
Concurrent lock-free binary search tree

implementations with range query support

Elias Papavasileiou

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Panagiota Fatourou

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

Concurrent lock-free binary search tree implementations with range
query support

Thesis submitted by
Elias Papavasileiou

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Elias Papavasileiou

Committee approvals:
Panagiota Fatourou
Associate Professor, Thesis Supervisor

Evangelos Markatos
Professor, Committee Member

Kostas Magoutis
Associate Professor, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, July 2019

Concurrent lock-free binary search tree
implementations with range query support

Abstract

In this thesis, we study concurrent binary search tree implementations that sup-
port range queries. Specifically, we present BPNB-BST1, the first algorithm that
supports wait-free range-queries in addition to lock-free Insert, Delete and Find,
and has comparable performance to other state-of-the-art algorithms. Moreover,
previous implementations provide the weaker progress guarantees of lock-freedom
or obstruction freedom for range queries, whereas BPNB-BST guarantees wait-
freedom. The distinction between lock-freedom and wait-freedom is important for
time consuming operations such as range queries, because without strong progress
guarantees such operations may starve.

BPNB-BST is linearizable, uses single-word compare-and-swap operations, and
tolerates any number of crash failures. Additionally, in BPNB-BST: (1) update
operations work in an independent way interfering with one another only if they
work on the same neighborhood of the tree, (2) the helping mechanism employed
by the algorithm to guarantee its strong progress guarantees is lightweight, and
(3) the algorithm works in a dynamic environment where threads may dynamically
join or leave the system.

We have performed a detailed experimental analysis which shows that BPNB-
BST scales best with range query size, compared to other state-of-the-art im-
plementations. Our experimental analysis reveals the performance properties of
BPNB-BST, as well as interesting trade-offs between the different algorithms. Our
experiments have heavily driven the optimizations we applied to our algorithm to
make it exhibit such a good performance.

1P. Fatourou, E. Papavasileiou and E. Ruppert. Persistent non-blocking binary search
trees supporting wait-free range queries. In the 31st ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’19). ACM, New York, NY, USA, pages 275-286,
https://doi.org/10.1145/3323165.3323197, 2019.

Ταυτόχρονα Προσπελάσιμες Υλοποιήσεις

Δυαδικών Δένδρων Αναζήτησης που υποστηρίζουν

Επερωτήσεις Εύρους Τιμών

Περίληψη

Σε αυτή την εργασία, μελετάμε ταυτόχρονα προσπελάσιμες υλοποιήσεις δυαδικών

δένδρων αναζήτησης που υποστηρίζουν επερωτήσεις εύρους τιμών. Συγκεκριμένα,

παρουσιάζουμε τον BPNB-BST1, τον πρώτο αλγόριθμο που παρέχει επερωτήσεις εύ-
ρους τιμών εξασφαλίζοντας την ισχυρή ιδιότητα προόδου Ελευθερία Αναμονής (wait-
freedom) και έχει συγκρίσιμη απόδοση με εκείνη άλλων αλγορίθμων αιχμής, οι οποίοι
όμως παρέχουν ασθενέστερες εγγυήσεις προόδου. Συγκεκριμένα, προηγούμενες υ-

λοποιήσεις εγγυώνται μόνο την ιδιότητα Ελευθερία Κλειδωμάτων (ή και ακόμη πιο

ασθενείς ιδιότητες προόδου) κατά την απάντηση επερωτήσεων εύρους τιμών. Αντίθε-

τα, ο BPNB-BST εγγυάται την ισχυρότερη ιδιότητα προόδου Ελευθερία Αναμονής.
Η διάκριση μεταξύ των ιδιοτήτων αυτών είναι σημαντική σε περιβάλλοντα που υπο-

στηρίζουν χρονοβόρες λειτουργίες, όπως οι επερωτήσεις εύρους τιμών, καθώς χωρίς

ισχυρές εγγυήσεις προόδου, ο τερματισμός τέτοιων λειτουργιών μπορεί να καθυστερεί

επ΄ άπειρον.

Ο BPNB-BST είναι σειριοποιήσιμος, χρησιμοποιεί εντολές compare-and-swap
που παρέχονται από το υλικό και είναι ανθεκτικός σε οποιοδήποτε αριθμό από α-

ποτυχίες. Επιπλέον, στον BPNB-BST: (1) οι λειτουργίες ενημέρωσης εκτελούνται
ανεξάρτητα, αλληλεπιδρώντας μεταξύ τους μόνο αν προσβούν την ίδια γειτονιά του

δένδρου, (2) ο μηχανισμός βοήθειας που χρησιμοποιείται από τον αλγόριθμο για να

διασφαλίσει τις ισχυρές εγγυήσεις προόδου που εγγυάται είναι ελαφρύς και (3) ο αλγό-

ριθμος λειτουργεί σε ένα δυναμικό περιβάλλον όπου τα νήματα μπορούν να εισέρχονται

ή να εγκαταλείπουν το σύστημα ανά πάσα χρονική στιγμή.

Εχουμε πραγματοποιήσει μια λεπτομερή πειραματική ανάλυση που δείχνει ότι ο

BPNB-BST έχει καλύτερη δυνατότητα κλιμάκωσης με το μέγεθος της επερώτησης
εύρους τιμών, συγκριτικά με τους τρέχοντες αλγόριθμους αιχμής. Η πειραματική μας

ανάλυση φέρνει στην επιφάνεια τις ιδιότητες (και τις σχεδιαστικές αποφάσεις) που

παίζουν καθοριστικό ρόλο στην απόδοση του BPNB-BST, καθώς και ενδιαφέροντα
trade-offs μεταξύ των διάφορων αλγορίθμων. Τα πειράματά μας οδήγησαν σε μεγάλο
βαθμό τις βελτιστοποιήσεις που εφαρμόσαμε στον αλγόριθμο για να έχει τόσο καλή

απόδοση.

1P. Fatourou, E. Papavasileiou and E. Ruppert. Persistent non-blocking binary search
trees supporting wait-free range queries. In the 31st ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’19). ACM, New York, NY, USA, pages 275-286,
https://doi.org/10.1145/3323165.3323197, 2019.

στους γονείς μου

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Motivation . 1

1.2 Our Contribution . 2

1.3 Related Work . 3

1.4 Roadmap . 5

2 Model 7

2.1 Tree Data Structures . 7

2.2 Shared Memory Systems . 8

3 The NB-BST Algorithm 13

3.1 Introduction . 13

3.2 Algorithmic Overview . 15

3.3 Data Structures & Initialization . 18

3.4 Pseudocode . 19

3.5 Documentation . 22

3.6 Example . 23

3.7 Garbage Collection . 24

3.8 Linearization Points . 24

4 The PNB-BST Algorithm 25

4.1 Introduction . 25

4.2 Overview . 27

4.2.1 Sequence numbers . 27

4.2.2 Flagging, Helping and Validation scheme 29

4.3 Data Structures, Initialization and Pseudocode 31

4.4 Documentation . 35

4.5 Linearization points . 37

i

5 The LFCA Algorithm 39
5.1 Introduction . 39
5.2 Overview . 42
5.3 Initialization & Pseudocode . 43
5.4 Detailed description of routines . 47

5.4.1 Update operations . 47
5.4.2 Range Queries . 47
5.4.3 Splits & Joins . 49
5.4.4 Auxilliary Functions . 52

5.5 Linearization points . 53

6 The BPNB-BST Algorithm 55
6.1 Introduction . 55
6.2 Overview . 55
6.3 Pseudocode . 57

7 Experimental Analysis 63
7.1 Methodology . 63
7.2 Experimental Evaluation . 65

7.2.1 NB-BST and PNB-BST . 66
7.2.2 PNB-BST optimizations . 69
7.2.3 LFCA tree and key batching 71
7.2.4 BPNB-BST . 72

7.3 Performance Comparison . 73
7.4 Conclusions . 80

Bibliography 83

ii

List of Tables

1.1 Progress properties of different algorithms. 5

3.1 Linearization points of BST operations. 24

4.1 Linearization points of PNB-BST operations. 37

5.1 Linearization points of LFCA tree operations. 53

iii

iv

List of Figures

3.1 Insert() operation. 14

3.2 Delete() operation. 15

3.3 Conflicting Delete() operations. 16

3.4 Conflicting Insert() and Delete() operations. 16

3.5 The effects of successful CAS operations. 18

3.6 Trees showing leaves with dummy keys when the dictionary is (a)
empty and (b) non-empty. 18

3.7 Type definitions and initialization. 19

3.8 Pseudocode for Find, Insert and helper routines. 20

3.9 Pseudocode for Delete and helper routines. 21

3.10 A Delete(12) and an Insert(30) are in progress. 23

4.1 Insert() operation. 27

4.2 Delete() operation. 27

4.3 Types and States that a node can be in. 30

4.4 Data structures and initialization. 31

4.5 Pseudocode for Find and helper routines. 32

4.6 Pseudocode for RangeScan and helper routines. 33

4.7 Pseudocode for Insert and Delete. 34

5.1 The LFCA tree. Route nodes are depicted as round boxes, base
nodes as squared boxes and leaf containers as triangles. 40

5.2 The effect of an Insert() operation. 40

5.3 The effect of a split operation. 41

5.4 The effect of a join operation. 41

5.5 Data structures, helper routines and public interface 44

5.6 Range query, Split and Join . 45

5.7 Auxiliary code for the LFCA tree. 46

5.8 First phase of a join. 50

5.9 Second phase of a join. 50

6.1 Insert() in a non-full leaf. 56

6.2 Insert() in a full leaf. 56

6.3 Delete() of a non-last key of a leaf. 57

v

6.4 Delete() of the last key of a leaf. 57

7.1 Performance of updates in NB-BST and PNB-BST. 66
7.2 Performance of Finds in NB-BST and PNB-BST. 67
7.3 Finds in PNB-BST. 67
7.4 Finds in PNB-BST after the removal of validations. 68
7.5 Finds in different versions of PNB-BST. 69
7.6 Finds in optimized PNB-BST. 71
7.7 Finds in LFCA tree. 72
7.8 Finds in LFCA tree, for different batching degrees. 73
7.9 Performance of RangeQueries in LFCA tree, for different batching

degrees. 74
7.10 Finds in BPNB-BST for a batching degree of 64. 75
7.11 Total throughput without RangeQueries in big trees 76
7.12 Total throughput without RangeQueries in small trees 76
7.13 RangeQuery Overhead in PNB-BST 77
7.14 RangeQuery Overhead in LFCA tree 77
7.15 RangeQuery Overhead in BPNB-BST 64 78
7.16 Total throughput with RangeQueries - high RQ percentage 78
7.17 Total throughput with RangeQueries - low RQ percentage 79
7.18 Throughput of (a) Updaters and (b) RangeQuerers 80

vi

Chapter 1

Introduction

1.1 Motivation

Multicore hardware architectures are now the norm among general and special
purpose computing machines. By exploiting the processing power of many cores,
concurrent data structures offer much higher performance than the corresponding
sequential ones. In particular, non-blocking concurrent data structures are desir-
able primarily for their strong progress guarantees and fault-tolerant behavior. In a
lock-free implementation, the system makes progress as a whole despite any thread
delays or crashes. In a wait-free implementation, every operation makes progress
as long as it takes steps. The linearizability of an implementation is a desired
property as well, to ensure the consistency of supported operations. In a lineariz-
able implementation, every concurrent execution it produces can be mapped to a
sequential one, in which the responses of the operations are the same as in the
concurrent execution; moreover, the sequential execution respects the real-time
ordering of the operations.

The dawn of big data era has motivated the development of concurrent data
structures that support extended functionality. Modern big data processing en-
gines utilize huge in-memory key-value stores. Applications built on top of these
engines demand fast updates and large scale analytics to be performed efficiently
and concurrently. Usually, a global or a partial view of the available data is re-
quired, in order to perform calculations and advanced operations based on that
view. This is usually achieved with iterators, which return a snapshot of the avail-
able data contained in a key-value store. Range queries are a generalization of
iterators that can return a partial (or global) view of the data structure. A Range-
Query(x,y) returns all keys of the data structure in the range [x,y]. Besides the
standard Insert, Delete and Lookup operations, concurrent data structures with
support for efficient RangeQuery operations provide simultaneous collection and
processing of data. This way they have the potential to support a broad range of
applications, ranging from data streams, to databases and big data analytics.

However, the design and implementation of efficient non-blocking concurrent

1

2 CHAPTER 1. INTRODUCTION

data structures is one of the most challenging topics of the area. One source
of this arising difficulty is the concurrent environment the implementations are
made to run in. As many threads may simultaneously try to access and/or update
the same shared variables, correctness of the implementation has to be ensured.
Moreover, strong progress properties such as lock-freedom or even more, wait-
freedom, usually come with a non-negligible performance cost.

The support of efficient advanced operations such as range queries, executed
in a concurrent manner with updates, constitutes an additional challenge. Large
scale range queries usually have to operate on a big portion of the data structure,
interfering with update operations. This may cause a significant slowdown to the
updates. Therefore, one must come up with a clever synchronization mechanism
between threads to provide good performance for all supported operations.

1.2 Our Contribution

In this thesis, we study concurrent binary search tree implementations that sup-
port range queries. Specifically, we present BPNB-BST [7], the first algorithm
that supports wait-free range-queries and Finds in addition to lock-free Insert and
Delete operations, and has comparable performance to other state-of-the-art al-
gorithms. In BPNB-BST, a lighter, lock-free version of Finds is provided as well.
Moreover, previous implementations provide the weaker progress guarantees of
lock-freedom or obstruction freedom for range queries, whereas BPNB-BST guar-
antees wait-freedom. The distinction between lock-freedom and wait-freedom is
important for time consuming operations such as range queries, because with-
out strong progress guarantees such operations may starve (i.e., they may never
terminate, as their progress might be hindered by other operations).

BPNB-BST builds upon NB-BST, and inherits some interesting properties
from it: It is linearizable, uses single-word compare-and-swap operations, and
tolerates any number of crash failures. Additionally, in BPNB-BST: (1) update
operations work in an independent way interfering with one another only if they
work on the same neighborhood of the tree, (2) the helping mechanism employed
by the algorithm to guarantee its strong progress guarantees is lightweight, and
(3) the algorithm works in a dynamic environment where threads may dynamically
join or leave the system. Persistence in the case of BPNB-BST means that deleted
nodes, instead of being physically removed from the tree, are marked and retained
in the data structure. This way, a range query might visit deleted nodes if this is
needed to complete its work. In addition, there is a global shared integer variable,
called Counter, which is used to assign version numbers to nodes. In this way,
efficient and concurrent support of range queries is achieved.

We have experimentally compared BPNB-BST to other state-of-the-art imple-
mentations with weaker progress guarantees, and showed that BPNB-BST scales
best with range query size. Our experiments have heavily driven the optimiza-
tions we applied to our algorithm to make it exhibit such a good performance.

1.3. RELATED WORK 3

In particular, the application of batching in the leaves of the tree results in range
query operations that are 10x faster than the non-batched version (which is called
PNB-BST). With this experimental analysis, we also reveal the trade-offs that ex-
ist among different design decisions, exploring the scenarios where each algorithm
performs better or worse, and providing explanations for the evaluation results.

