
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Analysis and Visualization of Directed Graphs

by

Panagiotis Lionakis

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

© Panagiotis Lionakis

Heraklion, January 2023



University of Crete
Computer Science Department

Analysis and Visualization of Directed Graphs

PhD Dissertation Presented by
Panagiotis Lionakis

in partial fulfillment of the Requirements for the
Degree of Doctor of Philosophy in Computer Science

APPROVED BY:

Author: Panagiotis Lionakis

Supervisor: Ioannis G. Tollis, Professor, University of Crete

Committee Member: Giuseppe Liotta, Professor, University of Perugia

Committee Member: Kostas Stefanidis, Associate Professor, Tampere University

Committee Member: Antonis Argyros, Professor, University of Crete

Committee Member: Ioannis Tsamardinos, Professor, University of Crete

Committee Member: Polyvios Pratikakis, Associate Professor, University of Crete

Committee Member: Constantine Manasakis, Associate Professor, University of Crete

Department Chairman: Antonis Argyros, Professor, University of Crete



Heraklion, January 2023



”Imagination is more important than knowledge. For knowledge is limited, whereas
imagination embraces the entire world, stimulating progress, giving birth to

evolution.”
-Albert Einstein
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The drawing of the previous page represents the following:

i) It depicts a simple tree as sketched by Leonardo Da Vinci. This schematic "Rule
of Trees" was based only on observation and suggested that ”if you fold all the

branches of a tree upward, they will combine to create a continuation of the trunk
with the same surface area”. Regardless of the scientific proof of this statement, this

blindingly obvious observation shows that imagination and observation is the
motivation to the greatest research questions.

"The formulation of a problem is often more essential than its solution,
which may be merely a matter of mathematical or experimental skill. To
raise new questions, new possibilities, to regard old questions from a new
angle, requires creative imagination and marks real advances in science."

ii) Observation is essential in science. Scientists use observation to collect and
interpret the data into useful information in order to extract the results. Data, is

like truth. It is always from a certain point of view and not everyone can perceive it.
iii) This dissertation takes advantage of hierarchies and hierarchical drawings of

directed graphs.
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Abstract

The display of Graphs, is widely used for the visualization of data or information.

Although it is important to show all the information represented by the edges and

the nodes of the graph, there are cases where this is either impossible due to the

complexity and the size of the graphs or even misleading since the graph could be

very dense, while other reasons may be related to privacy protection (e.g., social

network graphs). To overcome this challenge, different approaches imply to hide

the unnecessary or redundant information or even replace the original graph with a

subgraph or a summary.

The main objective of this dissertation is to investigate and elaborate on the vi-

sualization and analysis of large graphs. More specifically, regarding vizualization

we design and implement various versions of a new sophisticated framework of graph

layout techniques that focus on the idea of improving the visualization aesthetics,

in order to reduce the visualization complexity of the graph, on top of sophisticated

graph drawing layouts. These techniques can be categorized in two main groups. The

first category is with respect to bends while the second is based on edge removal. To

this respect, we perform a set of experiments that show that these techniques produce

progressively more abstract drawings of the input graph. No dummy vertices are in-

troduced and the vertices of each path/channel are vertically aligned. Subsequently,

the value of the introduced approach is that it also provides a generic and parame-

terized visualization method based on the given scenario. Towards this direction, we

also elaborate on methods for grouping nodes with similar characteristics that natu-

rally decomposes the graph based on the information derived by the edges within the

graph, which can be used in order to have better visualization of complex networks.

In order to evaluate our drawing layout techniques, we assess the usability of vari-

ous versions of our new layout compared with the one produced by other hierarchical
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drawing techniques. As a result, we provide insights regarding the factors that affect

efficiency so introduce a set of metrics in order to evaluate the performance of these

techniques. Our algorithms require almost linear time. Moreover, we design and con-

duct a comparative task-based evaluation with users in which we ask the participants

to carry them out in order to extract the user's satisfaction level and exploit any

possible problems and difficulties as regards the reachability information. Generally,

the drawings produced by our algorithms have lower number of bends and are sig-

nificantly smaller in area. The user evaluation also reveals that the performance of

the participants is slightly better in the drawings of our proposed model and that our

model is preferred in overall rating compared to the other model.

Keywords: Hierarchical Graph Drawing, Directed Graphs, Crossings, Bends, Reach-

ability, Abstraction of edges, Graph Drawing, Graph Algorithms, Experimental and

User Study, Information Visualization

Supervisor: Professor Ioannis G. Tollis

Computer Science Department

University of Crete
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Περίληψη

Η απεικόνιση των Γράφων, χρησιμοποιείται ευρέως για την οπτικοποίηση δεδομένων ή

πληροφοριών. Αν και είναι σημαντικό να εμφανίζονται όλες οι πληροφορίες που αν-

τιπροσωπεύονται από τις ακμές και τους κόμβους του γράφου, υπάρχουν περιπτώσεις

όπου αυτό είναι είτε αδύνατο λόγω της πολυπλοκότητας και του μεγέθους του γράφου

ή ακόμα και παραπλανητικό. Αυτό έγκειται στο γεγονός ότι οι εν λόγω γράφοι ενδέχε-

ται να είναι αρκετά πυκνοί, ενώ άλλες περιπτώσεις σχετίζονται με προσωπικά δεδομένα

και την ιδιωτικότητα (π.χ κοινωνικά δίκτυα). Για να ξεπεραστεί αυτή η πρόκληση, δι-

αφορετικές προσεγγίσεις σχετίζονται με την απόκρυψη της περιττής ή πλεονάζουσας

πληροφορίας ή ακόμα και τη μερική αντικατάσταση του αρχικού γράφου με υπογράφο ή

με μια περίληψη αυτού.

Ο βασικός στόχος της παρούσας διατριβής είναι η λεπτομερής διερεύνηση περί οπ-

τικοποίησης και ανάλυσης μεγάλων γράφων. Πιο συγκεκριμένα, αναφορικά με την οπ-

τικοποίηση, σχεδιάζουμε και υλοποιούμε μια σειρά από διαφορετικές προσεγγίσεις ενός

νέου μοντέλου γραφικής αναπαράστασης που εστιάζουν στην βελτίωση της γραφικής

αναπαράστασης, προκειμένου να μειωθεί η οπτική πολυπλοκότητα του γραφήματος, πάνω

από εξελιγμένες τεχνικές σχεδίασης για γράφους. Οι τεχνικές αυτές μπορούν να κατη-

γοριοποιηθούν σε δύο κύριες ομάδες. Η πρώτη κατηγορία σχετίζεται με τις γωνίες ενώ

η δεύτερη με την αφαίρεση άκρων. Τα πειραματικά αποτελέσματα ανέδειξαν ότι αυτές

οι τεχνικές παράγουν προοδευτικά πιο αφαιρετικά γραφήματα. Δεν εισάγονται εικονικοί

κόμβοι και οι κόμβοι κάθε διαδρομής/καναλιού είναι κάθετα ευθυγραμμισμένοι. Η αξία

της προσέγγισής μας είναι ότι παρέχει μια γενική αλλά παραμετροποιήσιμη μέθοδο οπ-

τικοποίησης συναρτήσει του δοθέντος σεναρίου. Επιπροσθέτως, ασχολούμαστε με μεθό-
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δους ομαδοποίησης κόμβων με παρόμοια χαρακτηριστικά, οι οποίες ομαδοποιούν τον

γράφο βάσει των πληροφοριών που προέρχονται από τις ακμές, και οι οποίες μπορούν

να χρησιμοποιηθούν για την καλύτερη οπτικοποίηση πολύπλοκων δικτύων.

Προκειμένου, να αξιολογήσουμε τις τεχνικές σχεδιαστικής διάταξης, συγκρίνουμε

τη χρηστικότητα των αποτελεσμάτων διαφόρων εκδόσεων του νέου μας μοντέλου με τα

αντίστοιχα αποτελέσματα που παράγονται από παρόμοιες τεχνικές ιεραρχικής σχεδίασης.

Ως αποτέλεσμα, τονίζουμε τις γενικές κατευθυντήριες γραμμές και παρέχουμε πληρο-

φορίες σχετικά με τους παράγοντες της αποτελεσματικότητας. Οι τεχνικές μας απαιτούν

σχεδόν γραμμικό χρόνο. Επιπλέον, σχεδιάζουμε και εφαρμόζουμε μία συγκριτική αξ-

ιολόγηση βασισμένη σε Δραστηριότητες με χρήστες, προκειμένου να εξαγάγουμε το

επίπεδο ικανοποίησής τους καθώς και να αναδείξουμε τα όποια πιθανά προβλήματα και

δυσκολίες. Τα αποτελέσματα αναδεικνύουν ότι τα γραφήματα βάσει του προτεινόμε-

νου μοντέλου μας, έχουν μικρότερο αριθμό γωνιών και απαιτούν σημαντικά μικρότερη

γεωμετρική περιοχή ενώ το μοντέλο μας προτιμάται στη συνολική βαθμολογία σε σύγκρ-

ιση με το άλλο μοντέλο.

Λέξεις κλειδιά: Σχεδίαση Ιεραρχικών Γράφων, Κατευθυνόμενοι Γράφοι, Διασταυ-

ρώσεις Ακμών, Προσβασιμότητα, Αφαίρεση Ακμών, Σχεδίαση Γράφων, Αλγόριθμοι

Γράφων, Πειραματική ΄Ερευνα και ΄Ερευνα με Χρήστες, Οπτικοποίηση Πληροφορίας

Επόπτης: Ιωάννης Γ. Τόλλης
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Τμήμα Επιστήμης Υπολογιστών
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Chapter 1

Introduction

1.1 Context and Motivation

Hierarchical graphs are very important for many applications in several areas of re-

search and business because they often represent hierarchical relationships between

objects in a structure. They are directed (often acyclic) graphs and their visualization

has received significant attention recently [1–3]. In a directed graph G, a Feedback

Arc Set (FAS ) is a set of edges whose removal leaves G acyclic. Computing a min-

imum FAS is important for visualizing directed graphs in hierarchical style [3, 4].

In fact, the first step of well known frameworks for hierarchical graph drawing is to

compute a minimum FAS [5, 6]. Directed Acyclic Graphs (DAGs) are often used to

describe processes containing some long paths, such as in PERT applications see for

example [7, 8]. The paths can be either application based, e.g. critical paths, user

defined, or automatically generated paths.

In their seminal paper of 1981, Sugiyama, Tagawa, and Toda [6] proposed a four-

phase framework for producing hierarchical drawings of directed graphs. This frame-

work is known in the literature as the Sugiyama framework, or algorithm. Even

though the Sugiyama framework is very popular, most problems involved in the opti-

mization of various phases of this framework are NP-hard. The Path Based Hierarchi-

cal Drawing Framework (PBF ) exploits a new approach to visualize directed acyclic

graphs that focus on their reachability information [9]. This framework is orthogonal
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to the Sugiyama framework in the sense that it is a vertical decomposition of G into

(vertical) paths/channels. The vertices of a graph G are partitioned into paths, called

a path decomposition and the vertices of each path are drawn vertically aligned. It

consists of only two steps: (a) the cycle removal step (if the graph contains directed

cycles) and (b) the hierarchical drawing step.

Although it is important to show all the information represented by the edges of

the graphs, in several applications, such as graph databases and big data, the graphs

are very large and the usual visualization techniques are not applicable due to the

complexity and the size of the graphs or even misleading since the graph can be

very dense. Moreover, human ability to identify patterns is inversely proportional

to the size and (visualization) complexity of graphs. According to Tufte [10] the

Data-Ink ratio is a concept that is used to present essential data compared to the

total amount of ink used in the entire drawing. Other reasons are also related to

privacy protection (e.g., social network graphs). In such cases, it makes sense to

replace the original graph with a subgraph or summary (e.g., clustering, supernodes),

which removes unnecessary details about the original graph topology but retains the

mental map of the user. To overcome this challenge, different approaches imply to

hide the unnecessary information by displaying them on demand, skip the redundant

information or to apply clustering algorithms in order to reduce the complexity of the

graph on top of sophisticated graph drawing layouts.
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1.2 Contributions and Outline of this Dissertation

The key contributions of this thesis are the following:

• Chapter 2, focuses on the problem of finding a feedback arc set. In a directed

graph G, a feedback arc set is a set of edges whose removal leaves G acyclic.

The minimum FAS problem, which is NP-hard, is important for visualizing

directed graphs in hierarchical style [7]. In fact, the first step of both known

frameworks for hierarchical graph drawing is to compute a minimum FAS [5,

6]. To this respect, we introduce a new heuristic algorithm for computing a

minimum Feedback Arc Set in directed graphs. The new technique produces

solutions that are better than the ones produced by the previously best known

heuristics, and is based on computing the PageRank score of the nodes of the

directed line graph of the input directed graph. Our experimental results show

that the size of a FAS computed by our heuristic algorithm is typically about

50% smaller than the sizes obtained by the best previous heuristics. The results

have been published in [11].

• Chapter 3, introduces a new approach to visualize directed graphs and their

hierarchies that departs from the classical four-phase framework of Sugiyama

framework and computes readable hierarchical visualizations that contain the

complete reachability information of a graph. It also discusses algorithms that

extend the path-based hierarchical drawing framework. Our algorithms run in

O(km) time, where k is the number of paths and m is the number of edges

of the graph, and provide better upper bounds than the original path based

framework: i.e., the height of the resulting drawings is equal to the length of

the longest path of G, instead of n − 1, where n is the number of nodes. Ad-

ditionally, we extend this framework, by bundling and drawing all the edges of

the DAG in O(m+nlogn) time, using minimum extra width per path. We also

provide some comparison to the well known hierarchical drawing framework of

3



Sugiyama framework, as a proof of concept. The experimental results show

that the drawings produced by our algorithms have significantly lower number

of bends and are much smaller in area than the ones produced by OGDF , which

is based on the Sugiyama technique, but they have more crossings for sparse

graphs. Since there are advantages (and disadvantages) to both frameworks, we

also designed, performed and evaluated a task-based user study. The user eval-

uation shows that the performance of the participants is slightly better in PBF

drawings than in OGDF drawings and the participants prefer PBF in overall

rating compared to OGDF . Hence, our technique offers an interesting alterna-

tive for drawing hierarchical graphs when we visualize hierarchical graphs, since

we focus on showing important aspects of the graph such as critical paths, path

transitive edges, and cross edges. The results have been published in [12].

• Chapter 4, presents a set of visualization algorithms (variants) that attempt

to draw DAGs hierarchically with few bends and crossings, and by abstracting

edges in order to improve the clarity of the drawings. Our algorithms reduce the

visual complexity of the resulting drawings by (a) drawing the vertices of the

graph in some vertical lines, and (b) by progressively abstracting some transitive

edges thus showing only a subset of the edge set in the output drawing. Our

algorithms are based on the concepts of the path and channel decomposition

and focus on showing the existence of paths clearly. Our algorithms run in

O(km), where k is the number of paths/channels and m is the number of edges

of the graph. The nodes of each path/channel (which can be user defined)

are vertically aligned. The process of progressively abstracting the edges gives

different visualization results, but they all have the same transitive closure as the

input graph. We also present experimental results that show a very interesting

interplay between bends, crossings, clarity of the drawings, and the abstraction

of edges. The results have been published in [13].
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• Chapter 5, considers the problem of answering reachability queries in directed

acyclic graphs (DAGs), which is an operation required by many applications.

Our approach is based on dominance drawings of DAGs, which are important

in many research areas, including graph drawing, computational geometry, in-

formation visualization and very large databases. Toward this direction, we

present efficient algorithms to construct and search a space-efficient data struc-

ture in the k-dimensional space. Our algorithms construct this data structure

in O(km) time while it can be stored in O(kn) space. Any reachability query is

answered in constant time, since no “falsely implied paths (fips)” are introduced.

We also present experimental results, that show that the number of dimensions,

k, in the solutions produced by our techniques is low. Additionally, we present

a new method for constructing random DAGs with prespecified structure and

density which is more suitable to DAGs and their applications. In this new

model, graphs are randomly generated but they are based on a number of pre-

defined but randomly created paths. The analysis of our experimental results

reveals an interesting interplay between density and structure. The results have

been published in [14].

• Chapter 6, introduces graph abstraction techniques for grouping nodes with

similar characteristics that naturally decompose a graph based on the set of

features (relationships) applied, using the information derived by the edges.

Consequently, we present the notion of a Context-Aware Graph as a semanti-

cally enriched representation of the original graph that allows the depiction of

relationship between the nodes, in order to have better visualization of com-

plex networks. Our goal is to reduce the drawing complexity using the different

semantics of the graphs that can be further used as a visualization aid (prepro-

cessing step) for our hierarchical visualization graph framework.
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Additionally, we efficiently use the context of the graph to reveal hidden knowl-

edge and discover communities and patterns underneath the original network.

As a use case, the proposed techniques are applied and evaluated successfully

on our Hierarchical Drawing framework based on the context of reachability

(transitivity). The results show that we manage to reduce the number of nodes

and edges without losing important information about the graph, while we also

reveal hidden patterns that could not be detected using the original graph.

1.3 The Roadmap

The main objective of this dissertation is to offer advanced techniques and algorithms

for covering the needs of visualizing directed acyclic graphs (DAGs), while focusing

on displaying the reachability information. Our target is to hide (some non-essential

edges) information in order to make reachability between nodes easy to visualize by

reducing the visual complexity, retain the mental map of the user and improve the

clarity of the produced drawings. To this respect, we investigate various approaches

towards this direction. In abstract, the structure of this dissertation is organized in

the following way:

As a first step, we elaborate on the problem of computing the minimum Feedback

Arc Set, since in a directed graph G, a FAS is a set of edges whose removal leaves G

acyclic (DAGs). Next, we introduce a new approach to visualize DAGs that focuses

on their reachability information. We present a detailed general-purpose hierarchi-

cal graph drawing framework and we further extend the hierarchical graph drawing

framework of [5, 9]. Moreover, we design and implement various versions (variants)

of this new drawing framework that attempt to draw DAGs hierarchically with few

bends and crossings, and by abstracting edges in order to further improve the clarity

of the drawings. Furthermore, we exploit reachability queries in DAGs based on dom-

inance drawings. To this respect, we construct a data structure in the k-dimensional

space that is based on Graph Dominance Drawing to answer such queries. Since our
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proposed drawing framework is based on the concepts of path and channel decompo-

sition, we also introduce a new graph model, which is based on a number of predefined

paths. Finally, we address the challenges in interpreting the semantics of a graph that

can be used as a graph visualization aid. More specifically, we investigate approaches

regarding graph abstraction techniques for grouping nodes with similar characteristics

that naturally decompose a graph based on the semantics applied. Consequently, we

present the notion of Context-Aware Graph, as a semantically enrinched representa-

tion of the original graph in order to have better visualizations of complex networks.

Additionally, we efficiently use the context of the graph to reveal hidden knowledge

and discover communities and patterns underneath the original network. As a proof of

concept, the proposed techniques are applied on our Hierarchical Drawing framework

based on the context of reachability (transitivity) as a use case.
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Chapter 2

A Heuristic algorithm for computing
a minimum Feedback Arc Set in
directed graphs

In a directed graph, G, a feedback arc set (FAS ) is a set of edges whose removal leaves

G acyclic. The minimum FAS problem is important for visualizing directed graphs in

hierarchical style [4]. In fact, the first step of both known frameworks for hierarchical

graph drawing is to compute a minimum FAS [5, 6]. Unfortunately, computing a

minimum FAS is NP-hard and thus many heuristics have been presented in order

to find a reasonably good solution. In this chapter we present a new heuristic that

uses a different approach and produces FAS that contain about half the number of

edges of the best known heuristics. However, it requires superlinear time, and hence

it may not be suitable for very large graphs. Finding a minimum FAS has many addi-

tional applications beyond Graph Drawing, including misinformation removal, label

propagation, and many application domains motivated by Social Network Analysis

[15–17].

A feedback arc set of a directed graph G = (V,E) is a subset of edges F of E such

that removing the edges in F from E leaves G acyclic (no directed cycles). In other

words, a FAS contains at least one edge from each cycle of G. In hierarchical drawing

algorithms the edges in a FAS are not removed, but instead their direction is inverted.

Following the terminology of [4], a set of edges whose reversal makes the digraph
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acyclic is called a feedback set (FS). Notice that a FAS is not always a FS. However,

it is easy to see that every minimal cardinality FAS is also a FS. Hence it follows that

the minimum FS problem is as hard as the well studied minimum FAS problem which

is known to be NP-hard [18, 19]. Clearly, any heuristic for solving the minimum FAS

problem can be applied for solving the minimum FS problem, as discussed in [3, 4]. A

novel exact method for computing the minimum FAS Problem was recently proposed

in [20]. Their proposed method uses Integer Linear Programming and enumerates

simple cycles in a lazy fashion by extending an incomplete cycle matrix iteratively.

Their method succeeds in finding a minimum FAS for several (small/medium) graphs

but, as it is expected, it fails to produce results for dense graphs, and even for sparse,

larger graphs [20].

There have been many heuristics for solving the FAS problem due to the multitude

of its applications. Two of the most important heuristics/techniques are due to Eades,

Lin & Smyth [21] and Brandenburg & Hanauer [22]. The first is a greedy heuristic,

that will be called GreedyFAS, whereas the second presents a set of heuristics based

on sorting. Simpson, Srinivasan & Thomo published an experimental study for the

FAS problem on very large graphs at web-scale (also called webgraphs) [23]. They

implemented and compared many FAS heuristics. According to their study, the afore-

mentioned are the most efficient heuristics, but only GreedyFAS is suitable to run on

their extra large webgraphs.

