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Abstract 
Environmental concerns have encouraged the adoption of renewable energy alternatives to reduce 

greenhouse gas emissions across the world. As a consequence of that wind farms have been installed 

in several locations across Greece for the production of wind power. Wind farm management and 

control, power distribution planning, storage capacity management, and system's dependability, all 

benefit from reliable wind speed forecasts. 

In this thesis, the problem of the wind speed forecast has been approached through different 

preprocessing techniques, that involve scaling, smoothening or data augmentation, as well as Artificial 

Neural Network models that are based on Gated Recurrent Units (GRUs). Moreover, comparisons were 

made for different Datasets with consisting of various sampling steps and Datasets, such as Jena 

Climate, that contain significantly more observations.  

The comparisons that were made for the preprocessing techniques indicated that the smoothening 

approach managed to capture more accurately the dynamic structure of the data and perform robust 

predictions, even for up to 10 – 12 hours ahead. At the same time, the different Neural Network 

Architectures that were proposed had no significant differences with respect to their performance. 

Comparison between datasets with different sampling steps (1 hour and 10 minutes) indicated no 

systematic differences as a result of the stochastic nature of the timeseries. Transfer Learning strategy 

turned out to behave similarly to the original models for short term predictions, where the long term 

forecasts appeared to be more robust. Jena Climate dataset, may indicate a potential increase in 

accuracy of forecasts with the condition that more observations will be added in the datasets at hand.  
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Introduction 
Timeseries is one of the most widespread types of data. They consist of a large amount of observations 

that possess the property of time progression. Every value corresponds to a specific moment in time 

and thus they are named timeseries. Time progressed data of certain variables is essential to plenty of 

human or natural processes, especially when forecasting is desirable. A typical example is weather 

forecast. Meteorologists collect timeseries of temperature, air pressure, wind velocity and direction, 

along with other variables that play a crucial role in the development of climatic models, and use them 

in order to make predictions into the future.  

The advance of Machine Learning, resolved many real life complex problems in several fields. More 

specifically, it turned out to be very successful in timeseries forecast as it enabled the performance of 

more accurate predictions. Sophisticated models like Artificial Neural Networks are able to capture 

the underlying dynamics of complex systems and estimate their progression in time. 

Furthermore, the demand of renewable energy has been increasing sharply over the recent years. 

Many industries have turned their investments into employing the necessary equipment for 

generating renewable energy, such as wind farms. Commercializing the energy that is produced, 

requires a determination of the price. In the example of the wind farms, it is expected the price should 

be related to the amount of energy that was generated within a day and by extension, the amount of 

air current that was provided in the location of the wind farm. Therefore, industries install 

meteorological stations in several locations and heights off the ground in order to predict the airflow 

of the wind farm for the following hours. Significant errors for such predictions are not desirable as 

they will result into immense variation of the cost. 

The purpose of this work was to apply different Artificial Neural Networks (ANNs) into timeseries of 

wind velocity from several locations of wind farms in Greece and investigate the limits of the 

predictions that can be performed, as well as which ANNs model is more appropriate for this task. A 

significant part of the project was also to perform an exploratory data analysis and a necessary 

preprocessing in order to extract the structure of the data and feed it to the ANNs in a more sufficient 

way. That would enable more accurate predictions of the wind velocity and therefore determining the 

cost of the energy produced by the wind farms in a more precise way. 

Generally, it is expected that the error of the predictions increases as we try to foresee further and 

further into the future. Moreover, as our experience with weather forecast or with the stock market 

indicates, the projections are never fully reliable. This is mainly due to the fact that the systems at 

examination have chaotic behaviors, meaning that the progression of such systems is very sensitive to 

the initial conditions. In the case of this thesis, time series of wind components are very unsystematic 

and contain very little seasonality, making the forecast process extremely challenging.  
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Time Series 
 

Time Series Terminology 
 

Time series is a type of data that describe processes that progress in time. In most of the processes of 

the real world, time is continuous. Time series are created by reconstructing the real continuous signal 

into a discrete one, which can be recorded and stored in a digital form. The sequenced data that are 

created are discrete and the values are separated by a regular time interval 𝛿𝑡.  

For terminology purposes, let us consider a variable 𝐴(𝑡) that progresses in time. A typical example of 

a timeseries for the variable 𝐴 is shown in the figure 1. 

 

On the example above, the variable 𝐴  progresses in a time interval 𝑡𝜖[0,5].   The time distance 

between two adjacent values of the time series is 𝛿𝑡 = 0.1. The observation 𝐴(𝑡) corresponds to the 

value of 𝐴 in the current time 𝑡. It is often desirable to describe observations that were made on a 

previous or on a subsequent moment in time. A moment prior in time is defined as 𝑡 − 𝑛 𝛿𝑡. Where 𝑛 

is the number of time steps that interpose from the current time. In addition, a subsequent moment 

in time is indicated as 𝑡 + 𝑛 𝛿𝑡. Therefore, the corresponding observations of 𝐴(𝑡) are defined as 

𝐴(𝑡 − 𝑛 𝛿𝑡) and 𝐴(𝑡 + 𝑛 𝛿𝑡) respectevly. 

 

 

Figure 1.  An Example of Time Series (Lorenz’s System) 
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Time Series Analysis & Forecasting 
 

Estimating the progression of certain values in time has a major significance in many fields. The 

prediction process involves fitting models into recorded data and then use them for extrapolation. The 

prediction process is mostly known as Time Series Forecasting and it is precisely what we are going to 

employ on this thesis. In time series forecasting, the future values are always inaccessible and the 

accuracy of the forecasting models depends on the deviation of the estimations from the ensuing 

observed data. For optimum forecasting models, one has to determine confidence intervals and most 

of all, the underlying dynamics of the system in study.  

Time series analysis plays a crucial role on the forecasting process. The analysis of the time series aims 

to extract useful information about the structure of the data, the underlying dynamics of the system 

and several statistical characteristics. This is made possible mostly through classical statistics. Time 

series analysis often involves determining Histograms, Frequency Spectrums through Fourier Analysis, 

Mean Values, Standard Deviations, Feature Importance and Outliers.  

Time series analysis produces descriptive models of the dataset at hand that offer a sensitive insight 

of some important components of time series. Some of the most useful components are presented 

below: 

 Level: It is the mean value of the time series. It shows the reference point of the fluctuation 

that takes place. 

 Seasonality: A repeating pattern that makes its appearance over time.  

 Noise: It is often linked with the variability of the time series that it caused by external and 

undetermined factors. 

 Correlation: It indicates the level of association of two adjacent values. 

These components will guide us into what method of forecasting may be more sufficient to apply. They 

will also provide plausible arguments about the limits and the divergence of the predictions. 

 

Components of Time Series Analysis 
 

Fourier Analysis (Frequency Spectrum) 
 

The Fourier Transform (FT) is a tool that is commonly used in spectral estimation and signal processing 

in general.  FT transforms a signal from the time domain to the frequency domain. The idea behind 

this transformation is that every periodic function is a superposition of an infinite sum of cosine 

functions. Non periodic function can in turn be represented using a continuous set of frequencies, i.e. 

through an integral representation (FT). 
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At first let us define the Fourier Transform. Consider an integrable, piecewise continuous function 

𝑥(𝑡), 𝑡 ∈ 𝑅. The FT of this function is defined as: 

𝐹{𝑥(𝑡);𝜔} = 𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

   (1)  

The function 𝑋(𝜔) is a continuous, complex-valued function, and it is called “the Fourier transform of 

x(t)” . 

Τhe Inverse Fourier Transform (IFT) of the function 𝑋(𝜔) results in 𝑥(𝑡): 

𝐹−1{𝛸(𝜔); 𝑡} = 𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞

   (2) 

Although most signals in the real world (e.g. voice signals) are continuous, the way in which they are 

measured, in order to be processed, is digital. Therefore, it is a discrete version of the FT, the Discrete 

Fourier Transform (DFT) that is applied on them, where the integral is replaced by a sum. The reduction 

of a continuous time signals into a discrete one, is called sampling.    

At first, let us consider a continuous signal 𝑎(𝑡) sampled at intervals 𝛥𝑡 (the sampling period). The rate 

at which the signal is sampled is 𝑓𝑠 = 1/𝛥𝑡 and it is called sampling frequency. If the signal’s length is 

𝑇 and 𝑁 is the number of samples, then we have: 

𝑇 = 𝑁 ∙ 𝛥𝑡      (3) 

The sampled signal  can now expressed as  𝑎𝑛 = 𝑎(𝑡𝑛)  ,      𝑡𝑛 = 𝑛𝛥𝑡,         𝑛 = 0,1,… . 𝑁 − 1 .   

The resulting discrete version of the FT, the Discrete Fourier Transform (DFT), has the form:  

𝐴𝑘 = ∑ 𝑎𝑛𝑒
−𝑗
2𝜋𝑘𝑛
𝛮

𝑁−1

𝑛=0

         (4)  

This is a complex valued sum. While the discrete values 𝑎𝑛  correspond to times 𝑡𝑛 = 𝑛𝛥𝑡 , 

𝑛 = 0,1,… , 𝑁 − 1.  The discrete values of 𝐴𝑘  correspond to frequencies 𝑓𝑘 = 𝑘𝛥𝑓, 𝑘 = 0,1,… , 

 𝑁 − 1  , 𝑤ℎ𝑒𝑟𝑒 𝛥𝑓 =
1

𝑇
, or in other words to circular frequencies  𝜔𝑘 = 𝑘𝛥𝜔 where 𝛥𝜔 =

2𝜋

𝛵
. 

The inverse of the Discrete Fourier Transform is in turn defined as: 

𝑎𝑛 =
1

𝑁
∑ 𝐴𝑘𝑒

𝑗2𝜋𝑘𝑛
𝛮

𝑁−1

𝑘=0

         (5) 

 

At this point we are in a position to make an approximation of the discrete sample autospectrum, 

which is designated as: 

Let us consider a discrete time window 𝑤𝑛 = 𝑤(𝑡𝑛)  and 𝑥𝑛 = 𝑥(𝑡𝑛)   𝑤ℎ𝑒𝑟𝑒    𝑡𝑛 = 𝑛𝛥𝑡 𝑎𝑛𝑑 𝑓𝑠 =
1

𝛥𝑡
 , 𝑛 = 0,1,… . 𝑁 − 1  
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𝐴𝑘 = ∑𝑤𝑛𝑥𝑛𝑒
−
𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

     (6) 

�̂�𝑥𝑥
𝑤 (𝜔𝑘) = 𝛥𝑡

2|𝐴𝑘|
2   ,    𝑘 = 0,1,… ,

𝑁

2
      (7) 

 

The calculation of �̂�𝑥𝑥
𝑤 (𝜔𝑘) can be easily and quickly executed using the FFT algorithm. 

