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Abstract

This master’s thesis’ subject is to provide a systematic theoretical study on
the properties of photonic systems characterized by non-Hermitian disorder.
Disordered systems have been extensively studied for decades, both due to
their fundamental importance in Physics and their direct relevance to nu-
merous technological applications. On the other hand, non-Hermiticity is a
property of “open” systems - that is, of those that allow the exchange of
energy with their environment - which has been recently revisited in opti-
cal physics in a totally different context, that of parity-time symmetry. The
aforementioned twist led to the discovery of a plethora of new and exotic phe-
nomena, which in turn led to the development of a whole new research field:
that of non-Hermitian Photonics. In this work, we focus on the interplay
between non-Hermiticity and disorder, along with the new properties that
arise from the combination of these two features. At first, we study the phe-
nomenon of Anderson localization in systems with uniform non-Hermitian
disorder, by calculating the localization length and the spatial extent of the
system’s eigenstates, as well as the density of states and eigenvalue statis-
tics on the complex plane. Next, we examine the properties of systems with
non-Hermitian binary disorder. Emphasis is placed on the physical-behavior
differences that they exhibit concerning their Hermitian analogs. Interest-
ingly, several unexpected and intriguing effects make their appearance in our
model. The relation of our findings to recent experimental results is also
discussed. Finally, we present a method for achieving perfect and shape-
preserving beam transmission through discrete photonic environments char-
acterized by disorder. This is achieved by carefully combining the effects of
disorder and non-Hermiticity, in such a way that one phenomenon negates
the influence of the other. Remarkably, the effects of both diagonal and off-
diagonal disorder can be efficiently eliminated by our non-Hermitian design.
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Περίληψη

Η μεταπτυχιακή αυτή εργασία αποτελεί μία συστηματική μελέτη των ιδιοτήτων

φωτονικών συστημάτων που χαρακτηρίζονται από μη-Ερμητιανή αταξία (non-
Hermitian disorder). Η αταξία είναι μία φυσική ιδιότητα που έχει αποτελέ-
σει αντικείμενο έντονης ερευνητικής δραστηριότητας για δεκαετίες, τόσο λόγω

του θεμελιώδους ρόλου που παίζει στη Φυσική, όσο και λόγω της άμεσης

συσχέτισης της με συστήματα τεχνολογικού ενδιαφέροντος. Από την άλλη,

η μη-Ερμητιανότητα είναι μια ιδιότητα των «ανοιχτών» συστημάτων (αυτών

δηλαδή που επιτρέπουν την ανταλλαγή ενέργειας με το περιβάλλον τους), η

οποία επανεξετάστηκε πρόσφατα στο πεδίο της οπτικής Φυσικής σε ένα εντελώς

διαφορετικό πλαίσιο, αυτό της χωροχρονικής συμμετρίας (PT symmetry). Η
ιδέα αυτή οδήγησε στην ανακάλυψη πληθώρας νέων και εξωτικών φυσικών φαιν-

ομένων και, εν συνεχεία, στη δημιουργία ενός ολόκληρου ερευνητικού κλάδου:

αυτού της μη-Ερμητιανής Φωτονικής (non-Hermitian Photonics). Σε αυτή την
εργασία επικεντρωνόμαστε στην αλληλεπίδραση μεταξύ μη-Ερμητιανότητας και

αταξίας, καθώς και στις νέες ιδιότητες που προκύπτουν από τον συνδυασμό των

δύο αυτών φαινομένων. Αρχικά μελετάμε τον εντοπισμό ΄Αντερσον (Anderson
localization) σε πλέγματα από φωτονικά στοιχεία, υπολογίζοντας το μήκος εν-
τοπισμού (localization length) και την χωρική έκταση των ιδιοκαταστάσεων
του συστήματος, καθώς και τη στατιστική των ιδιοτιμών του στο μιγαδικό

επίπεδο. Στη συνέχεια, εξετάζουμε πλέγματα μη-Ερμητιανής δυαδικής αταξίας

(binary disorder) και τις διαφορές στη φυσική συμπεριφορά που παρουσιάζουν
σε σχέση με τα Ερμητιανά τους ανάλογα, βρίσκοντας ότι διάφορα απρόσμενα

και ενδιαφέροντα νέα χαρακτηριστικά κάνουν την εμφάνισή τους. Σχολιάζε-

ται επίσης η συσχέτιση μεταξύ των αποτελεσμάτων μας και πρόσφατων πειρα-

ματικών ευρημάτων. Τέλος, παρουσιάζουμε μια μέθοδο για την επίτευξη τέλειας

διέλευσης διαμέσου άτακτων συστημάτων, συνδυάζοντας τις νέες δυνατότητες

που προκύπτουν από το συνδυασμό των δύο φαινομένων που εξετάζουμε με

τέτοιο τρόπο, ούτως ώστε το ένα φαινόμενο να αναιρεί την επίδραση του άλλου

και το σύστημα να συμπεριφέρεται σαν να χαρακτηρίζεται από πλήρη τάξη.
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List of Symbols

The next list describes several symbols that will be later used within the
body of the document

ψn Complex electric-field amplitude at the nth waveguide channel (site).

εn Site element/propagation constant of the nth waveguide channel.

z Normalized propagation distance along the waveguide axis.

cn,m Coupling coefficient between the (nearest neighboring) channels n and
m. In most cases, cn,m = const. ≡ c, and we set c = 1 for simplicity.

ω System’s eigenvalue (complex in general).

W Disorder strength, in the case of uniform distribution of disorder (any
random variable ∈ [−W

2
, W

2
] ).

DOS Density of states.

ξ Localization length, defined by Eq. 2.16.

N Total number of sites (for 1-D lattices).

P(s) Probability distribution P of normalized nearest-neighbor energy spac-
ings s (see Eq. 3.6).

Ĥ The Anderson model Hamiltonian (see Eqs. 2.3, 3.3).

T,R Transmittance and reflectance, respectively.

k Wavenumber.

P(z) Electric field power as a function of the propagation distance z.
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Chapter 1

Introduction

The study of crystalline solids is based on Bloch’s theorem [1, 2] which as-
sumes a perfect periodicity in the positions of the atoms and in the density
of electrons. However, in actual crystalline solids there are always deviations
from periodicity, such as point defects, linear faults (e.g. dislocations), 2D
defects (e.g. interfaces of crystallites); if the concentration of these devia-
tions becomes high enough Bloch’s theorem breaks down and a new paradigm
emerges featuring novel properties such as the possibility of localized eigen-
states [3, 4]. The concept of this so-called Anderson localization, which
claims that an electronic wave can be trapped in a finite region of a disor-
dered lattice, has been at the center of the attention of the solid state physics
community for more than sixty years [5, 6, 7, 8, 9, 10]. The localization phe-
nomenon appears due to the interference among multiple scattering processes
of the electronic waves by random variations in the potential of the crystal
lattice. As a result of this interference, the previously extended eigenmodes
of the system, the Bloch waves, may now become localized eigenstates which
decay exponentially for large distances.

The phenomenon of Anderson localization has also been studied experi-
mentally, indirectly, by measurements of macroscopic quantities such as the
conductance [11, 12, 13, 14] and the transmission [15, 16, 17, 18]. In solid
state systems though, the existence of many body interactions and tempera-
ture dependent effects, such as inelastic scattering, makes the interpretation
of these experiments rather complex. In order to overcome this difficulty,
the topic of localization was extended to the regime of optics, acoustics and
elastics where its consequences were not clouded by other effects producing
similar observations [19, 20, 21, 22, 23, 24, 25, 26]. Such an extension is nat-
urally valid, since the concept of localization is based on wave scattering and
interference [27, 28]. The only difficulty with classical waves, such as electro-
magnetic ones, is that they usually exhibit very weak scattering not enough
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Figure 1.1: Schematic depiction of the Anderson localization phenomenon.
Left column: amplitude of a Bloch wave (red line) propagating in a periodic
potential (blue line). Right column: the introduction of disorder in the
previous periodic potential (blue line) turns the extended Bloch wave to a
spatially confined state of localization length ξ (red line).

to produce localization. Several ideas were proposed to circumvent this diffi-
culty, some of which [29, 30] led through different paths to photonic crystals
[31, 32, 33, 34, 35, 36] and phononic crystals [37, 38, 39, 40, 41, 42, 43].

Furthermore, another topic of intense research interest these days is wave
propagation through complex disordered media, due to its immediate physi-
cal and technological relevance. As mentioned before, the presence of disorder
leads to phenomena such as multiple scattering and Anderson localization.
A direct manifestation of such wave scattering is the highly complex inten-
sity pattern that is formed due to multi-path interference. With the advent
of spatial light modulators and wavefront shaping techniques, interest has
been growing in controlling such scattering pattern of waves propagating in
complex media, for various novel applications in imaging and detection estab-
lishing the area of disordered Photonics [44, 45, 46, 47]. A great challenge is
to overcome the detrimental effects of multiple scattering to achieve enhanced
transmission through such a complex medium of disorder. A variety of ex-
perimental methods has been recently proposed [48, 49, 50, 51, 52, 53, 54].
However, most of these techniques rely on the existence of transmission reso-
nances of the random medium and as a result require sophisticated wavefront
shaping methods and adaptive imaging iteration algorithms. An alternative
strategy would be to modify the scattering medium, instead of the incoming
optical beam.

In an other direction, the study of optical structures characterized by
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amplification (gain) and dissipation (loss) has led to the development of a
new research field, that of non-Hermitian Photonics [55, 56, 57, 58, 59, 60, 61].
In particular, the introduction of the concepts of parity-time (PT ) symmetry
[62, 63, 64] and exceptional points [65, 66, 67, 68, 69, 70] in optics, where
gain and loss can be physically implemented [71, 72, 73, 74, 75, 76], triggered
a number of theoretical and experimental works, which have demonstrated
the potential applications of such non-Hermitian systems. The rich behavior
and novel features of these structures has led to a plethora of experimental
realizations of various optical devices spanning from unidirectional invisibility
to broadband wireless power transfer [77, 78, 79, 80, 81, 82, 83, 84].

Figure 1.2: Some of the key experiments that were demonstrated recently in
the context of non-Hermitian Photonics and PT symmetry.

In addition, non-Hermitian random matrices are a topic of intense re-
search interest in the context of mathematical physics [85], and disordered
Photonics [45, 86]. More specifically, random lasers [87, 88] where the de-
cay of the cavity modes and the gain material leads naturally to dissipation
and amplification, respectively, are a prototypical system in the framework
of disordered complex media, where non-Hermiticity plays a crucial role.

In this thesis we will study systems that are characterized by non-Hermitian
disorder and try to understand the physical behavior that results from the
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combination of these two different effects. The realization of such systems
is more appropriate for photonic rather than solid state systems, since the
former can easily incorporate and realize complex potentials that require
physical gain and loss. In our study we will make use of the methods de-
veloped within the context of Anderson localization in solid state physics as
well as the techniques of electromagnetic wave scattering.

At first we will try to answer some of the main questions that stem from
the interplay of disorder and non-Hermiticity in two-spatial dimensions, while
comparing our results with the corresponding, well known characteristics of
the Hermitian case. In particular, we will examine physically realistic Ander-
son type of non-Hermitian waveguide lattices, like the ones shown in Fig. 1.3,
with the most general uncorrelated disorder that includes gain and/or loss.
We are interested in studying the spectrum and the eigenvalue statistics of
the model, as well as the extent length of its eigenvectors.

Figure 1.3: Schematic depiction of the equivalence between optical wave
propagation in an array of coupled waveguide channels (upper part) and
electronic propagation in a solid crystal (lower part). The array of coupled
waveguides will be the main physical system of study in this work.