In this chapter we present a new heuristic algorithm for computing a minimum

FAS in directed graphs. The new technique produces solutions that are better than

the ones produced by the best previous heuristics, sometimes even reducing the FAS

size by more than 50%. It is based on computing the PageRank score of the nodes of

a graph related to the input graph, and runs rather fast for graphs up to 4,000 nodes.

However, it is slower than GreedyFAS for webgraphs.
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2.1 Existing Algorithms

In this section we summarize and give a brief description of two important heuris-

tics that currently give the best results for the FAS problem, according to the new

experimental study of Simpson, Srinivasan & Thomo [23]. They implemented and

compared many heuristics for FAS, and performed experiments on several large and

very large webgraphs. Their results show that two of the known heuristic algorithms

give the best results.

The first of the two heuristic algorithms that currently produce the best FAS size

is called GreedyFAS and it is due to Eades, Lin & Smyth [21]. In [23] two different

optimized implementations of GreedyFAS that run in O(n + m) are presented and

tested. These are the most efficient implementations in their study and are able

to run even for their extra large webgraphs. The second algorithm is SortFAS of

Brandenburg & Hanauer [22]. According to [23], SortFAS, as proposed runs in O(n3)

time but Simpson et al. present an implementation that runs in O(n2) time.

We will present experimental results that show that our new heuristic algorithm

performs better than both of them in terms of the size of the produced FAS. On

the other hand, it takes more time than both of them for large graphs. However,

for graphs that are typically used for visualization purposes, the running time is

acceptable whereas the produced FAS size is about half.

2.1.1 GreedyFAS

The GreedyFAS algorithm was introduced by Eades, Lin & Smyth in 1993 [21]. It

efficiently calculates an approximation to the FAS problem on a graph G. In order

to understand the algorithm, we first discuss the Linear Arrangement Problem (LA),

which is an equivalent formulation to the FAS problem. The LA problem produces an

ordering of the nodes of a graph G for which the number of arcs pointing backwards

is minimum. The set of backwards arcs is a FAS since removing them from G leaves
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the graph acyclic.

GreedyFAS calculates a feedback arc set of a graph G by first calculating a Linear

Arrangement of G. More specifically, in each iteration, the algorithm removes all

nodes of G that are sinks followed by all the nodes that are sources. A node is

considered a source in a graph if it has no incoming edges. Likewise, a node is

considered a sink if it has no outgoing edges. It then removes a node u for which

δ(u) = d+(u) − d−(u) is a maximum, where d+(u) denotes the out-degree of u and

d−(u) denotes the in-degree of u. The algorithm also makes use of two sequences of

nodes s1 and s2. When any node u is removed from G then it is either prepended to

s2 if it’s a sink, or appended to s1 if it’s not. The above steps are repeated until G

is left with no nodes, then the sequence s = s1s2 is returned as a linear arrangement

for which the backward arcs make up a feedback arc set. For more details see [3,

4]. Using the implementations of [23], GreedyFAS runs very fast, in O(n+m) time,

and is suitable for their extra large webgraphs. The pseudocode for GreedyFAS, as

described in [4] and [23], is presented in Algorithm 1.

Algorithm 1 GreedyFAS
Input: Directed graph G = (V,E)
Output: Linear Arrangement A
s1 ← ∅, s2 ← ∅
while G ̸= ∅ do

while G contains a sink do
choose a sink u
s2 ← us2
G← G\u

while G contains a source do
choose a source u
s1 ← s1u
G← G\u

choose a node u for which δ(u) is a maximum
s1 ← s1u
G← G\u

return s = s1s2
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2.1.2 SortFAS

The SortFAS algorithm was introduced in 2011 by Brandenburg & Hanauer [22]. The

algorithm is an extension of the KwikSortFAS heuristic by Ailon et al. [24], which is

an approximation algorithm for the FAS problem on tournaments. With SortFAS,

Brandenburg & Hanauer extended the above heuristic to work for general directed

graphs. It uses the underlying idea that the nodes of a graph can be sorted into a

desirable Linear Arrangement based on the number of back arcs induced.

SortFAS is equivalent to sorting by insertion for the linear arrangement problem.

In the case of SortFAS, the nodes are processed in order of their ordering (v1...vn).

The algorithm goes through n iterations. In the the i-th iteration, node vi is inserted

into the linear arrangement in the best position based on the first i− 1 nodes which

are already placed. The best position is the one with the least number of back arcs

induced by vi. In case of a tie the leftmost position is taken. Using the implementation

of [23], SortFAS runs in O(n2) time. The pseudocode for SortFAS, as described in [23],

is presented in Algorithm 2.

Algorithm 2 SortFAS
Input: Linear arrangement A
for each node v in A do

val← 0, min← 0, loc← position of v
for each position j from loc− 1 down to − do

w ← node at position j
if arc (v, w) exists then

val← val − 1
else if arc (w, v) exists then

val← val + 1

if val ≤ min then
min← val, loc← j

insert v at position loc
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2.2 Efficient Computation of a Feedback Arc Set:
An approach Using PageRank

Our approach is based on running the well known PageRank algorithm [25, 26] on

the directed line digraph of the original directed graph. The line graph of an undi-

rected graph G is another graph L(G) that is constructed as follows: each edge in

G corresponds to a node in L(G) and for every two edges in G that are adjacent to

a node v an edge is placed in L(G) between the corresponding nodes. Clearly, the

number of nodes of a line graph is m and the number of edges is proportional to the

sum of squares of the degrees of the nodes in G, see [27]. If G is a directed graph,

its directed line graph (or line digraph) L(G) has one node for each edge of G. Two

nodes representing directed edges incident upon v in G (one incoming into v, and one

outgoing from v), called L(u, v), and L(v, w), are connected by a directed edge from

L(u, v) to L(v, w) in L(G). In other words, every edge in L(G) represents a directed

path in G of length two. Similarly, the number of nodes of a line digraph is m and the

number of edges is proportional to
∑︁

u∈V [d
+(u)× d−(u)]). Hence, the size of L(G) is

O(m+
∑︁

u∈V [d
+(u)× d−(u)]).

Given a digraph G = (V,E) our approach is to compute its line digraph, L(G),

run a number of iterations of PageRank on L(G) and remove the node of highest

PageRank in L(G). Our experimental results indicate that PageRank values converge

reasonably well within five iterations.

A digraph G is strongly connected if for every pair of vertices of G there is a cycle

that contains them. If G is not strongly connected, it can be decomposed into its

strongly connected components (SCC) in linear time [28]. An SCC of G is a subgraph

that is strongly connected, and is maximal, in the sense that no additional edges

or vertices of G can be included in the subgraph without breaking its property of

being strongly connected. If each SCC is contracted to a single vertex, the resulting

graph is a directed acyclic graph (DAG). It follows that feedback arcs can exist only
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within some (SCC) of G. Hence we can apply this approach inside each SCC, using

their corresponding line digraph, and remove the appropriate edges from each SCC.

This approach will avoid performing several useless computations and thus reduce

the running time of the algorithm.

2.2.1 Line Graph

In order to obtain the line digraph of G, we use a DFS-based approach. First, for

each edge (u, v) of G, we create a node (u, v) in L(G) and then run the following

recursive procedure. For a node v, we mark it as visited and iterate through each one

of its outgoing edges. For each outgoing edge (v, u) of v, we add an edge in L(G) from

the prev L(G) node that was processed before the procedure’s call to the node (v, u).

Afterwards we call the same procedure for u if it’s not visited with (v, u) as prev. If u

is visited we add an edge from (v, u) to each one of L(G)’s nodes corresponding from

u. Since this technique is based on DFS, the running time is O(n+m+ |L(G)|). The

pseudocode for computing a line digraph is presented in Algorithm 3.

Algorithm 3 LineDigraph
Input: Digraph G = (V,E)
Output: Line Digraph L(G) of G
Create a line digraph L(G) with every edge of G as a node
v ← random node of G

procedure GetLineGraph(G,L(G), v, prev)
mark v as visited
for each edge e = (v, u) outgoing of v do

z ← node of L(G) representing e
create an edge in L(G) from prev to z ▷ Given that prev is not nill
if u is not visited then

GetLineGraph(G,L(G), u, z)
else

for each node k in L(G) that originates from u do
create an edge in L(G) from z to k
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2.2.2 PageRank

PageRank was first introduced by Brin & Page in 1998 [25, 26]. It was developed in

order to determine a measure of importance of web pages in a hyperlinked network of

web pages. The basic idea is that PageRank will assign a score of importance to every

node (web page) in the network. The underlying assumption is that important nodes

are those that receive many “recommendations” (in-links) from other important nodes

(web pages). In other words, it is a link analysis algorithm that assigns numerical

scores to the nodes of a graph in order to measure the importance of each node in the

graph. PageRank works by counting the number and quality/importance of edges

pointing to a node and then estimate the importance of that node. We use a similar

approach in order to determine the importance of edges in a directed graph. The

underlying assumption of our technique is that the number of cycles that contain a

specific edge e will be reflected in PageRank score of e. Thus the removal of edges

with high PageRank score is likely to break the most cycles in the graph.

Given a graph with n nodes and m edges, PageRank starts by assigning an initial

score of 1/n to all the nodes of a graph. Then for a predefined number of iterations

each node divides its current score equally amongst its outgoing edges and then passes

these values to the nodes it is pointing to. If a node has no outgoing links then it

keeps its score to itself. Afterwards, each node updates its new score to be the sum

of the incoming values. It is obvious that after enough iterations all PageRank values

will inevitably gather in the sinks of the graph. In use cases where that is a problem

a damping factor is used, where each node gets a percentage of its designated score

and the rest gets passed to all other nodes of the graph. For our use case we have

no need for this damping factor as we want the scores of the nodes to truly reflect

their importance. The number of iterations depends on the size and structure of a

graph. We found that for small and medium graphs, which is the case in the scenario

for graph visualization, about five iterations were enough for the scores of the nodes
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to converge. Depending on the implementation, PageRank can run in O(k(n +m))

time, where k is the number of iterations. The pseudocode for PageRank is presented

in Algorithm 4.

Algorithm 4 PageRank
Input: Digraph G = (V,E), number of iterations k
Output: PageRank scores of G
for each node v in G do

PR(v)← 1
|V |

for k iterations do
for each node v in G do

PR(v)←
∑︁

u∈in(v)
PRold(u)
|out(u)|

return PR

2.2.3 PageRankFAS

The proposed algorithm is based on the concepts of PageRank and Line Digraphs.

The idea behind PageRankFAS is that we can score the edges of G based on their

involvement in cycles: For each strongly connected component (s1, s2, ..., sj) of G,

it computes the line digraph L(si) of the i-th strongly connected component, to

transform edges to nodes; next it runs the PageRank algorithm on L(si) to obtain a

score for each edge of si in G.

We observed that the nodes of the line digraphs with the highest PageRank score

correspond to edges that are involved in the most cycles of G. We also observed that

the nodes of the line digraphs with lower score correspond to edges of G with low

involvement in cycles. Using this knowledge, we run PageRankFAS for a number of

iterations. In each iteration, we use PageRank to calculate the node scores of each

L(si) and remove the node(s) with the highest PageRank score, also removing the

corresponding edge(s) from G. We repeat this process until G becomes acyclic. The

pseudocode is presented in Algorithm 5.
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Algorithm 5 PageRankFAS
Input: Digraph G = (V,E)
Output: Feedback Arc Set of G
fas← ∅
while G has cycles do

Let (s1, s2, ..., sj) be the strongly connected components of G
for each strongly connected component si do

Create a line digraph L(si) with every edge of si as a node
v ← random node of si
GetLineGraph(si, L(si), v, nill)
PageRank(L(si))
u← node of L(si) with highest PageRank value
e← edge of G corresponding to u
Add e to fas
Remove e from G

return fas

2.3 Experiments and Discussion

Here, we report the experimental results and describe some details of our setup. All

of our algorithms are implemented in Java 8 using the WebGraph framework [29, 30]

and tested on a single machine with Apple’s M1 processor, 8GB of RAM and running

macOS Monterey 12.

Datasets: In order to evaluate PageRankFAS, we used four different datasets:

1. Generated random graphs with 100, 200, 400, 1000, 2000, 4000 nodes and an

average out-degree of 1.5, 3 and 5 each.

2. Three directed graphs from the datasets in graphdrawing.org, suitably modified

in order to contain cycles (since the originals are DAGs).

3. Generated random graphs with 50, 100 and 150 nodes and average out-degrees

of 1.5, 3, 5, 8, 10 and 15 each.

4. Two webgraphs from the Laboratory of Web Algorithmics1, also used in [23].
1https://law.di.unimi.it/datasets.php
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We randomly generate a total of 36 graphs using a predefined number of nodes,

average out-degree and back edge percentage, and we repeat the process 10 times.

The total number of edges is based on the number of nodes and average out-degree.

The edges are selected with uniform probability by taking advantage of JAVA random

numbers generators. Next, we add the predefined percentage of edges as back edges

and the rest as forward edges. Finally we shuffle the node IDs in order to prevent any

bias in the traversal of the graph. By construction, this model has the advantage that

we know in advance an upper bound to the FAS size, since the number of randomly

created back edges divided by the total number of edges, is an upper-bound to the

size of a minimum FAS. Finally, in order to obtain more reliable results, for each case

we run the three algorithms on 10 created graphs and report the average numbers.

This smooths out several points in our curves.

2.3.1 FAS with Respect to the Number of Nodes

The first set of experiments gives us an idea of how PageRankFAS performs on graphs,

with varying number of nodes in comparison to the other two algorithms. It is

noteworthy that in most cases the FAS found by PageRankFAS is less than 50% of the

FAS found by GreedyFAS and SortFAS. As a matter of fact, for large visualization

graphs with 4,000 nodes and 12,000 edges the reduction in the FAS size is almost

55% with respect to the FAS produced by GreedyFAS. The execution time taken by

PageRankFAS is less than one second for graphs up to 1,000 nodes, which is similar

to the time of the other two heuristics. Figure 2.1 shows a visual comparison of the

FAS size of PageRankFAS with respect to GreedyFAS on a graph with 1,000 nodes.

For the larger graphs, even up to 4,000 nodes the time required is less than 8 seconds,

whereas, the other heuristics run in about 1-2 seconds. Examples of such graph sizes

can be found in a number of application domains related, but not limited, to social

networks, traffic networks, citation networks and large scale chemical engineering

systems.
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Figure 2.1: A visual comparison (a different view) of the FAS size of PageRankFAS
with respect to GreedyFAS, on a graph with 1,000 nodes. The FAS is shown as red
edges.

The results of this experiment are shown in Figure 2.5. It is interesting to note

that the performance of SortFAS is better than the performance of GreedyFAS as the

graphs become denser, and in fact, SortFAS actually out-performs GreedyFAS when

the graphs have an average out-degree 5 and above, see Figure 2.5(c).

2.3.2 FAS with Respect to The Number of Back Edges

The second type of experiments make use of three graphs from graphdrawing.org.

Since these graphs are directed acyclic, we randomly added back edges in different

percentages of the total number of edges. We did this in a controlled manner in order

to know in advance an upper bound of FAS. PageRankFAS gave by far the best FAS

results and GreedyFAS also produced FAS with sizes mostly below 10%. SortFAS was

not competitive in this dataset. The results are shown in Figure 2.9. The execution

time taken by PageRankFAS is well below 0.15 of a second for all graphs, which is

similar to the other two heuristics.
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Figure 2.2: (a) Graphs with average
out-degree 1.5

Figure 2.3: (b) Graphs with average
out-degree 3

Figure 2.4: (c) Graphs with average
out-degree 5

Figure 2.5: (a)-(c) FAS percentage for
graphs with increasing number of nodes
and three different average out-degrees.

Figure 2.6: (a) Graph with 50 nodes
and 75 edges before modification

Figure 2.7: (b) Graph with 75 nodes
and 86 edges before modification

Figure 2.8: (c) Graph with 99 nodes
and 154 edges before modification

Figure 2.9: (a)-(c) FAS percentage
for 3 types of graphs from graphdraw-
ing.org and for various numbers of back
edges.
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2.3.3 FAS with Respect to the Average Out-Degree

Motivated by the results shown in Figure 2.5(c) we decided to investigate the cor-

relation between the density of a graph and its potential FAS percentage. In this

experiment, we created 18 different graphs, six of them with 50 nodes, six with 100

nodes and six with 150 nodes as follows: For each node size (i.e., 50, 100, 150) six

graphs with average out-degrees 1.5, 3, 5, 8, 10 and 15. Again, as with our previous

experiments, the results reported here are the averages of 10 runs in order to com-

pensate for the randomness of each graph and to get smoother curves. The results of

this experiment are shown in Figure 2.10.

The results of PageRankFAS are consistently better than the results of GreedyFAS

and SortFAS for all graphs. The results of GreedyFAS and SortFAS are very close to

each other, for the graphs with 50 nodes. Notice however that, SortFAS outperforms

GreedyFAS when the number of nodes exceeds 100 and the average out-degree exceeds

five. This is aligned with the results shown in Figure 2.5(c). Furthermore, as expected,

when the average out-degree increases the FAS size clearly increases. Consequently, all

techniques seem to converge at higher percentages of FAS size. Again, PageRankFAS

runs in a small fraction of a second for all graphs, which is similar to the running

times of the other two heuristics.

2.3.4 PageRankFAS on Webgraphs

The experiments reported in [23] use large and extra large benchmark webgraphs.

Their smaller benchmarks are wordassociation-2011 (with 10,617 nodes, 72,172 edges,

which implies an average degree 6.80) and enron (with 69,244 nodes, 276,143 edges,

which implies an average degree 3.86).

The authors report that the sizes of a FAS found by GreedyFAS and SortFAS

for wordassociation-2011 are 18.89% and 20.17%, respectively [23]. We ran PageR-

ankFAS for wordassociation-2011 and obtained a FAS of size 14.85%. Similarly, for

webgraph enron they report a FAS of 12.54% and 14.16% respectively. We ran PageR-
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(a) Graphs with 50 nodes

(b) Graphs with 100 nodes

(c) Graphs with 150 nodes

Figure 2.10: FAS percentage depend-
ing on the average out-degree of three
different types of graphs.

(a) wordassociation-2011

(b) enron

Figure 2.11: FAS percentage on two we-
bgraphs.
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ankFAS on webgraph enron and obtained a FAS of size 11.05%. The results are shown

in Figure 2.11. As expected, and consistent with our experimental observations of the

previous subsections, the FAS size of the denser webgraph (wordassociation-2011) is

larger than the FAS size of the sparser graph (enron), as computed by all heuristics.

Unfortunately, the required execution time of PageRankFAS does not allow us to

test it on the larger webgraphs used in [23]. However, it is interesting that there exists

a FAS of smaller size for these large graphs, which, to the best of our knowledge, was

not known before.
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Discussion: In this chapter we presented a heuristic algorithm for computing a FAS

of minimum size based on PageRank. Our experimental results show that the size of

a FAS computed by PageRankFAS algorithm is typically about 50% smaller than the

sizes obtained by the best previous heuristics. Our algorithm is more time consuming,

but it’s running time is reasonable for graphs up to 4,000 nodes. For smaller graphs,

up to 1,000 nodes, the execution time is well below one second, which is similar to

the running times of the other two heuristics. Therefore, this is acceptable for graph

drawing applications. An interesting side result is that we found out that the FAS-

size of two large graphs is significantly less than it was known before. Since it is

NP-hard to compute the minimum FAS, the optimum solution for these webgraphs

is unknown. Hence, we do not know how close our solutions are to the optimum. It

would be interesting to investigate techniques to speedup PageRankFAS in order to

make it more applicable to larger webgraphs.
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Chapter 3

Improvements on the visualization
aesthetics of the proposed
hierarchical drawing framework

Hierarchical graphs are very important for many applications in several areas of re-

search and business because they often represent hierarchical relationships between

objects in a structure. They are directed (often acyclic) graphs and their visualiza-

tion has received significant attention recently [1–3]. An experimental study of four

algorithms specifically designed for (Directed Acyclic Graphs) DAGs was presented

in [31]. DAGs are often used to describe processes containing some long paths, such

as in PERT applications see for example [7, 8]. The paths can be either application

based, e.g. critical paths, user defined, or automatically generated paths. A new

framework to visualize directed graphs and their hierarchies was introduced in [5, 9].

It is based on a path/channel decomposition of the graph and is called (Path-Based

Framework or PBF). It computes readable hierarchical visualizations in two phases

by “hiding” (abstracting) some selected edges, while maintaining the complete reach-

ability information of a graph. However, these drawings are not satisfactory to users

that need to visualize the whole graph.

In this chapter we extend the hierarchical graph drawing framework of [5, 9] in two

directions: a) we draw all edges of the graph and use extensive edge bundling, and

b) we minimize the height of the drawing using a compaction technique. To reduce
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the width we apply algorithms similar to task scheduling. The total time required for

these extensions is O(m+n log n), where m is the number of edges and n the number

of nodes of a graph G. In this framework, the edges of G are naturally split into three

categories: path edges, path transitive edges, and cross edges. Path edges connect

consecutive vertices in the same path. Path transitive edges connect non-consecutive

vertices in the same path. Cross edges connect vertices that belong to different paths.

The path-based framework departs from the typical Sugiyama Framework [32] and

it consists of two phases: (a) Cycle Removal, (b) the path/channel decomposition

and hierarchical drawing step. It is based on the idea of partitioning the vertices

of a graph into node disjoint paths/channels, where in a channel consecutive nodes

are connected by a path but not necessarily connected by an edge. In the rest, we

only use the term “path” but of course our algorithms work also for “channels” The

vertices in each path are drawn vertically aligned on some x-coordinate; next the

edges between vertices that belong to different paths are drawn. Note that there

are several algorithms that compute a path decomposition of minimum cardinality in

polynomial time [33–36].

