combined population group when S = α
β
. It is equal

to
Pmax = (N − α

β
) +

α

β
ln

α

βS0

.

If we combine (3.1.1),(3.1.2) and (3.1.3) we have that

S∞ −N =

∫ ∞

0

(S + A+ I)′(t)dt = −α

∫ ∞

0

(A+ I)(t)dt.

Equation (3.1.1) gives us that S′

S
= −β(A+ I), so that

ln
S0

S∞
= β(N − S∞) = R0(1−

S∞

N
).

As with the SIR model the simpler estimate also holds:

S∞ <
S0

R0

.

The Jacobian matrix at the point (N, 0, 0, 0) is

J =

0 −βN −βN
0 βN − (γ + α) βN
0 δ −α

 .

The eigenvalues of this matrix are the roots of the equation

λ3 − λ2(R0 − 1− (γ + α)− λ(R0 − (γ + α) + γR0) = 0.

If R0 < 1 then all the coefficients are positive and since the constant term is zero it satisfies the
Ruth–Hurwitz criteria and therefore all roots have negative real parts. This means that the disease-
free eigenvalue is stable.



3.2. THE SEIR MODEL 15

3.2 The SEIR model
In this section we will study a different model, in which we will use Exposed individuals instead
of Asymptomatics. We make the following assumptions:

• Newborns are Susceptible and the birth rate is µN

• There are deaths in each group due to natural causes

• Contacts of Suscetibles with Infected individuals lead to exposure at a rate proportional to
the number of contacts

• Exposed individuals don’t spread the disease

• Infected individuals may die from the disease

With all that, the model is
dS

dt
= µ(N − S)− βSI, (3.2.1)

dE

dt
= βSI − (µ+ γ)E, (3.2.2)

dI

dt
= γE − (µ+ δ + α)I, (3.2.3)

dR

dt
= αI − µR, (3.2.4)

dD

dt
= δI. (3.2.5)

This model has two equilibrium points, the disease-free equilibrium (S∗, E∗, I∗, R∗) = (N, 0, 0, 0)
and the endemic equilibrium

(S∗, E∗, I∗, R∗) =

(
(µ+ γ)(µ+ δ + α)

βγ
,
µN

µ+ γ
+

µ(µ+ δ + α)

βγ
,

γµN

(µ+ γ)(µ+ δ + α)
− µ

β
,

γαN

(µ+ γ)(µ+ δ + α)
− α

β

)
We can find the basic reproduction number by taking the Jacobian matrix of the equations

(3.2.2)-(3.2.3) in one of the equilibrium points and set its determinant equal to zero. We have

R0 =
βγN

(µ+ γ)(µ+ α + δ)
.

The Jacobian matrix for the disease-free equilibrium is

J =

−µ 0 −βN
0 −(µ+ γ) βN
0 γ −(µ+ δ + α)

 .
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The eigenvalues of this matrix are the roots of the equation

λ3 + λ2(µ(2µ+ γ + δ + α)) + λ(µ(1−R0)) = 0.

If R0 < 1 then all the coefficients are positive and since the constant term is zero it satisfies the
Routh-Hurwitz criteria and therefore all roots have negative real parts. This means that the disease-
free equilibrium is stable.
The Jacobian matrix for the endemic equilibrium is

J =

 −µ− β( γµN
(µ+γ)(µ+δ+α)

− µ
β
) 0 − (µ+γ)(µ+δ+α)

γ

β( γµN
(µ+γ)(µ+δ+α)

− µ
β
)− (µ+ γ) (µ+γ)(µ+δ+α)

γ

0 γ −(µ+ δ + α)

 .

The eigenvalues of this matrix are the roots of the equation

λ3 + λ2(2µ+ γ + δ + α) + λ(2µ+ γ + δ + α)(2µ+R0) + µ(R0 − 1) = 0.

If R0 > 1 then all the coefficients are positive and also the product of the coefficient of λ and λ2

is greater than the constant term. Therefore all roots have negative real parts. This means that the
endemic equilibrium is stable.

3.3 A general model
In this section we will introduce a very general model that in some cases can be simplified to be
SIR or the SAIR model that we saw earlier.

• Firstly, we assume that both Infective and Asymptomatic individuals can infect Susceptible
individuals, but this time with different infection rates

• We have included a probability as to whether a person who gets the disease will show symp-
toms or not

• There are different recovery rates for Asymptomatic and Infected individuals

• Lastly we assume that only Infected people may die from the disease

The model is shown schematically below: With these assumptions, we now analyse the model
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dS

dt
= − β

N
S(I + rA), (3.3.1)

dA

dt
= p

β

N
S(I + rA)− νA, (3.3.2)

dI

dt
= (1− p)

β

N
S(I + rA)− (α + δ)I, (3.3.3)

dR

dt
= νA+ αI, (3.3.4)

dD

dt
= δI. (3.3.5)

As we can see if r = 0, p = 0 and ν = 0 then we have the SIR model.
This model has only one equilibrium point and it is (N, 0, 0, 0, 0), and at this point the Jacobian
matrix for the Asymptomatic and Infeted is

J =

(
pβr − ν pβ
(1− p)βr (1− p)β − (α + δ)

)
.

