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Chapter 1: Introduction

An active galactic nucleus (AGN) is the central region of a galaxy where we observe energetic
phenomena that cannot be attributed directly to stars. At least ∼ 10% of galaxies in the near
universe host AGN. Their luminosity can range from ∼ 1042erg s−1 to ∼ 1047erg s−1, while the
luminosity of a typical galaxy is about ∼ 1044erg s−1.

AGN show broadband emission, that extends from radiowaves to γ-rays, with comparable
amount of energy being emitted at all wavelengths. Another important observational property
of AGN is the emission of strong lines (i.e. lines with large equivalent width), which can be very
broad. This implies that the line emitting gas cloud move with velocity up to 5× 103 − 104km s−1.

AGN are highly variable, i.e. their luminosity changes significantly with time. AGN are variable
in every waveband they have been observed. The time-scale and the amplitude of the observed
variations decrease and increase, respectively, with increasing frequency. This feature can be used
to set constraints on the size of the central nucleus as follows: assume that the flux doubles at a
timescale of t ∼ 104s (usual timescale for X-ray variability). This significant increase in brightness
must involve some significant variation in the properties of the source as a whole. This means that
the source cannot be larger than the variability time-scale multiplied by the speed of light, so that
the physical process respinsible for the variation can travel through the whole source. This results
in a size of R ∼ ct = 3 × 1014cm (or ∼0.01pc). This is surprisingly small for such bright sources.
Similar considerations in the optical/UV band (where most of the luminosity is emitted) imply a
source size of the order of a few light days.

The small size of the central engine in active galaxies, as well as the enormous amount of power
that they emit, pause significant challenges in our understanding of how AGN work. We currently
believe that the engine in AGN comprises of a supermassive black hole (SMBH) and an accretion
disk around it. As the gas moves inwards, large amount of gravitational energy is released and
heats the disk, which then emits optical/UV light. Regarding the disk formation, assume a number
of gas clouds around the SMBH, each one with some velocity and angular momentum. As the
gas clouds approach the black hole, due to the gravitational attraction that it exerts upon them,
they will collide with each other. As a result, their bulk motion is slowed down, they get mixed
up and orbit around the black hole, forming a disk. The direction of their rotation is decided by
their initial total angular momentum. If we further assume that a form of viscosity (i.e. friction)
exists in the disk, then the angular momentum can be redistributed among the gas particles. This
allows most of them to spiral inwards, thus creating an accretion disk. The amount of energy that
can be extracted from material spiraling towards the SMBH is equal to the binding energy of the
innermost stable circular orbit (ISCO). For a non-rotating black hole approximately 6% of the rest
mass energy can be extracted. This amount can increase to 40% for a rotating black hole, in which
case the ISCO moves closer to the black hole. The energy that is released is dissipated to the gas
as heat, due to viscosity, and is ultimately radiated away.

1.1 The “big blue bump”

The presence of the accretion disk is strongly supported by the observed optical/UV spectrum
of AGN. Figure 1 shows flux measurements of tens of thousands of quasars, selected from the
Sloan Digital Sky Survey (SDSS), (Figure taken from Krawczyk et al. 2013). Points with different
colours indicate measurements with different filters (details can be found in Figure 8 of Krawczyk
et al. 2013). The solid black line in Fig. 1 shows the mean spectral energy distribution (SED),
i.e. the power emitted as a function of the frequency (or the wavelength) of radiation, using the
measurements of the individual sources. The solid green line in the same figure shows the SED
of a typical elliptical galaxy. The peak of the emission of the elliptical galaxy is at ∼ 1µm. The
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emitted power at higher frequencies decreases since the fraction of young, high temperature stars
over the total number of stars is relatively small in normal galaxies. Such a trend of decreasing
power in the UV band is observed in the SED of all normal galaxies. On the contrary, the AGN
SED increases at wavelengths shorter than 1µm. In fact, Figure 1 shows that the peak of the AGN
emission may happer at wavelengths as short as ∼ 1000Å (or even shorter as absorption of UV
radiation by interstellar hydrogen clouds in our galaxy makes it difficult to find the exact location
of the peak). The increase of the emitted power of AGN with increasing frequency in the optical
and UV bands is called the “big blue bump”. It is a defining characteristic of AGN and one of the
major differences between active and normal galaxies.

Figure 1: The colour scattered points show flux measurements in various filters, from tens of
thousands of quasars. The solid black line shows the mean SED of these quasars, while the green
solid line shows the SED of a typical elliptical galaxy (Figure taken from Krawczyk et al. 2013).

The big blue bump provides one the most challenging tests for the accretion-powered theory
of AGN. There has been a lot of work in modeling the observed optical/UV SED of AGN. Most
models adopt the ideas of Shakura & Sunyaev (1973; SS73 hereafter) who studied the structure
and spectrum of geometrically thin and optically thick accretion disks. General relativistic effects
were introduced by Novikov & Thorne (1973; NT73 hereafter). Significant improvements followed
by considering radiative transfer in the disk atmosphere and disk winds (e.g. Hubeny et al. 2001,
Davis & Laor 2011).

The SS73 and NT73 accretion disk models are relatively easy to compute and it is rather
straightforward to fit the model spectra to observed SEDs. Many attempts have been done in the
past to fit model disk spectra to AGN SEDs, with mixed conclusions. For example, Shang et al.
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(2005) and Capellupo et al. (2015) studied the spectra of 17 and 30 AGN, respectively, and they
found that thin accretion disk models can fit the data rather well. On the other hand, Davis et al.
(2007), who measured the rest-frame far-UV and near-UV spectral slopes for thousands of AGN,
and Jin et al. (2012), who fitted the spectra of ∼ 50 SDSS AGN, find that the thin disk models do
not fit the data well. Davis et al. (2007) claim that intrinsic reddening may be the cause of much
of the discrepancy between models and observation, while Jin et al. claim that “warm” skin on top
of the disk (“warm corona”) and a hot X-ray emitting inner flow, maybe necessary to explain the
data.

1.2 Objective of our work

The purpose of this work is to study simple theoretical models of the accretion disk in AGN,
compute the resulting model SED, and then compare it with observed SEDs. We consider the NT73
model and we take into account the effects of electron opacity, i.e. Thomson scattering and free-free
absorption, as well as Compton scattering. Regarding the first two processes, we consider the case
of a modified blackbody spectrum, while regarding the latter process we consider the case of a
colour correction to the blackbody emission formula. We then create model accretion disk spectra
for a wide range of AGN parameters (i.e. black hole mass, accretion rate, spin, and inclination)
and fit their average to the observed mean SED of 119,652 SDSS quasars (taken from Krawczyk et
al. 2013). In this way, we can investigate whether the current accretion disk models are consistent
with the observed AGN SED, and at the same time determine the bet-fit black hole mass, accretion
rate, spin, and inclination distribution for a large sample of AGN. The sample size is one of the
main differences between our modeling and previous works. In addition, we use a rather innovative
way of accounting for the electron opacity effects and also include the relativistic effects of photon
propagation from the disk to the observer at infinity as computed by Dovčiak (2004).

In Chapter 2, we introduce the radial and vertical structure equations for a general relativistic
thin accretion disk (as was done by NT73), and write down the formulas for the disk pressure,
density, height and temperature, as they are important for the calculation of the disk spectrum. In
Chapter 3, we compute the disk SED assuming different emission cases: pure blackbody emission,
color-corrected blackbody emission using the prescriptions of Done et al. (2012) and Davis & El-
Abd (2019), and modified blackbody emission. In Chapter 4, we fit the mean observed SEDs of
quasars as determined by Krawczyk et al. (2013), using model disk spectra for a wide range of
AGN parameters (i.e. black hole mass, accretion rate, spin, inclination angle). We present our
best-fits and the corresponding distributions of AGN parameters in sectrion 4.3. In Chapter 5, we
summarize our results.
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Chapter 2: Accretion disk structure

2.1 Radial disk structure

A general relativistic (GR) analysis for the structure of a thin accretion disk was performed
by NT73. They considered a Kerr spacetime around a spinning black hole (BH) of mass M and
accretion rate Ṁ . They solved the equations of conservation of rest mass, conservation of angular
momentum, and conservation of energy in the disk, and showed that the power per unit surface
area dissipated to the disk due to frictional heating is equal to

QGR(R) =
3

8π

GMṀ

R3

L
BC 1/2

(erg s−1 cm−2), (1)

where G is the gravitational constant, R the radial distance from the black hole, and B,C ,L are
relativistic corrections given below

B = 1 + α∗/r3/2 , (2)

C = 1− 3/r + 2α∗/r3/2 , (3)

L =
1 + α∗x−3

(1− 3x−2 + 2α∗x−3)1/2
1

x

[
x− x0 −

3

2
α∗ln(

x

x0

)− 3(x1 − α∗)2

x1(x1 − x2)(x1 − x3)
ln(

x− x1

x0 − x1

)

− 3(x2 − α∗)2

x2(x2 − x1)(x2 − x3)
ln(

x− x2

x0 − x2

)− 3(x3 − α∗)2

x3(x3 − x1)(x3 − x2)
ln(

x− x3

x0 − x3

)
]
,

(4)

where eq.(4) is taken from Page and Thorne (1973). The dimensionless parameters introduced in the
above equations are: r ≡ R/Rg, where Rg = GM/c2 is the gravitational radius, the dimensionless
spin parameter of the black hole α∗ (0 ≤ α∗ ≤ 1), 1 and the radial coordinate x =

√
r. Parameters

x1, x2, x3 are the roots of the equation x3 − 3x + 2α∗ = 0 ( x1 = 2cos(1
3
cos−1α∗ − π/3), x2 =

2cos(1
3
cos−1α∗ + π/3) and x3 = −2cos(1

3
cos−1α∗)), and x0 =

√
rms where rms is the radius of the

marginally stable orbit (also called innermost stable circular orbit) in units of Rg given by

rms = 3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]
1/2 , (5)

Z1 = 1 + (1− a∗)
1/3[(1 + a∗)

1/3 + (1− a∗)
1/3] , (6)

Z2 = (3a2∗ + Z2
1)

1/2 . (7)

For a non-rotating black hole (α∗ = 0) eq.(5) gives rms = 6, as expected, while for a maximally
rotating black hole (α∗=1) we find rms = 1.