The Sugiyama Framework has been extensively used in practice, as manifested by

the fact that various systems are using it to implement hierarchical drawing tech-

niques. The comparative study of [31] concluded that the Sugiyama-style algorithms

performed better in most of the metrics. For more recent information regarding this

framework see [3]. Commercial software such as the Tom Sawyer Software TS Per-

spectives [37] and yWorks [38], use this framework in order to offer automatic visual-

izations of directed graphs. Even though it is very popular, the Sugiyama Framework

has several limitations: as discussed bellow, most problems and subproblems that

are used to optimize the results in various steps of each phase have turned out to

be NP-hard. The overall time complexity of this framework (depending upon im-

plementation) can be as high as O((nm)2), or even higher if one chooses algorithms

that require exponential time. Another important limitation of this framework is
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the fact that heuristic solutions and decisions that are made during previous phases

(e.g., crossing reduction) will influence severely the results obtained in later phases.

Nevertheless, previous decisions cannot be changed in order to obtain better results.

By contrast, in the framework of [5] most problems of the second phase can be

solved in polynomial time. If a path decomposition contains k paths, the number of

bends introduced is at most O(kn) and the required area is at most O(kn). Edges

between non consecutive vertices in a path (the path transitive edges), are not drawn

in the framework of [5]. Hence, users that need to visualize all the edges of a given

graph are not satisfied by these drawings.

We present experimental results comparing drawings obtained by the extended-

PBF to the drawings obtained by running the hierarchical drawing module of OGDF [39],

which is based on the Sugiyama Framework, and is a quite active research software

that implements this framework. The results show that PBF runs much faster, has

better area and less bends, but OGDF has less crossings, especially for sparse graphs.

Since the usual metrics like bends, area, and crossings did not lead to concrete

conclusions and the two frameworks produce vastly different drawings, we decided

to perform a user study between these two drawing frameworks, in order to obtain

feedback from users using these drawings. The users had to perform a set of tasks

on the drawings of some DAGs. The tasks include determining if two given vertices

are connected, finding the length of a shortest path, and determining if some vertices

are successors of a given vertex. The users’ answers were correct above 90% for PBF

and above 84% for the Sugiyama Framework (OGDF). The users were also asked to

express their preference, in terms of clarity and readability, between the two frame-

works. 58.3% of the users showed a clear preference to using drawings produced by

PBF. Hence, this technique offers an interesting alternative to drawing hierarchical

graphs, especially if there are user defined paths that need to be clearly visualized. A

detailed analysis of the user study and the experimental results is presented in next

sections.
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Figure 3.1: Example of a DAG G drawn by our proposed framework (left). Same
DAG drawn by the Sugiyama framework as implemented in OGDF (right).

3.1 Overview of the Two Frameworks

The two hierarchical drawings shown in Figure 4.1 demonstrate the significant

differences between the two frameworks: Part (a) shows a drawing of G computed

by our algorithms that customize PBF. Part (b) shows the drawing of G computed

by OGDF. The graph consists of 20 nodes and 31 edges. The drawing computed by

our algorithms has 12 crossings, 18 bends, width 10, height 15, and area 150. On

the other hand, OGDF computes a drawing that has 5 crossings, 22 bends, width 18,

height 15 and area 270. Clearly, the two frameworks produce vastly different drawings

with their own advantages and disadvantages.
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The original Path Based Hierarchical Drawing Framework follows an approach to

visualize directed acyclic graphs that hides some edges and focuses on maintaining

their reachability information [5]. This framework is based on the idea of partitioning

the vertices of the graph G into (a minimum number of) channels/paths, that we

call channel/path decomposition of G, which can be computed in polynomial time.

Therefore, it is orthogonal to the Sugiyama framework in the sense that it is a vertical

decomposition of G into (vertical) paths/channels. Thus, most resulting problems are

vertically contained, which makes them simpler, and reduces their time complexity.

This framework does not need to introduce any dummy vertices and keeps the ver-

tices of a path vertically aligned, which is important for specific applications (such as

visualizing critical paths in PERT diagrams [7]). By contrast, the Sugiyama frame-

work performs a horizontal decomposition of a graph, even though the final result is a

vertical (hierarchical) visualization. Let Sp = {P1, ..., Pk} be a path decomposition of

G such that every vertex v ∈ V belongs to exactly one of the paths of Sp. Any path

decomposition naturally splits the edges of G into: (a) path edges (b) cross edges and

(c) path transitive edges. Given any Sp the main algorithm of [5], draws the vertices of

each path Pi vertically aligned on some x-coordinate depending on the order of path

Pi. The y-coordinate of each vertex is equal to its order in any topological sorting of

G. Hence the height of the resulting drawing is n− 1.

It also important to highlight that the Path-Based Framework works for any given

path decomposition. Therefore, it can be used in order to draw graphs with user-

defined or application-defined paths, as is the case in many applications, see for

example [7, 8]. If one desires automatically generated paths, there are several al-

gorithms that compute a path decomposition of minimum cardinality in polynomial

time [33–36]. Since certain critical paths are important for many applications, it is

extremely important to produce clear drawings where all such paths are vertically

aligned, see [5]. For the rest of this chapter, we assume that a path decomposition of

G is given as part of the input to the algorithm.
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OGDF is a self-contained C++ library of graph algorithms, in particular for (but

not restricted to) automatic graph drawing. The hierarchical drawing implementa-

tion of the Sugiyama Framework in OGDF is implemented following [40, 41] and

it uses the following default choices: For the first phase of Sugiyama, it uses the

LongestPathRanking (to assign vertices into layers) which implements the well-

known longest-path ranking algorithm. Next, it performs crossing minimization by

using the BarycenterHeuristic. This module performs two-layer crossing minimiza-

tion and is applied during the top-down and bottom-up traversals [39]. The crossing

minimization is repeated 15 times, and it keeps the best. Finally, the final coordinates

(drawing) are computed with FastHierarchyLayout layout of OGDF.

3.2 Computing Compact and Bundled Drawings

We present an extension of the framework of [5] by (a) compacting the drawing in

the vertical direction, and (b) drawing the path transitive edges that were not drawn

in [5]. This approach naturally splits the edges of G into three categories, path edges,

cross edges, and path transitive edges. This clearly adds new possibilities to the

understanding of the user and allows a system to show the different edge categories

separately, without altering the user’s mental map.

3.2.1 Compaction

Let G = (V,E) be a DAG with n vertices and m edges. Following the framework

of [5, 9] the vertices of V are placed in a unique y-coordinate, which is specified by

a topological sorting. Let T be the list of vertices of V in ascending order based on

their y-coordinates. We start from the bottom and visit each vertex in T in ascending

order. For every vertex v in this order we assign a new y-coordinate, y(v), following

a simple rule that compacts the height of the drawing: “If v has no incoming edges

then we set its y(v) equal to 0, else we set y(v) equal to a+1, where a is the highest

y-coordinate of the vertices that have edges incoming into v.”
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(a) (b)

Figure 3.2: A DAG G drawn without its path transitive edges: (a) drawing Γ1 is
computed by Algorithm PBH, (b) drawing Γ2 is the output after compaction and
edge bundling.
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Algorithm 6 takes as input a DAG G, and a path based hierarchical drawing Γ1 of

G computed by Algorithm PBH and it produces as output a new, compacted, path

based hierarchical drawing Γ2 with height L, where L is the length of a longest path

in G. Clearly this simple algorithm can be implemented in O(n+m) time.

Algorithm 6 Compaction(G, Γ1)
Input: A DAG G = (V,E), and a path based hierarchical drawing Γ1 of G computed
by Algorithm PBH
Output: A compacted path based hierarchical drawing Γ2 with height L, where L
is the length of a longest path in G.
1: For each v ∈ G:

• Let Ev be the set of incoming edges, e = (w, v), into v:

a. if Ev = ∅ then:
• y(v)=0

b. else:
• y(v)=max{y-coordinates of vertices w with (w, v) ∈ Ev} + 1

Figure 3.2 shows an example of two hierarchical drawings of the same graph: Γ1

is before compaction and Γ2 is after compaction. The produced drawings, have the

following simple properties:

Property 1. Two vertices of the same path are assigned distinct y-coordinates.

Property 2. For every vertex v with y(v) ̸= 0, there is an incoming edge into v that

starts from a vertex w such that y(v) = y(w) + 1.

Based on the properties above the height of the compacted drawing of the graph G

is at most L and it can be computed in O(n+m) time.

3.2.2 Drawing and Bundling the Path Transitive Edges

An important aspect of our work is the preservation of the mental map of the user

that can be expressed, in part, by the reachability information of a DAG. Recall that

path transitive edges are not drawn by the framework of [5, 9]. In this subsection we
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Figure 3.3: Bundling of path transitive edges from left to right: (i) incoming edges
into the last vertex of the path, (ii) bundling the incoming edges, (iii) outgoing edges
from the first vertex of the path, (iv) bundling the outgoing edges.

show how to bundle and draw these edges while preserving the user’s mental map of

the previous drawing. Additionally, one may interact with the drawings by hiding the

path transitive edges at the click of a button without changing the user’s mental map

of the complete drawing. We describe an algorithm that bundles and draws the path

transitive edges using the minimum extra width (minimum extra number of columns)

for each (decomposition) path as shown in Figure 3.3. The steps of the algorithm are

briefly described as follows:
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1. For every vertex of each decomposition path we compute the indegree and

outdegree based only on path transitive edges.

2. If all indegrees and outdegrees are zero the algorithm is over, if not, we select a

vertex v with the highest indegree or outdegree and we bundle all the incoming

or outgoing edges of v, respectively. These bundled edges are represented by an

interval with starting and finishing points, the lowest and highest y-coordinates

of the vertices, respectively.

3. Next, we insert each interval on the left side of the path on the first available

column such that the interval does not overlap with another interval.

4. We remove these edges from the set of path transitive edges, update the indegree

and outdegree of the vertices and repeat the selection process.

5. The intervals of the rightmost path, are inserted on the right side of the path

in order to avoid potential crossings with cross edges.

6. A final, post-processing step can be applied because some crossings between

intervals/bundled edges can be removed by changing the order of the columns

containing them.

The above algorithm can be implemented to run in O(m+n log n) time by handling

the updates of the indegrees and outdegrees carefully, and placing the appropriate

intervals in a (Max Heap) Priority Queue. As expected, the fact that we draw the

path transitive edges increases the number of bends, crossings, and area, with respect

to not drawing them.

For each decomposition path, suppose we have a set of b intervals such that each

interval I has a start point, sI , and a finish point fI . The starting point is the position

of the vertex of the interval with the lowest y-coordinate. Similarly, the finish point

fI is the position of the node of the interval with the highest y-coordinate. We follow
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(a) Placing bends on cross edges (b) Bundling of cross edges

Figure 3.4: Examples of bends and bundling of cross edges with a common end node.

a greedy approach in order to minimize the width (number of columns) for placing

the bundled edges. The approach is similar to Task Scheduling [42], for placing the

intervals. It uses the optimum number of columns and runs in O(b log b) time, for each

path with b intervals. Since the sum of all b’s for all paths in a path decomposition

is at most n we conclude that the algorithm runs in O(n log n) time. For details and

proof of correctness see [42].

3.2.3 Drawing and Bundling the Cross Edges

Cross edges connect vertices that belong to different paths. The number of bends of

every cross edge depends on the vertical distance of its incident nodes. An example

is shown in Figure 3.4a. Each cross edge (u1, u2) has:

1. Two bends if the vertical distance between u1 and u2 is more than two.

2. One bend if the vertical distance between u1 and u2 is two.

3. The edge is a straight line segment (no bend) if the vertical distance between

u1 and u2 is one.

We bundle all incoming cross edges for each vertex (except those with one unit of

vertical distance from the target). We can place the bundled cross (Figure 3.4a) edges
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between the paths/channels using the same technique we used for path transitive

edges, using a technique that relies on task scheduling as we described above. Figure

3.4b shows an example of bundled cross edges.

3.3 Experimental Evaluation and User Study

In this section we present experimental results obtained by the extended path-based

framework and we compare them with the respective experimental results obtained by

running the hierarchical drawing module of OGDF, which is based on the Sugiyama

Framework. In order to evaluate the performance, we used the following standard

metrics:

• Number of crossings.

• Number of bends.

• Width of the drawing: The total number of distinct x coordinates that are used

by the framework.

• Height of the drawing: The total number of distinct y coordinates that are used

by the framework.

• Area of the drawing: The area of the enclosing rectangle.

Based on these metrics, we conducted a number of experiments to evaluate the

performance of the two different hierarchical frameworks using a dataset of 20 ran-

domly generated DAGs. Additionally, the metrics of PBF could vary depending on

the path/channel decomposition algorithm we use and the ordering of the columns.

In general, our experiments showed that PBF produces readable drawings. Addi-

tionally, it clearly partitions the edges into three distinct categories, and vertically

aligns certain paths, which may be user/application defined. This may be impor-

tant in certain applications. The results showed that our approach differs from the
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Sugiyama Framework completely, since it examines the graph vertically. The ex-

tended PBF performs bundling very efficiently and computes the optimal height of

the graph. In most cases, the drawings based on PBF need less area than OGDF

and contain fewer bends. On the other hand, OGDF generally has fewer crossings

than PBF. This is expected since OGDF places a major computational effort into the

crossing minimization step, whereas PBF does not perform any crossing minimiza-

tion. Figure 3.5 shows that the time for PBF grows linearly in contrast to ODFG

where it’s time complexity seems to be cubic. For all the reasons described above this

approach seems to be an interesting alternative to the Sugiyama style hierarchical

drawings.

Additionally, we conducted another series of experiments in order to validate

this statement further. To this respect, we used the benchmarks found at www.

graphdrawing.org. The archive consists of graphs with 10 to 100 nodes with average

degree about 1.6. The results of these additional experiments are similar to the re-

sults reported above and highlight the fact that the two frameworks focus on different

aspects of the graphs and produce vastly different drawings. The new results reinforce

our initial consideration that comparing quantitative metrics alone does not lead to a

concrete conclusion. Hence, we decided to perform a user study in order to evaluate

the readability and clarity of PBF comparing it with the Sugiyama framework from

the perspective of a user.

3.3.1 User Study

Evaluation of visualizations [43] and analysing data is a difficult research challenge [44],

[45]. Motivated by the work of [46], we design an evaluation with users, with a set of

tasks that focus on revealing any usability issues. To this respect, we choose a set of

“cognitive task” [47] where we evaluate the two systems based on attributes of clarity

and readability as expressed by the reachability information within a drawing. More-

over, in order to design our evaluation we took into account the various restrictions
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(a) Graphs with average degree 1.6

(b) Graphs with average degree 5.6

Figure 3.5: Execution time of PBF and OGDF on various graphs.
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of [47] where authors highlighted the basic guidelines toward to that direction. In our

case, the participants had to choose an answer among “Yes”, “No”, or “Do Not Know”

while also there was no time limit, although participants were expected to answer

“Do Not Know” if a question was too difficult or too time-consuming to answer. The

purpose of this assumption was to focus on tasks that can be trivial also to non expert

users in order to detect and usability issue.

Users. We recruited 72 participants. In order to have more accurate and sophisti-

cated results, we selected an audience that was familiar with graph theory and graph

drawing styles. More specifically, 35% were software developers and researchers and

65% were postgraduate and advanced undergraduate students.

Training. We created a Google form and we invited all participants to fill it in.

Initially, the users were asked to watch a short video used for training: the tutorial

gave a short description of the two hierarchical drawing frameworks (the video is

available at https://youtu.be/BWHc2xO4jmI).

Datasets. We experimented with a dataset of 3 graph categories with different

number of nodes (20 nodes, 50 nodes and 100 nodes, i.e., small, medium and large

graphs) with average degree around 1.6 (Table 3.1).

Tasks. We asked the users to answer a set of questions for the two different drawings

and carry out a sequence of basic tasks. Similar to previous user studies (see, e.g.,

[48],[49],[50], [51]), we decided to choose tasks involving graph reading which are eas-

ily understandable also to non-expert users. Moreover, we also took into account that

the purpose is to evaluate hierarchical drawings and as expected some tasks such as

counting incoming or outgoing edges are rather simple and they would not produce

useful insights. Thus, we considered the tasks shown in Table 3.2.
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Graph Number of nodes Number of edges Graph Sizes

Graph1 20 31 Small Graphs

Graph2 20 31

Graph3 50 82 Medium Graphs

Graph4 50 79

Graph5 100 163 Large Graphs

Graph6 100 169

Table 3.1: Graphs dataset.

ID Task Description

1 Is there a path between the two highlighted vertices?

2 How long is the shortest path between the two highlighted vertices?

3 Is there a path of length at most 3 that connects the two highlighted nodes?

4 Are all of the green vertices successors of the red vertex?

Table 3.2: The set of tasks participants had to answer for each of the 2 different graph
drawing frameworks over various graphs.

For questions on Task 2, the participants had to choose a number as an answer.

We do not require numeric answers for all the tasks. More specifically, for Tasks 1,

3 and 4 the participants had to choose an answer among “Yes”, “No”, or “Do Not

Know”. There was no time limit, although participants were expected to answer “Do

Not Know” if a question was too difficult or too time-consuming to answer. Each of

the previous tasks was repeated for each drawing framework 4 times: i.e., 2 for small

and 2 for medium size graphs. Note that for each question of the same task we used

different highlighted nodes. In total, the number of tasks was 32 i.e., 16 for PBF and

16 for OGDF drawings. The questions on small graphs (20 nodes) preceded those on

medium graphs (50 nodes). Finally, to counteract the learning effect, the questions

appeared in a randomized order. Figure 3.6 shows a snapshot for the question “Is

there a path between the two highlighted vertices” for both drawings.
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(a) Drawing produced by PBF (b) Drawing produced by OGDF

Figure 3.6: Snapshots of drawings of the same graph used in the user study for the
question "Is there a path between the two highlighted vertices?"
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Figure 3.7: Results (the ratio of participants that answered “Yes", “No" and “Do Not
Know" over the total number of answers) on the various tasks for each of the drawing
framework (PBF), (OGDF) over different graphs.

Task Based Comparison. For the results, we recorded the total number of correct

answers for each question of the 2 different drawing frameworks, for all participants.

Also note that the “Do Not Know” answer was considered incorrect. More specifically,

regarding the first graph (i.e., graph1) for all tasks, we have that the users had the

same performance in terms of correct answers for both PBF and OGDF drawings.

By examining the rest of the results the average percentage revealed that for all

the graphs the performance of both drawing frameworks is not significantly different,

although it is slightly better for PBF drawings for almost all tasks and drawings. We

observe the same when comparing the average percentage for each task: the numbers

for PBF drawings are consistently better than the numbers for OGDF drawings, but

the differences are small. We show a comprehensive visualization of these results in

Figure 3.7. It shows the ratio of participants that answered ”Yes”, ”No” and ”Do Not

Know” on the various tasks for each of the two drawing frameworks, over the different

graphs where we observe again that PBF is slightly better than OGDF for all cases
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(a) Percentage results for PBF and OGDF for the question I, over graph5

(b) Percentage results for PBF and OGDF for the question II, over graph6

Figure 3.8: Results for questions I and II.

(Tables of Figures 3.10, 3.9). We observe that although the numbers are very low for

both, the number of users that answered ”Do Not Know” for OGDF is often double

the corresponding number for PBF, which may imply that some drawings may be

more confusing to some users.

In general, the performance of the participants is slightly better when they are

working with PBF drawings than with OGDF drawings. Since the differences are

rather small we cannot extract a concrete conclusion as to which is better for the

users. However, it has become clear that the path-based framework is an interesting

alternative to the Sugiyama Framework for visualizing hierarchical graphs. Further-

more, for specific applications, that require to visualize specific paths (such as critical

paths) it would be the preferred choice since the nodes of each path are placed on the

same x-coordinate.
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Figure 3.9: Results (number of correct answers) on the various tasks for each of the
drawing framework (PBF), (OGDF) over different graphs.

Figure 3.10: Results (number of “Do Not Know” answers over the total number of
all answers) on the various tasks for each of the drawing framework (PBF), (OGDF)
over different graphs.
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Direct Comparison of the two frameworks. As a second-level of analysis, we

perform a direct comparison of the two drawing frameworks. We used the two (large)

graphs of 100 nodes. To this respect we asked the participants to rate each of the 2

models by answering the following questions:

I. On a scale of 1 to 5, how satisfied are you with the following graph drawings?

II. Do you believe it would be easy to answer the previous tasks for the following

graph?

III. Which of the following drawings of the same graph do you prefer to use in order

to answer the previous tasks?

Similar to the previous experiments, we had two PBF drawings and two OGDF draw-

ings. Since the objective of this section was to evaluate the usability of both drawing

frameworks, using the System Usability Score (SUS) [52], we asked the users to an-

swer questions I and II, by giving a rate using the following scale <Very Unsatisfied,

Unsatisfied, Neutral, Satisfied, Very Satisfied> and <Strongly Disagree, Disagree,

Neutral, Agree, Strongly Agree> respectively. The results show that for Question I,

41% of the participants rated PBF from scale 4 and 5, in contrast to 36% for OGDF .

Notice that the answers scale 1 and 2 are worse for PBF. This probably signifies that

the users are not familiar with this new hierarchical drawing style. Question II, al-

most 50% of the participants rated PBF from scale 4 to 5, in contrast to less than

30% for OGDF , see Figure 3.8.