1.3 Related Work

The Non-Blocking Binary Search Tree (NB-BST) [4] is the concurrent data
structure on top of which BPNB-BST was built, to provide range queries. NB-BST
was the first complete, non-blocking, linearizable binary search tree implementa-
tion that uses only single-word compare-and-swap (CAS) operations. NB-BST is a
leaf-oriented binary search tree, which means that keys are stored only in the leaf
nodes. This makes Deletes much easier to implement in a concurrent environment,
because only a small neighborhood of the leaf to be deleted has to be modified.
Therefore, threads that operate in different parts of the tree do not interfere with
each other. Threads that operate on the same part of the tree synchronize by
using flags, helping other threads before they make progress on their own. This
way the non-blocking property of NB-BST is achieved.

The Lock Free Contention Adapting Search Tree (LFCA tree) [10] is a non-
blocking, linearizable key-value store with lock-free range query support. Like
NB-BST, it is leaf-oriented, but each leaf (called a base node), instead of storing
a single key, stores a pointer to an immutable treap [11] and each leaf of a treap
contains a sorted batch of keys. Moreover, LFCA tree splits and joins base nodes
taking into account the encountered contention on them and the performance of
range queries, a procedure that is called adaptation. Our experimental analysis
shows that LFCA tree is outperformed by PNB-BST and BPNB-BST for medium
and large range query sizes. This is because of the heavy helping mechanism that
LFCA tree employs: updates are forced to help range queries to complete, and
thus, the bigger the range query size, the more expensive helping becomes. This
results to a significant performance penalty for LFCA tree. As for the performance
of Insert, Delete and Find operations, we show that PNB-BST and BPNB-BST
have similar performance with LFCA tree despite the extra cost for supporting
wait-free range queries.

KIWI [14] is a non-blocking, linearizable key-value store designed with the pur-
pose of supporting range queries concurrently with updates. Keys are stored in
partially sorted arrays, and every array is stored inside a chunk data structure.
These chunks are connected into a sorted linked list, and there is an index data
structure that facilitates quick access to a particular chunk. The index is updated
in a lazy manner as this is only necessary for efficiency but not for correctness.
KIWI exhibits some common algorithmic decisions with PNB-BST, such as the
global version counter and persistence, which are implemented in a different way
in each algorithm. Nevertheless, there are a number of significant differences as

4 CHAPTER 1. INTRODUCTION

well. In KIWI, synchronization of updates and range queries is achieved by using
an array of version numbers which has size n, where n is the number of processes
in the system. However, this makes KIWI work for a known, constant number
of processes, whereas PNB-BST and BPNB-BST work even when this number is
unknown and changing over time. KIWI also employs a maintenance procedure
called rebalancing. During rebalancing, KIWI might join underutilized chunks to-
gether, split overfull chunks, and perform cleanup operations on each chunk it
processes. Updates are forced to help the rebalance procedure to complete, before
they can make progress, in order for lock-freedom to be ensured. Our experiments
show that this turns out to be expensive, as KIWI exhibits a performance degra-
dation in most cases. Furthermore, because keys are only partially sorted in each
array, there is often an additional delay for an operation to locate the key (or
keys, in case of range query) it seeks. We should also note that, while KIWI is a
custom made data structure for supporting range queries, PNB-BST showcases a
technique to support wait-free range queries on top of a BST, which is a standard,
widely-used data structure. We believe that this technique is likely to be more
generally applicable to other tree-like data structures as well. Finally, there are
claims that Find operations and range queries of KIWI are wait-free. However,
this depends on having wait-free Find operations on the index data structure used
by KIWI, and most papers that provide non-blocking implementations of index
data structures do not provide wait-free Finds.

Brown and Avni [15] presented a non-blocking, linearizable k-ary search tree
that supports obstruction-free range queries, using single-word CAS operations.
In the k-ary tree, each leaf node stores up to k-1 keys, and each internal node
has k-1 keys and k children. All nodes are immutable, so updates create new
leaves to insert or delete keys. A range query consists of two phases: the collect
phase and the validation phase. During the collect phase, a traversal of the tree is
performed that saves pointers to all leaves containing keys in the requested range.
The validation phase performs a second traversal and checks whether the collected
pointers remain the same. A tag bit is used inside each leaf, so the validation
phase can be performed optimistically to avoid traversing the tree a second time.
If the validation succeeds, this means that the collected leaves were all in the tree
at some point (i.e., they constitute a snapshot), and the range query is performed
in the collected leaves. Otherwise, the range query restarts from the first phase.
For this reason, only obstruction freedom is guaranteed for range queries, because
continuous updates to the leaves in the requested range might cause a range query
to restart forever. To ensure lock-freedom for updates, a helping scheme is used
akin to that of NB-BST.

Apart from the previously described data structures that have native support
for range queries, there are several other works that can implement range queries
by using snapshots [16] [17] [18] [21], or software transactional memory [19], [20].
However, experimental work in [10] and [14] shows that the performance of those
algorithms is inferior compared to the performance of KIWI and LFCA tree (the

1.4. ROADMAP 5

Find Insert Delete RangeQuery

NB-BST lock-free lock-free lock-free -

PNB-BST lock-free (or wait-free) lock-free lock-free wait-free

BPNB-BST lock-free (or wait-free) lock-free lock-free wait-free

LFCA tree lock-free lock-free lock-free lock-free

KIWI wait-free2 lock-free lock-free wait-free2

k-ary tree lock-free lock-free lock-free obstruction-free

Table 1.1: Progress properties of different algorithms.

same is true for the performance of the k-ary tree; its performance is inferior
compared to KIWI and LFCA tree). Moreover, global snapshots are inefficient in
the case of small range queries, because a large snapshot is constructed in order
to return just a few nodes. As for software transactional memory, besides the
baseline overhead introduced by the STM implementation, large range queries are
more likely to be inefficient because of the increasing overhead when the number
of shared-memory words covered by a transaction is big. Most notably, none of
these works support wait-free range queries.

Finally, there are other implementations that provide wait-free range queries
on non tree-like data structures [22] [23] [24] [25] or in different settings [26].

Table 1.1 summarizes the progress guarantees for each operation of the different
algorithms discussed in section 1.3.

1.4 Roadmap

Chapter 2 serves as a brief introduction to some of the most commonly used con-
currency terms, providing to the reader the necessary background to understand
the algorithms presented in later chapters. The topics discussed are the following:

• Abstract Data Types, Tree Data Structures, Binary Trees, Binary Search
Trees, Leaf-Oriented Binary Search Trees.

• Shared Memory Systems, Shared Variables, Configurations, Executions.

• Blocking, Non-Blocking, Lock-Free, and Wait-Free implementations.

• Operations, Deadlock, Livelock, and the ABA problem.

• Progress and Correctness properties of Concurrent Algorithms, Linearizabil-
ity.

Chapters 3 to 6 present the Non-Blocking Binary Search Tree (NB-BST), the
Persistent Non-Blocking Binary Search Tree (PNB-BST), the Lock Free Con-
tention Adapting Search Tree (LFCA tree) and the Batched Persistent Non-Blocking
Binary Search Tree (BPNB-BST).

2Given the assumption that there exists a wait-free tree-based set implementation.

6 CHAPTER 1. INTRODUCTION

Finally, chapter 7 presents our experimental analysis, as well as some lessons
learned, concluding the thesis.

Chapter 2

Model

This section provides to the reader the necessary background to understand the
algorithms presented in later chapters.

2.1 Tree Data Structures

Abstract Data Types An abstract data type (or ADT) is a mathematical model
for a certain class of data structures. It can define the possible values the data can
take, the possible operations that can be performed on the data and also other
features the data structure can exhibit. For example, the dictionary (or set) ADT
declares that the data structure 1) holds unique keys (meaning that duplicate
keys are not allowed) from a totally ordered universe, and 2) implements the Find,
Insert and Delete operations.

Binary Trees A Binary Tree is a connected, directed acyclic graph where each
node has 1) at most two children and 2) exactly one parent, except from a unique
node, the root node, which has no parent. Nodes that have no children are called
leaf nodes. Nodes that have one or two children are called internal nodes. In a
full binary tree, every internal node has exactly two children.

Binary Search Trees A Binary Search Tree (or BST) is a binary tree with the
following property: For every internal node nd that holds a key k, the left subtree
of nd contains nodes with keys smaller than k and the right subtree of nd contains
nodes with keys greater than or equal to k. A BST can implement the dictionary
ADT. From now on, Insert and Delete operations will be collectively called update
operations (or updates).

Leaf-Oriented Binary Search Trees A BST which implements the dictionary
ADT is called leaf-oriented (or external) when all the keys that belong to the set
represented by the tree are stored in the leaves of the tree. Internal nodes contain

7

8 CHAPTER 2. MODEL

keys that do not necessarily belong to the set and are solely used for routing,
i.e. to direct a Find operation towards the correct leaf. The primary motivation
for leaf-oriented trees is that the Delete operation is much simpler to implement,
because it processes only a small number of nodes near the leaf to be deleted. In
contrast, Delete in a classic BST needs to modify two parts of the tree, namely the
node that contains the key to be deleted and its in-order successor or predecessor,
that may be far away from each other, making the operation more difficult to
implement in concurrent environments.

2.2 Shared Memory Systems

System We consider an asynchronous shared memory system where n threads
t1, t2, ... tn are executed concurrently (in arbitrary speeds). Threads are modeled
as state machines and communicate with each other through shared variables.
Each variable has a type which specifies the values that can take, the operations
that can be executed on it, the value to be returned by each operation and the
new value of the variable resulting from each operation. A Read/Write variable
RW supports the operations:

• Read: Returns the current value of RW, leaving RW unchanged

• Write(RW,v): Writes v into RW and returns ack

Configurations In a shared memory system with n threads and m variables, a
configuration C is a vector:

C = (s1, ..., sn, v1, ..., vm)

where si is the state of thread ti, ∀i : 1 ≤ i ≤ n, and vj is the value of the shared
variable RWj , ∀j : 1 ≤ j ≤ m. A configuration describes the concurrent system
at some specific point in time. An event is a computational step by any thread.
Every computational step by a thread ti consists of the following that happen
atomically:

• ti chooses a shared variable RWj and an operation op,

• ti performs op on RWj ,

• ti’s state changes according to its previous state as well as the value returned
by op.

An execution fragment is a sequence of the form Ck, ek+1, Ck+1, ek+2, ..., where
each C is a configuration and each e is an event. After the application of ek+1 to
Ck, the only changes that happen are to the state of the thread ti that executes
the computational step of ek+1 and the value of the shared variable RWj that
ek+1 is applied to. C0 is an initial configuration where every thread has an initial

2.2. SHARED MEMORY SYSTEMS 9

state and every shared variable has an initial value. An execution is an execution
fragment that starts from an initial configuration C0.

The concurrent implementations presented in this thesis implement tree data
structures in a concurrent environment. To understand the behavior of concurrent
implementations, their liveness (or progress) and safety (or correctness) properties
are studied. An algorithm satisfies a safety property if the property holds in
all finite prefixes of every execution that produces. Intuitively, it states that no
unintended action has happened thus far. A liveness property is a condition that
must hold at least a certain (and sometimes infinite) number of times during
any execution of the algorithm. Intuitively, it states that some intended action
eventually happens one or more times. In the rest of this thesis, we focus on
concurrent implementations of tree-like data structures and on their executions.

Progress It is very common that different operations of an implementation can
have different progress guarantees. An operation is blocking, if some thread execut-
ing an instance of the operation may have to wait for another thread to take steps
before it can continue its execution. In blocking (or lock-based) implementations,
locks are used for synchronization between threads.

In a non-blocking algorithm, no thread t1 ever waits another thread t2 to take
steps before t1 can proceed with its own execution. So, in a non-blocking algorithm,
no thread uses locks. Non-blocking algorithms use flags (which are usually boolean,
integer or enum variables) and/or atomic synchronization primitives provided by
the hardware. An implementation is non-blocking if all the operations it supports
are non-blocking.

The Compare and Swap primitive The compare-and-swap (or CAS) primi-
tive is one of the most commonly used atomic synchronization primitives provided
by the hardware. It is used to update the value of a shared variable in a safe
manner. To illustrate its usage, consider a shared variable X and two values ex-
pectedValue and newValue. Then, CAS(X, expectedValue, newValue) will set X to
newValue only if X is equal to expectedValue. Effectively, this atomic operation
is theoretically equivalent to the following code:

1 ATOMIC boolean CAS(Shared Variable X, Value expectedValue, Value newValue) {

2 if (X == expectedValue) {

3 X = newValue

4 return TRUE

5 }

6 return FALSE

7 }

In case the value of X is updated by the CAS operation (i.e. line #3 is exe-
cuted), we say that the CAS operation is successful and will return TRUE. In case
the value of X is not updated by the CAS operation (i.e. line #3 is not executed),

10 CHAPTER 2. MODEL

we say that the CAS operation is unsuccessful and will return FALSE. Depending
on the implementation of the CAS operation, instead of TRUE or FALSE, the old
value of X (i.e. the value it had before the update) will be returned. The user then
has to check whether the returned value matches the expectedValue, to determine
whether the CAS operation was successful.

The ABA problem Consider a shared variable X whose initial value is A. A
very common use of the CAS operation performed by a thread t is the following:

1 expectedValue = X

... (other actions)

2 CAS(X, expectedValue, newValue)

Thread t stores the last value A it saw in X in a local variable called expect-
edValue (line #1). Then, later on, it uses that value as the expectedValue of a
CAS operation on X (line #2). Usually, to ensure correctness of the algorithm
it is assumed that if the CAS operation succeeds (thus X has the value A at the
time the CAS operation is executed), the value of X has not changed between
the execution of line #1 and line #2. However, there is the case that after the
execution of line #1 and before the execution of line #2 by thread t, other threads
might change X to some value B and then change it back to its initial value A.
Thread t will not be able to detect that change, and the execution of its CAS
primitive will be successful (line #2). This is called the ABA problem, and when
it happens, it usually breaks the correctness of the algorithm. In the context of
concurrent dynamic data structures, the ABA problem may appear, for instance
when an allocated object is deallocated and later reallocated and used again. In
such settings, a straightforward solution to the ABA problem is the avoidance
of memory address reuse, unless a garbage collection scheme is applied to allow
address reuse in a safe way.

An implementation is lock-free, if in every infinite execution it produces, in-
finitely many operations are executed. This means that the system is making
progress as a whole. However, specific operations may starve (i.e. they may never
complete) because other operations which might run faster always make progress,
disallowing these operations to make progress as well. Note that an implementation
that does not use locks is not necessarily lock-free: For example, a non-blocking
algorithm may produce an execution that contains a livelock, where each thread
executing an operation takes turns and makes some steps, but no thread eventually
completes the operation it is executing.

An operation op of an implementation I is wait-free if in each infinite execution
that I produces, the execution of every instance of op terminates within a finite
number of steps. This effectively means that a thread executing this operation
makes progress as long as it takes steps. An implementation is wait-free when all
the operations it implements are wait-free. Wait-freedom is a stronger property

2.2. SHARED MEMORY SYSTEMS 11

than lock-freedom since it guarantees progress for each individual thread, whereas
lock-freedom guarantees progress only at the system level.

