
1 | P a g e

COMPARISON OF DIFFERENT
PREPROCESSING AND NEURAL

NETWORK APPROACHES FOR THE
INVESTIGATION OF THE FORECAST

HORIZON OF TIME SERIES OF
WIND SPEED

Ilias-Marios Sarris

University of Crete, Physics Department

Supervisor: Yannis Padazis

Date: June 2021

2 | P a g e

Abstract
Environmental concerns have encouraged the adoption of renewable energy alternatives to reduce

greenhouse gas emissions across the world. As a consequence of that wind farms have been installed

in several locations across Greece for the production of wind power. Wind farm management and

control, power distribution planning, storage capacity management, and system's dependability, all

benefit from reliable wind speed forecasts.

In this thesis, the problem of the wind speed forecast has been approached through different

preprocessing techniques, that involve scaling, smoothening or data augmentation, as well as Artificial

Neural Network models that are based on Gated Recurrent Units (GRUs). Moreover, comparisons were

made for different Datasets with consisting of various sampling steps and Datasets, such as Jena

Climate, that contain significantly more observations.

The comparisons that were made for the preprocessing techniques indicated that the smoothening

approach managed to capture more accurately the dynamic structure of the data and perform robust

predictions, even for up to 10 – 12 hours ahead. At the same time, the different Neural Network

Architectures that were proposed had no significant differences with respect to their performance.

Comparison between datasets with different sampling steps (1 hour and 10 minutes) indicated no

systematic differences as a result of the stochastic nature of the timeseries. Transfer Learning strategy

turned out to behave similarly to the original models for short term predictions, where the long term

forecasts appeared to be more robust. Jena Climate dataset, may indicate a potential increase in

accuracy of forecasts with the condition that more observations will be added in the datasets at hand.

3 | P a g e

Acknowledgments

I would like to express my sincere gratitude to my Supervisor Researcher Yannis Pantazis for the

continuous support of my B.Sc. study and research, for his patience and his insightful comments. His

guidance helped me though the whole stages of this research and writing of this thesis.

4 | P a g e

Content Table
ABSTRACT .. 2

ACKNOWLEDGMENTS .. 3

CONTENT TABLE ... 4

INTRODUCTION .. 6

TIME SERIES ... 7

TIME SERIES TERMINOLOGY .. 7

TIME SERIES ANALYSIS & FORECASTING ... 8

COMPONENTS OF TIME SERIES ANALYSIS ... 8

Fourier Analysis (Frequency Spectrum) .. 8

Histogram ... 10

MACHINE LEARNING & ARTIFICIAL NEURAL NETWORKS .. 11

INTRODUCTION ... 11

CHALLENGES OF MACHINE LEARNING .. 11

DATASET SPLIT AND OVERFITTING ... 12

PREPROCESSING AND FEATURE ENGINEERING ... 13

Normalization ... 14

Scalers .. 14

Numerical and Categorical Features .. 16

Data Augmentation .. 16

Smoothing .. 17

INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS .. 18

Linear Threshold Unit & Multi-Layer Perceptrons .. 18

Backpropagation and Training Process of ANNs .. 19

Activation Functions ... 22

Gradient Descent .. 24

Transfer Learning ... 27

ARTIFICIAL NEURAL NETWORKS FOR TIMESERIES FORECAST ... 27

Sliding Window... 27

Neural Network Architectures .. 28

METHODOLOGY ... 35

DATASET ... 35

Dataset 1 – Loupounaria (1 hour) .. 35

Dataset 2 – Trikorfo (1 hour) .. 36

Dataset 3 – Flabouro (1 hour) .. 37

Dataset 4 – Loupounaria (10 minutes) ... 38

NEURAL NETWORK ARCHITECTURES .. 40

5 | P a g e

STUDY .. 42

RESULTS .. 44

An Illustration of the Quality of the Predictions with Respect to the Relative Error 44

Comparison of Preprocessing Techniques .. 49

Comparison of NN Architectures .. 50

Comparison of Sampling Steps ... 51

Transfer Learning ... 53

Comparison to Jena Climate Dataset ... 54

SUMMARY & DISCUSSION ... 56

BIBLIOGRAPHY ... 58

6 | P a g e

Introduction
Timeseries is one of the most widespread types of data. They consist of a large amount of observations

that possess the property of time progression. Every value corresponds to a specific moment in time

and thus they are named timeseries. Time progressed data of certain variables is essential to plenty of

human or natural processes, especially when forecasting is desirable. A typical example is weather

forecast. Meteorologists collect timeseries of temperature, air pressure, wind velocity and direction,

along with other variables that play a crucial role in the development of climatic models, and use them

in order to make predictions into the future.

The advance of Machine Learning, resolved many real life complex problems in several fields. More

specifically, it turned out to be very successful in timeseries forecast as it enabled the performance of

more accurate predictions. Sophisticated models like Artificial Neural Networks are able to capture

the underlying dynamics of complex systems and estimate their progression in time.

Furthermore, the demand of renewable energy has been increasing sharply over the recent years.

Many industries have turned their investments into employing the necessary equipment for

generating renewable energy, such as wind farms. Commercializing the energy that is produced,

requires a determination of the price. In the example of the wind farms, it is expected the price should

be related to the amount of energy that was generated within a day and by extension, the amount of

air current that was provided in the location of the wind farm. Therefore, industries install

meteorological stations in several locations and heights off the ground in order to predict the airflow

of the wind farm for the following hours. Significant errors for such predictions are not desirable as

they will result into immense variation of the cost.

The purpose of this work was to apply different Artificial Neural Networks (ANNs) into timeseries of

wind velocity from several locations of wind farms in Greece and investigate the limits of the

predictions that can be performed, as well as which ANNs model is more appropriate for this task. A

significant part of the project was also to perform an exploratory data analysis and a necessary

preprocessing in order to extract the structure of the data and feed it to the ANNs in a more sufficient

way. That would enable more accurate predictions of the wind velocity and therefore determining the

cost of the energy produced by the wind farms in a more precise way.

Generally, it is expected that the error of the predictions increases as we try to foresee further and

further into the future. Moreover, as our experience with weather forecast or with the stock market

indicates, the projections are never fully reliable. This is mainly due to the fact that the systems at

examination have chaotic behaviors, meaning that the progression of such systems is very sensitive to

the initial conditions. In the case of this thesis, time series of wind components are very unsystematic

and contain very little seasonality, making the forecast process extremely challenging.

7 | P a g e

Time Series

Time Series Terminology

Time series is a type of data that describe processes that progress in time. In most of the processes of

the real world, time is continuous. Time series are created by reconstructing the real continuous signal

into a discrete one, which can be recorded and stored in a digital form. The sequenced data that are

created are discrete and the values are separated by a regular time interval 𝛿𝑡.

For terminology purposes, let us consider a variable 𝐴(𝑡) that progresses in time. A typical example of

a timeseries for the variable 𝐴 is shown in the figure 1.

On the example above, the variable 𝐴 progresses in a time interval 𝑡𝜖[0,5]. The time distance

between two adjacent values of the time series is 𝛿𝑡 = 0.1. The observation 𝐴(𝑡) corresponds to the

value of 𝐴 in the current time 𝑡. It is often desirable to describe observations that were made on a

previous or on a subsequent moment in time. A moment prior in time is defined as 𝑡 − 𝑛 𝛿𝑡. Where 𝑛

is the number of time steps that interpose from the current time. In addition, a subsequent moment

in time is indicated as 𝑡 + 𝑛 𝛿𝑡. Therefore, the corresponding observations of 𝐴(𝑡) are defined as

𝐴(𝑡 − 𝑛 𝛿𝑡) and 𝐴(𝑡 + 𝑛 𝛿𝑡) respectevly.

Figure 1. An Example of Time Series (Lorenz’s System)

8 | P a g e

Time Series Analysis & Forecasting

Estimating the progression of certain values in time has a major significance in many fields. The

prediction process involves fitting models into recorded data and then use them for extrapolation. The

prediction process is mostly known as Time Series Forecasting and it is precisely what we are going to

employ on this thesis. In time series forecasting, the future values are always inaccessible and the

accuracy of the forecasting models depends on the deviation of the estimations from the ensuing

observed data. For optimum forecasting models, one has to determine confidence intervals and most

of all, the underlying dynamics of the system in study.

Time series analysis plays a crucial role on the forecasting process. The analysis of the time series aims

to extract useful information about the structure of the data, the underlying dynamics of the system

and several statistical characteristics. This is made possible mostly through classical statistics. Time

series analysis often involves determining Histograms, Frequency Spectrums through Fourier Analysis,

Mean Values, Standard Deviations, Feature Importance and Outliers.

Time series analysis produces descriptive models of the dataset at hand that offer a sensitive insight

of some important components of time series. Some of the most useful components are presented

below:

 Level: It is the mean value of the time series. It shows the reference point of the fluctuation

that takes place.

 Seasonality: A repeating pattern that makes its appearance over time.

 Noise: It is often linked with the variability of the time series that it caused by external and

undetermined factors.

 Correlation: It indicates the level of association of two adjacent values.

These components will guide us into what method of forecasting may be more sufficient to apply. They

will also provide plausible arguments about the limits and the divergence of the predictions.

Components of Time Series Analysis

Fourier Analysis (Frequency Spectrum)

The Fourier Transform (FT) is a tool that is commonly used in spectral estimation and signal processing

in general. FT transforms a signal from the time domain to the frequency domain. The idea behind

this transformation is that every periodic function is a superposition of an infinite sum of cosine

functions. Non periodic function can in turn be represented using a continuous set of frequencies, i.e.

through an integral representation (FT).

9 | P a g e

At first let us define the Fourier Transform. Consider an integrable, piecewise continuous function

𝑥(𝑡), 𝑡 ∈ 𝑅. The FT of this function is defined as:

𝐹{𝑥(𝑡);𝜔} = 𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 (1)

The function 𝑋(𝜔) is a continuous, complex-valued function, and it is called “the Fourier transform of

x(t)” .

Τhe Inverse Fourier Transform (IFT) of the function 𝑋(𝜔) results in 𝑥(𝑡):

𝐹−1{𝛸(𝜔); 𝑡} = 𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

 (2)

Although most signals in the real world (e.g. voice signals) are continuous, the way in which they are

measured, in order to be processed, is digital. Therefore, it is a discrete version of the FT, the Discrete

Fourier Transform (DFT) that is applied on them, where the integral is replaced by a sum. The reduction

of a continuous time signals into a discrete one, is called sampling.

At first, let us consider a continuous signal 𝑎(𝑡) sampled at intervals 𝛥𝑡 (the sampling period). The rate

at which the signal is sampled is 𝑓𝑠 = 1/𝛥𝑡 and it is called sampling frequency. If the signal’s length is

𝑇 and 𝑁 is the number of samples, then we have:

𝑇 = 𝑁 ∙ 𝛥𝑡 (3)

The sampled signal can now expressed as 𝑎𝑛 = 𝑎(𝑡𝑛) , 𝑡𝑛 = 𝑛𝛥𝑡, 𝑛 = 0,1,… . 𝑁 − 1 .