 

Histogram 
 

In many cases it is desirable to have an insight about the frequency distribution of the dataset at hand, 

as long as the variables are continuous. One of the most convenient ways to achieve that is through a 

histogram. Histograms are also very valuable for the detection of outliers and skewness. 

In order for a histogram to be constructed, one has to group the data into chosen intervals that are 

called bins. Bins hold the number of occurrences of each value that is included in a given interval. The 

construction of the histogram requires that the bins are not too big, so they are able to distinguish 

significant differences of the values, and at the same time, not too small, so they can capture the 

underlying distribution. 

It is important to note that frequency of the occurrences is given by the area and not the height of 

each bin. However, in many cases bins are equally spaced and therefore the height is an accurate 

indicator of the frequency. 
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Machine Learning & Artificial Neural Networks 
 

Introduction  
 

Machine learning (ML) is a computational process that learns the structure of the data which are 

provided to the computer by adaptive algorithms in order to perform desirable tasks. Machine 

Learning is a part of a more generic field, Artificial Intelligence (AI), that describes the process of 

automating, predicting and optimizing tasks that are typically performed by humans. Artificial Neural 

Networks (ANNs) consist a type of model that is used in machine learning.  

Machine Learning algorithms employ several approaches into the learning process. The most 

important ones are presented below: 

 In Supervised Learning algorithms the data that are used for training are paired with 

corresponding target data, called labels. In these kind of tasks, the goal is to train the 

computer to match up the given input with the corresponding label. Typical examples of 

supervised learning algorithms are regression and classification tasks. 

 In Unsupervised Learning algorithms the data that are used for training are unlabeled. The 

model is constructed using only the inputs. Typical examples of unsupervised learning 

algorithms are Dimensionality Reduction and Clustering. 

 In Reinforcement Learning algorithms agents are used for performing a certain task. Agents 

are rewarded every time they perform the desired task, otherwise they are given penalties. 

Agents attempt to learn the best routine that will guarantee the largest amount of rewards 

over time. 

 

Challenges of Machine Learning 
 

In a Machine Learning project there are two independent parts that have a particular interest. The first 

one is the data and the other is the ML model. Regarding the data, there are a few challenges that may 

arise and need to be addressed before moving to the selection of a suitable model: 

 Insufficient Amount of Data: One of the disadvantages of the existing ML algorithms is that 

they need large amount of data in order to be trained. In many cases the data at hand are not 

adequate for the model to learn successfully from them and perform the anticipated task. A 

typical way to approach this is by implementing data augmentation techniques that basically 

generate pseudo data from the existing ones. Another approach is to apply transfer learning 

from other models with similar tasks that ensured a sufficient amount of data. 
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 Non Representative Data: In some cases, some variables of the dataset at hand are not 

strongly related to the desirable task and therefore complicate the training process. 

Moreover, outliers may detune the learning procedure and prevent it from being generalized. 

Typically, it is advisable to remove these non-representative data.  

 Poor Quality Data: Acquiring data with sufficient quality is not always trivial. There are many 

factors that may contribute to the deterioration of the quality of the observations such as 

defects of the detector, noise of the system, etc. One approach is to remove the erroneous 

observation or replace them with expected values.  

Creating or choosing an appropriate model for training remains a challenging task, one that only with 

proper insight of the dataset’s statistical structure and the underlying dynamics of the system at study, 

could be possible to unravel.  

 

 Dataset split and Overfitting 
 

At this point it is important to state that the significance of Machine Learning algorithms lays on their 

ability to create generalized models that perform the desirable tasks. This means that the models are 

able to approach new instances that were not included in their training process.  

If the model is not sufficiently generalized then overfitting has occurred, meaning that the model is 

unable to perform for new data from the ones that it was trained on. On the other hand, if the model 

is not able to capture the underlying structure of the data, it is called undrefitting. Both pose an equal 

threat to the accuracy of the model employed.   

In order to have an insight of the training process and detect potential abnormalities, like the ones 

described, the dataset is split into three components: the training set, the validation set and the test 

set. The model is initially fitted on a training dataset, which is a set of data used to fit the parameters 

(e.g. weights) of the model. The fitted model is used to make predictions of the elements of the 

validation. The validation dataset provides an unbiased evaluation of a model fit on the training 

dataset. Finally, the test set is a dataset used to provide an unbiased evaluation of a final model fit on 

the training dataset. Validation set offers us an insight of the performance of the model during the 

training process. 

A clear indication of overfitting is when the error of the training set reduces while the error of the 

validation set rises. Overfitting typically occurs when there is not sufficient amount of data at hand, 

when the parameters of the model are excessively more than the amount of data at hand, and more. 

Conversely, if both the training and validation error have not dropped adequately indicates 

undrefitting.  
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A representative example of overfitting is presented on the figure below: 

Undrefitting is usually resolved by extending the training process for more iterations. Regarding the 

Overfitting there are many computational techniques that could assure a satisfactory generalization 

of the model. Early Stopping is a very convenient way to elude overfitting as it interrupts the training 

process when the validation error starts rising and then saves the parameters of the models that 

ensured the best performance. Implementing L1 and L2 Regularizations is another approach. The 

Regularization technique penalizes the loss function of the model and in the case of ANNs, it limits the 

weight connections of Neurons. Dropout, is another technique commonly used for ANNs, in which 

there is a probability p for each neuron at every training step to be temporarily excluded from the 

training process and therefore reducing the complexity of the model. Finally, Max-Norm regularization 

is another way to combat overfitting in ANNs. In Max-Norm regularization, an upper bound of the 

weight of each neuron is imposed such that ‖𝑤‖2 ≤ 𝑟, where r is the max-norm hyperparameter and 

‖∙‖2 is the ℓ2 norm.  

 

Preprocessing and Feature Engineering 
 

In many cases raw data contain many inconsistencies and errors or lack of certain necessary trends. 

As a result, these properties prevent the ML model to properly assimilate the structure of the data and 

therefore complete their desirable task. Preprocessing is the practice of handling such abnormalities 

and therefore transforming the raw data into a more meaningful set. This includes Normalizing and 

Scaling the raw data, dealing with missing values or applying Filters and implementing Data 

Augmentation techniques. Feature Engineering, on the other hand, is the process of using domain 

knowledge in order to transform existing features into new ones that would contain more meaningful 

Figure 2. Example of Overfitting [ ] 
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information for the model. A brief introduction to some of the most common techniques of 

Preprocessing and Feature Engineering will be discussed below.  

 

Normalization  
 

Normalization is a scaling technique in which the data are scaled to have a unit norm. Algorithms 

that do not assume a specific type of distribution (e.g. Neural Networks) may benefit significantly 

from that process. There are two common methods for normalization:  

 Maximum Normalizer: Through this method the data are normalized by applying the 

transformation: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥

max(𝑥)
 

 Where 𝑥𝑛𝑜𝑟𝑚 is the normalized value and 𝑥 is the value of the sample before normalization. 

 ℓ1 Normalizer: Through this method the data are normalized by applying the 

transformation: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥

∑ |𝑥𝑖|
𝑁
𝑖=1

 

Where 𝑁 is the length of the vector that contains all the instances, 𝑥𝑖, and it is about to get 

normalized.  

 

Scalers 
 

Scaling is a technique that aims to set a common scale to features without altering differences in the 

ranges of values. In some cases, this is extremely helpful as it allows a more accurate comparison of 

the corresponding data. Models that employ Gradient Descent as an optimizing method, such as ANNs, 

may require scaling since it provides an important boost in the convergence towards the minimum. 

Some of the most representative scalers are introduced below: 

 Min-Max Scaler: Through this method the values of the samples are confined in a range 

between 0 and 1 by applying the transformation: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥  − 𝑥𝑚𝑖𝑛

 

Where 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled value, 𝑥 is the value of the sample before scaling and 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛 

are the maximum and minimum values of the dataset before scaling. 
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This transformation conserves the distribution of the data and is has a high sensitivity with 

outliers. 

 Absolute Maximum Scaler: Similar to the Min-Max Scaler, the data are ranged between -1 and 

1 by applying the transformation: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 

max(|𝑥|)
  

This transformation is based on the absolute maximum, as the name implies. It also preserves 

the distribution of the data and is has a high sensitivity with outliers. 

 Standard Scaler (z-score Normalization): This scaler sets the mean value of the data to zero 

and its standard deviation to one by applying the following transformation:  

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − �̅� 

𝜎
  

 Where �̅� is the mean value and 𝜎 is the standard deviation of the data before scaling. 

This transformation does not set a certain range to the values of the data as it is based on the 

𝜎  of the dataset. It can be useful for datasets that are approximately described with a 

Gaussian distribution. 

 Robust Scaler: Similar to Standard Scaler, this scaler sets the mean value of the data to zero 

and its standard deviation to one while neglecting the effect of outliers. It accomplishes that 

by applying the following transformation: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) 

𝑄75 − 𝑄25
  

Where 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) is the median value. 𝑄75 and 𝑄25 are the 75th and 25th percentiles of the 

distribution of the data before scaling. The corresponding subtraction is the known as 

interquartile range (IQR). 

This transformation has not a predetermined range of values and it can be a very powerful 

tool when outliers are present.   

As a general rule, it is preferable to fit the Scaler into the training set and then apply it on the test set, 

in order to avoid any leakage of information that would affect the model’s evaluation of the training. 

 

 

 

 

https://en.wikipedia.org/wiki/Interquartile_range
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Numerical and Categorical Features  
 

There are two general categories that features of the dataset are often classified into: Numerical and 

Categorical Features. If a house for example is an apartment or a detached house, that would be a 

categorical feature. On the other hand, the price of a given residence is a numerical feature.  

Categorical features are often considered problematic in their raw form, as they cannot be processed 

as word statements from ML models. Thus, they need to be transformed into numerical features. The 

most popular approach is to employ the one-hot-encoder strategy, in which every category is 

represented by a vector as shown below: 

Apartment →  (
1
0
0
)       Detached House →  (

0
1
0
)          𝑉𝑖𝑙𝑙𝑎 →  (

0
0
1
)  

In this way the model is able to differentiate the provided categorical features and incorporate them 

for training. 

Numerical features, on the contrast, can be implemented into the ML model in their raw form. 

However, there are cases were the corresponding features require certain transformations in order to 

be best grasped by the algorithm. Typical examples are features with periodic conditions such as the 

date, time and angles. The key idea is that certain transformations, like the sin (𝑥) and cos (𝑥), may 

capture the periodicity of these variables as presented below: 

𝑥𝑡𝑖𝑚𝑒 = (

0: 05
10: 35
⋮

23: 50

) → (

5 min
10 ∙ 60 + 35 𝑚𝑖𝑛

⋮
23 ∙ 60 + 50 𝑚𝑖𝑛

) → (

5 min
635 𝑚𝑖𝑛

⋮
1430 𝑚𝑖𝑛

)
sin(𝑥[𝑚𝑖𝑛]  

2𝜋

24∙60
)

→             (

0.022
0.362
⋮

−0.043

) 

 

Therefore, the time is now expressed in a way the relative variances of the periodic values are revealed 

in a clearer way.  