Non-blocking algorithms guarantee progress even in the presence of thread
failures, i.e. when one or more threads crash unexpectedly in the middle of their
execution. Thus, non-blocking algorithms are more fault-tolerant than blocking
ones. In blocking algorithms, the system might be heavily delayed or blocked if
the thread that is holding a lock crashes before releasing the lock. Also, care is
required to avoid deadlocks, where thread A may try to acquire lockB while holding
lockA and, at the same time, thread B may try to acquire lockA while holding
lockB. Thus, threadA and threadB may wait one another forever.

Correctness The most common correctness condition when designing and ana-
lyzing concurrent data structures is linearizability. An execution α is linearizable if
for every completed operation in α (and for some of the uncompleted operations),
a linearization point can be assigned within the execution interval of the operation,
so that in every execution of the algorithm, the response of each operation is the
same as the response of the corresponding operation in the sequential execution
defined by the linearization points.

12 CHAPTER 2. MODEL

Chapter 3

The NB-BST Algorithm

This chapter provides a description of the Non-Blocking Binary Search Tree (NB-
BST), a non-blocking, linearizable binary search tree implementation using single-
word compare-and-swap (CAS) operations [4]. The full proof of these properties
and the correctness of the algorithm can be found in [5]. The implementation used
for the experimental analysis of chapter 7 is available at [6].

3.1 Introduction

A BST implements the dictionary abstract data type and thus it holds a set of
unique keys, which may have associated values (key-value pairs). It supports three
types of operations. Given a key k:

• Insert(k): Adds k to the tree and returns TRUE unless k already exists in
the tree - in that case, it does not cause any change to the tree structure and
returns FALSE.

• Delete(k): Removes k from the tree and returns TRUE unless k does not
exist in the tree - in that case, it does not cause any change to the tree
structure and returns FALSE.

• Find(k): Returns a pointer to the node that contains k provided that k is
already in the tree, otherwise it returns NULL.

The NB-BST consists of two types of nodes: Leaf nodes (or leaves) which are
nodes that have no children, and Internal nodes (or internals) which are nodes
that have two children. Every internal node holds pointers only to its children and
there are no parent pointers. The tree is full, meaning that every internal node
has exactly two children. The tree is external (or leaf-oriented), meaning that all
the keys are stored in the leaves of the tree (each leaf contains a key or key-value
pair) and internal nodes are used just for routing: they direct operations to the
correct leaf. This routing is achieved efficiently because of the BST property: All

13

14 CHAPTER 3. THE NB-BST ALGORITHM

keys stored in the left subtree of an internal node are smaller than the node’s key
and all keys stored in the right subtree are greater than or equal to its key.

The Find() operation performs a search by traversing the appropriate tree path
starting from the root node downwards, until reaching a leaf.

The Insert() operation works as follows: First, it searches for the leaf that may
contain the key to be inserted. If the key is there, it does nothing and returns
FALSE. If the key is not there, it replaces that leaf, switching the pointer of the
leaf’s parent that points to this leaf, to point to a new subtree of three nodes:
one internal and two leaves that are children of this internal. One of the subtree’s
leaves holds the key that is to be inserted, and the other holds the key of the
replaced leaf (because it has to remain in the tree). The smaller of those two keys
is placed in the left leaf, and the other one is placed in the right leaf as well as
in the internal node, so that the BST property is preserved. Note that those two
keys cannot be equal because the key that is to be inserted was not found in the
tree.

Figure 3.1: Insert() operation.

The Delete() operation works accordingly: First, it searches for the leaf that
may contain the key to be deleted. If the key is not there, it does nothing and
returns FALSE. If the key is found there, then this leaf has to be removed along
with its parent, because there cannot be an internal with only one child in the
tree. On the other hand, its sibling has to remain in the tree. These are achieved
by switching the child pointer of its grandparent that points to its parent, to point
to its sibling.

3.2. ALGORITHMIC OVERVIEW 15

Figure 3.2: Delete() operation.

Remark that in BSTs that are not leaf-oriented, a Delete() of an internal node
with his children may have to operate atomically in two places. Therefore, leaf-
oriented BSTs have a significant advantage: Delete() operations are much simpler,
because their updates to the tree take place in a small neighborhood around the
leaf to be deleted.

3.2 Algorithmic Overview

In a concurrent setting, whenever an Insert() (or Delete()) operation changes
a pointer of the tree in order to insert (or delete) nodes, this change has to be
performed atomically for correctness to be ensured. This is achieved by utilizing
the compare-and-swap (CAS) primitive. Insert() performs a CAS operation to
switch the child pointer of the parent to point to the new subtree’s Internal node -
this is called an ichild CAS. Correspondingly, Delete() performs a CAS operation
to switch the child pointer of the grandparent to point to the sibling - this is called
a dchild CAS.

Because every Insert() and Delete() operates in a small neighborhood around
the appropriate leaf, concurrent updates at distant parts of the tree do not conflict.
However, the following examples illustrate some of the difficulties that arise regard-
ing correctness when updates working on the same part of the tree are executed
concurrently.

Example 1 | Delete(12) and Delete(16): In this example, two Delete() op-
erations perform their CAS consecutively. However, in the end, the key 16 has not
been deleted from the tree since a traversal from the root will visit it.

16 CHAPTER 3. THE NB-BST ALGORITHM

(a) Before CAS (b) After CAS

Figure 3.3: Conflicting Delete() operations.

Example 2 | Delete(16) and Insert(18): In this example, an Insert() and a
Delete() perform their CAS consecutively. However, in the end, the key 18 has
not been inserted in the tree since a traversal from the root will not visit it.

(a) Before CAS

(b) After CAS

Figure 3.4: Conflicting Insert() and Delete() operations.

Correctness could be preserved with the use of fine-grain locking
schemes. Nevertheless, to make the implementation non-blocking,
the ideas of flags and help are used.

Internal node

Flags A flag is an indication that the procedure of updating
the tree pointers begins. Every internal node contains an enum
variable called State, which can take the values CLEAN, IFLAG,
DFLAG and MARK (these values are collectively called Flags).
Initially, all internal nodes are in the CLEAN State. Every inter-
nal node also contains a pointer to an Info struct. As its name
implies, the Info struct contains all the necessary information
for a process to complete the operation that set the flag.

3.2. ALGORITHMIC OVERVIEW 17

Leaf node

The Info pointer and State variable are stored in the same
CAS word (the Update variable), so they can be changed atom-
ically with one CAS operation.

IInfo struct

Before an Insert() operation performs an ichild CAS to re-
place a leaf, it uses CAS to change the State of the leaf’s parent
to IFLAG and the Info pointer to a new IInfo struct, where
it has written all the necessary information for any process to
complete the work of that Insert() operation. This is called an
iflag CAS.

DInfo struct

Correspondingly, before a Delete() operation performs a
dchild CAS to remove a leaf (and its parent), it uses CAS to
change the State of its grandparent to DFLAG and the Info
pointer to a new DInfo struct, where it has written all the nec-
essary information for any process to complete the work of that
Delete() operation. This is called a dflag CAS.

Every internal node that is deleted from the tree is first
marked. Once a node is marked, it remains marked forever,
and it is ensured that its child pointers cannot change. The
Delete() operation uses another CAS to change the State of the
parent of the leaf to MARK, indicating that this node will be
removed from the tree, and the Info pointer to the same DInfo
struct with its grandparent’s. This is called a mark CAS.

Help Every Insert() or Delete() operation, before executing the iflag or dflag
CAS, checks whether the node is in the CLEAN State. If it is not, it begins to
perform the work that the flag indicates, following the Info pointer and using the
information written in the Info struct. This is called helping. Helping is utilized
to ensure progress of the system, in case the operation that set the flag dies or is
suspended for a long time. Then, it retries to do its own work.

To minimize the performance penalty that is caused by helping, a conservative
helping strategy is used, where every operation helps only when its own progress
is prevented. Thus, helping is performed by Insert() and Delete() operations, but
not by Find(), which ignores flags and marks and does not help.

Because every Insert() or Delete() starts by reading the State variable of a
node to decide whether it has to help, flags function as cooperative locks: They are
owned by operations, instead of processes. If an Insert() performs successfully the
iflag CAS, it is ensured that this operation will be finished either by that process or
cooperatively by other processes who help. Correspondingly, if a Delete() performs
successfully the mark CAS, it is ensured that this operation will be finished either
by that process or cooperatively.

18 CHAPTER 3. THE NB-BST ALGORITHM

After an ichild or dchild CAS, an iunflag or dunflag CAS is used, to restore the
parent’s or grandparent’s State to CLEAN. If the mark CAS fails, a dunflag CAS
is used (which is called a backtrack CAS) to restore the grandparent’s State to
CLEAN.

Practically, a flagged node indicates that one of its child pointers will change,
and a marked node indicates that this node will be (or is already) removed from
the tree, and his child pointers will never change. By utilizing this flag and help
scheme, both problems of figures 3.3 and 3.4 can be prevented. The operations’
CAS cycle is depicted in Figure 3.5.

Figure 3.5: The effects of successful CAS operations.

3.3 Data Structures & Initialization

To avoid handling special cases with less than three nodes, the initial state of the
tree consists of a root node and two leaf nodes, where all of them hold dummy
keys that cannot be inserted or deleted from the tree. It is assumed that∞2 >∞1

and ∞1 > X, where X can be any key that will be inserted in the tree:

Figure 3.6: Trees showing leaves with dummy keys when the dictionary is (a)
empty and (b) non-empty.

Thus, the tree will always contain at least three nodes. The Root pointer is a
shared pointer that never changes. The key field of a node is initialized when the

3.4. PSEUDOCODE 19

node is created, and is never changed thereafter. The Info structs are immutable
as well. The following figure contains the structs that are used by the algorithm:

Figure 3.7: Type definitions and initialization.

3.4 Pseudocode

The pseudocode of the algorithm is presented in the next two pages. Figures
3.8 and 3.9 provide the pseudocode for NB-BST as it appears in [4]. A detailed
explanation of the functions, as well as an example, follows.

20 CHAPTER 3. THE NB-BST ALGORITHM

Figure 3.8: Pseudocode for Find, Insert and helper routines.

3.4. PSEUDOCODE 21

Figure 3.9: Pseudocode for Delete and helper routines.

22 CHAPTER 3. THE NB-BST ALGORITHM

3.5 Documentation

Search(k): Process p that executes Search(k) traverses a path of the tree from
the root to a leaf, towards the key k. It behaves exactly as in a sequential im-
plementation of a leaf-oriented BST, choosing which direction to go at each node
by comparing the key stored there to k. It returns pointers to the leaf that the
search terminates, its parent and grandparent. It also returns a copy of its parent’s
and grandparent’s Update fields. These returned values are needed by Insert and
Delete to perform helping if needed, perform CAS operations and create the Info
struct.

Find(k): Wrapper of Search(k). Returns a pointer to the leaf that contains k if
that is found, otherwise returns NULL.

Insert(k): Process p that executes Insert(k) tries to add key k to the tree, until
it finds k in the tree or succeeds to insert it. It first calls Search(k) to get pointers
to the leaf that the search terminates and its parent, and a copy of its parent’s
Update field (#49). If the leaf contains k, the operation terminates returning
FALSE (#50). Otherwise, after constructing a new subtree of three nodes (#45,
#53-54) and a new IInfo struct (#55), p attempts to perform an iflag CAS on
parent (#56). If the parent’s state is not clean (#51) or the iflag CAS is not
successful (#61), p helps the operation that the parent is involved in and retries
the insertion from scratch. If the iflag CAS is successful, p proceeds to finish
Insert(k) by calling HelpInsert() (#58) and returns TRUE.

Delete(k): Process p that executes Delete(k) tries to remove key k from the
tree, until it cannot find k in the tree anymore or succeeds to delete it. It first calls
Search(k) to get pointers to the leaf that the search terminates, its parent and its
grandparent, and a copy of its parent’s and grandparent’s Update fields (#75).
If the leaf does not contain k, the operation terminates returning FALSE (#76).
Otherwise, after constructing a new DInfo struct (#80), p attempts to perform
a dflag CAS on grandparent (#81). If the parent’s or grandparent’s state is not
clean (#77-78) or the dflag CAS is not successful (#85), p helps the operation that
the parent or grandparent is involved in and retries the deletion from scratch. If
the dflag CAS is successful, p proceeds to finish Delete(k) by calling HelpDelete()
(#83) and returns TRUE only if HelpDelete() returns TRUE, otherwise retries
the deletion from scratch.

HelpInsert(op): Process p that executes HelpInsert(op) performs the ichild
CAS by calling CAS-Child() and the iunflag CAS, using information from the Info
struct that op points to. Note that the iunflag CAS is performed regardless of
whether the ichild CAS is successful. This is because if p’s ichild CAS is not suc-
cessful, then an ichild CAS using information from op must have been performed

3.6. EXAMPLE 23

successfully by some other process that helps p.

HelpDelete(op): Process p that executes HelpDelete(op) performs the mark
CAS on parent using information from the Info struct that op points to (#91). If
this CAS is successful or some helper of p performed this CAS successfully (#92),
p proceeds to finish the deletion by calling HelpMarked() (#93) and returns TRUE
(#94). Otherwise, p helps the conflicting operation to complete (#97), performs
a backtrack CAS on grandparent (#98) and returns FALSE (#99).

HelpMarked(op): Process p that executes HelpMarked(op) performs the dchild
CAS by calling CAS-Child() and the dunflag CAS, using information from the Info
struct that op points to. As is the case for HelpInsert(), the dunflag CAS is per-
formed regardless of whether the dchild CAS is successful. This is because if p’s
dchild CAS is not successful, then a dchild CAS using information from op must
have been performed successfully by some other process that helps p.

Help(u): Calls either HelpInsert() or HelpDelete() or HelpMarked(), depending
on the type of flag/mark in the u Update variable.

CAS-Child(parent, old, new): Performs a child CAS, switching the parent ’s
left or right pointer from old to new.

3.6 Example

Figure 3.10: A Delete(12) and an Insert(30) are in progress.

In the above example, the tree contains the keys 5, 12 and 20. Delete(12) has
flagged node 10, but before it marks node 15, Insert(30) manages to flag it. Delete’s
DInfo struct contains the Update field of node 15 that was returned by Search(12)
(at the time that Search(12) read it, the State was CLEAN and the Info pointer

24 CHAPTER 3. THE NB-BST ALGORITHM

was NULL). This is different from the Update struct that node 15 currently has,
therefore Delete’s mark CAS will fail, leading to a backtrack CAS and a retry of
the deletion. On the other hand, the insertion will succeed because the iflag CAS
was performed successfully.

3.7 Garbage Collection

It is assumed for simplicity that the addresses of nodes and Info structs are not
reused (each new node or Info struct gets a new memory location). Thus, whenever
a node is flagged, the Info pointer of its Update variable gets a new value each
time, different from any previous one. When the State of a node is restored to
CLEAN, the current Info pointer is left deliberately inside. This prevents ABA
problems on child pointers and Update variables.