In what follows, we will study the effect of non-Hermiticity on a short-
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range correlated 1-D disordered lattice which, in its Hermitian version, has
been studied extensively for its unexpected delocalized states [89]. The diag-
onal matrix elements of our Hamiltonian take randomly two complex values
ε and ε∗, each one assigned to a pair of neighboring sites. We will show that,
contrary to the Hermitian case, all states in our system are localized. In
addition, the obtained eigenvalue spectrum exhibits an unexpected intricate
fractal-like structure on the complex plane. Moreover, with increasing non-
Hermitian disorder, the eigenvalues tend to coalesce in particular small areas
of the complex plane, a characteristic we term “eigenvalue condensation”.
Despite the Anderson localization of all eigenstates, the system exhibits an
interesting dynamic behavior through sudden jumps between states located
even at distant sites. This seems to be a general feature of non-Hermitian
random systems. The relation of our findings to recent experimental results
is also discussed.

Finally, we will investigate the propagation of Gaussian beams through
such waveguide lattices characterized by correlated non-Hermitian disorder.
In the context of non-Hermitian Photonics, it was recently demonstrated
that is possible to suppress the effects of localization and thus achieve perfect
transmission by considering correlated non-Hermitian disorder. In particular,
one can derive a novel class of waves that have constant intensity (CI-waves)
everywhere in space, even inside the scattering area [90, 91]. In the framework
of coupled mode theory, we will demonstrate how the imaginary part of the
refractive index needs to be adjusted to achieve perfect beam transmission,
despite the presence of disorder. Remarkably, the effects of both diagonal and
off-diagonal disorder in the waveguides and their couplings can be efficiently
eliminated by our non-Hermitian design.
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Chapter 2

One-dimensional Anderson
model

In this chapter, we make a brief introduction to the concepts of Anderson
localization and wave propagation in complex media, both in (quasi) 1-D
systems. We formulate the mathematical description of these problems and
present the main numerical techniques we used to obtain this thesis’ results.

2.1 Tight-binding Hamiltonian

In this section we will consider the tight-binding Hamiltonian in 1-D and
study its spectral properties (eigenvalues, eigenvectors and density of states),
as well as the dynamical evolution of wavepackets in lattices described by it.

The tight-binding Hamiltonian operator is defined as:

ĤTB ≡
∑
n

εn |n〉 〈n|+
∑
〈n,m〉

cn,m |n〉 〈m| . (2.1)

In the above, the first term expresses the on-site interaction of strength
εn, which (εn) is called the site element of the nth site and may have a
different physical meaning depending on the specific characteristics of the
system we consider. Since in this thesis we are interested in studying photonic
waveguide lattices, the waveguides’ propagation constants play the role of
site elements in our case. On the other hand, the second term expresses the
nearest neighbor hoping (summation over nearest neighbors 〈n,m〉), with
cn,m being the coupling coefficient between the sites n,m.

In most of the cases that will concern us here, cn,m = const. ∀n,m; then
we can set cn,m = 1 without loss of generality. In addition, if εn = const.
∀n, then the system becomes periodic and we can set εn = 0 (again without
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losing any generality). The tight-binding Hamiltonian Ĥ0 of a 1-D periodic
lattice with N sites in total, is a tridiagonal matrix of the form:

(Ĥ0)n,m = δn,m+1 + δn+1,m ⇒ Ĥ0 =


0 1 0 · · · bc
1 0 1 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
bc · · · 0 1 0


N×N

(2.2)

where in the above, bc = 0 for closed (Dirichlet) and bc = 1 for periodic
boundary conditions. In this thesis we examine only the case of closed bound-
ary conditions (bc = 0).

On the other hand, the Hamiltonian Ĥ of the 1-D Anderson model reads:

Ĥn,m = δn+1,m + δn,m+1 + εnδn,m = (Ĥ0)n,m + εnδn,m ⇒

⇒ Ĥ =


ε1 1 0 · · · 0
1 ε2 1 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · 0 1 εN


N×N

(2.3)

where εn = random ∈ [−W
2
, W

2
] (uniform distribution), with W defined as

the disorder strength/amplitude.
One can obtain the system’s eigenvalues and eigenvectors via exact matrix

diagonalization. The eigenstates of the Anderson Hamiltonian become more
and more localized as we raise the value of W ; something that can be clearly
seen in Fig. 2.1.

Given the eigenvalues of the system, one can easily find (numerically) the
density of states (DOS) as follows: we first sort the eigenvalues in ascending
order and then make a histogram of Nb bins, where 1� Nb� N . For disor-
dered systems, one needs to consider a large number of different realizations
and sort all of their eigenvalues in ascending order, in order to get better
results. After this procedure, one obtains the DOS by diving the histogram
values over (i) the number of realizations, (ii) the bin spacing and (iii) the
Hamiltonian’s dimension N .

In Fig. 2.2 we show the system’s DOS for (a) W = 0 and (b) W =
1. In the periodic case we also compare our result with the corresponding
theoretical expression:

DOS(ω) =
1

π
√

4− ω2
. (2.4)
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(a) W=0 (b) W=1

Figure 2.1: Intensity profiles of the first 9 eigenstates of the 1-D Anderson
Hamiltonian with N = 100 and (a) W = 0, (b) W = 1.

(a) W=0 (b) W=1

Figure 2.2: Density of states for the 1-D Anderson model with (a) W = 0
(analytical expression with blue line) and (b) W = 1. The y-axis scale is
kept the same between (a) and (b) for comparison.

Knowing the system’s Hamiltonian one can also study the dynamic evo-
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lution of an initial wavefunction. This evolution is governed by the following
set of coupled Schrodinger-like equations:

i
∂ψ

∂z
+ Ĥψ = 0⇔ i

∂ψn
∂z

+ (ψn+1 + ψn−1) + εnψn = 0 , (2.5)

which in the context of Photonics are called normalized coupled mode equa-
tions and describe the paraxial wave propagation in a 1-D waveguide array
of N coupled channels, such as the one in Fig. 1.3.

In Eq. 2.5, z is the normalized propagation distance (which plays the
role of time in quantum mechanics), while ψn and εn are the envelope of the
electric field and the propagation constant (site element) of the nth channel,
respectively. Also ψ ≡ (ψ1 ψ2 ... ψN)T . For more details regarding these
equations and their normalization please see [71].

We solve Eq. 2.5 using a 4th order Runge-Kutta algorithm [92]: we first
discretize the z-vector: z → {zj}, where zj ≡ z0 + j · dz, j = 0, 1, ..,M , dz is
the pseudo-time step (which we usually take dz = 0.1), and z0 is the initial
value of z which we take z0 = 0.

(a) W=0 (b) W=5

Figure 2.3: Field amplitude |ψn(z)| z-evolution. Here we consider a single-
channel excitation ψ0

n = δn,n0 in the middle of an Anderson lattice with
N = 51 sites and for (a) W = 0 and (b) W = 5.

Given an initial wavefunction ψ(z = 0) ≡ ψ0, we can simulate its propa-
gation as follows: at first we start a loop running over the pseudo-time vector
j = 0→M − 1. Denoting the wavefunction after the jth step by ψj, in each
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z-step we follow the procedure described below:

φ = ψj → κ1 = idz · Ĥφ→ φ = ψj +
κ1

2
→ κ2 = idz · Ĥφ→

→ φ = ψj +
κ2

2
→ κ3 = idz · Ĥφ→ φ = ψj + κ3 →

→ κ4 = idz · Ĥ φ→ ψj+1 = ψj +
κ1 + 2κ2 + 2κ3 + κ4

6
.

(2.6)

In Fig. 2.3 we show the dynamic evolution of an initial single channel
(delta) excitation in the middle site n0 of an Anderson lattice: ψ0

n = δn,n0 ,
for W = 0 and W = 5. We can observe the so-called “absence of diffusion”
(absence of diffraction in our case) for W > 0, where localization takes place.

For an infinite periodic lattice, the analytical solution for the propagation
of ψ0

n = δn,n0 is given by the following relation:

ψn(z) = in−n0Jn−n0(2z) (2.7)

where Jn is the Bessel function of the first kind.
We define D as the difference between the field shown in Fig. 2.3(a) and

the field given by Eq. 2.7:

Dn(z) ≡ |ψnumn (z)− ψanaln (z)| . (2.8)

Figure 2.4: Plot of Dn (difference between the field shown in Fig. 2.3(a) and
the field given by Eq. 2.7) as a function of propagation distance z.

Note that D is not exactly the numerical error since the numerical results
correspond to a finite and not an infinite lattice. The plot of D as a function
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of z is shown in Fig. 2.4. We can observe that D increases for larger values
of z, since the effects of the boundaries become more and more significant.
Nevertheless, the two results are really close.

2.2 T-Matrix

In this section, we consider the scattering problem shown in Fig. 2.5: an
infinite lattice consisting of two periodic semi-infinite sublattices and a finite
disordered sublattice of N sites in the middle region, as well as an incident
Bloch wave coming from the right sublattice. The whole analysis of this
section is based on chapter 7 of [28].

Figure 2.5: Setup of the scattering problem studied in this section. We con-
sider an infinite tight-binding lattice consisting of three different sublattices:
the middle one is finite and disordered (black color) and the two others are
semi-infinite and periodic (red color). An incident Bloch wave coming from
the right sublattice is considered.

To begin with, the site element distribution of the lattice is the following:

εn =

{
random ∈ [−W

2
, W

2
] if 1 ≤ n ≤ N

0 otherwise,
(2.9)

where W ≥ 0 is defined as the strength of disorder. Our goal is to find the
wavefunction’s values {ψn} at the corresponding lattice sites {n}.

As seen in Fig. 2.5, at n = 0 we have only an outgoing (transmitted) wave
and due to Bloch’s theorem we get:

ψ0 = 1 and ψ−1 = e−ikψ0 = e−ik , (2.10)
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where k is the Bloch momentum (we have set the lattice constant equal to
1). The Bloch momentum is related to the wave’s eigenvalue ω according to
the following dispersion relationship:

ω = 2 cos k = eik + e−ik. (2.11)

Now, the tight-binding relation 2.5 provides us with:

ωψn = εnψn + (ψn−1 + ψn+1) . (2.12)

By rewriting the above equation we obtain the following recursive relation:

ψn+1 = (ω − εn)ψn − ψn−1 (2.13)

or in matrix form:(
ψn+1

ψn

)
=

(
ω − εn −1

1 0

)(
ψn
ψn−1

)
≡ T̂n

(
ψn
ψn−1

)
(2.14)

where T̂n is the so-called transfer matrix of the nth site.
Thus, the coefficients ψN , ψN−1 can be found in terms of the already

known ψ0, ψ−1 using the following relation:(
ψN
ψN−1

)
=

N−1∏
n=0

T̂n

(
ψ0

ψ−1

)
≡ T̂

(
ψ0

ψ−1

)
(2.15)

with T̂ being the total transfer matrix of the disordered region.
We are now able to calculate various interesting features of the system.

The localization length is one of them.
Generally speaking, the localization length ξ (in units of the lattice spac-

ing) of a wave traveling in an infinite disordered lattice is defined as:

ξ ≡ − lim
n→∞

n

ln |ψn|
. (2.16)

In practice, in order to calculate the localization length ξ corresponding to
the eigenvalue ω, we first need to find the average wavefunction amplitude
defined as:

ln |Ψn| ≡ 〈ln |ψn|〉 (2.17)

where an average over a large number (typically ≥ 5N) of realizations is
needed to obtain reliable results. In this case, |Ψn| is directly related to ξ:

|Ψn| ∝ en/ξ . (2.18)
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Figure 2.6: ln |Ψ| defined by Eq. 2.17 as a function of the site number, for
W = 1 and ω = 0 (band’s center). The localization length ξ (in units of
lattice spacing α) is shown in the graph’s title.

Note that the most commonly used “ − ” sign has been replaced by “ + ”
since here we considered a wave traveling from right to left.