 

Data Augmentation 
  

Data augmentation is a regularization technique that consist of generating new training instances from 

existing ones. This method can be very beneficial for the training process as it extends the number of 

data in our possession and prevents overfitting by forcing the model to be more tolerant to minor 

alterations of the instances.  
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For timeseries one suggested technique for data augmentation is to implant white noise into the 

observations. Let us consider a timeseries 𝐴(𝑡) = {𝑎𝑖} with 1 ≤ 𝑖 ≤ 𝑛 and suppose a variable 휀 that 

meets the condition: 

0 < 휀 < |𝑎𝑖+1 − 𝑎𝑖|∀𝑖 ∈ {1,… , 𝑛} 

The new timeseries,𝐵(𝑡) = {𝑏𝑖},  is generated by adding a term 𝑟𝑖 to every instance of 𝐴(𝑡), where 𝑟𝑖 

is a realization of the distribution 𝑁 (0,
𝜀

2
) . [ ] 

𝐵(𝑡) = {𝑎𝑖 + 𝑟𝑖} 

Then the ML model is then fitted into both timeseries to perform training.  

 

Smoothing 
 

Timeseries often consist of many anomalies and noise that conceal the valuable information. This 

prevents the extraction of useful patterns or trends that are required for the timeseries forecasting.  

As a result, a common method for dealing with this is to smooth the signal by applying filters. The two 

most frequent choices are the Gaussian and Moving-Average filter.  

Let us consider a series 𝐴(𝑛)  with 1 ≤ 𝑛 ≤ 𝑁  and a filter 𝐻(𝑘) with 1 ≤ 𝑛 ≤ 𝐿, where 𝐿 represents 

the width of the filter. Supposing an impulse response of the filter ℎ(𝑘) that is applied on the signal, 

the output value 𝐺(𝑛) is expressed as:  

𝐺(𝑛) = ∑ ℎ(𝑘)𝐴(𝑛 −𝑚)

𝐿

𝑚=1

 

Note that applying the filter 𝐻(𝑘) into the signal in to perform convolution of the filter with the given 

series. 

A moving average is calculated by generating a new series whose values are the average of the raw 

observations in the original time series. A moving average requires the selection of a window size, 

which specifies how many instances are used to determine the moving average value. Then, to 

compute the average values in the new series, the window is slid along the time series. The impulse 

response of the moving average filter is the following: 

ℎ𝑚𝑎(𝑘) =
1

𝐿
 

In other words, the moving average filter can be seen as a rectangular pulse with height 
1

𝐿
.  

Similarly, the Gaussian filter is defined by a window size 𝐿 and it is slid along the series in order to 

generate the new one. However, the Gaussian filter does not set the same weights for each instance 
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of the series. The weights are determined based on the Gaussian distribution and the given standard 

deviation 𝜎. In this case the impulse response is given by: 

ℎ𝐺 =
1

𝜎√2𝜋
 𝑒
− 
𝑥2

2𝜎2   

 

For both cases the larger the window width, the more observations are involved in the convolution 

and the more effective the smoothing is going to be.  

Occasionally, smoothing may not be a preferable choice as it comes with a price of removing 

information of the signal. Forecasting might be less challenging, but it also might be less accurate.  

  

Introduction to Artificial Neural Networks 
 

Linear Threshold Unit & Multi-Layer Perceptrons  
 

Inspired by the structure of a biological neural network that 

consists of many interacting neurons, the fundamental unit of an 

artificial neural network is a Linear Threshold Unit (LTU). An LTU 

takes one or more numbers as inputs, calculates the weighted 

sum and passes the argument through a step function, which 

then outputs the final result. The placeholder of each value is 

called a neuron. A Perceptron is simply composed of a single layer 

of LTUs with each neuron connected to all the inputs. By stacking 

Perceptrons together a Multi-Layer Perceptron (MLP) is created. 

An MLP is composed of one input layer, one or more layers of 

LTUs, called hidden layers, and one final layer of LTUs called the 

output layer. Every layer except the output layer includes a bias 

neuron and is fully connected to the next layer. When NN has 

two or more hidden layers, it is called a Deep Neural Network 

(DNN). An illustration of an LTU is given in the figure 3. 

 

 

 

 

 

Figure 3. Linear Threshold Unit (LTU) 
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Backpropagation and Training Process of ANNs 
 

In the training process the Neural Network has to determine the best values of weights in order to 

optimize the prediction given an input 𝑥. In a forward pass the network performs the below operation 

for each of the neurons: 

𝑧𝑙 = 𝑊𝑙𝑋𝑙−1 + 𝑏 

𝑋𝑙 = 𝜎(𝑧𝑙) = 𝜎(𝑊𝑙𝑋𝑙−1 + 𝑏) = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑏) 

Where the 𝑋𝑙−1 is the vector of the input values (the output of the previous layer, 𝑋𝑙−1), 𝑋𝑙 is the 

vector of the output values of the layer 𝑙, 𝜎 is the step function, 𝑧𝑙 is the weighed sum of the inputs 

for layer 𝑙 that later passes through the step function, 𝑊 is a vector the carries the weights of the 

layer 𝑙 and 𝑏 is the bias of the layer.  

The output of the whole model after the forward pass is denoted by �̂�, and to measure its variance 

from the target value 𝑦, that is the desirable outcome, a loss function is calculated. The most common 

choices regarding the loss function are Mean Squared Error (MSE) and Mean Absolute Error (MAE): 

𝑀𝑆𝐸:           𝐿 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

    

𝑀𝐴𝐸:           𝐿 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

    

The backpropagation algorithm is commonly used in the training process. According to this algorithm, 

the NN makes a prediction (forward pass), calculates the error, goes through each layer in reverse to 

measure the error contribution from each connection (reverse pass), and then adjusts the connection 

weights to reduce the error in each training instance (epoch). The ratio of how much each weight 

influences the cost function is calculated by employing the partial derivatives of the cost function with 

respect to each parameter: 

𝜕𝐿

𝜕𝑤𝐿
=
𝜕𝐿

𝜕𝑥𝐿
𝜕𝑥𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑤𝐿
 

𝜕𝐿

𝜕𝑏𝐿
=
𝜕𝐿

𝜕𝑥𝐿
𝜕𝑥𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑏𝐿
 

 

Where, 𝐿 denotes the parameters of the last layer. 

Each partial derivative from the weights and biases is saved in a gradient vector, that has as many 

dimensions as you have weights and biases: 
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𝑤12
1  

𝑤21
1  

𝑤13
1  

𝑤11
1  

𝑤23
1  

𝑤22
1  

𝑤21
2  

𝑤12
2  

𝑤11
2  

𝑤32
2  

𝑤31
2  

𝑤22
2  

𝑤21
3  

𝑤11
3  

−∇𝐿(𝑤1, 𝑏1, 𝑤2, 𝑏2, … , 𝑤𝐿 , 𝑏𝐿) =

[
 
 
 
 
 
 
 
 
𝜕𝐿

𝜕𝑤1

𝜕𝐿

𝜕𝑏1
⋮
𝜕𝐿

𝜕𝑤𝐿

𝜕𝐿

𝜕𝑏𝐿 ]
 
 
 
 
 
 
 
 

 

The gradient is computed using mini-batches (subsets) of the data. The performance is calculated for 

each weight and bias for each observation in the mini-batch.  

The new, optimized weight values are given from the following equation: 

 

𝑤𝑙 = 𝑤𝑙 − 𝜂
𝜕𝐿

𝜕𝑤𝑙
 

𝑏𝑙 = 𝑏𝑙 − 𝜂
𝜕𝐿

𝜕𝑏𝑙
 

Where  𝜂  is a constant between 0 and 1 which expresses the learning rate for Gradient Descent 

Optimizer, which is the optimization algorithm used for the minimization of a cost function. 

 

An illustration of a fully connected network of artificial neurons is presented below: 

 

 

 

 

 

 

 

 

 

 

 

 

𝑥1
0 

𝑥2
0 

𝑥3
1 

𝑥1
1 

𝑥2
1 

𝑥1
2 

𝑥2
2 

𝑥1
3 

Input Layer 
Hidden 

Layer 1 

Hidden 

Layer 2 

Output 

Layer  

Figure 4. Multi-Layer Perceptron (MLP)   
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In the figure above we use the notation 𝑥𝑛
𝑙  to imply the value of the n-th neuron in the l-th layer and 

𝑤𝑛𝑚
𝑙  to imply the value of the weight in the l-th layer that connects the neurons 𝑥𝑛

𝑙−1 with 𝑥𝑚
𝑙 . Note 

that for every neuron 𝑥𝑛
𝑙  there is a bias 𝑏𝑛

𝑙  respectively.  

For example, the values of the first layer are computed by the following equations: 

𝑥1
1 = 𝜎(∑(𝑤1𝑗

1 𝑥𝑗
0 + 𝑏1

1)

2

𝑗=1

) = 𝜎(𝑤11
1 𝑥1

0 +𝑤12
1 𝑥2

0 + 𝑏1
1)  

𝑥2
1 = 𝜎(∑(𝑤2𝑗

1 𝑥𝑗
0 + 𝑏2

1)

2

𝑗=1

) = 𝜎(𝑤21
1 𝑥1

0 +𝑤22
1 𝑥2

0 + 𝑏2
1)  

𝑥3
1 = 𝜎(∑(𝑤3𝑗

1 𝑥𝑗
0 + 𝑏3

1)

2

𝑗=1

) = 𝜎(𝑤31
1 𝑥1

0 +𝑤32
1 𝑥2

0 + 𝑏3
1)  

 

Similarly, for the second layer the computed values of the neurons will be: 

𝑥1
2 = 𝜎(∑(𝑤1𝑗

2 𝑥𝑗
1 + 𝑏1

2)

3

𝑗=1

) = 𝜎(𝑤11
2 𝑥1

1 +𝑤21
2 𝑥2

1 +𝑤31
2 𝑥3

1 + 𝑏1
2)  

𝑥2
2 = 𝜎(∑(𝑤2𝑗

2 𝑥𝑗
1 + 𝑏2

2)

3

𝑗=1

) = 𝜎(𝑤21
2 𝑥1

1 +𝑤22
2 𝑥2

1 +𝑤32
2 𝑥3

1 + 𝑏2
2)  

The output of the 𝑥1
3 is given through analogous calculations. 

