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Introduction

Over the years people have changed their beliefs regarding our universe. In the early 1900s the common opinion
was that the universe was flat, infinite and static with only visible mass and radiation. Einstein’s equations showed
that a universe like that couldn’t be static due to gravitational pull. However, the prestige of the physicists who
supported the first model was so great that Einstein modified his equations by adding a constant term in order
to explain this model. Later on, with the discovery of the expansion of the universe, the big bang theory came up
and the Einstein’s constant was disregarded. In 1998 the accelerating expansion of the universe was discovered.
In order to explain this expansion scientists had to reinsert the constant term back in Einstein’s equations. This
constant term is called the cosmological constant and represents the dark energy in our universe, a substance
whose nature remains a mystery to this day. Some years earlier it was also discovered that there is more matter
than we actually observe. As a consequence, the idea of the cold dark matter emerged. At the end of the 20th

century scientists had already accepted the ΛCDM model, as the one that best describes the behavior of our
universe. According to the ΛCDM model our universe is 4(3+1) dimensional, has no curvature which means it is
infinite and consists of about 70% dark energy, 30% matter and a neglect portion of radiation. It perfectly predicts
the expansion of our universe, the cosmic microwave background radiation and the large scales distribution of
galaxies.

However, there are some drawbacks though in the ΛCDM model. Firstly, this model originates from the
Einstein’s theory of General Relativity which actually can not explain why gravity is much weaker than the other
forces. Additionally, General Relativity seems to be incompatible with the Standard Model. While the first one
is the theory which describes the fast-moving or massive objects, the Standard Model describes with indubitable
accuracy the world at very small scales. Yet when physicists tried to combine them in order to describe very
small and massive objects (such as black holes) the results were gibberish. This leads us to conclude that both
General Relativity and the Standard Model need modifications. None of them seems to be the ultimate theory,
the ”Theory of Everything”, which completely describes our universe.

There are models that explain why gravity is so weak. A class of these models called ”Brane models” suggest
that the universe has additional and gravity seems to be weak because it propagates though all dimensions. Some
of them assumes that the universe is 5D and we experience it as 4(3+1)-dimensional because the extra dimension
is very small. Experiments show that if there exist an extra small dimension it has to be smaller than a few
µm[1].

Recently it was shown that the extra dimension has to be not small nor compact. This model is called DGP1

model[2]. The idea is that all standard model fields are confined to 4(3+1)- dimensions (the brane), while gravity
can move freely to the brane and the extra infinite and flat dimension (the bulk). This model give rise to a correct
Newtonian potential 1/r at small distances, while it changes at very large ones. An extension to this model was
proposed by S. Bag, A. Viznyuk, Y. Shtanov and V. Sahni[3] which involved the cosmological constant in the
bulk. For this reason, this model is called phantom brane world or ΛDGP model. Brane world models are also
fundamental concepts in string theory. The existence of additional dimensions could be a supporting evidence
towards the validity of string theory.

There has been some activity on the phantom brane world model concerning first order perturbations. The
problem is though that the results are valid only in sub-Hubble or in super-Hubble regions but never at all
cosmological scales. This was also an issue for the ΛCDM model. However, in a recent work []scientist managed
to obtain closed forms of first order scalar and vector perturbations in ΛCDM generated by point-like particles.
Up until now there hasn’t been something similar for the ΛDGP model.

The thesis is organized as follows: In chapter 2 we briefly mention the main points of the ΛCDM model
and reproduce the results from first order perturbation generated by point-like particles valid at all cosmological
scales. In chapter 3 we discuss the DGP model and the cosmology in it. In chapter 4 we calculate the first

1From Dvali Gia, Gabadadze Gregory and Porrati Massimo
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Introduction

order cosmological perturbations valid at all cosmological scales in the aforementioned model. Also, we examine
the gravity generated by one stationary point-like particle in his comoving coordinate system. In chapter 5 use
experimental data to test the validity of the ΛDGP model. Finally, in chapter 6 we conclude with a discussion.
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The Standard Model of Cosmology