At the end of this user study, we asked the participants to perform a direct compar-

ison of the two drawing frameworks for the same graph, by answering this question:

“Which of the following drawings of the same graph do you prefer to use in order

to answer the previous tasks” (Figure 3.11a). The results as shown in Figure 3.11b

highlight that 58.3% of the participants stated that they prefer the drawing produced

by PBF over the OGDF . In terms of statistical significance, the exact (Clopper-
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Pearson) 95% Confidence Interval (CI) is (48%, 72%) indicating that PBF drawings

are preferred by the users over OGDF drawings. However, given the small differences,

we conclude that PBF is a significant alternative to the Sugiyama Framework for

visualizing hierarchical graphs.
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(a)

(b)

Figure 3.11: In (a) we show snapshots of the same graph as used in our survey.
Drawing 1 is the one computed by PBF and Drawing 2 is the one as produced by
OGDF . In (b) we see the percentage results for the task "Which of the following
drawings of the same graph do you prefer to use in order to answer the previous
tasks".
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Discussion:

We present a detailed general-purpose hierarchical graph drawing framework that

is based on the Path Based Framework (PBF) [5]. We apply extensive edge bundling

to draw all the path transitive edges, and cross edges of the graph and we minimize its

height by using compaction. The experiments revealed that our implementation runs

very fast and produces drawings that are readable and efficient. We also evaluated

the usability of this new framework compared to OGDF which follows the Sugiyama

Framework. The experimental results show that the two frameworks differ consid-

erably. Generally, the drawings produced by our algorithms have lower number of

bends and are significantly smaller in area than the ones produced by OGDF, but they

have more crossings for sparse graphs. Thus, the new approach offers an interesting

alternative for visualizing hierarchical graphs, since it focuses on showing important

aspects of a graph such as critical paths, path transitive edges, and cross edges. For

this reason, this framework may be particularly useful in graph visualization systems

that encourage user interaction. Moreover, the user evaluation shows that the perfor-

mance of the participants is slightly better in PBF drawings than in OGDF drawings

and the participants prefer PBF in overall rating compared to OGDF.
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Chapter 4

Variants of a new hierarchical
drawing framework graphs

The visualization of directed (sometimes acyclic) graphs has many applications in

several areas of science and business. Such graphs often represent hierarchical rela-

tionships between objects in a structure (the graph). In several applications, such as

graph databases and big data, the graphs are very large and the usual visualization

techniques are not applicable. In their seminal paper of 1981, Sugiyama, Tagawa,

and Toda [6] proposed a four-phase framework for producing hierarchical drawings of

directed graphs. This framework is known in the literature as the “Sugiyama” frame-

work, or algorithm. Most problems involved in the optimization of various phases of

the Sugiyama framework are NP-hard. In [9] a new framework is introduced to visual-

ize directed graphs and their hierarchies which departs from the classical four-phase

framework of Sugiyama and computes readable hierarchical visualizations by “hid-

ing” (abstracting) some selected edges while maintaining the complete reachability

information of a graph.

In this chapter we present several algorithms that follow that framework. Our

algorithms reduce the visual complexity of the resulting drawings by (a) drawing the

vertices of the graph in some vertical lines, and (b) by progressively abstracting some

transitive edges thus showing only a subset of the edge set in the output drawing. The

process of progressively abstracting the edges gives different visualization results, but
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they all have the same transitive closure as the input graph. Notice that this type of

abstraction has additional applications in storing the transitive closure of huge graphs,

which is a significant problem in the area of graph databases and big data [53–57].

We also present experimental results that show a very interesting interplay between

bends, crossings, clarity of the drawings, and the abstraction of edges.

A path and a channel are both ordered sets of vertices. In a path every vertex is

connected by a direct edge to its successor, while in a channel any vertex is connected

to it by a directed path (which may be a single edge). The concept of channel can

be seen as a generalization of the concept of path. In the literature the channels are

also called chains [53].

Figure 4.1 shows an example of three different hierarchical drawings: part (a) shows

the drawing of a directed graph G computed by Tom Sawyer Perspectives [37] (a tool

of Tom Sawyer Software) that follows the Sugiyama framework; part (b) shows a hier-

archical drawing computed by our first variant algorithm taking G as input; part (c)

shows an abstracted hierarchical drawing computed by our final variant that removes

all path edges and selected transitive cross edges. Notice that in part (b) the transitive

edges within each vertical path are not shown. Part (c) shows a hierarchical drawing

where all path edges and transitive cross edges are abstracted. The advantages of

the last drawing are (i) clarity of the drawing due to the sparse representation, (ii)

all path edges and transitive edges (within a path) are implied by the x and y coor-

dinates, (iii) the drawn graph has the same transitive closure as G, (iv) it gives us a

technique to store the transitive closure of G in an extremely compact data structure,

and (v) a path between vertices that are on different paths (of the decomposition)

can be obtained by traversing one cross edge.

Even though the Sugiyama framework is very popular, and many of the (sub)problems

for each phase have turned out to be NP-hard, its main limitation is the fact that the

heuristic solutions and decisions that are made during previous phases (e.g., crossing

reduction) will influence severely the results obtained in later phases. Nevertheless,
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Figure 4.1: (a) A drawing of a Graph G as computed by Tom Sawyer Perspectives
following the Sugiyama framework; (b) a drawing based on G computed by our first
variant; (c) an abstracted hierarchical drawing computed by our final variant.

previous decisions cannot be changed in order to obtain better results. This frame-

work can be viewed as a horizontal decomposition of G into (horizontal) layers. By

contrast, the framework of [9] and all variants presented here can be viewed as a

vertical decomposition of G into (vertical) paths/channels. Most problems here are

vertically contained thus reducing their time complexity. It draws either (a) graph G

without the transitive “path/channel edges” or (b) a condensed form of the transitive

closure of G. Of course, the “missing” incident (transitive) edges of a vertex can be

drawn interactively on demand. An added advantage of this framework is that it

allows (or it even encourages) the user to use his/her own paths as input to the algo-

rithms. This means that paths/channels that are important for specific applications

can be easily visualized by vertically aligning their nodes.

The algorithms presented in this chapter are variants of the path based algorithm

presented in [9]. Namely we present seven variants (including the original one) that

progressively remove edges, crossings and bends. Each variant has its own advantages
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and disadvantages that can exploited in various applications. Furthermore, due to

its flexibility, new variants can be created based on the needs of specific applications.

We also present experimental results that further demonstrate the power of edge

abstraction and their impact on the number of bends, crossings, edge bundling, etc.

Notice that the above variants can be easily modified to work using the concepts of

channel decomposition of a DAG and of channel graph as described in [9].

This chapter is organized as follows: the next section presents necessary knowledge,

including a brief description of the basic concepts of the path based algorithm of [9].

In Section 2 we present the variants that are based on the path based algorithm and

the metrics of our experiments. Section 3 presents the experimental results and offers

a comparison of the pros and cons of each variant with respect to bends, crossings,

and clarity. In Section 5 we present our findings and interesting open problems.

4.1 Overview of the Path Based Framework

The Path Based Hierarchical Drawing Framework exploits a new approach to visu-

alize directed acyclic graphs that focus on their reachability information [9]. This

framework is orthogonal to the Sugiyama framework in the sense that it is a vertical

decomposition of G into (vertical) paths/channels. Most problems are vertically con-

tained thus reducing their time complexity. The vertices of a graph G are partitioned

into paths, called a path decomposition and the vertices of each path are drawn ver-

tically aligned. It consists of only two steps: (a) the cycle removal step (if the graph

contains directed cycles) and (b) the hierarchical drawing step.

For the purposes of reachability we propose that Step (a) follows a simple approach:

compute the Strongly Connected Components (SCC) of G in linear time and cluster

and collapse each SCC into a supernode. Clearly, the resulting graph will be acyclic.

This approach has been used in previous papers for various applications, see for

example [9, 58, 59].

Regarding Step (b), the path decomposition may be application defined, user de-
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fined or automatically computed by an algorithm. There are several algorithms that

compute a path decomposition of minimum cardinality [33–36]. For the rest of this

chapter, we will assume that the path decomposition is an input to the algorithm

along with G. We use an algorithm that computes a path based hierarchical drawing

given a DAG G = (V,E) and a path decomposition Sp of G, see [9].

A path decomposition of G is a set of vertex-disjoint paths Sp = {P1, ..., Pk} such

that every vertex v ∈ V belongs to exactly one of the paths of Sp. A path Pi ∈ Sp

is called a decomposition path. The path decomposition graph of G associated with

a path decomposition Sp is a graph H = (V,A) obtained from G by removing every

edge e = (u, v) that connects two vertices on the same decomposition path Pi ∈ Sp

that are not consecutive in the order of Pi. An edge of H is a cross edge if it is incident

to two vertices belonging to two different decomposition paths, else it is a path edge.

Graph H is obtained from G by removing some transitive edges between vertices

in a same path. A path based hierarchical drawing of G given Sp is a hierarchical

drawing of H where two vertices of V are placed in a same x-coordinate if and only

if they belong to a same decomposition path Pi ∈ Sp. Algorithm PB-Draw computes

a path based hierarchical drawing of G. Thus we can read and understand correctly

any reachability relation between the vertices of G by visualizing H, as shown in

Subsection 4.1.1.

Using a path decomposition with a small cardinality may improve the performance

of our algorithm in terms of area, bends, number of crossings and computational time.

As already discussed, computing such a minimum size path decomposition is a well

known problem and it provides a great advantage to this framework. Also, the use

of the path decomposition concept adds flexibility to the framework, since the paths

can be user defined or application specific. The visibility of such important/critical

paths is extremely clear in our drawings, since they are all vertically aligned.
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4.1.1 Algorithm PB-Draw

The following algorithm and theorems and lemmas are from [9]

Theorem 1 Let G be a DAG and let Sp be a path decomposition of G. The path

based graph H of G associated with Sp have the same reachability properties of the G.

Algorithm 7 PB-Draw(Sp, H)
Input: a path decomposition Sp of a DAG G; a path based graph H of G associated
with Sp; a topological sorting T of the vertices of H, where Tv is the position of v in
this sorting.
Output: The path based hierarchical drawing Γ of G associated with Sp.
1: Compute a drawing Γ of H by:

1. assign to every vertex v ∈ V belonging to the decomposition path Pi an
x-coordinate X(v) = 2i and an y-coordinate Y (v) = Tv

2. draw every edge e = (u, v) ∈ E straight line.

2: If the straight line drawing of e intersects some vertex w ∈ V different from u or
v in Γ, introduce a bend on e in the position (Xb, Yb), where Yb = Y (v)− 1 and:

1. If X(u) < X(v): Xb = X(u) + 1

2. Else, if X(u) ≥ X(v): X(be) = X(u)− 1

Let Γ be a drawing computed by PB-Draw. The following Lemmas and Theorem

are proved in [9].

Lemma 2 Any edge e = (u, v) does not intersect a vertex different from u and v in

Γ.

The following lemma shows how Algorithm PB-Draw bundles the edges. We apply

this technique of bundling in every variant of PB-Draw that we introduce in the next

sections; for this reason, we better describe it in Section 4.2.

Lemma 3 Let e = (u, v) and e′ = (u′, v′) be two edges drawn with a bend in Γ.

Their bends are placed in the same point if and only if u and u′ are in the same

decomposition path and v = v′.
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Finally, the following theorem shows that Algorithm PB-Draw computes efficiently

path hierarchical drawings with a very small area, number of bends and number of

bends per edge.

Theorem 4 Let G be a DAG with n vertices and m edges, let Sp be a path decomposi-

tion of G and let k be the cardinality of Sp. Algorithm PB-Draw computes a path based

hierarchical drawing Γ of G given Sp in O(mk) time. Furthermore, Area(Γ) = O(kn)

and every edge has at most one bend.

4.2 Variants, Metrics, and Datasets

In this section we present the variants of Algorithm 7 that we used for our experi-

ments and the metrics that we considered. We performed two types of experiments:

(a) based on measurements over datasets with respect to the number of bends and

crossings (Variant 0 and Variant 1) and (b) based on edge abstraction (Variant 2,

Variant 3, Variant 4, Variant 5, and Variant 6).

All variants use edge bundling as described by Lemma 3 of Section 4.1.1. Refer

to Figure 4.2a. Namely, all edges that start from vertices of a decomposition path P

and go into the same target vertex v bend at the same point. All such edges use the

same straight line segment from the bend to vertex v. For example, we bundle edges

(21, 30) and (28, 30) by bending them at the same point and by overlapping them

from this point to the target vertex, which is vertex 30. Similarly we do the same

for edges (4, 28) and (20, 28). This type of edge bundling is very useful in the sense

that it reduces the total number of bends and crossings, and it reuses some portions

of edges.

4.2.1 Variants

We present now a suite of drawing techniques, our variants, that are based on Algo-

rithm 7. Our variants are motivated by the concept of Data-Ink ratio. Tufte in [10]
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introduced the concept Data-Ink ratio, as the ratio of ink that is used to present

essential data compared to the total amount of ink used in the entire drawing. This

type of abstractions has additional applications in querying huge graphs, which is a

significant problem in the area of graph databases and big data [53–57]. Our variants

can be further customized depending upon the requirements of an application or a

user. For example, Variants 1-4 can be used in PERT flows and in Business process

visualizations.

• Variant 0: This variant is precisely the same as our baseline, Algorithm 7.

See, for example, Figure 4.1.

• Variant 1: We denote by jumping cross edge an edge e = (u, v) such that

|X(v)−X(u)| > 1. In this variant we place a bend on every jumping cross

edge of Γ. Refer Figure 4.2a, where, for example, the jumping cross edge

e = (7, 10) has a bend.

• Variant 2: For every vertex u we abstract edge e1 = (u, v) if there exists an

edge e2 = (u, v′) such that v′ and v are in the same decomposition path P

and v′ precedes v in the order of P (edges have common source node). Refer

to Figure 4.2b, where, for example, e1 = (2, 10) and e2 = (2, 6).

• Variant 3: For every vertex v we abstract the edge e1 = (u, v) if there exists

an edge e2 = (u′, v) such that u′ and u are in the same decomposition path

P and u precedes u′ in the order of P (edges have common target node).

Refer to Figure 4.3a, where, for example, e1 = (21, 30) and e2 = (28, 30).

• Variant 4: Apply the removal of Variant 2 and Variant 3. Refer to Fig-

ure 4.3b, where we removed both (2, 10) and (21, 30).
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(a) (b)

Figure 4.2: Drawings of DAG 1 drawn with (a) Variant 1 and (b) Variant 2.

4.2.2 Final Abstraction

An important aspect of our variants is the preservation of the mental map that can be

expressed by the reachability information of a DAG. Since the nodes in each path of

the decomposition are vertically aligned, drawing the path edges does not add much

information to the mental map of the user. Hence their removal from the drawing

will reduce the number of crossings and the number of edges drawn. Toward to that,

we propose an extended abstraction drawing model generated as a combination of

the aforementioned variants as shown in Figure 4.4a and 4.4b.

The main purpose of this abstraction is that we want to retain the visual reach-

ability while minimizing the visual complexity of the drawing. For instance, in our

variants as stated in previous sections, paths can be either application based e.g.,

critical paths or user defined. Consider Variant 0 the path edges can be removed

57



(a) (b)

Figure 4.3: Drawings of DAG 1 drawn with (a) Variant 3 and (b) Variant 4.

from the drawing since their existence is implied by the fact that they share the same

x-coordinate. We refer to this variant as Variant 5. Please notice that we do not

remove any number of “random” edges in order to create less complex drawings of

the same graph but rather we use the unique characteristics of the drawing which

may also be application depended. We can further reduce the total number of edges

drawn, and as a result the number of crossings, by using this abstraction in combina-

tion with Variant 4 to create a more abstracted drawing, called Variant 6. Therefore,

we define the following two variants:

• Variant 5: These drawings are obtained from the drawings of Variant 0 by

removing all path edges (see Figure 4.4a).

• Variant 6: These drawings are obtained from the drawings of Variant 4 by

removing all path edges (see Figure 4.4b).
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(a) (b)

Figure 4.4: Drawings of DAG 1 drawn with (a) Variant 5 and (b) Variant 6.

Theorem 5 Let G be a DAG with n vertices and m edges, let Sp be a path decompo-

sition of G and let k be the cardinality of Sp. It is possible to compute the drawings

Γ1 according to Variant 1 in O(n+m) time and the drawings Γ2, Γ3, Γ4, Γ5, and Γ6

according to Variant 2, Variant 3, Variant 4, Variant 5, and Variant 6, respectively,

in O(mk) time.

Proof of Theorem 5

In this section we prove Theorem 5. First of all, we study the case of the drawing Γ1

computed according to Variant 1. We can compute Γ1 by simply ignoring Step 2 of

Algorithm 7, which requires O(mk) time, and placing a bend in every jumping cross

edge. This operation and all the other operations of Algorithm 7 require O(n +m)

time. Hence, we can compute Γ1 in O(n +m) time. We now focus our attention on

Variants 2-6.
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Let G be a DAG and let Sp be a path decomposition of G having cardinality k. Let

Γ0 be a drawing of G computed by Algorithm 7. We present Algorithm Compute-V2,

which describes how it is possible to compute a drawing Γ2 according to Variant 2

given Γ0. The algorithm takes as input a path decomposition Sp of G and Γ0 and it

gives as output Γ2. For every vertex of Γ0 the algorithm checks the adjacent vertices

and, for every path Pi, it stores the one having minimum y-coordinate in an array

Ak. Then it removes all edges (v, w) such that Y (w) is not stored in Ak.

Algorithm 8 Compute-V2 (Sp,Γ0)
Input: a path decomposition Sp = (P1, ..., Pk) of a DAG G; a path based hierarchical
drawing Γ0 according to Variant 0
Output: a path based hierarchical drawing Γ2 according to Variant 2
1: Γ2 = Γ0

2: For any vertex v drawn in Γ0:

• Create an array A of k positions

• For every edge e = (v, w) in Γ0

– Let Pi be the path of w
– If A[i] = void:

∗ A[i] = Y (w)

– Else:
∗ A[i] = min(A[i], Y (w))

• For every edge e = (v, w)

– Let Pi be the path of w
– If Tw ̸= Ai

∗ remove e from Γ2

Algorithm Compute-V2 requires linear time, since it visits every vertex once and

every edge twice and, for every visit, it performs a constant number of operations.

It is easy to see that we can define two similar algorithms in order to compute

drawings Γ3 and Γ4 according to Variant 3 and Variant 4, respectively, by taking

Γ0 and Sp as input. Therefore, given Γ0 it is possible to compute Γ2, Γ3 and Γ4 in

O(n + m) time. It is also true for the drawings Γ5 and Γ6 according to Variant 5

and Variant 6, since they can be computed from Γ0 and Γ4 by removing the path
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Table 4.1: Average execution times of the variants over the 5 DAGs.

Variants DAG 1 DAG 2 DAG 3 DAG 4 DAG 5

Variant 0 36 ms 51 ms 59 ms 103 ms 137 ms

Variant 1 33 ms 40 ms 55 ms 114 ms 128 ms

Variant 2 37 ms 39 ms 62 ms 99 ms 138 ms

Variant 3 41 ms 48 ms 46 ms 93 ms 141 ms

Variant 4 49 ms 43 ms 54 ms 108 ms 104 ms

edges. Moreover, notice that Γ0 can be computed in O(km), according to Theorem 4.

Hence, we can compute Γ2, Γ3, Γ4, Γ5, Γ6 in O(mk).

4.2.3 Metrics and Datasets

The set of DAGs that was used in the experiments contains five Datasets (DAGs)

which were produced in a controlled fashion in order to have a number of nodes and

edges, as a factor of the density of the graph. DAG 1 is one of the DAGs that was

used to illustrate Algorithm 7 in [9]. Table 4.2 gives a summary for each DAG.

Metrics for the Experimental Results.

Our analysis aims to evaluate the performance of the various variants of the basic

algorithm for each of the aforementioned DAGs. To this end, we use the following:

• Number of edges drawn in the drawing.

• Number of cross edges drawn in the drawing.

• Number of bends.

• Number of crossings.

• Execution time: is the average execution time for producing each drawing.
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Table 4.2: DAGs Statistics.

Name of Dataset Number of Nodes and Edges Completeness (%)

DAG 1 30 nodes and 69 edges ∼ 16

DAG 2 50 nodes and 61 edges 5

DAG 3 50 nodes and 121 edges 10

DAG 4 100 nodes and 246 edges 5

DAG 5 100 nodes and 494 edges 10

4.3 Analysis of the Performance

Here we report the experimental details describe the results. The experiments run on

a single machine having an 3.1 Ghz i7 dual core, 16 GB main memory (using 5GB

allocated for our implementation) and 500GB flash storage disk space. We report the

average time of 5 runs per DAG.

Table 4.1 shows the performance, Execution time (ms), of the Java implementation

of our suite of drawing solutions as produced by Tom Sawyer Software TS Perspec-

tives [37]. The first figure reflects the the number of edges drawn for each of the

variants over the five DAGs illustrated in Figure 4.5. Similar to that, Figures 4.6,

4.7, and 4.8 show the results regarding the number of cross edges drawn, bends and

crossings respectively for each of the variants.

An interesting observation is that our variants produce hierarchical drawings suit-

able for large datasets since the reachability information can be seen with little effort

while the execution time to produce these results is rather small. Toward to this,

Variant 4 gives the most promising results since it outperforms in number of crosses,

bends and drawn edges for all DAGs.

Let us analyze the results of the experiments. We remark that the variants and

experiments are described for the path based framework, but, of course, they can be

used with the channel based framework as well.

