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Iepiinyn

Ot gmdnpieg Exovv vdpéel o tepdotio avnovyia Yo tnv Taykoouo vysio. Opmg and Ttov 140
ALV LEXPL TOPA EXOLV YIVEL TOAAEG OVOKAAVYELS Y10 TOV TPOTO oL Agrtovpyovv. Ewdwotepa,
otav elonydnoav padnuotiKéc pEBodol dTE va VTOGTNPIEOLV T GEOOUEVA.

Yta €A tov 2019, 0 16¢ SARS-CoV-2 1 adlwg Covid-19 Egkivnoe va eEamAdvetor o€ OAO TOV KO-
opo. TToAd chvtopa, 0 apBpodg TOV LOAVGUEVOV TOV EREAVIGOY CUUTTMOUOTO KOODS Kot ot fapid
GPP®CTOL GLVETPLYOY TO GLGTNUO VYEIOG O TOAAEG YDpeG. AkOuUT avTdg 0 10¢ 001YNGE GE TV
and 4 ekatoppvpro Bavatovg péypt tov IovAto tov 2020. Avtr n mavonuio elye TpopePES EmMMTM-
OELG OTNV TOYKOGULN O1KOVOpia Adym Tng adENong TG avepyiag, TS LEIMONS TOV EW000NLATOG, TIC
JTAPOYEC O EMLYEIPNOELS.

Ot vdAAnLot g dUociag vYeiog ¥PNCLOTOIOVY EMONUOAOYIKA LOVTEAQ Y10 TNV TOPAKOAOVOT-
omn acBeveldv Kot Epguva Yo TOaVES EEAPOELS KOOMG KO Y10 TOPOTNPNTIKY] LEAETN, TPOKELUEVOL
VO EVTOTIGTOVV 01 TOPAYOVTEG KIVODVOL KOt VO EQAPUOGTOVV PETPA eAEYYOL TG vocov. Tlaporo
oL T dedopEva. etvar oyedOV mavTa Oabéoipa and epeaviCopeveg emonuies, elval cuyva eAlt-
M AOY® OVETAPKOVS avaPOpas. Xvykekpiuéva, yio tnv emonuio Covid-19 vrdpyovv ohoéva Kot
TePLoCOTEPES EVOEIEELS OTL EPOG NG TaxElog EEATAMOTG AL TOV TOL 10V OQEIAETAL GE ACVLUTTMOUATL-
KEG AoMEELS. AOY® avtig TG EAAEYNG aSIOTIOT®V Oed0UEVOV, XPNCILOTOMONKOY LoONUOTIKE
HOVTELQ KO TPOGOUOLDGELG VITOAOYIGTAV Y10, TNV EKTEAECT] OEWPNTIKAOV TEWPOAUATOV Y1 TV EKTI-
UNOT| TOV TOPOUUETPOV TOV UNYOVIGHOV HETAO00MG Kol TG e€AmAmong tng vooov. EmumAéov, tétowa
TEPALOTO LTOPEL Vo lval YpNGILOL 6T GUYKPLION TOV OTOTEAECUATOV TOV TPOANTTIKOV HETP®V,
OTMG 1 KOWVOVIKTY OTOGTAGLOTOINGT N 1] KapavTiva.

"Eva a6 ta 1o yveooTtd kot enttuyn endnpoloykd povtéda eivar to povtédo SIR, to anotedéoo-
T0L TOL OTTOTOL EivOl TOPOLOLN [LE QLT TTOV TOUPVOLLE YPNGILOTOLDOVTOG TPOy Lotk dedopéva. O
oKOTOG ALTNG TNG EPYACTaG vl 1) AvOAVTIKY Kot aptOunTiky| peAétn evog yevikevpévov SIR povté-
AoV T0 07010 TEPILAUPAVEL TNV KAGOT) TV OGUUTTOUOATIKOV, KOl 1] GUYKPLIOT] TOV OTOTEAECUATMV
TOV U TO TPAyLaTKd dedopéva yio Tov Covid-19 and v EALGSa ko dAAeg ydpes.






Abstract

Epidemic outbreaks have been a major concern in public health throughout history. However from
the 14th century till now there have been a lot of discoveries about them. Especially when mathe-
matical methods were introduced to statistically support the data.

In late 2019 SARS-CoV-2 virus, or Covid-19 started spreading around the world. Soon after the
number of symptomatically infected and severely ill individuals overwhelmed the medical system
in many countries. It also lead to more than 4 million deaths by July 2020. This pandemic also
had severe consequences in the global economy due to disruption in manufacturing and services,
income reductions and rize of unemployment.

Public health officials use epidemiological models for disease surveilance and the investigation of
outbreaks, along with observational studies, in order to identify risk factors and implement disease
control measures. Although data are almost always available from occuring epidemics, they are
often incomplete due to underreporting. In particluar, for the Covid-19 epidemic there is mounting
evidence that some of the rapid spread of this virus has been driven by asymptomatic infections.
Due to this lack of reliable data mathematical modeling and computer simulations have been used
to perform theoretical experiments to estimate the parameters of the transmission mechanism and
the spread of the disease. Moreover, such experiments may be useful in comparing the effects of
preventive measures, such as social distancing or quarantine.

A well known epidemical model is the SIR model, as it gives results that are similar with the real
data.

The aim of this thesis is the analytical and computational study of an extended SIR model which
includes the class of asymptomatic individuals and compare its predictions with real Covid-19 data
from Greece and elsewhere.
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Chapter 1

Introduction

1.1 Epidemiology

Epidemiology is the study and analysis of the distribution and determinants of health-related events
in specified populations, and the application of this study to the control of health problems. The
word epidemiology comes from the Greek words ‘epi’,‘demos’ and ‘logos’, meaning ‘upon’, ‘peo-
ple’ and ‘study’, respectively, in other words, the study of ‘what is upon a population’. The math-
ematical aspect of Epidemiology is creating a model that can project how an infectious disease
progresses with time. This is a very useful tool because it helps to better understand the infection
and to make sure that the right interventions are being made.

The Greek physicist Hippocrates was the first epidemiologist,suggesting that a disease has a logic
behind it and that there is a relation between the disease, its spread and the environment. In the 16th
century an Italian doctor named Girolamo Fracastoro was the first one to propose that the particles
which cause a disease are alive. He also promoted that personal and environmental hygiene help to
prevent a disease. Not long after that physician Quinto Tiberio Angelerio published a manual with
57 rules that help to prevent a disease such as social distancing and washing produce.

In the 19th century John Snow, known as the father of epidemiology, investigated the causes of
cholera epidemics. He used chlorine to clean the water and he managed to end the outbreak. This
was a major event in the history of public health and it was the fist time that epidemiology helped to
shape public health policies around the world. The early 20th century was the first time that math-
ematical methods were used in epidemiology, adding statistical support to the field, by Ronald
Ross, Janet Lane—Clayton, Anderson, Gray, McKendrick, and others. Also at that time epidemiol-
ogists extended their methods to noninfectious diseases such as cancer, proving the suspicion that
smoking was linked to lung cancer. The latest epidemic outbreak still going on is the Coronavirus
disease.

1.2 Covid-19

The coronavirus disease,or Covid-19, is an infectious disease, caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) that started infecting people in December 2019. The
first confirmed case was in Wuhan, China and soon after it spread all over the world, making it
an ongoing pandemic. There are several symptoms but the most common ones are fever, cough,

1



2 CHAPTER 1. INTRODUCTION

fatigue, breathing difficulties, and loss of smell and taste. However, there are several cases where
the infected person does not show any symptoms but is still able to spread the disease.