The Newtonian version of eq.(1), i.e.

QN(R) =
3

8π

GMṀ

R3
(1−

√
6Rg

R
) (erg s−1 cm−2), (8)

is also often found in the literature.
An important assumption of both eq.(1) and eq.(8) is that no viscous stresses can act on the

surface r = rms. This is reasonable since at r < rms the gas will spiral rapidly into the black hole
and thus the gas density of this region is insignificant compared to that at r > rms. In the remainder
of this section, we plot QGR, and QN .

1The dimensionless spin parameter is defined as α∗= Jc/GM2, where J is the angular momentum of the black
hole.
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Let us consider the dimensionless parameters for the radius, the mass, and the accretion rate:

r =
R

Rg

, M8 =
M

108M⊙
, ṁ =

ηṀc2

Ledd

, (9)

where Ledd is the Eddington luminosity given by

Ledd =
4πGMmpc

σT

= 1.26× 1038
M

M⊙
(erg/sec) , (10)

withmp being the proton mass, σT the Thomson scattering cross section and η is the spin dependent
efficiency of accretion (e.g. for spin α∗ = 0 we have η = 0.057 2) . Using these parameters eq.(1)
and eq.(8) become

QGR(r) = 7× 1018
(ṁ/η)

M8

r−3 L
BC 1/2

, (11)

QN(r) = 7× 1018
(ṁ/η)

M8

r−3(1−
√

6

r
) . (12)

Figure 2: Power per unit surface area dissipated to the disk due to frictional heating for the case
of M8 = 1, ṁ = 0.1. The dashed green line shows the Newtonian case, QN(r), and the solid blue,
orange, and red lines show the general relativistic case, QGR(r), for α

∗=0, 0.5, 0.998 respectively.

The solid blue and dashed green lines of Figure 2 show QGR(r), QN(r) as a function of r for the
case of M8 = 1, ṁ = 0.1, α∗=0. The solid orange and solid red lines show QGR(r) for the same
M8, ṁ and for α∗=0.7 and 0.998 respectively. They are calculated at Nr = 1000 radii which are
equidistant in the log space, i.e.

log(ri) = log(rms) + i
[log(rout)− log(rms)]

Nr

, (13)

2The efficiency is equal to η = 1− Ut(rms), where Ut(rms) =
4(

√
rms−α∗)+α∗
√
3rms

is the four-velocity of the accreting

matter at ISCO.
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where rout = 1000 is the outer edge of the disk.
As radius decreases, the power dissipation per unit surface area increases. This happens because

more gravitational energy is released at the inner parts of the disk. As the value of α∗ increases
the marginally stable orbit moves closer to the black hole, and thus Q reaches even higher values
there. However, if we compare Q for different spins at the same radius (e.g. r=10) we see that as
spin increases Q decreases. This happens since ṁ depends on the efficiency of accretion. For larger
values of spin, η becomes larger as well. It is due to that enhanced efficiency that the accretion rate
in physical units decreases (for the same value of ṁ), and thus Q decreases as well. At large radii
(r ∼ 1000), all the different lines give similar values since most of the dissipation happens close to
the inner edge of the disk. It is interesting to compare the QGR with QN when α∗=0. In both cases,
the innermost stable circular orbit is at 6 Rg. However, the power per surface area dissipated in
the general relativistic case is noticeably smaller than the one of the Newtonian case close to rms.

2.2 Vertical disk structure

For some emission cases, knowing the power dissipated per surface area due to viscous heating is
not enough information to compute the disk spectrum. We also have to calculate the disk’s density
ρ(R, z), where z is the height from the disk midplane. To do this, we need a detailed model of the
disk’s vertical structure, i.e. a set of equations for the vertical structure parameters of the disk:
ρ(R, z), pressure P (R, z), internal temperature T (R, z), flux of energy F (R, z), shear stress t(R, z)
and Rosseland mean opacity κ̄(R, z). In this section, we write down these equations and solve them
by approximating the vertical structure parameters with their mean values in the disk interior.

2.2.1 Vertical pressure balance

The equation of hydrostatic equilibrium for a vertically thin disk is given by

1

ρ

dP

dz
= “acceleration of gravity” = −GMz

R3

B2DE

A 2C
, (14)

where A ,D ,E are relativistic correction factors (like the ones introduced in section 2.1) given by

A = 1 + a2∗/r
2 + 2a2∗/r

3 , (15)

D = 1− 2a2∗/r + a2∗/r
2 , (16)

E = 1 + 4a2∗/r
2 − 4a2∗/r

3 + 3a4∗/r
4 . (17)

By approximating P and ρ with their average values in the disk interior and setting z = H on the
right-hand side of eq.(14), where H is the disk height, eq.(14) becomes

P = ρ
GM

R3
H2B

2DE

A 2C
. (18)

2.2.2 Energy generation

The generation of the energy flux F (erg s−1 cm−2) flowing out of the upper surface of the disk
is

dF

dz
=

3

2
(
GM

R3
)1/2t

D

C
. (19)
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To progress this expression further we need an assumption for the shear stress t caused by viscosity.
We assume that

t = aP , (20)

where a is the viscosity parameter (0 ≤ a ≤ 1). NT73 approximate F by a mean value of QGR/2.
Then eq.(19) becomes

QGR = 3a(
GM

R3
)1/2HP

D

C
. (21)

2.2.3 Energy transport

Assuming that the energy transport through the disk is due to radiative diffusion, we can use
the Rosseland approximation for the disk flux radiated away, i.e.

F (z) = −16σT 3

3αR

∂T

∂z
, (22)

where σ is the Stefan–Boltzmann constant, αR is the Rosseland mean absorption coefficient, which
is a weighted average of the absorption and scattering coefficients over all frequencies, and is equal
to αR = ρκ̄. Approximating with the average value of T in the disk midplane we find

F =
4σ

3ρHκ̄R

T 4 . (23)

We assume that the main opacity contributions come from free-free transitions and Thomson scat-
tering (we ignore line opacity and bound-free transitions). The Rosseland mean opacity in this case
has the form

κ̄R = κff + κes , (24)

where κes is the Thomson scattering opacity and κff the free-free opacity averaged over all frequen-
cies, given below

κes = 0.4 (cm2 g−1) , (25)

κff = 6.4× 1022ρT−7/2 (cm2 g−1) . (26)

2.2.4 Equation of state

The pressure in the disk is due to gas and radiation (we ignore turbulent pressure and pressure
due to magnetic fields). Assuming ideal gas, we have

Pgas = nkT , (27)

where n is the number of particles per unit volume and k is the Boltzmann constant. We can use
n = ρ/µmp to eliminate n and get

Pgas =
ρkT

µmp

, (28)

where µ is the mean mass per particle measured in units of hydrogen mass mH . It is called the
mean molecular mass, and is equal to 1 for neutral hydrogen, while for ionized hydrogen it is equal
to 1/2. In our case, we will use µ = 1/2.

The radiation pressure is, assuming black body radiation,

Prad =
4σT 4

3c
. (29)

Therefore the total pressure is

P =
2ρkT

mp

+
4σT 4

3c
. (30)
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2.3 Determination of the disk model parameters

By combining the equation of radial disk structure for QGR and the approximate equations for
the vertical structure we have the following set of equations

P (R) = ρ
GM

R3
H2B

2DE

A 2C
, (31)

QGR(R) = 3a(
GM

R3
)1/2HP

D

C
, (32)

F (R) =
4σ

3ρHκ̄R

T 4 , (33)

P (R) =
2ρkT

mp

+
4σT 4

3c
. (34)

If we assume that all the power that heats up the disk is radiated away, i.e. F = QGR/2, then
we can solve the above set of equations and determine the 4 unknown disk parameters: ρ, P, T,H.