First we discuss the number of edges drawn by our variants. By construction
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Figure 4.5: Results on number of cross edges drawn for each variant over all DAGs.

Figure 4.6: Results on number of edges drawn for each variant over all DAGs.

Variant 0 and Variant 1 draw exactly the same set of edges as it is evidenced by

Figures 4.5 and 4.6. The same figures show that Variant 2 and Variant 3 are similar

in the number of edges they draw. Clearly, the number of edges drawn by Variant 4 is

significantly lower than the number of edges drawn by the other variants. This effect

is emphasized in Figure 4.5, where the number of cross edges drawn by Variant 4

for DAG 5 is about one sixth of the number of cross edges drawn by Variant 0 and

Variant 1. Finally, we focus on Variant 5 and Variant 6. The sets E5 and E6 of the
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Figure 4.7: Results on number of bends for each variant over all DAGs.

Figure 4.8: Results on number of crossings for each variant over the (a) DAGs 1,2,3
and (b) DAGs 4,5.

edges that Variant 5 and Variant 6 draw is a subset of the sets of edges E0 and E4

that Variant 0 and Variant 4 draw, respectively. The cardinality of E5 and E6 is much

smaller than the cardinality of E0 and E4 if most of the edges drawn by Variant 0

and Variant 4 are path edges, as shown in Figure 4.6 for DAG 2. Variant 5 and

Variant 6 by construction draw the same set of cross edges of respectively Variant 0

and Variant 4.

As can be seen in Figure 4.7 the drawings computed by Variant 2, Variant 3, and
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Variant 4 have very few bends on the average. For example, DAG 5 in Variant 3 has

270 edges and the corresponding drawing has only 38 bends, i.e., we have 0.14 bends

per edge. On the other hand, the drawing computed by Variant 1 is less efficient in

placing bends. Refer again to DAG 5: in Variant 1 this DAG has 397 edges and the

corresponding drawing has 88 bends, i.e, we have 0.22 bends per edge. The number

of bends in drawings computed by Variant 5 and Variant 6 and respectively Variant 0

and Variant 4 is the same, since the path edges are drawn straight line in all our

variants.

The number of crossings is influenced heavily by the number of edges drawn and

the extent of edge bundling. Figure 4.8 shows that the performance of Variant 1

is slightly better than that of Variant 0. This can be explained by the fact that in

Variant 1 there are more bundles of edges and this naturally decreases the number

of crossings. The other variants all have much better performance than Variant 0

and Variant 1 because the corresponding drawings contain significantly fewer edges.

Figure 4.8 shows that the number of crossings is almost the same in the drawings

of Variant 5 and Variant 6 and Variant 0 and Variant 4, respectively. This result is

very important, since it is an evidence of the fact that path edges participate in a

few crossings and, therefore, the decomposition paths can be visualized very clearly

in our drawings.

Finally, Table 4.1 shows that the execution time does not vary significantly depend-

ing on which variant we choose. However, Variant 4 seems to be the most scalable,

since the increase of its execution time is modest as the number of edges of the input

DAG increases. Notice that we do not report the execution times of Variant 5 and

Variant 6 since they are similar to the execution times of Variant 0 and Variant 4,

respectively.
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Discussion: In this chapter we presented a set of variant algorithms that attempt

to draw DAGs hierarchically with few bends and crossings, and by abstracting edges

in order to improve the clarity of the drawings. Our study assumes that the path

decomposition is given as part of the input, or a minimum size decomposition is

computed by one of the known algorithms. However, it is interesting to study the

problem of computing a path decomposition and placement of the paths of G which

implies the minimum number of jumping cross edges in our drawings. The use of

such a decomposition and placement would considerably reduce the number of edges

drawn, bends, and crossings in our drawings. Another interesting open problem is

the development and implementation of some compaction strategies, which would

improve the readability of our drawings and reduce their height. Finally, it would

be important to comprehend human understanding issues related to the removal of

some transitive edges and increasing reachability comprehension.
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Chapter 5

Reachability queries in directed
acyclic graphs (DAGs)

We consider the problem of answering reachability queries in directed acyclic graphs

(DAGs), which is an operation required by many applications. Hence, this problem

is well studied from various points of view. For example, a recent algorithm that

answers reachability queries very fast with high probability is presented in [60]. Our

approach is based on dominance drawings of directed acyclic graphs (DAGs), which

are important in many research areas, including graph drawing [61], computational

geometry [62], information visualization [63] and very large databases [56, 64]. We

present efficient algorithms to construct and search a space-efficient data structure in

the k-dimensional space. Let G be a DAG with n nodes and m edges. Our algorithms

construct this data structure in O(km) time while it can be stored in O(kn) space.

Any reachability query is answered in constant time. We also present experimental

results that show that the number of dimensions, k, in the solutions produced by our

techniques is low, which implies that our techniques perform better than the state of

the art.

Let u and v be two nodes in a DAG G. If there is a path from u to v then we say

that v is reachable from u (or u reaches v). Two nodes u, v ∈ V are incomparable

if u does not reach v and vice versa. Clearly, any reachability query can be easily

answered by employing simple reachability algorithms, such as BFS or DFS. However,
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these techniques require O(n+m) time for each query, which can be expensive if the

size of the input DAG and the number of queries are large. Our technique computes

an O(kn)-space data structure in order to answer any reachability query in constant

time. The algorithms to construct it are based on the concept of k-dimensional

dominance drawing, defined as follows:

In a k-dimensional dominance drawing Γ of a DAG G a node v is reachable from

a node u if and only if all k coordinates of v are greater than the corresponding

coordinates of u in Γ. Clearly, it is important to minimize the number of dimensions,

k, required to draw a DAG. Although testing if a DAG G has a dominance drawing

in 2 dimensions requires only linear time [65], testing if G can be drawn in three or

more dimensions is NP-complete [66].

Our work is motivated by the approach and the results reported in [59]. Specifically,

in pages 680-681 of [59] the authors make the following statement:

“However, there is no theory or algorithm that can calculate the exact dominance

drawing dimension k of a given graph. k can be extremely large in real graphs. Since

no theory can give an upper bound of k, the original dominance drawing method cannot

be applied directly.”

In this chapter we provide answers to the above statement by presenting solutions

to these important open problems. We present (a) an upper bound of k, and (b)

experimental results that indicate that k is not “very large”. In fact our experiments

in a large spectrum of graphs show that k is usually between a small fraction of
√
n

and O(log n), and sometimes even a constant (for rather dense graphs). Namely, our

algorithms construct a data structure in the k-dimensional space showing there is a

theory that gives such upper bounds, even though finding the minimum number of

dimensions is known to be NP-hard [66].

The algorithm constructs this data structure (Index) in O(km) time, and it can

be stored in O(kn) space. Any reachability query is answered in O(1) (constant)

time, since we can answer it by checking only one specific dimension. Our algorithm
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requires a channel decomposition of a DAG G as input. A minimum size channel

decomposition can be computed in O(kn2) time, see [67]. It is well known that

scalability is a challenge in the study of reachability, e.g., an algorithm that answers

label-constrained reachability queries very fast even for web-scale graphs is presented

in [68]. Since the O(kn2) computational time may not be suitable for some web-scale

graphs, there exist some heuristics that compute a channel decomposition of G in

linear time, see [69]. More details on these concepts are given in the next sections.

We also present experimental results that show that our techniques perform better

than the state of the art. Namely, we provide experimental evidence that shows

that the number of dimensions k is usually equal to a small fraction of
√
n (for very

sparse graphs) and sometimes it grows as slow as O(log n). For rather dense graphs

sometimes k seems to be a constant as the number of nodes grows. Furthermore, the

experimental results validate the choice on the maximum number of dimensions used

in the experimental results of [59]. But in several cases the results show that the

number of dimensions computed by our algorithms is less than the maximum number

of dimensions considered in the experimental results of [59]. Another important point

here is that their solutions contain “falsely implied paths (fips)” (or “false positives”,

in their notation). In order to resolve fips (to be defined formally in the next section)

they require extra computation time, which is linear in the worst case as discussed

in [59].

Additionally, we show experimentally that the number of dimensions is influenced

by two properties of a given DAG: Its density and its structure. Both are important

and should be taken into account when analyzing experimental results, as discussed

at the end of Section 4. Motivated by this fact, we introduce a new model that is

specifically targeted to randomly create DAGs with predefined density and structure.

Indeed, in Section 5 we show that there is an interplay between the density and

structure of DAGs which influences the number of required dimensions. To the best

of our knowledge, this is the first time that this interplay is presented for this problem.
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5.1 Preliminaries

Reachability queries in a directed graph G can be answered in two levels: (a) If G

contains cycles then we compute the strongly connected components of G, and answer

such queries in positive if the two nodes in the query belong to the same strongly

connected component. Next, the strongly connected components can be reduced to

supernodes in order to construct a new graph, which is a Directed Acyclic Graph

(DAG). (b) Answer a reachability query in the DAG. This approach is well known

and has been described in several papers for various applications, most recently in [5,

59].

Hence, in the rest of this chapter we only consider reachability queries in DAGs.

An st-graph is a DAG, G = (V,E), with one source s and one sink t; G has n = |V |

nodes and m = |E| edges. Since any given DAG can be converted into an st-graph

by simply creating a new node (new source) and connecting it to all sources (same

for sinks) in the rest of the chapter, in order to simplify our presentation, we assume

without loss of generality that every DAG is an st-graph.

A k-dimensional dominance drawing Γ of a DAG G is defined as follows: Each

node in Γ has k coordinates such that a node v is reachable from a node u if and

only if all k coordinates of v are greater than the corresponding coordinates of u.

Thus, in a k-dimensional dominance drawing Γ it is possible to check if u reaches v

by simply comparing the k coordinates of u and v. On the other hand, if there exists

a dimension D of Γ such that D(u) > D(v), then u does not reach v. A dominance

drawing Γ of a DAG G combines the aspect of drawing G in the grid with the fact

that the transitive closure of G is implicit by the dominance relation between grid

points associated with the nodes of G. Recall that two nodes u, v of DAG G are

incomparable if u does not reach v and vice versa. The width of a DAG G, wG, is the

maximum size of a set of incomparable nodes of G. The smallest number d for which

a given DAG G has a d-dimensional dominance drawing is called dominance drawing
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dimension of G and it is a known NP-hard problem [66].

In 2-dimensions dominance drawings of planar DAGs have many important aes-

thetic properties [62, 70]. A 2-dimensional dominance drawing Γ of a planar st-graph

G can be computed in linear time, such that for any two nodes u and v there is a

directed path from u to v in G if and only if x(u) ≤ x(v) and y(u) ≤ y(v) in Γ [62,

70]. Since most DAGs have dominance dimension higher than two, it is not possible

to find dominance drawings in 2-dimensions for most DAGs. Therefore, the concept

of weak dominance drawings was introduced by Kornaropoulos and Tollis in [71, 72].

This concept is an extension of the concept of dominance drawing by relaxing the

necessity of the existence of a path. This concept has many applications including

very large databases [56, 64] and the drawing of DAGs in the overloaded orthogonal

model [73]. In weak dominance, for any two nodes u and v if there is a directed path

from u to v in G then x(u) ≤ y(v) and y(u) ≤ y(v) in Γ. However, the reverse may

not necessarily hold. Hence, we have a falsely implied path (fip) when x(u) ≤ x(v)

and y(u) ≤ y(v), but there is no path from u to v. Furthermore, the problem of

computing a weak dominance drawing that minimizes the number of fips is shown to

be NP-hard in [71, 72].

In [59] Li, Hua, and Zhou extended the concept of weak dominance drawings

in higher dimensions and presented interesting experimental results. Motivated by

their approach, we investigate the possibility of constructing a technique based on

k-dimensional dominance drawing, where k ≥ wG, for any given DAG G. In the next

section we present a technique for constructing an index that can be used to determine

reachability between any pair of nodes in O(k) time, since it is guaranteed to contain

no fips. We will also present experimental results that bring to the foreground the

following interplay:

Structure vs Density: There are two parameters of G that play an important role

in determining the number of dimensions k = wG for G: (a) its structure and (b) its
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density. Next we discuss two extreme cases in order to exhibit the importance of both

parameters: (i) If G is a single Hamiltonian path from s to t, then it is clear that k = 1

although its density is very low since it has only m = n−1 edges (in fact, this density

is minimum for a connected DAG). (ii) If G is a complete bipartite graph with n/2

nodes in each side and all edges are directed from the nodes of one side to the nodes

of the other side, then the number of dimensions is clearly k = n/2 although it is very

dense since it contains m = n2/4 edges. As we will show in the following sections,

each of the above parameters plays an important role in determining k, but for DAGs

of “similar structure” density plays a decisive role in determining k. Conversely, we

will see that for DAGs of “similar density” their structure plays a decisive role in

determining k.

5.2 k-Dimensional Dominance Drawings

Let G = (V,E) be an st-graph with n nodes and m edges and let s and t be the

source and the sink of G, respectively. In this section we will present an algorithm

to compute an upper bound k on the number of dimensions. The algorithm will also

construct a k-dimensional dominance drawing for G by computing the indices of each

node. Such k-dimensional dominance drawings contain no fips.

A channel C is an ordered set of nodes such that, given any two nodes v, w ∈ C,

v precedes w in the order of channel C if and only if w is reachable from v in G. We

denote by channel decomposition of G a set of channels Sc = {C1, ..., Ck} so that the

source s and the sink t of G are contained in every channel and every other node of

G is contained in exactly one channel.

We denote by width of a DAG G, wG, the maximum size of a set of incomparable

nodes of G. It was proved in [74] that the minimum size of a channel decomposi-

tion of G is wG. Furthermore, a channel decomposition of G with wG channels can

be computed in O(n3), see [69]. A faster algorithm for computing such a channel

decomposition runs in O(wGn
2) time, see [67].
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Let Sc = {C1, ..., Ck} be a channel decomposition of G. We denote by u = (i, j)

the fact that u is the jth node of channel Ci. Notice that, by definition of Sc, we have

t = (i, |Ci|) and s = (i, 0) for any i ∈ [1, k]. The projection of a node v in a channel

Ci ∈ Sc, denoted by prj(v, Ci), is the node of Ci reachable from v having the lowest

position in Ci. The projection of v in the channel of Sc containing v is defined to be

v itself.

Next we describe how to compute and store the projections in a k × n matrix

prj, called the projection matrix. This matrix is similar to the compressed transitive

closure of G [69]. The element stored in prj(v, Ci), i.e., the element in the row

associated to node v and in the column associated to channel Ci, is the lowest node

in Ci) that can be reached by node v. We are ready now to describe Algorithm

Projections, which computes the projection of each node v of G in every channel of a

channel decomposition Sc.

Algorithm 9 Projections(G, Sc)
Input: A DAG G and a channel decomposition Sc = {C1, ..., Ck} of G.
Output: The projection matrix of G given Sc.
1: prj = new n× k matrix
2: For v = (i, j) ∈ G:

• For h ∈ [1, k]:

a. If i ̸= h:
• prj(v, Ch)=t

b. Else:
• prj(v, Ch)=v

3: Compute a topological order T of the nodes of G.
4: For l = n, ..., 1:

• v = T (l)

• Let v1, ..., vc be nodes incident to an outgoing edge of v = (i, j).

• For u = v1, ..., vc:

• For h ∈ [1, k] and h ̸= i:
• prj(v, Ch)=(h, a)

• prj(u, Cc)=(h, b)

• prj(v, Ch)=(h,min{a, b})
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Algorithm Projections takes as input a DAG G and a channel decomposition Sc =

{C1, ..., Ck} of G and it produces as output the projection matrix of G, according to

Sc. In Step 1 we initialize the matrix. In Step 2 we initialize the projections of every

node v by setting its projection to be the sink t (Step 2a), except for the channel that

contains v, for which the projection of v into this channel is v itself (Step 2b). In

Step 3 we compute a topological order T of the nodes of G. Next (Step 4) we visit the

nodes of G in descending order of T , considering its outgoing edges, ending at nodes

v1, ..., vc. Since nodes v1, ..., vc were already visited previously (due to our descending

order visit), for every node u ∈ {v1, ..., vc}, we consider all the channels. For every

channel Ch, we consider the projections of u and v, (h, b) and (h, a) respectively. If

the projection of u has a lower position in the channel than the projection of v (i.e.,

b > a) we set the projection of v equivalent to the projection of u. Otherwise, we do

not change the projection of v. This is accomplished by taking the minimum between

a and b, denoted by c, and assigning to prj(v, Ch) the value (h,min{a, b}). Algorithm

Projections runs in O(km) time, since the two outer For loops of Step 4 are repeated

O(m) times. Hence we the following lemma:

Lemma 6 Let Sc be a channel decomposition of G. Algorithm Projections computes

the projections of each node v of G in each channel Ci in O(mk) time. The projections

can be stored in O(nk) space.

Next we present Algorithm Indexer, which computes k topological orders of the

nodes of G.

Algorithm Indexer: The algorithm takes as input a DAG G and a channel decom-

position Sc = {C1, ..., Ck} of G and produces as output k topological orders T1, ..., Tk,

that will imply the coordinates of the nodes in a k-dimensional dominance drawing of

G. First the algorithm computes the projection matrix by using Algorithm Projec-

tion (Step 1). Next it places every node v = (i, j) in the position j of the topological

order Ti (Step 2). Then, in Step 3, we take any channel Ci of Sc and we compute
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the position of all the nodes of G in Ti, that do not belong to Ci: This is done by

taking such a node, v, and looking at the position of its projection in Ti, which was

computed in Step 2. It places v in this position. Notice that in this case some nodes

are placed in the same position in Ti, and hence Ti is not a “strict” topological order

at this point.

Next we perform operations on T1, ..., Tk so that, at the end of the algorithm, they

will become “strict” topological orders (Step 5). In order to do that, we will use the

topological order T of G, computed in Step 4. For every taken position j in Ti (i.e.,

a position such that there exists a node v in G where Ti(v) = j) we need to have a

list of nodes having the same position in Ti. In Step 5a, for every Ti ∈ T1, ..., Tk, we

initialize a void list Li,j for every used position of Ti. In Step 5b we visit the nodes of

G in increasing order given T and we add v in the last position of list Li,T (v). At the

end of Step 5b every list Li,j is an ordered list on the order defined by T containing

every node v of G so that Ti(v) = j. Finally, in Step 5c we take all the used positions

of Ti in a descending order. If the list Li,j of the position j contains more than one

nodes, then we shift the nodes in Ti according to Step 5cα and Step 5cβ: In Step 5cα

we shift of |Li,j| positions in T (i) the nodes having position in T (i) higher than j, in

order to create space for the nodes in Li,j. Finally, in Step 5cβ we shift by x positions

every node in position x in Li,j.
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Algorithm 10 Indexer(G, Sc)
Input: A DAG G and a channel decomposition Sc = {C1, ..., Ck} of G.
Output: k topological orders T1, ..., Tk.
1: prj = Projections(G, Sc)
2: For i ∈ [1, k]:

• For any v = (i, j) ∈ G:

• Ti(v) = j

3: For i ∈ [1, k]:

• For any v = (h, j) such that h ̸= i:

– prj(v, Ci) = (i, l)

– Ti(v) = l

4: Compute a topological order T of the nodes of G.
5: For i ∈ [1, k]:

a: For j ∈ [0, Ti(t)]:

• Li,j = new list or nodes

b: For l = 1, ..., n:

– v = T (l)

• Li,Ti(v).addLast(v)

c: For j ∈ Ti(t), Ti(t)− 1, ..., 0:

– If |Li,j| > 1:
α. For any v ∈ G:
• If Ti(v) > j: Ti(v) = Ti(v) + |Li,j|
• int x = 0.
β For v = Li,j[0], ..., Li,j[|Li,j| − 1]:
• Ti(v) = j + x

• x = x+ 1
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Algorithm Indexer is inspired by the main concepts of Algorithm kD-Draw, which

computes a k dimensional dominance drawing of a DAG G, presented in [75]. Al-

gorithm Indexer performs this operation in Step 5. This operation does not change

the property of the drawing. Indeed, if Step 5 of the algorithm changes the relative

position of two nodes u and v in a given order Ti we have that: If u and v are incom-

parable, then there must be another two orders Tj and Th such that Tj(v) > Tj(u) and

Th(v) < Th(u); else, suppose T (v) > T (u), where T is the topological order computed

in Step 4. In this case we have that u reaches v. After Step 5 we have Ti(u) < Ti(v),

thanks to the fact that the nodes in Li,j are ordered in ascending order in T .

Following the main concepts of Algorithm kD-Draw and the corresponding theo-

rem proved by Ortali and Tollis in [75], and according to the brief proof regarding

Step 5 given in the previous paragraph, we present a theorem that describes the main

properties of Algorithm Indexer.

Theorem 7 Let G be a DAG and Sc be a channel decomposition of G. Assume that

T1, ..., Tk are the k topological orders computed by Algorithm Indexer(G,Sc). Then,

for any pair of nodes of G, v and w, v reaches w if and only if Ti(v) ≤ Ti(w) for all

i ∈ [1, k].

The above theorem gives an immediate algorithm to answer any reachability query

between two nodes in O(k) time using the constructed data structure that requires

O(nk) space. However, due to the structure that we have created for any DAG G,

it turns out we can do much better than that. Please recall that, given any channel

decomposition Sc = {C1, ..., Ck} of G, each node u is assigned two numbers, denoted

by u = (i, j), meaning that u is the jth node of channel Ci. More generally, for any

two nodes v and u of G we say that the index of the channel containing v (resp. u)

is iv (resp. iu). It is easy to construct a simple data structure that contains these

values for each node v in G in linear time. Now, we will use this index in order to

answer any reachability query in constant time.
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Let v = (iv, jv) and u be any two nodes of G. According to Algorithm Indexer we

have Tiv(u) = prj(u,Civ) = h. By the definition of projection, we have that u reaches

v if and only if h ≤ jv. It follows that, since h = Tiv(u) and jv = Tiv(v), u reaches v

if and only if Tiv(u) ≤ Tiv(v). Hence, in order to check if u reaches v, we only need

to check the relative position of u and v in one specific topological order: Tiv . Hence,

we have the following theorem.