According to [12] from the people that do show symptoms about 81% develop mild symptoms,
14% develop severe symptoms and 5% develop critical symptoms. At least a third of the people
who are infected don’t develop any notable symptoms. The symptoms begin to show between 1 to
14 days after the exposure and they can last for more than 2 weeks in a lot of cases.

As of July 2021 there have been 185 million confirmed cases and 4 million deaths worldwide.
There have been several lockdowns worldwide in order to contain the outbreak. Vaccines against
the SARS-CoV-2 virus were granted marketing authorisation and use in the EU and USA in mid
2020 with the purpose of ensuring public health and controlling the epidemic.

1.3 Infection and Recovery rate

We will study briefly the main compartmental model called SIR. We divide the population into
three groups: Susceptible, Infected and Recovered individuals. In order to understand how it came
about we shall make the following, usual among epidemiological models, assumptions:

+ After contacting the infection a person either dies or develops immunity to the disease

* The rate of infection is proportional to the number of contacts between Infected and Suscep-
tible individuals

+ All individuals are equally vulnerable

» The total population is stable in the sense that we ignore births, but not deaths, and the latter
are included in the total

* If the total population is N, then each individual makes 5N contacts per unit time

To find the infection and recovery rates, using the above assumptions, we argue as follows:
We denote by S(¢) the susceptible individuals and by /(t) the infected individuals, with ¢ denoting
time.

Firstly for the infection rate, we already know the number of contacts that each individual makes,
but we also need the probability of an Infected person to make contact with a Susceptible individual.
This probability is p = S/N. Therefore, the number of new infections per unit time per infected
individual is ﬂN%] = pBS1.
The calculation of the recovery rate is much simpler because it is not affected by the contacts
someone makes, therefore, it is simply /. The important thing now is to understand what this
means. Assume that a group of people got infected at time ¢ = 0 and u(s) are still infected at time
t = s. If a fraction « of them recovers per unit time then the equation for the recovery is v’ = —au,
or, if we integrate, (s
as uis —Qs

u(s) = u(0)e™* = a0) " e .

This means that the time that an individual remains infected follows the exponential distribution

with average value
o 1
/ se”*ds = —.
0 !
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Therefore, the infection rate is the inverse of the recovery period.

1.4 The basic reproduction number

The basic reproduction number, R, is the expected number of secondary cases produced by a
single infection in a completely susceptible population. Therefore

infection . , contact time

R()O((

contact time ’ infection’’

which means that R, is a dimensionless number and not a rate. Another way of writing the expres-
sion for R is
Ry=T1xcx*d,

where 7 is the transmissibility, ¢ is the average rate of contact between susceptible and infected
individuals and d is the duration of infectiousness.

In simpler models, R is usually calculated easily through the equations, but this is not the case for
all models. If we have a system of equations

z; = fi(x) = Fi(z) — Vi(x), 1<i<m,

with m the number of components that we consider and F;(z) is the rate of new infections in
compartment ¢, while V;(z) is the rate of transfer of individuals in ¢ minus the rate of transfer of
individuals out of 7. We define

OF; )% . o
Fij= [_6x' (z0)] and V;; = [07(%)] with 1 <i,5 < m.
J J

Then,
RO = p(val),

where p(M ) denotes the spectral radius of a matrix M.

There is a second method for calculating Ry. If we have a system of equations z;, = f;(x) ,
1 < ¢ < m, we focus on the equations for the population groups that have the disease, whether
that is Asymptomatics, Symptomatics, Infected, Exposed, etc. Let’s assume that in our example
indicators 2 to m — 1 are the ones that we focus on. We calculate the Jacobian matrix for these
equations

Jij = [85], where 2 < i, j <m —1.

If we set the determinant of this matrix equal to zero, this gives us the crucial value Ry = 1.
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1.5 Ruth-Hurwitz stability criteria

The Ruth-Hurwitz criteria is a helpful tool that will be used in the upcoming chapters to determine
the sign of the roots of a polynomial equation. We will employ this lemma for second and third
degree polynomials.

Lemma 1.5.1.

1. The second-degree polynomial P(s) = s* + ays + g has both roots in the open left half
plane (and the system with characteristic equation P(s) = 0 is stable) if and only if both
coefficients satisfy a; > 0

2. The third-degree polynomial P(s) = s + ays® + a1 5 + g has all roots in the open left half
plane if and only if as, oy are positive and aso; > oy



Chapter 2
The SIR Model

2.1 The basic model

One of the first successes of Mathematical Biology was the introduction of a model the results
of which agreed with the behaviour of epidemics.This model is the so-called SIR model and was
proposed by Kermack and McKendrick in 1927. In the SIR model the total population is divided
into three groups, Susceptible S(t), those who are capable of catching the disease, Infected 7(¢),
those who have the disease, and Recovered R(t), those who have had the disease and are now
immune to it. We shall assume that

* Infected individuals can transfer the disease to Susceptible individuals with a rate propor-
tional to the the contacts between those two groups

* Infected individuals recover with a rate proportional to their number
* We don’t have any deaths due to the disease
 The total population is stable, in the sence that births are neglected

Schematically the so called compartments of the SIR model and the transfer of individuals between
them are shown below:

BSI
D’
S I R
\_j/
«



6 CHAPTER 2. THE SIR MODEL

Our model is then

% = —BSI, (2.1.1)
% = BSI — o, (2.1.2)
% = al. (2.1.3)

Here, (3 is the infection rate, o is the recovery rate, and the ratio p = 3 is the relative recovery rate.
The model is supplemented with the initial conditions

S(0) = Sy > 0, I(0) = I, > 0 and R(0) = 0.

The fact that the population is stable, is also clear from the model equations because if we add
equations (2.1.1)-(2.1.3) we have

Here and in the sequel, prime will denote the derivative with respect to the variable ¢t. From the
first equation it is clear that the number of susceptible individuals decreases with time. From the
second equation we see that the infected increase as long as S > «/f. If the initial number of
susceptibles is smaller than o/ 5 then the infection dies out since

«

S(] <a/ﬁ:>N—[0 <Oé/6:>[0 > E(Ro—l), (214)
where N1
ROZ /B_Z_N7
a  p

is the basic reproduction number. Using the previous definition of R, we can see that for the SIR
model 5 = 7c and d = 1/a. From the equation (2.1.4) it is obvious that we have a very important
phenomenon happening: if Ry > 1 the infection will spread, while if Ry < 1 the infection will die
out.

Since S(t) is a positive, decreasing function this means that the limit S,, = lim,_,., S(t) exists.
Similarly R'(t) > 0, therefore R(t) is an increasing function but because R < NN always, we have
that the limit R, = lim;_,, R(t) exists as well.Lastly, because the population is stable at all times
I(t) = N — R(t) — S(t), so that the limit [, = lim;_,, I(¢) also exists.

If we combine the equations (2.1.1) and (2.1.3) we get that

s B
aR T o

and with integration by parts we have

S = Sy exp( BR) > S0 exp(—gN),

a
which proves us that S, > 0, meaning that the infection will not die out due to the lack of suscep-
tibles.
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We will now deal with the equation (2.1.1) and (2.1.2) only since the Recovered individuals can
be found through the Susceptible and Infected. Every point of the I=0 axis is an equilibrium point
for the system (2.1.1),(2.1.2). Because of that, the only equilibrium that can occur is a disease free
equilibrium. The phase plane between [ and S is

I

G BST—al Q@ Q

=————=—14+—==1(5)=(N—-95)+ —=log—

dt

The solution curves in the S1 phase plane are described by the equation ¢(S, 1) = S+1—plog S =
constant and are shown in 2.1. Since S(t) is decreasing all the curves are going from right to left.