The resulting discrete version of the FT, the Discrete Fourier Transform (DFT), has the form:

𝐴𝑘 = ∑ 𝑎𝑛𝑒
−𝑗
2𝜋𝑘𝑛
𝛮

𝑁−1

𝑛=0

 (4)

This is a complex valued sum. While the discrete values 𝑎𝑛 correspond to times 𝑡𝑛 = 𝑛𝛥𝑡 ,

𝑛 = 0,1,… , 𝑁 − 1. The discrete values of 𝐴𝑘 correspond to frequencies 𝑓𝑘 = 𝑘𝛥𝑓, 𝑘 = 0,1,… ,

 𝑁 − 1 , 𝑤ℎ𝑒𝑟𝑒 𝛥𝑓 =
1

𝑇
, or in other words to circular frequencies 𝜔𝑘 = 𝑘𝛥𝜔 where 𝛥𝜔 =

2𝜋

𝛵
.

The inverse of the Discrete Fourier Transform is in turn defined as:

𝑎𝑛 =
1

𝑁
∑ 𝐴𝑘𝑒

𝑗2𝜋𝑘𝑛
𝛮

𝑁−1

𝑘=0

 (5)

At this point we are in a position to make an approximation of the discrete sample autospectrum,

which is designated as:

Let us consider a discrete time window 𝑤𝑛 = 𝑤(𝑡𝑛) and 𝑥𝑛 = 𝑥(𝑡𝑛) 𝑤ℎ𝑒𝑟𝑒 𝑡𝑛 = 𝑛𝛥𝑡 𝑎𝑛𝑑 𝑓𝑠 =
1

𝛥𝑡
 , 𝑛 = 0,1,… . 𝑁 − 1

10 | P a g e

𝐴𝑘 = ∑𝑤𝑛𝑥𝑛𝑒
−
𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

 (6)

�̂�𝑥𝑥
𝑤 (𝜔𝑘) = 𝛥𝑡

2|𝐴𝑘|
2 , 𝑘 = 0,1,… ,

𝑁

2
 (7)

The calculation of �̂�𝑥𝑥
𝑤 (𝜔𝑘) can be easily and quickly executed using the FFT algorithm.

Histogram

In many cases it is desirable to have an insight about the frequency distribution of the dataset at hand,

as long as the variables are continuous. One of the most convenient ways to achieve that is through a

histogram. Histograms are also very valuable for the detection of outliers and skewness.

In order for a histogram to be constructed, one has to group the data into chosen intervals that are

called bins. Bins hold the number of occurrences of each value that is included in a given interval. The

construction of the histogram requires that the bins are not too big, so they are able to distinguish

significant differences of the values, and at the same time, not too small, so they can capture the

underlying distribution.

It is important to note that frequency of the occurrences is given by the area and not the height of

each bin. However, in many cases bins are equally spaced and therefore the height is an accurate

indicator of the frequency.

11 | P a g e

Machine Learning & Artificial Neural Networks

Introduction

Machine learning (ML) is a computational process that learns the structure of the data which are

provided to the computer by adaptive algorithms in order to perform desirable tasks. Machine

Learning is a part of a more generic field, Artificial Intelligence (AI), that describes the process of

automating, predicting and optimizing tasks that are typically performed by humans. Artificial Neural

Networks (ANNs) consist a type of model that is used in machine learning.

Machine Learning algorithms employ several approaches into the learning process. The most

important ones are presented below:

 In Supervised Learning algorithms the data that are used for training are paired with

corresponding target data, called labels. In these kind of tasks, the goal is to train the

computer to match up the given input with the corresponding label. Typical examples of

supervised learning algorithms are regression and classification tasks.

 In Unsupervised Learning algorithms the data that are used for training are unlabeled. The

model is constructed using only the inputs. Typical examples of unsupervised learning

algorithms are Dimensionality Reduction and Clustering.

 In Reinforcement Learning algorithms agents are used for performing a certain task. Agents

are rewarded every time they perform the desired task, otherwise they are given penalties.

Agents attempt to learn the best routine that will guarantee the largest amount of rewards

over time.

Challenges of Machine Learning

In a Machine Learning project there are two independent parts that have a particular interest. The first

one is the data and the other is the ML model. Regarding the data, there are a few challenges that may

arise and need to be addressed before moving to the selection of a suitable model:

 Insufficient Amount of Data: One of the disadvantages of the existing ML algorithms is that

they need large amount of data in order to be trained. In many cases the data at hand are not

adequate for the model to learn successfully from them and perform the anticipated task. A

typical way to approach this is by implementing data augmentation techniques that basically

generate pseudo data from the existing ones. Another approach is to apply transfer learning

from other models with similar tasks that ensured a sufficient amount of data.

12 | P a g e

 Non Representative Data: In some cases, some variables of the dataset at hand are not

strongly related to the desirable task and therefore complicate the training process.

Moreover, outliers may detune the learning procedure and prevent it from being generalized.

Typically, it is advisable to remove these non-representative data.

 Poor Quality Data: Acquiring data with sufficient quality is not always trivial. There are many

factors that may contribute to the deterioration of the quality of the observations such as

defects of the detector, noise of the system, etc. One approach is to remove the erroneous

observation or replace them with expected values.

Creating or choosing an appropriate model for training remains a challenging task, one that only with

proper insight of the dataset’s statistical structure and the underlying dynamics of the system at study,

could be possible to unravel.

 Dataset split and Overfitting

At this point it is important to state that the significance of Machine Learning algorithms lays on their

ability to create generalized models that perform the desirable tasks. This means that the models are

able to approach new instances that were not included in their training process.

If the model is not sufficiently generalized then overfitting has occurred, meaning that the model is

unable to perform for new data from the ones that it was trained on. On the other hand, if the model

is not able to capture the underlying structure of the data, it is called undrefitting. Both pose an equal

threat to the accuracy of the model employed.

In order to have an insight of the training process and detect potential abnormalities, like the ones

described, the dataset is split into three components: the training set, the validation set and the test

set. The model is initially fitted on a training dataset, which is a set of data used to fit the parameters

(e.g. weights) of the model. The fitted model is used to make predictions of the elements of the

validation. The validation dataset provides an unbiased evaluation of a model fit on the training

dataset. Finally, the test set is a dataset used to provide an unbiased evaluation of a final model fit on

the training dataset. Validation set offers us an insight of the performance of the model during the

training process.

A clear indication of overfitting is when the error of the training set reduces while the error of the

validation set rises. Overfitting typically occurs when there is not sufficient amount of data at hand,

when the parameters of the model are excessively more than the amount of data at hand, and more.

Conversely, if both the training and validation error have not dropped adequately indicates

undrefitting.

13 | P a g e

A representative example of overfitting is presented on the figure below:

Undrefitting is usually resolved by extending the training process for more iterations. Regarding the

Overfitting there are many computational techniques that could assure a satisfactory generalization

of the model. Early Stopping is a very convenient way to elude overfitting as it interrupts the training

process when the validation error starts rising and then saves the parameters of the models that

ensured the best performance. Implementing L1 and L2 Regularizations is another approach. The

Regularization technique penalizes the loss function of the model and in the case of ANNs, it limits the

weight connections of Neurons. Dropout, is another technique commonly used for ANNs, in which

there is a probability p for each neuron at every training step to be temporarily excluded from the

training process and therefore reducing the complexity of the model. Finally, Max-Norm regularization

is another way to combat overfitting in ANNs. In Max-Norm regularization, an upper bound of the

weight of each neuron is imposed such that ‖𝑤‖2 ≤ 𝑟, where r is the max-norm hyperparameter and

‖∙‖2 is the ℓ2 norm.

Preprocessing and Feature Engineering

In many cases raw data contain many inconsistencies and errors or lack of certain necessary trends.

As a result, these properties prevent the ML model to properly assimilate the structure of the data and

therefore complete their desirable task. Preprocessing is the practice of handling such abnormalities

and therefore transforming the raw data into a more meaningful set. This includes Normalizing and

Scaling the raw data, dealing with missing values or applying Filters and implementing Data

Augmentation techniques. Feature Engineering, on the other hand, is the process of using domain

knowledge in order to transform existing features into new ones that would contain more meaningful

Figure 2. Example of Overfitting []

14 | P a g e

information for the model. A brief introduction to some of the most common techniques of

Preprocessing and Feature Engineering will be discussed below.

Normalization

Normalization is a scaling technique in which the data are scaled to have a unit norm. Algorithms

that do not assume a specific type of distribution (e.g. Neural Networks) may benefit significantly

from that process. There are two common methods for normalization:

 Maximum Normalizer: Through this method the data are normalized by applying the

transformation:

𝑥𝑛𝑜𝑟𝑚 =
𝑥

max(𝑥)

 Where 𝑥𝑛𝑜𝑟𝑚 is the normalized value and 𝑥 is the value of the sample before normalization.

 ℓ1 Normalizer: Through this method the data are normalized by applying the

transformation:

𝑥𝑛𝑜𝑟𝑚 =
𝑥

∑ |𝑥𝑖|
𝑁
𝑖=1

Where 𝑁 is the length of the vector that contains all the instances, 𝑥𝑖, and it is about to get

normalized.

Scalers

Scaling is a technique that aims to set a common scale to features without altering differences in the

ranges of values. In some cases, this is extremely helpful as it allows a more accurate comparison of

the corresponding data. Models that employ Gradient Descent as an optimizing method, such as ANNs,

may require scaling since it provides an important boost in the convergence towards the minimum.

Some of the most representative scalers are introduced below:

 Min-Max Scaler: Through this method the values of the samples are confined in a range

between 0 and 1 by applying the transformation:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Where 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled value, 𝑥 is the value of the sample before scaling and 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛

are the maximum and minimum values of the dataset before scaling.

15 | P a g e

This transformation conserves the distribution of the data and is has a high sensitivity with

outliers.

 Absolute Maximum Scaler: Similar to the Min-Max Scaler, the data are ranged between -1 and

1 by applying the transformation:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥

max(|𝑥|)

This transformation is based on the absolute maximum, as the name implies. It also preserves

the distribution of the data and is has a high sensitivity with outliers.

 Standard Scaler (z-score Normalization): This scaler sets the mean value of the data to zero

and its standard deviation to one by applying the following transformation:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − �̅�

𝜎

 Where �̅� is the mean value and 𝜎 is the standard deviation of the data before scaling.

This transformation does not set a certain range to the values of the data as it is based on the

𝜎 of the dataset. It can be useful for datasets that are approximately described with a

Gaussian distribution.

 Robust Scaler: Similar to Standard Scaler, this scaler sets the mean value of the data to zero

and its standard deviation to one while neglecting the effect of outliers. It accomplishes that

by applying the following transformation:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)

𝑄75 − 𝑄25

Where 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) is the median value. 𝑄75 and 𝑄25 are the 75th and 25th percentiles of the

distribution of the data before scaling. The corresponding subtraction is the known as

interquartile range (IQR).

This transformation has not a predetermined range of values and it can be a very powerful

tool when outliers are present.

As a general rule, it is preferable to fit the Scaler into the training set and then apply it on the test set,

in order to avoid any leakage of information that would affect the model’s evaluation of the training.

https://en.wikipedia.org/wiki/Interquartile_range

16 | P a g e

Numerical and Categorical Features

There are two general categories that features of the dataset are often classified into: Numerical and

Categorical Features. If a house for example is an apartment or a detached house, that would be a

categorical feature. On the other hand, the price of a given residence is a numerical feature.

Categorical features are often considered problematic in their raw form, as they cannot be processed

as word statements from ML models. Thus, they need to be transformed into numerical features. The

most popular approach is to employ the one-hot-encoder strategy, in which every category is

represented by a vector as shown below:

Apartment → (
1
0
0
) Detached House → (

0
1
0
) 𝑉𝑖𝑙𝑙𝑎 → (

0
0
1
)

In this way the model is able to differentiate the provided categorical features and incorporate them

for training.