3.8 Linearization Points

Find(), unsuccessful Insert() and unsuccessful Delete() are linearized at the time
when the leaf they end up at is still in the tree. Successful Insert() or Delete() is
linearized when it performs its child CAS (#115 or #117). The following table
sums up the linearization points of each operation:

Find Insert Delete

Successful Latest point in Find’s child CAS child CAS
execution interval Latest point in Insert’s Latest point in Delete’s

at which execution interval execution interval
Unsuccessful the leaf at which the leaf at which the leaf

Search returns Search returns Search returns
is still in the tree is still in the tree is still in the tree

Table 3.1: Linearization points of BST operations.

Chapter 4

The PNB-BST Algorithm

This chapter provides a description of the Persistent Non-Blocking Binary Search
Tree (PNB-BST), a non-blocking, linearizable binary search tree implementation
that supports wait-free range queries using single-word compare-and-swap (CAS)
operations. An analysis of its properties can be found in [7]. The full proof of
correctness of the algorithm can be found at [8]. Our implementation used for the
experimental analysis of chapter 7 is available at [9].

4.1 Introduction

The PNB-BST algorithm builds on top of NB-BST algorithm presented in chap-
ter 3 providing support for range query operations. Recall that in NB-BST, In-
sert() replaces a leaf with a new subtree of three nodes, and Delete() replaces the
parent of a leaf with the leaf’s sibling (Chapter 3, Fig. 3.1 and 3.2). In either case,
after the operation finishes, the replaced nodes are not reachable from the root
anymore, meaning that a Find() operation starting from the root, cannot access
them. However, the PNB-BST data structure is a persistent version of NB-BST.
Persistence is achieved by marking the replaced nodes and storing them in the
tree under prev pointers, thus making them reachable from the root. The purpose
of implementing persistence in this way is the efficient and concurrent support of
range queries. In particular, PNB-BST supports four types of operations. Given
the keys k, x and y:

• Insert(k): Adds k to the tree and returns TRUE unless k already exists in
the tree - in that case, it does not cause any change to the tree and returns
FALSE.

• Delete(k): Removes k from the tree and returns TRUE unless k does not
exist in the tree - in that case, it does not cause any change to the tree and
returns FALSE.

25

26 CHAPTER 4. THE PNB-BST ALGORITHM

• Find(k): Returns a pointer to the node that contains k provided that k is in
the tree, otherwise it returns NULL.

• RangeScan(x,y): Returns all keys existing in the tree that are greater than
or equal to x and smaller than or equal to y.

In this implementation, Insert(), Delete() and Find() operations are lock-free
whereas RangeScan() is wait-free. We note that Find() can also become wait free
by executing a RangeScan(k,k). From now on, a process that executes an Insert()
or a Delete() operation will be called an updater.

To guarantee the linearizability of operations, RangeScan() must be able to de-
tect all the updates that are linearized before it, and to ignore all the updates that
are linearized after it. To achieve this, PNB-BST is enhanced with the following
mechanisms (that are discussed in more detail later on):

• A variable storing a sequence number which is incremented by RangeScan
and read by the updaters. Each updater stores this sequence number in the
new nodes that it will create and this is the sequence number of the node.

• A more advanced flagging and helping scheme than those of NB-BST.

• A validation scheme needed to synchronize updaters with processes executing
range queries.

Moreover, operations are linearized differently in PNB-BST than in NB-BST.

As in NB-BST, PNB-BST maintains a full, external BST that consists of two
types of nodes: Internal nodes and Leaf nodes. Every PNB-BST node has two
fields in addition to the fields of an NB-BST node: A sequence number seq, and
a pointer prev (Fig. 4.4). Unlike NB-BST, Leaf nodes have the same fields with
Internal nodes. However, the child pointers exist only in Internal nodes.

The Find() operation is similar to that of NB-BST except that it performs
helping when another operation operates on the parent or grandparent of the leaf
that it arrives to.

As in NB-BST, the Insert() operation replaces a leaf with a new subtree of three
nodes. Before it does so, it marks the leaf to be replaced as deleted. However, it
additionally sets the prev pointer of the new subtree’s internal node to point to
that leaf (Fig. 4.1). This is necessary to achieve persistence.

4.2. OVERVIEW 27

Figure 4.1: Insert() operation.

The Delete() operation replaces the parent of a leaf with a new copy of the
leaf’s sibling. Before it does so, it marks the nodes to be replaced (i.e. the old
leaf, its sibling and their parent) as deleted. However, it additionally sets the prev
pointer of the new sibling to point to that parent (Fig. 4.2). This is necessary to
achieve persistence.

Figure 4.2: Delete() operation.

This way, a RangeScan() can visit older versions of nodes when this is needed
to complete its work, as described in more detail later on.

4.2 Overview

4.2.1 Sequence numbers

PNB-BST utilizes a mechanism of sequence numbers to synchronize RangeS-
can() with the other operations. This is implemented as follows: There is a global
shared integer variable called Counter, that is initialized to 0. Each RangeScan()
starts by reading this Counter, and the value recorded is called the sequence num-
ber of the RangeScan() operation. RangeScan() atomically increments Counter
immediately after. Note that there is no need to use FetchAndIncrement() to read
Counter, i.e. many RangeScan operations may read the same Counter value. This
is so because every increment of the Counter may cause some updaters to restart
their operation.

28 CHAPTER 4. THE PNB-BST ALGORITHM

Every other operation (updates and Find() operations) makes repeated at-
tempts to perform its work by executing a loop. Each execution of the loop is
called an attempt. An attempt starts by reading Counter. The sequence number
of the operation is the value of the Counter read in the operation’s last attempt.

This way the execution is logically divided into phases, each of them having
a unique Counter value. Phase i is the period in which Counter has the value i.
Each operation is then assigned (or belongs) to a phase, depending on its sequence
number. Thus, an operation that has sequence number i, belongs to phase i.

During an attempt, each update operation writes its sequence number in the
new nodes and Info struct it creates. Note that both Insert() and Delete() create
new nodes, since due to persistence no node is ever physically deleted from the
tree: Insert() creates a subtree of three nodes and Delete() creates a node that
substitutes the sibling of the leaf to be deleted.

As later discussed in detail, PNB-BST assigns linearization points in a different
way than NB-BST. More specifically, RangeScan() is linearized at the end of the
phase it belongs to. Because many RangeScan() operations can have the same
sequence number (thus belonging to the same phase), ties are broken arbitrarily.
Find(), Insert() and Delete() are linearized at some point inside the phase they
belong to. In particular, successful update operations are linearized at the time
they perform their last successful flag CAS. More details will be provided later on.

To ensure linearizability, RangeScan() has to 1) ignore all updates that belong
to later phases, and 2) get aware of all the latest updates that belong to an earlier
or the same phase with its own.

Because of sequence numbers, RangeScan() is able to distinguish which nodes
belong to later phases by comparing their sequence number to its own. Whenever
it visits a node that belongs to a later phase, it ignores it by following the node’s
prev pointers, until reaching a node whose sequence number is smaller than or
equal to its own. It is guaranteed that such a node always exists.

On the other hand, to guarantee that RangeScan() will see all updates that
belong to an earlier or the same phase with its own, RangeScan() has to synchronize
with pending update operations of these phases. As already stated, successful
updates are linearized at the time they perform their last successful flag CAS.
This brings the need for considering two cases in order to achieve synchronization
between successful updates and RangeScan().

Consider an update that belongs to the same (or an earlier) phase with (than)
a RangeScan().

1) The update performs its flag CAS, then RangeScan() begins its
execution and arrives to the flagged node. Because the update has
not yet updated the child pointers of any nodes in the tree, if RangeScan()
ignores the flagged node and continues its work, it will miss the update and
linearizability will be violated, because this update will be linearized before
the RangeScan(). Thus, RangeScan() attempts to help the operation that

4.2. OVERVIEW 29

flagged the node before doing its own work. Find() also attempts to help,
for the same reason.

2) The update performs its flag CAS on a node that RangeScan()
has already visited. In that case, if the update continues its attempt,
linearizability will be violated because RangeScan() will not traverse the
same part of the tree again and thus will miss the update. To avoid this case,
the update checks the current Counter value and continues its attempt only
if that value is equal to its sequence number. In that case, it is guaranteed
that no RangeScan() of the same sequence number has started traversing
the tree - if it had, the Counter would have been incremented first. This is
called the handshaking check, and if it fails, the update aborts its current
attempt and retries.

Note that the sequence number of each update operation is stored in the Info
struct that the operation creates. This value is used to perform the handshaking.
This is necessary for the following reason:
Problematic scenario: Suppose that ”seq” variable inside Info struct does not exist,
so line #111 becomes ”if Counter 6= seq” and this seq variable is the local seq of the
current operation. pA: Insert(5) (seqA=0) until #113. pB: RangeScan(4,6)
(seqB=0, Counter=1) until #131. pC: RangeScan(7,8) (seqC=1, Counter=2)
until #131. Finally, pD: Insert(20) (seqD=2) until end. pD has to help pA before
it continues with its own Insert operation, so it executes pA’s work successfully,
writing its own seqD number to the newly inserted 5. Then, pB continues until
end, missing pA’s Insert(5) which was linearized at line #103. Thus, linearizability
is violated.

4.2.2 Flagging, Helping and Validation scheme

Flagging In PNB-BST every node has an Update field, which contains an enum
variable called Type (with possible values FLAG and MARK) and a pointer info to
an Info struct, which contains an enum variable called State (with possible values
⊥, TRY, COMMIT and ABORT) as shown in Fig. 4.4. The Type and State of
a node reflects the situation it is currently involved in. This is summarized in fig.
4.3 .

30 CHAPTER 4. THE PNB-BST ALGORITHM

Figure 4.3: Types and States that a node can be in.

All new nodes are initialized to (FLAG, ABORT). Note that (⊥, MARK) can
never happen. A node is called frozen (blue-colored cells) when either it is deleted
from the tree (COMMIT, MARK) or it is being processed by an operation that is
still in progress (⊥ or TRY).

As in NB-BST, before an update operation attempts to change any child point-
ers of a node, it performs a flag CAS on this node, changing the node’s Type and
State to (FLAG, ⊥). A (FLAG, ⊥) indicates an upcoming change to the child
pointers of the node, and makes the operation visible to the other processes for
the first time, so they can help. The rest fields of the Info struct contain all the
necessary information for any process to complete the work of the update opera-
tion.

Next, the handshaking check takes place and if it succeeds, the node’s State
is changed to TRY. After that, the nodes that will be deleted from the tree are
marked one by one, with mark CAS operations. If all marks are successful and
after the child CAS is performed (which is then guaranteed to succeed), the State
of the Info struct pointed by the nodes’ info pointers is changed from TRY to
COMMIT, and the operation is completed successfully. Note that every marked
node’s info pointer is set to point to the same Info struct with the flagged node,
so State can change simultaneously for all nodes involved in the operation. Upon
failure of any mark CAS, the State of the nodes is changed from TRY to ABORT
indicating that the operation is aborted (meaning that it will not take effect) and
the update is retried by performing a new attempt.

Helping In PNB-BST, all types of operations (Find(), Insert(), Delete() and
RangeScan()) perform helping when necessary. RangeScan() performs helping
whenever it visits a node that is processed by an in-progress operation. After
helping, RangeScan() continues its execution.

4.3. DATA STRUCTURES, INITIALIZATION AND PSEUDOCODE 31

Updates and Find() perform helping whenever the parent or grandparent of the
leaf they end up at is frozen. They also perform helping if any of the nodes they
are going to process is being processed by another in-progress operation. After
helping, they initiate a new attempt.

Validations In PNB-BST Find(), Insert() and Delete() perform validations.
Roughly speaking, this is done to ensure that the nodes they are going to process
have not been deleted from the tree and are not being processed by another in-
progress operation.

4.3 Data Structures, Initialization and Pseudocode

In addition to the initialization that takes place in NB-BST, all fields of an Info
struct, except from the State field, are immutable. Fig. 4.4 contains the structs
that are used by the algorithm, and figures 4.5, 4.6 and 4.7 contain the pseudocode
of the algorithm, followed by a detailed explanation of the functions. Figures 4.4,
4.5, 4.6 and 4.7 provide the pseudocode for PNB-BST as it appears in [7].

Figure 4.4: Data structures and initialization.

32 CHAPTER 4. THE PNB-BST ALGORITHM

Figure 4.5: Pseudocode for Find and helper routines.

4.3. DATA STRUCTURES, INITIALIZATION AND PSEUDOCODE 33

Figure 4.6: Pseudocode for RangeScan and helper routines.

34 CHAPTER 4. THE PNB-BST ALGORITHM

Figure 4.7: Pseudocode for Insert and Delete.

4.4. DOCUMENTATION 35

4.4 Documentation

Search(k, seq): Process p that executes Search(k, seq) traverses a path of the
tree from the root to a leaf consisting of nodes with version at most seq (#39)
by following prev pointers in the nodes it traverses when necessary, towards the
key k. It chooses which direction to go at each node by comparing the key stored
there to k. It returns pointers to the leaf that the search terminates, its parent
and grandparent.

Find(k): Wrapper of Search(k, seq). It gets a sequence number seq and calls
Search(k, seq) (#74-75). After it validates the results of Search() (retries in case of
validation failure), it returns a pointer to the leaf that contains k if that is found,
otherwise it returns NULL (#76-81).

RangeScan(x,y): It returns all existing keys of the tree that are greater than
or equal to x and smaller than or equal to y. It reads the Counter, increments it
and calls ScanHelper() to perform the actual scanning.

ScanHelper(node, seq, x, y): Starting from node, it recursively traverses the
tree searching for leaves of version at most seq whose keys fall into range [x,y], and
performs helping when needed. At each node, if the node’s key is smaller than x,
the traversal continues on the right child of the node. If it is greater than y, the
traversal continues only on the node’s left child. Otherwise, both subtrees of the
node are traversed. The proper version of the child node is discovered by calling
ReadChild().

ReadChild(p, left, seq): Depending on the value of boolean parameter left, it
returns the most recent version of the left or right child of p with sequence number
at most seq.

Insert(k): Process p that executes Insert(k) tries to add key k to the tree, until
it finds k in the tree or succeeds to insert it. It first gets a sequence number seq
and calls Search(k, seq) (#155-156). After p validates the results of Search() by
calling ValidateLeaf() (retries in case of validation failure), if the leaf contains k,
the operation terminates returning FALSE (#159). Otherwise, after constructing a
new subtree of three nodes (#161-163), p calls Execute() to execute the remaining
actions.

Delete(k): Process p that executes Delete(k) tries to remove k from the tree,
until it cannot find k in the tree anymore or succeeds to delete it. It first gets a
sequence number seq and calls Search(k, seq) (#177-178). After p validates the re-
sults of Search() (retries in case of validation failure), if the leaf does not contain k,
the operation terminates returning FALSE (#181). Otherwise, after constructing

36 CHAPTER 4. THE PNB-BST ALGORITHM

a new node that will substitute sibling, and after validating its child pointers in
case sibling is an internal node, p calls Execute() to execute the remaining actions.
Recall that Delete() replaces the parent of a leaf with a new copy of the leaf’s
sibling. This is necessary for the following reason:

Problematic scenario: Suppose that Delete does not make a new copy of sibling.
pA: Find(E) (seqA=0) until #74. pB: RangeScan(X,Y) until #131. pC:
Delete(C) (seqC=1) until the end. pA: continues forever, cycling between the
two nodes with key D because ReadChild will return the internal node with key
D each time that is called by Search, thus Search will never exit the while loop in
lines #36-40.