Figure 2.1: SIR phase plane

As we can see from Figure 2.1, the Infected individuals reach a maximum when S = p. There-

fore we have that p

So

However, from Figure 2.1 something really important can also be observed. If the initial condition
Sy satisfies Sy < p then the epidemic cannot occur, since I(t) goes to zero. However, if Sy > p
the number of infectives increases until S gets its maximum value at S = p and then falls to zero.
Since I, = 0, we have that S, = N — R, and by using the expresion for S and R we get that
S 1s a root of the equation

Imaz = (N — p) + plog

z = Soexp(—g(N —2)).

If f(2) = Soexp(—2(N — 2)) — z, then f(0) = Spexp(—2N) > 0,and f(N) = S, — N <0
since N = Sy + Iy > Syp. From the intermediate value theorem we see that there exist a root
z, of the equation f(z) = 0 in the interval (0, V). Moreover, f'(z,) = gz* — land f"(2) =
%exp(—g(N — z)) > 0. And since f(IN) < 0 there is exactly one root and z, < p = a/f.

If we combine equations (2.1.1) and (2.1.2) we have that (S + I)’ = —al < 0 meaning that it is a
decreasing function. Therefore, the limit lim;_,, (S + I)(t) exists and lim;_, . (S+1)'(t) = 0. This
means that [, = lim;_,, [(t) = 0, and limy_,oo (S + ) () = limy_,o0 S(t) = Ss. If we integrate
the sum of (2.1.1) and (2.1.2) we get

a/ I(t)dt:—/ (S+I)(t)=So+ Ip— See = N — S
0 0
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From (2.1.1) we have = = —fp1 = In(S) = —p1, which gives
ln——ﬁ/ N Seo) = Ro(l—Sﬁ).
N
Therefore, we have
lng%i = Ro(1 — SW)

This is a relationship between the basic reproduction number and the final size of the disease.
Knowing this relation helps us find how many individuals will not get sick. This equation de-

fines unambiguously S.. Indeed, let us define the function g(z) = In32 — Ry(1 — £). Then
lim, ,o+ g(x) > 0 and g(N) < 0.Therefore we have at least one solution between 0 and N.
g'(z) = %o — 1 which is zero if z = %. If Ry < 1then ¢ (z) < 0if0 < z < R% SO we

have only one solution. If Ry > 1, then g is decreasing in (0, %) and increasing in (%, N), there-
fore once again there is only one point where g(z) = 0, and this is S.. In both cases we get that
Seo < p-and g(52) =In Ry — Ry + 52 <InRg — Ry + 1 < 0, since Inz < & + 1if z > 0. This
gives us a simpler estimate
So
Soo < —.
Ry

The Jacobian matrix along the axis [ = 0 is

(0 —pS
J_(O BS—a)'

The eigenvalues of this matrix are the roots of the equation
N+ (a— B9\ =

One eigenvalue is zero. If Ry < 1then SN < a sothen S < a. The other eigenvalue is negative.
This means that the disease-free equilibrium is stable, but not asymptomatically stable. We recall
that an equilibrium is(locally) stable if initial conditions that start near an equilibrium point stay
near that equilibrium point and an equilibrium point is (locally) asymptotically stable if it is stable
and, in addition, the state of the system converges to the equilibrium point as time increases.
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2.2 The SIR model with deaths

The previous version of the SIR model did not take into account deaths due to the disease. In this
section the model will be slightly altered to include deaths. To do that, we assume:

* Infected individuals may die after a period of time with mortality rate o
» We will not count dead individuals as part of the total population, making in not stable

* Because of the fact that the population is not stable, it makes sence to have a population-
dependent infection rate

With these assumptions in mind we consider the model

S"=—pB(N)SI, (2.2.1)
I'=B(N)SI — (a+0)I, (2.2.2)
R = al. (2.2.3)
If we add those three equations we get
N' = —41. (2.2.4)

The original population is N(0) = Ny = Sy + Iy, and N(t) = S(t) + I(t) + R(t) for every t. In
this model the basic reproduction number is
NoB(No)

Ry = —20)
0 o+

As we can see from equation (2.2.2), in order for the infection to spread we need 3(N)S —(a+9) >
0. If we combine equations (2.2.1) and (2.1.2) we see that

e 1 1
I(s)ds = Ny — —S.
/0 (s)ds = o5~ 5%
Also, from equation (2.2.4) we have
Ny =N /ml()d:>N ® N+ g
omH a+d Ca+é

In analogy with the basic SIR model we can find the relationship between the basic reproduction
number and the final size of the disease. From (2.2.1) we have %’ = —f(N)I, which by integration
gives

BN(),,  AN(O)

SO 0 o
In— = — N I(t)dt < —8N I(t)dt = .
nge == [ aN@Ina < —No) [ rna - TSN - s,
Therefore we have g BN(0) g
0 [e%e)
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This is very similar to the result that we got in the previous model, the only differences are that we
have an inequality instead of an equality, and we use the initial total population because this model
is not stable. As with the SIR model we also have the simpler estimate

So
Soo < =
< R

In this model we have only one equilibrium which is the disease free one since every point in the
I = 0 axis is an equilibrium point for the system (2.2.1)-(2.2.2). Along the axis / = 0 the Jacobian

matrix is
_ (0 —B(N)S
=0 sns )

The eigenvalues of this matrix are the roots of the equation
M4 (a+6— B(N)S)A = 0.

One eigenvalue is zero. If Ry < 1 then NyG(Ny) < a + § and so B(IN)S < « + 4. Since the
population is decreasing with time, then the second equilibrium is negative. This means that the
disease-free equilibrium is stable, but not asymptomatically stable.
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2.3 The SIR model with vaccination

In this section, a version of the SIR model with vaccination,births and deaths will be introduced.
So we assume

* Susceptible individuals can get vaccinated
 All individuals are susceptible at birth
* Individuals in each population group may die from natural causes

* The birth and death rate are equal

We have the model
S’ = —BST + u(N —S) — ¢S, (2.3.1)
= 0SI — (o + p)l, (2.3.2)
R =al + ¢S — uR. (2.3.3)

As we can see from the equations N’ = (S + I + R)’ = 0 which means that the population is
stable. For the system (2.3.1)-(2.3.2) we have two equilibrium points. The first one is the disease
free equilibrium (S,, I,) = (£, 0) and the second one is the endemic equilibrium point (S,, I,) =

et

(atw sN #+¢)
B 7 pto B

The basic reproduction number for this model is

Ry = pBN

(1 + ) (p + )
The Jacobian matrix at the point ( “fr\;, 0) is

- _ BuN

P i oy H .
0 N (ot
The eigenvalues of this matrix are the roots of the equation
A+ Ma+p /Bi¢+ +¢) + (o + p) (e + @) — BuN = 0.

If Ry < 1then SuN < (u+ ¢)(p + «) so all the coefficients are positive and therefore all roots
have negative real parts. This means that the disease-free equilibrium is stable.

The Jacobian matrix at the point (O‘E“, ;ﬁva “;‘b) is

_BuN _
J = BuN pa (a u M) .
e — (n+9) 0

The eigenvalues of this matrix are the roots of the equation
N+ Ro(p+ o)A+ (1 + ) (u+ ¢)(Ry — 1) = 0.

If Ry > 1 then all the coefficients are positive and therefore all roots have negative real parts. This
means that the endemic equilibrium is also stable.
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Chapter 3

The SAIR model

3.1 Introduction of the model

In Covid-19 and many other diseases there are infected individuals that never show any symptoms,
collectively called Asymptomatics. In this section we will introduce a new model, similar to the
SIR model that includes this new group of individuals. We assume that:

* We have four groups of individuals, the Susceptibles, Asymptomatics, Infected and Recov-
ered

* Both Infected and Asymptomatics can spread the disease with the same infection rate
* A fraction of Asymptomatics become infected after some time
* Both Asymptomatic and Infected recover with the same rate

These assumptions are shown schematically below: This leads us to the model

aA
BS(I+ A) «
s A I R
N
YA
d
45 _ _8S(1 + A), 3.1.1)
dt
dA
i BS(I+ A)— (v + a)A, (3.1.2)
dl
Y A al 1.
o vA — al, (3.1.3)
Cii_]t% =a(l + A). (3.1.4)

13
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The population in this model is stable. The only equilibrium point is the point (N, 0,0, 0). To find
Ry we need to calculate the determinant of the Jacobian matrix for the Asymptomatics and Infected
in the equilibrium point and see where it is zero. This gives us that Ry = BFN For this model we
may only deal with the first three groups of people since the Recovered can be found from the other
ones.