Numerical features, on the contrast, can be implemented into the ML model in their raw form.

However, there are cases were the corresponding features require certain transformations in order to

be best grasped by the algorithm. Typical examples are features with periodic conditions such as the

date, time and angles. The key idea is that certain transformations, like the sin (𝑥) and cos (𝑥), may

capture the periodicity of these variables as presented below:

𝑥𝑡𝑖𝑚𝑒 = (

0: 05
10: 35
⋮

23: 50

) → (

5 min
10 ∙ 60 + 35 𝑚𝑖𝑛

⋮
23 ∙ 60 + 50 𝑚𝑖𝑛

) → (

5 min
635 𝑚𝑖𝑛

⋮
1430 𝑚𝑖𝑛

)
sin(𝑥[𝑚𝑖𝑛]

2𝜋

24∙60
)

→ (

0.022
0.362
⋮

−0.043

)

Therefore, the time is now expressed in a way the relative variances of the periodic values are revealed

in a clearer way.

Data Augmentation

Data augmentation is a regularization technique that consist of generating new training instances from

existing ones. This method can be very beneficial for the training process as it extends the number of

data in our possession and prevents overfitting by forcing the model to be more tolerant to minor

alterations of the instances.

17 | P a g e

For timeseries one suggested technique for data augmentation is to implant white noise into the

observations. Let us consider a timeseries 𝐴(𝑡) = {𝑎𝑖} with 1 ≤ 𝑖 ≤ 𝑛 and suppose a variable 휀 that

meets the condition:

0 < 휀 < |𝑎𝑖+1 − 𝑎𝑖|∀𝑖 ∈ {1,… , 𝑛}

The new timeseries,𝐵(𝑡) = {𝑏𝑖}, is generated by adding a term 𝑟𝑖 to every instance of 𝐴(𝑡), where 𝑟𝑖

is a realization of the distribution 𝑁 (0,
𝜀

2
) . []

𝐵(𝑡) = {𝑎𝑖 + 𝑟𝑖}

Then the ML model is then fitted into both timeseries to perform training.

Smoothing

Timeseries often consist of many anomalies and noise that conceal the valuable information. This

prevents the extraction of useful patterns or trends that are required for the timeseries forecasting.

As a result, a common method for dealing with this is to smooth the signal by applying filters. The two

most frequent choices are the Gaussian and Moving-Average filter.

Let us consider a series 𝐴(𝑛) with 1 ≤ 𝑛 ≤ 𝑁 and a filter 𝐻(𝑘) with 1 ≤ 𝑛 ≤ 𝐿, where 𝐿 represents

the width of the filter. Supposing an impulse response of the filter ℎ(𝑘) that is applied on the signal,

the output value 𝐺(𝑛) is expressed as:

𝐺(𝑛) = ∑ ℎ(𝑘)𝐴(𝑛 −𝑚)

𝐿

𝑚=1

Note that applying the filter 𝐻(𝑘) into the signal in to perform convolution of the filter with the given

series.

A moving average is calculated by generating a new series whose values are the average of the raw

observations in the original time series. A moving average requires the selection of a window size,

which specifies how many instances are used to determine the moving average value. Then, to

compute the average values in the new series, the window is slid along the time series. The impulse

response of the moving average filter is the following:

ℎ𝑚𝑎(𝑘) =
1

𝐿

In other words, the moving average filter can be seen as a rectangular pulse with height
1

𝐿
.

Similarly, the Gaussian filter is defined by a window size 𝐿 and it is slid along the series in order to

generate the new one. However, the Gaussian filter does not set the same weights for each instance

18 | P a g e

of the series. The weights are determined based on the Gaussian distribution and the given standard

deviation 𝜎. In this case the impulse response is given by:

ℎ𝐺 =
1

𝜎√2𝜋
 𝑒
−
𝑥2

2𝜎2

For both cases the larger the window width, the more observations are involved in the convolution

and the more effective the smoothing is going to be.

Occasionally, smoothing may not be a preferable choice as it comes with a price of removing

information of the signal. Forecasting might be less challenging, but it also might be less accurate.

Introduction to Artificial Neural Networks

Linear Threshold Unit & Multi-Layer Perceptrons

Inspired by the structure of a biological neural network that

consists of many interacting neurons, the fundamental unit of an

artificial neural network is a Linear Threshold Unit (LTU). An LTU

takes one or more numbers as inputs, calculates the weighted

sum and passes the argument through a step function, which

then outputs the final result. The placeholder of each value is

called a neuron. A Perceptron is simply composed of a single layer

of LTUs with each neuron connected to all the inputs. By stacking

Perceptrons together a Multi-Layer Perceptron (MLP) is created.

An MLP is composed of one input layer, one or more layers of

LTUs, called hidden layers, and one final layer of LTUs called the

output layer. Every layer except the output layer includes a bias

neuron and is fully connected to the next layer. When NN has

two or more hidden layers, it is called a Deep Neural Network

(DNN). An illustration of an LTU is given in the figure 3.

Figure 3. Linear Threshold Unit (LTU)

19 | P a g e

Backpropagation and Training Process of ANNs

In the training process the Neural Network has to determine the best values of weights in order to

optimize the prediction given an input 𝑥. In a forward pass the network performs the below operation

for each of the neurons:

𝑧𝑙 = 𝑊𝑙𝑋𝑙−1 + 𝑏

𝑋𝑙 = 𝜎(𝑧𝑙) = 𝜎(𝑊𝑙𝑋𝑙−1 + 𝑏) = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑏)

Where the 𝑋𝑙−1 is the vector of the input values (the output of the previous layer, 𝑋𝑙−1), 𝑋𝑙 is the

vector of the output values of the layer 𝑙, 𝜎 is the step function, 𝑧𝑙 is the weighed sum of the inputs

for layer 𝑙 that later passes through the step function, 𝑊 is a vector the carries the weights of the

layer 𝑙 and 𝑏 is the bias of the layer.

The output of the whole model after the forward pass is denoted by �̂�, and to measure its variance

from the target value 𝑦, that is the desirable outcome, a loss function is calculated. The most common

choices regarding the loss function are Mean Squared Error (MSE) and Mean Absolute Error (MAE):

𝑀𝑆𝐸: 𝐿 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

𝑀𝐴𝐸: 𝐿 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

The backpropagation algorithm is commonly used in the training process. According to this algorithm,

the NN makes a prediction (forward pass), calculates the error, goes through each layer in reverse to

measure the error contribution from each connection (reverse pass), and then adjusts the connection

weights to reduce the error in each training instance (epoch). The ratio of how much each weight

influences the cost function is calculated by employing the partial derivatives of the cost function with

respect to each parameter:

𝜕𝐿

𝜕𝑤𝐿
=
𝜕𝐿

𝜕𝑥𝐿
𝜕𝑥𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑤𝐿

𝜕𝐿

𝜕𝑏𝐿
=
𝜕𝐿

𝜕𝑥𝐿
𝜕𝑥𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑏𝐿

Where, 𝐿 denotes the parameters of the last layer.

Each partial derivative from the weights and biases is saved in a gradient vector, that has as many

dimensions as you have weights and biases:

20 | P a g e

𝑤12
1

𝑤21
1

𝑤13
1

𝑤11
1

𝑤23
1

𝑤22
1

𝑤21
2

𝑤12
2

𝑤11
2

𝑤32
2

𝑤31
2

𝑤22
2

𝑤21
3

𝑤11
3

−∇𝐿(𝑤1, 𝑏1, 𝑤2, 𝑏2, … , 𝑤𝐿 , 𝑏𝐿) =

[

𝜕𝐿

𝜕𝑤1

𝜕𝐿

𝜕𝑏1
⋮
𝜕𝐿

𝜕𝑤𝐿

𝜕𝐿

𝜕𝑏𝐿]

The gradient is computed using mini-batches (subsets) of the data. The performance is calculated for

each weight and bias for each observation in the mini-batch.

The new, optimized weight values are given from the following equation:

𝑤𝑙 = 𝑤𝑙 − 𝜂
𝜕𝐿

𝜕𝑤𝑙

𝑏𝑙 = 𝑏𝑙 − 𝜂
𝜕𝐿

𝜕𝑏𝑙

Where 𝜂 is a constant between 0 and 1 which expresses the learning rate for Gradient Descent

Optimizer, which is the optimization algorithm used for the minimization of a cost function.

An illustration of a fully connected network of artificial neurons is presented below:

𝑥1
0

𝑥2
0

𝑥3
1

𝑥1
1

𝑥2
1

𝑥1
2

𝑥2
2

𝑥1
3

Input Layer
Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Figure 4. Multi-Layer Perceptron (MLP)

21 | P a g e

In the figure above we use the notation 𝑥𝑛
𝑙 to imply the value of the n-th neuron in the l-th layer and

𝑤𝑛𝑚
𝑙 to imply the value of the weight in the l-th layer that connects the neurons 𝑥𝑛

𝑙−1 with 𝑥𝑚
𝑙 . Note

that for every neuron 𝑥𝑛
𝑙 there is a bias 𝑏𝑛

𝑙 respectively.

For example, the values of the first layer are computed by the following equations:

𝑥1
1 = 𝜎(∑(𝑤1𝑗

1 𝑥𝑗
0 + 𝑏1

1)

2

𝑗=1

) = 𝜎(𝑤11
1 𝑥1

0 +𝑤12
1 𝑥2

0 + 𝑏1
1)

𝑥2
1 = 𝜎(∑(𝑤2𝑗

1 𝑥𝑗
0 + 𝑏2

1)

2

𝑗=1

) = 𝜎(𝑤21
1 𝑥1

0 +𝑤22
1 𝑥2

0 + 𝑏2
1)

𝑥3
1 = 𝜎(∑(𝑤3𝑗

1 𝑥𝑗
0 + 𝑏3

1)

2

𝑗=1

) = 𝜎(𝑤31
1 𝑥1

0 +𝑤32
1 𝑥2

0 + 𝑏3
1)

Similarly, for the second layer the computed values of the neurons will be:

𝑥1
2 = 𝜎(∑(𝑤1𝑗

2 𝑥𝑗
1 + 𝑏1

2)

3

𝑗=1

) = 𝜎(𝑤11
2 𝑥1

1 +𝑤21
2 𝑥2

1 +𝑤31
2 𝑥3

1 + 𝑏1
2)

𝑥2
2 = 𝜎(∑(𝑤2𝑗

2 𝑥𝑗
1 + 𝑏2

2)

3

𝑗=1

) = 𝜎(𝑤21
2 𝑥1

1 +𝑤22
2 𝑥2

1 +𝑤32
2 𝑥3

1 + 𝑏2
2)

The output of the 𝑥1
3 is given through analogous calculations.

After the forward pass, the backpropagation algorithm takes place. The determination of the impact

of each feature in the parameters of the model is described by the following partial derivatives,

starting from the weights and biases of the last layer and moving towards the first layer:

For the 3rd layer of the network:

𝜕𝐿

𝜕𝑤3
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
𝜕𝑧3

𝜕𝑤3
 𝑎𝑛𝑑

𝜕𝐿

𝜕𝑏3
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
𝜕𝑧3

𝜕𝑏3

And by extend:

𝜕𝐿

𝜕𝑤11
3 =

𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤11
3

𝜕𝐿

𝜕𝑤21
3 =

𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤21
3

22 | P a g e

𝜕𝐿

𝜕𝑏1
3 =

𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑏1
3

Regarding the 2nd layer of the network:

𝜕𝐿

𝜕𝑤2
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
𝜕𝑧2

𝜕𝑤2
 𝑎𝑛𝑑

𝜕𝐿

𝜕𝑏2
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
𝜕𝑧2

𝜕𝑏2

Where the first part represents the contribution of the 𝑤3 and the second part represents the

contribution of the 𝑤2.