2.1 The ΛCDM model
The dominate model that describes best the behavior of our universe is the ΛCDM. This model assumes that
our universe is 4 (3 + 1)-dimensional, homogeneous and isotropic with no curvature (flat). It is described by the
Einstein-Hilbert action

S =

∫
d4x

√
−g
[
m2(R− 2Λ) + Lm(gµν , ϕ)

]
(2.1)

where R is the Ricci curvature scalar of the 4D universe, m is the Planck mass, Λ is the cosmological constant,
g is the determinant of the metric tensor gµν

1 and Lm is the Lagrangian of the Standard Model fields, ϕ. The
minus convention will be used and set m = 1 and c = 1 throughout.

Variation of the action (2.1) leads to the well-known Einstein’s equations

Gµν ≡ Rµν − 1

2
gµνR = Tµν + Λgµν (2.2)

where Tµν is the energy-momentum tensor originating from the variation of Lm(gµν , ϕ). It contains the information
for the distribution of the substances that exist in the universe.

A homogeneous and isotropic universe is described by the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric in conformal coordinates

ds2 = a2(η)
[
dη2 − δijdx

idxj
]
= wµνdx

µdxν (2.3)

where a ≡ a(η) is the scale factor and wµν is the Minkowski metric tensor. The scale factor depends only on the
conformal time η, which is a consequence of the homogeneity and the isotropy of the universe. We choose to work
with conformal coordinates, because some calculations become easier. Using the FLRW metric and assume that
there exist a cosmological constant Λ and nonrelativistic uniform cold dark matter (CDM) density ρ̄, Einstein’s
equations yell

3H2

a2
= ρ̄c2 + Λ (2.4)

and
2H′ +H2

a2
= Λ (2.5)

where H ≡ 1
a

da
dη

= a′

a
is the Hubble parameter in conformal coordinates. In our calculations we did not consider

the existence of radiation. The reason is that measurements have shown that the radiation density is 104 times
smaller than matter density[5] . For that reason we assume that the effect of the radiation density in the behavior
of the Universe is negligible. These two equations above are called Friedman’s equations and describes how our
universe behaves in the presence of matter and cosmological constant. It is the background stage where every
play is acting on.

2.2 First order perturbations and the point-like approximation
Although our universe seems to be homogeneous and isotropic at scales larger than 100 Mpc we can clearly see
inhomogeneities in our observations like planets, solar systems, galaxies, clusters etc. at smaller scales. To study

1Throughout this paper we will use Greek indexes (like µ, ν...) to represent spacetime coordinates taking values 0, 1, 2, 3
and Latin indexes (like i, j...) to represent only the special coordinates taking values 1, 2, 3
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First order perturbations and the point-like approximation

these objects, we assume the metric

ds2 = a2[(1 + 2Φ)dη2 + 2Bidx
idη − (1− 2Φ)δijdx

idxj] = gµνdx
µdxν (2.6)

where the functions Φ ≡ Φ(η,x) and B ≡ B(η,x) describes the scalar and vector perturbations of the smooth
background metric these inhomogeneities create. The bold font is used to indicate a vector, which determines the
position in space where the potentials are evaluated at.

Up until now physicists used perfect fluid perturbations for the energy momentum tensor. In perfect fluid
approximation the wavelength of the matter particles is assumed to be very large compared to the intermediate
distance and as a consequence they behave like a fluid. In a recent work[4] it was used the point-like approximation,
where the wavelength of each particle is assumed to be smaller than their intermediate distances. This approximation
give rise to a very interesting result. We will recreate the main points of these calculations.

The energy momentum tensor for a collection of finite point-like particles can be calculated from the well-known
formula [6]

Tµν =
∑
n

mn√
−g

dxµ
n

dη

dxν
n

dη

dη

dsn
δ3(x− xn) (2.7)

where xn is the value of the x coordinate (as defined in the metric (2.6)) where the nth particle is located at and
mn their masses. This energy momentum tensor will be considered as an extra contribution to the one creating
the background discussed in previous section.