It is important to note that in this model, if we set P = A + I, then this combined population group
has the exact same behaviour as the Infected in the basic SIR model. This means that

S

P(S):(N_S)+Eln§0’

and similarly we get the largest value for this combined population group when S = 5.1t is equal
to
Praz = (N_ _)+_1n_

If we combine (3.1.1),(3.1.2) and (3.1.3) we have that
SOO—N:/ (S+A+I)’(t)dt:—a/ (A+1)(t)dt.
0 0

Equation (3.1.1) gives us that % = —B(A+ 1), so that

S Seo
1n§ = B(N = 8x) = Ro(1 = 7).

As with the SIR model the simpler estimate also holds:

So
Soo < —.
Ry
The Jacobian matrix at the point (N, 0,0, 0) is
0 _BN _BN
J=[0 BN—-(y+a) BN
0 ) -

The eigenvalues of this matrix are the roots of the equation
N = N(Ry— 1= (y+a) = MRy — (v +a) +7Ro) = 0.

If Ry < 1 then all the coefficients are positive and since the constant term is zero it satisfies the
Ruth—Hurwitz criteria and therefore all roots have negative real parts. This means that the disease-
free eigenvalue is stable.
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3.2 The SEIR model

In this section we will study a different model, in which we will use Exposed individuals instead
of Asymptomatics. We make the following assumptions:

* Newborns are Susceptible and the birth rate is u/N
» There are deaths in each group due to natural causes

» Contacts of Suscetibles with Infected individuals lead to exposure at a rate proportional to
the number of contacts

» Exposed individuals don’t spread the disease
* Infected individuals may die from the disease

With all that, the model is

d
_df = u(N — 8) — BSI, (3.2.1)
dFE
_dt — ﬂS[ — (M+’Y)E, (3.2.2)
dl
= vE — (p+ 6+ o), (3.2.3)
dR
dD
iy 2.
yr ) (3.2.5)

This model has two equilibrium points, the disease-free equilibrium (S, E., I, R.) = (N, 0,0,0)
and the endemic equilibrium

(ptNptita) pN  plp++a)
By Tty By ’

YN 1 yaN 04)

(S*yE*; -[*; R*) - (

(u+y)(u+d+a) B (u+r)(u+d+a) B

We can find the basic reproduction number by taking the Jacobian matrix of the equations
(3.2.2)~(3.2.3) in one of the equilibrium points and set its determinant equal to zero. We have

BN
(H+)(p+a+d)

The Jacobian matrix for the disease-free equilibrium is

— 0 —BN
J=10 —(u+7) BN
0 ¥ —(p+0+ )



16 CHAPTER 3. THE SAIR MODEL

The eigenvalues of this matrix are the roots of the equation
A N2 (u2p+y +0+a)) + Au(l — Ry)) = 0.

If Ry < 1 then all the coefficients are positive and since the constant term is zero it satisfies the
Routh-Hurwitz criteria and therefore all roots have negative real parts. This means that the disease-
free equilibrium is stable.

The Jacobian matrix for the endemic equilibrium is

. () (p+5+0)
_#—?V(Mfm_%) (ut )(0+5+ ) T
_ Ly T (i) (ptota)
= Gt — 5 — (e +1) .
0 v _(,u + 6 + a)

The eigenvalues of this matrix are the roots of the equation
N N2u+y+5+a)+A2u+7v+ 6+ a)(2u+ Ry) + u(Ry — 1) = 0.

If Ry > 1 then all the coefficients are positive and also the product of the coefficient of A and \?
is greater than the constant term. Therefore all roots have negative real parts. This means that the
endemic equilibrium is stable.

3.3 A general model

In this section we will introduce a very general model that in some cases can be simplified to be
SIR or the SAIR model that we saw earlier.

* Firstly, we assume that both Infective and Asymptomatic individuals can infect Susceptible
individuals, but this time with different infection rates

* We have included a probability as to whether a person who gets the disease will show symp-
toms or not

* There are different recovery rates for Asymptomatic and Infected individuals
 Lastly we assume that only Infected people may die from the disease
The model is shown schematically below: With these assumptions, we now analyse the model
vA

pES(I +rA) o

S A I R D

1 p) 2SI +rA)

o
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s B

© = Ls4ra) (3.3.1)
O P2 )~ vA, (332)

% = (1 —p)%S(I—i—TA) —(a+)I, (3.3.3)
A Al (33.4)

‘ii_f s (3.3.5)

As we can see if r = 0, p = 0 and v = 0 then we have the SIR model.
This model has only one equilibrium point and it is (/V, 0,0, 0,0), and at this point the Jacobian
matrix for the Asymptomatic and Infeted is

J ( pBr —v P8 ) '
(1=p)pr (1=p)B—(a+9)
If we set the determinant of this matrix to be zero we get that

(a+8)pfr+v(l —p)f

Fo= v(ia+9)

If we combine (3.3.1)-(3.3.3) we have that (S + A+ 1) (t) = —vA — (o + 0)I and by integration
we get

Seo — N = —y/m A(t)dt — (a + 6) /Oo I(t)dt. (3.3.6)
0 0

From (3.3.1) we have that % = —%(I + rA) which gives us

Ins” — N(/o [(H)dt + 7“/0 A(t)dt). (3.3.7)
From (3.3.2) we get that
—v A(t)dt = —Ag — — S(I +rA)dt. (3.3.8)
0 N 0
and similarly from (3.3.3)
— (a+ 5)/ I(t)dt = —1y — %/ S(I +rA)dt. (3.3.9)
0 0

If we combine the equations (3.3.6),(3.3.8) and (3.3.9) we get
N

/0 S(I+rA)dt = 5

(SO - SOO)'
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Now we can go back to the equation (3.3.7) and with the above equation it becomes

Bt T4

So RO _(
N a+d v

lng = W<SO _Soo) +

).

But RySy + 5(;—};5 + r%) ~ RoN, which means that in this model

S Seo

The simpler estimate S, < 2—2 also holds in this case as well.
The Jacobian matrix at the first three groups is

0 —pr 5
J=10 pBr—v pB
0 (1-pyrp (1-p)B—(a+9)

The eigenvalues of this matrix are the roots of the equation

_(a+d)ppr  v(l—p)B

32 _
AN =MNa+d+v)(Ry—1) ” o

| = Av(a+0)(Ry—1))=0

If Ry < 1 then all the coefficients are positive and because there isn’t a fixed term it satisfies the
Routh-Hurwitz criteria and therefore all roots have negative real parts. This means that the disease
free equilibrium is stable.