If we set the determinant of this matrix to be zero we get that

R0 =
(α + δ)pβr + ν(1− p)β

ν(α + δ)
.

If we combine (3.3.1)-(3.3.3) we have that (S +A+ I)′(t) = −νA− (α+ δ)I and by integration
we get

S∞ −N = −ν

∫ ∞

0

A(t)dt− (α + δ)

∫ ∞

0

I(t)dt. (3.3.6)

From (3.3.1) we have that S′

S
= − β

N
(I + rA) which gives us

ln
S0

S∞
=

β

N
(

∫ ∞

0

I(t)dt+ r

∫ ∞

0

A(t)dt). (3.3.7)

From (3.3.2) we get that

− ν

∫ ∞

0

A(t)dt = −A0 −
pβ

N

∫ ∞

0

S(I + rA)dt. (3.3.8)

and similarly from (3.3.3)

− (α + δ)

∫ ∞

0

I(t)dt = −I0 −
(1− p)β

N

∫ ∞

0

S(I + rA)dt. (3.3.9)

If we combine the equations (3.3.6),(3.3.8) and (3.3.9) we get∫ ∞

0

S(I + rA)dt =
N

β
(S0 − S∞).
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Now we can go back to the equation (3.3.7) and with the above equation it becomes

ln
S0

S∞
=

R0

N
(S0 − S∞) +

β

N
(

I0
α + δ

+
rA0

ν
).

But R0S0 + β( I0
α+δ

+ rA0

ν
) ≃ R0N , which means that in this model

ln
S0

S∞
≃ R0(1−

S∞

N
).

The simpler estimate S∞ < S0

R0
also holds in this case as well.

The Jacobian matrix at the first three groups is

J =

0 −βr β
0 pβr − ν pβ
0 (1− p)rβ (1− p)β − (α + δ)

 .

The eigenvalues of this matrix are the roots of the equation

λ3 − λ2[(α + δ + ν)(R0 − 1)− (α + δ)pβr

ν
− ν(1− p)β

α + δ
]− λ(ν(α + δ)(R0 − 1)) = 0

If R0 < 1 then all the coefficients are positive and because there isn’t a fixed term it satisfies the
Routh-Hurwitz criteria and therefore all roots have negative real parts. This means that the disease
free equilibrium is stable.

3.4 The dimensionless form of the model
To simplify the numerical calculations of this new model we derive its dimensionless form. The
variables S,A, I, R,D andN denote population, the variable β denotes (time · population)−1 and
the variables ν, α, δ have the dimension of time−1. The variables r and p are dimensionless.
Now that we have determined the dimensions of each variable we may transform them to non-
dimensional ones using S = Snew = S

N
and similarly for the sizes of the other compartments.

With these changes the model becomes

dS

dt
= −βS(I + rA)

dA

dt
= pβS(I + rA)− νA

dI

dt
= (1− p)βS(I + rA)− (α + δ)I

dR

dt
= νA+ αI

dD

dt
= δI



Chapter 4

Data Fitting

4.1 Estimating the model parameters
There are several studies concerning the values of the various parameters of the epidemiological
models discussed in the previous chapter. Here and for the remaining of this thesis we shall consider
two particular values for the infection rate β, namely, β = 0.52 and β = 1.12, corresponding to
time periods with or without social distancing or lockdown measures in effect. The recovery rates
both for Symptomatic and Asymptomatic are α = ν = 0.143 ≃ 1/7 for simplicity and the death
rate is δ = 0.056 ≃ 1/18. Lastly, for the variables p and r we will see later on some analysis on
which values are correct, but p is in [0, 1] and r in [0, 2].

4.2 The critical value R0 = 1

We have already seen that R0 = 1 is a critical value of the basic reproductive rate and that the
stability of the compartmental models discussed depend on R0. In this section we will use the
value for the parameters that we indicated above and we will see how R0 changes with r and p, for
each infection rate.

Figure 4.1: R0 for each infection rate
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As we can see from Figure 4.1 in order for R0 < 1, p needs to be in [0.5, 1] if β = 0.52, or in
[0.8, 1] if β = 1.12, and r needs to be in [0, 0.3] in both cases.
We will now look at the fraction of Infectives and the peak of the infection depending on the values
for r and p.

Figure 4.2: Peak of the infection

Figure 4.3: Fraction of Infectives

A careful observation of Figures 4.2 and 4.3 reveals that the positions of the contour lines match,
approximately, meaning that the value of R0 is a critical value both for the peak of the infection
and for the fraction of Infectives. Therefore, every time that R0 changes there is a drastic change
in the outbreak.
Also, from the colours of the above graphs we can see that ifR0 < 1, both the peak of the infection
and the fraction of Infectives is much smaller. This is an expected result since reducing the value
for R0 to be less than one, leads to the end of the infection.
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4.3 The Nelder-Mead Method
In order to apply our model we use real data fromOurWorldInData in several locations in the United
States and Greece in early Spring of 2020. We fit the number of infected and the number of dead
to our model by minimizing the sum of square residuals using the Nelder—Mead algorithm.
Nelder-Mead is a simplex method that begins with a randomly-generated simplex. With every
iteration it proceeds to reshape it, one vertex at a time, in order to achieve its optimal shape. In
order to see how this method works we will assume that we are in the n-dimensional space. This
simplex consists the points x1, x2, ..., xn+1, and the function we will try to minimize is f(x). The
algorithm will take the following steps with every iteration.