Using the metric from (2.6) and the energy momentum tensor from (2.7) Einstein’s equations at first order in
perturbation become

∆Φ− 9H2Ωm

2
Φ− 3HΦ′ − 3H2Φ =

δρ

2a
(2.8)

and
1

4
∆Bi −

3H2Ωm

2
Bi + ∂i

(
Φ′ +HΦ

)
= − 1

2a

∑
n

ρnv
i
n (2.9)

where δρ is the sum of densities for the different point-like particles and the density ρn of a point-like particle is
a delta function

δρ ≡
∑
n

ρn, ρn ≡ mnδ
3(x− xn) (2.10)

and vn ≡ dxn/dη are the peculiar velocities of the point-like particles, which is the velocity if from the total
velocity of a particle subtract the Hubble flow at its position. Also we replace ρ̄ in favor of Ωm from the relation

Ωm =
ρ̄

3Ha

Observations have shown that peculiar velocities are small compared to the speed of light (smaller than
106m/s) [7]. For this reason, we treat them as being first order of smallness in perturbation. On the other hand,
we do not treat δρ perturbatively. This is because near a galaxy the mass density is orders of magnitudes larger
than the background density (∼ 1026 times larger). This means that in (2.8) should be present a term δρΦ.
Although this term is first order, it is much smaller than δρ at all scales because |Φ| ≪ 1[8].

Taking the divergence of (2.9) if we choose to work in the Poisson gauge (∂iB
i = 0) we get

∆Ξ = ∂i

(∑
n

ρnvn
i

)
(2.11)

where Ξ := −2a(Φ′ +HΦ). The solution of (2.11) is easy to found because it is the Poisson equation

Ξ =
1

4π

∑
n

mn
(x− xn) · vn

|x− xn|3
(2.12)

Replacing Ξ in (2.8) and (2.9) we can solve these two equations relatively easy going into Fourier space. The
solutions are

Φ = −
∑
n

mn

|x− xn|
exp (−qn) + 3H

∑
n

mn(x− xn) · vn

|x− xn|
1− (1 + qn) exp (−qn)

q2n
(2.13)

and

B =
∑
n

[
mnvn

|x− xn|
(3 + 2

√
3qn + 4q2n) exp (−2qn/

√
3)− 3

q2n

+
mn(x− xn) · vn

|x− xn|3
(x− xn)

9− (9 + 6
√
3qn + 4q2n) exp (−2qn/

√
3)

q2n

]
(2.14)

4
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The Standard Model of Cosmology

where

qn = |x− xn|/λ, λ =

√
2a2

9ΩmH2
(2.15)

The gravitational potential of a single, non-moving point-like particle with mass M0 is

Φ = − 1

8πm2a

M0

|x| exp (−|x|/λ) (2.16)

the current value of the screening depth λ is λ0 ≈ 3700 Mpc. We see that at small scales Newton’s law of
gravity emerge, but at very large distances gravity weakens by the expansion of the universe and give rise to a
Yukawa-like potential. This Yukawa behavior comes from the second term in (2.8), which comes from the point
like approximation. It is interesting that the currently largest known structures have approximately the same size
as the screening depth.

5
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The ΛDGP model

3.1 Derivation of the effective Einstein’s equations
We do not want to start with the DGP action, but rather understand its origin.

The DGP is a 5(4+1)-dimensional model thus we start with the action

S0 = M3

∫
bulk

(
R(5) − δ(y)Lm(gµν , ϕ)

)
(3.1)

where M is the Planck mass of the five dimensions, R(5) is the Ricci scalar corresponding to the five dimensions,
Lm(gµν , ϕ) is the Lagrangian of the standard model fields ϕ that are confined on the brane with induced metric
gµν and y is the coordinate characterizing the extra dimension.

Variation of this action lead to a 1/r2 law of gravity. In order to get the correct 1/r law of gravity we have
to take a look at the full quantum theory. Calculating the one loop correction of graviton’s propagator in this
theory we see that at small energy scales we have to add, in the action, the term

S1 =

∫
brane

R(4) (3.2)

where R(4) is the Ricci scalar corresponding to the four dimensions. This is a counterterm that cancel the infinities
created by the localized massive scalar [9] and fermion[10, 11] fields running through the 1-loop correction of
graviton’s propagator1.