The analytical solution of the above equations is obtained by assuming that the disk can be
divided into 3 regions: an inner region where the radiation pressure dominates over the gas pressure
(i.e. P ≈ Prad) and the main contribution to opacity is Thomson scattering, a middle region where
gas pressure dominates over radiation pressure (i.e. P ≈ Pgas) and electron scattering is still the
main opacity contribution, and an outer region where gas pressure dominates and the opacity is
predominantly free-free. Next, we present the solutions in each region using the dimensionless
parameters of r,M8, ṁ defined in eq.(9). The derivation of the inner region solutions is shown in
Appendix A.

2.3.1 Inner region: P = Prad, and κ̄R = κes

ρ = 2× 10−13(aM8)
−1(ṁ/η)−2r3/2A −4B6DE 2L−2 (g cm−3) , (35)

H

R
= (ṁ/η)r−1A 2B−3C 1/2D−1E −1L1 , (36)

T = 5× 105(aM8)
−1/4r−3/8A −1/2B1/2E 1/4 (K) , (37)

P = Prad = 2× 108(aM8)
−1r−3/2A −2B2E (dyn cm−2) . (38)

To identify the transition radius from the inner region to the middle one, we need to calculate
the ratio of the gas pressure over the radiation pressure, i.e.

Pgas

Prad

= 4× 10−8(aM8)
−1/4(ṁ/η)−2r21/8A −5/2B9/2DE 5/4L−2 . (39)

The transition occurs when Pgas/Prad = 1 which gives the following equation, that can be solved
numerically for r,

r = 700(aM8)
2/12(ṁ/η)16/21A 20/21B−36/21D−8/21E −10/21L16/21 . (40)
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2.3.2 Middle region: P = Pgas, and κ̄R = κes

ρ = 10−4(aM8)
−7/10(ṁ/η)2/5r−33/20A −1B3/5D−1/5E 1/2L2/5 (g cm−3) , (41)

H

R
= 2× 10−3(aM8)

−1/10(ṁ/η)1/5r1/20A B−6/5C 1/2D−3/5E −1/2L1/5 , (42)

T = 2× 107(aM8)
−1/5(ṁ/η)2/5r−9/10B−2/5D−1/5L2/5 (K) , (43)

P = Pgas = 3× 1011(aM8)
−9/10(ṁ/η)4/5r−51/20A −1B1/5D−2/5E 1/2L4/5 (dyn cm−2) , (44)

2.3.3 Outer region: P = Pgas, and κ̄R = κff

The transition from the middle region to the outer one occurs when the optical depth due to
free-free absorption becomes equal to the optical depth due to electron scattering, i.e., τff/τes = 1.
This ratio is equal to

τff
τes

= 210−3(ṁ/η)−1/2r3/4A −1/2B2/5D1/4E 1/4L−1/2 , (45)

so the radius at which the transition happens is given by

r = 5× 103(ṁ/η)2/3A 2/3B−8/15D−1/3E −1/3L2/3 . (46)

For larger r the disk parameters become

ρ = 10−3(aM8)
−7/10(ṁ/η)11/20r−15/8A −17/20B3/10D−11/40E 17/40L11/20 (g cm−3) , (47)

H

R
= 4× 10−4(aM8)

−1/10(ṁ/η)3/20r1/8A 19/20B−11/10C 1/2D−23/40E −19/40L3/20 , (48)

T = 4× 106(aM8)
−1/5(ṁ/η)3/10r−3/4A −1/10B−1/5D−3/20E 1/20L3/10 (K) , (49)

P = Pgas = 7× 1011(aM8)
−9/10(ṁ/η)17/20r−21/8A −19/20B1/10D−17/40E 19/40L17/20 (dyn cm−2) ,

(50)
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Chapter 3: Models for the disk spectral energy distribution

In this chapter, we are interested in computing the spectrum emitted by the accretion disk.
This is usually done by splitting the disk into many narrow annuli, and assuming that each one
emits approximately as a blackbody of constant temperature. Then, the contribution of each ring is
summed up to create the full spectrum at some frequency. However, the blackbody is an idealization
of a body that can absorb all the incident radiation and is at thermodynamic equilibrium with its
environment, meaning that it emits as much radiation as it absorbs and has a constant temperature.
This is not the case for physical objects like stars and accretion disks, since they are not in thermal
equilibrium with the space around them. The disk temperature and density vary along the vertical
direction z. Therefore, to compute the emergent spectrum we need to perform radiative transfer
through the vertical structure at each radius, considering all the interactions between photons and
matter, such as bound-free and free-free absorption, Thomson and Compton scattering.

A way to include some of these opacity effects while not having to deal with the full radiative
transfer is to assume that each disk annulus emits as a modified blackbody or as a color-corrected
blackbody. We explore these approaches in the next two sections.

3.1 The modified blackbody spectrum

A discussion on how Thomson scattering can modify the emitted spectrum so that it is no longer
blackbody is made in NT73. Let yν be the depth (in units of g cm−2) in the disk where photons
are formed by free-free emission:

yν =

∫ ∞

formation point

ρdz . (51)

Before these photons manage to escape the disk, they scatter with electrons. The mean free path
for electron scattering is λ = 1/κes = 2.5g cm−2. Then, the total depth traveled by the photons
through random-walk before they escape is equal to their mean free path multiplied by the square
root of the number of scatterings Nes

yν = N1/2
es /κes . (52)

In the outer parts of the disk, where free-free absorption effects are dominant and electron scattering
is negligible, the optical depth is

τff = κffyν = 1 . (53)

Then yν ∝ κ−1
ff ∝ ρ−1T 7/2. Using equations (47) and (49) for ρ, T in the outer disk region and

ignoring the relativistic corrections (this is okay for the outer disk), we find yν ∝ r−3/4. Then,
eq.(52) gives Nes ∝ y2ν ∝ r−3/2. As the radius decreases, the amount of scattering increases, and
thus at some radius electron scattering becomes important. This has a strong effect on the emerging
spectrum since only a fraction of the photons with blackbody intensity formed at yν will ever reach
the disk surface. Most of them will be scattered back into depths greater than yν and eventually
get absorbed there.

To model this effect we take the specific intensity of the disk at each frequency to be that of a
modified black body, given by (Rybicki & Lightman, 1979)

Iν =
4hν3/c2

(ehν/kTs − 1)(1 +
√
1 + κes/κff )

(erg s−1 cm−2 Hz−1 ster−1) , (54)

where Ts is the disk surface temperature, and κes, κff are the opacities for Thomson scattering
and free-free absorption, respectively. Equation (54) is valid for a medium in which scattering,
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absorption, and emission occur. It assumes that the medium is homogeneous and isothermal. This
is a good approximation for each annulus of a thin disk because we take their width to be small.
It further assumes that scattering is isotropic (which is a good approximation to the forward-
backward symmetry of Thomson scattering). However, opacity effects of bound-free and bound-
bound transitions are ignored. This approximation is reasonable at high temperatures (>∼ 104K).

In the cases where Thomson scattering is negligible compared with free-free absorption, Iν
approaches the spectrum of a blackbody

Bν =
2hν3

c2
1

ehν/kTs − 1
(erg s−1 cm−2 Hz−1 sr−1). (55)

On the other hand, when κes ≫ κff the spectrum becomes that of a modified blackbody, i.e.
Iν = 2Bν

√
κff/κes. The opacity for electron scattering is given in eq.(25) and the frequency

dependent free-free opacity is given below

κff = 1.5× 1025ρT−7/2
s

1− e−x

x3
g(x, Ts) (cm

2 g−1) , (56)

where x = hν/kTs and g(x, Ts) ≈ 1 is the Gaunt factor. κff depends strongly on the disk tempera-
ture and density. It also decreases with increasing frequency, which means that κff may dominate
the spectrum at low frequencies.

To compute the spectrum, using eq.(54), we need the surface temperature of the disk. This is
obtained by equating the total emitted flux, i.e. the integral of Iν over all frequencies and solid
angles, to the total power emitted per unit surface area, i.e. QGR. We have

π

∫ ∞

0

Iνdν = QGR (erg s−1 cm−2) . (57)

Substituting the expressions for Iν and QGR into the above equation we get

4πh

c2

∫ ∞

0

ν3dν

(ehν/kTs − 1)(1 +
√
1 + κτ/κff )

=
3

8π

GMṀ

R3

L
BC 1/2

. (58)

We perform the change of variables x ≡ hν/kTs, and use the dimensionless parameters r,M8, ṁ to
find

4π
k4T 4

s (r)

h3c2

∫ ∞

0

x3dx

(ex − 1)[1 +
√

1 + κes/κff (x, ρ(r), Ts(r))]
= 7× 1018

(ṁ/η)

M8

r−3 L
BC 1/2

(59)

This equation can be solved numerically for the surface temperature at each disk annuli (more
information is given in Appendix B). Notice that to solve eq.(59) we need the disk density, which
contains information about the vertical structure of the disk. After we know Ts(r), we can calculate
the local emission of each disk annuli. The calculation of the total spectrum is performed in section
3.3.