3.4 The dimensionless form of the model

To simplify the numerical calculations of this new model we derive its dimensionless form. The
variables S, A, I, R, D and N denote population, the variable /3 denotes (time - population)_1 and
the variables v, «, § have the dimension of time~!. The variables 7 and p are dimensionless.
Now that we have determined the dimensions of each variable we may transform them to non-
dimensional ones using S = S,,c,, = % and similarly for the sizes of the other compartments.
With these changes the model becomes

as

— =—BS(I+1A
= = —5(I +rA)
A
d—:pBS(I—i-TA)—VA
dt
dI
%:(1—]9)55([4-724)—(&—1—5)[
%:VA+OJ
dD:éI

At



Chapter 4

Data Fitting

4.1 Estimating the model parameters

There are several studies concerning the values of the various parameters of the epidemiological
models discussed in the previous chapter. Here and for the remaining of this thesis we shall consider
two particular values for the infection rate 5, namely, 5 = 0.52 and § = 1.12, corresponding to
time periods with or without social distancing or lockdown measures in effect. The recovery rates
both for Symptomatic and Asymptomatic are « = v = 0.143 ~ 1/7 for simplicity and the death
rate is 0 = 0.056 ~ 1/18. Lastly, for the variables p and r we will see later on some analysis on
which values are correct, but p is in [0, 1] and r in [0, 2].

4.2 The critical value Ry =1

We have already seen that Ry, = 1 is a critical value of the basic reproductive rate and that the
stability of the compartmental models discussed depend on R,. In this section we will use the
value for the parameters that we indicated above and we will see how R, changes with r and p, for
each infection rate.

10— B=052 1o ; B=112
/ ‘ Ra=05 / Ra=05

08 / Ra=10 0ad Ra=10
‘ Fa=20 Ro=20

Ra=30 Ra=30

0e | — Ra=40 06 — Ra=40

=1
.
=
.

=
]

Fraction of asymptomatics (p)
Fraction of asymptomatics (p)

Q

=]
=1

T T T 0.0 T T T
0o 0.5 1a 15 20 0o 0s 10 15 20

Relative infectivity (r) Relative infectivity (r)

Figure 4.1: R, for each infection rate
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As we can see from Figure 4.1 in order for Ry < 1, p needs to be in [0.5, 1] if § = 0.52, or in
[0.8,1] if § = 1.12, and r needs to be in [0, 0.3] in both cases.
We will now look at the fraction of Infectives and the peak of the infection depending on the values
for r and p.
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Figure 4.2: Peak of the infection
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Figure 4.3: Fraction of Infectives

A careful observation of Figures 4.2 and 4.3 reveals that the positions of the contour lines match,
approximately, meaning that the value of R, is a critical value both for the peak of the infection
and for the fraction of Infectives. Therefore, every time that Ry changes there is a drastic change
in the outbreak.

Also, from the colours of the above graphs we can see that if Ry < 1, both the peak of the infection
and the fraction of Infectives is much smaller. This is an expected result since reducing the value
for R, to be less than one, leads to the end of the infection.
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4.3 The Nelder-Mead Method

In order to apply our model we use real data from OurWorldInData in several locations in the United
States and Greece in early Spring of 2020. We fit the number of infected and the number of dead
to our model by minimizing the sum of square residuals using the Nelder—Mead algorithm.
Nelder-Mead is a simplex method that begins with a randomly-generated simplex. With every
iteration it proceeds to reshape it, one vertex at a time, in order to achieve its optimal shape. In
order to see how this method works we will assume that we are in the n-dimensional space. This
simplex consists the points x1, Za, ..., T, 41, and the function we will try to minimize is f(z). The
algorithm will take the following steps with every iteration.

* Step 1
All the points need to be order such that the value of f in the first point is highest and the
value of f in the last point the lowest. We will denote the first(worst), second(second-worst)
and last(best) points as xj, x, x; respectively.

* Step 2
We will compute the mean of all the points except the worst xj, as ¢ = % > 41 Ti-

* Step 3
We will begin the transformation by computing the reflected point as z, = ¢ + a(c — xp),
where « is the reflection parameter and is usually equal to 1. If f(xs) > f(z,) > f(z),
which means that z,. is better than the second-worst point but not better than the best point,
we replace x;, with x, in the simplex and we move to the next iteration.

* Step 4
If the reflected point z, happens to be better than the best point x; (f(z,) < f(z;)) we will
move a little bit more in the direction of x, from ¢ in order to see if there is an even better
solution. The expanded point is z, = c¢+~(x, —c), where 7 is called the expansion parameter
and is usually 2.

» Step 5
We will then replace x;, with the better of the two points: z. and z, in the simplex.

* Step 6
If the reflection point was worst than x; maybe the direction defined by x, is not the one
we should move. So we will need to contract our simplex using the contraction point z. =
¢+ [(zy, — ¢), where (3 is the contraction parameter and is usually 0.5.If f(z.) < f(z},) this
means that the contraction point is better than the worst point and we replace x; with z. in
the simplex.

* Step 7
If however f(z.) > f(x) we will need to redefine the entire simplex. We will keep the
best point x; and we will define the other points using that. The j-th new point will be
x; = x; + d(x; — x;), where ¢ is the shrinkage parameter and is usually 0.5. What we will
essentially be doing with the above definition, is moving each point in the simplex towards
the current best point, in the hope of converging onto the best neighbourhood.
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It is important to say that this last step is the most expensive because we have to replace multiple
points in the simplex. However it has been found that this transformation rarely needs to happen
in practice. Now, we will see a simple example of this method using the Python code down below.
As an example we compute the minimum of the function

fla,y) = (a—2)* + by — 2°)*.

This is the Rosenbrock function or Rosenbrock’s banana function. This function is proved to have
a minimum in the point (a, @) and is often computed for @ = 1 and b = 100.

| #!/usr/bin/python
> # -x- coding: utf-8 -x-
class Vector(object):

def

def

def

def

def

def

def

__init__(self, x, y):
""" Create a vector,
self.x = x

self.y =y
repr__(self):

return " ({0}, {1})".format(self.x,

__add__(self, other):
x = self.x + other.x
y = self.y + other.y
return Vector(x, y)

__sub__(self, other):
x = self.x - other.x
y = self.y - other.y
return Vector(x, y)

__rmul__(self, other):

x = self.x * other
y = self.y * other
return Vector(x, y)

__truediv__(self, other):

x = self.x / other
y = self.y / other
return Vector(x, y)
c(self):

return (self.x, self.y)

# objective function
def f(point):

def

X,

y

a=1;

return (a-x)**2 +b*(y-x**2) **2
nelder_mead (alpha=1, beta=0.5, gamma=2, maxiter=10):

= point
b=100

# initialization

vl
v2
v3

Vector (1.0, 1.0)
Vector (1.0, 0)
Vector (0, 1)

for i in range (maxiter):

adict = {vi:f(v1.cQ),
points = sorted(adict.items(),

b = points[0] [0]
g = points[1][0]
W points [2] [0]
mid = (g + b)/2

CHAPTER 4. DATA FITTING

Vector (1,2)

v3:f(v3.c())}
key=lambda x:

v2:f(v2.c()),
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45 # reflection

46 xr = mid + alpha * (mid - w)
47 if f(xr.c()) < £(g.cO):

18 W = XTr

49 else:

50 if f(xr.cQ)) < f(w.c()):
51 W = Xr

5 c = (w + mid) /2

53 if f(c.c()) < f(w.cO)):
54 W= c

55 if f(xr.c(Q)) < £(b.cO):

56 # expansion

57 xe = mid + gamma * (xr - mid)
58 if f(xe.c()) < f(xr.c()):
59 W = Xe

60 else:

61 W = Xr

62 if f(xr.c(Q) > £(g.cO):

63 # contraction

64 xc = mid + beta * (w - mid)
65 if f(xc.cQ)) < f(w.c()):
66 W = XC

67 # update points

68 vl = w

69 v2 = g

70 v3 = Db

71 return b

7 print ("Result of Nelder-Mead algorithm: ")
73 Xk = nelder_mead ()

7+ print ("Best poits is: %s"%(xk))

Running the Nelder—Mead code above produces

I Result of Nelder-Mead algorithm:
> Best poits is: (1.0, 1.0)
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Chapter 5

Comparison with real data

In this section we will compare numerically the SIR and the SAIRD model with real data from
Greece, California, Florida, New York and Texas, that track the cumulative number of cases and
deaths. The Python code that we used, is shown in the Appendix.