Theorem 8 Let T1, ..., Tk be the topological orders of a DAG G computed by Algo-

rithm Indexer. Given two nodes u and v of G, denoted by u = (iu, ju) and v = (iv, jv),

u reaches v if and only if Tiu(u) ≤ Tiu(v). Similarly, v reaches u if and only if

Tiv(v) ≤ Tiv(u).

Theorem 8 implies that we can answer any reachability query by simply checking the

position of two given nodes in (only) two particular topological orders from the set

of all topological orders T1, ..., Tk computed by Algorithm Indexer. Hence, we have a

faster algorithm to answer any reachability query as follows:

Corollary 9 Given the set T1, ..., Tk of topological orders of a DAG G computed by

Algorithm Indexer, it is possible to answer any reachability query in O(1) time.

Algorithm Reachability, directly applies Theorem 8 and the corresponding corollary

in order to answer any reachability query in constant time.

For the rest of this section we assume that k = wG. As discussed above, the time

required to compute a minimum channel decomposition Sc = {C1, ..., Ck} is O(wGn
2).

If k is significantly smaller than n, say, if k is considered as a constant with respect

to n, then this drawing can be computed very fast, in O(m) time, and can be stored

in a very small space O(n). In the next sections we will see several cases where k

is a constant. On the other hand, if k has a value that is a fraction of n then it

is computed in a time and stored in a space that is comparable with the ordinary

transitive closure of the graph (i.e., O(nm) time and O(n2) space in the worst case).
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Algorithm 11 Reachability(G, u = (iu, ju), v = (iv, jv), Tiu , Tiv)
Input: A DAG G, two nodes u, v ∈ G, and two topological orders Tiu , Tiv ∈
{T1, ..., Tk} computed by Algorithm Indexer
Output: An answer to the reachability query, that is: “u reaches v”, or “v reaches
u”, or “u and v are incomparable”
1: If Tiu(u) < Tiu(v):

• return “u reaches v”

2: Else, if Tiv(v) < Tiv(u):

• return “v reaches u”

3: Else:

• return “u and v are incomparable”

However, as we will see in the next sections, k is usually close to a “constant” if the

density of the input DAGs is relatively high. If on the other hand, the density of the

input DAGs is low then k typically grows as a function of n, usually between log n

and
√
n.

5.3 Experimental Results of Algorithm Indexer

In [59] Li, Hua, and Zhou presented an algorithm that computes a multidimensional

weak dominance drawing that can be stored in O(dn) space, where d is the number

of dimensions. They also presented experimental results on the number (or ratio)

of fips (“false positives”, in their terminology). More precisely, this variable is called

“Fip Ratio”, which is the ratio between the number of fips (false positive queries)

over the total number of queries that give a positive answer. Clearly, this number

is a value between 0 and 1. They also presented an algorithm to test reachability

between two nodes that in the case of unreachability takes constant time, but in the

case of reachability it takes O(n+m) time. In our work the fip ratio is always zero,

since our Algorithm Indexer computes k topological orders of the nodes of G that

constitute a complete dominance drawing. The time complexity of our reachability

algorithm is O(1) for both reachability and unreachability. For this reason, in the
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rest of this section we compare the number of dimensions that we use in order to

have no fips (in other words, wG) to the number of dimensions computed in [59],

even though their results contain fips, which implies that they need O(n+m) time to

establish reachability for each query. The models that we use for the comparison are

the same models used in [59], which are the Erdős-Rényi, the Barabasi-Albert, and

the Watts-Strogatz small world models.

In the experiments that we present in this section we see that in almost all cases our

approach gives better results than the ones given in [59] in the number of dimensions.

Additionally, even in the cases where our results are similar with respect to the number

of dimensions used we point out that our solutions have no fips, while in [59] there

are both cases with few and many fips. If fips exist in any solution then positive

reachability can be determined only after running the O(n+m) time check for each

query [59]. On the other hand, the approach described in [59] gives the user the

possibility to reduce the number of dimensions which results, of course, in increasing

the Fip Ratio, while in our approach the number of dimensions used is equal to the

width of the graph. So, in this sense our results on the number of dimensions are not

directly comparable to the results given in [59] (since ours contain no fips). However,

if the number of required dimensions is “affordable” then our approach may prove to

be very useful since it requires no extra time to check positive reachability.

Indeed, our experiments show that the width of the graph in many cases can be

very small with respect to the number of nodes, n, of the graph and in some cases,

when n increases the width remains (almost) constant. Hence, in these cases the

number of required dimensions is “affordable”. Therefore, in those cases our approach

is better than the one described in [59]. For all other cases, the choice of an approach

depends upon the parameters of the application (i.e., time vs. space). In some cases

it might be desirable to save space, by reducing the number of dimensions, at the

expense of having fips (which implies having to run the O(n+m) time check for each

positive query). In many other cases one might prefer to use wG dimensions in order
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to have 0 fips, which implies immediate response in constant time to any reachability

query.

In order to be consistent with the experimental setting used in [59], we use Net-

workX [76] to generate our graphs using the same parameters. While generating a

graph, when an edge between two vertices x and y of the graph is added, where x

and y are two integers, the methods of NetworkX add the edge (x, y) to the graph if

x < y or the edge (y, x) otherwise. Hence, the generated graphs are always DAGs.

The experimental results show that the value of the width for many DAGs can be re-

ally small, especially for dense ones. Additionally, the experimental results show that

sometimes as the number of nodes increases, the width increases at a much slower

pace and sometimes it does not even increase at all, especially for dense DAGs. In

order to analyze this aspect we performed experiments for different values of the

number of nodes of our graphs (n = 1000, 2000, 5000, 10000). Notice that in [59] the

value of n is fixed to 10000. Our experimental results report the average number of

dimensions over five graphs for every category of graphs that we analyze.

5.3.1 The Erdős-Rényi model [77]:

It is a model of graph where every edge has a probability to exist equivalent to a

given parameter p (obviously, since p is a probability, we have that p ∈ [0, 1]). The

other parameter of this model is the number of nodes of the graph, n. We consider

the cases where n = 1000, 2000, 5000, 10000 and p = 0.05, 0.1, 0.15, 0.2, 0.25.

The results of our experiments on k = wG, the number of dimensions, obtained

for this model are presented in Figure 5.1. For this model the number of dimensions

required in order to have a dominance drawing is at most 21. According to the

results showed in Figure 2 of [59] concerning the same model the number of dimensions

required is up to 50 in order to have a weak dominance drawing (i.e., fips exist). Recall

that the experiments reported in [59] are only for n = 10000. In our experiments and

in the experiments in [59] it is shown that when the graphs are rather dense (i.e.,
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as p increases) the number of dimensions needed to have a dominance drawing, for

us, or a weak dominance drawing with a very small Fip Ratio for [59], drastically

decreases. We conclude the analysis on this model with an interesting observation:

The number of nodes of the graph does not significantly influence the number of

required dimensions. The value of k, indeed seems to remain stable or even decrease

as the number of nodes increases. In general, in our experiments the width (k = wG)

of the graph seems to scale very well for this particular model and the effectiveness of

our technique, in this case, depends almost exclusively on the density of the graphs.

In other words, for this model the density of the graphs is of paramount importance,

whereas the node-size does not affect the resulting k that much.

Figure 5.1: Results of the experiments for the Erdős-Rényi model showing the number
of dimensions with respect to nodes.

5.3.2 Barabasi-Albert model [78]:

This model is well suited for creating scale-free graphs, which, roughly speaking, are

graphs having few nodes having high degree and many nodes with small degree. More

formally, in this model the fraction of nodes P (x) having degree x is proportional to
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x−3 (i.e., P (x) ∼ x−3). The graph is built by attaching nodes one by one, following

a preferential attachment strategy, that is, new nodes are attached to high degree

nodes with high probability. The parameters of this model are the number of nodes n

and the number of edges initially attached to a newly node inserted in the graph m.

Clearly, as far as m increases the density of the graph increases. In our experiments

we consider n = 1000, 2000, 5000, 10000 and m = 10, 20, 30, 50, 100.

In this model the first m nodes are added so that they are incomparable (with

no edge connecting them). Hence, by definition, the width of any BA graph in our

experiments can not be lower than m. This fact does not influence the experiments

in this setting, since we choose values of m that are very low and, consequently, we

experiment graphs with a very low density. We discuss more in deep the importance

of this initialization step at the end of the section.

The results of our experiments on k = wG performed on this model are presented in

Figure 5.2. In order to have a dominance drawing we need less than 200 dimensions

for m = 50, 100. In Figure 2 of [59] we can see that with a similar number of

dimensions the Fip Ratio is (relatively) small, but higher than 0. Hence, for dense

BA graphs our approach seems to give more competitive results than the one described

in [59] in terms of both (a) the number of dimensions (i.e., space required to store

the information) and (b) the Fip Ratio. On the other hand, as m decreases (m =

10, 20, 30) the width of the graphs seems to increase linearly with respect to the

number of nodes. Similarly, in [59], when the graph is very sparse (m = 10, 20, 30)

the Fip Ratio is considerably higher. We conclude this analysis with an interesting

observation: Notice that for m = 100 in our experiments the width of the graph

seems to slowly decrease when the number of nodes increases. In other words, the

experiments tell us that - for this (not so) particular case - for dense BA graphs, for

all practical purposes, the width can be considered a constant. Additionally, it follows

that our approach scales very well for graphs that follow this model.

83



Figure 5.2: Results of the experiments for the Barabasi−Albert model showing the
number of dimensions with respect to nodes.

5.3.3 Watts-Strogatz model [79]:

This model represents small world graphs, that is, many sets of nodes are highly

connected between them. This model requires a parameter k, which represents the

average number of neighbors of the nodes, to be significantly larger than ln(n) to

guarantee that a random graph will be connected. Another important parameter is

b. It is used to control the “randomness” of the graph, and it influences the average

length, L(G) between two nodes (the length of the shortest path connecting them).

When b approaches 0 L(G) approaches n/2k, whereas when b approaches 1 L(G)

approaches ln(n)/ln(k). The random network at b = 1 is a poorly clustered, small

world where L(G) grows only logarithmically with n [79]. Hence, for this model

we need three parameters. The first one is k, and second parameter is 0 ≤ b ≤ 1,

which measures the randomness of the graph, that is, it affects directly the value of

L(G). The last parameter is, of course, the number of nodes n. Our results show

that the number of dimensions needed to have a dominance drawing in the case of

b = 0.9 or b = 1 is very high and that it grows linearly with n, as shown in Figure
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5.3. Similarly, the Fip Ratio in such cases is much higher than in other cases as

indicated in [59]. In order to add to our understanding we should stress again the

fact that the WS model has a structure close to the ER model when b is (almost) one.

Hence, one would expect that the WS graphs would have a behaviour similar to the

ER graphs. Obviously, this is not the case, since the results for the ER graphs are

significantly better than the ones for the WS graphs for b = 1 and b = 0.9 (in both

our and their experiments). The reason for this behavior is probably due to the fact

that the two models with the specified parameters for the graphs have significantly

different density: Indeed, for the values of p (in ER) and k (in WS) considered in [59]

and in this work, the WS graphs are significantly less dense than the ER graphs.

For example, the sparsest ER graph considered having n = 10000 is the one having

p = 0.05, which has 2.5 million edges, while the most dense WS graph considered for

n = 10000 has only 250000 edges (which is a factor of 10 less edges). Hence, as a last

experiment of this section we decided to experiment with WS and ER graphs that

have the same density. As expected, the experiments for the two models give very

similar results, as will be discussed later, see Figure 5.5.

In contrast to [59], we believe that analyzing the WS for very high values of b is

not interesting, since such graphs are basically random (similar to ER) and not “small

worlds” graphs. Hence, we will focus our attention on values of b that are not as large

in order to show the different behaviour for b = 0.3, b = 0.5, and b = 0.7. Specifically,

we compare our results as shown in Figure 5.4, with the ones presented in Figure 2

of [59] only for b = 0.5, 0.7, since in that paper there are no experimental results for

the choice b = 0.3 (we recall that in that paper the authors presented experimental

results only for n = 10000). For k = 10 and k = 20 the Fip Ratio in [59] is equivalent

to 0.5, which is a high value, even when using 200 dimensions. Our experimental

results show that we obtain dominance drawings with no fips using at most (a) 250

dimensions if b = 0.7 and 50 dimensions if b = 0.5 when k = 10; and (b) 25 dimensions

if b = 0.7 and 5 dimensions if b = 0.5 when k = 20. For k = 30 and k = 50 we can
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Figure 5.3: Results of the experiments for the Watts-Strogatz model for k = 10, 20, 30
and 50 showing the number of dimensions with respect to nodes. The five curves
correspond to b = 1, 0.9, 0.7, 0.5, 0.3 as seen from top to bottom.

achieve 0 fips by using at most 3 and 7 dimensions, respectively. The corresponding

results presented in [59] are also very good, since they obtain a small Fip Ratio, close

to 0, for any number of dimensions.

We conclude the discussion on the results for the WS model with the analysis

on the scalability of our results as shown in Figure 5.3. For k = 10 and k = 20 the

width grows linearly with n for b = 0.7, 0.9, 1, while it is very close to be a constant for

b = 0.5, 0.3. For k = 30 and k = 50 the curves seem to be constant for b = 0.3, 0.5, 0.7,

whereas they seem to grow linearly (with a smaller slope) for b = 0.9, 1. These plots

show that when the graphs are rather sparse (small k) our techniques scale well for

small values of the randomness variable b whereas, when the graphs have a high level

of clusterization (high b) they scale well for all the considered densities.

In the results of the experiments depicted in Figure 2 in [59] the Fip Ratio ob-

tained for the ER model is much lower than the Fip Ratio obtained for the same
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number of dimensions for the BA model and the WS model. For example, for 50

dimensions the highest Fip Ratio in the ER model is 0.001, while for the BA model

it is 0.2 and for the WS model it is 0.7. Also in our experiments, as shown above,

the width of the ER graphs is much lower than the width of the BA and WS graphs.

However, this is caused because the density of the graphs of these three models using

the parameters of [59] is vastly different. In fact, in order to have almost the same

density between ER with p = 0.05 and the other two models we need to set m = 250

for the BA model and k = 500 for the WS model. For this reason we decided to

perform one more set of experiments in order to validate that, for the same density

(i.e., same number of nodes and about same number of edges), the ER graphs have

a width comparable to the width of the BA and WS graphs. This experiment is

described in the next subsection.

Figure 5.4: Results of the experiments for the Watts-Strogatz model for k = 10, 20, 30
and 50 showing the number of dimensions with respect to nodes. The three curves
correspond to b = 0.7, 0.5, 0.3 as seen from top to bottom.

87



Same Density Experiment: In order to understand the meaning of the previous

experiments, we chose parameters that would create the same density graphs for the

three models. Refer to Figure 5.5, where we show experiments on the width of the

graphs where the number of nodes is 10000 and the number of edges is 250000 and

2.5 millions.

Before doing a comparison between the BA graphs and the ER graph, where the

two graphs have the same density, we highlight the following observation concerning

the initialization step of the BA graphs. The BA graphs shown in Figure 5.2 produced

in the experiment above are initialized with m incomparable nodes. Hence, for those

graphs the width cannot be lower than m, which in this case is equivalent to 250.

Notice that for the BA model the initialization step can be performed in many different

ways. We performed our experiments initializing the BA graphs slightly differently

than before, in order to see if, for a different initialization step, the width of the graph

can be lower than m. Namely, in this last experiment we initialize the BA graphs by

adding a path connecting the first m nodes. For this possible initialization, the width

of the BA graphs can be even lower than 250. This is the case when the number of

edges is 2.5 millions, but this is not the case when the number of edges is 250000. In

this last case (sparser graphs), the initialization step does not influence the width of

the graphs.

Concerning the comparison between the BA and the ER models, we see that for

the same value of density and for both types of initialization that we used in our

experiments (with m = 250 incomparable nodes, where the width cannot be lower

than 250, and with a path containing the first m nodes), the width of the BA graphs

is higher than the width of the ER graphs.

Concerning the comparison between the WS graphs and the ER graphs, Figure 5.5

shows that the two models have a very similar behaviour when the value of b is close

to 1. This fact is expected, since for b = 1 the WS graph is, almost the same as an

ER graph. The WS graphs have a much better behavior for lower values of b. Our
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experiments validate the fact that the much better behaviour of the ER graphs with

respect to the WS graphs shown by our experiments and by Figure 2 in [59] is due

only to the different value of density used for the two models.

Figure 5.5: Results of the experiments on the width of the graphs where the number
of nodes is 10000 and the number of edges is 250000 and 2.5 millions respectively.

The above experimental results on the three graph models were presented as a

comparison with the experimental results of [59]. Our experimental results offer on

one hand a validation of their results in some cases, but they also give better results

in many other cases. However, these models are interesting mostly for undirected

graphs or for directed graphs with cycles (i.e, not DAGs). Indeed, DAGs are usually

used to describe processes containing some long paths, such as in PERT applications

see for example [7, 8], while in the graphs discussed above paths of significant length

are not guaranteed by construction. Therefore, in the next section we introduce a

new model, the Path-Based DAG model, where the graphs are constructed starting

from a number of randomly created paths and where the rest of the edges are added

also randomly.
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5.4 The Path-Based DAG Model

We introduce a new graph model which is more suitable to DAGs and their applica-

tions [80]. We believe that this model is more representative of DAGs that are used in

many applications. In this model, graphs are randomly generated based on a number

of predefined but randomly created paths. By construction this model has the clear

advantage that we know in advance an upper bound on the number of dimensions

since the predefined paths clearly provide a set of dimensions. A second advantage

is that we can create graphs with significantly different structure in order to explore

how structure influences the number of dimensions of DAGs. We shall refer to this

model as the path-based (DAG) model.

The purpose of this model is to generate a random graph G = (V,E) with n nodes

and m edges having a predefined number k of paths. This implies that the number of

paths is a clear upper bound on the number of dimensions for these graphs. However,

as we add more edges randomly the number of required dimensions decreases, some-

times significantly. The strategy is described by the following two steps: (i) First

a set of k paths is randomly generated, where the number k is given as input. (ii)

Next we enrich the generated paths by randomly inserting edges one by one until the

total number of edges is equal to the requested number of edges m given as an input

parameter, i.e., a given density.

In this model we add the edges following a strategy similar to the Erdős-Rényi

model : the parameters of the construction of a path-based DAG are the number of

nodes n, the probability p of the existence of an edge between two nodes, and the

number of paths, k. Notice that the total number of edges m in the DAG is implied

by n and p, ranged from approximately 25.000 to 12.500.000 edges. In order to obtain

a DAG, all edges are oriented from a “lower” numbered node to a “higher” numbered

node. In our experiments we consider cases with n = 1000, 2000, 5000, 10000 and

p = 0.05, 0.1, 0.15, 0.2, 0.25. Based on our experience from the experiments performed
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in [13] it seems natural to choose the initial number of paths k to be centered at
√
n. That is, we perform experiments assuming that a realistic initial channel/path

decomposition of a given DAG G = (V,E) with n nodes would have a number of

paths that would be equal to a fraction or a multiple of
√
n.

We performed two types of experiments using DAGs described previously. In the

first type the chosen number of predefined paths is fixed to
√
n. We want to assess

how the number of dimensions varies with the density of the input graph while the

structure remains “fixed”. For each case we performed five runs on different randomly

generated DAGs with the same parameters starting with
√
n paths. The results

of our experiments, presented in Figure 5.6, show the average number of required

dimensions. Our results show that for the case where the parameters create the

lowest density (sparsest DAG), i.e., for p = 0.05 and 10, 000 nodes, we need at most

21 dimensions in order to have a dominance drawing. A similar observation as for

the ER model applies also here: the number of nodes of the graph does not influence

drastically the number of required dimensions. This experiment highlights the fact

that the number of dimensions is mostly influenced by the density of the graph.

Another observation is that the number of dimensions is a lot lower than
√
n, the

number of predefined paths used to construct the graphs. Additionally, notice that

the results on this experiment are very similar to the results for the ER graphs, a

fact that provides a further validation of our model and choice on the number of

predefined paths.

5.4.1 Number of predefined paths as a parameter of the model.

In the second type of experiments the chosen number of predefined paths is a multiple

or a fraction of
√
n while the number of nodes fixed at n = 5000. Here we want to

assess how the number of dimensions varies with a varying structure of the input

graph while the node size remains fixed. The number of paths influences heavily the

structure of G and it presents a different point of view to the problem of determining
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Figure 5.6: Results of the experiments for the path-based model as created with
√
n

predefined paths, showing the number of dimensions with respect to nodes.

a small number of dimensions for a dominance drawing. Specifically, we investigate

DAGs constructed following the path-based model with n = 5000 nodes considering

the following parameters for DAGs: Various small values of p (in order to still as-

sess the influence of density in even sparser DAGs than before) and the number of

predefined paths varying from
√
n/8,

√
n/4,

√
n/2,

√
n, 2
√
n, 4
√
n to 8

√
n in order to

assess how structure influences the number of dimensions. The experimental results

of this study are shown in Figure 5.7. Again, for each case we performed five runs on

different randomly generated DAGs with the same parameters and the results shown

in Figure 5.7, record the average number of dimensions. The curves in this figure

provide clear evidence that the structure of a DAG plays an important role in the

number of dimensions of a dominance drawing. Of course the different curves shown

for the different values of p also show that density is still very important. Clearly,

the number of paths (i.e., structure) influences the number of dimensions significantly

when dealing with very spare graphs (e.g., p = 0.005, 0.01), as shown in Figure 5.7.