So, in order to calculate the localization length, we need to plot the
relation n− ln |Ψ| and perform a linear fitting:

ln |Ψ| = A · n+B ⇒ ξ =
1

A
, (2.19)

as seen in Fig. 2.6.
Also, the wave’s transmittance T is given by the formula:

T =
4 sin2(k)

|eikψN − ψN−1|2
(2.20)

and is related to the localization length as follows:

〈ln T〉 = −2N

ξ
. (2.21)

In Fig. 2.7 we show plots of the transmittance T for various realizations
of disorder and for two different values of W .

Finally, in the limit of weak disorder (W ≤ 1) the localization length is
approximately given by:

ξ(ω) ' 24(4− ω2)

W 2
. (2.22)
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(a) W=1 (b) W=2

Figure 2.7: Transmittance T for different realizations of disorder. The sys-
tem’s size is taken N = 100 and the calculation has been performed for (a)
W = 1 and (b) W = 2.

Figure 2.8: Logarithm (base 10) of the localization length ξ as a function
of the disorder’s strength W for ω = 0. Numerical results (blue dots) are
compared to the approximate theoretical prediction of Eq. 2.22 (red line).

In Fig. 2.8 we compare the approximate theoretical expression of Eq.2.22
with our numerical results, finding that they are in satisfactory agreement.
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Chapter 3

Two-dimensional Anderson
model

Here we examine the effects of uniform Hermitian and non-Hermitian disor-
der in 2-D waveguide lattices. In Sec. 3.1 we present and discuss some of the
well known properties of 2-D Hermitian disordered systems. Subsequently, in
Sec. 3.2, we introduce the 2-D non-Hermitian Anderson model and provide
a systematic study of the interplay between disorder and non-Hermiticity.
More specifically, we study the system’s eigenspectrum in the complex fre-
quency plane, as well as the localization properties of its eigenstates, either
by the participation ratio or the level spacing, defined in the complex plane.

3.1 Hermitian disordered lattice

In this section we will study the effects of real disorder in 2-D tight-binding
lattices of N × N sites and with site element distribution {εp,q}, (p, q =
1, ..., N).

In the case of a square waveguide lattice, the coupled-mode equations of
Eq. 2.5 become:

i
∂ψp,q
∂z

+ (ψp+1,q + ψp−1,q + ψp,q+1 + ψp,q−1) + εp,qψp,q = 0 . (3.1)

A schematic of our system is shown in Fig. 3.1(a).
In order to find the eigenmodes of the system, we perform the substitu-

tion ψp,q = φp,q · exp(−iωjz) in Eq. 3.1 and obtain the following eigenvalue
problem:

ωjφp,q = (φp+1,q + φp−1,q + φp,q+1 + φp,q−1) + εp,qφp,q = Ĥφp,q (3.2)
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where ωj is the eigenvalue of the jth eigenmode, with j = 1, 2, ..., N2 and Ĥ
is the Hamiltonian of the 2-D Anderson model, which reads:

Ĥn,m = εn · δn,m + (Ĥ0 ⊗ 1̂ + 1̂⊗ Ĥ0)n,m (3.3)

with Ĥ0 being the 1-D tight-binding Hamiltonian of Eq. 2.2 and {εn} the
elements of the N2 × 1 column vector, occurring from the stretching of the
site element matrix {εp,q}. Also, ⊗ denotes the Kronecker tensor product

between two matrices and the matrix Ĥ has dimension N2 ×N2.
For the periodic case (εp,q = 0 ∀p, q), we show plots of the field amplitude

of the nine lowest-eigenvalue eigenmodes, in Fig. 3.1(b). Note that we are
assuming Dirichlet boundary conditions as always.

We are interested in finding how these eigenmodes and eigenvalues change
when the system becomes disordered. For the disordered case, we consider
once again a uniform site element distribution: εp,q ∈ [−W

2
, W

2
], where W is

the strength of disorder.
In Figs. 3.1(c),(d), we present the nine lowest-eigenvalue eigenmodes for

the case of (c) weak disorder with W = 0.5 and (d) strong disorder with
W = 5. As expected, the eigenstates become more and more localized as W
increases. However, contrary to the 1-D case, in Fig. 3.1(c) one may observe
that the amplitude patterns, despite being distorted, do not seem spatially
confined. This is a consequence of the fact that in 2-D the localization length
is ξ2D ∝ lekl, where l is the mean free path. This relation implies that, even
though all states are localized for any value of W , if the strength of disorder
is weak the localization length becomes so large that ξ2D � system’s size,
thus leading to the misconception that the eigenstates are extended. This
issue troubled the Physics community for quite some time in the past [93].

Moving on, the DOS of a 2-D periodic square lattice is given by [14]:

DOS(ω) =
1

2π2
K[

√
1− ω2

16
], (3.4)

where K is the complete elliptic integral of the first kind, defined as:

K(x) ≡
∫ 1

0

dt√
(1− t2)(1− x2t2)

. (3.5)

For zero disorder the DOS exhibits at both band edges a discontinuity, as
well as a logarithmic singularity at the band’s center (the latter is not easily
captured numerically). These non-smooth points are also called van-Hove
singularities. Our numerical result, together with the theoretical curve of
Eq. 3.4, are shown in Fig. 3.2(a).
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Figure 3.1: (a) Schematic representation of a square waveguide lattice. The
wave evolution along the z-axis is described by Eq. 3.1. A probe beam
entering the lattice is also presented (figure taken from the experimental work
[24]). (b)-(d) Field amplitude for the nine lowest-eigenvalue eigenmodes of
a disordered square lattice with 30 × 30 waveguides and for: (b) W = 0
(periodic case), (c) W = 0.5 (weak localization regime) and (d) W = 5
(strong localization regime). In subfigures (b)-(d), a shading-interpolation
has been performed for illustration purposes.

We also present the corresponding DOS of the 2D Anderson model with
W = 2, in Fig 3.2(b). Now we can observe that the introduction of disorder
eliminates all of the aforementioned van-Hove singularities and makes the
curve smoother in general. Aside from this difference though, the resulting
DOS has a similar form to the one in Fig. 3.2(a).

Another physical quantity of interest is the so-called level spacing distri-
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(a) Periodic (b) W=2

Figure 3.2: DOS of a 2-D square lattice: (a) Periodic system (comparison
between theoretical and numerical results), (b) Anderson model with W = 2.
The y-axis scale is kept the same between (a) and (b) for comparison. Inset:
zoom of (b).

bution P(s), where s represents the normalized nearest-neighbor eigenvalue
spacing defined as:

sn ≡
∆ωn
〈∆ωn〉

, where ∆ωn ≡ ωn − ωn−1 , (3.6)

assuming that the eigenvalues are ordered in the ascending order (ωn ≥ ωn−1).
This distribution often takes one of several universal forms, depending only
on the disorder strength and not on the specific details of the medium [94,
95]. In particular, for weak disorder the modes are extended over the whole
disordered area and P(s) approximately obeys the Wigner-Dyson distribution
[Fig. 3.3(a)]:

PWD(s) =
πs

2
exp(−πs

2

4
) . (3.7)

We have to note here that the most significant property of P(s) in this
case is the so-called level repulsion phenomenon: P(0) = 0. This feature is
a consequence of the extended character of the system’s eigenmodes, since
the latter overlap in space and thus cannot posses the same eigenvalue, given
their mutual orthogonality property.
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(a) W=1 (b) W=10

Figure 3.3: Histogram of normalized level spacing for (a) W = 1 and (b) W =
10 (blue bars). The red lines show the corresponding theoretical prediction.

On the other hand, in the strong disorder regime, P(s) approaches the
Poisson distribution given by [Fig. 3.3(b)]:

PP (s) = exp(−s) . (3.8)

We can see that in this case P(0) 6= 0, implying that the eigenvalues can now
come arbitrarily close to each. Again, this is directly related to the localized
nature of the corresponding eigenmodes, which may now posses zero overlap
and thus be completely uncorrelated.

We also have to note that in the intermediate cases (between weak and
strong disorder), the obtained distribution is a linear combination of the
Wigner-Dyson and Poisson distributions.

Finally, one can also study the diffraction pattern of an initial delta-
excitation in the middle of a square lattice, again using the RK4 method, -
the procedure described by Eqs. 2.6 - but with Ĥ given by Eq. 3.3.

These diffraction patterns are shown in Fig. 3.4. In particular, in the left
column we present the field’s intensity output at z = 6 (a), and 3 intensity-
snapshots (for z = 2, 4 and 6) of the propagation process (c), both for a
periodic lattice (W = 0). In the right column we show plots of the cor-
responding results for a disordered lattice with W = 5 (strong localization
regime). Once again, one can observe the absence of diffraction, as well as
the random distribution of the fields intensity due to disorder.
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Figure 3.4: Left column: (a) field intensity output at z = 6 of an initial
delta-excitation in the middle of a 31×31 square lattice, and (c) 3 snapshots
(z = 2, 4, 6) of the diffraction process, both for a periodic lattice (W = 0).
Right column: same as in (a) and (c), but for a disordered lattice with W = 5.
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Figure 3.5: Plot of Dp.q - which describes the difference between the numer-
ical [Fig. 3.4(a)] and analytical (Eq. 3.9) solutions - defined by Eq. 3.10, for
z = 6 and N = 31.

As in the 1-D case, there exists an analytical solution for the diffraction
of a single-channel excitation in an infinite and periodic lattice: ψp,q(0) =
δp,p0δq,q0 . This solution is now a product of two Bessel functions and reads
as follows:

ψp,q(z) = ip−p0iq−q0Jp−p0(2z)Jq−q0(2z) . (3.9)

In order to compare our theoretical and numerical results, we use the
extension of the function D(z) (see Eq. 2.8) in 2 spatial dimensions, given
by:

Dp,q(z) ≡ |ψnump,q (z)− ψanalp,q (z)| . (3.10)

A plot of Dp,q for a square lattice with N = 31, z = 6 and a single-
channel excitation in its middle channel (p = q = 16) is shown in Fig. 3.5.
Once again, the two results are really close and their difference increases as
we move towards the boundaries, as expected.
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3.2 Non-Hermitian disordered lattice

In this section we consider guided non-Hermitian structures, where εp,q are
complex; this physically means that each waveguide is characterized by either
gain (Im{εp,q} < 0) or loss (Im{εp,q} > 0) and by its real part Re{εp,q}. The
Hamiltonian of the system is again given by Eq. 3.3, but with {εi} being
complex this time. A schematic of our model is provided in Fig. 3.6.

Figure 3.6: A schematic depiction of the physical system that we consider in
this section: a 2-D waveguide lattice with random gain and loss.

Since Ĥ is now a non-Hermitian matrix, it is fully described by a set of
biorthogonal right |φRj 〉 and left |φLj 〉 eigenmodes. In other words, we have
the following right eigenvalue problem:

Ĥ |φRj 〉 = ωj |φRj 〉 (3.11)

and the corresponding left eigenvalue problem of the adjoint matrix:

Ĥ
†
|φLj 〉 = ω∗j |φLj 〉 . (3.12)

The associated biorthogonality condition is 〈φLj |φRi 〉 = δi,j. In general, the
right and left eigenvectors are different and, since any dynamics of the prob-
lem include both the right and the left set of eigenfunctions, one needs to
study both of them. In our case though, the left and right eigenfunctions

are complex conjugate pairs since Ĥ
†

= Ĥ
∗
. This is a direct outcome of the

corresponding one-dimensional matrices’ 1̂, Ĥ0 Hermiticity.
We will examine phenomena related to Anderson localization in two dif-

ferent cases of non-Hermitian disorder: (a) imaginary disorder, where the
potential strength is imaginary with a distribution of the form: ε = iεI ,
εI ∈ [−W

2
, W

2
] and (b) both real and imaginary disorder, where the potential

strength is complex, ε = εR + iεI with εR ∈ [−W
2
, W

2
] and εI ∈ [−W

2
, W

2
].
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A value indicative to the localization of the eigenmodes is the participa-
tion ratio of each mode (PRj), which is defined by the relation:

PRj ≡
|
∑N2

i=1 |φj(i)|2|2∑N2

i=1 |φj(i)|4
(3.13)

where we have used the right eigenvectors and the sum includes all N2 sites
of the system. Generally speaking, the PR measures the spread of a state |φ〉
over a basis {|i〉}N2

i=1. For weak disorder strength, PR takes values comparable
to the system’s area, as all lattice sites participate (almost) equally to the
eigenfunction. For higher values of W , the PR decreases, which means that
the eigenmodes tend to become more and more localized. At this point we
have to emphasize that the participation ratios based on the left eigenvectors
are exactly the same with the above, since (|φLj 〉)∗ = |φRj 〉, according to our
previous discussion.