After the forward pass, the backpropagation algorithm takes place. The determination of the impact 

of each feature in the parameters of the model is described by the following partial derivatives, 

starting from the weights and biases of the last layer and moving towards the first layer: 

For the 3rd layer of the network:  

𝜕𝐿

𝜕𝑤3
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
𝜕𝑧3

𝜕𝑤3
   𝑎𝑛𝑑  

𝜕𝐿

𝜕𝑏3
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
𝜕𝑧3

𝜕𝑏3
 

And by extend: 

𝜕𝐿

𝜕𝑤11
3 =

𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤11
3  

𝜕𝐿

𝜕𝑤21
3 =

𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤21
3  
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𝜕𝐿

𝜕𝑏1
3 =

𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑏1
3 

Regarding the 2nd layer of the network: 

𝜕𝐿

𝜕𝑤2
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
𝜕𝑧2

𝜕𝑤2
   𝑎𝑛𝑑  

𝜕𝐿

𝜕𝑏2
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
𝜕𝑧2

𝜕𝑏2
 

 

Where the first part represents the contribution of the 𝑤3  and the second part represents the 

contribution of the 𝑤2. 

The contribution of the weights and biases of the 1st layer towards the cost function is: 

𝜕𝐿

𝜕𝑤2
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
·
𝜕𝑧2

𝜕𝑥1
𝜕𝑥1

𝜕𝑧1
𝜕𝑧1

𝜕𝑤1
   𝑎𝑛𝑑  

𝜕𝐿

𝜕𝑏1
=
𝜕𝐿

𝜕𝑥3
𝜕𝑥3

𝜕𝑧3
·
𝜕𝑧3

𝜕𝑥2
𝜕𝑥2

𝜕𝑧2
·
𝜕𝑧2

𝜕𝑥1
𝜕𝑥1

𝜕𝑧1
𝜕𝑧1

𝜕𝑏1
 

Finally, the weight will be updated according to following the relations: 

𝑤11
3 = 𝑤11

3 − 𝜂
𝜕𝐿

𝜕𝑤11
3 = 𝑤11

3 − 𝜂
𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤11
3  

𝑤21
3 = 𝑤21

3 − 𝜂
𝜕𝐿

𝜕𝑤11
3 = 𝑤21

3 − 𝜂
𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤21
3  

𝑏1
3 = 𝑏1

3 − 𝜂
𝜕𝐿

𝜕𝑏1
3 = 𝑏1

3 − 𝜂
𝜕𝐿

𝜕𝑥1
3

𝜕𝑥1
3

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑏1
3 

The same goes for update of the rest of the parameters of the model. 

 

Activation Functions 
 

The activation function of a node in an artificial neural network (ANN) determines the output of that 

node given an input or a set of inputs. The next node receives this output as input (in the next layer). 

The non-linearity of ANNs is determined by activation functions, since if they are non-linear, the entire 

network is non-linear too. Activation functions may be thought of as binary classifiers, with the options 

of "trigger" or "not activate." If no activation function is used, the output signal is just a simple linear 

function, and the system is doomed to learn complex functional mappings from data with less power. 

As a result, they will be unable to accurately reflect the output. 

The selection of an appropriate activation function is a very important step. As the activation function 

mediates in the passing of arguments between the neurons, it plays a essential role in the training 

process of the model. Let us suppose that we use the MSE cost function. Then the above calculations 

of the partial derivatives are given as: 
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𝜕𝐿

𝜕𝑤𝐿
=
𝜕𝐿

𝜕𝑥𝐿
𝜕𝑥𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑤𝐿
= 2(𝑋𝐿 − 𝑦) ∙ 𝜎′(𝑧𝐿) ∙ 𝑋𝐿−1 

Where XL represent the output of the last layer, i.e. the output of the whole model (ŷ) and 𝜎′ is the 

derivative of the step function.  

In case that the value of the derivative of the activation function 𝜎′  is very close to zero the 

modification of the parameters’ values will be negligible and therefore the ML model will be trained 

insufficiently. This is known as Vanishing Gradient Problem. On the opposite course, if the value of 𝜎′ 

increases sharply, the updates of the parameters will be unreasonably high resulting into a defective 

training process too. This is known as Exploding Gradient Problem. 

For these particular reasons, Data Scientists have put in a lot of effort to develop activation functions 

that do not have the issues listed above and even boost the performance of ANNs. 

The Sigmoid activation function is the basic choice. The sigmoid function is basically a logistic function 

that scales the output in a range between zero and one. It is described through the following equation: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

The graph of the sigmoid function and its derivative is presented in the figure below: 

 

 

 

Figure 5. Sigmoid Function and Derivative 

 

In the derivative graph, it is noticeable that for large absolute values of input the derivative approaches 

to zero and therefore produces the Vanishing Gradient Problem.  
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The most robust choice regarding the activation function is the Rectified Linear Unit (ReLu). Anything 

with an x-value less than zero has a y-value of zero, but anything with a value greater than zero is 

mapped to its own y-value. The equation of ReLu is given below: 

𝜎 = {
𝑥    𝑓𝑜𝑟 𝑥 > 0
0    𝑓𝑜𝑟 𝑥 ≤ 0

 

The graph of the ReLu function and its derivative is presented in the figure below: 

 

Figure 6. ReLu Function and Derivative 

 

The ReLu activation is one of the most stable options for solving the Vanishing Gradient Problem due 

to the constant value of the derivative. It does not, however, provide a solution to the Exploding 

Gradient Problem.  

Gradient Descent 
 

Gradient Descent is an optimization method capable of finding optimal solutions to a variety of 

problems. The general idea to minimize a given cost function 𝐽(𝜃), parameterized by the model’s 

parameters 𝜃, by changing its parameters iteratively. A determination of the learning process 𝜂, is 

required, which will control the size of the steps that will be taken for approaching the minimum.  

Gradient Descent has three modifications that vary in the amount of data used to calculate the 

gradient of the objective function. Achieving the most accurate calculation of the gradient, and by 

extend the most accurate update of the parameters of the model, requires the involvement of all the 

data in our disposal. However, in this case, the most accurate solution is not the most efficient one, 

regarding the time of the computation. Compromising between a lesser precision and a faster update 

of the models parameters is preferable. 
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Batch Gradient Descent is the simplest form of Gradient optimizer. It computes the grad of the loss 

function with respect to the parameters 𝜃 for the entire training set: 

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃) 

Although this method assures the convergence to the global minimum, it is very time consuming and 

it is not recommended.  

Mini Batch Gradient Descent updates the parameters for every mini-batch of 𝑛  training samples, 

ensuring a safe trade-off between the accuracy of the parameters’ update and the execution time.  

𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃; 𝑥
𝑖:𝑖+𝑛; 𝑦𝑖:𝑖+𝑛) 

The convergence towards the global minimum is less stable than the Batch Gradient Descent, but the 

number of data that are included in a mini batch can seriously affect this stability as they increase. 

Mini Batch Gradient Descent is a common choice.  

Adam’s optimizer is another approach that computes adaptive learning rates for each parameter. It 

does so by combining different techniques from other algorithms, such us Momentum [] and Adagrad 

[] and RMSprop.  In the Momentum algorithm the approach of the minimum is accelerated by adding 

a fraction γ of the update vector of the past time step to the current update vector (gradient 

calculation):  

𝜃𝑡 = 𝜃𝑡 − 𝜂∇𝜃𝑡𝐽(𝜃𝑡) + 𝛾∑𝜂∇𝜃𝜏𝐽(𝜃𝜏)

𝑡

𝜏=1

 

If the momentum becomes too heavy, it may lead the model to swing back and forth between the 

local minima. 

Adagrad’s key characteristic is that reduces the learning rate relative to the features frequency of the 

data, at every epoch. It assigns low learning rates to parameters linked to regularly occurring features 

and high learning rates to parameters linked to infrequently occurring features: 

𝜃𝑡+1,𝜄 = 𝜃𝑡,𝜄 −
𝜂

√휀 + ∑ (∇𝜃𝜏𝐽(𝜃𝜏,𝑖))
2

𝑡
𝜏=1

∇𝜃𝑡𝐽(𝜃𝑡,𝑖) 

ε it's just a small value that ensures that we don't divide by zero. 

The decaying learning rate ensures a faster convergence as it avoids the overstepping of the local 

minimum with big steps. At some point the gradients become so small that momentum becomes stale. 

Root Mean Squared Propagation (RMSprop) is similar to Adagrad in that it provides an exponentially 

decaying average rather than the sum of the gradients. One interesting property of RMSprop is that it 

is not limited to the number of previous gradients, but rather to gradients of the most recent time 

stages: 
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𝜃𝑡+1,𝜄 = 𝜃𝑡,𝜄 −
𝜂

√휀 + 𝐸[𝑔2]𝑡
∇𝜃𝑡𝐽(𝜃𝑡,𝑖)  ,   𝑤ℎ𝑒𝑟𝑒 𝐸[𝑔

2]𝑡 = (1 − 𝛾)𝑔
2 + 𝛾𝐸[𝑔2]𝑡−1  

The combination of all the ideas above construct the Adams optimizer, which is probably one of the 

most reliable methods that is employed so far. The equations that describe the Adam optimizer are 

the following: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂 ∙ 𝑚�̂�

√𝑢�̂� + 휀
 

𝑚�̂� =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑢�̂� =
𝑢𝑡

1 − 𝛽2
𝑡 

𝑚𝑡 = (1 − 𝛽1)𝑔𝑡 + 𝛽1𝑚𝑡−1 

𝑢𝑡 = (1 − 𝛽2)𝑔𝑡
2 + 𝛽2𝑢𝑡−1 

Where ε is a small term (~10−8), Learning rate η (the recommended default value is 𝜂 = 0.001).  

Adam’s optimizer is the most typical and reliable choice in ANNs applications. 𝛽1 and 𝛽2 represent the 

forgetting factors for gradients and second moments of gradients and they are the first and the second 

momentum terms respectively, which are set to 𝛽1 = 0.9 and 𝛽2 = 0.999. The value of 𝛽1
𝑡 is given by 

raising the value of 𝛽1 to the power of the time step 𝑡. 

In essence, the hyperparameters of a neural network are the parameters that do not change during 

the training process as they describe fundamental parts and of the ANN. The most basic 

hyperparameters are listed below: 

 Number of Hidden Layers 

 Number of Neurons in Each Layer 

 Activation Function (Step Function):  

 Optimizer: Executes Gradient Descent 

 Number of Epochs: It defines the number of repetitions that will be performed by 

backpropagation algorithm 

 Loss function: Cost Function quantifies the error between predicted values and expected 

values. Depending on the problem the form of the Cost Function can vary. 

 Batch Size: The number of data that will be fed into the NN  
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Transfer Learning 
 

Transfer learning is a predictive modeling technique that can be used to speed up training and enhance 

the performance of a model on a different but quite similar problem. In deep learning, this means 

reusing the weights in one or more layers from a previously trained model in a new model. The new 

model will either holding the weights constant, fine tuning them, or completely adapting the weights 

during training. 