3.2 The color-corrected blackbody spectrum

At small radii the disk temperature increases significantly and thus Compton scattering may
become important. In this case, the resulting spectra can be modeled by a color-corrected blackbody

Iccν =
2h

c2f 4

ν3

ehν/fkTeff − 1
(erg s−1 cm−2 Hz−1 sr−1) , (60)
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where f is known as the color correction or spectral hardening factor, and Teff is the disk’s effective
temperature given by

Teff ≡ (
QGR

σ
)1/4 . (61)

The presence of this factor in the exponential shifts the spectral features to higher energies. This
means that the color-corrected blackbody can model the Wien tail at the high energy end of the
spectrum, that is generally enforced by the inelastic scattering of electrons and photons (Shimura &
Takahara 1995). However, this approach relies on having some method of computing f . We follow
two such methods, as we describe below.

3.2.1 The Done et al. approach (D12)

Done et al. (2012) studied the Hubeny et al. (2001) accretion disk spectra, as recalculated
in Davis & Hubeny (2006). Their disk models assume Novikov–Thorne emissivity and include
full radiative transfer through the vertical structure of the disk at each radius. They also take
into account both Compton scattering and metal opacities (bound– free transitions). Done et al.
showed that the spectra calculated by the full radiative transfer code can be approximated by the
spectrum defined in eq.(60), with

• f = 1 for Teff < 3× 104K,

• f = [Teff/(3× 104)]0.82 for 3× 104 < Teff < 105K, and

• f = [72keV/kTeff ]
1/9 for Teff > 105K ,

where k = 8.62×10−8 keV K−1. For low temperatures, blackbody emission is a good approximation
to the true disk spectrum, i.e. f = 1, because electron scattering is less important and H starts to
become neutral so the associated absorption edge opacity is large. In the critical temperature range
3× 104 < Teff < 105K, the color correction factor is higher since hydrogen and helium are ionized
and Thomson scattering dominates. The f for higher temperature is assumed to model Compton
scattering.

3.2.2 The Davis & El-Abd 2019 approach (DE19)

Davis & El-Abd (2019) studied the evolution of f with black hole mass and accretion rate by
fitting color-corrected blackbody models to synthetic spectral models generated by the TLUSTY
code (Hubeny 1990; Hubeny & Lanz 1995). They found that f displays a complicated variation
with the effective temperature Teff , the tidal gravity parameter g and the disk surface density
parameter m0 (also called midplane column mass), where

g ≡ GM

R3

B2DE

A 2C
, (62)

m0 ≡
Σ

2
= ρH . (63)

They studied f for logg ranging from -10 to 11, in steps of 1 dex, logTeff from 5 to 7.5 in steps of
0.1 dex, and log m0 at values of 2.5, 2.75, 3, 4, 5, and 6. By restricting their parameter space to
m0 ≥ 103g cm−2 and 0.01 < ṁ < 1 they found that f can be approximated by

f = 1.74 + 1.06(logTeff − 7)− 0.14(logg − 7)− 0.07(logm0 − 5) . (64)
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The effects of Compton scattering to the emitted disk spectrum can be modeled by dividing the
disk into narrow annuli, calculating Teff , g, and m0 in each one of them and then using eq.(64) to
compute f . However, this can be done as long as the disk parameters are within the parameter
range that Davis & El-Abd (2019) had considered. To investigate this, we compute Teff , g,m0 for
different cases of black hole masses and accretion rates and we plot them as a function of the radius
in Figures 3, 4 and 5.

Figure 3: The surface density parameter m0 as a function of the radius for black hole mass M8 = 1
and accretion rates ṁ = 0.01, 0.1, 1 (solid, dashed and dotted lines respectively) in the left panel,
and for ṁ = 0.1, M8 = 0.01, 1, 100 (solid, dashed and dotted lines respectively) in the right panel.
The dashed magenta line shows the lower limit for which eq.(64) is valid.

Figure 3 shows m0 as a function of the radius. On the left panel, we show 3 different cases
of accretion rates, ṁ = 0.01, 0.1, 1, with constant mass M8 = 1, while on the right panel we plot
3 different cases of black hole masses, M8 = 0.01, 1, 100, with constant accretion rate ṁ = 0.1.
With the dashed line we show the lower limit of the parameter space for which eq.(64) is valid. We
observe that for all the cases and almost all radii the condition m0 ≥ 103g cm−2 is met. It is also
interesting to see that the surface density is independent of the black hole mass in the inner region
of the disk.

Figure 4 shows the effective temperature as a function of the radius for the same cases of
accretion rates and black hole masses. We can see that the condition Teff > 105K is satisfied only
for cases with high accretion rate and small black hole mass. Moreover, for the cases that it is
satisfied, this happens only at the inner part of the disk (for radii smaller than ∼ 50Rg). This
has to be taken into account when calculating the disk spectrum. For example, if we call rf the
radius where Teff = 105K, then for r < rf we can use eq.(64) and thus compute the spectrum using
the color-corrected blackbody method. At larger radii, however, we need to compute the spectrum
using a different method.

Figure 5 shows g as a function of the radius for the same cases of accretion rates and black
hole masses as before. We notice that some cases fall outside the parameter space at large radii.
However, this seems to happen at radii larger than rf .
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Figure 4: The effective temperature Teff as a function of the radius for black hole mass M8 = 1
and accretion rates ṁ = 0.01, 0.1, 1 (solid, dashed and dotted lines respectively) in the left panel,
and for ṁ = 0.1, M8 = 0.01, 1, 100 (solid, dashed and dotted lines respectively) in the right panel.
The dashed magenta line shows the lower limit for which eq.(64) is valid.

Figure 5: The tidal gravity parameter g as a function of the radius for black hole mass M8 = 1 and
accretion rates ṁ = 0.01, 0.1, 1 (solid, dashed and dotted lines respectively) in the left panel, and
for ṁ = 0.1, M8 = 0.01, 1, 100 (solid, dashed and dotted lines respectively) in the right panel. The
dashed magenta line shows the lower limit for which eq.(64) is valid.

3.3 Calculation of the disk spectrum

We consider an accretion disk around a BH of mass M8, accretion rate ṁ (in Eddington units
as defined in eq. 9), spin α∗and inclination θ. The inner disk radius is the marginably stable orbit
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defined in eq.(5), and the outer disk radius is set to rout = 10000 (in Rg units). We split the disk
radially into 50 rings (with logarithmic step) and azimuthally into 30 parts. In each radius, we
can compute the disk parameters ρ, H, Ts using equations of section 2.3 and eq.(59). We can also
compute Teff , g, and m0 using equations (61), (63), and (63). Then, we know all the parameters of
the modified blackbody emission and color-corrected blackbody emission, and thus we can calculate
the disk spectrum as a function of frequency. We do so for three different cases:

1) we assume that each disk element emits as a blackbody, with specific intensity given by the
Planck function defined in eq.(55) (BB model),

2) each disk element emits as a color-corrected blackbody, according to eq.(60), with f being
equal to the D12 prescription (D12 model),

3) each disk element emits according to eq.(60) with f computed using the DE19 prescription
given in eq.(64), if the Teff , g, and m0 of the disk element are within the range of values
that DE19 considered. If the values of the disk element have not been studied by DE19, the
spectrum is assumed to be that of a modified blackbody given in eq.(54) (mBB model).

Having defined the specific intensity Iν(ν, r), one can compute the spectrum in the disk’s rest
frame as follows:

νF (ν) =

∫ rout

rms

νIν2πrdr (erg s−1). (65)

However, we are interested in the luminosity that is observed at infinity, instead of the local disk
luminosity. This calculation is performed by KYN, a set of the XSPEC models for emission from
black hole accretion disks, and includes all relativistic effects as detected by an observer at infinity,
i.e. gravitational and Doppler shift of the photon energy, gravitational lensing which can amplify
the emission from some parts of the disk, etc. (see Dovciak et al. 2004, 2011). It also includes the
effects of photons lost to the BH. This way, KYN outputs the flux of the disk as observed at infinity
in units of [photons cm−2 s−1 keV−1]. We then change the units to [erg s−1].

Figure 6 shows the disk spectrum in each emission case for 4 different sets of parameters. In
the top left panel, the spectrum was calculated for a black hole of mass M8 = 0.01 and accretion
rate ṁ = 0.1, while in the top right panel, the spectrum was calculated for the same black hole
mass and for accretion rate ṁ = 1. The masses and accretion rates of the bottom left and right
panels are M8 = 10, ṁ = 0.1, M8 = 100, ṁ = 0.1 respectively. In all panels the black hole spin is
α∗ = 0 and the inclination θ = 1o. In all computed spectra of this work, the viscosity parameter is
a = 0.1. The black solid, the blue dashed, and the red dotted lines show models BB, D12, and mBB
respectively. For the choice of parameters of the top panels, we find that eq.(64) for f holds at the
inner region of the disk. For the top left panel we find rf ≈ 50 and for the top right panel rf ≈ 120.
On the other hand, for the bottom panels eq.(64) does not hold anywhere in the disk, since the
effective temperature drops with increasing black hole mass. This means that the red dotted line
is calculated using only the modified blackbody method. It is also interesting to see that in the
bottom right panel, the BB and D12 cases overlap. This is because the disc temperature is below
3× 104K at all radii giving f = 1, according to the Done et al. formula.