• Step 1
All the points need to be order such that the value of f in the first point is highest and the
value of f in the last point the lowest. We will denote the first(worst), second(second-worst)
and last(best) points as xh, xs, xl respectively.

• Step 2
We will compute the mean of all the points except the worst xh as c = 1

n

∑
i ̸=h xi.

• Step 3
We will begin the transformation by computing the reflected point as xr = c + α(c − xh),
where α is the reflection parameter and is usually equal to 1. If f(xs) > f(xr) > f(xl),
which means that xr is better than the second-worst point but not better than the best point,
we replace xh with xr in the simplex and we move to the next iteration.

• Step 4
If the reflected point xr happens to be better than the best point xl (f(xr) < f(xl)) we will
move a little bit more in the direction of xr from c in order to see if there is an even better
solution. The expanded point is xe = c+γ(xr−c), where γ is called the expansion parameter
and is usually 2.

• Step 5
We will then replace xh with the better of the two points: xe and xr in the simplex.

• Step 6
If the reflection point was worst than xs maybe the direction defined by xr is not the one
we should move. So we will need to contract our simplex using the contraction point xc =
c+ β(xh − c), where β is the contraction parameter and is usually 0.5.If f(xc) < f(xh) this
means that the contraction point is better than the worst point and we replace xh with xc in
the simplex.

• Step 7
If however f(xc) > f(xh) we will need to redefine the entire simplex. We will keep the
best point xl and we will define the other points using that. The j-th new point will be
xj = xl + δ(xj − xl), where δ is the shrinkage parameter and is usually 0.5. What we will
essentially be doing with the above definition, is moving each point in the simplex towards
the current best point, in the hope of converging onto the best neighbourhood.
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It is important to say that this last step is the most expensive because we have to replace multiple
points in the simplex. However it has been found that this transformation rarely needs to happen
in practice. Now, we will see a simple example of this method using the Python code down below.
As an example we compute the minimum of the function

f(x, y) = (a− x)2 + b(y − x2)2.

This is the Rosenbrock function or Rosenbrock’s banana function. This function is proved to have
a minimum in the point (a, a2) and is often computed for a = 1 and b = 100.

1 #!/usr/bin/python
2 # -*- coding: utf-8 -*-
3 class Vector(object):
4 def __init__(self, x, y):
5 """ Create a vector, example: v = Vector(1,2) """
6 self.x = x
7 self.y = y
8 def __repr__(self):
9 return "({0}, {1})".format(self.x, self.y)
10 def __add__(self, other):
11 x = self.x + other.x
12 y = self.y + other.y
13 return Vector(x, y)
14 def __sub__(self, other):
15 x = self.x - other.x
16 y = self.y - other.y
17 return Vector(x, y)
18 def __rmul__(self, other):
19 x = self.x * other
20 y = self.y * other
21 return Vector(x, y)
22 def __truediv__(self, other):
23 x = self.x / other
24 y = self.y / other
25 return Vector(x, y)
26 def c(self):
27 return (self.x, self.y)
28 # objective function
29 def f(point):
30 x, y = point
31 a=1; b=100
32 return (a-x)**2 +b*(y-x**2)**2
33 def nelder_mead(alpha=1, beta=0.5, gamma=2, maxiter=10):
34 # initialization
35 v1 = Vector(1.0, 1.0)
36 v2 = Vector(1.0, 0)
37 v3 = Vector(0, 1)
38 for i in range(maxiter):
39 adict = {v1:f(v1.c()), v2:f(v2.c()), v3:f(v3.c())}
40 points = sorted(adict.items(), key=lambda x: x[1])
41 b = points[0][0]
42 g = points[1][0]
43 w = points[2][0]
44 mid = (g + b)/2
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45 # reflection
46 xr = mid + alpha * (mid - w)
47 if f(xr.c()) < f(g.c()):
48 w = xr
49 else:
50 if f(xr.c()) < f(w.c()):
51 w = xr
52 c = (w + mid)/2
53 if f(c.c()) < f(w.c()):
54 w = c
55 if f(xr.c()) < f(b.c()):
56 # expansion
57 xe = mid + gamma * (xr - mid)
58 if f(xe.c()) < f(xr.c()):
59 w = xe
60 else:
61 w = xr
62 if f(xr.c()) > f(g.c()):
63 # contraction
64 xc = mid + beta * (w - mid)
65 if f(xc.c()) < f(w.c()):
66 w = xc
67 # update points
68 v1 = w
69 v2 = g
70 v3 = b
71 return b
72 print("Result of Nelder-Mead algorithm: ")
73 xk = nelder_mead()
74 print("Best poits is: %s"%(xk))

Running the Nelder–Mead code above produces
1 Result of Nelder-Mead algorithm:
2 Best poits is: (1.0, 1.0)
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Chapter 5