The contribution of the weights and biases of the 1st layer towards the cost function is:

𝜕𝐿

𝜕𝑤2
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
·
𝜕𝑧2

𝜕𝑥1
𝜕𝑥1

𝜕𝑧1
𝜕𝑧1

𝜕𝑤1
 𝑎𝑛𝑑

𝜕𝐿

𝜕𝑏1
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
·
𝜕𝑧2

𝜕𝑥1
𝜕𝑥1

𝜕𝑧1
𝜕𝑧1

𝜕𝑏1

Finally, the weight will be updated according to following the relations:

𝑤11
3 = 𝑤11

3 − 𝜂
𝜕𝐿

𝜕𝑤11
3 = 𝑤11

3 − 𝜂
𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤11
3

𝑤21
3 = 𝑤21

3 − 𝜂
𝜕𝐿

𝜕𝑤11
3 = 𝑤21

3 − 𝜂
𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤21
3

𝑏1
3 = 𝑏1

3 − 𝜂
𝜕𝐿

𝜕𝑏1
3 = 𝑏1

3 − 𝜂
𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑏1
3

The same goes for update of the rest of the parameters of the model.

Activation Functions

The activation function of a node in an artificial neural network (ANN) determines the output of that

node given an input or a set of inputs. The next node receives this output as input (in the next layer).

The non-linearity of ANNs is determined by activation functions, since if they are non-linear, the entire

network is non-linear too. Activation functions may be thought of as binary classifiers, with the options

of "trigger" or "not activate." If no activation function is used, the output signal is just a simple linear

function, and the system is doomed to learn complex functional mappings from data with less power.

As a result, they will be unable to accurately reflect the output.

The selection of an appropriate activation function is a very important step. As the activation function

mediates in the passing of arguments between the neurons, it plays a essential role in the training

process of the model. Let us suppose that we use the MSE cost function. Then the above calculations

of the partial derivatives are given as:

23 | P a g e

𝜕𝐿

𝜕𝑤𝐿
=
𝜕𝐿

𝜕𝑥𝐿
𝜕𝑥𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑤𝐿
= 2(𝑋𝐿 − 𝑦) ∙ 𝜎′(𝑧𝐿) ∙ 𝑋𝐿−1

Where XL represent the output of the last layer, i.e. the output of the whole model (ŷ) and 𝜎′ is the

derivative of the step function.

In case that the value of the derivative of the activation function 𝜎′ is very close to zero the

modification of the parameters’ values will be negligible and therefore the ML model will be trained

insufficiently. This is known as Vanishing Gradient Problem. On the opposite course, if the value of 𝜎′

increases sharply, the updates of the parameters will be unreasonably high resulting into a defective

training process too. This is known as Exploding Gradient Problem.

For these particular reasons, Data Scientists have put in a lot of effort to develop activation functions

that do not have the issues listed above and even boost the performance of ANNs.

The Sigmoid activation function is the basic choice. The sigmoid function is basically a logistic function

that scales the output in a range between zero and one. It is described through the following equation:

𝜎(𝑥) =
1

1 + 𝑒−𝑥

The graph of the sigmoid function and its derivative is presented in the figure below:

Figure 5. Sigmoid Function and Derivative

In the derivative graph, it is noticeable that for large absolute values of input the derivative approaches

to zero and therefore produces the Vanishing Gradient Problem.

24 | P a g e

The most robust choice regarding the activation function is the Rectified Linear Unit (ReLu). Anything

with an x-value less than zero has a y-value of zero, but anything with a value greater than zero is

mapped to its own y-value. The equation of ReLu is given below:

𝜎 = {
𝑥 𝑓𝑜𝑟 𝑥 > 0
0 𝑓𝑜𝑟 𝑥 ≤ 0

The graph of the ReLu function and its derivative is presented in the figure below:

Figure 6. ReLu Function and Derivative

The ReLu activation is one of the most stable options for solving the Vanishing Gradient Problem due

to the constant value of the derivative. It does not, however, provide a solution to the Exploding

Gradient Problem.

Gradient Descent

Gradient Descent is an optimization method capable of finding optimal solutions to a variety of

problems. The general idea to minimize a given cost function 𝐽(𝜃), parameterized by the model’s

parameters 𝜃, by changing its parameters iteratively. A determination of the learning process 𝜂, is

required, which will control the size of the steps that will be taken for approaching the minimum.

Gradient Descent has three modifications that vary in the amount of data used to calculate the

gradient of the objective function. Achieving the most accurate calculation of the gradient, and by

extend the most accurate update of the parameters of the model, requires the involvement of all the

data in our disposal. However, in this case, the most accurate solution is not the most efficient one,

regarding the time of the computation. Compromising between a lesser precision and a faster update

of the models parameters is preferable.

25 | P a g e

Batch Gradient Descent is the simplest form of Gradient optimizer. It computes the grad of the loss

function with respect to the parameters 𝜃 for the entire training set:

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃)

Although this method assures the convergence to the global minimum, it is very time consuming and

it is not recommended.

Mini Batch Gradient Descent updates the parameters for every mini-batch of 𝑛 training samples,

ensuring a safe trade-off between the accuracy of the parameters’ update and the execution time.

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥
𝑖:𝑖+𝑛; 𝑦𝑖:𝑖+𝑛)

The convergence towards the global minimum is less stable than the Batch Gradient Descent, but the

number of data that are included in a mini batch can seriously affect this stability as they increase.

Mini Batch Gradient Descent is a common choice.

Adam’s optimizer is another approach that computes adaptive learning rates for each parameter. It

does so by combining different techniques from other algorithms, such us Momentum [] and Adagrad

[] and RMSprop. In the Momentum algorithm the approach of the minimum is accelerated by adding

a fraction γ of the update vector of the past time step to the current update vector (gradient

calculation):

𝜃𝑡 = 𝜃𝑡 − 𝜂∇𝜃𝑡𝐽(𝜃𝑡) + 𝛾∑𝜂∇𝜃𝜏𝐽(𝜃𝜏)

𝑡

𝜏=1

If the momentum becomes too heavy, it may lead the model to swing back and forth between the

local minima.

Adagrad’s key characteristic is that reduces the learning rate relative to the features frequency of the

data, at every epoch. It assigns low learning rates to parameters linked to regularly occurring features

and high learning rates to parameters linked to infrequently occurring features:

𝜃𝑡+1,𝜄 = 𝜃𝑡,𝜄 −
𝜂

√휀 + ∑ (∇𝜃𝜏𝐽(𝜃𝜏,𝑖))
2

𝑡
𝜏=1

∇𝜃𝑡𝐽(𝜃𝑡,𝑖)

ε it's just a small value that ensures that we don't divide by zero.

The decaying learning rate ensures a faster convergence as it avoids the overstepping of the local

minimum with big steps. At some point the gradients become so small that momentum becomes stale.

Root Mean Squared Propagation (RMSprop) is similar to Adagrad in that it provides an exponentially

decaying average rather than the sum of the gradients. One interesting property of RMSprop is that it

is not limited to the number of previous gradients, but rather to gradients of the most recent time

stages:

26 | P a g e

𝜃𝑡+1,𝜄 = 𝜃𝑡,𝜄 −
𝜂

√휀 + 𝐸[𝑔2]𝑡
∇𝜃𝑡𝐽(𝜃𝑡,𝑖) , 𝑤ℎ𝑒𝑟𝑒 𝐸[𝑔

2]𝑡 = (1 − 𝛾)𝑔
2 + 𝛾𝐸[𝑔2]𝑡−1

The combination of all the ideas above construct the Adams optimizer, which is probably one of the

most reliable methods that is employed so far. The equations that describe the Adam optimizer are

the following:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂 ∙ 𝑚�̂�

√𝑢�̂� + 휀

𝑚�̂� =
𝑚𝑡

1 − 𝛽1
𝑡

𝑢�̂� =
𝑢𝑡

1 − 𝛽2
𝑡

𝑚𝑡 = (1 − 𝛽1)𝑔𝑡 + 𝛽1𝑚𝑡−1

𝑢𝑡 = (1 − 𝛽2)𝑔𝑡
2 + 𝛽2𝑢𝑡−1

Where ε is a small term (~10−8), Learning rate η (the recommended default value is 𝜂 = 0.001).

Adam’s optimizer is the most typical and reliable choice in ANNs applications. 𝛽1 and 𝛽2 represent the

forgetting factors for gradients and second moments of gradients and they are the first and the second

momentum terms respectively, which are set to 𝛽1 = 0.9 and 𝛽2 = 0.999. The value of 𝛽1
𝑡 is given by

raising the value of 𝛽1 to the power of the time step 𝑡.

In essence, the hyperparameters of a neural network are the parameters that do not change during

the training process as they describe fundamental parts and of the ANN. The most basic

hyperparameters are listed below:

 Number of Hidden Layers

 Number of Neurons in Each Layer

 Activation Function (Step Function):

 Optimizer: Executes Gradient Descent

 Number of Epochs: It defines the number of repetitions that will be performed by

backpropagation algorithm

 Loss function: Cost Function quantifies the error between predicted values and expected

values. Depending on the problem the form of the Cost Function can vary.

 Batch Size: The number of data that will be fed into the NN

27 | P a g e

Transfer Learning

Transfer learning is a predictive modeling technique that can be used to speed up training and enhance

the performance of a model on a different but quite similar problem. In deep learning, this means

reusing the weights in one or more layers from a previously trained model in a new model. The new

model will either holding the weights constant, fine tuning them, or completely adapting the weights

during training.

Weight Initialization and Feature Extraction are the two primary methods for applying transfer

learning. The weights in re-used layers can be used to start the training process and then adapted to

the new task. Transfer learning is referred to as a weight initialization scheme in this context. When

the first associated problem has a lot more labeled data than the problem of interest, and the structure

of the problem is identical in both cases, this can be beneficial. Conversely, the weights of the network

will not be adjusted in response to the new challenge, and only new added layers may be trained to

analyze the output after the reused layers have been trained. Transfer learning is referred to as a

feature extraction scheme in this case. Variations on these scenarios include not initially training the

model's weights on the new issue, but later fine-tuning all weights of the trained model with a low

learning rate.

Artificial Neural Networks for Timeseries Forecast

The timeseries forecasting is at its core a regression task, meaning that the model tries to best fit the

inputs and make predictions. The goal is to approximate the predictions from new instances that were

not included in the training.

Sliding Window

In most cases the input data are introduced into the model in a sliding window format. The window is

an object that holds a certain number of instances by preserving their time sequence. The target values

are also in a window format with a different number of instances. At the end of the day, the timeseries

forecasting task is defined by the length of the input window, the length of the target window and

their distance in between which is defined by the number of observations that mediate from the end

of the input window to the beginning of the target window.