We also define the extent length of each mode, which is an easily measured
and convenient in some cases quantity, by the relation:

λj ≡
√
PRj

2
. (3.14)

To begin with, we will illustrate the eigenvalue spectrum of Eq. 3.1 in
the complex eigenfrequency plane and superimpose the values of PR (of the
corresponding eigenmodes) by denoting them with different colors. We do not
present any results for the case of real n, since they are well known: For weak
disorder the density of states (DOS) follows more or less the unperturbed
DOS with the rounding of the discontinuities at the band edges and the
logarithmic singularity at the band center; states remain essentially extended
except at the extreme tails. For strong disorder, the DOS tends to follow the
distribution of the potential strength and all states become strongly localized.

In Fig. 3.7, we show the calculated eigenvalue spectra in the complex
frequency plane for various disorder strengths and relate the color of each
eigenvalue with the logarithm of the corresponding participation ratio, as
seen in the colorbar of the graphs. In this figure we restrict ourselves to
only the cases of imaginary disorder (case (b), left column) and the case of
disorder in both the real and the imaginary part of the potential (case (c),
right column), and for three different disorder strengths.

We can observe that, on both cases, the eigenvalue spectrum forms an
approximate ellipse on the complex plane, with a different ellipticity in each
case. Note that the spectrum of a system with random diagonal and off-
diagonal elements forms a circle on the complex plane. In our case, due to
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Figure 3.7: Eigenvalue spectra of a 50×50 waveguide lattice (2500 sites)
in the complex frequency plane, for a particular realization of the random
system and for various disorder strengths: (a) W = 1 (first row), (b) W = 3
(second row) and (c) W = 5 (third row). In the left column, disorder is
applied only to the imaginary part of the potential strength, while Re(εp,q)=0;
in the right column, disorder of the same W is applied in both the real and
the imaginary part of εp,q. Note that the color of each eigenvalue is related
to the participation ratio (spatial extension) of the corresponding eigenstate,
as seen in the colorbar of the figures.
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the lack of randomness in the couplings, the obtained spectrum is elliptical
[96, 97]. As expected, the ellipse is widened for increasing disorder.

Most interestingly, we can also observe that, in general, the modes around
the center of the elliptical pattern are the most extended ones, while the ones
near it’s edges are the most localized; this seems to be the non-Hermitian
extension of the corresponding well known result from the case of real disor-
der, in which the eigenstates tend to become gradually localized as we move
towards the edges of the bands.

Figure 3.7 provides a general semi-qualitative picture of the whole spec-
trum, as well as information about how extended (or localized) the cor-
responding eigenstates are. However, quantitative information about how
dense the spectrum is in each sub-region of the complex frequency plane can-
not be easily inferred from these plots. To remedy this missing information
we consider first the density of states (DOS) in the complex frequency plane
(averaged over realizations of the random system). To define the DOS we
count the number of states δN0 with eigenfrequencies located within an ele-
mentary square of area δA = δωR×δωI and centered at the point ω = ωR+iωI
of the complex frequency plane; then we have by definition:

DOS(ω) ≡ δN0

δA
. (3.15)

Usually, we implicitly assume that the DOS is averaged over many realiza-
tions of the random system. The DOS, as expected, depends on the disorder
strength. For small values of disorder, all the eigenvalues are concentrated
near the real axis, while their density is higher in the center and decays as we
move towards the edges of the spectrum (as in Fig. 3.2). On the other hand,
for the case of strong disorder, the eigenvalues become almost uniformly dis-
tributed in the whole spectrum and tend to follow the same distribution as
the diagonal matrix elements, in the limit W � V , where V is the coupling
coefficient (the DOS at the edges drops to zero not discontinuously in con-
trast to the matrix elements). Most interesting is the case of an intermediate
value of disorder, which is shown in Fig. 3.8, for W = 3. In this plot we
can observe that the DOS shows four weak peaks located on the real and
the imaginary axis and near the edges of the spectrum. The peaks are found
symmetrically over the center of the complex plane. In addition, the DOS
appears to decay as we further move away from these two axis.

Regarding the level spacing statistics, there are several ways to define the
level spacing, s, in the complex frequency plane. One way, termed “1” and
for a particular realization of the disorder, is the following:

s1(ω) ≡
√

δA

δN0

(3.16)
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Figure 3.8: Density of states per unit area in the complex plane Real(ω)-
Imag(ω), for the case of disorder in both the real and the imaginary part
of the diagonal matrix elements and disorder strength W = 3. We have
averaged over 1000 realizations of the disorder.

which is directly related with the DOS: s = (DOS)−
1
2 . (This direct relation

between DOS and s acquires an extra numerical coefficient if both quantities
are averaged over many realizations of the random system).

Another way, termed “2”, to define the level spacing, s, which is the
one most commonly used [96], at each eigenfrequency ωj is as the minimum
distance in the complex frequency plane between two neighboring eigenfre-
quencies averaged over many realizations of the disorder:

s2(ωj) ≡ |ωj − ωj−1| . (3.17)

In the above expression, ωj−1 is the eigenvalue which is nearest to the eigen-
value ωj, on the real axis (Hermitian case) or on the complex plane (non-
Hermitian case).

Definition 1 gives the nearest level spacing in the complex frequency plane
averaged essentially over all directions in this plane; definition 2 gives the
nearest level spacing along only one direction, the direction which at each
eigenfrequency gives the minimum nearest level spacing. It is obvious that
the second definition will result systematically in a smaller level spacing, as
shown in Fig. 3.9. In Fig. 3.9(a) we plot the level spacing s, according to
both definitions 1 and 2, for reasons of comparison, and for W = 3 in both
the real and the imaginary part of the diagonal matrix elements, vs the real
frequency axis (i.e. vs ωR and for ωI=0), while in Fig. 3.9(b) along the

26



-5 0 5
Real( )

0

0.05

0.1

0.15

0.2
Le

ve
l s

pa
ci

ng

(a) s - Real(ω)

-1 -0.5 0 0.5 1
Imag( )

0

0.1

0.2

0.3

0.4

0.5

0.6

Le
ve

l s
pa

ci
ng

(b) s - Imag(ω)

Figure 3.9: Level spacing s plotted along the real axis (a) and the imaginary
axis (b) of the complex frequency plane Real(ω)-Imag(ω) and for the case
of disorder in both the real and the imaginary part of the diagonal matrix
elements and disorder strength W = 3. The blue dotted line represents
results of calculations using the definition 3.16 of level spacing (s1), while
the black line represents results using definition 3.17 (s2). An average over
1000 realization of disorder is performed in each case.

imaginary frequency axis, (i.e. vs ωI and for ωR=0).
We have to note that we deal with non-Hermitian matrices with complex

spectra and as a result there is no unique definition of the level spacing, since
the second or the third nearest neighbor eigenfrequency can be close to the
first in the complex plane. The definition based on Eq. 3.16 is also a measure
of the level spacing by being the square root of the area per eigenvalue in
the complex plane (essentially averaging over the level spacings within this
area); in contrast, the definition based on Eq. 3.17 picks the smaller among
these level spacings, and as such is somehow smaller than but similar to that
of Eq. 3.16. Thus the two different measures of level spacing lead to similar,
but not identical, conclusions.

In Fig. 3.10 we present our results concerning the linear extent, λ, av-
eraged over all the eigenmodes of the system, as a function of the disorder
strength: λ ≡ 〈λj〉. We consider the three different cases: (1) disorder only
in the real part of the diagonal matrix elements; (2) same disorder only in
the imaginary, and (3) same disorder in both the real and the imaginary
parts. The comparison of the three cases reveals a very interesting feature:
While case (1), real disorder, exhibits a monotonic drop of the extent of
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Figure 3.10: Mean extent length λ, averaged over the whole spectrum, as
a function of the disorder strength W , for a lattice of 50×50 waveguides;
uncorrelated disorder for all the three cases: Disorder only in the imaginary
part of the diagonal matrix elements (blue dotted line), disorder only in the
real part (red dash-dot line) and disorder of the same amplitude in both the
real and the imaginary part (black dashed line).

the eigenfunctions with increasing disorder, as expected, cases (2) and (3),
complex disorder, exhibit a surprising increase of the extent of the eigen-
functions with increasing disorder (for small disorder) before they eventually
drop even faster than case (1). We attribute this anomaly for weak disorder
to the fact that an imaginary part in the Hamiltonian breaks time reversal
symmetry (TRS); it is well known that in Hermitian systems the breaking of
TRS (usually by the presence of a static magnetic field) favors delocalization
(see [93] pp. 510-513). In the present case imaginary disorder acts in a dual
way: its implicit TRS breaking favors more extended states, while its disor-
der nature favors more localized states; the first aspect seems to dominate
for only weak disorder, which is not actually surprising: for weak imaginary
disorder its breaking of TRS is enough to randomize the phases of closed
paths transversed in opposite directions; beyond this point the breaking of
TRS has nothing to offer while the further increase of W contributes only to
localization.

As mentioned earlier, the distribution of the level spacing averaged over
the whole spectrum provides in the Hermitian case valid information [96]
about the localization or not of the eigenfunctions. More specifically, when it
comes to wave propagation in disordered media (either classical or quantum),
this distribution is directly related with the spatial extent of the system’s

28



modes.

0 0.5 1 1.5 2 2.5 3
Normalized Level Spacing s

0

0.2

0.4

0.6

0.8

1

1.2

Le
ve

l S
pa

ci
ng

 D
is

tr
ib

ut
io

n 
P

(s
) W=1

W=3
W=5

Figure 3.11: Probability density P of normalized level spacings s, as defined
by Eq. 3.17, averaging over the whole spectrum. In this plot, disorder is
applied in both the real and the imaginary part of the potential. The results
for three values of disorder strength are shown: W = 1 (black dotted line),
W = 3 (blue dashed line) and W = 5 (red dash-dot line). An ensemble of
50 realizations of disorder is used in each case.

When disorder is applied on the imaginary part of the potential though,
the eigenvalue spacings (according to definition 2, Eq. 3.17) appear to obey a
different probability distributions than the ones referred above. In Fig. 3.11
we show the level spacing distribution for the case of both real and imag-
inary disorder and for three different values of disorder strength (W = 1,
W = 3 and W = 5). The results for only imaginary disorder do not dif-
fer significantly from the ones shown in the figure. We can observe that,
for the above cases, the level spacing distribution can be described from a
sub-Wigner (SW ) probability distribution curve fitting:

PSW (s) = AsB · exp(−Cs2), B ≥ 1 . (3.18)

For W = 1, the exponent is B ' 3 and as we raise the disorder this exponent
is gradually lowered (for W = 3, B ' 1.5). For W = 5, B = 1 and the
level spacing distribution obeys the Wigner-Dyson probability distribution
PWD(s). Thus, we find that the level repulsion undergoes a smooth transition
from s3 to s1 with increasing disorder; a similar behavior to the one found in
random matrix theory papers, such as [98].
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In the strong disorder regime (W = 5 in Fig. 3.11), we find that P(s) '
PWD(s). Since our level statistics take place in the 2-D complex plane, this
distribution expresses the Poissonian statistics of uncorrelated eigenvalues
located in 2 spatial dimensions [99, 100].
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Figure 3.12: Probability densities P of normalized level spacings s, as defined
in Eq. 3.17, averaged over the whole spectrum for disorder strength W = 1
and for the same size. (a) P(s) for a full complex matrix with random ele-
ments (blue) compared with Ginibre (red) and sub-Wigner (black). (b) P(s)
for our model (blue) compared with Ginibre (red) and sub-Wigner (black).
An ensemble of 50 realizations of disorder is used in each case.