Comparison with real data

In this section we will compare numerically the SIR and the SAIRD model with real data from
Greece, California, Florida, New York and Texas, that track the cumulative number of cases and
deaths. The Python code that we used, is shown in the Appendix.
We have used different time periods in those location since the virus didn’t spread at the same time
everywhere. We assumed that the epidemic started with a single individual and no deaths, that is
we took I0 = 1. To determine the start date of the infection we included a free parameter Ts to
shift the data in time. There will obviously be differences on how well the model works in each
location because the real number of new cases is different from the ones that actually get announced,
meaning in some places it might be closer to the real number than others.
The data that we have used come from OurWorldInData and CDC. We use the cumulative number
of cases and deaths in each location and modify equation 2.1.2 and 3.3.3 slightly to reflect this fact.
We also plot the total Symptomatics and Asymptomatics for the SAIRD model, that determine the
peak of the infection.
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5.1 The SIR model

5.1.1 Greece
For Greece, we used data in the time period February 26, 2020 to April 5, 2020. In the first graph we
computed the SIRmodel with the initial parameter estimates being β = 1.12, α = 1.143,δ = 0.056,
Ts = 32.7.

Figure 5.1: SIR initial Greece

It is obvious that the difference between the real data and the result from the simulation is quite
big, meaning we need to use different parameters. In order to optimize that difference and find the
right parameters we will use the Nelder-Mead algorithm. This gives us the improved parameter
estimates β = 1.59382275, α = 1.43799552 and Ts = 10.04436537.

Figure 5.2: SIR final Greece

As we can see, the graph is now much closer to the real data now, and that means that we can use
this model with these parameters to predict the evolution of the disease.
In the next paragraph we use data from CDC for the total number og cases and deaths in four
populous states in the United States of America, specifically California, Florida, New York and
Texas for a time interval of 40 days after approximately March 1, 2020.
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5.1.2 United States of America
California

Figure 5.3: SIR initial California

Similarly with the data from Greece, we used the same original estimates and they are not
the best, and after we optimize them we have β = 1.99989353, α = 1.85249568 and Ts =
42.08582669.

Figure 5.4: SIR final California

These results are very close to the real data, so once again we can use them to study the disease in
the area.



28 CHAPTER 5. COMPARISON WITH REAL DATA

Florida

Figure 5.5: SIR initial Florida

In this data set we also used the same initial parameters, and the final ones areβ = 2.43894006,α =
2.28659767 and Ts = 41.06620599

Figure 5.6: SIR final Florida
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New York

Figure 5.7: SIR initial New York

Similar, with the other data sets we used the same initial parameters and we need to optimize
them. This gives us β = 1.2861537,α = 1.13089925 and Ts = 71.69888294.

Figure 5.8: SIR final New York
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Texas

Figure 5.9: SIR initial Texas

Lastly, wewill optimize the initial parameters in this data set too andwe haveβ = 2.81556726,α =
2.64593284 and Ts = 25.63889835.

Figure 5.10: SIR final Texas

5.2 The SAIRD model
We will now work on the SAIRD model for the same data sets and see the results that we get this
time. We will use some fit parameters δ = 0.056 and an initial estimation of p = 0.99 in all data
sets.
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5.2.1 Greece
As we did for the SIR model we will compute the SAIRD model with data in the time period
February 26, 2020 to April 5, 2020. In the first graph we computed the SIR model with the initial
parameter estimates being β = 2.3000, α = 1.75, ν = 0.143, r = 0.153 and Ts = 25. Similarly,

Figure 5.11: SAIRD initial Greece

the results are far different from the real data, so we need to change them. We will use the Nelder-
Mead algorithm again to find the best parameters, which are β = 3.3052, α = 1.5505, ν = 0.1269,
r = 0.0721, p = 0.9791 and Ts = 48.5611.

Figure 5.12: SAIRD final Greece

As we can see now the results are really close to the real data, and we can use this model to further
analyze this pandemic.
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5.2.2 United States of America
California

Figure 5.13: SAIRD initial California

Τhe initial parameters are β = 3.3052, α = 1.5505, ν = 0.1269, r = 0.0721 and Ts = 48.5611.
And after the optimization we have β = 3.6107, α = 1.8683, ν = 0.2274, r = 0.1111, p = 0.9986
and Ts = 59.8449.

Figure 5.14: SAIRD final California

As we can see the graph and the real data are almost identical.
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Florida

Figure 5.15: SAIRD initial Florida

The initial parameters are β = 4.63, α = 2.26, ν = 0.212, r = 0.053 and Ts = 54. And
the optimization gives us β = 5.0615, α = 2.2796, ν = 0.209, r = 0.0447, p = 0.8072 and
Ts = 67.6453.

Figure 5.16: SAIRD final Florida

As we can see, the graph, after some days, is a lot closer to the real data.
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New York

Figure 5.17: SAIRD initial New York

The initial parameters that we used are β = 2.63, α = 1.2, ν = 0.212, r = 0.153 and Ts = 54.
Similarly, the optimization gives us β = 2.3434, α = 1.1356, ν = 0.2412, r = 0.1858, p = 0.954
and Ts = 47.8019.

Figure 5.18: SAIRD final New York
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Texas

Figure 5.19: SAIRD initial Texas

And lastly, the initial parameters are β = 4.63, α = 1.2, ν = 0.112, r = 0.053, p = 0.99
and Ts = 54.1. After we optimize the parameters we have β = 6.0734, α = 2.6427, ν = 0.1754,
r = 0.0466, p = 0.9754 and Ts = 68.9820.