Let us examine a basic example for simplicity. Assuming a timeseries 𝑎(𝑡) = 𝑎𝑡. In order to create the

dataset that will be fed into the NN we are going to employ the sliding window strategy. Firstly, we set

the desirable window lengths and distances. Let us suppose that the input window has a length equal

28 | P a g e

to 3 and the target window has a length equal to 2. The corresponding distance between them will be

2. The first instance in the new dataset will be an input vector (window) that holds the values 𝑎0, 𝑎1, 𝑎2

and a target vector that holds the values 𝑎5, 𝑎6. The next instance in the new dataset, assuming that

we set a step=1, is an input vector (window) that holds the values 𝑎1, 𝑎2, 𝑎3 and a target vector that

holds the values 𝑎6, 𝑎7, and so on.

Figure 7. Example of sliding window

Neural Network Architectures

There are a variety of neural network architectures available, each with its own set of features that

are ideally suited to specific applications. Below are some of the most well-known architectures,

especially in the context of time series forecasting.

Feed Forward Neural Networks

The model that was previously introduced as a standard model for Neural Networks in the figure 4 is

in fact a specific type of NN model, called Feed Forward Neural Network or Multilayer Perceptrons

(MLPs). The goal of a feed forward network is to approximate a function 𝑓 . According to this

architecture, the information moves in only forward direction without loops in between. The

information passes from the input nodes, through the hidden nodes (if any) and to the output nodes.

For a variety of purposes, this particular ability is useful for time series. Neural networks are resistant

to noise in the input data and the mapping function, and they can also learn and make predictions in

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

Input Window Target Window

Distance

Input Window

Distance

Target Window

29 | P a g e

the absence of data. Furthermore, neural networks make no firm assumptions regarding the mapping

function and can learn linear and nonlinear interactions easily.

More precisely, in the approximated function, neural networks can be programmed to support an

arbitrary specified but fixed number of inputs and outputs. This implies neural networks can handle

multivariate inputs and multi-step forecasts directly. Multivariate Inputs refers to the ability to specify

an integer number of input elements, allowing for direct support for multivariate forecasting. Multi-

step Forecasts, on the other hand, refers to an arbitrary number of output values that can be specified,

providing direct support for multi-step and even multivariate forecasting.

For these capabilities alone, feedforward neural networks may be useful for time series forecasting.

The assumption of a reasonable mapping from inputs to outputs is implicit in the use of neural

networks.

Convolutional Neural Networks

CNNs, or Convolutional Neural Networks, are a version of neural network that was created to process

image data efficiently. They also shown their effectiveness on difficult computer vision issues,

producing state-of-the-art outcomes on challenges such as image classification and object detection.

CNNs have been proven to be also very effective in timeseries data. CNNs provide many of the

advantages of Multilayer Perceptrons for time series forecasting, such as multivariate input,

multivariate output, and understanding random and dynamic functional relationships. At the same

time, they can process the information through the innovative approach of Feature Learning. Feature

Learning is the automatic identification and extraction of relevant features from raw input data that

pertain directly to the prediction problem that is being modeled.

Similar to MLPs, CNNs may contain one or more hidden layers, however each neuron is connected only

to neurons that are contained within its receptive field. The receptive field is a region of the input

timeseries where a filter (of the same size) can be applied. The distance between two receptive fields

is called a stride. A 1D function map is generated by applying (convolving) the same filter to the entire

timeseries. Different filters provide different feature maps, which are then combined to form a

convolutional layer. Each convolutional layer is an entity that contains all of the previous layer's feature

maps. The weight of a layer is the value of a feature map's pixel.

A pooling layer is needed in between each convolutional layer due to the computational complexity

resulting from this architecture. A pooling layer is created by adding a pooling kernel to each of the

function maps and reducing the layer's dimensions (length). Let us consider a max pooling kernel of

length 2 and a stride of 2, which inputs 2 values of the time series and outputs the maximum. This

simple kernel will reduce the size of the sequence by a magnitude of 2. A CNN usually has many

convolutional and pooling layers that are added one after the other. As a consequence, the

convolutional layers' spatial dimensions are reduced while their depth dimensions’ increase.

30 | P a g e

Finally, a MLP with a few completely connected layers is introduced, and the prediction is output by

the final layer. CNNs perform better in timeseries classification tasks since they are better at identifying

low and high level features in sequences. Nonetheless, their ability to recognize complex patterns may

be beneficial for forecasting.

A typical convolutional Neural Network is presented in the figure below.

Figure 8. A Typical representation of Convolutional Neural Network model

31 | P a g e

𝑉𝑡−2

𝑊 𝑊 𝑊 𝑊 𝑊

ℎ

𝑈𝑡−2 𝑈𝑡−1 𝑈𝑡 𝑈𝑡+1

𝑉𝑡−2 𝑉𝑡−2 𝑉𝑡−2

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are networks of neuron-like nodes arranged into subsequent layers,

analogous to regular Neural Networks in architecture. Neurons are classified into input, hidden, and

output layers, much as in standard Neural Networks. Each neuronal connection has a trainable weight

associated with it.

The distinction is that each neuron is allocated to a particular time step. The neurons in the hidden

layer are also forwarded in a time-dependent direction, which ensures that each of them is totally

linked only to the neurons in the hidden layer with the same allocated time step, and is connected to

any neuron assigned to the next time step by a one-way link. This results that the activation of the

neurons is calculated in time order so the output of one-time step's hidden layer is part of the input

of the next time step. At any given time-step, only the neurons assigned to that time step compute

their activation.

The architecture of a typical RNN is described below:

Where 𝑥𝑡 is the values of the input timeseries that are connected only through the weights 𝑈𝑡 with

the hidden layer that correspond to the same instance 𝑡. �̂�𝑡 denotes the output of the network. The

hidden layer is linked with the output layer through the weight 𝑉𝑡 and it is connected with its neighbor

nodes of the hidden layer through the weights 𝑊. The hidden state of the network is represented as

ℎ𝑡, which marks a type of memory of the network and it is computed from all previous values, up to

the current moment 𝑡.

𝑥𝑡−2 𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1

�̂�𝑡−2 �̂�𝑡−1 �̂�𝑡 �̂�𝑡+1

ℎ𝑡−2 ℎ𝑡−1

ℎ𝑡

ℎ𝑡+1

Input Layer

Output Layer

Hidden Layer

Figure 9. A Typical representation of a Recurrent Neural Network

32 | P a g e

The hidden state and the output of the network are given from the equation below:

ℎ𝑡 = 𝜎1(𝑊ℎ𝑡−1 + 𝑈𝑡𝑥𝑡)

�̂�𝑡 = 𝜎2(𝑉𝑡ℎ𝑡)

The learning process' aim is to find the best weight matrices 𝑈 , 𝑉 , and 𝑊 that provide the best

prediction of 𝑦(𝑡) of the real value 𝑦(𝑡) starting from the input 𝑥(𝑡). Similar to feed forward Neural

Networks, the way to achieve that is through backpropagation algorithm. Let us consider a cost

function 𝐿. The model will calculate the contribution of its weight for the output value, by employing

partial derivatives and then adjust the weights accordingly, in order to minimize 𝐿. The partial

derivatives that will be computed are the followings:

𝜕𝐿

𝜕𝑊
=
𝜕𝐿

𝜕�̂�𝑡

𝜕�̂�𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕𝑊

=
𝜕𝐿

𝜕�̂�𝑡
∙ (𝜎

2
′
∙ 𝑉𝑡) (𝜎1

′ ∙ ℎ𝑡−1)

𝜕𝐿

𝜕𝑈𝑡
=
𝜕𝐿

𝜕�̂�𝑡

𝜕�̂�𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕𝑈𝑡

=
𝜕𝐿

𝜕�̂�𝑡
∙ (𝜎

2
′
∙ 𝑉𝑡)(𝜎1

′ ∙ 𝑥𝑡)

𝜕𝐿

𝜕𝑉𝑡
=
𝜕𝐿

𝜕�̂�𝑡

𝜕�̂�𝑡
𝜕𝑉𝑡

=
𝜕𝐿

𝜕�̂�𝑡
∙ (𝜎

2
′
∙ ℎ𝑡)

The corresponding updates of the weights will be given from:

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑊𝑜𝑙𝑑

𝑈𝑛𝑒𝑤 = 𝑈𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑈𝑜𝑙𝑑

𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑉𝑜𝑙𝑑

Recurrent Neural Networks often suffer from exploding gradient or vanishing gradient problems as a

result of their dependence on several partial derivatives, especially the
𝜕𝐿

𝜕𝑊
 that is related to ℎ𝑡−1 and

by extend to previous inputs.

33 | P a g e

Gated Recurrent Units - GRUs

The evolution of RNNs came with the implementation of Long-Short Term Memory (LSTMs). A variation

of LSTM that effectively managed to elude the issues regarding to the vanishing gradient is the Gated

Recurrent Units (GRUs) and concerns the model that will be employed on this thesis.

The innovation of this model is to use a GRU unit in place of the hidden layer. GRU employs the update

and reset gates to solve the vanishing gradient problem of a regular RNN and LSTM. These two gates

determine what data should be sent to the output. These two gates can be trained to hold information

from several time steps before the actual time step without removing it through time, or to exclude

unnecessary information from the forecast.

Figure 10. GRU unit

The reset gate manages what amount of information should be forgotten whereas update gate

manages what amount of information should be saved. The responses of the reset and update gate

are given the weighed sum of the input 𝑥𝑡 and the memory from the previous unit ℎ𝑡−1:

𝑟𝑡 = 𝜎(𝑥𝑡𝑈𝑟 + ℎ𝑡−1𝑊𝑟)

𝑧𝑡 = 𝜎(𝑥𝑡𝑈𝑧 + ℎ𝑡−1𝑊𝑧)

The memory ℎ𝑡 of the unit is calculated firstly by computing a “current memory” parameter (ℎ�̃�) which

ignores the response 𝑧𝑡, and then take it into account for the calculation of the final memory ℎ𝑡.

34 | P a g e

ℎ�̃� = tanh(xtUh + (rt ∗ ht−1)Wh)

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ�̃�

Where ∗ indicates a multiplication element by element.

35 | P a g e

 Methodology

Dataset
For the purposes of this thesis 4 different datasets were employed. Both datasets concern timeseries

of wind elements and other related meteorological parameters that were estimated from

meteorological stations located for several heights and positions in wind farms across Greece. The

dataset’s main differences are traced in the sample step, in the locations of the wind farms and in the

amount of parameters possessed.

Dataset 1 – Loupounaria (1 hour)

The first dataset concerns a wind farm located in Loupounaria in Greece. The values were measured

with a sampling step of 1 hour and the total amount of instances reaches 7768. The timeseries involve

a time period that extends from 29th of May 2019 (00:00) to 31th of May 2020 (22:00).

There are 38 variables in the dataset and they are the followings:

 Time1: The moment for each observation in a DD-MM-YY HH:MM format

 (W1Speed10 - W1Dir10) - (W5Speed10 – W5Dir10): the Wind speed [m/s] and direction

[Degrees] estimated from meteo services. The first number next to W (1-5) denotes a different

location and the number at the end (10,80) denotes the height of a given meteorological

station in meters.

 (W1Speed80 - W1Dir80) - (W5Speed80 – W5Dir80)

 (D1flux, W1Dens) - (D5flux, W5Dens): The airflow flux and density estimated from meteo

services

 LouNRG: The energy generated from the wind farm

 LouDIR, LouWSav: The average of the actual direction and wind speed measured by

anemometers installed in the wind turbines.

 NRGsc, LouWSsc: Scaled values of LouNRG, LouWSav between 0 and 1.

 LouDIR2, LouWSsc2, NRGsc2: Scaled values of LouDIR, LouWSav and LouNRG between 0 and

1.