On the other hand, in the case of weak disorder (W = 1), the level
spacing distribution is a sub-Wigner one which exhibits cubic level repulsion
[P(s) ∼ s3 as s → 0]. Since this dependence is similar to the corresponding
dependence of the Ginibre distribution [96, 101, 102], one may conclude that
our result is nothing more than the Ginibre distribution. As we show in
Fig. 3.12, that is not true. In order to compare our distribution with the
Ginibre we calcluate the corresponding distribution for a full complex matrix
and compare with our result of Fig. 3.11 (black dotted line). The conclusion
of such comparison, based on Fig. 3.12, is clear. The level spacing statistics
of our matrix is not properly described by the Ginibre distribution, as our
model’s matrix is a sparse (block tridiagonal) matrix which possesses the

additional symmetry: Ĥ
†

= Ĥ
∗
. These two features make the level spacing

statistics different from the well known Ginibre distribution, which coincides
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with the the full complex matrix and not with the sub-Wigner [Fig. 3.12(a)];
in contrast our distribution is clearly different from the Ginibre and coincides
with the sub-Wigner [Fig. 3.12(b)].

Before closing, we would like to comment on a crucial point: is there an
Anderson transition in a 2-D non-Hermitian system, or all states are localized
even for very week disorder as in the Hermitian case? As we pointed out
in the previous paragraphs, the presence of weak imaginary disorder, by
breaking the time reversal, reduces the probability of a quantum particle to
remain in the same region and hence it favors delocalization. This tendency
is further supported by the level spacing exhibiting for weak disorder an s3

dependence as s tends to zero; moreover, the increase of the extent length
shown in Fig. 3.10 for weak increasing imaginary disorder provides further
support to the tendency for delocalization in the presence of weak imaginary
disorder. At this point we think that is difficult to definitely conclude if
there is an Anderson transition in non-Hermitian 2-D case. Nevertheless,
in a recent paper based on our work [103], Huang and Shklovskii reached
the conclusion that the localization properties in our model are qualitatively
the same as in the corresponding Hermitian model, namely that all states
are localized in 2-D and that there is an Anderson transition in 3-D; this
transition occurs at substantially lower critical disorder than that of the
Hermitian case (W = 6.15 vs W = 16.5). The authors based their conclusion
on the numerical behavior of the ratio of the second to the first nearest
neighbor level spacing (see [104] for a detailed analysis of the method), both
defined as in Eq. 3.17.
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Chapter 4

Binary disorder

In this chapter, we will study the effects of binary disorder in 1-D tight-
binding lattices, with or without short-range correlations (such as those en-
countered in a dimer lattice). Our study is again focused on the new phe-
nomena that stem from non-Hermiticity.

4.1 Hermitian binary disorder

The Hermitian one-dimensional model with binary disorder with or without
short range correlations has been studied intensively, both theoretically and
experimentally [89, 105, 106, 107], since it is the simplest disordered system
which, in spite of being one-dimensional, still facilitates wavepacket delocal-
ization. Here we repeat some of the basic calculations regarding this model,
in order to be able to compare these results with the corresponding new ones
associated with its non-Hermitian generalization.

To begin with, we consider a waveguide array that exhibits a binary
distribution of either εa or εb of its propagation constants, with the same
probability p = 1

2
and without any correlations:

Uncorrelated binary disorder : εn =

{
εa, with p1 = 1

2

εb, with p2 = 1
2

(4.1)

where εa,b ∈ R (Hermitian case). We also assume that the coupling coefficient
between neighboring channels is constant and equal to c.

To begin with we examine the evolution pattern assuming a single-channel
excitation in the middle of our lattice, namely: ψn(z = 0) = δn,n0 , where
n0 = κ+ 1 (here we assume that the total site number is odd N = 2κ+ 1.).
More specifically, we are interested to consider the averaged variance of the
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intensity pattern as a function of the propagation distance z, defined as:

M(z) ≡ 〈
∑
n

(n− n0)2|ψn(z)|2〉 (4.2)

where 〈..〉 denotes averaging over many realizations of disorder.
Our numerical calculations for this case are shown in Fig. 4.2(a),(b) and

are in agreement with the corresponding experimental results of [107], which
are also presented as insets for direct comparison. For εa = εb ⇒ δε ≡
εa − εb = 0 the lattice is periodic and M ∼ z2, which indicates ballistic
transport. If we set εa 6= εb though, all the states become exponentially
localized and M(z) saturates for large values of z; we get localization in this
case since M ∼ z0. The single-channel excitation remains localized near its
initial position.

However, one gets completely different physical results if short-range order
is introduced in this model. For that purpose, we now consider a “dimer”
waveguide array, where each dimer consists of two subsequent channels with
the same propagation constant (see schematic in Fig. 4.1); this is a model
originally introduced by Dunlap. et. al. [89]:

Dimer array : ε2n = ε2n+1 =

{
εa with p1 = 1

2

εb with p2 = 1
2
.

(4.3)

Figure 4.1: Upper row: schematic representation of the random dimer model.
Bottom row: microscope image of the waveguide array used in the experiment
[107].

Repeating the same calculations as in [89], we can see that now, M ∼ zγ,
in all the cases, where γ ' 2, 3

2
, 1 and 0, which correspond to ballistic, su-

perdiffusive, diffusive and localized motion, accordingly (computed numbers
are: 1.99, 1.56, 0.98, 0.15) for δε

c
= 0, 1, 2 and 3 respectively. These results

indicate that the spectrum now possesses delocalized eigenvectors. Indeed,
one can prove that eigenstates with eigenvalue ω = εa,b are extended, as long
as |δε| ≤ 2c. All the relevant results are presented in Fig. 4.2(c),(d) and are
again in perfect agreement with the experimental ones (insets) [107].
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Figure 4.2: (a) Field amplitude |ψ| as a function of the propagation distance
z, for the uncorrelated case with δε = c. (b) Logarithm of the averaged vari-
ance M as a function of log z for the uncorrelated case and for different values
of δε

c
. (c,d) Same as in (a,b) but for the random dimer lattice (see [107]).

Experimental results from [107] are also presented as insets for comparison.

A direct way to obtain a physical insight of these results is to consider a
periodic lattice with a single dimer defect (see Fig. 4.3); that is:

Dimer defect lattice: εn =

{
εa if n = 0, 1

εb otherwise .
(4.4)

For n ≤ −1 we have both an incident and a scattered wave:
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Figure 4.3: Schematic representation of a lattice with a single dimer impurity.

ψn = eikn + re−ikn, n ≤ −1 (4.5)

while for n ≥ 1 we have only a transmitted wave:

ψn = teikn, n ≥ 1 . (4.6)

In this case, the tight-binding relation 2.12 for n = −1 reads:

ψ0 = (ω − εa)ψ−1 − ψ−2 = (eik + e−ik)(e−ik + reik)− e−2ik − re2ik ⇒
⇒ ψ0 = 1 + r .

(4.7)

Similarly, for n = 1 we get:

ψ0 = (ω − εb)ψ1 − ψ2 = (eik + e−ik + δε)teik − te2ik ⇒
⇒ ψ0 = t(1 + δε · eik) .

(4.8)

where
δε ≡ εb − εa. (4.9)

Combining these two equations we have:

t =
1 + r

1 + δε · eik
. (4.10)

On the other hand, the eigenvalue equation for n = 0 reads:

(ω − εb)ψ0 = ψ1 + ψ−1 ⇒ (eik + e−ik + δε)(1 + r) = teik + e−ik + reik ⇒

⇒ eik + re−ik + δε(1 + r) =
1 + r

e−ik + δε
⇒ r =

−δε · [δε+ 2 cos(k)]

(δε+ e−ik)2 − 1
.

(4.11)
Thus, we obtain our final expression for the reflectance R ≡ |r|2:

R =
δε2[δε+ 2c cos(k)]2

δε2[δε+ 2c cos(k)]2 + 4c4 sin2(k)
. (4.12)

From this relation we can see that waves with ω = εa,b are perfectly trans-
mitted, provided that |δε| ≤ 2c. Furthermore, it was found that the total
number of states with localization length greater than the system’s size is
of measure

√
N [89]. Thus, in Fig. 4.2(c), the two propagating peaks cor-

respond to these ∼
√
N delocalized states, leading to transport, while the
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central peak indicating no propagation is associated with the vast majority
of localized states.

The criterion for localization originally proposed by Anderson [3] was the
asymptotic behavior of the amplitude of the wavefunction around its ini-
tial site, in the sense that absence of diffusion is associated with the limit:
lim
z→∞
|ψn0(z)| being non-zero. Hence, it is reasonable to examine the proba-

bility Π(z) for the wave to be located in its initial position as a function of
the propagation distance for the two cases of disorder discussed here.
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Figure 4.4: Probability Π(z) for the wave to being found in its initial position
as a function of the propagation distance z for (a) the uncorrelated binary
disorder and (b) the dimer case and for different values of δε

c
. An averaging

over 50 realizations of disorder has been performed for each plot. Inset: a
zoom in the plot of Π vs z for δε = c (green line) and the least square fitting
of the curve (black line). The slope of the line is shown in the title of the
graph.

In Fig. 4.4 we show plots of Π(z) for the uncorrelated binary [Fig. 4.4(a)]
and the dimer array [Fig. 4.4(b)], for δε/c = 0, 1 and 2. The difference
between the two graphs is small but crucial. While in Fig. 4.4(a), and for
δε 6= 0, Π(z) fluctuates around a specific, constant value, in Fig. 4.4(b) Π(z)
slowly drops as z increases, with a slope of ∼ 10−5, which is actually the
value of the localization length for ω near ε1,2. This is shown clearly in the
inset of Fig. 4.4(b), where a least square fit (black line) is also plotted with
Π(z). This statement is in agreement with Anderson criterion of localization,
as it should be. However, due to the many fluctuations and the very small
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value of the linear fitting’s slope, Π(z) is not a convenient numerical criterion
for localization in this case.

Figure 4.5: Logarithm (base 10) of localization length ξ as a function of the
eigenvalue ω for (a) uncorrelated binary disorder and (b) the random dimmer
model, both for δε = c.

Finally, in Fig. 4.5, we plot the localization length ξ, given by Eq. 2.19,
as a function of the eigenvalue ω and for both cases of binary disorder: with
[Fig. 4.5(a)] and without [Fig. 4.5(b)] short range correlations. We can clearly
see that in case (a) ξ remains finite and � N , while in (b) the value of ξ
diverges near ω = εa,b, indicating delocalization.

4.2 Non-Hermitian binary disorder

In this section we study the spectral and dynamic properties of one-dimensional
waveguide lattices, which are characterized by non-Hermitian binary disor-
der with short range order. Our model, shown in Fig. 4.6, can be considered
as the non-Hermitian extension of the random dimer model presented in the
previous section. Here we show, both numerically and analytically, that in
our non-Hermitian model, delocalization is impossible, for any value of the
complex diagonal elements. Furthermore, we find that such a system exhibits
various unexpected features, such as fractal-like spectrum, as well as regions
in the complex plane where many eigenvalue come arbitrarily close and form
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”eigenvalue condensates”. Despite the strong Anderson localization, non-
Hermitian dynamics with sudden jumps between eigenstates localized around
distant sites is possible for rectangular distribution as well.