In the action (3.1) we must also add the GHY2 boundary term

S2 = −2M3

∫
brane

K (3.3)

where K is the extrinsic curvature of the brane. This term must be added in order to set the correct boundary
conditions on the brane[13].

Finally we would like to add cosmological constant both into the brane (Λ) and to the bulk (Λ5D). Thus the
ΛDGP model has the action

S = M3

[∫
bulk

(
R(5) − 2Λ5D

)
− 2

∫
brane

K

]
+

∫
brane

(
R(4) − 2Λ

)
−
∫
brane

Lm(gµν , ϕ) (3.4)

Taking the variation of (3.4) and using Gauss-Codacci equations, which project a tensor from a hypersurface
to a submanifold, we get the effective 4D Einstein’s equations[14]

Gµν −
(

ΛRS

b+ 1

)
gµν =

(
b

b+ 1

)
Tµν −

(
1

b+ 1

)[
1

M6
Qµν − Cµν

]
(3.5)

where
b =

1

6
Λl2 , l =

2

M3
, ΛRS =

Λ5D

2
+

1

12
Λ2l2 (3.6)

are convenient parameters, and

Qµν =
1

3
EEµν − EµλE

λ
ν +

1

2

(
EρλE

ρλ − 1

3
E2
)
gµν , Eµν ≡ Gµν − Tµν , E = Eµ

µ (3.7)

1For the massless fields we must add nonlinear terms of Ricci tensor and scalar[12].
2Gibbons G. W., Hawking S. W. and York J. W.
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Cosmology in ΛDGP model

The tensor Cµν comes from the Weyl tensor which is the traceless part of the five dimentional Ricci scalar R(5).
Taking the divergence of (3.5) we get

∇µ
( b+ 1

m2
Eµν + Tµν +

1

M6
Qµν − Cµν

)
= 0 (3.8)

As you can see the elements of Cµν are not freely specified, but they are constrained through (3.8).

3.2 Cosmology in ΛDGP model
Using the (FLRW) metric (2.3) in the effective Einstein’s equations (3.5) we get3

H2

a2
=

ρ̄

3a3
+

Λ

3
+

2

l2

[
1−

√
1 + l2

(
ρ̄

3a3
+

Λ

3
− Λ5D

6
− C

a4

)]
(3.9)

The constant C comes from the existence of the Weyl tensor in the bulk. It has a radiation like behavior and
for that reason it is called ”dark radiation” or ”Weyl radiation”. We will ignore it since there is practically
no radiation in our universe at the current epoch. This is the effective Friedman’s equation and describes the
behavior of the background. We will also ignore the backreaction of Λ5D to make our calculations easier and to
get analytic solutions. After these simplifications it is easy to show that (3.9) becomes

H
a

=
1

l

[√
1 + l2

(
ρ̄

3a3
+

Λ

3

)
− 1

]
(3.10)

We will also need the derivative of this equation with respect to conformal time η

dH
dη

= H2

(
1− 3Ωm

2(1 + ΩM )

)
(3.11)

where4

Ωm =
ρ̄

3H2a
, ΩM =

aM3

2H , ΩΛ =
Λ

3H2
(3.12)

Consequently, (3.8) takes the simple form

Ωm +ΩΛ − 2ΩM = 1 (3.13)

in everything that follows we have replaced ρ̄ in favor of 3H2Ωma, M3 in favor of 2ΩMH/a and Λ in favor of
3H2ΩΛ. It is very convenient since everything we derive may be expressed as functions of Ωm and ΩM , only (ΩΛ

is solved for from (3.11)). The advantage of this procedure is twofold, firstly these parameters are dimensionless
and we claim rather intuitive to handle, secondly these will make comparison to ΛCDM trivial by simply taking
ΩM to zero.