Weight Initialization and Feature Extraction are the two primary methods for applying transfer 

learning. The weights in re-used layers can be used to start the training process and then adapted to 

the new task. Transfer learning is referred to as a weight initialization scheme in this context. When 

the first associated problem has a lot more labeled data than the problem of interest, and the structure 

of the problem is identical in both cases, this can be beneficial. Conversely, the weights of the network 

will not be adjusted in response to the new challenge, and only new added layers may be trained to 

analyze the output after the reused layers have been trained. Transfer learning is referred to as a 

feature extraction scheme in this case. Variations on these scenarios include not initially training the 

model's weights on the new issue, but later fine-tuning all weights of the trained model with a low 

learning rate. 

 

Artificial Neural Networks for Timeseries Forecast 
 

The timeseries forecasting is at its core a regression task, meaning that the model tries to best fit the 

inputs and make predictions. The goal is to approximate the predictions from new instances that were 

not included in the training.  

 

Sliding Window 
 

In most cases the input data are introduced into the model in a sliding window format. The window is 

an object that holds a certain number of instances by preserving their time sequence. The target values 

are also in a window format with a different number of instances. At the end of the day, the timeseries 

forecasting task is defined by the length of the input window, the length of the target window and 

their distance in between which is defined by the number of observations that mediate from the end 

of the input window to the beginning of the target window. 

Let us examine a basic example for simplicity. Assuming a timeseries 𝑎(𝑡) = 𝑎𝑡. In order to create the 

dataset that will be fed into the NN we are going to employ the sliding window strategy. Firstly, we set 

the desirable window lengths and distances. Let us suppose that the input window has a length equal 
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to 3 and the target window has a length equal to 2. The corresponding distance between them will be 

2.  The first instance in the new dataset will be an input vector (window) that holds the values 𝑎0, 𝑎1, 𝑎2 

and a  target vector that holds the values 𝑎5, 𝑎6. The next instance in the new dataset, assuming that 

we set a step=1, is an input vector (window) that holds the values 𝑎1, 𝑎2, 𝑎3 and a  target vector that 

holds the values 𝑎6, 𝑎7, and so on.  

 

 

 

 

 

 

 

 

Figure 7. Example of sliding window 

 

Neural Network Architectures 
 

There are a variety of neural network architectures available, each with its own set of features that 

are ideally suited to specific applications. Below are some of the most well-known architectures, 

especially in the context of time series forecasting. 

Feed Forward Neural Networks 
 

The model that was previously introduced as a standard model for Neural Networks in the figure 4 is 

in fact a specific type of NN model, called Feed Forward Neural Network or Multilayer Perceptrons 

(MLPs). The goal of a feed forward network is to approximate a function 𝑓 . According to this 

architecture, the information moves in only forward direction without loops in between. The 

information passes from the input nodes, through the hidden nodes (if any) and to the output nodes. 

For a variety of purposes, this particular ability is useful for time series. Neural networks are resistant 

to noise in the input data and the mapping function, and they can also learn and make predictions in 

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

Input Window Target Window 

Distance 

Input Window 

Distance 

Target Window 
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the absence of data. Furthermore, neural networks make no firm assumptions regarding the mapping 

function and can learn linear and nonlinear interactions easily.  

More precisely, in the approximated function, neural networks can be programmed to support an 

arbitrary specified but fixed number of inputs and outputs. This implies neural networks can handle 

multivariate inputs and multi-step forecasts directly. Multivariate Inputs refers to the ability to specify 

an integer number of input elements, allowing for direct support for multivariate forecasting. Multi-

step Forecasts, on the other hand, refers to an arbitrary number of output values that can be specified, 

providing direct support for multi-step and even multivariate forecasting. 

For these capabilities alone, feedforward neural networks may be useful for time series forecasting. 

The assumption of a reasonable mapping from inputs to outputs is implicit in the use of neural 

networks. 

 

Convolutional Neural Networks 
 

CNNs, or Convolutional Neural Networks, are a version of neural network that was created to process 

image data efficiently. They also shown their effectiveness on difficult computer vision issues, 

producing state-of-the-art outcomes on challenges such as image classification and object detection. 

CNNs have been proven to be also very effective in timeseries data. CNNs provide many of the 

advantages of Multilayer Perceptrons for time series forecasting, such as multivariate input, 

multivariate output, and understanding random and dynamic functional relationships. At the same 

time, they can process the information through the innovative approach of Feature Learning. Feature 

Learning is the automatic identification and extraction of relevant features from raw input data that 

pertain directly to the prediction problem that is being modeled. 

Similar to MLPs, CNNs may contain one or more hidden layers, however each neuron is connected only 

to neurons that are contained within its receptive field. The receptive field is a region of the input 

timeseries where a filter (of the same size) can be applied. The distance between two receptive fields 

is called a stride.  A 1D function map is generated by applying (convolving) the same filter to the entire 

timeseries. Different filters provide different feature maps, which are then combined to form a 

convolutional layer. Each convolutional layer is an entity that contains all of the previous layer's feature 

maps. The weight of a layer is the value of a feature map's pixel. 

A pooling layer is needed in between each convolutional layer due to the computational complexity 

resulting from this architecture. A pooling layer is created by adding a pooling kernel to each of the 

function maps and reducing the layer's dimensions (length). Let us consider a max pooling kernel of 

length 2 and a stride of 2, which inputs 2 values of the time series and outputs the maximum. This 

simple kernel will reduce the size of the sequence by a magnitude of 2. A CNN usually has many 

convolutional and pooling layers that are added one after the other. As a consequence, the 

convolutional layers' spatial dimensions are reduced while their depth dimensions’ increase.  
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Finally, a MLP with a few completely connected layers is introduced, and the prediction is output by 

the final layer. CNNs perform better in timeseries classification tasks since they are better at identifying 

low and high level features in sequences. Nonetheless, their ability to recognize complex patterns may 

be beneficial for forecasting. 

A typical convolutional Neural Network is presented in the figure below. 

 

 

 

 

 

Figure 8. A Typical representation of Convolutional Neural Network model 
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𝑉𝑡−2 

𝑊 𝑊 𝑊 𝑊 𝑊 

ℎ 

𝑈𝑡−2 𝑈𝑡−1 𝑈𝑡 𝑈𝑡+1 

𝑉𝑡−2 𝑉𝑡−2 𝑉𝑡−2 

Recurrent Neural Networks 

 

Recurrent Neural Networks (RNN) are networks of neuron-like nodes arranged into subsequent layers, 

analogous to regular Neural Networks in architecture. Neurons are classified into input, hidden, and 

output layers, much as in standard Neural Networks. Each neuronal connection has a trainable weight 

associated with it. 

The distinction is that each neuron is allocated to a particular time step. The neurons in the hidden 

layer are also forwarded in a time-dependent direction, which ensures that each of them is totally 

linked only to the neurons in the hidden layer with the same allocated time step, and is connected to 

any neuron assigned to the next time step by a one-way link. This results that the activation of the 

neurons is calculated in time order so the output of one-time step's hidden layer is part of the input 

of the next time step. At any given time-step, only the neurons assigned to that time step compute 

their activation. 

The architecture of a typical RNN is described below:  

 

 

 

 

 

 

 

 

 

 

 

Where 𝑥𝑡 is the values of the input timeseries that are connected only through the weights 𝑈𝑡 with 

the hidden layer that correspond to the same instance 𝑡. �̂�𝑡 denotes the output of the network. The 

hidden layer is linked with the output layer through the weight 𝑉𝑡 and it is connected with its neighbor 

nodes of the hidden layer through the weights 𝑊. The hidden state of the network is represented as 

ℎ𝑡, which marks a type of memory of the network and it is computed from all previous values, up to 

the current moment 𝑡. 

𝑥𝑡−2 𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1 

�̂�𝑡−2 �̂�𝑡−1 �̂�𝑡 �̂�𝑡+1 

ℎ𝑡−2 ℎ𝑡−1 

 

ℎ𝑡 

 

ℎ𝑡+1 

 

  

Input Layer 

Output Layer 

Hidden Layer 

Figure 9. A Typical representation of a Recurrent Neural Network 



32 | P a g e  
 

 

The hidden state and the output of the network are given from the equation below: 

ℎ𝑡 = 𝜎1(𝑊ℎ𝑡−1 + 𝑈𝑡𝑥𝑡) 

�̂�𝑡 = 𝜎2(𝑉𝑡ℎ𝑡) 

 

The learning process' aim is to find the best weight matrices 𝑈 , 𝑉 , and 𝑊  that provide the best 

prediction of 𝑦(𝑡) of the real value 𝑦(𝑡) starting from the input 𝑥(𝑡). Similar to feed forward Neural 

Networks, the way to achieve that is through backpropagation algorithm. Let us consider a cost 

function 𝐿. The model will calculate the contribution of its weight for the output value, by employing 

partial derivatives and then adjust the weights accordingly, in order to minimize 𝐿.  The partial 

derivatives that will be computed are the followings: 

𝜕𝐿

𝜕𝑊
=
𝜕𝐿

𝜕�̂�𝑡

𝜕�̂�𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕𝑊

=
𝜕𝐿

𝜕�̂�𝑡
∙ (𝜎

2
′
∙ 𝑉𝑡) (𝜎1

′ ∙ ℎ𝑡−1)  

𝜕𝐿

𝜕𝑈𝑡
=
𝜕𝐿

𝜕�̂�𝑡

𝜕�̂�𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕𝑈𝑡

=
𝜕𝐿

𝜕�̂�𝑡
∙ (𝜎

2
′
∙ 𝑉𝑡)(𝜎1

′ ∙ 𝑥𝑡) 

𝜕𝐿

𝜕𝑉𝑡
=
𝜕𝐿

𝜕�̂�𝑡

𝜕�̂�𝑡
𝜕𝑉𝑡

=
𝜕𝐿

𝜕�̂�𝑡
∙ (𝜎

2
′
∙ ℎ𝑡) 

 

The corresponding updates of the weights will be given from: 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑊𝑜𝑙𝑑
 

𝑈𝑛𝑒𝑤 = 𝑈𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑈𝑜𝑙𝑑
 

𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 − 𝜂
𝜕𝐿

𝜕𝑉𝑜𝑙𝑑
 

 

Recurrent Neural Networks often suffer from exploding gradient or vanishing gradient problems as a 

result of their dependence on several partial derivatives, especially the 
𝜕𝐿

𝜕𝑊
 that is related to ℎ𝑡−1 and 

by extend to previous inputs. 
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Gated Recurrent Units - GRUs 

The evolution of RNNs came with the implementation of Long-Short Term Memory (LSTMs). A variation 

of LSTM that effectively managed to elude the issues regarding to the vanishing gradient is the Gated 

Recurrent Units (GRUs) and concerns the model that will be employed on this thesis. 