36 | P a g e

Some basic statistical properties of the dataset are presented in the table below:

 mean Std min max

W(1-5)Speed10 5.476527 3.954184 0.058727 23.95064

W(1-5)Dir10 167.8802 127.7819 0.05477 359.9649

D(1-5)flux 218.3796 310.6143 0 1032.608

W(1-5)Dens 1.113748 0.034887 1.033094 1.20655

W(1-5)Speed80 7.614136 5.091163 0.07226 29.72372

W(1-5)Dir80 167.8281 127.7683 0.027986 359.9705

LouNRG 166.4486 188.2134 -7.58333 550.3333

LouDIR 121.6993 104.1129 -6.5 550.1667

LouWSav 7.063066 4.572681 0.241667 25.01667

NRGsc 0.33698 0.324506 0.036925 0.998851

LouWSsc 0.281397 0.182179 0.009628 0.99668

Table 1. Table of statistical properties of the Dataset Loupounaria, Sampling Step: [1 hour]

Note that the prefix 𝑊(1 − 5) represents the average of a certain variable over all the different

locations.

Dataset 2 – Trikorfo (1 hour)

The second dataset concerns a wind farm located in Trikorfo in Greece. The values were measured

with a sampling step of 1 hour and the total amount of instances reaches 7745. The timeseries involve

a time period that extends from 29th of May 2019 (00:00) to 31th of May 2020 (23:00).

There are 38 variables in the dataset and they are the followings:

 Time1: The moment for each observation in a DD-MM-YY HH:MM format

 (W1Speed10 - W1Dir10) - (W5Speed10 – W5Dir10): the Wind speed [m/s] and direction

[Degrees] estimated from meteo services. The first number next to W (1-5) denotes a different

location and the number at the end (10,80) denotes the height of a given meteorological

station in meters.

 (W1Speed80 - W1Dir80) - (W5Speed80 – W5Dir80)

 (D1flux, W1Dens) - (D5flux, W5Dens): The airflow flux and density estimated from meteo

services

 TriNRG: The energy generated from the wind farm

 TriDIR, TriWSav: The average of the actual direction and wind speed measured by

anemometers installed in the wind turbines.

37 | P a g e

 NRGsc, TriWSsc: Scaled values of LouNRG, LouWSav between 0 and 1.

 TriDIR2, TriWSsc2, NRGsc2: Scaled values of LouDIR, LouWSav and LouNRG between 0 and 1.

Some basic statistical properties of the dataset are presented in the table below:

 mean std min max

W(1-5)Speed10 6.718375 4.278848 0.085311 24.39026

W(1-5)Dir10 116.4134 117.1046 0.037314 359.944

D(1-5)flux 216.0778 308.7591 0 1023.651

W(1-5)Dens 1.159659 0.031934 1.087758 1.241597

W(1-5)Speed80 9.459414 5.363492 0.108887 30.15923

W(1-5)Dir80 116.4219 117.1067 0.022345 359.9198

TriNRG 223.7224 185.8438 0 533.3611

TriDIR 160.6577 167.6646 0 531.3611

TriWSav 9.713655 5.671272 0.436973 36.41643

NRGsc 0.435728 0.32042 0.05 0.969588

TriWSsc 0.266128 0.155377 0.011972 0.99771

TriWSsc2 0.266331 0.155121 0.011972 0.99771

NRGsc2 0.435682 0.320426 0.05 0.969588
Table 2. Table of statistical properties of the Dataset Trikorfo, Sampling Step: [1 hour]

Note that the prefix 𝑊(1 − 5) represents the average of a certain variable over all the different

locations.

Dataset 3 – Flabouro (1 hour)

The second dataset concerns a wind farm located in Flabouro in Greece. The values were measured

with a sampling step of 1 hour and the total amount of instances reaches 7768. The timeseries involve

a time period that extends from 29th of May 2019 (00:00) to 31th of May 2020 (22:00).

There are 38 variables in the dataset and they are the followings:

 Time1: The moment for each observation in a DD-MM-YY HH:MM format

 (W1Speed10 - W1Dir10) - (W5Speed10 – W5Dir10): the Wind speed [m/s] and direction

[Degrees] estimated from meteo services. The first number next to W (1-5) denotes a different

location and the number at the end (10,80) denotes the height of a given meteorological

station in meters.

 (W1Speed80 - W1Dir80) - (W5Speed80 – W5Dir80)

 (D1flux, W1Dens) - (D5flux, W5Dens): The airflow flux and density estimated from meteo

services

38 | P a g e

 FlampNRG: The energy generated from the wind farm

 FlampDIR, FlampWSav: The average of the actual direction and wind speed measured by

anemometers installed in the wind turbines.

 NRGsc, FlampWSsc: Scaled values of LouNRG, LouWSav between 0 and 1.

 FlampDIR2, FlampWSsc2, NRGsc2: Scaled values of LouDIR, LouWSav and LouNRG between

0 and 1.

Some basic statistical properties of the dataset are presented in the table below:

 mean std min max

W(1-5)Speed10 5.820632 3.848273 0.063286 22.41084

W(1-5)Dir10 105.072 98.7736 0.104822 359.945

D(1-5)flux 188.9153 282.6418 0 1013.407

W(1-5)Dens 1.148394 0.037633 1.064799 1.240231

W(1-5)Speed80 8.23178 4.904303 0.079013 27.53922

W(1-5)Dir80 105.0339 98.73798 0.097787 359.957

FlampNRG 216.056 200.1024 -4.97681 575.119

FlampDIR 122.6803 100.8688 0 575.119

FlampWSav 7.437408 4.072574 0.45625 28.00417

NRGsc 0.42251 0.345004 0.041419 1.041585

FlampWSsc 0.264676 0.144931 0.016237 0.99659

FlampWSsc2 0.264846 0.146087 0.016237 0.99659

NRGsc2 0.422457 0.345008 0.041419 1.041585

FlampDIR2 122.6369 100.7378 0 575.119
Table 3. Table of statistical properties of the Dataset Flampouro, Sampling Step: [1 hour]

Note that the prefix 𝑊(1 − 5) represents the average of a certain variable over all the different

locations.

Dataset 4 – Loupounaria (10 minutes)

Regarding the second dataset the values were measured with a sampling step of 10 minutes and the

total amount of instances reaches 50960.

There are 139 variables in the current dataset and they are the followings:

 S4WSpeed80ave – S129WSpeed80ave: The averaged wind speeds at 80m height for

consecutive 10 min instants and for different locations in the grid (S4, S8, etc).

 S4WSpeed80ave5 – S129WSpeed80ave5: The averaged wind speeds raised to the

fifth power.

 S4WSpeed80diff – S129WSpeed80diff: The differences in wind speeds at 80m for different

locations in the grid (S4, S8, etc)

39 | P a g e

 sDIR80S1WSpeed80ave - sDIR80S129WSpeed80ave: The averages of sines of predicted wind

direction at 80m for different locations in the grid (S4, S8, etc)

 cDIR80S1WSpeed80ave - cDIR80S129WSpeed80ave: The averages of cosines of predicted

wind direction at 80m height for different locations in the grid (S4, S8, etc)

 sDIR80S1WSpeed80 - sDIR80S129WSpeed80: The differences of sines of predicted wind

direction at 80m height for different locations in the grid (S4, S8, etc)

 cDIR80S1WSpeed80 - cDIR80S129WSpeed80: The differences of cosines of predicted wind

direction at 80m height for different locations in the grid (S4, S8, etc)

 DENSS1WSpeed80ave: The averaged wind density at location 1

 DENSS1WSpeed80diff - DENSS129WSpeed80diff: The differences of wind densities for

different locations in the grid (S4, S8, etc)

 y1: the scaled energy output

 z1: the scaled average wind speed in the wind farm

Some basic statistical properties of the dataset are presented in the table below:

 mean Std min max

S(4-129)WSpeed80ave 0.011811 1.005798 -1.49344 5.198519

S(4-129)WSpeed80ave5 0.005787 1.014549 -0.23054 31.2948

S(4-129)WSpeed80diff -0.0002 0.998691 -23.8821 22.83789

sDIR80S(4-129)WSpeed80ave 0.006278 0.562414 -0.99998 0.999972

cDIR80S(4-129)WSpeed80ave 0.007398 0.561204 -0.99997 0.999949

sDIR80S(4-129)WSpeed80 -1.19E-05 0.858858 -1.99976 1.999797

cDIR80S(4-129)WSpeed80 -3.69E-05 0.857486 -1.99978 1.999843

DENSS(4-129)WSpeed80diff 0.001014 0.998608 -22.0729 28.41918

DENSS1WSpeed80ave 0.016659 1.009039 -2.36356 2.675584

y1 0.291565 0.341919 2.10E-05 0.996396

z1 0.232304 0.152418 0.003333 0.931667

Table 4. Table of statistical properties of the Dataset Loupounaria, Sampling Step: [10 minutes]

40 | P a g e

Neural Network Architectures

For the purposes of this work 3 different Neural Network Architecture were proposed.

Model 1 - GRUs

The first model is composed out 100 GRUs, a Dropout layer and an output node as it is shown below:

Model 2 – GRUs Stacked

The second model is composed out of 4 layers of GRUs and Dropout layers in between them, with 1

output node at the end. The model is presented below:

Model 1 (GRUs)

Input

Layer
Input Nodes

1st Layer

100 units of GRUs

2nd Layer

Dropout 20%

Output

Layer

Dense Layer (1 Node)

Model 2 (GRUs Stacked)

Input

Layer
Input Nodes

1st Layer

32 units of GRUs

Figure 11. Representation of the NN Architecture: GRUs

41 | P a g e

Model 3 – GRUs Convolutional

The third model is composed out of a 1Dimensional Convolutional Layer, a max pooling layer, a GRU

Layer, a Flatten Layer, 2 Dense Layers and the output Layer. The model is presented below:

2nd Layer

Dropout 20%

3rd Layer

30 units of GRUs

6th Layer

Dropout 20%

7th Layer

30 units of GRUs

8th Layer

Dropout 20%

Output

Layer

Dense Layer (1 Node)

4th Layer

Dropout 20%

5th Layer

30 units of GRUs

Model 3 (GRUs & Convolutional)

Input

Layer
Input Nodes

Figure 12. Representation of the NN Architecture: GRUs Stacked

42 | P a g e

ReLu

ReLu

ReLu

Study

The aim of this thesis is to forecast the scaled wind speed and investigate the limits of the estimations

regarding the prediction horizon. We will employ different datasets and implementing different

preprocessing techniques and Neural Network Architectures in order to study the effects of each of

those parameters in the forecast and make comparisons.

The first step is to select a dataset and apply preprocessing and feature extraction techniques. For the

preprocessing we considered 3 different paths: (a) perform robust scaler and leave the data as they

are (Vanilla), (b) perform robust scaler and then apply a Gaussian filter with a standard deviation of 4

(Smoothed), or (c) perform robust scaler and then implement data augmentation by adding noise as

proposed in the section above (Data Augmentation). Note that for dataset 4 the variables were

previously scaled.