3There is one more solusion with a plus sign in front of the square root, but it recently shown that is has ghost instabilities
[15, 16]

4We would like to mention that the quantity ΩM is often defined as
√
Ωl in the related literature

8
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Perturbation theory in ΛDGP model

4.1 First order scalar and vector perturbation equations
In this section we will extend the linear perturbation scheme developed for the ΛCDM model described in the
preceding chapters. We start with the ansatz for the first order McVittie metric on the brane in Cartesian
coordinates,

ds2 = a2(η)
[
(1 + 2Φ(η,x))dη2 + 2Bi(η,x)dηdx

i − (1− 2Ψ(η,x))δijdx
idxj] (4.1)

where Φ, Ψ and Bi’s are respectively the scalar and vector perturbations. Note that unlike the ΛCDM, Φ ̸= Ψ
here, owing to the anisotropic stresses originating from the bulk, e.g. [3].

Once again we will consider a collection of finite moving point-like particles. The proper interval for the n-th
mass is defined as

dsn = a(η)
[
(1 + 2Φ) + 2Biv

i
n − (1− 2Ψ)δijv

i
nv

j
n

]1/2
dη (4.2)

The energy momentum tensor can be calculated using (2.7) and the metric (4.1). Up to first order in
perturbation theory the energy momentum tensor is

Tµν =
1

a5

(1− 2Φ + 3Ψ
)
ρ̄+ δρ(η,x)

∑
n

ρnvn∑
n

ρnvn 0

 (4.3)

Remember here that δρ is not treated as a perturbation, due to the fact that it is dominant at small scales (see
[8]).

The geodesic equation for the nth particle in (4.2) also reads,

(aB|x=xn − avn)
′ = a∇Φ|x=xn (4.4)

Since we wish to build a perturbation scheme valid all the way to superhorizon scales, we can not assume
that the perturbations’ spatial variations dominate over the temporal ones, unlike the case of the study of cosmic
structures, e.g. [17].

Finally, we come to the perturbation of the Weyl tensor’s projection onto the brane, δCµν . Its most generic
form is given by, e.g. [3],

δCµν =
1

a2

(
δρC ∂ivC

∂ivC
δρC
3

δij − δπij

)
(4.5)

where δπij = (∇i∇j − gij∆/3)δπC (∆ stands for the Euclidean 3-Laplacian) is trace free and δρC, vC and δπC
are scalars. In particular, vC can be regarded as a momentum potential, whose backreaction effects will also be
ignored, while considering its time evolution also negligible.

The effective Einstein equations on the brane (3.5), at first order read, after using (4.3), (4.5),

∆Ψ− 9H2Ωm

2m2
eff

Ψ− 3HΨ′ − 3H2Φ =
δρ

2m2
effa

+
ΩM

2m2
effa

2
δρC (4.6)

which is the 00 component, and for i ̸= j

ΩM

m2
effa

2
δπij −

(
1− 3Ωm

4m4
eff

)(
∂i∂j (Φ−Ψ)− 1

2
∂(i

(
B′

j) + 2HBj)

))
= 0 (4.7)

We also have for the vector perturbation,

1

4
∆Bi −

3H2Ωm

2m2
eff

Bi + ∂i

(
Ψ′ +HΦ

)
= − 1

2m2
effa

∑
n

ρnv
i
n (4.8)

9
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where ∆ as earlier is the Laplacian on the Euclidean 3-space and also the function meff ≡ meff(η) has been
introduced

m2
eff ≡ 1 + ΩM (4.9)

The ΛCDM limit in the above equations is obtained by letting ΩM → 0 in which case we recover the results of
Section 2.2 ([4]).

The divergence of (4.8), in the Poisson gauge ∂iB
i = 0, gives again the Poisson equation (2.11), where now

Ξ := −2m2
effa(Ψ

′ +HΦ). The solution for Ξ is still given from (2.12).
We are interested in distinguishing the ΛDGP model from ΛCDM with respect to the cosmological screening,

which as we saw in previous chapters it becomes relevant at very large distances. At that scales, the backreaction
from the peculiar velocities are negligible. For this reason, from now on we will ignore them. This means that
the vector perturbation (which cause the frame dragging effect) will be zero.