We have used different time periods in those location since the virus didn’t spread at the same time
everywhere. We assumed that the epidemic started with a single individual and no deaths, that is
we took Iy = 1. To determine the start date of the infection we included a free parameter 7 to
shift the data in time. There will obviously be differences on how well the model works in each
location because the real number of new cases is different from the ones that actually get announced,
meaning in some places it might be closer to the real number than others.

The data that we have used come from OurWorldInData and CDC. We use the cumulative number
of cases and deaths in each location and modify equation 2.1.2 and 3.3.3 slightly to reflect this fact.
We also plot the total Symptomatics and Asymptomatics for the SAIRD model, that determine the
peak of the infection.

25
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26 CHAPTER 5. COMPARISON WITH REAL DATA
5.1 The SIR model

5.1.1 Greece

For Greece, we used data in the time period February 26,2020 to April 5, 2020. In the first graph we
computed the SIR model with the initial parameter estimates being 5 = 1.12, o = 1.143,0 = 0.056,
T, = 32.7.
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Figure 5.1: SIR initial Greece

It is obvious that the difference between the real data and the result from the simulation is quite
big, meaning we need to use different parameters. In order to optimize that difference and find the
right parameters we will use the Nelder-Mead algorithm. This gives us the improved parameter
estimates 3 = 1.59382275, o = 1.43799552 and T, = 10.04436537.

Infectives - final parameter estimates Deaths - final parameter estimates
so00 { — Model 704 — Mode|
* Data Data

(]

1500 50

40
1000

0
500
o

Figure 5.2: SIR final Greece

As we can see, the graph is now much closer to the real data now, and that means that we can use
this model with these parameters to predict the evolution of the disease.
In the next paragraph we use data from CDC for the total number og cases and deaths in four
populous states in the United States of America, specifically California, Florida, New York and
Texas for a time interval of 40 days after approximately March 1, 2020.
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5.1.2 United States of America

California
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Figure 5.3: SIR initial California

Similarly with the data from Greece, we used the same original estimates and they are not
the best, and after we optimize them we have § = 1.99989353, o = 1.85249568 and T, =
42.08582669.
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Figure 5.4: SIR final California

These results are very close to the real data, so once again we can use them to study the disease in
the area.
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Florida
Infectives - initial parameter estimates Deaths - initial parameter estimates
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Figure 5.5: SIR initial Florida

In this data set we also used the same initial parameters, and the final ones are 8 = 2.43894006,ac =
2.28659767 and T, = 41.06620599
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Figure 5.6: SIR final Florida
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New York
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Similar, with the other data sets we used the same initial parameters and we need to optimize
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Figure 5.7: SIR initial New York

them. This gives us f = 1.2861537,a = 1.13089925 and T = 71.69888294.
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Figure 5.8: SIR final New York
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Texas
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Figure 5.9: SIR initial Texas

Lastly, we will optimize the initial parameters in this data set too and we have 5 = 2.81556726,oc =
2.64593284 and T = 25.63889835.
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Figure 5.10: SIR final Texas

5.2 The SAIRD model

We will now work on the SAIRD model for the same data sets and see the results that we get this
time. We will use some fit parameters 6 = 0.056 and an initial estimation of p = 0.99 in all data
sets.
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5.2.1 Greece

31

As we did for the SIR model we will compute the SAIRD model with data in the time period
February 26, 2020 to April 5, 2020. In the first graph we computed the SIR model with the initial
parameter estimates being 5 = 2.3000, o = 1.75, v = 0.143, r = 0.153 and 7 = 25. Similarly,

Infectives - initial parameter estimates

- Muodel
10000 { « Data
ADOO -
£000 -
4000
2000 -
o
D -
20 -10 0 10 20 0 40

300 4

250 1

200

150 1

100 4

Deaths - initial parameter estimates

— Model
Data

20 -10 0 10 20 0 40

Figure 5.11: SAIRD initial Greece

the results are far different from the real data, so we need to change them. We will use the Nelder-
Mead algorithm again to find the best parameters, which are 5 = 3.3052, o = 1.5505, v = 0.1269,

r=0.0721, p = 0.9791 and T, = 48.5611.
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Figure 5.12: SAIRD final Greece

As we can see now the results are really close to the real data, and we can use this model to further

analyze this pandemic.
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5.2.2 United States of America

California
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Figure 5.13: SAIRD initial California
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=

The initial parameters are 5 = 3.3052, a = 1.5505, v = 0.1269, » = 0.0721 and T, = 48.5611.
And after the optimization we have 5 = 3.6107, o = 1.8683, v = 0.2274, r = 0.1111, p = 0.9986

and T, = 59.8449.
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Figure 5.14: SAIRD final California

As we can see the graph and the real data are almost identical.

0 20 20




5.2. THE SAIRD MODEL
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Figure 5.15: SAIRD initial Florida

0.212, r = 0.053 and T, = 54. And
0.209, » = 0.0447, p = 0.8072 and

The initial parameters are § = 4.63, a = 2.26, v =
the optimization gives us § = 5.0615, a« = 2.2796, v =
Ty = 67.6453.
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As we can see, the graph, after some days, is a lot closer to the real data.
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New York
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Figure 5.17: SAIRD initial New York

The initial parameters that we used are 5 = 2.63, a = 1.2, v = 0.212, r = 0.153 and T, = 54.
Similarly, the optimization gives us 8 = 2.3434, a = 1.1356, v = 0.2412, r = 0.1858, p = 0.954
and T, = 47.8019.
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Figure 5.18: SAIRD final New York
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Texas
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Figure 5.19: SAIRD initial Texas

And lastly, the initial parameters are 5 = 4.63, = 1.2, v = 0.112, » = 0.053, p = 0.99
and T, = 54.1. After we optimize the parameters we have § = 6.0734, a = 2.6427, v = 0.1754,
r = 0.0466, p = 0.9754 and Ty = 68.9820.
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Figure 5.20: SAIRD final Texas
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5.3 Symptomatics and Asymptomatics

In this section we plot Symptomatics and Asymptomatics in each location, and find when they have

the greatest value.
— Asymptomatics
mptomatics
10° Symp

10° 1

1D1 4

1'}—1 4

0 220 40 60 8 100 120 140
Figure 5.21: Symptomatics and Asymptomatics, Greece.

As we can see from (5.21), the peak for the Asymptomatics is about 85 days after the start of the
epidemic, while the peak for Symptomatics is about 80 days.
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Figure 5.22: Symptomatics and Asymptomatics, California.

As we can see from (5.22), the peak for the Asymptomatics is about 40 days after the epidemic
started, while for the Symptomatics is about 30 days.
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Figure 5.23: Symptomatics and Asymptomatics, Florida.

As we can see from (5.23) the peak for the Asymptomatics is about 80 days after the epidemic
started, while for the Symptomatics is about 75 days.
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Figure 5.24: Symptomatics and Asymptomatics, New York

As we can see from (5.24) the peak for the Asymptomatics is about 25 days after the epidemic
started, while for the Symptomatics is about 20 days.
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Figure 5.25: Symptomatics and Asymptomatics, Texas

As we can see from (5.25), the peak for the Asymptomatics is about 65 days after the epidemic
started, while for the Symptomatics is about 60 days.

We can easily observe that in every location the peak of the Symptomatics is some days earlier
than the peak of the Symptomatics. This means that they have a very similar behaviour. This can
also be seen from the graph since the one is almost a parallel transport of the other. However the
main difference that they have, is their values, since Asymptomatics are in order 10> — 10%, while
the Symptomatics are in order 1 — 102, meaning it’s almost 100 times smaller than the size of the
Symptomatics. This does make sense because in our code we used a higher value for p, so a bigger
fraction of Susceptibles becomes Asymptomatics, rather than Infected.