The emission of cases D12 and mBB is shifted to higher frequencies compared with the blackbody
emission, as it is expected from the presence of the color-correction factor. Also, from the top panels
we see that emission with the D12 prescription is more shifted to higher frequencies than emission
from the DE19 formula. However, the bottom panels show that when the disk surface temperature
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drops, e.g. for larger black hole masses, the modified blackbody case produces the most emission
in high frequencies. This deviation is due to the inclusion of Thomson scattering.

Figure 7 shows the disk spectra for the three different emission cases and for parameters M8 =
1, ṁ = 0.1, θ = 1o, and three different spins α∗=0, 0.7, 0.998 (left, center, and right panels
respectively). As spin increases the maximum of the luminosity decreases. This is due to the
enhanced efficiency that causes the accretion rate in physical units to drop and as a result the total
available power for radiation also drops. The spectra, however, extend to slightly higher frequencies
as spin increases. This is because rms moves closer to the black hole where more power is released
locally. This causes an increase of the disk temperature at that region.

Figure 6: Disk spectra for a M8 = 0.01, ṁ = 0.1, M8 = 0.01, ṁ = 1, (top left and right panels
respectively) and M8 = 10, ṁ = 0.1, M8 = 100, ṁ = 0.1, (bottom left and right panels respectively)
for different disk emission assumptions. The spin and inclination are chosen equal to α∗ = 0,
θ = 1o. The black solid, the blue dashed, and the red dotted lines show models BB, D12, and mBB
respectively.
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Figure 7: Disk spectra for a M8 = 1, ṁ = 0.1, θ = 1o, and spins α∗=0, 0.7, 0.998 (left, center,
and right panels respectively), for different disk emission assumptions. The solid black line shows
the BB model, the dashed blue line shows the D12 model, and the red dotted line shows the mBB
model.
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Chapter 4: Fitting the spectral energy distribution of

quasars

4.1 The observed AGN SEDs

In this section, we use our model disk spectra to fit the mean spectral energy distribution (SED)
of 119,652 quasars that Krawczyk et al. (2013) computed. Their spectra range from infrared to
X-ray frequencies, i.e. from 1013Hz to 1017Hz. They included 103,895 quasars from the SDSS-DR7
quasar catalog by Schneider et al. (2010). Since the SDSS survey is limited to relatively bright
quasars they also included 15,757 lower luminosity quasars from the Two Degree Field QSO Redshift
survey, the Two Degree Field-SDSS LRG and QSO survey and the AAT–UKIDSS–SDSS survey.
Mid-infrared data were taken from the WISE final data release (Wright et al. 2010). Data in the
near-infrared and optical bands are taken from the Two Micron All Sky Survey (2MASS; Skrutskie
et al. 2006) and from the Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007). For the
UV data they used data from the Galaxy Evolution Explorer (GALEX; Martin et al. 2005). After
matching the SDSS sources to the surveys mentioned, they ended up with 85,358 quasars with mid-
infrared data, 58,837 quasars with near-IR/optical data, and 42,046 with UV data. In the X-ray
band there were only 277 matches to the ChaMP data set (Green et al. 2009), so instead they used
a parameterization of the the UV and the X-ray flux to extend their SEDs to X-ray wavelengths.

Figure 8: Mean SEDs of low luminosity quasars (red dotted line), mid luminosity quasars (orange
solid line), high luminosity quasars (green dashed line) and all quasars (blue solid line) studied by
Krawczyk et al. (2013). The vertical dashed lines show the frequencies we considered when fitting
the data.

They corrected the observed magnitudes for the contamination of the continuum by emission
lines, absorption by intergalactic hydrogen clouds, and host galaxy emission. They also used a “gap
filling” SED by looking at the mean SED of ∼ 2100 quasars with full wavelength coverage.
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Figure 8 shows the corrected SED of Krawczyk et al. (2013) in the frequency range [2.9 ×
1014, 2.4 × 1015]Hz, i.e. from λ = 1250Å to λ = 10340Å. The blue solid line shows the mean
SED using all quasars, the red dotted line shows the mean SED of the low luminosity quasars (i.e.
log(νFν |

2500Å
) ≤ 45.41), the orange solid line shows the mean SED of the mid luminosity quasars

(i.e. 45.41 ≤ log(νFν |
2500Å

) ≤ 45.85), and the green dashed line shows the mean SED of the high

luminosity quasars (i.e. log(νFν |
2500Å

) ≥ 45.85), where νFν |
2500Å

is measured in erg/s.

The vertical dashed lines of Fig. 8 show the wavelengths we considered when fitting the data
with the model SEDs, i.e. λ ≈ 7000Å, 6000Å, 5000Å, 4000Å, 2000Å, and 1250Å 3 . For wavelengths
smaller than the Lyα line at 1216Å the number of sources that were used to derive the mean SED
drops significantly (see Figure 10 of Krawczyk et al. 2013). Also, emission in larger wavelengths, i.e.
mid and far infrared, may originate from dust which is heated by absorbing the AGN UV emission.
We therefore considered the broadband SEDs from 7000Å to 1250Å as being representative of the
continuum emission of quasars. Furthermore, the range 2000Å−4000Å is also not considered when
fitting the data. This is because at that range, FeII emission and the Balmer continuum form
a broad and blended feature (known as the “smallblue-bump”) which has not been corrected by
Krawczyk et al. (2013) and is not modeled by our SEDs.

For each mean data SED, we plot two dashed black lines that connect the wavelengths 10000Å
with 4000Å, let us call its slope αν1, and 4000Å with 1250Å, with slope αν2. The luminosity
increases with frequency as L ∝ ναν . We calculate the spectral indices αν for each data SED and
find:

αhigh
ν1 = 0.73 , αhigh

ν2 = 0.62 , (66)

αmid
ν1 = 0.57 , αmid

ν2 = 0.64 , (67)

αlow
ν1 = 0.38 , αlow

ν2 = 0.57 , (68)

αall
ν1 = 0.52 , αall

ν2 = 0.58 . (69)

The steepest SED at large wavelengths (i.e. larger αν1) is the high luminosity one, followed by
the mid, all, and low luminosity ones respectively. For small wavelengths, the mid luminosity SED
is the steepest. We also notice that for the mid, low, and all luminosity SEDs, the slope for small
wavelengths is larger than the slope for large ones. This means that as frequency increases the
SEDs become more steep. However, the opposite is true for the high luminosity SED.

4.2 Fitting method

Here, we describe the method we use to fit the mean observed SEDs. First, we created model
spectra for the three emission cases, described in section 3. We considered 31 M8 values in the
interval [1, 1000] in steps of 0.1 dex, 21 ṁ values in [0.01, 1] in steps of 0.1 dex, 3 black hole
spin values α∗ = 0, 0.7, 0.998 and 9 inclination values θ = 1o, 10o, 20o, ..., 80o. We computed model
spectra of all the M8, ṁ, α∗, and θ combinations, i.e. we computed a total of 17,577 spectra. Our
objective is to find out which combination of model parameters will result to model SEDs whose
mean will provide a good fit to the observed data.

To do this we, first, select model SEDs which have spectral slopes similar to the slope of the
observed SED at λ < 4000Å. This is done by calculating the ratio of the model luminosities

3Krawczyk et al. (2013) computed the mean SEDs for the logarithm of frequencies from 13 to 18.42 with
step 0.02, so we use the data points closest to wavelengths mentioned in text which turn out to be λ =
6873Å, 5986Å, 4979Å, 3955Å, 1980Å and 1251Å.
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RL,mod =
(
L
1250Å

)
/
(
L
4000Å

)
and keeping those with

|RL,obs −RL,mod|
RL,obs

≤ p , (70)

where RL,obs is the respective ratio of the observed luminosities, and p is a fitting parameter,
0 < p < 1. For example, if we choose p = 0.1, then since RL,obs = 2.29 (for the all luminosity
quasars SED), acceptable values of RL,mod are those between 2.06 and 2.52. This process selects the
model spectra with a spectral index close to the spectral index of the observed SED. The parameters
(M8, ṁ, α∗, θ) of each “well-shaped” model SED are saved in an array.

However, the fact that the model SEDs we have selected so far have shapes similar to the shape
of the observed SED, does not guarantee that they result to the best-fit. To find the best-fit we
continue with the traditional approach of defining a χ2 function as follows:

χ2 =
∑
i

[log(Lλi
)− log(Lλi,obs)]

2 , (71)

where log(Lλi
) is the mean of the logarithm of the models luminosity at λi, and log(Lλi,obs) is the

observed luminosity at λi (shown in Figure 8). This function measures how well the mean model
SED describes the mean observed SED, by computing the squared distance between the data and
the model. We will accept as the best-fitting model the model SEDs which will result to the
minimum χ2.