4.2 Solutions ignoring peculiar velocities
From the definition of Ξ and (2.12) in the limit of vanishing peculiar velocities we have (since Ξ = 0)

Ψ′ = −HΦ (4.10)

With this equation in hand we can simplify (4.6)

∆Ψ− 9H2Ωm

2m2
eff

Ψ =
δρ

2m2
effa

+
ΩM

2m2
effa

2
δρC (4.11)

On the other hand, since the vector perturbation is zero, we can write (4.8) as

ΩM

m2
effa

2
δπC =

(
1− 3Ωm

4m4
eff

)
(Φ−Ψ) + constant (4.12)

and recall that in a marginally closed universe with a vanishing bulk cosmological constant, one has [18],

∆δπC =
δρC
2

(4.13)

Combining (4.12) and (4.13) to eliminate δπC we get

ΩM

2m2
effa

2
δρC =

(
1− 3Ωm

4m4
eff

)
∆(Φ−Ψ) (4.14)

In order to solve for Φ and Ψ we want one more equation. This comes from the spatial component of (3.8), after
using (4.4) and (4.11), we obtain

ΩM

2m2
effa

2

(
1− 3Ωm

2m2
eff

)
δρC = ∆Φ−

(
1 +

3Ωm

2m4
eff

)
∆Ψ+ constant (4.15)

We can substitute (4.14) into (4.11) and (4.15) to obtain a system of two equations with only two unknowns, the
perturbations Φ and Ψ. The constant in (4.12) and (4.15) has to be zero in order for the potential to be vanishing
at infinity. The decomposition of this system is straightforward

∆Φ = I ∆Ψ (4.16)

and
∆Ψ− 9H2Ωm,eff

2
Ψ =

δρ

2m2
eff,Ψa

(4.17)

where
I ≡ 1 +

4ΩM

1 + 2m2
eff − 3Ωm

2m4
eff

, Ωm,eff ≡ Ωm

m2
eff,Ψ

, m2
eff,Ψ ≡ m2

eff + (1− I)
(
m2

eff − 3Ωm

4m2
eff

)
(4.18)

(4.17) is identical to the one obtained for ΛCDM derived in Section 2.2 ([4]). It is trivial to solve our equation by
comparison and using eff subscripts wherever appropriate. This is because the quantities in (4.18) depend only
on time. The solution is

Ψ
∣∣
many particle

= − 1

8πm2
eff,Ψa

∑
n

mn

|x− xn|
e−

|x−xn|
λ (4.19)

where

λ =

√
2

9H2Ωm,eff
(4.20)

10
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Perturbation theory in ΛDGP model

This is the Ψ potential created by a collection of finite point-like particles valid at all length scales. For a single
particle – a single central over-density – the solution for the potential Ψ, valid for all length scales is

Ψ
∣∣
one particle

= − 1

8πm2
eff,Ψa

m0

r
e−r/λ (4.21)

where m0 is the mass of the central overdensity and r is the distance from its center. Just like the ΛCDM we also
have a screening effect. Although this time it will be different, depending on the value ΩM characterizing ΛDGP
model.

In every case we can find Φ solving (4.16)
Φ = I Ψ (4.22)

Figures (4.1) − (4.3) elucidate various properties of the gravitational potentials and the screening length. We
use the values for cosmological parameters Ωm = 0.3089 and H0 = 67.74 kms−1Mpc−1 as specified in [5] and
we examine the gravitational potentials for one particle with mass M⊙ = 1.989 · 1030 kg. Figure (4.1) depicts
the behavior of the effective mass density parameter and the screening length versus ΩM . The ΛCDM limit is
obtained by letting ΩM → 0.

We also note that since the screening length is typically of the order of O(103)Mpc (see Figure (4.1)), at
length scales comparable of the size of a typical cosmic structure i.e. O(100) Mpc, (4.21) recovers the 1/r fall-off
of the gravitational potentials. However, the 1/m2

eff,Φ ≡ I/m2
eff,Ψ and 1/m2

eff,Ψ terms present modify Newton’s
‘constant’ in Φ and Ψ respectively and make it time dependent, as discussed in [19].