However, this suggests something really important. Asymptomatics play a huge role in the devel-
opment of the outbreak due to the fact that they are a lot more than the Infected.



Conclusions

In this thesis we studied some representative SIR-type models with practical emphasis on the clas-
sic SIR model and a more general compartmental model SAIRD . There is an infinite number of
mathematical models one can create. But despite their differences, here are similarities in all of
them.

First, if births are included this leads to a system having two equilibrium points, a disease-free
equilibrium and an endemic one. In the models that we saw, the disease-free equilibrium is stable
when Ry < 1, while the endemic equilibrium is stable if Ry > 1, with R, the basic reproduction
number, as defined in Section 1.4. This doesn’t come as a surprise since the pandemic in all model
in evolving as long as Ry > 1 and it’s the only way to stay at a value different than zero.

We also saw that the dependence of Ry and the evolution of the pandemic is true, since in all the
plots, when Ry < 1 we had the smallest amount of Infected.

From the numerical experiments we also saw that both the SIR and the SAIRD model, with the
right fitting of the parameters can simulate an epidemic. This was proven from the comparison
with the real data for several locations, including Greece.

Lastly, we proved that the Asymptomatics are much greater than the Infected, almost by a fac-
tor of ~ 102. This is an important conclusion of this thesis because it supproves the assumption
that Asymptomatics play a significant role in the evolution of a disease. One of the most notable
reasons why we need to study epidemiological models with more compartments and population
transfer among them, is because they are more likely to show the force of the epidemic better. A
simpler model such as the SIR cannot show things like this. To sum things, we can create a more
complex model that includes more assumptions which will be more difficult to study analytically
and numeriically, but it can help view the epidemic more globally and perhaps more accurately.
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Appendix A

Code for the SIR model

import numpy as np
import pandas as pd

; import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp
from math import ceil

s from scipy.optimize import fmin

def sir(t, Y, beta, alpha, delta):

dS = -betaxY[0]*Y[1]
dI = beta*Y[0]*Y[1] - (alpha + delta)=*Y[1]
dR = alpha *Y [1]
dC = beta*Y[0]*Y[1]

return [dS, dI, dR, dC]

def sirIC(i0O, N):
return [1-i0/N, iO/N, 0, i0/N]

>3 # Compute the least squares error

def fitscore(c, d, Tf, infd, dead):

¢ = c[-Tf-1:]

wc = 1 / (np.mean(c)**2 + np.mean(infd) **2)

d = d[-Tf-1:]

wd = 1 / (np.mean(d)**2 + np.mean(dead) **2)

return wc*np.sum((c - infd)**2) + wd*np.sum((d - dead) **2)

# Objective function for the minimization

def cost(x, delta, Tf, N, infd, dead):
beta, alpha, Ts = x

days = [i for i in range(ceil(-Ts), Tf)]
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YO = sirIC(1, N)
sol = solve_ivp(sir, (-Ts, Tf), YO, method='LSODA', t_eval=days,\
args=(beta, alpha, delta))
c = Nxsol.y[3]
d = Nx(1 - (sol.y[0] + sol.y[1] + sol.y[2]))
return fitscore(c, d, Tf, infd, dead)
# ________________________________________________________________
# Read total cases and total deaths
data = pd.read_csv('dsl.csv', usecols=['total_cases'
53 #data = pd.read_csv('ds2.csv', usecols=['total_cases
#data = pd.read_csv('ds3.csv', usecols=['total_cases
#data = pd.read_csv('ds4.csv', usecols=['total_cases
#data = pd.read_csv('greece-data-small.csv',

42
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,'total_deaths'])

, 'total_deaths'])
,'total_deaths'])
,'total_deaths'])

s # mortality rate,

total_deaths'])

infd = datal['total_cases'].to_numpy()

dead = datal['total_deaths'].to_numpy ()

dead = np.nan_to_num(dead,nan=0)

dasz = min(infd.size, dead.size)

# ___________________________________________

# Initial estimates of the model parameters.
and the

delta, will be kept fixed.

7 beta = 1.12

s alpha = 1.143
Ts = 32.7
delta = 0.056
N = 11000000
# ___________________________________________
# Integrate model on [-Ts, Tf].
epidemic
Tf = dasz-1
days = [i for i in range(ceil(-Ts), Tf)]
YO = sirIC(1, N)
sol = solve_ivp(sir,
args=(beta, alpha, delta))
c = N*sol.y[3]
d = Nx(1 - (sol.y[0] + sol.y[1] + sol.y[2]1))
# ___________________________________________

# Plot total number of

usecols=['total_cases', '

The size of the population,

(-Ts, Tf), YO, method='LSODA', t_eval=days,\

infectives and number of deaths

N,

Ts will be estimated to fix the start of the



3 axl

fig,
fig.

axl.
axl.
axl.

ax?2
ax2.
ax2.
ax?2
plt.

3 plt.

(axl, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

tight_layout (pad=3.0)

set_x1im(-Ts, Tf+1)

.plot(days, Nx*sol.y[3], days[-Tf-1:], infd, 'ko', markersize=3)

set_title('Infectives - initial parameter estimates')

legend (labels=['Model',

set_x1im(-Ts, Tf+1)

'Data'],

.plot(days, d, days[-Tf-1:]1, dead,

loc="'upper left')

'ro', markersize=3)

set_title('Deaths - initial parameter estimates')

.legend (labels=["'Model"',

show ()
show ()

'Data'],

loc="'upper left')

# Optimize the parameters of the model

= fmin(cost, x0, args=(delta, Tf, N, infd, dead))

Ts will be estimated to fix the start of the

= solve_ivp(sir, (-Ts, Tf), YO, method='LSODA', t_eval=days,\
args=(beta, alpha, delta))

x0 = (beta, alpha, Ts)
Xnew
beta, alpha, Ts = xnew
3 # Integrate model on [-Ts, Tf].
epidemic
s days = [i for i in range(ceil(-Ts), Tf)]
YO = sirIC(1, N)
sol
c= Nxsol.y[3]
d =

N*(1 - (sol.y[0] + sol.y[1] + sol.y[2]1))

# Plot total number of infectives and number of deaths

fig,
fig.

axl
axl.
axl.

33 axl.

ax2
ax2.
ax2.
ax2.
plt.
plt.

(axl, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

tight_layout (pad=3.0)

set_x1im(-Ts, Tf+1)

.plot (days, Nx*sol.y[3], days[-Tf-1:], infd, 'ko', markersize=3)

set_title('Infectives - final parameter estimates')

legend (labels=['Model',

set_x1im(-Ts, Tf+1)

'Data'],

.plot(days, d, days[-Tf-1:]1, dead,

loc="'upper left')

'ro', markersize=3)

set_title('Deaths - final parameter estimates')

legend (labels=['Model"',
show ()
show ()

'Data'],

loc="'upper left')
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Appendix B

Code for the SAIRD model

I from math import ceil

> import numpy as np

; from scipy.integrate import
4

s # The model equations

6

7 def model(t, Y, beta, alpha

8 S, A, I, R, C =Y

9

10 z = betaxSx(I + rxA)

1 q=1-rp

12

13 dSs = -z

14 dA = p*z - nuxA

15 dI = qg*z - (alpha
16 dR = nu*A + alpha
17 dC = qgx*z

19 return [dS, dA, dI, dR,

21 def modelIC(iO, N):
2 return [1-i0/N, 0, iO/N

24 # Objective function for th

solve_ivp

, nu, delta, r, p):

+ delta)x*I
* I

dc]