Once we consider complex propagation constants-εn, then the problem is
described by a random non-Hermitian Hamiltonian. In particular, we con-
sider initially a pair correlated (dimer) waveguide array, where each dimer
consists of two subsequent channels with the same propagation constant.
Each diagonal element εn is a complex random variable of a binary distribu-
tion. Initially we set Re(εn) = 0, while the Im(εn) is a random variable from
a binary pair-correlated (dimer) distribution as follows:

ε2n = ε2n+1 =

{
iα, with p1 = 1

2

−iα, with p2 = 1
2

(4.13)

with α being a real number which describes the disorder’s amplitude, and p1,2

the associated probabilities. The pair-correlation is introduced by assigning
to each pair of consecutive sites the same diagonal element, which obtains
two possible values of ε2n = ε2n+1 = +iα and ε2n = ε2n+1 = −iα, with equal
probabilities. A relevant schematic is represented in Fig. 4.6.

𝒊𝜶 
−𝒊𝜶 

𝜺𝟐𝒏 𝜺𝟐𝒏+𝟏 

Figure 4.6: Schematic representation of the complex diagonal matrix ele-
ments for the non-Hermitian random binary pair-correlated model.

To begin with, we present plots of the system’s spectrum in the complex
plane for various values of the disorder’s strength α, in Fig. 4.7. The spec-
trum for small values α is concentrated near the real axis, except for the edges
whose imaginary part extends through (−α, α) [Fig. 4.7(a)]. These results
are reasonable, and can be intuitively related to the density of states of the
corresponding Hermitian problem. However, for α = 0.5 the picture is quite
different. The whole spectrum now tends to move away from the real axis and
to form an intricate fractal-like structure in the complex plane [Fig. 4.7(b)],
which resembles the spectrum of the quasi-periodic Harper model [108], in
exhibiting a similar regularity in spite of its randomness. In addition, a gap
opens around the imaginary axis Re(ω) = 0. We have to note here that the
formation of a fractal-like complex spectrum has also been reported in some
other systems described by non-Hermitian random matrices [109]. Moving
back to our own case, it must be pointed out that the aforementioned features
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(a) Spectrum (α = 0.1) (b) Spectrum (α = 0.5)

(c) Spectrum (α = 1) (d) I-DOS (α = 0.5)

Figure 4.7: (a)-(c) Eigenvalue spectrum on the complex plane for the non-
Hermitian random binary pair-correlated model and for (a) α = 0.1, (b)
α = 0.5 and (c) α = 1. (d) Integral density of states (I-DOS) R(ω), as a
function of the real part Re(ω) of the eigenvalues for α = 0.5 (R(ω) counts
all states with Re(ωj) ≤ ω). All these results correspond to N = 3000.

are associated with the binary pair-correlated character of our model; they
disappear in the absence of pair-correlation and in the case of a rectangular
distribution of the random variable. Interestingly, if we further increase the
value of α, the obtained eigenvalues do not extend over the whole complex
plane, as one might expect, but they rather tend to “collapse” into specific
spots [Fig. 4.7(c)], leading to a rather sparse spectrum. We term this un-
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usual behavior as “eigenvalue condensation”. Another way to capture this
phenomenon is by plotting the integral density of states (I-DOS) R(ω) as a
function of the real part of the eigenvalues Re(ω) [Fig. 4.7(d)]. R(ω) counts
all states whose eigenvalue’s real part is ≤ ω: R(ω) ≡

∑
j θ[ω − Re(ωj)],

with θ(x) being the Heaviside step function. We can clearly see the step-like
behavior of R(ω) due to the condensation. The formed plateaus and jumps
denote the absence and the coalescence of eigenvalues, respectively. If we
further increase the value of α, the eigenvalues gradually approach the lines
with Im(ω) = ±α, i.e. they tend to take the form of the diagonal matrix
elements as expected, and the intriguing, yet unexplained, pattern of the
spectrum is lost.

A quantification of the aforementioned change in the spectrum’s picture,
taking place for α between 0.1 and 0.5, is given by the level spacing dis-
tribution P(s), where s is the normalized minimum distance between two
eigenvalues in the complex plane: s|ωj ≡ min |ωj − ωj′| (j 6= j′). For α = 0.1

we get the expected Wigner-Dyson distribution: PWD(s) = πs
2
e−

πs2

4 , as seen
in Fig. 4.8(a). The small deviation from this theoretical prediction we ob-
tain is also anticipated, due to the extra symmetries governing our (effective)
Hamiltonian. Nevertheless, this result implies that, for this value of α, the
system is at the delocalized phase, in the sense that the mean localization
length is larger than or comparable to the system’s size, and its eigenval-
ues show level repulsion: P(s = 0) = 0. Setting α = 0.5 though, yields a
rather unexpected level spacing distribution form [Fig. 4.8(b)]. Even though
the distribution seems to exhibit a regular exponential decay for s & 1, just
like the classical Poisson distribution, the abrupt drop near s = 0 cannot be
described by any exponential function. Moreover, the (computed) values of
P(s) in this region appear to have an almost inversely proportional depen-
dence on the value of the averaging interval ∆s (bar’s width in Fig. 4.8(b)).
These observations lead us to the conclusion that the level spacing distribu-
tion possesses a singularity for s = 0; in particular, we estimate that P(s)
diverges as s−β (β > 0) for s → 0, and thus it can be approximated by the
following expression:

PF (s) = As−βe−λs . (4.14)

In Fig. 4.8(b), a curve fitting in the form of PF (s) is also plotted (red line)
together with P(s), showing that such a function can describe the basic
characteristics of the level spacing distribution with a satisfactory precision.
We also think that the singular behavior for s→ 0 is in agreement with the
aforementioned eigenvalue condensation, since a large number of eigenvalues
tend to come arbitrary close to each other.

The next important issue we would like to address, is whether or not delo-
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Figure 4.8: Normalized level spacing distribution P(s), averaged over the
whole spectrum, for (a) α = 0.1, compared to the Wigner-Dyson distribution
(red curve), and (b) α = 0.5, fitted with a function of the form of Eq. 4.14
(red curve), with: A u 0.3, β u 0.72 and λ u 0.24. An averaging over 50
realizations of disordered systems with N = 2500 has been performed for
these results.

calization in this non-Hermitian model is possible. A direct and elegant way
to see this is by considering the scattering amplitude from a non-Hermitian
dimmer impurity, as we did in the previous section (see Eq. 4.11). For the
non-Hermitian dimer, the expression reads:

R =
α2(cos2 k + α2)

(1 + 2α2 − 2α sin k)2 − cos2 k
. (4.15)

The above relation clearly shows that the equation R = 0 does not admit
acceptable solutions as long as the on-site energies become imaginary, in-
dicating that, contrary to the Hermitian case, all the eigenstates are now
localized.

In order to verify this statement, we need to calculate the localization
length ξ, defined in Eq. 2.19. Note that, in practice, if N is much larger
than ξ (which in our case holds true since N/ξ > 50), one obtains a reliable
value of ξ as n → N . A plot of ξ as a function of the value of ω on the
complex plane is shown in Fig. 4.9. We can clearly see that our assessment
of complete localization was correct, since N/ξ does exceed the value of 50.
Moreover, we find that ξ remains finite for every value of α 6= 0. The fact
that all eigestates of the spectrum are localized, in contrast to the Hermitian
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Figure 4.9: Localization length ξ (colorbar) of the eigenstates for the non-
Hermitian random pair-correlated lattice, as a function of the corresponding
eigenvalue ω on the complex plane and for α = 0.5. We can see that the
localization length does not exceed the value of 35 (N = 2000, 5 realizations
of disorder are superimposed for visualization purposes).

case, is one of the most direct consequences of the non-Hermiticity on our
system.

So far we have investigated the spectral properties of our model. How-
ever, dynamic phenomena associated with the spreading of an initially local
excitation are the most intriguing and unexpected ones. In order to sys-
tematically study the wave dynamics, we examine the evolution pattern and
the variance M(z) (notice that M(z) corresponds to only 1 realization, while
M(z) represents the average variance) of an initial single-channel excitation
as a function of z. Once again, the single channel was chosen to be at the
center of the lattice; thus, ψn(z = 0) = δn,n0 , where n0 is the index of the
middle channel of the lattice.

For α = 0 the lattice is periodic and M∼ z2, as expected, which is a
characteristic of ballistic transport. If we set α 6= 0, although all states
become exponentially localized, M(z) exhibits a very interesting behavior.
Our results are depicted in Fig. 4.10. Note that, in order to obtain the de-
sired physical picture, we have plotted the power-normalized field amplitude:
|φn| = |ψn|√

P(z)
, where the denominator P(z) ≡

∑
n |ψn|2, describing the total
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field power, is used to force energy conservation, since the field amplitude
|ψn| diverges exponentially as z →∞, due to the presence of gain.

(a) (b)

Figure 4.10: (a) Normalized field amplitude |ψn| as a function of the prop-
agation distance’s logarithm log z. (b) Logarithm of the variance M as a
function of log z. For these results we have set α = 1 and N=501.

The wave evolution pattern is rather surprising. Even though all the
eigenstates are localized, the wave exhibits “non-Hermitian jumps” between
distant sites and thus we obtain energy spreading which seems to continue
until the edges of the system are reached. This behavior is also captured by
the plot of the variance over z in Fig. 4.10(b), for the same realization of
disorder, which also exhibits a number of finite jumps. This behavior occurs
only in non-Hermitian systems and has not a Hermitian analogue. In order
to understand the physical mechanism behind this unexpected feature, we
calculate the field at z = zmax = 104 for the same realization of disorder as
in Fig. 4.10(a), and compare it with the field profile of the most gainy mode,
namely the mode which corresponds to the eigenvalue with the largest value
of the real part of iω, in Fig. 4.11(d).

In trying to physically interpret these intriguing results we have to stress
two features of the eigenstates (left or right) which are unique in disordered
random non-Hermitian systems: (a) their complex eigenvalues ωj which lead
to either infinite or zero amplitude as z → ∞ depending on the sign of
Im(ωj), (b) their non-orthogonality which facilitates transfer of energy from
channel to channel, even between distant channels. These two features seem
to account for the jumpy spread of energy; indeed, as we have pointed out be-
fore, a gainy mode, i.e. one combining a large negative value of Im(ωj),with
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Figure 4.11: (a) |ψn| as a function of log z, under a particular realization
with α = 1. (b) Logarithm of the variance M as a function of log z. (c)
Probability Π for the wave to return to its initial position as a function of
z. (d) |ψn| near the end of the lattice z = zmax (blue bars). The field profile
of the most gainy eigenstate is also plotted here for comparison (black line).
The gain and loss distributions (imaginary part of the potential) are depicted
with red, green color, respectively. In all the above, N = 301.

a large overlap with the initial (or any intermediate) state is in a privileged
situation (compared with a next neighboring channel) to be the recipient of
an excitation. We have confirmed this behavior by several numerical experi-
ments in which we artificially introduced states with a large negative Im(ωj)
and located at selected sites. Always the jumps occur at these sites even
when they were far away from the initial site. Can we conclude from these
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Figure 4.12: Comparison between our theoretical/numerical results (up-
per row) and the corresponding experimental ones from [110]. Propaga-
tion through a waveguide lattice shows ballistic spreading for homogeneous
lattices (left) compared to Anderson localization in Hermitian disordered
lattice (center) and the jumping between localized states in the case of a
non-Hermitian disordered lattice (right).

results that disordered random non-Hermitian systems with a short localiza-
tion length allows a new type of transport by jumps to privileged eigenstates?
The answer is not necessarily yes. The reason is that one has to be careful
when referring to transport for non-Hermitian systems, because there are no
intrinsic conservation laws. Our model being an open one, allows for offering
(gain)/removing (loss) of energy to/from our system in addition of trans-
porting the energy initially excited at a single site. It seems difficult or even
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impossible to distinguish between these two different physical mechanisms.
Nevertheless, by examining the z-evolution of an initially local state in con-
nection with the behavior of the total power P(z) of the system as a function
of z, we found that the problem under question goes well beyond the ampli-
fication explanation and that transport by jumps occur even in the purely
dissipative case. Thus, for the case of externally forced energy conservation
and small z no jumps were observed, although they appear for large enough
z. Jumpy spread of the initial excitation was also found in the cases where
either only loss (no gain) was imposed or normalization was replaced by gain
saturation (as is usual experimentally). Thus, taking into account our own
results and experimental [110] (also see Fig. 4.12 for a comparison) and other
work [111, 112] we suppose that the phenomenon of unusual jumpy transport
can generally occur in Anderson-localized random non-Hermitian systems, as
a composite effect of gainy modes and their non-orthogonality. Finally, we
note that our model seems to lack special non-Hermitian degeneracies, such
as the so called exceptional points, even if the randomness is chosen to be
spatially antisymmetric (PT symmetric case).
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Chapter 5