Before we go into minimizing χ2, we need to calculate the model mean log(Lλi
). To do this,

we create one array for the luminosities of the “well-shaped” model spectra (i.e. the model spectra
within each RL,mod = RL,obs(1± p) bin) for each one of the wavelengths λi = 7000Å, 6000Å, 5000Å,
4000Å, 2000Å, and 1250Å. Now, we can calculate the mean luminosity at each wavelength as
follows:

log(Lλi
) =

1

N

N∑
j=1

log(Lj
λi
) , (72)

where N is the number of model SEDs within RL,mod = RL,obs(1±p), and Lj
λi
is the model luminosity

of the j-th SED, at wavelength λi. The reason we work with the logarithm of the luminosity and
not simply with the luminosity of the model SEDs is because the mean SED of Krawczyk et al.
(2013) was computed using the arithmetic mean of log(Lν) (i.e. the geometric mean of Lν), so to
fit their data we need to adopt the same approach.

To minimize χ2 and choose the appropriate SEDs that will result to the best-fit, we proceed
with the following method:

1) We sort the arrays of the model luminosities at each λi in order of increasing luminosity at
1250Å. We also apply the same sorting to the array containing the parameters (M8, ṁ, α∗,
θ) of the model spectra within RL,mod = RL,obs(1± p).

2) We compute the difference dif = log(L
1250Å

) − log(L
1250Å,obs

). If it is positive, it means that

the model SED is above the observed one at that frequency, so we remove the last element
of the luminosity arrays. If it is negative, we remove the first element of the arrays. Then
we calculate the new χ2 of the Nk = N − 1 model SEDs left. Note that the wavelength λi at
which dif is computed does not have an important influence on the resulting best fits.
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3) We keep removing first/last elements and saving the resulting χ2 values until Nk = 1. Note
that we do not recalculate dif, we simply keep removing the first or last elements based on
the initial calculation of dif (calculating dif again at each step and then removing the last or
the first element of the luminosity arrays results in the same minimum χ2)

4) We plot χ2 as a function of Nk and identify the Nk value that minimizes χ2.

5) By removing the first/last Nk elements of the sorted parameters array, we end up with the
parameters that best fit the observed SED. We can then calculate the best fit model SED
using these parameters.

We note that computing χ2 at all available wavelengths, i.e. all data points from 7000Å to
4000Å and from 2000Å to 1250Å (these are 25 points), did not yield considerable improvement to
the best fits, so we use only 6 wavelengths to minimize running times.

The choice of the percentage parameter p significantly influences the best fit derived. For this
reason, we perform the above fitting process for p values ranging from 0.1 to 1 with a step equal to
0.05.

The resulting minimum χ2 and p values of the best-fits are shown in Tables 1, 2 of the next
section.

In section 4.3.1, we present the best fits to the all luminosity data SED and the respective
distributions of parameters for the three emission cases: BB, D12, and mBB. In section 4.3.2, we
fit the low, mid, and high luminosity SEDs.

4.3 Results

4.3.1 Best fits to the mean SED of quasars

Figure 9 shows the best fits and the quasar’s overall mean SED (blue solid line). The solid black
line shows the best fit when the disk emits as a blackbody (case BB), the black dashed line shows
the best fit for the D12 model, while the dotted black line shows the best fit for the mBB model.
The minimum χ2 and the p values which result in the best fits for each model are listed in Table 1
(second and third columns respectively).

Model χ2 p

BB 0.012 0.45
D12 0.01 0.25
mBB 0.003 0.1

Table 1: Best-fit values of χ2 and p for the three models.

We observe that BB and D12 model best-fits are very similar at all frequencies. They are also
close to the observed SED at wavelengths between 6000Å and 1250Å, since the calculation of the
χ2 includes wavelengths between 7000Å and 1250Å. Interestingly though, the shape of BB and D12
models is not consistent with the observed SED. While the observed SED is more like a power-law
increasing towards smaller wavelengths, the model SEDs have a convex shape, with the spectrum
showing peak emission at ∼ 1500Å in both cases. Model mBB results in the smallest χ2 out of the
three models, tested here. The mBB SED underestimates the data luminosity, at frequencies larger
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Figure 9: Blue solid line shows the mean quasar SED. The black solid, dashed, and dotted lines
indicate the BB, D12, and mBB best fits to the data.

Figure 10: Normalized distributions of the model parameters (M8, ṁ, α∗, θ) that provide the model
mean SEDs of Figure 9 for BB, D12, and mBB models (top, middle, and lower panels respectively).

23



that ∼ 1015Hz, but overall its shape, i.e. the way the luminosity increases with frequency, is very
close to the data’s SED shape.

Figure 10 shows the distribution of the parameters (M8, ṁ, α∗, θ), from left to right, that
produce the best fits plotted in Figure 9 (top, middle, and lower panels for BB, D12, and mBB
models respectively). The y-axis in each plot shows the normalized distribution of the model spectra,
i.e. the number of model spectra at each x-value divided by the total amount of model spectra used
to produce the best fit SED.

The black hole mass distribution for the BB model has a peak around M8 ∼ 50. The D12 model
distribution shows a peak at slightly smaller masses M8 ∼ 20. Both distributions fall off at larger
masses. However, they do not reach zero, indicating that large BH masses (i.e. M8 ∼ 1000) are
needed to produce the best fits. The mBB model distributions peaks at even higher BH masses,
and does not fall off as quickly as in the other models.

The accretion rate distribution peaks at large accretion rates, in all cases. Low ṁ models cannot
fit the data. The steepest increase with ṁ is observed for the mBB case.

The distribution of the black hole spin is almost identical for all three emission models. Ap-
parently, all spins contribute to a good fit, with large spins being slightly more important. The
distribution of the inclination angle is relatively uniform for models BB and D12. However, the
case mBB distribution shows a significant increase for large inclinations.

Our results plotted in Figures 9 and 9 indicate that neither model fits well the mean quasar SED.
Model mBB does result in a model mean SED which has a shape similar to that of the observed SED,
however this is achieved through a rather strange combination of model parameters. If true, then
BH masses in quasars should be ∼ 1011M⊙ (and even larger) and they should accrete at maximum
accretion rates. What is though even more unphysical is the distribution of the inclination angles.
Type I objects (like the ones which comprise the sample of Krawczyk et al.) should be seen almost
face on. Even if the molecular torus does not exist in luminous quasars, the inclination distribution
should be flat. There is no obvious physical reason why we should observe the accretion disk in
these objects preferentially edge on.

We repeated the model fits, assuming that the disk inclination is less than 40o in quasars. The
results are plotted in Figures 11 and 12.

Figure 11 shows the best fit for each model (like Figure 9) when we assume that we observe the
accretion disk with an inclination angle less than 40o. We observe that the deviation of the best
fits from the observed SED at high frequencies has increased for the mBB model. Models BB and
D12 do not show important changes. In fact, the χ2 minimum for BB and D12 is almost the same
as before, as is listed in Table 2.

Model χ2 p

BB 0.012 0.35
D12 0.009 0.15
mBB 0.006 0.1

Table 2: Same as Table 1, when we only consider model spectra with inclinations smaller than 40o.

Figure 12 shows the resulting distribution of the parameters (M8, ṁ, α∗, θ). The inclination
distribution (rightmost panels) of the mBBmodel is more uniform than before. The spin distribution
is flatter for models BB and D12, when compared with the previous result (when we considered
all possible inclinations), as the values at α∗∼1 have slightly decreased. This trend is maximized
for the mBB models where in this case high spin sources should be considerably less common than
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Figure 11: Same as Figure 9, when we assume inclinations angles less than 40o.

Figure 12: Same as Figure 10, when we assume inclinations angles less than 40o.

sources with small spin. The trend of high accretion rates intensifies in this case for all models.
This is even more pronounced in the case of the mBB model. The black hole mass distribution
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is not significantly altered for models BB and D12. However, the mBB BH mass distribution is
changed. It appears to be bimodal, with a peak between ∼ 108 − 109M⊙, and then a second peak,
but of smaller amplitude, at ∼ 1010 − 1011M⊙. This mass distribution implies that systems with
BH masses in the region ∼ 109M⊙, and small inclinations, cannot produce a spectrum with a shape
similar to the data’s one when the emission is modified blackbody and color-corrected by eq.(64).
This feature could be smoothed out by relaxing the constrain that the flux ratio cannot differ more
than the best-fitted value of RL,mod. However, this would also increase χ2, i.e. the deviation of the
best fit from the data mean SED.

4.3.2 Best fits to the mean SEDs of low, mid, and high luminosity quasars

In addition to fitting the mean SED, we used the same models to fit the observed SED of the
low, mid, and high luminosity quasars.