Figure 5.20: SAIRD final Texas
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5.3 Symptomatics and Asymptomatics
In this section we plot Symptomatics and Asymptomatics in each location, and find when they have
the greatest value.

Figure 5.21: Symptomatics and Asymptomatics, Greece.

As we can see from (5.21), the peak for the Asymptomatics is about 85 days after the start of the
epidemic, while the peak for Symptomatics is about 80 days.

Figure 5.22: Symptomatics and Asymptomatics, California.

As we can see from (5.22), the peak for the Asymptomatics is about 40 days after the epidemic
started, while for the Symptomatics is about 30 days.
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Figure 5.23: Symptomatics and Asymptomatics, Florida.

As we can see from (5.23) the peak for the Asymptomatics is about 80 days after the epidemic
started, while for the Symptomatics is about 75 days.

Figure 5.24: Symptomatics and Asymptomatics, New York

As we can see from (5.24) the peak for the Asymptomatics is about 25 days after the epidemic
started, while for the Symptomatics is about 20 days.
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Figure 5.25: Symptomatics and Asymptomatics, Texas

As we can see from (5.25), the peak for the Asymptomatics is about 65 days after the epidemic
started, while for the Symptomatics is about 60 days.

We can easily observe that in every location the peak of the Symptomatics is some days earlier
than the peak of the Symptomatics. This means that they have a very similar behaviour. This can
also be seen from the graph since the one is almost a parallel transport of the other. However the
main difference that they have, is their values, since Asymptomatics are in order 102 − 104, while
the Symptomatics are in order 1 − 102, meaning it’s almost 100 times smaller than the size of the
Symptomatics. This does make sense because in our code we used a higher value for p, so a bigger
fraction of Susceptibles becomes Asymptomatics, rather than Infected.
However, this suggests something really important. Asymptomatics play a huge role in the devel-
opment of the outbreak due to the fact that they are a lot more than the Infected.



Conclusions

In this thesis we studied some representative SIR-type models with practical emphasis on the clas-
sic SIR model and a more general compartmental model SAIRD . There is an infinite number of
mathematical models one can create. But despite their differences, here are similarities in all of
them.
First, if births are included this leads to a system having two equilibrium points, a disease-free
equilibrium and an endemic one. In the models that we saw, the disease-free equilibrium is stable
when R0 < 1, while the endemic equilibrium is stable if R0 > 1, with R0 the basic reproduction
number, as defined in Section 1.4. This doesn’t come as a surprise since the pandemic in all model
in evolving as long as R0 > 1 and it’s the only way to stay at a value different than zero.
We also saw that the dependence of R0 and the evolution of the pandemic is true, since in all the
plots, when R0 < 1 we had the smallest amount of Infected.
From the numerical experiments we also saw that both the SIR and the SAIRD model, with the
right fitting of the parameters can simulate an epidemic. This was proven from the comparison
with the real data for several locations, including Greece.
Lastly, we proved that the Asymptomatics are much greater than the Infected, almost by a fac-
tor of ≃ 102. This is an important conclusion of this thesis because it supproves the assumption
that Asymptomatics play a significant role in the evolution of a disease. One of the most notable
reasons why we need to study epidemiological models with more compartments and population
transfer among them, is because they are more likely to show the force of the epidemic better. A
simpler model such as the SIR cannot show things like this. To sum things, we can create a more
complex model that includes more assumptions which will be more difficult to study analytically
and numeriically, but it can help view the epidemic more globally and perhaps more accurately.

39
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Appendix A

Code for the SIR model

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from scipy.integrate import solve_ivp
5 from math import ceil
6 from scipy.optimize import fmin
7

8

9 # ---------------------------------------------------------------
10 # SIR model equations for Y = (S, I, R) and initial condition
11

12 def sir(t, Y, beta, alpha, delta):
13 dS = -beta*Y[0]*Y[1]
14 dI = beta*Y[0]*Y[1] - (alpha + delta)*Y[1]
15 dR = alpha *Y[1]
16 dC = beta*Y[0]*Y[1]
17 return [dS, dI, dR, dC]
18

19 def sirIC(i0, N):
20 return [1-i0/N, i0/N, 0, i0/N]
21

22 # -----------------------------------------------------------------
23 # Compute the least squares error
24

25 def fitscore(c, d, Tf, infd, dead):
26 c = c[-Tf-1:]
27 wc = 1 / (np.mean(c)**2 + np.mean(infd)**2)
28 d = d[-Tf-1:]
29 wd = 1 / (np.mean(d)**2 + np.mean(dead)**2)
30 return wc*np.sum((c - infd)**2) + wd*np.sum((d - dead)**2)
31

32 # -----------------------------------------------------------------
33 # Objective function for the minimization
34

35 def cost(x, delta, Tf, N, infd, dead):
36 beta, alpha, Ts = x
37

38 days = [i for i in range(ceil(-Ts), Tf)]

41
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39

40 Y0 = sirIC(1, N)
41 sol = solve_ivp(sir, (-Ts, Tf), Y0, method='LSODA', t_eval=days,\
42 args=(beta, alpha, delta))
43