The innovation of this model is to use a GRU unit in place of the hidden layer. GRU employs the update 

and reset gates to solve the vanishing gradient problem of a regular RNN and LSTM. These two gates 

determine what data should be sent to the output. These two gates can be trained to hold information 

from several time steps before the actual time step without removing it through time, or to exclude 

unnecessary information from the forecast. 

 

Figure 10. GRU unit 

The reset gate manages what amount of information should be forgotten whereas update gate 

manages what amount of information should be saved. The responses of the reset and update gate 

are given the weighed sum of the input 𝑥𝑡 and the memory from the previous unit ℎ𝑡−1: 

𝑟𝑡 = 𝜎(𝑥𝑡𝑈𝑟 + ℎ𝑡−1𝑊𝑟) 

𝑧𝑡 = 𝜎(𝑥𝑡𝑈𝑧 + ℎ𝑡−1𝑊𝑧) 

 

The memory ℎ𝑡 of the unit is calculated firstly by computing a “current memory” parameter (ℎ�̃�)  which 

ignores the response 𝑧𝑡, and then take it into account for the calculation of the final memory ℎ𝑡. 
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ℎ�̃� = tanh(xtUh + (rt ∗ ht−1)Wh)  

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ�̃� 

Where ∗ indicates a multiplication element by element. 
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 Methodology 

Dataset 
For the purposes of this thesis 4 different datasets were employed. Both datasets concern timeseries 

of wind elements and other related meteorological parameters that were estimated from 

meteorological stations located for several heights and positions in wind farms across Greece. The 

dataset’s main differences are traced in the sample step, in the locations of the wind farms and in the 

amount of parameters possessed. 

Dataset 1 – Loupounaria (1 hour) 
 
The first dataset concerns a wind farm located in Loupounaria in Greece. The values were measured 

with a sampling step of 1 hour and the total amount of instances reaches 7768. The timeseries involve 

a time period that extends from 29th of May 2019 (00:00) to 31th of May 2020 (22:00). 

There are 38 variables in the dataset and they are the followings: 

 Time1: The moment for each observation in a DD-MM-YY HH:MM format  

 (W1Speed10 - W1Dir10) - (W5Speed10 – W5Dir10): the Wind speed [m/s] and direction 

[Degrees] estimated from meteo services. The first number next to W (1-5) denotes a different 

location and the number at the end (10,80) denotes the height of a given meteorological 

station in meters.    

 (W1Speed80 - W1Dir80) - (W5Speed80 – W5Dir80) 

 (D1flux, W1Dens) - (D5flux, W5Dens): The airflow flux and density estimated from meteo 

services  

 LouNRG: The energy generated from the wind farm 

 LouDIR, LouWSav: The average of the actual direction and wind speed measured by 

anemometers installed in the wind turbines.  

 NRGsc, LouWSsc: Scaled values of LouNRG, LouWSav between 0 and 1. 

 LouDIR2, LouWSsc2, NRGsc2: Scaled values of LouDIR, LouWSav and LouNRG between 0 and 

1. 
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Some basic statistical properties of the dataset are presented in the table below: 

 

 mean Std min max 

W(1-5)Speed10 5.476527 3.954184 0.058727 23.95064 

W(1-5)Dir10 167.8802 127.7819 0.05477 359.9649 

D(1-5)flux 218.3796 310.6143 0 1032.608 

W(1-5)Dens 1.113748 0.034887 1.033094 1.20655 

W(1-5)Speed80 7.614136 5.091163 0.07226 29.72372 

W(1-5)Dir80 167.8281 127.7683 0.027986 359.9705 

LouNRG 166.4486 188.2134 -7.58333 550.3333 

LouDIR 121.6993 104.1129 -6.5 550.1667 

LouWSav 7.063066 4.572681 0.241667 25.01667 

NRGsc 0.33698 0.324506 0.036925 0.998851 

LouWSsc 0.281397 0.182179 0.009628 0.99668 

Table 1. Table of statistical properties of the Dataset Loupounaria, Sampling Step: [1 hour] 

 

Note that the prefix  𝑊(1 − 5) represents the average of a certain variable over all the different 

locations.  

Dataset 2 – Trikorfo (1 hour) 
 
The second dataset concerns a wind farm located in Trikorfo in Greece. The values were measured 

with a sampling step of 1 hour and the total amount of instances reaches 7745. The timeseries involve 

a time period that extends from 29th of May 2019 (00:00) to 31th of May 2020 (23:00). 

There are 38 variables in the dataset and they are the followings: 

 Time1: The moment for each observation in a DD-MM-YY HH:MM format  

 (W1Speed10 - W1Dir10) - (W5Speed10 – W5Dir10): the Wind speed [m/s] and direction 

[Degrees] estimated from meteo services. The first number next to W (1-5) denotes a different 

location and the number at the end (10,80) denotes the height of a given meteorological 

station in meters.    

 (W1Speed80 - W1Dir80) - (W5Speed80 – W5Dir80) 

 (D1flux, W1Dens) - (D5flux, W5Dens): The airflow flux and density estimated from meteo 

services  

 TriNRG: The energy generated from the wind farm 

 TriDIR, TriWSav: The average of the actual direction and wind speed measured by 

anemometers installed in the wind turbines.  
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 NRGsc, TriWSsc: Scaled values of LouNRG, LouWSav between 0 and 1. 

 TriDIR2, TriWSsc2, NRGsc2: Scaled values of LouDIR, LouWSav and LouNRG between 0 and 1. 

Some basic statistical properties of the dataset are presented in the table below: 

 

 mean std min max 

W(1-5)Speed10 6.718375 4.278848 0.085311 24.39026 

W(1-5)Dir10 116.4134 117.1046 0.037314 359.944 

D(1-5)flux 216.0778 308.7591 0 1023.651 

W(1-5)Dens 1.159659 0.031934 1.087758 1.241597 

W(1-5)Speed80 9.459414 5.363492 0.108887 30.15923 

W(1-5)Dir80 116.4219 117.1067 0.022345 359.9198 

TriNRG 223.7224 185.8438 0 533.3611 

TriDIR 160.6577 167.6646 0 531.3611 

TriWSav 9.713655 5.671272 0.436973 36.41643 

NRGsc 0.435728 0.32042 0.05 0.969588 

TriWSsc 0.266128 0.155377 0.011972 0.99771 

TriWSsc2 0.266331 0.155121 0.011972 0.99771 

NRGsc2 0.435682 0.320426 0.05 0.969588 
Table 2. Table of statistical properties of the Dataset Trikorfo, Sampling Step: [1 hour] 

 

Note that the prefix  𝑊(1 − 5) represents the average of a certain variable over all the different 

locations.  

Dataset 3 – Flabouro (1 hour) 
 
The second dataset concerns a wind farm located in Flabouro in Greece. The values were measured 

with a sampling step of 1 hour and the total amount of instances reaches 7768. The timeseries involve 

a time period that extends from 29th of May 2019 (00:00) to 31th of May 2020 (22:00). 

There are 38 variables in the dataset and they are the followings: 

 Time1: The moment for each observation in a DD-MM-YY HH:MM format  

 (W1Speed10 - W1Dir10) - (W5Speed10 – W5Dir10): the Wind speed [m/s] and direction 

[Degrees] estimated from meteo services. The first number next to W (1-5) denotes a different 

location and the number at the end (10,80) denotes the height of a given meteorological 

station in meters.    

 (W1Speed80 - W1Dir80) - (W5Speed80 – W5Dir80) 

 (D1flux, W1Dens) - (D5flux, W5Dens): The airflow flux and density estimated from meteo 

services  
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 FlampNRG: The energy generated from the wind farm 

 FlampDIR, FlampWSav: The average of the actual direction and wind speed measured by 

anemometers installed in the wind turbines.  

 NRGsc, FlampWSsc: Scaled values of LouNRG, LouWSav between 0 and 1. 

 FlampDIR2, FlampWSsc2, NRGsc2: Scaled values of LouDIR, LouWSav and LouNRG between 

0 and 1. 

Some basic statistical properties of the dataset are presented in the table below: 

 mean std min max 

W(1-5)Speed10 5.820632 3.848273 0.063286 22.41084 

W(1-5)Dir10 105.072 98.7736 0.104822 359.945 

D(1-5)flux 188.9153 282.6418 0 1013.407 

W(1-5)Dens 1.148394 0.037633 1.064799 1.240231 

W(1-5)Speed80 8.23178 4.904303 0.079013 27.53922 

W(1-5)Dir80 105.0339 98.73798 0.097787 359.957 

FlampNRG 216.056 200.1024 -4.97681 575.119 

FlampDIR 122.6803 100.8688 0 575.119 

FlampWSav 7.437408 4.072574 0.45625 28.00417 

NRGsc 0.42251 0.345004 0.041419 1.041585 

FlampWSsc 0.264676 0.144931 0.016237 0.99659 

FlampWSsc2 0.264846 0.146087 0.016237 0.99659 

NRGsc2 0.422457 0.345008 0.041419 1.041585 

FlampDIR2 122.6369 100.7378 0 575.119 
Table 3. Table of statistical properties of the Dataset Flampouro, Sampling Step: [1 hour] 

 

Note that the prefix  𝑊(1 − 5) represents the average of a certain variable over all the different 

locations. 

Dataset 4 – Loupounaria (10 minutes) 
 
Regarding the second dataset the values were measured with a sampling step of 10 minutes and the 

total amount of instances reaches 50960.  

There are 139 variables in the current dataset and they are the followings: 

 S4WSpeed80ave – S129WSpeed80ave: The averaged wind speeds at 80m height for 

consecutive 10 min instants and for different locations in the grid (S4, S8, etc). 

 S4WSpeed80ave5 – S129WSpeed80ave5: The averaged wind speeds raised to the 

fifth power. 