The top, middle, and bottom panels of Figure 13 show the best fits derived when we fit the high,
mid, and low luminosity SEDs respectively. Solid, dashed, and dotted black lines show best-fit BB,
D12, and mBB models to the observed SEDs.

The top panel shows that BB and D12 models can fit the data well, and in fact better than the
mBB case. This is also true for the mid luminosity quasars, as shown in the middle panel. For the
low luminosity quasars, the mBB model produces a better fit. This happens because the BB and
D12 cases produce a steeper spectrum than the mBB spectrum, and the shape of the mean SED
for high and mid luminosity quasars is steeper than the one of the low luminosity quasars.

Figure 14 shows the parameters distribution of the model spectra that produce the best fits
plotted in Figure 13. The red dotted, solid orange, and dashed green lines show the distribution we
get when we fit the observed mean SED of the low, mid, and high luminosity quasars respectively.
The top, middle, and bottom row panels correspond to models BB, D12, and mBB respectively,
just like in Figure 9. We observe that all model fits to the high luminosity mean SED require
higher BH masses and accretion rates than the fits to the mid and low luminosity ones, as expected.
Interestingly, the BH mass distribution of the mBB model does not drop as BH mass increases, but
remains almost constant (for M8 > 100).

The distribution of the black hole spins shows a slight increase as spin increases, just like the
respective distribution resulting from the model fits to the mean SED of all quasars. The distribution
of inclinations for BB and D12 cases is uniform, regardless of the luminosity of the data SEDs
(except for a slight increase at 70o for the high and mid luminosities SEDs of the D12 model). The
inclination distribution for the mBB model is more uniform when we fit the low luminosity SED.
However, the mid and high luminosity AGN can be fitted only with high inclination model spectra,
which is hard to understand.

As previously with the mean SED of all quasars, we repeated the fits assuming that we observe
quasars with inclination angles less than 40 degrees.

Figure 15 shows the best fits in this case. Its format is the same as that of Figure 13. We notice
the mBB model cannot fit the high and mid luminosity SEDs, as before. These spectra can be well
fitted by the BB and D12 models (at frequencies larger than ∼ 6× 1014Hz).

Figure 16 shows the distributions of the model parameters that provide the best fit models
plotted in Figure 15. Its format is the same as Fig. 14. When compared with the respective
distribution in Fig. 14, we observe that the BH, mass distribution is narrower, in the case of models
BB and D12, for all luminosity cases. The peak of the distributions does not move. This is not the
case though for the mBB model, where the peak of the BH mass distributions shifts to smaller M8

values. They also get narrower, with a tail that extends to BH masses larger than ∼ 109. We should

26



keep in mind, though, that this model produces poor fits for high and mid luminosity quasars and
thus the resulting distributions are less credible.

The accretion rate distributions are noticeably steeper when we consider inclinations only up to
40o. The black hole spin distributions are roughly uniform for the BB and D12 models. However,
the α∗distribution for the mBB model, shows that high spin black holes are less probable, in all
luminosity cases. As for the inclination angle distributions, they are uniform, almost for the mBB
model as well, contrary to the fits assuming all possible inclinations.

Table 3 lists the best-fit values of χ2 and p when we fit the low, mid, and high luminosity SEDs
using the BB, D12, and mBB models. Table 4 lists χ2, p when we assume inclinations less than 40
degrees. The χ2 values confirm that, in general, the BB and D12 models provide better fits for the
mid and high luminosity SEDs, while the mBB model can fit the low luminosity SEDs.

Model
SED

Low Mid High

BB 0.016, 0.5 0.007, 0.35 0.004, 0.25
D12 0.014, 0.3 0.006, 0.15 0.003, 0.1
mBB 0.004, 0.1 0.005, 0.1 0.01, 0.1

Table 3: Values of χ2 and p (in the format χ2, p) for the best fit of each model (BB, D12, mBB) to
the low, mid, and high luminosity quasar observed SEDs.

Model
SED

Low Mid High

BB 0.018, 0.35 0.007, 0.3 0.004, 0.2
D12 0.014, 0.15 0.005, 0.1 0.006, 0.15
mBB 0.006, 0.1 0.019, 0.15 0.029, 0.15

Table 4: Same as Table 3, when we only consider model spectra with inclinations less than 40o.
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Figure 13: Best fits to the mean SED of the high, mid, and low luminosity quasars (top, middle,
and bottom panels respectively) for BB, D12, and mBB models (solid, dashed, and dotted black
lines respectively).
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Figure 14: Normalized distribution of the model parameters (M8, ṁ, α∗, θ) that produce the best
fits plotted in Figure 13. Red dotted lines, orange solid lines, and green dashed lines indicate the
model parameter distributions in the case of the model fits to the low, mid, and high luminosity
SEDs. The top, middle, and bottom panels show the results for the BB, D12, and mBB models
respectively.
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Figure 15: Same as Figure 13, when we assume inclinations angles less than 40o.

30



Figure 16: Same as Figure 14, when we assume inclinations angles less than 40o.
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Chapter 5: Summary and conclusions

The main objective of this work was to study theoretical models for the spectral energy distri-
bution of accretion disks in AGN, and use these models to fit the observed SEDs of quasars in the
optical and UV parts of the spectrum.

In Chapter 2, we first present the equations for the radial and vertical structure of a fully
relativistic disk (NT73). Assuming that the disk pressure is due to either radiation pressure or gas
pressure, and that the main contribution to opacity originates from either electron scattering or
free-free absorption, analytical formulas for the disk parameters (i.e. density, pressure, temperature,
height) can be derived.

The calculation of the disk spectrum, which depends on the disk parameters, is performed in
Chapter 3. There, we computed the disk spectrum using three different assumptions: A) each
disk element emits as a blackbody (BB model), B) each disk element emits as a color-corrected
blackbody with spectral hardening factor f given by Done et al. 2012 (D12 model), and C) each
disk element emits as a color-corrected blackbody with f given by Davis & El-Abd (2019) and as
a modified blackbody in the disk regions where eq. (64) for f is not valid (mBB model). We then
used KYNbb, an XSPEC model for emission from black hole accretion disks, to integrate the local
flux of the disk and compute the spectrum observed at infinity, including all relativistic effects. We
plotted the resulting spectra for different cases of BH mass, accretion rate, and spin.

In Chapter 4, we used the three models for the disk spectrum to fit the observed mean SED
of AGN as determined by Krawczyk et al. (2013). To do this, we created 17,577 model spectra
(for each one of the BB, D12, and mBB models) for a wide combination of model parameters, i.e.
for BH masses 108 − 1011M⊙, accretion rates 0.01 − 1, in Eddington units, black hole spins α∗=0,
0.7, 0.998, and inclination angles 1o − 80o. Using the fitting method described in section 4.2, we fit
the BB, D12, and mBB model spectra to the observed SED and derive the distribution of model
parameters that produce the best-fits. In addition to fitting the mean observed SED of all quasars,
given by Krawczyk et al. (2013), we also fit the mean SEDs for low, mid, and high luminosity
quasars. Our results can be summarized as follows:

1) The best-fits for the BB and D12 models are very similar, regardless of the luminosity case
of the observed SED that we fit. They differ considerably only at frequencies higher than
2 × 1015Hz, as the D12 model includes the effects of Compton scattering which shift the
spectral features at higher frequencies.

2) The mBB model can fit the mean observed SED of all quasars better than the BB and D12
models. However, the best-fit distribution of inclinations implies that most quasars should be
observed at inclinations larger than 40 degrees. Although the obscuring torus may be absent
in powerful quasars, so we may be able to observe them even at high inclinations, it is highly
unlikely that we should preferentially observe them at inclinations larger than 40 degrees.
The BB and D12 models produce uniform inclination angle distributions.

3) When we consider model spectra with inclination less than 40 degrees, the mBB model pro-
vides a poorer fit to the data, while the BB and D12 model fits remain almost the same. The
distribution of inclinations becomes more uniform in the case of the mBB fit, although a peak
at inclinations as high as 30-40 degrees is still apparent.

4) The distribution of BH masses in the case of the mBB model fit, both when we assume that
we can observe quasars at all inclinations and when we observe them mostly face on, is rather
peculiar. In the first case, the BH mass distribution is continuous and peaks at very large
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masses (∼ 1010M⊙), with no signs of decreasing even at BH masses as large as 1011M⊙. In the
second case, the distribution becomes bimodal, with two peaks, one at ∼ 5 × 108M⊙, and a
second one at ∼ 5×1010M⊙. The BH mass distributions are more reasonable in the case of the
BB and D12 models, with smooth, single-peaked distributions which peak at ∼ 109−1010M⊙.

5) The black hole spin distribution for all model best-fits (regardless of the luminosity case of
the observed SED) show a slight, but constant, increase as spin increases. However, when
we consider only inclinations less than 40o, the spin distribution for the BB and D12 models
become more uniform, while the spin distribution for mBB shows a large drop at α∗=0.998.

6) In general, model SEDs with high accretion rates, ṁ > 0.1, are required to fit the observed
SED.