Execute(infp): Process p that executes Execute(infp) checks if any of the old
Update values of the nodes involved in the operation are frozen (by calling frozen()),
and in that case it performs helping and returns FALSE (#96-99). Otherwise, p
constructs an info struct for the operation that called it (#102) and performs a flag
CAS on the first of the nodes involved (#103). If the flag CAS is performed suc-
cessfully, p continues the execution of the operation by calling Help(). Otherwise,
it returns FALSE.

Help(infp): Process p that executes Help(infp) performs the handshaking (#111-
113), the mark CAS operations (#115-120) and the child CAS by calling CAS-
Child() (#123), using information from the Info struct that infp points to. If the
handshaking or any of the mark CAS operations fails, p aborts the operation and
returns FALSE, otherwise it commits the operation (#124) and returns TRUE.
Note that if a child CAS using information from infp is executed, even if it fails,
a helper of the operation has successfully executed a similar child CAS using in-
formation from infp.
To understand why the lines #125-126 are needed, consider the following execu-
tion:
Problematic scenario: Suppose that lines #125-126 do not exist. pA: Delete(X)
until #102. pB: Insert(5) until #103. Suppose that pB flags the sibling of X
(which is an Internal node). pA: continues, reaches line #117, tries to Mark sibling
during the 3rd iteration of the loop and fails because this node is already flagged

4.5. LINEARIZATION POINTS 37

by pB. Continuing its execution, pA returns False and retries to Delete(X), forever.
As a result, the non-blocking property is violated.

ValidateLeaf(gp, p, l, k): Process p that executes ValidateLeaf(gp, p, l, k) calls
two times ValidateLink(), to validate the links between grandparent-parent (#64)
and parent-leaf (#65). After that, p validates the update fields of grandparent and
parent (#66) and returns them together with the boolean result of the validation
(#67). The returned values are stored in the Info struct created by Insert() and
Delete() operations which then also use them to perform CAS operations.

ValidateLink(parent, child, left): Process p that executes ValidateLink(parent,
child, left) checks if parent is frozen (#53) and in that case p helps complete the
operation that the parent is involved in (#54) and returns FALSE (#55). If parent
is not frozen, p validates the link between parent and left or right child (depending
on left boolean parameter) and returns TRUE together with the parent ’s update
field, otherwise if the validation of the link fails it returns FALSE (#57-58).

Frozen(up): Returns TRUE if up is in frozen state, otherwise returns FALSE.

CAS-Child(parent, old, new): Performs a child CAS, switching the parent ’s
left or right pointer from old to new.

4.5 Linearization points

Find(), unsuccessful Insert() and unsuccessful Delete() are linearized at the time
when the leaf they end up at is successfully validated (#66 with validated variable
having the value TRUE). A successful Insert() or Delete() is linearized when it
performs the flag CAS (#103). RangeScan() is linearized at the end of its phase,
with ties broken arbitrarily. The following table sums up the linearization points
of the operations in PNB-BST:

Find Insert Delete RangeScan

Successful Terminal leaf is flag CAS flag CAS End of
Unsuccessful successfully validated same with Find same with Find its phase

Table 4.1: Linearization points of PNB-BST operations.

38 CHAPTER 4. THE PNB-BST ALGORITHM

Chapter 5

The LFCA Algorithm

This chapter provides a description of the Lock-Free Contention Adapting (LFCA)
Search Tree, a lock-free, linearizable key-value store with range query support. To
boost performance, LFCA performs modifications of the tree taking into considera-
tion the encountered contention and the performance of range queries, a procedure
that is called adaptation. The full proof of the properties and the correctness of
the algorithm can be found in [10]. The implementation used for the experimental
analysis of chapter 7 is available at [13].

5.1 Introduction

The Lock-Free Contention Adapting search tree supports four types of opera-
tions. Given the keys k, x and y:

• Insert(k): Adds k to the tree and returns TRUE unless k already exists in
the tree - in that case, it does not cause any change to the tree and returns
FALSE.

• Remove(k): Deletes k from the tree and returns TRUE unless k does not
exist in the tree - in that case, it does not cause any change to the tree and
returns FALSE.

• Lookup(k): Returns TRUE if k is in the tree, otherwise it returns FALSE.

• Query(x,y): Returns all keys of the tree that are greater than or equal to x
and smaller than or equal to y.

In this implementation, all operations are non-blocking.

LFCA tree is a partially external tree that consists of three types of nodes: route
nodes, base nodes and leaf containers (Fig. 5.1). These nodes are organized in
layers. The upper layer contains the route nodes that form a binary search tree.
The middle layer contains the base nodes, which are the leaves of this binary search

39

40 CHAPTER 5. THE LFCA ALGORITHM

tree. The bottom layer consists of leaf containers, in which all keys of the LFCA
tree are stored. Each leaf container is an immutable treap [11]. Every base node
contains a pointer that points to the root of a treap. Roughly speaking, a treap is
a binary search tree, with the following additional property: After an insertion of
a leaf, a random number of rotations are performed in the path of the new leaf to
keep the tree balanced over time.

Figure 5.1: The LFCA tree. Route nodes are depicted as round boxes, base nodes
as squared boxes and leaf containers as triangles.

Every operation starts by performing a search on route nodes to find the base
node that contains a pointer to the root of the immutable treap it is going to
operate on.

The Lookup() operation, after it finds the appropriate base node, it performs
a search in the treap pointed to by the base node’s treap pointer.

The Insert() operation, after it finds the appropriate base node, performs a
CAS to attempt to replace it with a new base node which contains a pointer to
the root of a treap that holds all keys from the previous treap plus the new key. The
Remove() operation works in a similar manner, except that the new treap holds
all keys from the previous treap except from the key to be deleted. Although
immutable, treaps support the creation of a new version of the data structure in
log(n) time, where n is the number of items in the treap. This is achieved by
copying the path from the treap root to the appropriate treap leaf. Therefore,
updates are efficient.

(a) Initial state (b) After an Insert(5)

Figure 5.2: The effect of an Insert() operation.

Every base node contains a statistics value (i.e. an integer) that indicates the

5.1. INTRODUCTION 41

degree of contention on it. Each operation, after performing its work, it checks
this statistics value to decide whether a modification of the tree structure (or
adaptation) needs to take place. There are two kinds of adaptations, split and
join, that correspond to high and low contention respectively.

Split replaces a base node with a subtree of three nodes consisting of an inter-
nal node and two new base nodes, effectively dividing the set represented by the
initial base node’s leaf container in two sets of approximately equal size, to reduce
contention.

(a) Initial state (b) After a split

Figure 5.3: The effect of a split operation.

Join replaces two adjacent base nodes with a new one, effectively merging two
leaf containers in one. This is done by replacing the two base nodes and their
parent with a new base node. In this way, range queries can work more efficiently
in that part of the tree.

(a) Initial state (b) After a join

Figure 5.4: The effect of a join operation.

Splits and joins are also supported by treaps in log(n) time, where n is the
number of items in the treap.

The Query() operation visits all base nodes whose leaf containers hold the keys
that fall in the range of the query, joins these leaf containers into a new immutable
treap and performs the range query on it.

42 CHAPTER 5. THE LFCA ALGORITHM

5.2 Overview

LFCA tree differs from NB-BST by applying the following two ideas: 1) Using
the treap data structure, keys are batched in the leaves of the treaps and 2) Splits
and joins (which are performed in a way similar to Insert and Delete in NB-BST)
are performed based on the contention encountered on the base nodes. The reason
behind the first idea is that batching is beneficial in terms of performance when
executing range queries. The reason behind the second idea is that fine-grained
synchronization usually favors single-item operations such as Insert(), Remove()
and Lookup(), whereas coarse-grained synchronization usually favors multi-item
operations such as Query(). With the adaptation approach, synchronization in
each part of the tree can dynamically become as coarse- or as fine-grained as
needed, trading between the range query performance and the scalability of up-
dates, to increase the overall performance.

This is implemented as follows: Each base node, besides a pointer to its treap,
called data, and a pointer to its parent route node, called parent, also contains an
integer variable, called stat (or statistics variable) which indicates the degree of
contention happening on that base node. Whenever the stat variable goes above
or below some predefined limits, a join or a split operation is executed. More
specifically, stat is initialized to 0. Whenever it becomes greater than a constant
variable which has the predefined value 1000, a split will be executed, and whenever
it becomes smaller than -1000, a join will be executed. This way synchronization
becomes more fine-grained in parts of the tree where contention has been high and
more coarse-grained in parts where contention has been low or a range query often
has to access many base nodes to complete its operation.

Replaceability To achieve synchronization between operations that need to
work on the same set of base nodes, the concept of base node replaceability is
used. Each base node has an enum variable called type. Initially, all base nodes
are created by Insert() operations with type normal, indicating that they are re-
placeable. Whenever a Query() or a join operation intends to work on a specific
set of base nodes, it first makes each one of them irreplaceable by replacing it with
a new base node whose type is not normal. Only replaceable nodes can be replaced
from the tree. Irreplaceability becomes the equivalent of locking, and progress is
achieved by helping.

Heuristics Contention is measured based on success or failure of the CAS prim-
itives that are executed by the algorithm. The function new stat() returns the
current value of the statistics variable.

Adaptation Adaptation to contention is realized with splits and joins.

Recall that a split (or high contention adaptation) replaces a base node with a
new route node that has two new base nodes as children. Each new base node’s

5.3. INITIALIZATION & PSEUDOCODE 43

treap contains approximately half of the keys of the replaced base node’s treap.
Moreover, a join (or low contention adaptation) replaces two neighboring base
nodes with a new base node whose treap contains the union of the keys of the
previous treaps.

5.3 Initialization & Pseudocode

At the beginning, the root node is a base node of type normal base with its
treap and parent pointers set to NULL and its statistics variable set to 0.

The pseudocode of the algorithm is presented in the next three pages. Figures
5.5, 5.6 and 5.7 provide the pseudocode for LFCA tree as it appears in [12]. A
detailed explanation of the functions follows.

44 CHAPTER 5. THE LFCA ALGORITHM

Figure 5.5: Data structures, helper routines and public interface

5.3. INITIALIZATION & PSEUDOCODE 45

Figure 5.6: Range query, Split and Join

46 CHAPTER 5. THE LFCA ALGORITHM

Figure 5.7: Auxiliary code for the LFCA tree.

5.4. DETAILED DESCRIPTION OF ROUTINES 47

5.4 Detailed description of routines

5.4.1 Update operations

Lookup(m, i): Process p that executes Lookup(m, i) takes as parameter a
pointer m to the tree of route nodes and a key i. It first locates a base node
whose treap may contain the key i by calling find base node() (#136) and then
calls treap lookup() to search for the key i in that treap. It returns TRUE if i is
found in the tree, otherwise returns FALSE.

Insert(m, i): It calls do update(m, treap insert, i) to add key i to the tree m.
It returns TRUE if i is successfully added to the tree, otherwise returns FALSE.

Remove(m, i): It calls do update(m, treap remove, i) to delete key i from the
tree m. It returns TRUE if i is successfully deleted from the tree, otherwise returns
FALSE.

do update(m, u, i): Process p that executes do update(m, u, i) carries out the
actual work of an Insert() or a Remove() operation. It performs repeated attempts
until it succeeds to replace a base node (#109). In each attempt, p first locates the
base node whose treap may contain the key i by calling find base node() (#110).
Then, p constructs a new base node which contains a pointer to the updated treap
(#113-118) and tries to replace the old base node with the new one (#119). If the
replacement succeeds, p performs an adaptation if that is needed (#120). It then
returns TRUE if the update was successful, otherwise it returns FALSE (#121).
If the base node is not replaceable (#111) or the replacement fails (#119), then
contention is encountered, i.e. a conflicting operation tries to modify the same
part of the tree. In that case, p may help the conflicting operation (#125) and
starts a new attempt from scratch (#126).

find base node(n, i): Process p that executes find base node(n, i) executes a
search on the tree of route nodes, by traversing a path starting from n towards
the key i. It chooses which direction to go at each route node by comparing the
key stored there to i. It returns a pointer to the base node that it ends up.

5.4.2 Range Queries

Query(m, lo, hi, trav, aux): Process p that executes Query(m, lo, hi, trav,
aux) returns all keys of the tree that fall between lo and hi. It first creates a new
immutable treap that contains a superset of keys in the range [lo, hi] by calling
all in range() (#141) and then calls treap query() to traverse this treap and get
the keys in the range [lo, hi] (#142).

48 CHAPTER 5. THE LFCA ALGORITHM

all in range(t, lo, hi, help s): Process p that executes all in range(t, lo, hi,
help s) performs most of the actual work of a Query() operation. Specifically, p
locates the first base node which is reached when searching for key lo (#163-#183).
Moreover, it locks (by making irreplaceable) all base nodes that may contain keys
in the range [lo, hi] (#184-207). Finally, it joins all of the treaps that these base
nodes point to to get a new treap, making the base nodes replaceable again, and
returns that treap (#208-214).

We now provide a more detailed technical description of all in range. Initially,
p locates a first base node whose treap may contain the key lo and saves this base
node with the path that consists of route nodes and ends up on it in a stack s
(#168). Process p later uses this stack to traverse the rest of the base nodes in as-
cending order. If all in range() is called with a non-NULL result storage argument
help s, this means that p is trying to help some other ongoing Query() operation
to complete its work (#169). If the other Query() is already finished (#170) the
resulting treap is returned (#171). If not, the helping continues (#172). On the
other hand, a NULL help s argument means that p is starting a new range query
from scratch. If the first base node is replaceable, p tries to replace it with a new
base node of type range base (#173-176) and if p fails to do so it restarts from
scratch, otherwise it updates the stack (#177) and continues.
However, if the first base node is not replaceable p helps the conflicting operation
and retries (#180-182), except when the conflicting operation is another Query()
whose hi parameter is greater than or equal to the hi parameter of its own Query()
operation (#178) - in that case, p helps that Query() operation and, instead of
retrying, p borrows its treap result (#179) because it is guaranteed that this treap
result contains all the keys that fall in range [lo, hi].
Process p continues by locating and trying to replace the remaining base nodes in
a while loop (#184-207). It maintains an additional stack done where it saves all
base nodes whose treaps will be joined to form the treap result. Initially, p pushes
the first node to the stack done (#185) and saves the stack s to a backup stack
called backup s (#186). Then, p determines if the search should stop by com-
paring the maximum key of the current node’s treap container with hi (#187).
Next, p locates the next base node and stops the search if this node does not exist
(#188-189). If the node exists and the resulting treap has already formed, the re-
sulting treap is being returned (#190-191). If the node has already been replaced,
p proceeds to search for the next node (#192-193). If the node is replaceable, p
tries to replace it with a new base node which contains lo, hi and the active result
storage my s. If that replacement is performed successfully, p updates the stack
s and proceeds to search for the next node (#194-197). On the other hand, if
the replacement fails, p restores the stack to the previous state and searches for
this node again (#198-200). If the node is not replaceable, p helps the conflicting
operation, restores the stack to the previous state and searches for this node again
(#202-205).
Finally, p joins all treaps from the replaced base nodes to one resulting treap

5.4. DETAILED DESCRIPTION OF ROUTINES 49

(#208-210) and tries to set the treap pointer of the resulting storage to point to
the resulting treap (#211). Note that even if this CAS fails, it means that some
other process that is helping p performs this Query() on behalf of p and executes
this CAS at the same time. The boolean variable more than one base is set if p
collects the treaps of more than one base nodes (#211-212), an adaptation of a
randomly selected base node is performed if needed (#213) and the resulting treap
is returned (#214).

find base stack(n, i, s): Process p that executes find base stack(n, i, s) tra-
verses a path of the tree that consists of route nodes starting from the root of the
tree of route nodes n, downwards, until reaching a base node whose treap may
contain the key i. It returns that base node and mutates the stack s to contain all
nodes on the search path from n to that base node.

find next base stack(s): Process p that executes find next base stack(s) re-
turns the next base node in ascending key order, modifying the stack s to contain
the search path to that base node. Recall that s contains all route nodes in the
path to the appropriate base node. This stack is used for performing the successor
traversal, to execute range queries without using recursion.
Process p pops the topmost node base from the stack s which is the node the range
query has just processed, as well as its parent t. It then finds the next base node
of base in the in-order traversal. To do so, there are two cases to consider:

i) This node is the leftmost node in t’s right subtree.

ii) This node resides in the right subtree of the ancestor of t with higher key
that is first met when popping nodes from s. It is found by calling left-
most and stack.

leftmost and stack(n, s): Process p that executes leftmost and stack(n, s)
traverses a path of the tree that consists of route nodes starting from n downwards,
following the left child pointers, until reaching a base node. It returns that base
node and mutates the stack s to contain all nodes on the search path from n to
that base node.