 S4WSpeed80diff – S129WSpeed80diff: The differences in wind speeds at 80m for different 

locations in the grid (S4, S8, etc) 
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 sDIR80S1WSpeed80ave - sDIR80S129WSpeed80ave: The averages of sines of predicted wind 

direction at 80m for different locations in the grid (S4, S8, etc) 

 cDIR80S1WSpeed80ave - cDIR80S129WSpeed80ave: The averages of cosines of predicted 

wind direction at 80m height for different locations in the grid (S4, S8, etc) 

 sDIR80S1WSpeed80 - sDIR80S129WSpeed80: The differences of sines of predicted wind 

direction at 80m height for different locations in the grid (S4, S8, etc) 

 cDIR80S1WSpeed80 - cDIR80S129WSpeed80:  The differences of cosines of predicted wind 

direction at 80m height for different locations in the grid (S4, S8, etc) 

 DENSS1WSpeed80ave: The averaged wind density at location 1 

 DENSS1WSpeed80diff - DENSS129WSpeed80diff: The differences of wind densities for 

different locations in the grid (S4, S8, etc) 

 y1: the scaled energy output  

 z1: the scaled average wind speed in the wind farm 

Some basic statistical properties of the dataset are presented in the table below: 

 mean Std min max 

S(4-129)WSpeed80ave 0.011811 1.005798 -1.49344 5.198519 

S(4-129)WSpeed80ave5 0.005787 1.014549 -0.23054 31.2948 

S(4-129)WSpeed80diff -0.0002 0.998691 -23.8821 22.83789 

sDIR80S(4-129)WSpeed80ave 0.006278 0.562414 -0.99998 0.999972 

cDIR80S(4-129)WSpeed80ave 0.007398 0.561204 -0.99997 0.999949 

sDIR80S(4-129)WSpeed80 -1.19E-05 0.858858 -1.99976 1.999797 

cDIR80S(4-129)WSpeed80 -3.69E-05 0.857486 -1.99978 1.999843 

DENSS(4-129)WSpeed80diff 0.001014 0.998608 -22.0729 28.41918 

DENSS1WSpeed80ave 0.016659 1.009039 -2.36356 2.675584 

y1 0.291565 0.341919 2.10E-05 0.996396 

z1 0.232304 0.152418 0.003333 0.931667 

 
Table 4. Table of statistical properties of the Dataset Loupounaria, Sampling Step: [10 minutes] 
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Neural Network Architectures 
 

For the purposes of this work 3 different Neural Network Architecture were proposed.  

Model 1 - GRUs 

The first model is composed out 100 GRUs, a Dropout layer and an output node as it is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 2 – GRUs Stacked 

The second model is composed out of 4 layers of GRUs and Dropout layers in between them, with 1 

output node at the end. The model is presented below: 

 

 

 

 

 

 

 

Model 1 (GRUs) 

Input 

Layer 
Input Nodes 

1st Layer 

 

100 units of GRUs 

 
2nd Layer 

 

Dropout 20% 

 
Output 

Layer 

 

Dense Layer (1 Node) 

 

Model 2 (GRUs Stacked) 

Input 

Layer 
Input Nodes 

1st Layer 

 

32 units of GRUs 

 

Figure 11. Representation of the NN Architecture: GRUs 
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Model 3 – GRUs Convolutional 

The third model is composed out of a 1Dimensional Convolutional Layer, a max pooling layer, a GRU 

Layer, a Flatten Layer, 2 Dense Layers and the output Layer. The model is presented below: 

 

 

 

 

 

2nd Layer 

 

Dropout 20% 

 
3rd Layer 

 

30 units of GRUs 

 

6th Layer 

 

Dropout 20% 

 
7th Layer 

 

30 units of GRUs 

 
8th Layer 

 

Dropout 20% 

 
Output 

Layer 

 

Dense Layer (1 Node) 

 

4th Layer 

 

Dropout 20% 

 
5th Layer 

 

30 units of GRUs 

 

Model 3 (GRUs & Convolutional) 

Input 

Layer 
Input Nodes 

Figure 12. Representation of the NN Architecture: GRUs Stacked 



42 | P a g e  
 

ReLu 

ReLu 

ReLu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study 
 

The aim of this thesis is to forecast the scaled wind speed and investigate the limits of the estimations 

regarding the prediction horizon. We will employ different datasets and implementing different 

preprocessing techniques and Neural Network Architectures in order to study the effects of each of 

those parameters in the forecast and make comparisons. 

The first step is to select a dataset and apply preprocessing and feature extraction techniques. For the 

preprocessing we considered 3 different paths: (a) perform robust scaler and leave the data as they 

are (Vanilla), (b) perform robust scaler and then apply a Gaussian filter with a standard deviation of 4 

(Smoothed), or (c) perform robust scaler and then implement data augmentation by adding noise as 

proposed in the section above (Data Augmentation). Note that for dataset 4 the variables were 

previously scaled.  

1st Layer 

 

1D Convolutional Layer (15 filters, kernel size: 2) 

 

2nd Layer 

 

Max Pooling (Pool size: 2) 

 
3rd Layer 

 

50 units of GRUs 

 
4th Layer 

 

Flatten Layer 

 
5th Layer 

 

Dense Layer (100 Nodes) 

 
6th Layer 

 

Dense Layer (50 Nodes) 

 
Output 

Layer 

 

Dense Layer (1 Node) 

 Figure 13. Representation of the NN Architecture: GRUs Convolutional 
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Regarding feature engineering, previous studies of the current problem have shown that by 

introducing some additional variables of the 3rd or the 5th power of the wind speed improves the 

performance of the NN models. Moreover, variables other than the wind speed have been proven to 

have a minor contribution to the quality of the prediction. Wind turbines are usually programmed to 

rotate with respect to the wind direction of the current moment, thus the effect of the wind direction 

is insignificant as well. Nevertheless, for the datasets 1 – 3 we took the variable of the wind direction 

into consideration, in contrast with dataset 4. For the datasets 1 – 3 we substituted the variables of 

wind speed and wind direction into a vector format as shown below:  

𝑤𝑆𝑝𝑒𝑒𝑑 [
𝑚

𝑠
] = (

3.6
4.2
⋮
1.9

)

𝜃𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛[𝑟𝑎𝑑] = (

0.5 
4.3
⋮
5.9

)      

}
 
 
 

 
 
 
𝑤𝑥 = 𝑤𝑠𝑝𝑒𝑒𝑑 ∙ cos(𝜃)

𝑤𝑦 = 𝑤𝑠𝑝𝑒𝑒𝑑 ∙ sin(𝜃)
→                   

     𝑤𝑥 = (

3.1
−1.7
⋮
1.7

)

      𝑤𝑦 = (

1.7
−3.8
⋮

−0.7

)

 

 

The time variable was implemented only for the first 3 datasets.  

For Datasets 0 – 3 the target variables are LouWSsc, TriWSsc and FlampWSsc respectively. The 

training variables are the followings: 

𝑊1_𝑥_10 𝑊1_𝑦_10 𝑊1_𝑝𝑜𝑤3_10 𝑊1_𝑥_80 𝑊1_𝑦_80 𝑊1_𝑝𝑜𝑤3_80 … 𝑊5_𝑥_80 𝑊5_𝑦_80 𝑊5_𝑝𝑜𝑤3_80 

 

For Datasets 4 the target variable is z1, whereas the training variables are the followings: 

𝑆4𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒 … 𝑆129𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒 𝑆4𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒5 … 𝑆129𝑊𝑆𝑝𝑒𝑒𝑑80𝑎𝑣𝑒5 

 

The next step is to slice the dataset into windows in order to feed it to the neural network models. The 

input window was determined to contain values of a whole day (24 hours). Therefore, for datasets 1 

– 3 the input window contained 24 values whereas for dataset 4 the window contained 144 values 

(6[10𝑚𝑖𝑛] ∙ 24[ℎ𝑜𝑢𝑟𝑠]) . The target window contained only 1 value. Then for a given distance 

between the input and the output windows, we trained the NN models. The distance defines the depth 

of the prediction horizon, i.e. how far into the future the forecast is performed. By changing the 

distance and retraining the models, and then saving the relative and absolute errors of each prediction, 

we investigate the limits of our forecasting models. In this study the distance ranged from 0 to 24 

hours. 

Lastly, the hyperparameters that were used for training are presented below:  

 Optimizer: Adams 
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 Number of Epochs: 30 

 Loss function: Mean Absolute Error 

 Batch Size: 50 

 Early Stopping: Yes, patience: 15 epochs 

The Loss function of the NNs is MAE, however a more realistic indication of the quality of the forecast 

will be given from the relative absolute error: 

𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑀𝐴𝐸

1
𝑁
∑ |𝑦𝑖 − 𝜇|
𝑁
𝑖=1

 

Where μ indicates the mean value of the set.  

Results 

An Illustration of the Quality of the Predictions with Respect to the 
Relative Error 
Before diving into the exploration of the predicted horizon we should first get familiar with the concept 

of Relative Error and how does it relate to the quality of the prediction. In this section we will present 

some examples of timeseries from the dataset Loupounaria (1 Hour) by the GRU Stacked Architecture, 

and its corresponding predictions for typical values of relative error. The predictions were performed 

on the test set of the dataset according to different preprocessing techniques that were employed 

(Vanilla, Smoothed and Data augmentation). The graphs illustrate the quality of the predictions with 

respect to the relative error. The relative error was calculated from the test set of each Dataset.  

Firstly, the graphs with the Vanilla preprocessing are presented:  

Figure 14. Forecast: 1 [Hours], Preprocessing Technique: Vanilla, NN Architecture: GRUs 
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The blue line indicates the true values of the timeseries, whereas the orange line represents the 

predictions. 

 

Figure 16. Forecast: 6 [Hours] , Preprocessing Technique: Vanilla, NN Architecture: GRUs 

Figure 15. Forecast: 11 [Hours] , Preprocessing Technique: Vanilla, NN Architecture: GRUs 
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The graphs that correspond to the Smoothed Preprocessing are depicted below:  

 

 

 

 

Figure 17. Forecast: 1 [Hours] , Preprocessing Technique: Smoothed, NN Architecture: GRUs 

Figure 18. Forecast: 6 [Hours] , Preprocessing Technique: Smoothed, NN Architecture: GRUs 
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Note that for the graphs that correspond to the smoothed preprocessing technique, the model was 

initially trained in a smoothed timeseries Therefore, the predictions (orange) were produced by 

receiving as input the smoothed true values (green) as well. However, the error was calculated with 

respect to the original true values (blue) with no smoothing implemented. 

The graphs that correspond to the Data Augmentation preprocessing technique are presented below:  

Figure 19. Forecast: 11 [Hours] , Preprocessing Technique: Smoothed, NN Architecture: GRUs 

Figure 20. Forecast: 1 [Hours] , Preprocessing Technique: Data Augmentation, NN Architecture: GRUs 
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For the graphs that correspond to the Data Augmentation preprocessing technique, the model was 

initially trained in a combined set of original and augmented data. The Augmented Data were only 

used to increase the amount of the training set and they have no purpose whatsoever in evaluating 

the predictions. Therefore, the test set only contained the true values (blue) with no data 

Figure 21. Forecast: 6 [Hours] , Preprocessing Technique: Data Augmentation, NN Architecture: GRUs 

Figure 22. Forecast: 11 [Hours] , Preprocessing Technique: Data Augmentation, NN Architecture: GRUs 
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augmentation implemented. Given that as an input the predictions (orange) were evaluated with 

respect to the original true values (blue).  

Comparison of Preprocessing Techniques  
 

We will first present the graphs of Relative Error in relation to Prediction Horizon that illustrate a clear 

comparison between the preprocessing techniques that were employed. Each set of graphs represents 

a different dataset (Flampouro, Loupounaria or Trikorfo) and contains 3 graphs which each represents 

a different NN Architecture (GRU, GRUs Stacked or GRUs Convolutional). In every graph, 3 lines are 

depicted for each preprocessing technique respectively (Vanilla, Smoothed and Data augmentation).   