On the other hand, if the graphs are rather denser (e.g., p = 0.03, 0.05), then the
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graph structure seems to be less important. The density is clearly a determining

factor. This is demonstrated by another experiment that we performed in order

to determine the importance of various parameters in the preliminary stage of our

research. We investigated the case where the graph is rather dense i.e., n = 2000 and

p = 0.25. In this scenario, the number of dimensions ranged from 6.2 to 7.8 for all

cases of varying number of paths given. This shows that the structure does not play

an important role in dense DAGs, which is the opposite to what happens when the

graph is rather sparse, as discussed in the previous paragraph.

By examining again the curves in Figure 5.7, we observe that, generally speaking,

the number of dimensions required is increasing as the number of predefined paths is

increasing, for all p values tested. However, when the number of paths is very large

this behaviour becomes almost a constant for the denser graphs of this experiment.

Also note that in some extreme cases the number of dimensions may even slightly

decrease. For example for p = 0.05 we see that when having 140 and 280 paths the

number of required dimensions is 20.6 and 23, respectively, while the number drops

to 21.6 when the number of paths is 560. Our explanation of this phenomenon is

that when the number of predefined paths is very large the average number of nodes

in each path is a small constant. Then the other edges, between nodes that are on

different paths, are most influential in building longer (and fewer) channels which

leads to smaller number of required dimensions.

Moreover, another interesting fact that needs to be highlighted is that this behavior

is inversely proportional to the density of the graph. In other words, in denser graphs

the curves flatten out faster whereas in sparser graphs the curves continue to rise.
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Figure 5.7: Results of the experiments in the number of paths for the path-based
model for n = 5000 and various p values, showing the number of dimensions with
respect to nodes

Discussion: In this chapter we present algorithms that construct a data structure in

the k-dimensional space that is based on the concept of Graph Dominance Drawing.

Our algorithms construct this data structure in O(km) time, while it can be stored in

O(kn) space. Any reachability query can be answered in O(1) time, since it suffices

to check only one specific dimension. Furthermore, no “falsely implied paths (fips)”

are introduced. The experimental results show that our techniques perform better

than the state of the art. Namely, we provide experimental evidence that shows that

the number of dimensions k is usually equal to a small fraction of
√
n (for very sparse

graphs) and sometimes it grows as slow as O(log n). Our extensive experiments on

graph models with different structure indicates that when the DAGs are dense k seems

to be almost a constant. Furthermore, our experimental results validate the choice

on the maximum number of dimensions used in the experimental results of [59].

An interesting key point is that we introduce a new graph model that is more suit-

able to DAGs and their applications. We show that this model has a clear advantage

94



that we know in advance an upper bound on the number of dimensions since the

predefined paths clearly provide a set of dimensions. A second advantage is that we

can create graphs with different structure in order to explore how structure influences

the number of dimensions of DAGs.

It will be important that future research investigate fast heuristics that further

reduce the number of required dimensions. Since these techniques have significant

applications in very large graphs, like in large databases, it is important to investigate

this problem when the graph changes dynamically, i.e, insertions of new edges/nodes,

deletions, etc. New techniques need to be developed specifically designed for dynamic

graphs since the cost of recomputing the data structures every time after an update

may be prohibitive. For example, it seems that the insertion of a single edge may not

alter the structure of the graph significantly, but in other cases it does, e.g., when it

creates a new cycle.
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Chapter 6

Graph abstraction techniques for
visualizing DAGs based on the
Context-Aware Graph

The emergence of social networks and graph databases has led to an increasing in-

terest in analyzing and visualizing networks (graphs) over the recent years. A social

network can be defined by a (homogeneous or heterogeneous) graph consisting of a set

of nodes (people) linked according to different types of edges (relationships). For ex-

ample, a heterogeneous graph can have nodes and edges of different types, in contrast

to a homogeneous graph. The enhanced information which describes the relation-

ships and the people within the network composes the “semantic” information of the

social network or the context of the graph. The tendency of people with similar

preferences within a social network leads to the formation of clusters or communities.

Identifying such communities [81] and the interactions between them [82] is of crucial

importance and can be beneficial for numerous applications such as recommendations

[83]. In such cases, users are considered similar if there is an overlap in the items

consumed. There is a number of works for community detection such as in [84] where

the authors proposed new methods for community discovery, including methods based

on “betweenness” measures and methods based on modularity optimization. Other

approaches, such as in [85] differ completely from the traditional clustering techniques

and use in a conjoint way, the information from the social network, represented by
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the points of view, and its structural information.

6.1 Which graph to visualize?

The idea of interoperability of social networks and graphs in general, has received

significant attention. The purpose of such process is to understand the information

flow within the graph, identify various aspects and select specific interpretations of

the input graph that can be used for processing or visualization. Toward that di-

rection, the authors of [86] highlight the significance of identifying the correct graph

model that users should choose when dealing with large scale graph database (e.g., in

database services such as AWS). They emphasize the fact that it is very common to

see users make the wrong choice regarding the selection of the suitable graph model,

which is a critical action with no easy way to reverse it later. To this respect, they

discuss challenges and different aspects and point out a number of properties that

one should take into account when dealing with such decisions. Based on their analy-

sis, they conclude that edge properties (multiple edge), graph abstraction and graph

partitioning, are the key aspects and criteria in order to understand the underlying

graph structure. We also believe that this is the way forward. To this respect, we

elaborate on these criteria in order to analyse the original graph, extract a part or

a subgraph of the original graph and visualize it accordingly based on a specific use

case.

The purpose of this chapter is to address the challenges of interpreting the infor-

mation (semantics) of the graph that can be used also as a graph visualization aid.

To this respect, we define the problem and the requirements of that direction, and we

present and analyze various techniques to cover such needs. Although we highlight

some interesting research questions to be addressed by the broader graph commu-

nity, our direction is with respect to graph visualization. For this reason, we apply

the proposed techniques over our hierarchical drawing framework, as a use case and

present some experimental results to verify the validity of such an approach that can
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be applied on various applications depending on the different scenarios.

6.1.1 Multiple Network Models

Heterogeneous information networks (HINs), also called heterogeneous graphs, are

composed of multiple types of nodes and edges, and contain comprehensive informa-

tion and rich semantics. Although heterogeneous information networks are ubiqui-

tous, there are not many standard datasets for study, since such heterogeneous in-

formation usually exists in different data sources [87]. Intuitively, most real systems

include multi-typed interacting objects. For example, a social network website (e.g.,

Facebook) contains a set of object types, such as users, posts, and tags. Likewise, in

a bibliographic database, like DBLP [88], papers are connected together via authors,

venues and terms; and in Flickr, photos are linked together via users, groups, tags and

comments. In general, these interacting systems can all be modeled as heterogeneous

information networks.

6.1.2 Challenges

Although, it is important to show all the information represented by the edges of a

graph, there are cases where this is either impossible due to the complexity and the

size of the graphs or even misleading since the graph could be very dense. Moreover,

human ability to identify patterns is inversely proportional to the size and complex-

ity of graphs. Other reasons are related to privacy protection (e.g., social network

graphs). Although it is crucial to visualize the graph in order to have a better un-

derstanding of the underlying structure of the network, as already mentioned there

are cases which this is almost impossible. To this respect, it is reasonable to validate

the cost of graph visualization but with respect to which graph? In such cases, it

makes sense to replace the original graph with a subgraph (e.g., using clustering, su-

pernodes, etc.) or a summary, which removes unnecessary details about the original

graph topology but retains the mental map of the user. To overcome this, different
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approaches imply to hide the unnecessary information [5] by displaying them on de-

mand, skip the redundant information or to apply graph summarization techniques

in order to reduce the complexity of the graph on top of sophisticated graph drawing

layouts.

Graph summarization has extensive applications such as clustering [89], classifi-

cation [90], community detection [91], outlier detection [92], [93], pattern set min-

ing [94], finding sources of infection in large graphs [95] and visualization [96], [97],

among others. The notion of summarization over graphs or graph summary is not

yet well defined. In general graph summarization has five main challenges [98]:

• Data volume.

• Complexity of data.

• Definition of interestingness.

• Evaluation.

• Change over time.

6.2 Context-Aware Graph Abstraction techniques for
visualizing Graphs

In this chapter, we propose sophisticated methods for grouping nodes with similar

relationships (i.e., features) that naturally decompose the graph based on the set of

features applied. The proposed approach is motivated by the observation that people

within the same community (clusters) have strong feature similarity [99]. According to

our hypothesis, a large number of semantically different features implies a co-existence

of several overlapping clusters, since a node may exist in more than one clusters based

on the context applied. The underlying assumption is that objects within the same

clusters are more likely to have similar features than objects in different clusters. By

that, we expect to provide answers to the following problems:
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• How can we find significantly different clusters for the same graph?

• Can we find unexpected (hidden) clusters that emerge when a specific combi-

nation of features is considered based on the context applied?

Let us assume the network schema of a simple social network as illustrated in

Figure 6.1c. In such cases, one could categorize edges based on the type of the

k relationships and extract the corresponding k simple graphs and then apply the

clustering process accordingly. This approach though, ignores the different

simultaneous roles each user may have and can yield misleading results.

More specifically, in our example there are users that are not only co-workers but also

friends so a clustering based on a single attribute e.g., work, is a crude approximation

of reality. On the contrary, our proposed approach has the ability to recognise the full

social structure of the underlying graph and offer a deeper understanding of social

interactions if compared to the corresponding graph without attributes. Moreover,

in contrast to similar approaches, our approach significantly differs by

the fact that our abstraction techniques will reveal hidden information.

By that, we expect to have nodes within the same clusters or summaries

although there is no edge between them in the original graph.

To summarize, our contributions are as follows:

• We focus on summarization and clustering techniques specifically on heteroge-

neous graphs-networks.

• We create Context-Aware (Social) Graph, defined as an augmented (social) net-

work enhanced by the semantics of the relationships expressed as edge features.

• We offer the ability to analyse the network not only from a structural view but

from a semantic perspective.

• We offer a method that changes the semantic structure of the same network

based on the context applied.
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• Our model can detect hidden information by providing clustering results with

nodes that are not directly connected.

6.2.1 Problem definition

Context of the graph

Let G = (V,E) be a graph of a social network and V (G), E(G) denote the set of

vertices and the set of edges of G, respectively. In general, each vertex v ∈ V can

be represented as a distinct point pv while each edge e = (v, u) ∈ E(G) as a simple

curve connecting pv and pu. A common approach is to consider binary relations, i.e.,

edges between vertices are either present or not, using the corresponding adjacency

matrix. In other examples such as signed graphs edges can have a positive or negative

sign. According to Wasserman and Faust [100], a graph is consider to be complex or

multigraph if a graph contains loops and/or any pair of nodes is adjacent via more

than one line. An example of such graphs are heterogeneous social networks (HSN).

More specifically, a heterogeneous social network can have a set of typed nodes (e.g.,

movies or actors) and typed edges as relations (e.g., friends, colleagues). In contrast

to that, manny techniques consider only simple graphs by taking into account only

one type of relation which can be derived from complex graphs or by merging multiple

edges into single edges and by removing the loops. Although this can be helpful in

some cases, we can easily understand that different edges (i.e., features of the

edges) should be consider simultaneously in order to understand the inter-graph

behaviour. For instance, in a social network an important amount of information can

be derived indirectly from the different context. Figures 6.1a, 6.1b highlight a deeper

understanding of social interactions if compared to the corresponding simple graph

without the features of edges.

In such graphs the edges may also contain conflicting information e.g., friendship

or antagonism which leads to totally different interpretation of the network. More

specifically, it is more than common that within the same graph, multiple interactions

101



(a)

(b)

(c)

Figure 6.1: Graph (a) is a simplified representation of a social network. Graph (b)
illustrates the underlying structure by taking into account all the features. Part (c)
is an alternative representation of the simple graphs based on the features.
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(a) (b) (c)

Figure 6.2: An example of a small social network graph: Part (a) shows the repre-
sentation of a social network based on 3 different features. Part (b) and (c), show the
resulting graph by selecting only two and one feature, respectively.

of different kinds of relations coexist simultaneously e.g., rating, degree of confidence,

and can be mapped for the same vertex pair. In Figure 6.1c we see such a case where

the simplified graph can be extended to represent the different features of the edges.

In order to better understand the various relationships than coexist within the

same graph we highlight the following example. Let us assume a small social network

consisting of 40 nodes and a number of edges with 3 different features f1, f2, f3

indicating friendship, family and working relationship, as shown in Figure 6.2. The

different colors of the edges represent the various features that coexist within this

graph. Based on the features selected, we can extract the corresponding graphs,

as shown in Figures 6.2b, 6.2c where we have the original graph as extracted when

taking into account features f2, f3 and f3 respectively. To this respect, by using the

semantic information we can define the context of the graph as the aggregation of the

features of the edges. As expected, the different features change the semantic state

of the network, since the various features can create different semantic graphs of the

same original graph.

Features of edges of the graph

We model a social network as a graph G(V,E), where V is a non-empty set of vertices

representing users and E is a set of edges representing the relationships among the
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Table 6.1: Various features f of FE associated with each edge e of E.

Features

Edges Feature1 Feature2 ... Featurek

Edge1 score1,1 score1,2 ... score1,k

Edge2 score2,1 score2,2 ... score2,k

... ... ... ... ...

Edgei scorei,1 scorei,2 ... scorei,k

→ multi-contextual edge s(e).

users. Let v, u be two vertices of V and e(v, u) be the edge defined by v, u. We

denote v, u neighbors if e ∈ E. Moreover, let us also denote FE as a non-empty set

of features of the edges. More specifically, by using a features set FE, that contains

k features, each edge e ∈ E is associated with some number of k′ features fe ∈ FE,

where k′ <= k, as shown in Table 6.1.
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Moreover, we assign a score(e, f), which can be either a binary value (in cases

where a feature fj is present, or not, in edge ei ) or can be expressed as an edge-

weight w for a specific feature, where w ∈ W{w1, ..., wz}. More specifically, the score

is given by:

1. Score(ei, fk)={E × F}, where no weight about a feature is given.

2. Score(ei, fk, wz)= {E × F ×W}, where feature weight is explicitly given.

In the simplest scenario, we have only the first case, where a feature can be ex-

pressed only as binary value. Let us recall the previous example of Figure 6.1. Note

that each edge of the original graph, may have a number of semantic edges i.e., rela-

tionships based on the corresponding features. To this respect, an edge can be also

defined as a multi-semantic edge or a multi-contextual edge.

Multi-contextual edge

Given the semantic edges s(e) as shown in Table 6.1, we can model the multi-

contextual edge as follows: As explained in the previous section, each edge e ∈ E in

the graph has a number of features that define the various semantic edges s(e). In

other words, each semantic edge s(e), corresponds to a specific feature related to that

edge e. To this respect, the edge e can be modeled as a multi− contextual edge, by

taking into account the various semantic edges that coexists simultaneously.

Definition 10 (Context-Aware Social Graph) Given a set of vertices V , a set

of edges E and the set of semantic edges SE, the multi-contextual edge graph is the

semantically enriched graph of the original graph G. The Context-Aware Social

Graph G(C) can be defined as the semantic sub-graph of the multi-contextual edge

graph by selecting only a subset of the semantic edges, based on the context C applied.
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Context selection

Choosing the correct context C, is of crucial importance. We highlight the following

approaches:

a: Baseline approach. The creation and evaluation of clustering techniques over

datasets is a critical and difficult task, since no correct answer can be given [101].

The Baseline approach implies that in order to use the full knowledge of the

Context-Aware Social Graph, we need to take into account all the features for

each edge C = SE. As expected, this approach would be extremely inefficient

and expensive in execution time for large scale graphs.

b: User defined context. As an alternative to the baseline approach, the user can

select only a subset of the semantic edges SE ′ ⊂ SE. This subset can be

changed accordingly based on the context applied. By that, one can easily

understand that the same graph can give different clustering results based on

its Context-Aware Social Graph and the context applied.

c: Randomly selected context. Similar to User defined context, we can choose a

random subset of the semantic edges SE ′ ⊂ SE. This strategy can be also

applied in cases where no such information is explicitly provided. Furthermore,

we also introduce this approach to evaluate its performance compared to the

user defined context.

Methodology

Our basic idea is motivated by the hypothesis that semantic clusters can emerge when

a specific combination of semantically extracted graphs are taken into account. This

indeed is valid when we deal with a large number of semantically different features

which may lead to several overlapping clusters. Using the notion of Context as defined

previously, we aim to provide an interesting perspective on discovering representative
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clustering in complex graphs. More specifically, we use such information in an aggre-

gated way in order to construct the Context-Aware Social Graph and create semantic

clusters. The diagram of the architecture is shown in the Figure 6.3.

Figure 6.3: The semantics of the graph are identified and the semantically enriched
graph is created. Based on the semantic graphs and context applied, we create the
Context-Aware Social Graph and extract the semantically abstracted graph.

Algorithmic Example

For this example we use a small social network consisting of 6 users (nodes) and 8

relationships (edges), as shown in Figure 6.4. This network contains a context with

features related to {f1 :teamate, f2 :friend, f3 :colleague}. Note that each edge

in the social graph may have more than one feature. For example edge e5, which

connects users Panos and Thanos, contains information about features f2 and f3

while edge e8, which connects users Panos and Austris, contains information related

only to f1.
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Figure 6.4: A social network with a set of features as context.

6.3 A use case over hierarchical drawings

In chapter 4, we presented and evaluated a set of drawing variants over the Path

based Framework (PBF). The idea behind these variant techniques, is to progressively

abstracting the edges in order to have different visualization results while having the

same transitive closure as the input graph. For example, in Figure 6.5b we see the

drawing result of the baseline variant, Variant 0. Let us recall these variants. In

abstract, Variant 1 is where we denote by jumping cross edge an edge e= (u,v) such

that |X(v) −X(u)| >1 and also place a bend on every jumping cross edge of Γ. Refer

to Figure 6.6a where, for example, the jumping cross edge e= (7,10) has a bend.

Other examples such as Variants 2 and 3 attempt to abstract edges of nodes that are

in the same path and edges with common source or target. This set of variants was

the main motivation for our proposed approach. Similar to these variants we

will use the same methodology combined with the semantic information. Figure 6.6b

shows a graph drawing as computed by Variant 4.

6.3.1 Visualization in Reverse

Although it is may be desirable to show all the information represented by the edges

of graphs, such drawings may be confusing or even misleading due to the size. For

example, in a vast majority of applications domains, such as graph databases and
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(a) (b)

Figure 6.5: In (a) we show the drawing of graph G, as computer by Tom Sawyer
Perspectives. In (b) we show the drawing Γ based on G computed by Algorithm
PB-Draw.
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(a) (b)

Figure 6.6: In (a), (b) we show the drawings Γ based on G computed by variant1,
variant4 respectively of Algorithm PB-Draw.
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Figure 6.7: The “Hairball Effect” of a graph consisting of 1000 nodes and 2752 edges.

big data, the graphs are very large and the traditional visualization techniques are

not applicable due to the complexity and the size and density of the graphs. This

indeed is valid, not only in web-scale but also in smaller cases, such as in citations

graphs, small social networks, and real-world graphs. The visualization of such graphs

produces drawings similar to a “hairbal” (see Figure 6.7). The “Hairball Effect” is a

commonly encountered phenomenon in graph visualization. Moreover, human ability

to identify patterns is inversely proportional to the size and (visualization) complexity

of graphs. In such cases, it makes sense not to show the original graph but replace it

with a new representative graph based on specific points of interest. This new graph

is a subset of the edges and/or nodes, thus it reduces the visual complexity of the

resulting drawing, and the memory requirements such as for storing the transitivity

information in the case where the selected point of interest is transitivity. In other

words, applying such methods (i.e., abstraction techniques) can be a prepossessing

step for further reduction of the visual complexity of the original graph and then

visualizing this new graph instead of the original.

6.3.2 Apply semantic Summaries over PBF

Let us focus on challenge of Definition of interestingness [98], as described in a pre-

vious section. By taking into account this challenge, a summary or a cluster should

involve extracting interesting information. As expected, the definition of interest can
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vary significantly since most of the cases are subjective and dependent on the appli-

cation. To this respect, we focus on generating summaries by identifying the most

interesting nodes within an area, based on the topology, or produce summaries by

exploiting semantic information using the hierarchical drawings as introduced in the

previous chapters.

We introduce the following semantic abstraction strategies:

1. Based on the topology of a drawing Γ of G. (Semantic Summaries based on

neighborhoods)

2. Based on the semantics of the edges (Semantic Clustering based on cross and

jumping cross edges)

The idea behind our techniques is based on identifying what is important. To this

respect, we extract this information by using the characteristics of the graph. Note

that we do not simply use the topology of the graph but we take into account the

different aspects of an edge or a node. For example, an edge can express friendship

or working relation. More specifically, in PBF framework as shown in Figure 6.6b,

we see that some edges were removed (or hidden) based on the transitivity, while also

maintaining the complete reachability information of a graph. In our case, we choose

the semantics of the graph as Point of Graph Interest (PoGI), which can be system

based or be specified by the user. Let us focus again on the PBF framework which

will be used as a baseline. In this scenario we understand that both of the strategies

are based on the same semantic information which in our case is reachability (or

transitivity). More specifically the aforementioned strategies are detailed as follows:

1. Semantic Summaries based on neighborhoods. We use the topology of the

produced drawing Γ in order to detect/extract summaries using the relative distance

of nodes in the same path. Towards that direction, we introduce the following rule:

“All sequential nodes in the same path can create a new summary”. The idea behind
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this is simple and can be justified by the fact that such nodes naturally create a group

(summary) since they belong to the same neighborhood. The produced summary

will replace the original nodes, thus it can be also called a semantic supernode. The

supernode will include all the nodes and will be placed in the original Cartesian

position of the highest node (in topological order), which contains a cross edge. Any

previous cross edges will be placed in the new position of the supernode. Algorithm 12,

Define_topology_neighborhoods, describes this technique, as shown in Figure 6.8.