Figure (4.2) depicts the behavior of the effective Newton’s constants for Ψ and Φ. In the ΩM → 0 limit both
of them aproach unity recovering the ΛCDM limit. Note also that in this limit setting further ρ̄ → 0 (Ωm → 0)
removes the exponential fall off since then λ → ∞ (cf., (4.18),(4.20)), yielding Newton’s potential for a point
mass located in a de Sitter universe. It is easy to verify that, as expected, this is the linearized approximation of
the Schwarzschild-de Sitter metric in the McVittie coordinate frame. Similar conclusions hold for the potential
Φ
∣∣
one particle

. Finally, we depict the potentials in figure (4.3).
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Figure 4.1: Plots of the effective mass density and the screening length versus ΩM .
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Figure 4.2: Plots of 1/8πm2
eff,Ψ and 1/8πm2

eff,Φ respectively versus ΩM . These are proportional to the
Newton’s constant for each potential respectively. Note that the one for Φ decreases faster than Ψ.

Figure 4.3: Plot of Ψ⊙(r) r/Mpc and Φ⊙(r) r/Mpc versus ΩM and log(r/Mpc) for one particle with
mass equal to one solar mass.
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Cassini’s measurement of PPN γ

parameter

In the previous chapter we saw that the Newton’s constants change as a function of ΩM . We can not simply
measure one of the constants and define the value of ΩM , because we could redefine the constant to match our
results. We have to measure their relevant difference. As you can see from Figure (4.2) Geff,Ψ and Geff,Φ have
different values in different ΩM . The question now is how do we make such a measurement?

Let’s take a look at the metric in (4.1) (in vanishing velocities) and write it in a more convenient way following
[20]

ds2 = a2(η)
[
(1 + 2Φ)dη2 − (1− 2γΦ)δijdx

idxj] (5.1)
where γ ≡ Ψ/Φ is widely known as one of the post-Newtonian parameters. The value of γ parameter for General
Relativity is γ = 1. However, in our case we see that it is true only when ΩM → 0, which is the ΛCDM limit.

To measure γ parameter we have to observe in accuracy two effects coming from General Relativity: Time
dilation and the deflection of light in a gravitational field. Using (5.1) (for the present time a(η) = 1) the equation
for time dilation is

dt∞ = (1 + Φ)dη (5.2)
where dt∞ is the time interval at infinity with zero gravitational potential and dη is the time measured by a clock
placed at gravitational potential Φ.

The angle of deflection of a light ray is given by the equation

δϕ = 2Φ(1 + γ) (5.3)

where in the ΛCDM limit γ = 1 and (5.3) is our well-known formula for light ray deflection.
In 2003 data for time dilation and light deflection were collected from Cassini mission[21]. The result was

γ − 1 = (2.1± 2.3) · 10−5 (5.4)

In ΛDGP model the γ parameter is given by the equation (see Eq. (4.22))

γ =
1

I
(5.5)

Using (4.18) we can calculate the value of ΩM

ΩM = (−1.33± 1.46) · 10−5 (5.6)

Even though it seems peculiar that ΩM turns out to be negative, it remains compatible with the value zero within
1σ. We also see that even at 5σ, ΩM can not be larger than ∼ 10−4. This extreme value case leads to a Planck
mass for the 5 dimension M ∼ 2MeV and a characteristic length where gravity change its behavior l ∼ 1030m or
3 · 106Gpc.

Future space missions[22] promisses to increase the accuracy of γ parameter up to order of 10−9. These missions
will test General Relativity to a unbelievable accuracy and may provide enlightening data for new physics.
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Discussion

We found that in ΛDGP model we still have the screening behavior of gravity just like ΛCDM. We study the
behavior of the screening (and the potentials) as a function of ΩM which characterize the extra dimension of
a single stationary point like particle. We saw that ΩM (which is positive) has to be smaller than ∼ 10−4 in
order to explain the value of post-Newtonian parameter γ which was recently measured by Cassini mission. The
small value of ΩM indicate that ΛCDM model is most probably correct. Future space missions will test General
Relativity to a never before accuracy and might give us a more clear view for our universe.
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