44 c = N*sol.y[3]
45 d = N*(1 - (sol.y[0] + sol.y[1] + sol.y[2]))
46

47 return fitscore(c, d, Tf, infd, dead)
48

49 # ----------------------------------------------------------------
50 # Read total cases and total deaths
51

52 data = pd.read_csv('ds1.csv', usecols=['total_cases ','total_deaths '])
53 #data = pd.read_csv('ds2.csv', usecols=['total_cases ','total_deaths '])
54 #data = pd.read_csv('ds3.csv', usecols=['total_cases ','total_deaths '])
55 #data = pd.read_csv('ds4.csv', usecols=['total_cases ','total_deaths '])
56 #data = pd.read_csv('greece-data-small.csv', usecols=['total_cases ', '

total_deaths '])
57 infd = data['total_cases '].to_numpy()
58 dead = data['total_deaths '].to_numpy()
59 dead = np.nan_to_num(dead,nan=0)
60

61 dasz = min(infd.size, dead.size)
62

63 # -----------------------------------------------------------------
64 # Initial estimates of the model parameters. The size of the population , N,

and the
65 # mortality rate, delta, will be kept fixed.
66

67 beta = 1.12
68 alpha = 1.143
69 Ts = 32.7
70

71 delta = 0.056
72 N = 11000000
73

74 # ----------------------------------------------------------------
75 # Integrate model on [-Ts, Tf]. Ts will be estimated to fix the start of the

epidemic
76

77 Tf = dasz-1
78 days = [i for i in range(ceil(-Ts), Tf)]
79

80 Y0 = sirIC(1, N)
81 sol = solve_ivp(sir, (-Ts, Tf), Y0, method='LSODA', t_eval=days,\
82 args=(beta, alpha, delta))
83

84 c = N*sol.y[3]
85 d = N*(1 - (sol.y[0] + sol.y[1] + sol.y[2]))
86

87 # --------------------------------------------------------------
88 # Plot total number of infectives and number of deaths
89
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90 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
91 fig.tight_layout(pad=3.0)
92

93 ax1.plot(days, N*sol.y[3], days[-Tf-1:], infd, 'ko', markersize=3)
94 ax1.set_xlim(-Ts, Tf+1)
95 ax1.set_title('Infectives - initial parameter estimates ')
96 ax1.legend(labels=['Model', 'Data'], loc='upper left')
97

98 ax2.plot(days, d, days[-Tf-1:], dead, 'ro', markersize=3)
99 ax2.set_xlim(-Ts, Tf+1)
100 ax2.set_title('Deaths - initial parameter estimates ')
101 ax2.legend(labels=['Model', 'Data'], loc='upper left')
102 plt.show()
103 plt.show()
104

105 # ----------------------------------------------------------------
106 # Optimize the parameters of the model
107

108 x0 = (beta, alpha, Ts)
109 xnew = fmin(cost, x0, args=(delta, Tf, N, infd, dead))
110 beta, alpha, Ts = xnew
111

112 # ----------------------------------------------------------------
113 # Integrate model on [-Ts, Tf]. Ts will be estimated to fix the start of the

epidemic
114

115 days = [i for i in range(ceil(-Ts), Tf)]
116

117 Y0 = sirIC(1, N)
118 sol = solve_ivp(sir, (-Ts, Tf), Y0, method='LSODA', t_eval=days,\
119 args=(beta, alpha, delta))
120

121 c= N*sol.y[3]
122 d = N*(1 - (sol.y[0] + sol.y[1] + sol.y[2]))
123

124 # -----------------------------------------------------------------
125 # Plot total number of infectives and number of deaths
126

127 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
128 fig.tight_layout(pad=3.0)
129

130 ax1.plot(days, N*sol.y[3], days[-Tf-1:], infd, 'ko', markersize=3)
131 ax1.set_xlim(-Ts, Tf+1)
132 ax1.set_title('Infectives - final parameter estimates ')
133 ax1.legend(labels=['Model', 'Data'], loc='upper left')
134

135 ax2.plot(days, d, days[-Tf-1:], dead, 'ro', markersize=3)
136 ax2.set_xlim(-Ts, Tf+1)
137 ax2.set_title('Deaths - final parameter estimates ')
138 ax2.legend(labels=['Model', 'Data'], loc='upper left')
139 plt.show()
140 plt.show()
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Appendix B

Code for the SAIRD model

1 from math import ceil
2 import numpy as np
3 from scipy.integrate import solve_ivp
4

5 # The model equations
6

7 def model(t, Y, beta, alpha, nu, delta, r, p):
8 S, A, I, R, C = Y
9

10 z = beta*S*(I + r*A)
11 q = 1 - p
12

13 dS = -z
14 dA = p*z - nu*A
15 dI = q*z - (alpha + delta)*I
16 dR = nu*A + alpha *I
17 dC = q*z
18

19 return [dS, dA, dI, dR, dC]
20

21 def modelIC(i0, N):
22 return [1-i0/N, 0, i0/N, 0, i0/N]
23

24 # Objective function for the minimization
25

26 def cost(x, delta, Tf, N, infd, dead):
27 beta, alpha, nu, r, p, Ts = x
28

29 if ceil(-Ts) != -Ts:
30 days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]
31 else:
32 days = [i for i in range(int(ceil(-Ts)), Tf+1)]
33