Algorithm 12 Define_topology_neighborhoods
Input: A path decomposition Sp = (P1,...,Pk) of a DAG G; a path based hierarchical
drawing Γo according to Variant 0
Output: A path based hierarchical drawing Γs according to Summaries.

//Defining the summaries
For any vertex v drawn in Γo:
Let Pi be the path of v and X(v) , Y(v) its x, y-coordinates respectively
For every vertex u, v ∈ V belonging to the decomposition path Pi

a: If Y(u) – Y(v) < 1: add u,v to same summary

b: Else: create new summary

//Create the position of the summaries
For each summary Sn in S:
For every vertex v in Sn

Let X(Sn), Y(Sn) be the x, y-coordinates of summary Sn

a: If X(Sn), Y(Sn) are undefined: X(Sn)=X(v0), Y(Sn)=Y(v0), v0 is the first
vertex in Sn

b: Else: v has cross edge: Y(Sn)=Y(v)

113



(a) (b)

Figure 6.8: In (a) we show the drawing Γ based on G and the summaries based on
neighborhoods technique marked as blue circles. In (b) we show the final drawing
based on computed summaries.
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2. Semantic Clustering based on reachability. Based on the concepts of

Variants 2 and 3 we use the reachability criterion and transitivity as semantics, in

order to introduce the new abstraction strategy. In this strategy we can distinguish

two different techniques:

a: One for edges with common source.

b: One for edges with common target nodes as implied by the corresponding vari-

ants.

Let us focus on case (a). We introduce the following rule: “All sequential nodes in

the same path that share common source node can create a new cluster”. Similar to

previous abstraction techniques, the idea is to create clusters that semantically group

nodes that belong to the same semantic neighborhood, which in our case is expressed

by the transitivity. In the simplest scenario, the cluster will distinguish the original

nodes, thus it can be also called a semantic cluster. This will include all the nodes

and mark them accordingly based on the cluster they belong, revealing their source

node. Figure 6.9a shows an example where we have 3 different semantic clusters based

on this technique. Technique b, can be defined in a similar manner by taking into

account the edges with common target nodes, as shown in Figure 6.9b. Moreover, we

can also apply both of these two techniques, as shown in Figure 6.9c, where we see

that nodes may exist in more than one cluster.

Choosing the correct cluster is completely depended on the Point of Graph Interest

(PoGI) and can extract different information upon request, using the same input

graph. For example different semantic strategies or techniques, can give different

semantic clusters. In more advanced scenarios, we can also define a different semantic

rule than transitivity for graphs with edges that contain this information. The idea

behind this, has a vast of application domains such as fraud detection and exploitation

of hidden information. It also worth mentioning that the semantic clusters can reveal

hidden information, as shown in Figure 6.9b. For example nodes 23 and 28 may have
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(a) (b) (c)

Figure 6.9: The 3 different semantic clusters as computed by the semantic techniques
of rule 1. In (a) we show the semantic clusters over drawing Γ as computed by the
semantic technique (a), in b as computed by the semantic technique (a), while in c
as computed by the semantic technique (a) and (b).
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(a) (b)

Figure 6.10: Grouping of consecutive nodes into a super node.

some underlying connection although this is not clear by investigating the first figure.

This indeed is valid since both nodes are target nodes and their semantic clusters

based on technique b contain overlapping nodes.

6.3.3 Experimental analysis

Semantic Summaries based on neighborhoods (Topology neighborhoods)

In order to apply our strategy, first we need to introduce a way to display them

according to our use case. In this scenario we introduce the notion of super nodes. A

super node, contains all the consecutive nodes that might appear in each path, plus

it has twice the size of the regular node. Super node’s label demonstrates the nodes

within the summary. For instance, in the Figure 6.10, the super node contains the

nodes 3 and 6. Additionally, Super node’s coordinates are calculated based on the

last node that has a cross or jumping cross edge, as described previously.

In the first step of the pseudo code (Algorithm 13), Topology Neighborhoods are

defined. The algorithm iterates through the nodes of the graph and searches for

nodes that belong in the same path. If these nodes are consecutive then we add them

in the same summary, if not, we create a new summary for each node.
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Algorithm 13 Finding Topology Neighborhoods
Input a path decomposition Sp = (P1,...,Pk) of a DAG G; a path based hierar-

chical drawing Γ0 according to Variant 0
Output a path based hierarchical drawing Γs according to Semantic Abstraction

technique

// 1.Define Neighborhoods
for every Path P in G do

for each pair (u,v) of vertices in P do
Let (X(v),Y(v)),(X(u),Y(u)) be the x-y coordinates of vertices v,u respec-

tively
if |Y (v)− Y (u)| == 1 then

Add u,v in the same neighborhood
if u have a cross edge and Y(u) > Y(v) then

Update Summary y-coordinate
else

Create new Summary

// 2. Fix edges and bends
for each edge e=(u,v) in Γ0 do

Let Su, Sv be the Topology Summaries of u,v respectively
Add in S ′

us targets the Summary Sv

Add in S ′
vs sources the Summary Su

if X(Su) ̸= X(Sv) then
Add a bend since this is a crossing edge

else if |Y (Sv)− Y (Su)| > 1 & there are internal Summaries then
Add two bends since this is a path transitive edge

In the second path of the pseudo code we fix the position of the edges. Based on

that, we add bends so there is no overlap between nodes and edges. This is done in a

similar manner to the original algorithm, by checking the highest node in topological

order that a cross edge.

Semantic Clustering based on reachability

This strategy is based on cross and jumping cross edges. More specifically, a semantic

cluster contains two nodes that exist in the same path and have a common cluster or

target. For simplicity, let us refer to these nodes as boundaries, as they indeed define

an area since they contain the first and last node of the cluster. We also refer to the
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(a) Cluster defined by common source. (b) Cluster defined by common target.

Figure 6.11: Various examples of semantic clusters.

common source/target as the core node of the semantic cluster. A semantic cluster

also contains the internal nodes of these boundaries. For instance, Figure 6.11a,

shows an example where nodes 3, 6 and 9 create a semantic cluster because nodes 3

and 9 (boundaries) are connected with node 12 (common source). Similar to that,

Figure 6.11b shows an example where nodes 3, 6 and 9 create a semantic cluster since

nodes 3 and 9 reach node 12. In both examples, the core node of both Semantic

Clusters is node 12.

By taking into account the intercluster nodes defined by the semantic clusters, we

define the Semantic cluster Channel. More specifically, a Semantic Cluster Channel

is an ordered list containing all the Semantic clusters existing in a path. The clusters

are sorted based on the Y-coordinate of their first node. Semantic Cluster Channels

are very important in finding overlapping clusters mentioned below.
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Summaries Color

0 Gray (default)

1 Green

2-3 Red

4-5 Brown

6-7 Yellow

8-9 Orange

10-11 Blue

12+ Purple

Table 6.2: Various colors assigned to nodes based on the number of Clusters.

Algorithm 14 Find Semantic Clusters
Input a path hierarchical drawing Γ0 according to Variant 0, a DAG G
Output a path based hierarchical drawing Γs according to Semantic Clusters

// Defining Semantic Clusters
for every vertex u in G do

Let S be a Map < K, V > where K is the x-coordinates of nodes that reach to
u (sources) and V is a Semantic Cluster containing all those nodes

Let T be a Map < K, V > where K is the x-coordinates of nodes that u points
to (targets) and V is a Semantic Cluster containing all those nodes

for every vertex s that reaches to u (source) do
Add s in Cluster S[X(s)]

for every vertex t that u points to (target) do
Add t in Cluster T [X(t)]

for every Cluster sum in S,T do
if sum contains more than one nodes then

Find internal nodes between sum.FirstNode and sum.LastNode
Add this sum to the Semantic Path

In our case, nodes that belong to a semantic Cluster are represented with a different

colour. The colour is assigned based on the number of semantic Clusters, each

node belongs to. In more details, Table 6.2 below, shows the various colors as a

factor of the node and the number of Clusters it belongs.
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Figure 6.12: An example of two overlapping semantic clusters.

Overlapping Clusters

Overlapping Clusters are the pairs of semantic Clusters that have common nodes.

For instance, Figure 6.12 demonstrates two overlapping semantic Clusters. Cluster1

with nodes 3, 6, 9 and 2 and Cluster2 with nodes 6, 9, 2, 4 and 0. These two Clusters

are overlapping since they have three common nodes, nodes 6, 9 and 2.

We also filter out Semantic Clusters using a threshold. The algorithm loops through

all of the Semantic Clusters and finds all of the colliding cluster for each Semantic

Cluster. Moreover, the algorithm introduces two options on how to filter the outcome.

The first option (relaxed search) prints the pairs of Semantic Clusters that at least one

of them satisfies the given threshold. The second option, (rigorous search) searches

for pairs of Semantic Clusters that both satisfy the threshold given by the user. The

complete pseudocode is described in Algorithm 15.

Overlapping Clusters can reveal some underlying connection between nodes, we

refer to this connection as “hidden connection” . Two core nodes form a hidden

connection, based on two criteria:

• The nodes are not connected.

• The corresponding Semantic Clusters satisfy the threshold based on the search

(relaxed / rigorous).
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Algorithm 15 Find Overlapping Clusters
Input a path hierarchical drawing Γs with the Semantic Clusters, a threshold

percentage, a boolean value denoting if the algorithm should search for rigorous con-
nections or not

Output Pair of clusters that satisfy the overlapping threshold

for every Semantic Cluster C do
Let P be the Semantic Path of C
for every other Semantic Cluster T in P do

if C.LastNode doesn’t collide with T.firstNode then
move C to the next Cluster in P.

else
Let Ce ←the Cluster that has min(Y (C.LastNode), Y (T.LastNode))
Find common nodes starting from T.FirstNode and ending at

Ce.LastNode
if Common nodes between C & T satisfy the overlapping threshold then

Use DFS with Priority Queue to check if the core nodes form a hidden
connection.

A priority queue is used in a DFS implementation to determine whether two nodes

are connected directly or indirectly. An example of hidden connection is demonstrated

in Figure 6.13, where nodes 16 and 9 form a hidden connection as Target nodes in two

semantic clusters containing the nodes <6,4,2>. Because the two semantic clusters

in the example below are identical, they satisfy any threshold given by the user.

Threshold

In our experiments we elaborated on various threshold values. More specifically,

Figure 6.14a, shows the influence threshold as it applies to a graph that is 6 percent

complete, whereas Figure 6.14b shows the influence threshold as it applies to a denser

graph that is 24 percent complete. As the threshold rises, we observe that, the number

of hidden connections gradually decreases in both figures.
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Figure 6.13: An example of hidden information detected by our algorithm.

Results Comparison

In this subsection we provide insights about the reduction of nodes and edges based

on our techniques over 9 different graphs. The randomly generated graphs were con-

structed by our graph generator on a predefined number of 60 paths, using 3 different

number of nodes (7000, 10000 and 15000) and a number of edges based on various

percentages of completeness as shown below. The results show that for a threshold

value of 8%, our technique achieves an average nodes reduction of approximately 48%.

On the other hand, the edge reduction is not so promising since the percentage of

reduction is less than 6%. Nevertheless, this is an expected behaviour since we do

not provide any improvement as regards the edge abstraction based on our proposed

techniques. Tables 6.3 and 6.4 show the overall results with respect to percentage

of completeness (POC), number of hidden connections, number of semantic clusters

created in the graph and the number of semantic pairs compared in order to find

hidden connections. More specifically, Table 6.3 highlights the hidden connections

with respect to semantic clusters, whereas Tables 6.4 shows the nodes and edges

reductions.
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(a)

(b)

Figure 6.14: Number of Hidden Connections to Threshold factor based on different
Percentage of Completeness (P.o.C.).
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Graph Threshold nodes P.o.C hidden_-
connec-
tions

semantic_-
clusters

semantic_-
pairs

graph1 0.6 7001 0.01 86511 46517 7778216

graph2 0.6 7001 0.005 6777 10523 377602

graph3 0.6 7001 0.0025 519 2440 19457

graph4 0.6 10001 0.01 307843 112006 36733762

graph5 0.6 10001 0.005 22387 25496 1653174

graph6 0.6 10001 0.0025 1744 5668 80067

graph7 0.6 15001 0.01 1294838 305219 215450169

graph8 0.6 15001 0.005 82930 66125 8356360

graph9 0.6 15001 0.0025 6834 15192 415393

Table 6.3: Results (hidden information) over 9 graphs for a specific threshold.

Graph Threshold nodes_-
before

nodes_-
after

nodes_-
perc

edges_-
before

edges_-
after

edges_-
perc

graph1 0.6 7001 4080 41.72261 243710 237917 2.3770056

graph2 0.6 7001 3433 50.964146 122179 118457 3.04635

graph3 0.6 7001 2642 62.262535 61162 57712 5.6407576

graph4 0.6 10001 5975 40.255974 497388 486192 2.250959

graph5 0.6 10001 5111 48.89511 249363 243274 2.4418218

graph6 0.6 10001 4138 58.624138 124814 119943 3.902607

graph7 0.6 15001 9393 37.384174 1119276 1098947 1.8162634

graph8 0.6 15001 8212 45.256985 561007 550880 1.8051468

graph9 0.6 15001 6700 55.336308 280869 273451 2.641089

Table 6.4: Results (nodes-edges reduction) over 9 graphs for a specific threshold.
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Discussion: In this chapter, we present and address various challenges toward to

direction of graph analysis with respect to graph visualization. We introduced the

notion of Context-Aware Graph as a semantically enhanced representation of the

original graph. To this respect, we described the technique of context-aware sum-

marization, which uses the context of the graph. Additionally, we efficiently used

the context of the graph to reveal hidden information and discover communities and

patterns underneath the original (graph) network, on top of PBF . The experimental

results, show that our methods can achieve a node reduction of 48%. Although the

results show that this technique offers an interesting approach toward the direction

of node reduction an open problem is to investigate what is the trade-off in terms

of losing information. Moreover, our approach can be used as a pre-processing step,

prior to running any visualization or rendering algorithm, since it exploits the coordi-

nates of the graph to reduce the visual complexity. On the other hand, as expected a

reduction in the visual complexity of the graph, implies that information is lost from

the original graph. For example, if a super node is created, there is no direct way to

distinguish the original source node of an (incoming or outgoing) edge, that belongs

to this super node, without expanding it.
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Chapter 7

Conclusion

7.1 Synopsis of Contributions

In this thesis, we focused on proposing advanced techniques and algorithms for cover-

ing the needs of visualizing and analyzing directed graphs. In particular, the objective

was to design, apply and evaluate a suite of new layout techniques over DAGs using

efficient algorithms in order to reduce the visual complexity of the graph drawings.

Moreover we retained the mental map of the user and improved the clarity of the

produced drawings. The above include the following milestones:

We proposed new techniques for finding a minimum Feedback Arc Set (FAS). More

specifically, we presented a new heuristic algorithm for computing a minimum FAS in

directed graphs. The new technique produces solutions that are better than the ones

produced by the best previously known heuristics, reducing the FAS size by more

than 50% in some cases. It is based on computing the PageRank score of the nodes

of the directed line graph of the input directed graph. Although the time required

by our heuristic is heavily influenced by the size of the produced line graph, our

experimental results show that it runs very fast even for very large graphs used in

graph drawing.

For visualizing such graphs, we presented a detailed general-purpose hierarchical

graph drawing framework that is based on the Path Based Framework (PBF). Ex-

tensive edge bundling is applied to draw all edges of the graph and the height of the
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drawing is minimized using compaction. The drawings produced by this framework

are compared to drawings produced by the well known Sugiyama framework in terms

of area, number of bends, number of crossings, and execution time. The new algo-

rithm runs very fast and produces drawings that are readable and efficient. Since

there are advantages (and disadvantages) to both frameworks, we performed a user

study and the results show that the drawings produced by the new framework are well

received in terms of clarity, readability, and usability. Hence, the new technique offers

an interesting alternative to drawing hierarchical graphs, and is especially useful in

applications where user defined paths are important and need to be highlighted.

To further extend the previous model, we presented a set of variant algorithms

(suite of algorithms) over PBF . This approach, attempts to draw DAGs hierarchi-

cally with few bends and crossings, and by abstracting edges in order to improve

the clarity of the drawings while reducing substantially the amount of “ink” required.

Additionally, our algorithms have direct applications to the important problem of

showing and storing transitivity information of very large graphs and databases. Only

a subset of the edges is drawn, thus reducing the visual complexity of the resulting

drawing, and the memory requirements for storing the transitivity information. Our

algorithms require almost linear time, O(kn + m), where k is the number of path-

s/channels, n and m is the number of vertices and edges, respectively. They produce

progressively more abstract drawings of the input graph.

Concerning the problem of answering reachability queries in directed acyclic graphs,

we presented efficient algorithms to construct and search a space efficient data struc-

ture in the k-dimensional space that is based on Graph Dominance Drawing. Our

algorithms construct this data structure in O(km) time, while it can be stored in

O(kn) space. Any reachability query is answered in constant time, since no “falsely

implied paths (fips)” are introduced. We also presented experimental results that

show that the number of dimensions, k, in the solutions produced by our techniques

is low. Additionally, we presented a new model of random DAGs with a prespecified
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number of paths and density. The analysis of our experimental results revealed an

interesting interplay between density and structure.

Finally, we introduced sophisticated methods for grouping nodes with similar fea-

tures that naturally decompose the graph into summaries and clusters. This technique

is based on the information derived by the edges of the graph and can be used as a

visualization aid. We applied this technique on top of the Path Based Framework and

efficiently used the context of the graph to reveal hidden information and discover

communities and hidden patterns underneath the original graph (network).

7.2 Directions for Future Work and Research

There are several aspects that are worth further work and research. In abstract, these

are the following:

Computing a Feedback Arc Set Using PageRank

Since it is NP-hard to compute the minimum FAS the optimum solution for the

webgraphs used in our experiments is unknown. Hence, we do not know how close

our solutions are to the optimum. It would be interesting to investigate techniques

to speedup PageRankFAS in order to make it more applicable to larger webgraphs.

Adventures in Abstraction: Reachability in Hierarchical Drawings

Our study assumes that the path decomposition is given as part of the input, or a

minimum size decomposition is computed by one of the known algorithms. However,

it is interesting to study the problem of computing a path decomposition and place-

ment of the paths of G which implies the minimum number of cross edges in our

drawings. The use of such a decomposition and placement would considerably reduce

the number of edges drawn, bends, and crossings in our drawings. Similarly, explor-

ing the possibility to compute a path decomposition and placement of the paths of

G which implies the minimum number of jumping cross edges in our drawings seems
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interesting. Finally, with respect to the user evaluation performed, it would be in-

teresting to conduct an in-lab user study with both experts and users in a more

controlled manner.

Reachability queries in directed acyclic graphs (DAGs)

An interesting open problem is to elaborate on approaches that further reduce the

number of required dimensions. Since these techniques have significant applications

in very large graphs, like in large databases, it is important to investigate this problem

when the graph changes dynamically, i.e, insertions of new edges/nodes, deletions,

etc. New techniques need to be developed specifically designed for dynamic graphs

since the cost of recomputing the data structures every time after an update will

be prohibitive. For example, it seems that the insertion of a single edge does not

alter the structure of the graph significantly, unless of course it causes a cycle. With

respect to our proposed graph model for DAGs, it would be interesting to further

analyse its behaviour in terms of density and structure and how this can be applied

to specific use cases in order to validate its performance and provide insights about

its usefulness in real world scenarios.

Graph abstraction techniques for visualizing DAGs based on the Context-
Aware Graph

The goal of this work, was not to present a complete formalization of graph anal-

ysis techniques but how this can combined with visualization. To this respect, we

introduce a framework and highlight the key questions that need to be answered in

order to to investigate how graph abstraction can be used as a visualization aid. As

expected, edge or node abstraction has a significant reduction in the visual complex-

ity of the graph, since we group nodes and we reduce the edges. However, by doing

this, a lot of information is lost from the original graph. The root cause for this

ambiguity is that we get a simplified graph, which is a dimensionally reduced view

of the original graph. Therefore, it may be important to define a level of abstraction
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which can be user defined e.g., a percentage of abstraction, or application specific.

Moreover, as further future work it would be interesting to elaborate and evaluate

on real world use cases and scenarios toward to the direction of pattern recognition

and hidden information. Based on the analysis of our techniques we believe that the

open questions that arise, imply lots of interesting research problems that will have

significant practical relevance.
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Appendix Acronyms

DAG Directed Acyclic Graph

FAS Feedback Arc Set

PBF Path Based Hierarchical Drawing Framework

PB-Draw Path Based - Draw

OGDF Open Graph Drawing Framework

PERT Program Evaluation Review Technique

FIP Falsely Implied Paths

ER Erdős-Rényi

WS Watts-Strogatz

BA Barabasi-Albert

HINs Heterogeneous Information Networks

POC Percentage of Completeness

POGI Point Of Graph Interest
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