 

 

Figure 23. Comparison of Preprocessing Techniques: Dataset Loupounaria 

Figure 24. Comparison of Preprocessing Techniques: Dataset Flampouro 
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The index Time of x-axis denotes the time of the forecast. If the distance between the target value and 

the window is zero, then the prediction has been made for 1 Hour ahead into the future.  

Comparison of NN Architectures 
 

In this section the graphs of Relative Error in relation to Prediction Horizon will be presented by 

comparing the different NNs Architectures (GRU, GRUs Stacked or GRUs Convolutional). Each set of 

graphs represents a different dataset (Flampouro, Loupounaria or Trikorfo) and contains 3 graphs 

which each represents a different preprocessing technique respectively (Vanilla, Smoothed and Data 

augmentation).  In every graph, 3 lines are depicted for each NN Architecture respectively (GRU, GRUs 

Stacked or GRUs Convolutional).  

Figure 25. Comparison of Preprocessing Techniques: Dataset Trikorfo 

Figure 26. Comparison of NN Architectures: Techniques: Dataset Loupounaria 
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Comparison of Sampling Steps 
 

In this section a comparison between Datasets with different sampling steps will be presented. For 

this purpose, let us consider the Dataset – 4, Loupounaria (Sampling Step: 10 min). The examination 

of the forecast horizon will be made by employing 3 different NN Architectures (GRU, GRUs Stacked 

or GRUs Convolutional) and 2 different preprocessing techniques (Vanilla and Smoothed). Moreover, 

the same experiments will be conducted by considering a new dataset which will be created by 

calculating the average of every 6 instances of wind speed from Dataset – 4. This will simulate a 

transformation in the dataset’s sampling step, from 10 min to 1 hour. 

Figure 28. Comparison of NN Architectures: Techniques: Dataset Flampouro 

Figure 27. Comparison of NN Architectures: Techniques: Dataset Trikorfo 
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Firstly, two sets of graphs will be presented each corresponding for a different preprocessing 

technique. Each set will contain 3 graphs, each representing a different NN Architecture respectively. 

In every graph, 2 lines are depicted symbolizing the forecast horizon for Loupounaria (Sampling Step: 

10 min) and Loupounaria (Sampling Step: 1 Hour). 

 

 

 

 

 

 

Figure 29. Comparison of Datasets with different Sampling Steps: Preprocessing Technique - Vanilla  

Figure 30. Comparison of Datasets with different Sampling Steps: Preprocessing Technique - Smoothed 
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Transfer Learning 
 

Another approach to the problem is to consider implementing transfer learning. For this purpose, 

Datasets 1 – 3 will be sliced in a window format and then they will be combined to create a Generic 

type of dataset. This will be used to train a Generic model according to GRUs Stacked Architecture. 

Afterwards, the first 6 layers of the generic model, with their corresponding trained weights, will be 

used for a specialized model. The parameters of the layers of the generic model will be set to be 

constant and not part of training. At the same time 3 more layers (30 GRUs, Dropout – 0.2, Dense Layer 

– 1 node) will be added to the specialized model to complete the GRUs Stacked Architecture. The 

specialized model will be then train only the last 3 added layers based on a specific dataset 

(Loupounaria, Flampouro, Trikorfo).  

This strategy aims to first capture a generic dynamic of the timeseries and then train use is to tackle a 

more specialized problem of just on dataset. Moreover, the generic model contains 3 times more 

instances and therefore has a greater chance of capturing a more generic structure of the data. For 

this experiment only Vanilla preprocessing was implemented to Datasets 1 – 3. 

Finally, 3 graphs will be presented, each corresponding for a different Dataset (Datasets 1 – 3, 

Loupounaria, Flampouro, Trikorfo). In every graph, 2 lines are depicted symbolizing the forecast 

horizon of the transfer learning model and another model that was trained according to the same 

preprocessing technique (Vanilla) and NN Architecture (GRUs Stacked) but without a implementing 

Transfer Learning. The Second model is the one that was used for the sections “comparison of 

preprocessing techniques” and “comparison of NN Architectures”. The graphs will show the effects 

Transfer Learning in the quality of the predictions, in relation to the initial forecasts.  

 

 

Figure 31. Transfer Learning: NN Architecture – GRUs Stacked, Preprocessing Technique - Vanilla 
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Comparison to Jena Climate Dataset  
 

In this section we will consider the Jena climate Dataset. Jena climate Dataset is a dataset recorded at 

the Weather Station at the Max Planck Institute in Jena, Germany. It contains plenty of atmospheric 

features such as Temperature, Pressure, Wind Speed and Direction and more. The timeseries involve 

a time period that extends from 2009 to 2016 with a sampling step of 1 hour. The main purpose of the 

dataset was to perform Forecast exercises with ANNs approaches.  The advantage of this dataset is 

that it contains a total amount of 70091 instances, compared to only 7500 in the datasets 1 – 3.  

A comparison between Datasets with different amount of observations will be presented. For this 

purpose, only the features of wind velocity and direction were considered, from the Jena Climate 

Dataset and they were transformed into a vector format (𝑤𝑥 , 𝑤𝑦 , ‖𝑤‖ = √𝑤𝑥2 +𝑤𝑦2). Moreover, 2 

preprocessing technique were introduced (Vanilla and Smoothed).  

Despite the fact that Jena Climate Dataset involves a completely different location than the ones at 

study, it would still be interesting to investigate how the models perform with datasets that contain 

10 times more data. Then, a new dataset (Sliced) will be produced, by taking into account only 7500 

instances of the Jena Climate Dataset’s and then comparing the models performance with the 

performance of the dataset 1 – 3. Supposing that Dataset 1 – 3 perform similar to the Sliced Dataset, 

then Jena Dataset with all 70091 observations may be an indicator of how Datasets 1 – 3 would 

perform, given enough data.  

Finally, 4 graphs will be presented each corresponding for a different preprocessing technique (Vanilla 

or Smoothed) and for a different Jena Dataset (Full or Sliced). In every graph, 4 lines are depicted 

representing the forecast horizon for Datasets 1 – 3 and Jena Climate Dataset. 

Figure 32. Comparison of Jena Climate Dataset with Datasets 1 – 3: NN Architecture – GRUs, Preprocessing Technique - Vanilla 
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Figure 33. Comparison of Jena Climate Dataset with Datasets 1 – 3: NN Architecture – GRUs, Preprocessing Technique - Smoothed 
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Summary & Discussion 
 

From the graphs presented in the section “An Illustration of the Quality of the Predictions with Respect 

to the Relative Error” it has been made clear that the relative error is a great indicator of the quality of 

the prediction made by the model. In fact, if the relative error is anything above 1, then it seems that 

the prediction has no apparent correlation with the True Values timeseries. For the purposes of this 

study consider that any forecast with a relative error of 8.5 and higher is considered unreliable.  

By examining the Forecast horizon graphs, it is obvious that in all cases the relative error increases 

with respect to the depth of the prediction. The rate of the increase may vary depending on different 

Datasets, preprocessing techniques, the amount of data and more. This was expected due to the 

stochastic and chaotic behavior of the window velocity’s timeseries. According to the graphs, almost 

all models were unable to predict accurately the wind velocity approximately after 10 – 12 hours.      

Regarding the Comparison of Preprocessing Techniques, it seems that the Smoothed strategy 

performed significantly better that the other two.  When the smoothed technique was implemented, 

the model was able to capture better the Dynamical Structure of the Data, even for long term forecasts 

(10 – 12 hours) and by extend to perform more robust predictions. The relative errors increased 

significantly slower compared to the other Preprocessing techniques, from 𝑅𝐸 = 0.4 − 0.6 for one to 

six hours ahead, to 𝑅𝐸 = 8.5 for 10 – 12 hours ahead. As for the Vanilla and Data Augmentation 

strategies, the relative error also begins at 0.4 - 0.6, however it soon rises to 8.5 for 4 – 6 hours into 

the future. Overall, it seems that Vanilla preprocessing technique performs slightly better. This 

indicates that the augmented data may be similar enough to the non-augmented data, which leads to 

overfitting.  

By comparing the NN Architectures, it seems that GRUs and GRUs Stacked perform very similar to each 

other for short and long term forecasts. On the other hand, GRU Convolutional Architecture generates 

a higher relative error by a factor of 1, for short term predictions, in contrast with the other 2 models. 

It could be possible that the max pooling layer removes important information about the structure of 

the timeseries or alternatively that the amount of data that are contained in the input window are not 

enough for a convolutional NN to function accurately. For long term predictions (after 12 hours) all 

models generated equally poor forecasts.  

By examining the graphs that compare the Datasets 1 and 4 with different sampling steps, no clear 

conclusions can be extracted as it seems to be no systematic differences between the performances 

of the specific models. The initial expectation that a smaller sampling step should correspond to better 

quality predictions, appears to be mistaken. For stochastic timeseries, a smaller sampling step may 

lead to greater content of noise. In that case the model may need more data in order to sufficiently 

capture the dynamics of the timeseries.  
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Concerning, the transfer learning approach, it is shown that both the transfer learning model and the 

original model, that did not involve transfer learning, perform exactly the same for a forecast horizon 

up to 7 hours. Predictions subsequent to 7 hours have been considered unreliable as the relative error 

is above 8.5. Nonetheless, transfer learning seems to be more robust for long term forecasts by 

retaining the relative error between 1 and 1.2, relative to original predictions that show a significant 

increase in the relative error, up to 1.2 or higher. This is anticipated due to the fact that transfer 

learning model had access to considerably more data, and therefore approached more accurately the 

stochastic nature of the timeseries.  

Finally, regarding the graphs that present the forecast horizon of the Jena climate Dataset indicate a 

great similarity with the performance of the Datasets 1 -3 when Jena Dataset’s observations were 

reduced to 7500, similar to the amount of data contained in the available datasets. When Jena Dataset 

had all the observations at its disposal (70091) the model performed noticeably better, producing 

more robust long term forecasts. This could suggest a potential increase in forecast accuracy if more 

observations are added to the datasets at hand. 

With the advances in the field of Machine Learning more progressive models are created to cope with 

problems that involve timeseries forecasts. Architectures like Encoder-Decoder GRUs with attention 

technique or Transformers promise more accurate predictions even for chaotic and stochastic data. A 

future prospect of the project is to employ more recent models and compare their performance with 

the models at study.  Moreover, it would be interesting to experiment more in the prospect of transfer 

learning by testing the effects of Smooth preprocessing technique, or including more datasets (Jena 

Climate Dataset, Dataset – 4) in the generic model. Nevertheless, further research should be 

conducted on the matter, as it is crucial not only for meteorological data but also for other time series 

measurements.  
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