5.4.3 Splits & Joins

high contention adaptation(m, b): Process p that executes
high contention adaptation(m, b) performs a split operation, dividing the treap of
base node b in two approximately equal parts. If the treap of b contains two or
more items (#278), b is substituted by a new route node (#286) which has two new
base nodes as children, each of them containing a treap that holds approximately
half of the keys of b’s treap.

50 CHAPTER 5. THE LFCA ALGORITHM

Join is performed in two phases: In the first phase (secure join left) the two
base nodes that will be joined are marked (Fig. 5.8(b),(c)) as well as the parent
and grandparent of the one that is the join main (Fig. 5.8(d)). Also, the new base
node with the resulting treap is created (Fig. 5.8(e)).

Figure 5.8: First phase of a join.

In the second phase (complete join) the join neighbor base node is replaced
with the new base node that holds the resulting treap (Fig. 5.9(f)) while the
join main node and its parent are removed from the tree (Fig. 5.9(g),(h)).

Figure 5.9: Second phase of a join.

A detailed description of the functions executing the join, follows.

low contention adaptation(t, b): Process p that executes
low contention adaptation(t, b) performs a join operation, merging the treaps of
base node b and a neighboring base node into a new treap. If there is no neigh-
boring base node, p returns (#269). Otherwise, in case b is the left child of its
parent, p calls secure join left() and if this returns a non-NULL node, p calls com-
plete join() to finish the remaining work (#270-272). The case of b being the right
child of its parent is symmetrical.

5.4. DETAILED DESCRIPTION OF ROUTINES 51

secure join left(t, b): Process p that executes secure join left(t, b) prepares
everything needed for a successful join operation. It starts by making the nodes
that will be involved in the join irreplaceable. Initially, p locates the neighboring
node of b, which is called n0 (#217). It then tries to replace b with a new base
node m of type join main (#219-221). If this succeeds, the node m is irreplaceable
(#65-66) and the join operation becomes visible to the other processes, who can
abort the join (#76-78) because of the default value PREPARING of m’s neigh2
variable (#28) - m and its parent will eventually be removed from the tree if the
join completes successfully. Next, p tries to replace n0 with a new base node
n1 of type join neighbor, with its main node set to m (#223-227). In case this
replacement attempt fails, the operation is aborted and NULL is returned (#248-
249) whereas in case of success, the node n1 is irreplaceable (#67-69) and other
processes can still abort the join (#75, and then #76-78). Next, p attempts to
set the join id variable of m’s parent and grandparent to m, effectively marking
those two route nodes, to ensure that any other conflicting join operations cannot
modify them (#228-233). In case of failure the join id of grandparent is restored
to NULL, the operation is aborted and NULL is returned (#247-249). The rest
of the information necessary for the join to complete (m’s grandparent, sibling
and neighbor) is stored in m (#234-236). Next, p determines the parent of the
base node that will host the resulting treap depending on whether m and n1 are
siblings or not (#237), and tries to replace the PREPARING value of m’s neigh2
variable with that base node, which is called n2 (#238-243). If this replacement
attempt succeeds, m is returned (#244), and the join operation cannot be aborted
anymore - it will be completed by this or other helping processes with a call to
complete join() (#79-81). Otherwise, if this replacement attempt fails, the join id
of parent and grandparent is restored to NULL, the operation is aborted and NULL
is returned (#245-249).

complete join(t, m): Process p that executes complete join(t, m) executes the
remaining steps of a join operation. This function cannot fail or backtrack - failure
of any CAS operation means that it is executed simultaneously by another process
which is helping p. Initially, p replaces the join neighbor base node with the new
base node that contains the resulting treap of the join (#252-254). It then makes
m’s parent invalid (#255). This is an indicator used by Query() operations to
avoid visiting the treap of an invalid node (#152) because its treap has already
been merged into the join neighbor’s treap (#243). Next, p determines the node
that will replace m’s parent (thus called replacement node) depending on whether
m and n2 are siblings or not (#256-257). Finally, p splices m with its parent
out of the tree, by switching the appropriate child pointer of its grandparent to
point to the replacement node (#258-265) and sets m’s neigh2 variable to DONE,
indicating that the join completed successfully.

52 CHAPTER 5. THE LFCA ALGORITHM

5.4.4 Auxilliary Functions

new stat(n, info): Process p that executes new stat(n, info) calculates and
returns a new value for the statistics variable of base node n, taking into ac-
count the value of enum info that indicates contention. If info has the value
noinfo, p returns the current statistics value. Otherwise, if info has the value
contended and the current statistics value is below the upper limit indicated
by the constant HIGH CONT, the calculated value is increased by the constant
CONT CONTRIB and if n is a base node of type range it is decreased by the
constant RANGE CONTRIB. If info has the value uncontended and the current
statistics value is above the lower limit indicated by the constant LOW CONT,
the calculated value is decreased by the constant LOW CONTRIB and if n is a
base node of type range it is decreased by the constant RANGE CONTRIB.

try replace(m, b, new b): Process p that executes try replace(m, b, new b)
performs a CAS operation to replace base node b with new b. It returns TRUE
if the CAS is successful, or FALSE if the CAS is unsuccessful or b is no longer in
the tree.

adapt if needed(t, b): Process p that executes adapt if needed(t, b) returns
immediately if the base node b is not replaceable (#99). Otherwise, if the statistics
value of b exceeds the upper or is below the lower contention limit, it calls the
appropriate adaptation function (#100-103).

is replaceable(n): Returns TRUE if the node n is considered to be replaceable,
otherwise returns FALSE. There are four cases for n to be replaceable:

1) It is of type normal (#64). This is the initial state of all base nodes that are
not involved in any Query() or join operation.

2) It is of type join main and its neigh2 field is ABORTED (#65-66). This
means that the join operation in which it is involved is aborted, thus the
node is replaceable again. Note that when its neigh2 field is DONE, it
means that this node has been removed from the tree and thus it cannot be
replaceable ever again.

3) It is of type join neighbor and its corresponding join main node’s neigh2 field
is either ABORTED or DONE (#67-69). This means that the join operation
in which it is involved is either aborted or completed successfully, thus the
node is replaceable again.

4) It is of type range and the result treap pointer of its storage field is set to the
resulting treap (#70-71). This means that the Query() operation in which
it is involved is completed successfully, thus the node is replaceable again.

5.5. LINEARIZATION POINTS 53

help if needed(t, n): Process p that executes help if needed(t, n) performs
helping, according to the type of operation the node n is involved in. There are
three cases, depending on the type of node n:

1) It is of type join neighbor. In that case, the main node of the join operation
is visited and the helping continues with the next case (#75).

2) It is of type join main. In that case, if the neigh2 field of the node is still set
to PREPARING, meaning that secure join left() has not finished yet, the
join operation is aborted (#76-78). Otherwise, if neigh2 is set to the new
treap that contains the result of the join, complete join() is called to help
the join operation finish (#79-81).

3) It is of type range and the result treap pointer of its storage field is not set
to the resulting treap yet (#82-84). In that case, all in range() is called to
help the Query() operation finish.

5.5 Linearization points

Lookup() is linearized either at the time when the base node it ends up on is
still in the tree, or when it visits the parent of a base node which is being spliced
out of the tree due to an ongoing join operation. An Insert() or Remove() is
linearized when it performs the CAS which changes the appropriate child pointer
of the base node’s parent to the new base node (#119, which leads to either #56
or #58 or #60). Query() is linearized at the time the result pointer is changed
from NOT SET to the treap that contains the result of the query (#211), after
all appropriate base nodes have been replaced. The following table sums up the
linearization points of the operations in LFCA tree:

Lookup Insert Remove Query

Base node CAS on child pointer CAS on child pointer CAS on result
is reachable of base node’s parent of base node’s parent treap pointer

Table 5.1: Linearization points of LFCA tree operations.

54 CHAPTER 5. THE LFCA ALGORITHM

Chapter 6

The BPNB-BST Algorithm

This chapter provides a description of the Batched Persistent Non-Blocking Bi-
nary Search Tree (BPNB-BST), an optimized version of PNB-BST algorithm that
utilizes key batching in the leaves. This algorithm appears in [7]. Our implemen-
tation used for the experimental analysis of chapter 7 is available at [9].

6.1 Introduction

Our experimental work, presented in chapter 7, shows that the performance
of every operation of PNB-BST (and especially the performance of range query
operations) can be greatly affected by batching keys in leaf nodes. LFCA tree
and KIWI utilize key batching, i.e. keys are stored in arrays, and each array is
stored inside a node. In PNB-BST however, every node contains only one key, so
no batching takes place. We have developed BPNB-BST, an optimized version of
PNB-BST that supports key batching in the leaves. Each leaf contains a sorted
immutable array of keys, of size at most m, where m is a parameter called the
batching degree and determines the maximum size of the array (i.e. the maximum
number of keys a leaf node can contain). In BPNB-BST, m is fixed to a constant
value.

6.2 Overview

In BPNB-BST the operations Insert(), Delete(), Find() and RangeScan() are per-
formed differently than in PNB-BST. However, the sequence number mechanism,
as well as the helping and validation schemes, are exactly the same as in PNB-
BST. For that reason, only the functions that differ from PNB-BST are presented
in the pseudocode section below.

A successful Insert(k) operation first calls Search() to get a leaf l and its parent
p. If l is not full (it does not already contain m keys), Insert(k) creates a new leaf
containing all keys stored in l, plus k. Then, it uses CAS to change the appropriate

55

56 CHAPTER 6. THE BPNB-BST ALGORITHM

child pointer of p to point to the new leaf (Fig. 6.1). If l is full, then it is replaced
by a subtree of three nodes in a way similar to that in PNB-BST. However, the set
of keys stored in l is split to two key sets of about the same size which are stored
in the two leaves of the new subtree (Fig. 6.2).

Figure 6.1: Insert() in a non-full leaf.

Figure 6.2: Insert() in a full leaf.

Similarly, a successful Delete(k) operation calls Search() to get a leaf l, its
parent p and its grandparent gp. If k is not the only key stored in l, Delete(k)
creates a new leaf containing all keys stored in l, except k. Then, it uses CAS to
change the appropriate child pointer of p to point to the new leaf 6.3. Therefore,
in this case, Delete(k) acts in a way similar to Insert(k) in a non-full leaf. Thus, it
only flags the node p and marks only node l in this case. Otherwise, flagging and
marking occur as in PNB-BST, and the appropriate child pointer of gp is updated
to point to a copy of the sibling of l 6.4. Unsuccessful updates are performed as
in PNB-BST.

6.3. PSEUDOCODE 57

Figure 6.3: Delete() of a non-last key of a leaf.

Figure 6.4: Delete() of the last key of a leaf.

Find(k) calls Search() to get a leaf l, and then performs a binary search on
the array of keys stored in l. For the array of keys of each leaf it traverses,
RangeScan(x,y) locates the smaller and the larger key of the array that falls in
range [x,y]. Then, it returns these two keys and all keys between them. Helping
is performed by both Find() and RangeScan() in a way similar as in PNB-BST.

6.3 Pseudocode

The pseudocode for BPNB-BST is presented below. New code appears in blue.
Recall that the three nodes of the initial subtree in NB-BST contain the keys ∞1

and ∞2. The same is true for BPNB-BST except that, for the leaf nodes, instead
of keys, arrays of size 1 are used with the only key being∞1 and∞2, respectively.