1st Layer

1D Convolutional Layer (15 filters, kernel size: 2)

2nd Layer

Max Pooling (Pool size: 2)

3rd Layer

50 units of GRUs

4th Layer

Flatten Layer

5th Layer

Dense Layer (100 Nodes)

6th Layer

Dense Layer (50 Nodes)

Output

Layer

Dense Layer (1 Node)

 Figure 13. Representation of the NN Architecture: GRUs Convolutional

43 | P a g e

Regarding feature engineering, previous studies of the current problem have shown that by

introducing some additional variables of the 3rd or the 5th power of the wind speed improves the

performance of the NN models. Moreover, variables other than the wind speed have been proven to

have a minor contribution to the quality of the prediction. Wind turbines are usually programmed to

rotate with respect to the wind direction of the current moment, thus the effect of the wind direction

is insignificant as well. Nevertheless, for the datasets 1 – 3 we took the variable of the wind direction

into consideration, in contrast with dataset 4. For the datasets 1 – 3 we substituted the variables of

wind speed and wind direction into a vector format as shown below:

𝑤𝑆𝑝𝑒𝑒𝑑 [
𝑚

𝑠
] = (

3.6
4.2
⋮
1.9

)

𝜃𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛[𝑟𝑎𝑑] = (

0.5
4.3
⋮
5.9

)

}

𝑤𝑥 = 𝑤𝑠𝑝𝑒𝑒𝑑 ∙ cos(𝜃)

𝑤𝑦 = 𝑤𝑠𝑝𝑒𝑒𝑑 ∙ sin(𝜃)
→

 𝑤𝑥 = (

3.1
−1.7
⋮
1.7

)

 𝑤𝑦 = (

1.7
−3.8
⋮

−0.7

)

The time variable was implemented only for the first 3 datasets.

For Datasets 0 – 3 the target variables are LouWSsc, TriWSsc and FlampWSsc respectively. The

training variables are the followings:

𝑊1_𝑥_10 𝑊1_𝑦_10 𝑊1_𝑝𝑜𝑤3_10 𝑊1_𝑥_80 𝑊1_𝑦_80 𝑊1_𝑝𝑜𝑤3_80 … 𝑊5_𝑥_80 𝑊5_𝑦_80 𝑊5_𝑝𝑜𝑤3_80

For Datasets 4 the target variable is z1, whereas the training variables are the followings:

𝑆4𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒 … 𝑆129𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒 𝑆4𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒5 … 𝑆129𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒5

The next step is to slice the dataset into windows in order to feed it to the neural network models. The

input window was determined to contain values of a whole day (24 hours). Therefore, for datasets 1

– 3 the input window contained 24 values whereas for dataset 4 the window contained 144 values

(6[10𝑚𝑖𝑛] ∙ 24[ℎ𝑜𝑢𝑟𝑠]) . The target window contained only 1 value. Then for a given distance

between the input and the output windows, we trained the NN models. The distance defines the depth

of the prediction horizon, i.e. how far into the future the forecast is performed. By changing the

distance and retraining the models, and then saving the relative and absolute errors of each prediction,

we investigate the limits of our forecasting models. In this study the distance ranged from 0 to 24

hours.

Lastly, the hyperparameters that were used for training are presented below:

 Optimizer: Adams

44 | P a g e

 Number of Epochs: 30

 Loss function: Mean Absolute Error

 Batch Size: 50

 Early Stopping: Yes, patience: 15 epochs

The Loss function of the NNs is MAE, however a more realistic indication of the quality of the forecast

will be given from the relative absolute error:

𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑀𝐴𝐸

1
𝑁
∑ |𝑦𝑖 − 𝜇|
𝑁
𝑖=1

Where μ indicates the mean value of the set.

Results

An Illustration of the Quality of the Predictions with Respect to the
Relative Error
Before diving into the exploration of the predicted horizon we should first get familiar with the concept

of Relative Error and how does it relate to the quality of the prediction. In this section we will present

some examples of timeseries from the dataset Loupounaria (1 Hour) by the GRU Stacked Architecture,

and its corresponding predictions for typical values of relative error. The predictions were performed

on the test set of the dataset according to different preprocessing techniques that were employed

(Vanilla, Smoothed and Data augmentation). The graphs illustrate the quality of the predictions with

respect to the relative error. The relative error was calculated from the test set of each Dataset.

Firstly, the graphs with the Vanilla preprocessing are presented:

Figure 14. Forecast: 1 [Hours], Preprocessing Technique: Vanilla, NN Architecture: GRUs

45 | P a g e

The blue line indicates the true values of the timeseries, whereas the orange line represents the

predictions.

Figure 16. Forecast: 6 [Hours] , Preprocessing Technique: Vanilla, NN Architecture: GRUs

Figure 15. Forecast: 11 [Hours] , Preprocessing Technique: Vanilla, NN Architecture: GRUs

46 | P a g e

The graphs that correspond to the Smoothed Preprocessing are depicted below:

Figure 17. Forecast: 1 [Hours] , Preprocessing Technique: Smoothed, NN Architecture: GRUs

Figure 18. Forecast: 6 [Hours] , Preprocessing Technique: Smoothed, NN Architecture: GRUs

47 | P a g e

Note that for the graphs that correspond to the smoothed preprocessing technique, the model was

initially trained in a smoothed timeseries Therefore, the predictions (orange) were produced by

receiving as input the smoothed true values (green) as well. However, the error was calculated with

respect to the original true values (blue) with no smoothing implemented.

The graphs that correspond to the Data Augmentation preprocessing technique are presented below:

Figure 19. Forecast: 11 [Hours] , Preprocessing Technique: Smoothed, NN Architecture: GRUs

Figure 20. Forecast: 1 [Hours] , Preprocessing Technique: Data Augmentation, NN Architecture: GRUs

48 | P a g e

For the graphs that correspond to the Data Augmentation preprocessing technique, the model was

initially trained in a combined set of original and augmented data. The Augmented Data were only

used to increase the amount of the training set and they have no purpose whatsoever in evaluating

the predictions. Therefore, the test set only contained the true values (blue) with no data

Figure 21. Forecast: 6 [Hours] , Preprocessing Technique: Data Augmentation, NN Architecture: GRUs

Figure 22. Forecast: 11 [Hours] , Preprocessing Technique: Data Augmentation, NN Architecture: GRUs

49 | P a g e

augmentation implemented. Given that as an input the predictions (orange) were evaluated with

respect to the original true values (blue).

Comparison of Preprocessing Techniques

We will first present the graphs of Relative Error in relation to Prediction Horizon that illustrate a clear

comparison between the preprocessing techniques that were employed. Each set of graphs represents

a different dataset (Flampouro, Loupounaria or Trikorfo) and contains 3 graphs which each represents

a different NN Architecture (GRU, GRUs Stacked or GRUs Convolutional). In every graph, 3 lines are

depicted for each preprocessing technique respectively (Vanilla, Smoothed and Data augmentation).

Figure 23. Comparison of Preprocessing Techniques: Dataset Loupounaria

Figure 24. Comparison of Preprocessing Techniques: Dataset Flampouro

50 | P a g e

The index Time of x-axis denotes the time of the forecast. If the distance between the target value and

the window is zero, then the prediction has been made for 1 Hour ahead into the future.

Comparison of NN Architectures

In this section the graphs of Relative Error in relation to Prediction Horizon will be presented by

comparing the different NNs Architectures (GRU, GRUs Stacked or GRUs Convolutional). Each set of

graphs represents a different dataset (Flampouro, Loupounaria or Trikorfo) and contains 3 graphs

which each represents a different preprocessing technique respectively (Vanilla, Smoothed and Data

augmentation). In every graph, 3 lines are depicted for each NN Architecture respectively (GRU, GRUs

Stacked or GRUs Convolutional).

Figure 25. Comparison of Preprocessing Techniques: Dataset Trikorfo

Figure 26. Comparison of NN Architectures: Techniques: Dataset Loupounaria

51 | P a g e

Comparison of Sampling Steps

In this section a comparison between Datasets with different sampling steps will be presented. For

this purpose, let us consider the Dataset – 4, Loupounaria (Sampling Step: 10 min). The examination

of the forecast horizon will be made by employing 3 different NN Architectures (GRU, GRUs Stacked

or GRUs Convolutional) and 2 different preprocessing techniques (Vanilla and Smoothed). Moreover,

the same experiments will be conducted by considering a new dataset which will be created by

calculating the average of every 6 instances of wind speed from Dataset – 4. This will simulate a

transformation in the dataset’s sampling step, from 10 min to 1 hour.

Figure 28. Comparison of NN Architectures: Techniques: Dataset Flampouro

Figure 27. Comparison of NN Architectures: Techniques: Dataset Trikorfo

52 | P a g e

Firstly, two sets of graphs will be presented each corresponding for a different preprocessing

technique. Each set will contain 3 graphs, each representing a different NN Architecture respectively.

In every graph, 2 lines are depicted symbolizing the forecast horizon for Loupounaria (Sampling Step:

10 min) and Loupounaria (Sampling Step: 1 Hour).

Figure 29. Comparison of Datasets with different Sampling Steps: Preprocessing Technique - Vanilla

Figure 30. Comparison of Datasets with different Sampling Steps: Preprocessing Technique - Smoothed

53 | P a g e

Transfer Learning

Another approach to the problem is to consider implementing transfer learning. For this purpose,

Datasets 1 – 3 will be sliced in a window format and then they will be combined to create a Generic

type of dataset. This will be used to train a Generic model according to GRUs Stacked Architecture.

Afterwards, the first 6 layers of the generic model, with their corresponding trained weights, will be

used for a specialized model. The parameters of the layers of the generic model will be set to be

constant and not part of training. At the same time 3 more layers (30 GRUs, Dropout – 0.2, Dense Layer

– 1 node) will be added to the specialized model to complete the GRUs Stacked Architecture. The

specialized model will be then train only the last 3 added layers based on a specific dataset

(Loupounaria, Flampouro, Trikorfo).

This strategy aims to first capture a generic dynamic of the timeseries and then train use is to tackle a

more specialized problem of just on dataset. Moreover, the generic model contains 3 times more

instances and therefore has a greater chance of capturing a more generic structure of the data. For

this experiment only Vanilla preprocessing was implemented to Datasets 1 – 3.

Finally, 3 graphs will be presented, each corresponding for a different Dataset (Datasets 1 – 3,

Loupounaria, Flampouro, Trikorfo). In every graph, 2 lines are depicted symbolizing the forecast

horizon of the transfer learning model and another model that was trained according to the same

preprocessing technique (Vanilla) and NN Architecture (GRUs Stacked) but without a implementing

Transfer Learning. The Second model is the one that was used for the sections “comparison of

preprocessing techniques” and “comparison of NN Architectures”. The graphs will show the effects

Transfer Learning in the quality of the predictions, in relation to the initial forecasts.

Figure 31. Transfer Learning: NN Architecture – GRUs Stacked, Preprocessing Technique - Vanilla

54 | P a g e

Comparison to Jena Climate Dataset

In this section we will consider the Jena climate Dataset. Jena climate Dataset is a dataset recorded at

the Weather Station at the Max Planck Institute in Jena, Germany. It contains plenty of atmospheric

features such as Temperature, Pressure, Wind Speed and Direction and more. The timeseries involve

a time period that extends from 2009 to 2016 with a sampling step of 1 hour. The main purpose of the

dataset was to perform Forecast exercises with ANNs approaches. The advantage of this dataset is

that it contains a total amount of 70091 instances, compared to only 7500 in the datasets 1 – 3.

A comparison between Datasets with different amount of observations will be presented. For this

purpose, only the features of wind velocity and direction were considered, from the Jena Climate

Dataset and they were transformed into a vector format (𝑤𝑥 , 𝑤𝑦 , ‖𝑤‖ = √𝑤𝑥2 +𝑤𝑦2). Moreover, 2

preprocessing technique were introduced (Vanilla and Smoothed).