34 Y0 = modelIC(1, N)
35 sol = solve_ivp(model, (-Ts, Tf), Y0, method='DOP853', t_eval=days,\
36 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0

e-9)
37

45
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38 c = N*sol.y[4]
39 d = np.maximum(N*(1 - (sol.y[0] + sol.y[1] + sol.y[2] + sol.y[3])), 0)
40

41 return fitscore(c, d, Tf, infd, dead)
42

43 # Compute the least squares error
44

45 def fitscore(c, d, Tf, infd, dead):
46 c = c[-Tf-1:]
47 wc = 1 / (np.mean(c)**2 + np.mean(infd)**2)
48 d = d[-Tf-1:]
49 wd = 1 / (np.mean(d)**2 + np.mean(dead)**2)
50 return wc*np.sum((c - infd)**2) + wd*np.sum((d - dead)**2)
51

52 # Read covid data
53

54 def readData(fname):
55 import pandas as pd
56 data = pd.read_csv(fname, usecols=['total_cases ', 'total_deaths '])
57 infd = data['total_cases '].to_numpy()
58 dead = data['total_deaths '].to_numpy()
59 dead = np.nan_to_num(dead,nan=0)
60 return infd, dead
61

62 # Fit infected and dead to the model
63

64 if __name__ == '__main__ ':
65

66 dataset = 'greece-data-small.csv'
67 #Total population
68 N = 11000000
69 #Estimates of the model parameters
70 beta = 2.3
71 alpha = 1.75
72 nu = 0.143
73 r = 0.153
74 Ts = 25
75 '''
76 dataset = 'ds1.csv' #California data-set
77 #Total population
78 N = 40000000
79 #Estimates of the model parameters
80 beta = 3.05
81 alpha = 1.76
82 nu = 0.198
83 r = 0.112
84 Ts = 55.9
85 '''
86 '''
87 dataset = 'ds2.csv' #Florida data-set
88 #Total population
89 N = 22000000
90 #Estimates of the model parameters
91 beta = 4.63
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92 alpha = 2.26
93 nu = 0.212
94 r = 0.053
95 Ts = 54
96 '''
97 '''
98 dataset = 'ds3.csv' #New-York data-set
99 #Total population
100 N = 9000000
101 #Estimates of the model parameters
102 beta = 2.63
103 alpha = 1.2
104 nu = 0.212
105 r = 0.153
106 Ts = 54
107 '''
108 '''
109 dataset = 'ds4.csv' #Texas data-set
110 #Total population
111 N = 30000000
112 #Estimates of the model parameters
113 beta = 4.63
114 alpha = 1.2
115 nu = 0.112
116 r = 0.053
117 Ts = 54.1
118 '''
119 infd, dead = readData(dataset)
120 Tf = infd.size-1
121

122 delta = 0.056
123 p = 0.99
124

125 print('Dataset: {:}'.format(dataset))
126 print('Initial parameter estimates:')
127 print(r�' = {:.4f} � = {:.4f} � = {:.4f}'.format(beta, alpha, nu))
128 print(r�' = {:.4f} r = {:.4f} p = {:.4f} Ts = {:.4f}'.format(delta, r,

p, Ts))
129

130 R0 = p*r*beta/nu + (1-p)*beta/(alpha+delta)
131 print(r'R_0 = {:.3f}'.format(R0), end = '\n\n')
132

133 # Run the model
134

135 if ceil(-Ts) != -Ts:
136 days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]
137 else:
138 days = [i for i in range(int(ceil(-Ts)), Tf+1)]
139

140 Y0 = modelIC(1, N)
141 sol = solve_ivp(model, (-Ts, Tf), Y0, method='DOP853', t_eval=days,\
142 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0

e-9)
143
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144 # Plot total number of infectives and number of deaths
145

146 import matplotlib.pyplot as plt
147

148 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
149 fig.tight_layout(pad=3.0)
150

151 ax1.plot(days, N*sol.y[4], days[-Tf-1:], infd, 'ko', markersize=3)
152 ax1.set_xlim(-Ts, Tf+1)
153 ax1.set_title('Infectives - initial parameter estimates ')
154 ax1.legend(labels=['Model', 'Data'], loc='upper left')
155

156 d = np.maximum(N*(1 - (sol.y[0] + sol.y[1] + sol.y[2] + sol.y[3])), 0)
157

158 ax2.plot(days, d, days[-Tf-1:], dead, 'ro', markersize=3)
159 ax2.set_xlim(-Ts, Tf+1)
160 ax2.set_title('Deaths - initial parameter estimates ')
161 ax2.legend(labels=['Model', 'Data'], loc='upper left')
162 plt.show()
163

164 # Optimize model parameters
165

166 from scipy.optimize import fmin
167

168 x0 = (beta, alpha, nu, r, p, Ts)
169 xnew = fmin(cost, x0, args=(delta, Tf, N, infd, dead))
170