1 type Leaf { . The rest of the structs (chapter 4, Fig. 4.4) remain the same.
2 Key ∪ {∞1,∞2} keys[] . Array of at most m elements
3 Update update
4 Node * prev
5 int seq
6 }

58 CHAPTER 6. THE BPNB-BST ALGORITHM

7 Find(Key k): Leaf * {
8 Internal * gp, p
9 Leaf * l

10 boolean validated
11 while TRUE {
12 seq = Counter
13 < gp, p, l > = Search(k, seq)
14 < validated,−,− > = ValidateLeaf(gp, p, l, k)
15 if validated then {
16 if LeafContainsKey(l, k) then return l
17 else return ⊥
18 }
19 }
20 }

. Performs binary search of key k in the array of leaf l
21 LeafContainsKey(Leaf * l, Key k): Boolean {
22 int i, a = 0, b = (length of l→ keys− 1)
23 while (a ≤ b) {
24 i = (a + b)/2
25 if k == l→ keys[i] then
26 return TRUE
27 if k < l→ keys[i] then
28 b = i− 1
29 else
30 a = i + 1
31 }
32 return FALSE
33 }

34 Insert(Key k): Boolean {
35 while TRUE {
36 seq = Counter
37 < gp, p, l > = Search(k, seq)
38 < validated,−, pupdate > = ValidateLeaf(gp, p, l, k)
39 if validated then {
40 if LeafContainsKey(l, k) then
41 return FALSE . unsuccessful Insert
42 if l→ keys[0] ==∞1 then {
43 . Special case - insert the very first node
44 newLeaf = new Leaf node
45 newLeaf →< keys, update, prev, seq >=< [k], < FLAG,Dummy >,⊥, seq >
46 newSibling = new Leaf node
47 newSibling →< keys, update, prev, seq >=< [∞1], < FLAG,Dummy >,⊥, seq >
48 newInternal = new Internal node
49 newInternal→< key, update, left, right, prev, seq >=
50 <∞1, < FLAG,Dummy >, newLeaf, newSibling, l, seq >
51 }
52 else if length of l→ keys == m then
53 . l is full - create a new subtree of three nodes
54 newInternal = Split(l, k, seq)
55 else . l is not full - add k to the keys of l
56 newInternal = Add(l, k, seq)

6.3. PSEUDOCODE 59

57 if Execute([p, l], [pupdate, l→ update], [l], p, l, newInternal, seq) then
58 return TRUE . successful Insert
59 }
60 }
61 }

62 ScanHelper(Node * node, int seq, int a, int b): Set {
63 Info * infp
64 if node points to a leaf then
65 return node→ keys ∩ [a, b]
66 else {
67 infp = node→ update.info
68 if infp→ state ∈ {⊥, TRY} then Help(infp)
69 if a ≥ node→ key then return ScanHelper(ReadChild(node,FALSE,seq),seq, a, b)
70 else if b < node→ key then return ScanHelper(ReadChild(node,TRUE,seq),seq, a, b)
71 else return ScanHelper(ReadChild(node,FALSE,seq),seq, a, b) ∪
72 ScanHelper(ReadChild(node,TRUE,seq),seq, a, b)
73 }
74 }

75 Delete(Key k): Boolean {
76 while TRUE {
77 seq = Counter
78 < gp, p, l > = Search(k, seq)
79 < validated, gpupdate, pupdate > = ValidateLeaf(gp, p, l, k)
80 if validated then {
81 if not LeafContainsKey(l, k) then
82 return FALSE . unsuccessful Delete
83 if length of l→ keys == 1 then {
84 . l has only one key - substitute with sibling
85 sibling = ReadChild(p, l→ keys[0] ≥ p→ key, seq)
86 < validated,− > = ValidateLink(p, sibling, l→ keys[0] ≥ p→ key)
87 if validated then {
88 if sibling is Internal then {
89 newSibling = new Internal node
90 newSibling →< key, left, right >=
91 < sibling → key, sibling → left, sibling → right >
92 }
93 else {
94 newSibling = new Leaf node
95 newSibling → keys = sibling → keys
96 }
97 newSibling →< update, prev, seq >=
98 << FLAG,Dummy >, p, seq >
99 if sibling is Internal then {
100 < validated, supdate > = ValidateLink(sibling, newSibling → left, TRUE)
101 if validated then
102 < validated,− > = ValidateLink(sibling, newSibling → right, FALSE)
103 }
104 else
105 supdate = sibling → update
106 if validated and Execute([gp, p, l, sibling], [gpupdate, pupdate, l→ update, supdate],
107 [p, l, sibling], gp, p, newSibling, seq) then

60 CHAPTER 6. THE BPNB-BST ALGORITHM

108 return TRUE . successful Delete
109 }
110 }
111 else { . l contains more than one key - remove k from l
112 newLeaf = Subtract(l, k, seq)
113 if Execute([p, l], [pupdate, l→ update], [l], p, l, newLeaf, seq) then
114 return TRUE . successful Delete
115 }
116 }
117 }
118 }

. Returns a new leaf containing all keys stored in l plus k
119 Add(Leaf l, Key k, int seq): Leaf * {
120 int i, a = 0, b = (length of l→ keys− 1)
121 while (a ≤ b) {
122 i = (a + b)/2
123 if k < l→ keys[i] then
124 b = i− 1
125 else
126 a = i + 1
127 }
128 . Create and return a leaf that contains the keys of l plus k
129 oldSize = (length of l→ keys)
130 newSize = oldSize + 1
131 Leaf * newLeaf = new Leaf node
132 newLeaf → keys[0...a− 1] = l→ keys[0...a− 1]
133 newLeaf → keys[a] = k
134 newLeaf → keys[a + 1...newSize− 1] = l→ keys[a + 1...oldSize− 1]
135 newLeaf →< update, prev, seq >=
136 << FLAG,Dummy >, l, seq >
137 return newLeaf
138 }

. Returns a new leaf containing all keys stored in l except k
139 Subtract(Leaf l, Key k, int seq): Leaf * {
140 int i, a = 0, b = (length of l→ keys− 1)
141 while (a ≤ b) {
142 i = (a + b)/2
143 if k < l→ keys[i] then
144 b = i− 1
145 else
146 a = i + 1
147 }
148 . Create and return a leaf that contains the keys of l except k
149 oldSize = (length of l→ keys)
150 newSize = oldSize− 1
151 Leaf * newLeaf = new Leaf node
152 newLeaf → keys[0...b− 1] = l→ keys[0...b− 1]
153 newLeaf → keys[b...newSize− 1] = l→ keys[b + 1...oldSize− 1]
154 newLeaf →< update, prev, seq >=
155 << FLAG,Dummy >, l, seq >
156 return newLeaf

6.3. PSEUDOCODE 61

157 }

. Splits the array of keys stored in l in two new sets, adding k
158 Split(Leaf l, Key k, int seq): Internal * {
159 . Create a leaf that contains the keys of l plus k
160 Leaf * tempLeaf = Add(l, k, seq)
161 oldSize = (length of tempLeaf → keys)

162 . Create a leaf that contains the left half of tempLeaf keys
163 Leaf * newLeft = new Leaf node
164 newLeft→< keys, update, prev, seq >=
165 < tempLeaf → keys[0...(oldSize/2− 1)],
166 < FLAG,Dummy >,⊥, seq >

167 . Create a leaf that contains the right half of tempLeaf keys
168 Leaf * newRight = new Leaf node
169 newRight→< keys, update, prev, seq >=
170 < tempLeaf → keys[oldSize/2...(oldSize− 1)],
171 < FLAG,Dummy >,⊥, seq >

172 . Create and return the parent of the two new leaves
173 Internal * newInternal = new Internal node
174 newRight→< key, update, left, right, prev, seq >=
175 < newRight→ keys[0], < FLAG,Dummy >,
176 newLeft, newRight, l, seq >
177 return newInternal
178 }

62 CHAPTER 6. THE BPNB-BST ALGORITHM

Chapter 7

Experimental Analysis

This chapter presents our experimental analysis. With this analysis, we illus-
trate the good performance of BPNB-BST and compare it with the performance of
other state-of-the-art algorithms that support range queries, revealing the tradeoffs
that exist among different design decisions. Moreover, the experimental analysis
provides insight and explanations for the performance differences that the stud-
ied algorithms exhibit. Finally, some concluding remarks and lessons learned are
discussed.

7.1 Methodology

System setup To run the benchmarks, we used an established methodology and
extended the code available at [6]. Benchmarks were performed on two machines.
The first machine has two Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz CPUs with 8
cores each and hyperthreading enabled, yielding a total of 32 hardware threads.
The machine is equipped with 256GB of RAM and runs CentOS Linux 7.3.1611
with kernel version 4.4.44. The second machine has four Intel(R) Xeon(R) E5-4610
v3 1.70GHz CPUs with 10 cores each and hyperthreading enabled, yielding a total
of 80 hardware threads. The machine is equipped with 256GB of RAM and runs
CentOS Linux 7.5.1804 with kernel version 3.10.0-862.14.4.el7.x86 64. All imple-
mentations of the algorithms are in Java; OpenJDK 64-Bit Server VM with version
1.8.0 191 was used, with the flags -server and -d64 enabled. Garbage collection
was virtually deactivated by enabling the flags -Xms200G and -Xmx200G. This is
done to avoid the performance penalty imposed on the algorithms by the garbage
collection mechanism.

Operation mixes Suppose there is a first group of threads that executes only
Insert operations, and a second group of threads that executes only Delete opera-
tions. Due to the producer-consumer problem, if Inserts are faster than Deletes,
the tree will be full during the whole experiment. On the other hand, if Deletes

63

64 CHAPTER 7. EXPERIMENTAL ANALYSIS

are faster than Inserts, the tree will be empty the whole time. To be able to mea-
sure a consistent operation performance, the tree has to first reach its steady state,
in which its size should be approximately constant during the whole time of the
experiment. Therefore, in our experiments, operation mixes are used, in which
every thread decides at random (using predefined probabilities) which operation
to execute each time. More specifically, the group of values i, d, f, rq and r is called
an operation mix. In every operation mix, i, d, f and rq are the probabilities for
a thread to execute an Insert, a Delete, a Find and a range query operation, re-
spectively, and keys are integers drawn uniformly at random from the range [1, r].
Before the start of each run, the tree is prefilled with randomly selected keys until
reaching its steady state, in which the tree maintains an approximately constant
size of ri

i+d keys throughout the whole experiment.

Measuring performance The throughput of an implementation is defined as:

Throughput =
Completed Operations

Time of completion

Throughput is the most commonly used performance metric of a concurrent data
structure. In our experiments, we let all threads run for a specific time interval and
count the total number of operations that are completed by all threads in that time
interval. This is done to ensure that the throughput we measure corresponds to
the time when all threads are running concurrently in the system. An alternative
setting would be to give each thread a specific amount of work to do (i.e., a specific
number of operations to execute) and measure the time it takes for all threads to
complete the execution of their operations. This could be problematic for the
following reason: In some of our experiments we have groups of threads executing
a single operation (such as range queries), and thus not all threads use the same
operation mix. In such cases, using the ”fixed amount of operations” approach,
some threads (e.g. those that execute Insert, Delete and Find) may finish their
work sooner than others.

To compute each data point of a diagram, 10 runs of the experiment with a
duration of 6 seconds each were executed. Because of JIT compilation performed
by the JVM, the first five runs were deliberately discarded (they were used solely
to warm up the JVM) and the average from the last five runs was used as the data
point value. The vertical line that crosses the horizontal axis at 32 or 80 threads in
the Throughput vs Number of Threads diagrams indicates the maximum number
of hardware threads of the machine on which the experiment was performed.

Tools To compare the space complexity of an algorithm with that of others,
its memory footprint, i.e. the amount of physical memory that the system has
allocated for the benchmark process, is measured over time. To accomplish this,
the ps tool was used. Specifically, the command ”ps h -p $java pid -o rssize”
was executed by a script every second, and the result was written to a file. In

7.2. EXPERIMENTAL EVALUATION 65

this command, $java is the pid of the benchmark process. In contrast with most
profilers, ps does not impose any slowdown on the benchmark itself. This was the
main reason that this method was chosen.

The performance of an implementation can depend on many factors, including
preemption by the operating system, page faults, cache misses, and algorithmic
reasons [1]. To avoid operating system preemption, no other user processes were
running in the system at the same time with the benchmark. To avoid page faults,
the benchmark was run on a machine with sufficient amount of memory for the
whole execution of each experiment.

As experiments have shown, one of the most important factors that affects the
performance of an implementation is its cache miss rate, i.e. the number of cache
misses per algorithmic operation (such as Insert, Delete, Find or RangeQuery) the
implementation produces. To measure the cache miss rate, the linux perf tool
was used, with the ”cache misses” performance counter. After the end of each
experiment, the total number of cache misses reported by perf was divided with
the total number of operations reported by the benchmark.

The keysum test The keysum test is a correctness check for concurrent im-
plementations included in the benchmark. It works as follows: Every thread t
maintains a thread local integer variable, called keysum counter. Every time t
performs a successful Insert(k) (or Delete(k)) call, t adds k to (or subtracts k
from) this counter. After the end of the experiment, the main thread sums up the
counters of all threads, and the result should be equal to the sum of keys that the
tree contains at the end of the experiment, which is found by a simple traversal of
the tree by the main thread. Note that the keysum check is performed at the end
of the execution and the time it requires to execute does not count as execution
time of the experiment. Moreover, the addition and subtraction happen on thread
local variables and therefore they do not incur any overhead to a thread.

7.2 Experimental Evaluation

In section 7.2.1, we start by presenting a set of diagrams (Fig. 7.1 - 7.5) showing
preliminary results that we got at the beginning of our analysis. Based on these
diagrams, we extracted useful knowledge which we then used to perform a number
of meaningful optimizations on PNB-BST. These optimizations and the impact
they have on performance are discussed in section 7.2.2.

We then present a set of experiments to study the impact of batching on LFCA
tree (section 7.2.3, Fig. 7.8 and 7.9). Then, we present the performance of BPNB-
BST in comparison with other state-of-the-art algorithms which employ batching
(Fig. 7.10 and 7.18), and conclude with a comparison of the performance of the
algorithms discussed in this thesis (section 7.3).

66 CHAPTER 7. EXPERIMENTAL ANALYSIS

7.2.1 NB-BST and PNB-BST

As already mentioned, PNB-BST (presented in Chapter 4) builds on top of NB-
BST (presented in Chapter 3) providing support for range query operations. Thus,
we are interested in measuring the performance overhead of PNB-BST operations
in relation to the corresponding ones of NB-BST. We start with an experiment of
a mix of all operations (Fig. 7.1).

	0

	5

	10

	15

	20

	1 	2 	4 	8 	16 	32 	64

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

30%	Insert,	20%	Delete,	50%	Find,	KeyRange:	106

NB-BST
PNB-BST

Figure 7.1: Performance of updates in NB-BST and PNB-BST.

In both NB-BST and PNB-BST, the performance of Inserts and Deletes de-
pends on the performance of Finds. This is because every Insert or Delete operation
locates at first the three last nodes of a path from the root to a leaf (namely the
leaf, its parent and grandparent) before making any changes to the tree. Thus, it
is reasonable to first study the performance of Find operations alone.

We perform experiments for both small key ranges (this results in small trees
with about 104 nodes, that may fit in the cache) and large key ranges resulting
in big trees (106 nodes) that do not fit in the cache. In this section, we focus on
experiments for big trees where the performance differences between algorithms
are more emphasized.

The performance difference shown in Fig. 7.2 is quite unexpectable, because
the implementations of Find in NB-BST and PNB-BST are similar: They both
walk down a path of the tree and return the leaf that contains the key to be found,
or null if the key was not found.

We got a better understanding of why this happened by plotting the cache
miss rate (Fig. 7.3a) and the memory footprint (Fig. 7.3b) of each implementation.
Experiments shown in figures 7.3 - 7.5 illustrate the impact of cache miss rate to
performance, and led us to apply optimizations that were necessary to reduce this
rate. As we can see, the memory footprint of PNB-BST is similar to that of
NB-BST. On the other hand, PNB-BST produces twice as many cache misses per

7.2. EXPERIMENTAL EVALUATION 67

	0

	5

	10

	15

	20

	25

	30

	1 	2 	4 	8 	16 	32 	64

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

Figure 7.2: Performance of Finds in NB-BST and PNB-BST.

operation than NB-BST. So we focus on how to reduce these cache misses.

	0

	5

	10

	15

	20

	25

	1 	2 	4 	8 	16 	32 	64

	9.5

	19.5

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

(a) Cache misses of Finds

	0

	5

	10

	15

	20

	25

	30

	35

1 2 3 4 5 6 7 8

Al
lo

ca
te

d	
m

em
or

y	
(G

B)

Time	(min)

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

(b) Memory footprint of Finds

Figure 7.3: Finds in PNB-BST.

To further investigate where the cache misses come from, a Java profiler was
used. The results indicated that most of the execution time was devoted to a
function that PNB-BST Find() calls, namely ValidateLeaf(), so that function was
a source of excessive cache misses. To evaluate this, a special version of PNB-
BST was constructed in which this function was not called, without breaking
correctness. The results are shown in Fig. 7.4.