Constant intensity waves

As mentioned in the introduction, it was recently demonstrated that is pos-
sible to suppress the effects of localization and achieve perfect transmission
by considering correlated non-Hermitian disorder in photonic media. In this
chapter we derive a novel class of waves that have constant intensity (CI-
waves) everywhere in space, even inside the scattering area [90, 91]. Such
waves exist in guided and scattering media with gain and loss in both one and
two spatial dimensions [113, 114, 115]. It was also experimentally demon-
strated that CI-pressure waves are possible in the acoustical domain [116].
The existing works focus on excitation of CI-waves by plane waves and so
far there is no experimental observation in the optical domain. Therefore,
in this work we will go beyond CI-waves (that have infinite extent) and will
show that it is also possible to obtain reflectionless wavepackets that propa-
gate through disordered environments in a similar fashion. More specifically,
we will derive the correlated non-Hermitian disorder that is crucial for finite
beams to be perfectly transmitted. The physical system that we are going
to investigate is that of coupled paraxial waveguide arrays. Both disorder
and gain/loss can be implemented in this type of versatile integrated plat-
form, which is ideal for controlled optical experiments. Diagonal, as well
as off-diagonal disorder, in the complex refractive index and the coupling
coefficients respectively, will be systematically examined in 1+1 dimensional
lattices. The robustness of such an effect and the relations of these wavepack-
ets to CI-waves will be studied in detail.
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5.1 Continuous limit and CI-Waves

Before we continue to the main part of our work, it is beneficial to examine
the continuous limit of our discrete problem and the connection of Eq. 2.5
to CI-waves. This investigation is going to provide us with the necessary
intuition for the form of the correlated non-Hermitian disorder we have to
use. For this purpose we first examine the case of diagonal disorder, which
means that disorder exists only on the waveguide channel, where εj takes on
spatially correlated random values to make the continuum limit meaningful.
By applying the gauge transformation ψj = Φje

i2cz and allowing c = 1
(∆x)2

(see [91] for more details), the above equation in the continuum limit (∆x→
0) can be written as:

iΦz + Φxx + V (x)Φ = 0 (5.1)

where V (x) is the disordered potential. If in the above Schrödinger-type
equation, that describes wave propagation in the paraxial limit, we also as-
sume that we have a plane wave with propagation constant kz along the
z-direction: Φ = u(x)eikzz, the equation we obtain is mathematically equiv-
alent to the 1-D Helmholtz equation.

It has been shown [90] that this equation supports constant intensity
solutions, if the potential satisfies the following relation:

V (x) = [kxW(x)]2 − ikxW ′(x) + kz (5.2)

whereW is an arbitrarily chosen real, smooth function of x andW ′ ≡ dW
dx

. In
the context of integrability soliton theory these potentials naturally appear
and are sometimes called Wadati potentials[117, 118, 119, 120]. In the case
of Eq. 5.2 with x a continuous variable, the second order Helmholtz operator
Ĥe can be factorized [119] as follows:

Ĥe ≡ −D̂2
i , where D̂i = −iσx∂x + σyκ− iσzkxW(x) (5.3)

with D̂i being the (first order) Dirac operator of the generalized Haldane
model with imaginary mass, σx, σy, σz are the usual Pauli matrices and κ ≡
√
kz. In the above expression the Pauli matrices act on the spinor

(
E1

E2

)
,

where E1 is the real and E2 the imaginary part of the total field: E ≡ E1 + iE2.
One can easily verify (see [119] for details) that D̂i possesses a constant

intensity eigenstate[90, 91]:

Φ(x, z) = exp[ikzz + ikx

∫ x

0

W(x′)dx′] (5.4)

as long as the so-called degree [121] of W is zero (i.e. W has the same sign
at ±∞).
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5.2 Discrete CI-Waves and Wadati wavepack-

ets: (a) Diagonal disorder

Inspired by the previous paragraph, we will now extend our study to the
discrete case, by considering the realistic physical model of Fig. 5.1. Let us
assume that instead of an incoming plane wave (continuous case) we have a
Bloch wave that propagates from the left sublattice (j < 1) of the form:

ψj(z) = exp(ikzz + ikx · j) (5.5)

where kx is the Bloch momentum that takes values inside the first Brillouin
zone, namely −π ≤ kx < π. The propagation constant kz in the two peri-
odic sublattices, is directly related to the Bloch momentum kx through the
dispersion relation kz = 2c · cos(kx), which defines the band of the lattice (in
this section we assume that cj = c = 1 for simplicity). On the other hand,
discretization of Eq. 5.4 leads us to the following ansatz for the ψj, which
constitutes a discrete CI-wave:

ψj(z) = exp(ikzz + ikx

j∑
m=1

Wm) . (5.6)

Direct substitution of this ansatz into Eq. 2.5 leads us to the conclusion that
we must consider a non-Hermitian potential, with a real part of the following
form:

εR,j = 2 cos(kx)− cos(kxWj)− cos(kxWj+1) (5.7)

and a corresponding imaginary part:

εI,j = sin(kxWj)− sin(kxWj+1) . (5.8)

From Eq. 5.7, we can see that the potential becomes periodic if Wj =
1, ∀j. If Wj is random, then the potential takes on also random values
around 2 cos(kx). The strength of disorder can be controlled by adjusting
the amplitude of Wj.

Another important point is the boundary conditions on the two interfaces
of the disordered region at j = 1 and at j = M (see Fig. 5.1). In order to
achieve a smooth transition from one sublattice to another, the continuity of
the kz-component across the interface is essential. Thus, we need to apply the
appropriate boundary conditions for the functionW , which are the following
perfect transmission boundary conditions [113]:

W1 =WM = 1 . (5.9)
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We also need to emphasize that the above boundary conditions ensure both
that the degree of W is zero [119, 121] and that the average of gain and loss
is zero,

∑M
j=1 εI,j = 0 (mean reality condition[113]).

The purpose of our analysis is to extend the concept of CI wave, which
refers to infinite plane (or Bloch) waves, to wavepacket propagation problems,
which are physically more realistic.

For the physical system we study in this chapter, we consider a total
lattice that consists of three different sublattices, two periodic ones in the
asymptotic regions and a disordered one in the middle. More specifically, for
j < 1 and j > M we assume two semi-infinite periodic sublattices, namely:

εj = 0, cj = 1 for j < 1 or j > M (5.10)

… … 
1 M 0 M+1 j 

Figure 5.1: Schematic depiction of disordered waveguide structure. The two
semi-infinite sublattices on the right and left are shown as gray channels.
The disordered lattice on the middle (1 ≤ j ≤ M) is illustrated by red and
green colored channels for gainy and lossy waveguides, respectively. The
random position of the waveguides is due to the random couplings between
nearest neighbors. The arrow denotes the direction of the incident Gaussian
wavepacket coupled to the left periodic array.

In the middle region, 1 ≤ j ≤ M , our lattice is disordered. The geom-
etry of the problem is graphically depicted in the schematic of Fig. 5.1. In
particular, we examine two different types of disorder: (a) on-site (diagonal)
disorder and (b) off-diagonal disorder on the coupling coefficients.
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The main focus of our study is to examine if it is possible to suppress
the transverse reflection by considering complex correlated disorder. More
specifically, we are interested in understanding the effect of non-Hermiticity
on the transport of a finite wavepacket across the disordered region. When
we have Hermitian disorder only (εj real) then most of the light is reflected
in the transverse direction of the lattice and the propagation of the beam
gets distorted. The question we will try to solve is whether the addition of
gain and loss in form of an imaginary part of the diagonal elements εj can
remedy these detrimental effects altogether. Our strategy is based on the
concept of discrete CI-waves that was described in the previous paragraph.
However, in the present work and for the sake of being realistic we are em-
ploying a Gaussian beam in space (or, equivalently a Gaussian wavepacket
in time) instead of a pure Bloch wave. This beam/wavepacket has a central
wavenumber corresponding to the discrete CI-wave and propagates from the
left to the right, starting from the left periodic sublattice. The width of such
a beam is denoted with σ, and its center is located around some waveguide
with index j0 < 1 and has a specific group velocity. As σ tends to infinity
the pure Bloch wave is recaptured. In other words our initial beam can be
expressed as:

ψj(z = 0) = exp[ikx(j − j0)− (
j − j0

σ
)2] (5.11)

Inside the disordered region, we seek finite, constant-width propagating
wavepackets of the (approximate) form:

|ψj(z)| = exp{−[
j − j0(z)

σ
]2}, with j0(z) = j0 + 2 sin(kx)z . (5.12)

Since these type of beams exist only for the discrete version of non-Hermitian
Wadati potentials, we call these solutions “Wadati wavepackets”.

Let us now examine propagation of beams through Wadati potentials
(Fig. 5.2). We initially consider the Gaussian beam of Eq. 5.11 impinging on
a random Hermitian potential εR of Eq. 5.7 [Fig. 5.2(a)] and then include the
appropriate imaginary part based on Eq. 5.8 [Fig. 5.2(b)]. In Fig. 5.2(c),(d)
the corresponding real and imaginary parts of the potential are depicted,
satisfying the above smoothness condition

As one can see, in the Hermitian case the reflection due to disorder is
very strong leading to very low transmission. On the contrary, for the non-
Hermitian case the transmission is almost perfect and the Wadati beam/
wavepacket maintains its transverse form for every value of the propagation
distance. Thus by adding the appropriate imaginary part to the real (ran-
dom) potential, the beam penetrates the disordered region and propagates
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with (almost) constant peak amplitude. As expected for a finite Gaussian
wavepacket, it also spreads in its width during propagation.

(a)
50 1000
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(b)
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Figure 5.2: (a) Intensity of a beam propagating in a potential with real
disorder (reflection occurs). (b) Same as in (a) but with imaginary part
based on relation (5.8) (reflection is minimized). Dashed lines denote the
interfaces among the sublattices. (c) Real part of the potential. (d) The
corresponding imaginary part. In all the figures above, the x-axis represents
the waveguide number j. Here we have set: M = 50, j0 = −37.5 and σ = 30.

The price we pay for considering a Gaussian beam as our initial condition
is an extra limitation. In particular, the whole analysis of the constant
intensity waves (Eqs. 5.3) is based on an incident plane wave (or Bloch wave in
our case) which corresponds to σ equal to infinity instead of the finite σ of our
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Gaussian beam. In other words, the potential we have introduced is designed
for a single wavenumber kx while our beam is composed of a large number
of different wavenumbers. The components of the beam which correspond
to k′x 6= kx will then be scattered due to the randomness of the potential
and distort the pattern of the wavepacket. This effect will be sharpened if
we increase the amount of the potential’s randomness. As a result, in order
for this distortion to be weak enough for our solution to be of the expected
form, W cannot be a totally random function, but a “slowly” varying one.
In other words, the jumps from one site to another should not be arbitrarily
large, but rather satisfy: ∆Wj = |Wj+1 −Wj| ∼ lattice constant << σ, ∀j.
Of course, in the limit of large σ, this limitation ceases, as our incident beam
now becomes a Bloch wave.

We accentuate here that this shape-preserving perfect transmission of the
Wadati wavepacket is unidirectional. This means that an incident beam from
the right sublattice (with k′x = π+kx) does not lead us the same results, since
the time-reversal symmetry of the lattice is broken (due to non-Hermiticity).
The transmittance from the right incidence is again one, as our system is
reciprocal, but we also get strong reflection. In order to get the same shape-
preserving transmission from the right, we would have conjugate potential
εj → ε∗j when injecting from the opposite side.