, 0, 1i0/N]

e minimization

6 def cost(x, delta, Tf, N, infd, dead):

27 beta, alpha, nu, r, p,

2 if ceil(-Ts) != -Ts:

30 days = [-Ts] + [i £
31 else:

3 days = [i for i imn

34 YO = modelIC(1, N)
35 sol = solve_ivp(model,

36 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6,

e-9)

Ts = x

or i in range(int(ceil(-Ts)), Tf+1)]

range (int (ceil (-Ts)), Tf+1)]

(-Ts, Tf), YO, method='DOP853', t_eval=days,\

45

atol=1.0



i

44

45

46

47

48

49

46

c
d

Nxsol.y[4]

return fitscore(c, d, Tf, infd,

; # Compute the least squares error

APPENDIX B. CODE FOR THE SAIRD MODEL

np.maximum(N*(1 - (sol.y[0] + sol.y[1] + sol.y[2] + sol.y[3])), 0)

dead)

def fitscore(c, d, Tf, infd, dead):
¢ = c[-Tf-1:]
wc = 1 / (np.mean(c)**2 + np.mean(infd) **2)
d = d[-Tf-1:]
wd = 1 / (np.mean(d)**2 + np.mean(dead) **2)
return wc*np.sum((c - infd)**2) + wd*np.sum((d - dead) **2)

# Read covid data

def readData(fname) :

import pandas as pd

data = pd.read_csv(fname, usecols=['total_cases',
infd = datal'total_cases'].to_numpy()

dead = datal['total_deaths'].to_numpy ()

dead = np.nan_to_num(dead,nan=0)

return infd, dead

> # Fit infec

if _ _name__

dataset

ted and dead to the model

__main__

= 'greece-data-small.csv'

#Total population

N = 11000000
#Estimates of the model

beta = 2.3

alpha = 1.75

nu = 0.143

r = 0.153

Ts = 25

dataset = 'dsl.csv'
#Total population

N = 40000000
#Estimates of the model

beta = 3.05

alpha = 1.76

nu = 0.198

r = 0.112

Ts = 55.9

dataset = 'ds2.csv'
#Total population

N = 22000000
#Estimates of the model

beta = 4.63

parameters

#California data-set

parameters

#Florida data-set

parameters

'total_deaths'])
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92 alpha = 2.26

93 nu = 0.212

94 r = 0.053

95 Ts = 54

96 re

97 LB

98 dataset = 'ds3.csv' #New-York data-set
9 #Total population

100 N = 9000000

01 #Estimates of the model parameters

102 beta = 2.63

103 alpha = 1.2

104 nu = 0.212

105 r = 0.153

106 Ts = b4

107 00U

108 t

109 dataset = 'ds4.csv' #Texas data-set

1o #Total population

11 N = 30000000

112 #Estimates of the model parameters
13 beta = 4.63

114 alpha = 1.2
115 nu = 0.112
116 r = 0.053
17 Ts = 54.1

119 infd, dead = readData(dataset)

120 Tf = infd.size-1

121

122 delta = 0.056

123 p = 0.99

124

125 print ('Dataset: {:}'.format(dataset))

126 print ('Initial parameter estimates:')

127 print(r ' = {:.4f} = {:.4f} = {:.4f}'.format (beta, alpha, nu))

128 print(r ' = {:.4f} r = {:.4f} p = {:.4f} Ts = {:.4f}'.format(delta, r,
p, Ts))

130 RO = p*rxbeta/nu + (1-p)*beta/(alpha+delta)
131 print(r'R_0 = {:.3f}'.format(RO), end = '\n\n')

133 # Run the model

135 if ceil(-Ts) != -Ts:

136 days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]

137 else:

138 days = [i for i in range(int(ceil(-Ts)), Tf+1)]

139

140 YO = modelIC(1, N)

141 sol = solve_ivp(model, (-Ts, Tf), YO, method='DOP853', t_eval=days,\

142 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0

e-9)
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144 # Plot total number of infectives and number of deaths

145

146 import matplotlib.pyplot as plt

147

148 fig, (axl, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
149 fig.tight_layout (pad=3.0)

150

151 axl.plot(days, Nxsol.y[4], days[-Tf-1:], infd, 'ko', markersize=3)
152 axl.set_x1lim(-Ts, Tf+1)

153 axl.set_title('Infectives - initial parameter estimates')

154 axl.legend(labels=['Model', 'Data']l, loc='upper left')

155

156 d = np.maximum(N*(1 - (sol.y[0] + sol.y[1] + sol.y[2] + sol.y[31)), 0)
5

158 ax2.plot(days, d, days[-Tf-1:], dead, 'ro', markersize=3)

159 ax2.set_x1lim(-Ts, Tf+1)

160 ax2.set_title('Deaths - initial parameter estimates')

161 ax2.legend(labels=['Model', 'Data'l], loc='upper left')

162 plt.show ()

163

164 # Optimize model parameters

166 from scipy.optimize import fmin

168 x0 = (beta, alpha, nu, r, p, Ts)
169 xnew = fmin(cost, x0, args=(delta, Tf, N, infd, dead))

71 # Run model with the optimized parameters

172

173 beta, alpha, nu, r, p, Ts = xnew

174

175 print ('\nOptimized parameter estimates:')

176 print(r ' = {:.4f} = {:.4f} = {:.4f}"'.format(beta, alpha, nu))

177 print(r ' = {:.4f} r = {:.4f} p = {:.4f} Ts = {:.4f}'.format(delta, r,
p, Ts))

178 RO = p*rxbeta/nu + (1-p)*beta/(alpha+delta)

179 print(r'R_0 = {:.3f}'.format(RO), end = '\n\n')

180

181 if ceil(-Ts) != -Ts:

182 days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]

183 else:

184 days = [i for i in range(int(ceil(-Ts)), Tf+1)]

185

186 YO = modelIC(1, N)

187 sol = solve_ivp(model, (-Ts, Tf), YO, method='DOP853', t_eval=days,\

188 args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0
e-9)

189

100 # Plot total number of infectives and number of deaths

192 fig, (axl, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
193 fig.tight_layout (pad=3.0)

195 axl.plot(days, Nxsol.y[4], days[-Tf-1:], infd, 'ko', markersize=3)



axl.
axl.
axl.

d =

ax2.
ax2.
ax2.
ax2.
plt.

Plot symptomatics and asymptomatics

Tf =
if c
else
YO =
sol
e-9)

fig,
fig.

axl
ax1
axl.
axl.
plt.

set_x1im(-Ts, Tf+1)
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set_title('Infectives - final parameter estimates')

legend (labels=['Model', 'Data'],

loc="'upper left')

np.maximum (N*(1 - (sol.y[0] + sol.y[1] + sol.y[2] + sol.y[3])), 0)

plot(days, d, days[-Tf-1:], dead, 'ro', markersize=3)

set_x1im(-Ts, Tf+1)

set_title('Deaths - final parameter estimates')

legend(labels=['Model', 'Data'],

show ()

Tf + 165

eil(-Ts) !'= -Ts:

loc="'upper left')

days = [-Ts] + [i for i in range(int(ceil(-Ts)), Tf+1)]

days = [i for i in range(int(ceil(-Ts)), Tf+1)]

modelIC (1, N)

= solve_ivp(model, (-Ts, Tf), YO, method='DOP853', t_eval=days,\
args=(beta, alpha, nu, delta, r, p), rtol=1.0e-6, atol=1.0

axl = plt.subplots(figsize=(6, 4))

tight_layout (pad=3.0)

set_x1lim(-15, Tf)
legend (labels=['Asymptomatics
show ()

H

.plot (days, Nxsol.y[1], days, Nxsol.y[2])
.set_yscale('log')

'Symptomatics '], loc='upper left')
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