The results change when we consider the model fits to the mean SED of quasars in the low,
mid and high luminosity bins. In this case, the BB and D12 models appear to fit the mid and high
luminosity mean SEDs better than the mBB model, at least at wavelengths shorter than ∼ 6000Å.
On the other hand, the mBB model appears to provide a better fit to the low luminosity SED. The
above results hold both in the case when we assume that we can observe quasars with inclinations
up to 80 degrees or up to 40 degrees. The distributions of the best-fit model parameters are similar
to the distributions of the respective model parameters from the fits to the mean SED of all quasars.
Ragarding the fits to the mid and high luminosity SEDs, the results indicate reasonable BH mass
distributions and quasars with high spin black holes and high accretion rates.

The fact that the BB model can fit the mid and high luminosity SEDs is rather unexpected.
We would not expect that result since the effects of electron scattering should be more important
for those objects, and the blackbody model does not consider them. This is an indication that the
model fits the data by chance. This conclusion is reinforced by the fact that the low luminosity
SED is not fitted well by the BB model. In this case, the mBB model fits the data well, but for an
unreasonable distribution of inclinations. This distribution becomes more reasonable if we assume
that we cannot observe AGN at inclinations larger than 40 degrees. In this case, the mBB model
fits predict significantly smaller number of quasars with high spin and accretion rates smaller than
0.1. It is even more strange that the best-fit predicts a long tail at high BH masses which is rather
arbitrary.

It is clear that there is difficulty in fitting well the observed data. We could accept that the D12
model is giving a good fit to the mid and high luminosity SEDs with resulting parameter distribu-
tions that are not unphysical. It cannot, however, fit the low luminosity and the overall luminosity
mean SEDs. These SEDs are well-fitted by the mBB model but for unreasonable distribution of
parameters.

There are various possibilities of proceeding further. For example, one could consider effects of
intrinsic absorption in quasars, or consider a different accretion disk model, taking into account the
interaction between the disk and the X-ray source in AGN. In this case, one could create model
SEDs using models that include the illumination of the accretion disk by the X-ray source, and take
into account the mutual interaction of the disk and the corona. A model that takes into account
X-ray illumination of the disk in AGN is KYNSED (Dovciak et al. 2022). KYNSED models the
interaction between the disk and the Xray source in the case when the X-ray source is powered
by the accretion process. Fitting the observed SEDs with models that include these effects for a
wide range of mass, accretion rate, spin, inclination and possibly other parameters (location of the
corona, accretion power transferred to the corona) could be an interesting prospect to follow.
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Appendices

Appendix A: Derivation of disk’s inner region parameters

In the inner region the pressure is given by

P = Prad =
4σT 4

3c
(73)

and the opacity is equal to the electron scattering opacity, κR = κes. From the energy balance
equation we know that

F =
QGR

2
. (74)

We substitute the disk flux, F , using eq.(33) and the power per unit surface area due to accretion,
QGR, from eq.(1), into the energy balance equation. We find

4σ

3ρHκes

T 4 =
1

2

3

8π

GMṀ

R3

L
BC 1/2

. (75)

Next, we use eq.(73) to substitute the temperature. This leads to the following equation between
the disk height, pressure and density:

c

ρHκes

P =
1

2

3

8π

GMṀ

R3

L
BC 1/2

. (76)

We substitute the pressure from eq.(31) and notice that the density cancels out. This means that
we have an equation that can be solved for the disk height as shown below

c

ρHκes

ρ
GM

R3
H2B

2DE

A 2C
=

1

2

3

8π

GMṀ

R3

L
BC 1/2

⇒ H =
1

2

3

8π

κes

c
Ṁ

A 2C 1/2L
B3DE

. (77)

We can proceed to find expressions for the rest of the unknowns quantities. Using again the energy
balance equation, but substituting QGR from eq.(32), we get

4σ

3ρHκes

T 4 =
3

2
a(
GM

R3
)1/2HP

D

C
. (78)

We substitute the temperature from eq.(75) and then we use eq.(31) for the pressure. This leads to
an equation between the height and the density that can be solved for the density

ρ =
2c

3aκes

(
GM

R3
)−1/2H−2C

D
. (79)

Using eq.(77) for the height we find the disk density

ρ = (
8π

3
)2

c3

6aκ3
es

(
GM

R3
)−1/2Ṁ−2B

6DE 2

A 4L2
. (80)

We can substitute eq.(80) and eq.(77) into eq.(31) to find the pressure. And lastly, calculate the
temperature from eq.(73).
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It is also useful to see how we can turn eq.(77) for the height into the form of eq.(36). To do
this we make the change of variables from R,M, Ṁ to the dimensionless quantities

r =
R

Rg

, M8 =
M

108M⊙
, ṁ =

ηṀc2

Ledd

, (81)

where Ledd is the Eddington luminosity given by

Ledd = 1.26× 1038
M

M⊙
(erg/sec) , (82)

The above definitions lead to the substitutions

R = rRg = r
GM

c2
= 108

GM⊙

c2
rM8 = (1.5× 1013cm)rM8 , (83)

M = 108M⊙M8 = (2× 1041g)M8 , (84)

Ṁ =
ṁ

η

Ledd

c2
=

1.26× 1046

c2
ṁ

η
M8 = (1.4× 1025g/s)

ṁ

η
M8 , (85)

where we used G = 6.67× 10−8cm3g−1s−2, M⊙ = 2× 1033g and c = 3× 1010 cm s−1. We can now
calculate the ratio H/R

H

R
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1

2

3

8π

κes

c

Ṁ

R

A 2C 1/2L
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H

R
≈ ṁ

η
r−1A 2B−3C 1/2D−1E −1L1 . (87)

Similarly, one can derive the rest of the disk parameters for all regions.

Appendix B: Computation of disk’s surface temperature

To calculate the surface temperature of the disk we follow the steps below:

1. we split the disk into 50 annuli (each annulus has an inner radius ri and an outer radius ri+1),
using eq.(13),

2. we solve eqs.(40) and (46) numerically to find the transition radii,

3. we solve eq.(59) numerically for each radius ri, using the Newton-Raphson method. To do
this, one must calculate the expression

4π
k4T 4

s (r)

h3c2

∫ ∞

0

x3dx

(ex − 1)[1 +
√

1 + κes/κff (x, ρ(r), Ts(r))]
− 7× 1018

ṁ

M8

r−3 L
BC 1/2

, (88)

and its derivative with respect to Ts. The integral of the above expression is computed over
the interval [0.01, 30] using the trapezoidal rule, i.e.∫ ∞

0

f(x)dx ≈
∫ 30

0.01

f(x)dx =
N∑
i=0

f(xi+1) + f(xi)

2
∆xi , (89)
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where ∆xi = xi+1 − xi and

f(x) =
x3

(ex − 1)(1 +
√

1 + κes/κff (x, ρ, Ts)
. (90)

In our case, N=99, and the points xi are calculated by log(xi) = log(xlow) + i[log(xhigh) −
log(xlow)]/100, with xlow = 0.01 and xhigh = 30. We note that f(x) falls off very quickly
for very small and large x, and it is for this reason that the interval [0.01, 30] is a good
approximation of [0,∞]. The function f(x) also depends on κff and therefore the disk density.
At radii ri < r1 we compute the density using eq.(35), at radii r1 < ri < r2 we use eq.(41),
while for ri > r2 we use eq.(47).

36



Bibliography

Abramowicz, M.A. and Fragile, P.C., 2013. Foundations of black hole accretion disk theory.
Living Reviews in Relativity, 16, pp.1-88.

Bardeen, J.M., Press, W.H. and Teukolsky, S.A., 1972. Rotating black holes: locally nonrotating
frames, energy extraction, and scalar synchrotron radiation. Astrophysical Journal, Vol. 178, pp.
347-370 (1972), 178, pp.347-370.

Capellupo, D.M., Netzer, H., Lira, P., Trakhtenbrot, B. and Mej́ıa-Restrepo, J., 2015. Active
galactic nuclei at z 1.5–I. Spectral energy distribution and accretion discs. Monthly Notices of the
Royal Astronomical Society, 446(4), pp.3427-3446.

Carroll B. W., Ostlie D. A, 2007, “An Introduction to Modern Astrophysics”, 2nd ed., Pearson
Addison-Wesley

Czerny B. & Naddaf M. H., 2019, “Accretion in Active Galactic Nuclei”, PoS

Dominik C., 2015, “Disk formation and structure”, EPJ Web of Conferences, Vol.102, 00002

Davis, S.W. and El-Abd, S., 2019. Spectral Hardening in Black Hole Accretion: Giving Spectral
Modelers an f. The Astrophysical Journal, 874(1), p.23.

Done, C., Davis, S.W., Jin, C., Blaes, O. and Ward, M., 2012. Intrinsic disc emission and the
soft X-ray excess in active galactic nuclei. Monthly Notices of the Royal Astronomical Society,
420(3), pp.1848-1860.

Dovciak, M., 2004. Radiation of accretion discs in strong gravity. arXiv preprint astro-
ph/0411605.
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