As we have mentioned before, the non-Hermitian potential is by default
designed to support a discrete CI-wave at a single transverse wavenumber
kx. Therefore an important question is how sensitive is the transmission of
the corresponding Wadati wavepacket to changes of its central wavenumber.
For this reason, we calculate the power (P ≡

∑
j |ψj|2) transmitted to the

right sublattice PT , as well as the corresponding reflected power PR, over
the power of the input beam, after the passing of the beam through the
disordered region:

PT ≡
PTransmitted
PIncident

=

∑∞
j=M+1 |ψj|2

PIncident
(5.13)

PR ≡
PReflected
PIncident

=

∑M
j=−∞ |ψj|2

PIncident
(5.14)

as a function of the percentage deviation ∆k% between the required wavenum-
ber kx and the beam’s wavenumber k′x: ∆k ≡ k′x−kx. The results are shown
in Fig. 5.3 and are averaged over 500 realizations of disorder. Both PT and
PR exhibit a parabolic behavior, with the peak (dip) located at the expected
value of ∆k = 0. In addition, we have to note that we get PT ' 1 for a
wavenumber variation |∆k| ≤ 10%; a result very close to the corresponding
one from the continuous case [113].
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Figure 5.3: Power of the transmitted (PT , red line) and reflected (PR, blue
line) wave, divided by the power of the initial beam, (Eq. 5.14), as a function
of the percentage deviation (detuning) from the required wavelength value
kx: ∆k = k′x − kx. In this case we have set kx = π

2
, for the case of diagonal

disorder. An averaging over 500 realizations of disorder has been performed
for these results.

In order to have a better physical perspective of our problem, we provide
here some indicative order of magnitude estimation of the actual scales for
a possible experiment. In particular, the wavelength of the beam is λ0 ≈
1µm, the distance between neighboring waveguides is D ≈ 10µm, while the
propagation distance z is normalized over 2k0n0D

2, with n0 ≈ 3.5 being
the background refractive index of the waveguides and k0 = 2π

λ0
. Finally,

the corresponding continuous potential is 2k2
0n0D

2(∆nR + i∆nI), where ∆n
represents the variation of the waveguide’s refractive index with respect to
the background value of n0. Under these conditions, the maximum variation
in the real part of the index of refraction is approximately ∆nmaxR ≈ 10−3

and the maximum gain (loss) used is gmax ≈ 30cm−1.
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5.3 Discrete CI-Waves and Wadati wavepack-

ets: (b) Off diagonal disorder

In this section we will examine whether it is possible to obtain a perfectly
transmitting wavepacket for the case of random real couplings cj, as encoun-
tered when the distance between neighboring waveguides is not the same.
Since for this problem the discrete Wadati potential of the previous paragraph
does not provide a straightforward solution, a new approach is required.

Substituting the ansatz of Eq. 5.6 in Eq. 2.5 once again, with the coupling
coefficients cj being random this time, the obtained potential reads as follows:

εR,j = 2 cos(kx)− cos(kx)(cj + cj−1)

εI,j = sin(kx)(cj − cj−1)
(5.15)

Our result implies that, in order to cope with the randomness in the
coupling matrix elements cj, we also need to introduce complex randomness
in the potential. The potential given by the relations (5.7) and (5.8) is
then modified as follows: while we need to set Wj = 1, a factor involving
the cj must be incorporated in the cos(kx) and sin(kx) terms of εR and εI
respectively.

The propagation of a Gaussian beam across this discrete non-Hermitian
potential landscape is depicted in Fig. 5.4. In particular, we see in Fig. 5.4(a)
that the strong reflection due to disorder leads to almost zero transmission.
By considering the appropriate (complex) refractive index modulation the
transmission becomes perfect and shape-preserving, with almost zero re-
flection, as is demonstrated in Fig. 5.4(b) for one particular realization of
disorder.

The coupling coefficient distribution, as well as the corresponding complex
potential, are also shown in Fig. 5.4. We point out here, that this case
of off-diagonal disorder seems to be more robust than the case of diagonal
disorder, meaning that the reflection is even more insignificant than in the
results shown in Fig. 5.2.

Finally, in Fig. 5.5 we plot the transmitted and reflected power, defined
by Eqs. (5.13,5.14), as a function of the wavelength detuning: ∆k = k′x− kx.
As in Fig. 5.3, PR and PT exhibit again a parabolic behavior. However,
here the perfect transmission peak is broadened: PT ' 1 and PR ' 0 for
|∆k| ≤ 20%. In addition, the reflected power, contrary to the diagonal
disorder case, reaches values up to 0.3. We attribute this behavior to the
trapping of the beam in lossy regions of the lattice, leading to a rapid decay
in the beam’s intensity.
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Figure 5.4: (a) Intensity of a beam propagating in a lattice with random
real couplings. (b) Same as in (a) but with the potential of the form of
Eq. 5.15 which supports constant intensity solutions. Dashed lines denote
the interfaces among the sublattices. Real (c) and imaginary (d) part of the
potential and coupling distribution (e) for the results shown above. In all
the figures above the x-axis represents the waveguide number j. For these
graphs we have set: M = 50, j0 = −37.5 and σ = 30.

56



-50% 50%
k

0

0.5

1
P

R
P

T

Figure 5.5: Power of the transmitted (PT , red line) and reflected (PR, blue
line) wave, divided by the power of the initial beam (Eq. 5.14), as a function
of the percentage deviation (detuning) from the required wavelength value
kx: ∆k = k′x−kx. In this case we have set kx = π

2
, for the case of off-diagonal

disorder. An averaging over 500 realizations of disorder has been performed
for these results.
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Conclusions

In conclusion, this thesis provides a systematic study of the localization phe-
nomena in non-Hermitian disordered photonic lattices.

In Ch. 3 we examined the localization properties of the eigenmodes of
2-D optical lattices, in the presence of uniform non-Hermitian disorder. We
have found that the spectrum of such a system forms an approximate el-
lipse on the complex plane, with the eigenvalues located near the middle of
the ellipse to correspond to the less localized eigenfunctions. In addition,
the breaking of time reversal symmetry in the non-Hermitian case, favors
delocalization for weak disorder, while, as disorder is increased, the local-
ization induced by the non-Hermitian disorder appears to be even stronger
than in the Hermitian case. Finally, the level spacing distribution seems to
obey a sub-Wigner probability distribution, when non-Hermitian disorder of
intermediate amplitude is applied.

In Ch. 4 we studied the spectral and wave dynamic characteristics of non-
Hermitian 1-D lattices with binary pair-correlated disorder. We found that
the short range correlation of the randomness parameter leads to unexpected
spectral features: for intermediate degree of randomness, appears to have a
fractal-like intricate structure, and for higher values of the imaginary ran-
domness parameter many eigenvalues are concentrated in very small areas
of the complex plane. Even more surprising is what appears to be a gen-
eral feature namely, in spite of the fact that all eigenfunctions are localized,
transport by spatial jumps seems to be possible due to the partial overlap
of the excited eigenmodes. We also found that our theoretical/numerical
predictions are in good agreement with recent experimental findings.

Finally, in Ch. 5, we presented a systematic methodology to eliminate
reflection due to disorder in realistic discrete systems consisting of coupled
waveguides. In particular, we studied the perfect transmission of Gaussian
wave packets through random, non-Hermitian optical lattices in 1 + 1 di-
mensions. In the Hermitian limit, or even when the lattice has only loss
or only gain elements, the transmission is low and the field is strongly dis-
torted. However, for non-Hermitian disorder, where the real and the imagi-
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nary parts are correlated in the way we describe, almost perfect transmission
is achieved. Two different cases of on-diagonal (Wadati wave packets) and off-
diagonal disorder are thoroughly examined and for both cases a near-perfect
and shape-preserving transmission of an incoming Gaussian wave packet is
observed.

We believe that our systematic study will pave the way for the direct ex-
perimental realization of these new phenomena in integrated photonic waveg-
uide structures. Also extensions of our findings to lasers and coherent perfect
absorbers in disordered waveguide lattices should be within immediate reach.
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harper model. Physical Review B, 100(12):125157, 2019.

[87] Diederik S Wiersma. The physics and applications of random lasers. Nature physics,
4(5):359–367, 2008.

[88] Sebastian Schönhuber, Martin Brandstetter, Thomas Hisch, Christoph Deutsch,
Michael Krall, Hermann Detz, Aaron M Andrews, Gottfried Strasser, Stefan Rotter,
and Karl Unterrainer. Random lasers for broadband directional emission. Optica,
3(10):1035–1038, 2016.

[89] David H Dunlap, HL Wu, and Philip W Phillips. Absence of localization in a
random-dimer model. Physical Review Letters, 65(1):88, 1990.

[90] Konstantinos G Makris, Ziad H Musslimani, Demetrios N Christodoulides, and
Stefan Rotter. Constant-intensity waves and their modulation instability in non-
hermitian potentials. Nature communications, 6(1):1–7, 2015.

[91] Konstantinos G Makris, Ziad H Musslimani, Demetrios N Christodoulides, and Ste-
fan Rotter. Constant intensity supermodes in non-hermitian lattices. IEEE Journal
of Selected Topics in Quantum Electronics, 22(5):42–47, 2016.

[92] EMS Press. “Runge-Kutta method”. Encyclopedia of Mathematics, 1994.

[93] Eleftherios N Economou. The Physics of Solids: Essentials and Beyond. Springer
Science & Business Media, 2010.

[94] Jose M Escalante and Sergey E Skipetrov. Level spacing statistics for light in two-
dimensional disordered photonic crystals. Scientific reports, 8(1):11569, 2018.

[95] FJ Dyson and ML Mehta. Random matrices and the statistical theory of energy
levels iv. J. math. Phys, 4:701–12, 1963.

[96] Ryusuke Hamazaki, Kohei Kawabata, Naoto Kura, and Masahito Ueda. The three-
fold way in non-hermitian random matrices. arXiv preprint arXiv:1904.13082, 2019.

[97] G Marinello and MP Pato. Pseudo-hermitian ensemble of random gaussian matrices.
Physical Review E, 94(1):012147, 2016.

[98] Yan V Fyodorov, Boris A Khoruzhenko, and Hans-Jürgen Sommers. Almost hermi-
tian random matrices: crossover from wigner-dyson to ginibre eigenvalue statistics.
Physical review letters, 79(4):557, 1997.

[99] Rainer Grobe, Fritz Haake, and Hans-Jürgen Sommers. Quantum distinction of
regular and chaotic dissipative motion. Physical review letters, 61(17):1899, 1988.

65

https://encyclopediaofmath.org/index.php?title=Runge-Kutta_method


[100] H Markum, R Pullirsch, and T Wettig. Non-hermitian random matrix theory and
lattice qcd with chemical potential. Physical review letters, 83(3):484, 1999.

[101] Jean Ginibre. Statistical ensembles of complex, quaternion, and real matrices. Jour-
nal of Mathematical Physics, 6(3):440–449, 1965.

[102] Rainer Grobe and Fritz Haake. Universality of cubic-level repulsion for dissipative
quantum chaos. Physical review letters, 62(25):2893, 1989.

[103] Yi Huang, BI Shklovskii, et al. Anderson transition in three-dimensional systems
with non-hermitian disorder. Physical Review B, 101(1):014204, 2020.

[104] Vadim Oganesyan and David A. Huse. Localization of interacting fermions at high
temperature. Phys. Rev. B, 75:155111, Apr 2007.

[105] Philip Phillips and Hong-Lu Wu. Localization and its absence: a new metallic state
for conducting polymers. Science, 252(5014):1805–1812, 1991.

[106] V Bellani, E Diez, R Hey, L Toni, L Tarricone, GB Parravicini, F Domı́nguez-Adame,
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