171 # Run model with the optimized parameters
172

173 beta, alpha, nu, r, p, Ts = xnew
174

175 print('\nOptimized parameter estimates:')
176 print(r�' = {:.4f} � = {:.4f} � = {:.4f}'.format(beta, alpha, nu))
177 print(r�' = {:.4f} r = {:.4f} p = {:.4f} Ts = {:.4f}'.format(delta, r,

p, Ts))
178 R0 = p*r*beta/nu + (1-p)*beta/(alpha+delta)
179 print(r'R_0 = {:.3f}'.format(R0), end = '\n\n')
180

181 if ceil(-Ts) != -Ts:
182 days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]
183 else:
184 days = [i for i in range(int(ceil(-Ts)), Tf+1)]
185

186 Y0 = modelIC(1, N)
187 sol = solve_ivp(model, (-Ts, Tf), Y0, method='DOP853', t_eval=days,\
188 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0

e-9)
189

190 # Plot total number of infectives and number of deaths
191

192 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
193 fig.tight_layout(pad=3.0)
194

195 ax1.plot(days, N*sol.y[4], days[-Tf-1:], infd, 'ko', markersize=3)
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196 ax1.set_xlim(-Ts, Tf+1)
197 ax1.set_title('Infectives - final parameter estimates ')
198 ax1.legend(labels=['Model', 'Data'], loc='upper left')
199

200 d = np.maximum(N*(1 - (sol.y[0] + sol.y[1] + sol.y[2] + sol.y[3])), 0)
201

202 ax2.plot(days, d, days[-Tf-1:], dead, 'ro', markersize=3)
203 ax2.set_xlim(-Ts, Tf+1)
204 ax2.set_title('Deaths - final parameter estimates ')
205 ax2.legend(labels=['Model', 'Data'], loc='upper left')
206 plt.show()
207

208 # Plot symptomatics and asymptomatics
209

210 Tf = Tf + 165
211

212 if ceil(-Ts) != -Ts:
213 days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]
214 else:
215 days = [i for i in range(int(ceil(-Ts)), Tf+1)]
216

217 Y0 = modelIC(1, N)
218 sol = solve_ivp(model, (-Ts, Tf), Y0, method='DOP853', t_eval=days,\
219 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0

e-9)
220

221 fig, ax1 = plt.subplots(figsize=(6, 4))
222 fig.tight_layout(pad=3.0)
223

224 ax1.plot(days, N*sol.y[1], days, N*sol.y[2])
225 ax1.set_yscale('log')
226 ax1.set_xlim(-15, Tf)
227 ax1.legend(labels=['Asymptomatics ', 'Symptomatics '], loc='upper left')
228 plt.show()



50 APPENDIX B. CODE FOR THE SAIRD MODEL



Bibliography

[1] Michael Plexousakis. Course notes for the class Mathematical Biology. University of Crete,
Spring Semester 2021

[2] James D. Murray.Mathematical Biology I:An Introduction. Springer, 2002

[3] Tailei Zhang, Ruini Kang, Kai Wang, Junli Liu. Global dynamics of an SEIR epidemic model
with discontinuous treatment, 2020

[4] Yan Deng, Wei Liu, Kui Liu, Yuan-Yuan Fang, Jin Shang, Ling Zhou, Ke Wang, Fan Leng,
Shuang Wei, Lei Chen, Hui-Guo Liu. Clinical characteristics of fatal and recovered cases of
coronavirus disease 2019 in Wuhan, China: a retrospective study, 2020

[5] P. van den Driessche, James Watmough. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, 2002

[6] J. David Logan. n A first course in Differential Equations. Undergraduate Text in Mathematics,
Springer 2015

[7] Xq. Liu, S. Xue, Jb. Xu. Clinical characteristics and related risk factors of disease severity in
101 COVID-19 patients hospitalized in Wuhan, China, 2021

[8] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman. Substantial undocumented
infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), 2020

[9] Sachin Joglekar. Nelder-Mead Optimization, https://codesachin.wordpress.com/2016/
01/16/nelder-mead-optimization/

[10] Epidemiology, https://en.wikipedia.org/wiki/Epidemiology

[11] Lesson 1: Introduction to Epidemiology https://www.cdc.gov/csels/dsepd/ss1978/
lesson1/section2.html

[12] Wikipedia, Covid-19 Pandemic, https://en.wikipedia.org/wiki/COVID-19_
pandemic

51

https://codesachin.wordpress.com/2016/01/16/nelder-mead-optimization/
https://codesachin.wordpress.com/2016/01/16/nelder-mead-optimization/
https://en.wikipedia.org/wiki/Epidemiology
https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section2.html
https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section2.html
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/COVID-19_pandemic

	Introduction
	Epidemiology
	Covid-19
	Infection and Recovery rate
	The basic reproduction number
	Ruth-Hurwitz stability criteria

	The SIR Model
	The basic model
	The SIR model with deaths
	The SIR model with vaccination

	The SAIR model
	Introduction of the model
	The SEIR model
	A general model
	The dimensionless form of the model

	Data Fitting
	Estimating the model parameters
	The critical value R0=1
	The Nelder-Mead Method

	Comparison with real data
	The SIR model
	Greece
	United States of America

	The SAIRD model
	Greece
	United States of America

	Symptomatics and Asymptomatics

	Code for the SIR model
	Code for the SAIRD model