Despite the fact that Jena Climate Dataset involves a completely different location than the ones at

study, it would still be interesting to investigate how the models perform with datasets that contain

10 times more data. Then, a new dataset (Sliced) will be produced, by taking into account only 7500

instances of the Jena Climate Dataset’s and then comparing the models performance with the

performance of the dataset 1 – 3. Supposing that Dataset 1 – 3 perform similar to the Sliced Dataset,

then Jena Dataset with all 70091 observations may be an indicator of how Datasets 1 – 3 would

perform, given enough data.

Finally, 4 graphs will be presented each corresponding for a different preprocessing technique (Vanilla

or Smoothed) and for a different Jena Dataset (Full or Sliced). In every graph, 4 lines are depicted

representing the forecast horizon for Datasets 1 – 3 and Jena Climate Dataset.

Figure 32. Comparison of Jena Climate Dataset with Datasets 1 – 3: NN Architecture – GRUs, Preprocessing Technique - Vanilla

55 | P a g e

Figure 33. Comparison of Jena Climate Dataset with Datasets 1 – 3: NN Architecture – GRUs, Preprocessing Technique - Smoothed

56 | P a g e

Summary & Discussion

From the graphs presented in the section “An Illustration of the Quality of the Predictions with Respect

to the Relative Error” it has been made clear that the relative error is a great indicator of the quality of

the prediction made by the model. In fact, if the relative error is anything above 1, then it seems that

the prediction has no apparent correlation with the True Values timeseries. For the purposes of this

study consider that any forecast with a relative error of 8.5 and higher is considered unreliable.

By examining the Forecast horizon graphs, it is obvious that in all cases the relative error increases

with respect to the depth of the prediction. The rate of the increase may vary depending on different

Datasets, preprocessing techniques, the amount of data and more. This was expected due to the

stochastic and chaotic behavior of the window velocity’s timeseries. According to the graphs, almost

all models were unable to predict accurately the wind velocity approximately after 10 – 12 hours.

Regarding the Comparison of Preprocessing Techniques, it seems that the Smoothed strategy

performed significantly better that the other two. When the smoothed technique was implemented,

the model was able to capture better the Dynamical Structure of the Data, even for long term forecasts

(10 – 12 hours) and by extend to perform more robust predictions. The relative errors increased

significantly slower compared to the other Preprocessing techniques, from 𝑅𝐸 = 0.4 − 0.6 for one to

six hours ahead, to 𝑅𝐸 = 8.5 for 10 – 12 hours ahead. As for the Vanilla and Data Augmentation

strategies, the relative error also begins at 0.4 - 0.6, however it soon rises to 8.5 for 4 – 6 hours into

the future. Overall, it seems that Vanilla preprocessing technique performs slightly better. This

indicates that the augmented data may be similar enough to the non-augmented data, which leads to

overfitting.

By comparing the NN Architectures, it seems that GRUs and GRUs Stacked perform very similar to each

other for short and long term forecasts. On the other hand, GRU Convolutional Architecture generates

a higher relative error by a factor of 1, for short term predictions, in contrast with the other 2 models.

It could be possible that the max pooling layer removes important information about the structure of

the timeseries or alternatively that the amount of data that are contained in the input window are not

enough for a convolutional NN to function accurately. For long term predictions (after 12 hours) all

models generated equally poor forecasts.

By examining the graphs that compare the Datasets 1 and 4 with different sampling steps, no clear

conclusions can be extracted as it seems to be no systematic differences between the performances

of the specific models. The initial expectation that a smaller sampling step should correspond to better

quality predictions, appears to be mistaken. For stochastic timeseries, a smaller sampling step may

lead to greater content of noise. In that case the model may need more data in order to sufficiently

capture the dynamics of the timeseries.

57 | P a g e

Concerning, the transfer learning approach, it is shown that both the transfer learning model and the

original model, that did not involve transfer learning, perform exactly the same for a forecast horizon

up to 7 hours. Predictions subsequent to 7 hours have been considered unreliable as the relative error

is above 8.5. Nonetheless, transfer learning seems to be more robust for long term forecasts by

retaining the relative error between 1 and 1.2, relative to original predictions that show a significant

increase in the relative error, up to 1.2 or higher. This is anticipated due to the fact that transfer

learning model had access to considerably more data, and therefore approached more accurately the

stochastic nature of the timeseries.

Finally, regarding the graphs that present the forecast horizon of the Jena climate Dataset indicate a

great similarity with the performance of the Datasets 1 -3 when Jena Dataset’s observations were

reduced to 7500, similar to the amount of data contained in the available datasets. When Jena Dataset

had all the observations at its disposal (70091) the model performed noticeably better, producing

more robust long term forecasts. This could suggest a potential increase in forecast accuracy if more

observations are added to the datasets at hand.

With the advances in the field of Machine Learning more progressive models are created to cope with

problems that involve timeseries forecasts. Architectures like Encoder-Decoder GRUs with attention

technique or Transformers promise more accurate predictions even for chaotic and stochastic data. A

future prospect of the project is to employ more recent models and compare their performance with

the models at study. Moreover, it would be interesting to experiment more in the prospect of transfer

learning by testing the effects of Smooth preprocessing technique, or including more datasets (Jena

Climate Dataset, Dataset – 4) in the generic model. Nevertheless, further research should be

conducted on the matter, as it is crucial not only for meteorological data but also for other time series

measurements.

58 | P a g e

Bibliography
Abbod, Maysam F. 2007. "Application of Artificial Intelligence to the Management of Urological

Cancer." The Journal of Urology 1150–1156.

Abiodun, Oludare Isaac, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Nachaat

Abdelatif Mohamed, and Humaira Arshad. 2018. "State-of-the-art in artificial neural network

applications: A survey." Heliyon.

Bird, Jordan J., Michael George Pritchard, Antonio Fratini, Aniko Ekart, and Diego Faria. 2021.

"Synthetic Biological Signals Machine-generated by GPT-2 improve the Classification of EEG

and EMG through Data Augmentation." IEEE Robotics and Automation Letters 3498–3504.

Bottou, Léon. 1998. "Online Algorithms and Stochastic Approximations." Online Learning and Neural

Networks. Cambridge University Press.

Bottou, Léon, and Olivier Bousquet. 2012. "The Tradeoffs of Large Scale Learning." Cambridge: MIT

Press 351–368.

Brownlee, Jason. 2018. Deep Learning for Time Seris Forecasting.

—. 2020. Introduction to Time Series Forecasting with Python.

—. 2017. Long Short-Term Memory Networks with Python.

Carremans, Bert. 2018. Towards Data Science. https://towardsdatascience.com/handling-overfitting-

in-deep-learning-models-c760ee047c6e.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. " Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation."

Courville, Ian Goodfellow and Yoshua Bengio and Aaron. 2016. "Deep Learning." MIT Press 326.

D Bloice, Marcus, Christof Stocker, and Andreas Holzinger. 2017. " Augmentor: An Image

Augmentation Library for Machine Learning." The Journal of Open Source Software 432.

Drakos, Georgios. 2019. GDCoder What is a Recurrent Neural Networks (RNNS) and Gated Recurrent

Unit (GRUS). https://gdcoder.com/what-is-a-recurrent-neural-networks-rnns-and-gated-

recurrent-unit-grus/.

Duchi, John, Elad Hazan, and Yoram Singer. 2011. "Adaptive subgradient methods for online learning

and stochastic optimization." 2121–2159.

Farley, B.G., and W.A. Clark. 1954. "Simulation of Self-Organizing Systems by Digital Computer." IRE

Transactions on Information Theory 76–84.

Géron, Aurélien. 2017. Hands-On Machine Learning with Scikit-Learn and |Tensor Flow. O’Reilly.

59 | P a g e

Gers, Felix, Jürgen Schmidhuber, and Fred Cummins. 1999. " Learning to Forget: Continual Prediction

with LSTM." Proc. ICANN'99, IEE 850–855.

Graves, Alex, Marcus Liwicki, Santiago Fernandez, Roman Bertolami, Horst Bunke, and Jürgen

Schmidhuber. 2009. " A Novel Connectionist System for Improved Unconstrained

Handwriting Recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence

855–868.

Grus, Joel. 2015. Data Science from Scratch. Sebastopol: O'Reilly.

HANSEN, CASPER. 2019 . Optimizers Explained - Adam, Momentum and Stochastic Gradient Descent.

https://mlfromscratch.com/optimizers-explained/#/.

Hebb, Donald. 1949. "The Organization of Behavior."

Hinton, Geoffrey. 2020. "Lecture 6e rmsprop: Divide the gradient by a running average of its recent

magnitude." 26.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. "Long short-term memory." Neural Computation

1735–1780.

Ioffe, Sergey, and Christian Szegedy. 2015. "Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift."

Kingma, Diederik, and Jimmy Ba. 2014. "Adam: A Method for Stochastic Optimization."

Kleene, S.C. 1956. "Representation of Events in Nerve Nets and Finite Automata." Annals of

Mathematics Studie 3–41.

Li, Xiangang, and Xihong Wu. 2014. "Constructing Long Short-Term Memory based Deep Recurrent

Neural Networks for Large Vocabulary Speech Recognition."

Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. 2013. "Rectifier nonlinearities improve neural

network acoustic models." Proc. ICML. 30 .

McCulloch, Warren, and Walter Pitts. 1943. "A Logical Calculus of Ideas Immanent in Nervous

Activity." Bulletin of Mathematical Biophysics 115–133.

Miljanovic, Milos. 2012. " Comparative analysis of Recurrent and Finite Impulse Response Neural

Networks in Time Series Prediction."

Mills, Terence C. 2019. Applied Time Series Analysis. Loughborough.

O'Haver, T. 2012. Smoothing.

P, Pieter. 2020 . Simple Moving Average. https://tttapa.github.io/Pages/Mathematics/Systems-and-

Control-Theory/Digital-filters/Simple%20Moving%20Average/Simple-Moving-Average.html.

60 | P a g e

RUDER, SEBASTIAN. 2016. An overview of gradient descent optimization algorithms.

https://ruder.io/optimizing-gradient-descent/.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986a. "Learning representations by

back-propagating errors." Nature 533–536.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. "Learning representations by

back-propagating errors." Nature 533–536.

Russell-Puleri, Sparkle. 2019. Gated Recurrent Units explained using matrices: Part 1 Tawards Data

Science . https://towardsdatascience.com/gate-recurrent-units-explained-using-matrices-

part-1-3c781469fc18.

Sak, Hasim, Andrew Senior, and Francoise Beaufays. 2014. "Long Short-Term Memory recurrent

neural network architectures for large scale acoustic modeling."

Shorten, Connor, and Taghi M Khoshgoftaar. 2019. "A survey on Image Data Augmentation for Deep

Learning." Mathematics and Computers in Simulation.

Simonoff, Jeffrey S. 1998. Smoothing Methods in Statistics. 2nd edition. Springer.

2019. Stack Exchange. https://stats.stackexchange.com/questions/320952/data-augmentation-

strategies-for-time-series-forecasting.

Valueva, M.V., N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, and N.I. Chervyakov. 2020. "Application of

the residue number system to reduce hardware costs of the convolutional neural network

implementation." Mathematics and Computers in Simulation. Elsevier .

Williams, Ronald J., Geoffrey E. Hinton, and David E. Rumelhart. 1986. "Learning representations by

back-propagating errors." Nature 533–536.