68 CHAPTER 7. EXPERIMENTAL ANALYSIS

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	4 	8 	16 	32 	64

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

PNB-BST	(no	validations)

(a) Performance of Finds

	0

	5

	10

	15

	20

	25

	1 	2 	4 	8 	16 	32 	64

	9.5

	14

	19.5

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

PNB-BST	(no	validations)

(b) Cache misses of Finds

Figure 7.4: Finds in PNB-BST after the removal of validations.

In a similar manner, we experimented with additional special versions of PNB-
BST where we gradually remove lines of code, until we figured out which parts
of the code were causing the excessive cache misses (Fig. 7.5). The versions that
appear in Fig. 7.5 are the following:

a) The NB-BST implementation.

b) The PNB-BST implementation.

c) The PNB-BST implementation, after the removal of Frozen() function.

d) The implementation of (c), after the removal of ValidateLeaf() function.

e) The implementation of (d), with the Find() function substituted by the
Find() of NB-BST.

f) The implementation of (e), with the node objects substituted by the node
objects of NB-BST.

g) The implementation of (f), with the Insert() function made similar to the
Insert() of NB-BST.

The diagrams of Fig. 7.5 indicate that the performance penalty of PNB-BST
is imposed by the algorithm itself. This is so because versions (c), (d), (e), (f) and
(g) were manufactured solely for testing purposes, as they break correctness in the
general case. Thus, the slowdown seems to be due to algorithmic reasons.

In Fig. 7.5, the inversely proportional relationship of throughput and cache
miss rate becomes apparent. NB-BST Finds produce 9.5 cache misses/operation
whereas PNB-BST Finds produce 19.5 cache misses/operation. This 10 cache

7.2. EXPERIMENTAL EVALUATION 69

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	4 	8 	16 	32 	64

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

PNB-BST	(no	frozen)
PNB-BST	(no	validations)

PNB-BST	(same	find	with	BST)
PNB-BST	(same	nodes	with	BST)

PNB-BST	(optimized	Insert	for	prefilling)

(a) Performance of Finds

	0

	5

	10

	15

	20

	25

	1 	2 	4 	8 	16 	32 	64

	9.5
	11
	13
	14

	19.5

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

PNB-BST	(no	frozen)
PNB-BST	(no	validations)

PNB-BST	(same	find	with	BST)
PNB-BST	(same	nodes	with	BST)

PNB-BST	(optimized	Insert	for	prefilling)

(b) Cache misses of Finds

Figure 7.5: Finds in different versions of PNB-BST.

misses/operation difference seems to be the cause of the performance drop of PNB-
BST compared to NB-BST. It can be analyzed as follows:

• About half of the cache misses are performed when executing the Frozen()
function. During a Find(), Frozen() is called two times, accessing both the
update struct and the info struct of the update struct each time it is called.

• About 10% of the cache misses come from PNB-BST Find(), excluding the
call to ValidateLeaf().

• About 20% of the cache misses come from the fact that PNB-BST nodes
are of bigger size than NB-BST nodes. This can be important especially
for big trees (with at least 106 nodes, as in the current case) because as the
nodes get larger, fewer of them can fit in the cache. This is also true for
other structs of the algorithm that are frequently accessed, such as the Info
structs.

• About 20% of the cache misses come from the Insert() function, which is
used to prefill the tree with 106 nodes (∼ 5 · 105 leaves and ∼ 5 · 105 internal
nodes) before the actual experiment begins. In version, Insert() performs
similarly as the Insert() of NB-BST.

7.2.2 PNB-BST optimizations

Since the performance drop of PNB-BST with respect to NB-BST is attributed to
algorithmic reasons, we started investigating possible algorithmic optimizations.
In the end, the following were applied to PNB-BST:

70 CHAPTER 7. EXPERIMENTAL ANALYSIS

1) After helping, the search is restarted from the grand-grandparent of the leaf
(ggp) instead of the root node, provided that ggp is not marked. This has
also been applied on NB-BST implementation.

2) The variables par, oldChild and the mark[] array of the Info struct are re-
moved. The rationale is that these are immutable duplicated values which
exist in nodes[] array as well, so there is no need to pass them twice. This
way the memory footprint will decrease and that may lead to fewer cache
misses.

3) The Update field has been replaced by an Info pointer. At the same time
the type enum is removed. This is based on the following observations:

– There is no need for both FLAG and MARK, since everything that is
not MARK is considered FLAG. Therefore, only MARK is useful.

– In nodes[] array, the first node is always flagged and the rest are always
marked. Therefore, in Fig. 4.6 of chapter 4, line #118 is never executed,
and thus lines #116 and #118 are removed.

– A node is always either flagged or marked for some Info object. There-
fore, the information of whether a node is flagged or marked can be
drawn from the Info object that the node’s Info pointer points to. More
specifically, if the Info pointer is set to the Dummy Info object or the
node is first in the nodes[] array, then the node is considered flagged
for that Info object. On the other hand, if the node is not placed first
in the nodes[] array, then it is considered marked for that Info object.

4) As explained in Table 4.3 of Chapter 4, Frozen() returns True whenever a
node either needs help (i.e., its Info object’s state is NULL or TRY) or is
deleted from the tree (i.e., its Info object’s state is COMMIT and the node
is marked for that Info object). There is no need to help when the node is
deleted, so an optimization is applied to lines #53-55 (Fig. 4.5, chapter 4)
to avoid helping in that case.

Out of these optimizations, only optimization (3) is directly related to a de-
crease in cache misses. This is because, after the transformation of Update fields
to Info pointers, a double dereference becomes a single dereference. This happens
in Frozen(), which is called twice per operation. Thus, after these optimizations,
we expect a decrease of at least ∼ 2 cache misses/operation, and we also expect the
performance difference to decrease accordingly. This is evaluated in the diagrams
of Fig. 7.6.

We can see that these optimizations increased the performance of PNB-BST
Find() by 15%.

7.2. EXPERIMENTAL EVALUATION 71

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	4 	8 	16 	32 	64

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

PNB-BST	(optimized)

(a) Performance of Finds

	0

	5

	10

	15

	20

	25

	1 	2 	4 	8 	16 	32 	64

	9.5

	16

	19.5

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

PNB-BST	(optimized)

(b) Cache misses of Finds

Figure 7.6: Finds in optimized PNB-BST.

7.2.3 LFCA tree and key batching

After optimizing PNB-BST, we now bring LFCA tree into the picture. Following
the approach of section 7.2.1, we first examine what happens in a 100% Find()
scenario, before adding update operations to the mix.

The result shown in Fig. 7.7a indicates that the performance of the Find()
operation of LFCA tree is about 2.5 times better compared to the Find() of NB-
BST. This can seem quite strange, because the code of Find() operation of LFCA
tree is similar to that of NB-BST. However, LFCA tree uses treaps to store its
keys inside them. A closer look on the implementation of these treaps [13] shows
that keys are stored sequentially in arrays, and each array is stored inside a leaf
of a treap. That is, the LFCA tree utilizes key batching in the leaves of these
treaps. The maximum number of keys that each array can store is controlled by
a constant. We refer to this constant as the batching degree of LFCA tree. The
default value of the batching degree of LFCA tree is 64. We repeat the previous
experiment, for different versions of the LFCA tree, each one having a different
batching degree, which is denoted as an integer besides its name in the diagrams.
The results are shown in Fig. 7.8.

Fig. 7.8a shows that, for a batching degree of 2, Find of LFCA tree has lost
43% of its performance. Now it is only 0.3 times faster than that of NB-BST.
Thus, key batching seems to play an important role for the performance of Finds.
We are interested to see whether the same is true for the performance of range
queries. To achieve this, we perform an experiment where half of the threads
are updaters (they execute only Insert and Delete operations) and the other half
are RangeQuerers (they execute only range query operations). The throughput
achieved by RangeQuerers for different range query sizes is shown in Fig. 7.9.

72 CHAPTER 7. EXPERIMENTAL ANALYSIS

	0

	10

	20

	30

	40

	50

	60

	70

	80

	1 	2 	4 	8 	16 	32 	64

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

LFCA

(a) Performance of Finds

	0

	2

	4

	6

	8

	10

	12

	14

	16

	18

	1 	2 	4 	8 	16 	32 	64

	1.3

	9.5

	15

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

LFCA

(b) Cache misses of Finds

Figure 7.7: Finds in LFCA tree.

In Fig. 7.9 we can see that, with a batching degree of 2, RangeScan of LFCA
tree has got an order of magnitude slower. Its performance is now equal to RangeS-
can of PNB-BST. For LFCA tree and PNB-BST, the performance of range queries
decreases as the range query size increases. This is expected, because range queries
have to search for a lot more keys when the range query size is large. What is more
noteworthy is that, as the batching degree of the LFCA tree approaches that of
PNB-BST (which can be thought to have a batching degree of 1), the performance
of range queries is always the same in both algorithms, for all range query sizes.
Therefore, key batching seems to be a crucial factor for range query performance.

7.2.4 BPNB-BST

As we saw in section 7.2.3, batching is crucial for performance. For this reason,
we come up with a batched version of PNB-BST, called BPNB-BST, which stores
arrays of keys in the leaf nodes. This way, BPNB-BST achieves a reduced rate
of cache misses: an entire array of keys are moved into the cache every time a
cache miss occurs to access a leaf. In contrast, when PNB-BST pays a cache
miss it brings just one key into the cache. Thus, the cache miss rate of BPNB-
BST is lower, and the performance of range queries and Finds is higher. These
observations are illustrated in Fig. 7.10. The degree of batching in BPNB-BST
is denoted as an integer besides its name in the diagrams. Fig. 7.10a shows the
throughput and Fig. 7.10b shows the cache miss rate for the case of Finds.

In Fig. 7.10a we can see that the Finds of BPNB-BST achieve two times better
performance than the Finds of NB-BST, and three times better performance than
the Finds of PNB-BST. This is attributed to the low cache miss rate of BPNB-BST
Finds (Fig. 7.10b), which is due to the employment of batching. Batching has two

7.3. PERFORMANCE COMPARISON 73

	0

	10

	20

	30

	40

	50

	60

	70

	80

	1 	2 	4 	8 	16 	32 	64

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST
LFCA	64
LFCA	10

LFCA	2

(a) Performance of Finds

	0

	2

	4

	6

	8

	10

	12

	14

	16

	18

	1 	2 	4 	8 	16 	32 	64

	1.3
	2.8

	6.4

	9.5

	15

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST
LFCA	64
LFCA	10
LFCA	2

(b) Cache misses of Finds

Figure 7.8: Finds in LFCA tree, for different batching degrees.

effects. First, it reduces the number of levels of the tree, so a path from the root
to a leaf node gets shorter. And second, because keys are brought into cache in
arrays, some keys that will be searched by future Finds are already in the cache.

The results for range queries are shown in Fig. 7.18b where BPNB-BST is
compared to other algorithms as well.

7.3 Performance Comparison

This section analyzes the performance of BPNB-BST and compares it with that
of the algorithms that have been discussed (and others).

In the first experiment (Fig. 7.11 and 7.12), the total throughput of operations
is plotted against the number of threads, without range queries. We examine
the cases of a read-dominated workload (30% updates and 70% Finds) and a
write-dominated workload (70% updates and 30% Finds) for big and small trees
(Fig. 7.11 and 7.12). We can see that NB-BST is the best performing algorithm
in these experiments. This can be explained by the analysis of section 7.2.1:
Find, Insert and Delete routines are much simpler and lightweight in NB-BST
compared to the other algorithms, which have to synchronize with range queries
as well. In Fig. 7.11a and 7.11b, contention is low because the tree size is big. The
performance of LFCA tree in these diagrams is similar to that of PNB-BST. This
is because, despite the fact that LFCA tree employs batching, which is expected to
give a boost in performance, its Insert and Delete routines are heavier than those
of PNB-BST because, in case of low contention, treaps get bigger, so an update has
to copy longer paths from the root of a treap to a leaf. In these diagrams, batching
seems to be an advantage for BPNB-BST and can explain its good performance.

74 CHAPTER 7. EXPERIMENTAL ANALYSIS

10-4

10-3

10-2

10-1

1

10

	8 	32 	128 	512 2K 8K 32K 128K512K

Th
ro

ug
hp

ut
	o

f	R
Qe

rs
	(o

ps
/μ

s)

RangeQuery	Size

40	RQers
+	40	Updaters	(50%	Insert,	50%	Delete),	KeyRange:	106

PNB-BST
LFCA	64
LFCA	16

LFCA	2

Figure 7.9: Performance of RangeQueries in LFCA tree, for different batching
degrees.

In Fig. 7.12a and 7.12b, contention is higher because the tree size is smaller. In
that case, Finds and updates in BPNB-BST are forced to help other updates that
block their own progress, and this results to a performance penalty for BPNB-
BST. BPNB-BST 64 exhibits an additional slowdown compared to BPNB-BST 16
due to its excessive batching, which further increases contention. KIWI exhibits a
performance degradation in most cases (especially when contention is high). This
can be attributed to its heavy rebalancing mechanism, and the fact that updaters
are forced to help the rebalance operation before they can make progress with their
own work.

After examining the throughput of threads when no range queries are executed,
we now add range queries running in separate cores, to study the performance
penalty imposed by range queries on the other operations. Figures 7.13, 7.14
and 7.15 shows the total throughput of threads performing Inserts, Deletes and
Finds when an additional set of threads (called RangeQuerers) perform only range
queries of size 103. For PNB-BST (Fig. 7.13a and 7.13b), it is apparent that
range queries do not significantly affect the other operations’ performance. This is
because, in PNB-BST, the contention between range queries and other operations
is minimal: updates and Finds do not help range queries to complete, whereas
range queries might spend most of their time traversing older versions of the tree
(i.e. deleted nodes), this way avoiding interference with updates. For LFCA tree
(Fig. 7.14a and 7.14b), the performance of the other operations is significantly
affected by RangeQuerers when the size of the range being scanned (namely the
range query size, denoted as RQSize in the diagrams) approaches the size of the
tree, as in Fig. 7.14b. This is because, in LFCA tree, updaters are forced to help
range queries to complete. Whenever a range query with a large range query size
is performed, almost all base nodes of the tree become irreplaceable (i.e., they

7.3. PERFORMANCE COMPARISON 75

	0

	10

	20

	30

	40

	50

	60

	70

	80

	1 	2 	4 	8 	16 	32 	64

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

BPNB-BST	64
LFCA

(a) Performance of Finds

	0

	5

	10

	15

	20

	1 	2 	4 	8 	16 	32 	64

	1.3
	2.8

	9.5

	16

Ca
ch
e-
m
iss

es
	/	
Op

er
at
io
n

Number	of	Threads

0%	Insert,	0%	Delete,	100%	Find,	KeyRange:	106

NB-BST
PNB-BST

BPNB-BST	64
LFCA

(b) Cache misses of Finds

Figure 7.10: Finds in BPNB-BST for a batching degree of 64.

become effectively locked). Thus, many updaters have to help that range query
to complete. This way, their progress is delayed. For BPNB-BST (Fig. 7.15a
and 7.15b), the overhead of RangeQuerers is bigger because, due to batching, the
RangeQuerers are faster. When the RangeQuerers are fast, the Counter variable
that is used for assigning versions to nodes is being rapidly incremented. Thus,
handshaking fails more often, and this way updaters cannot easily make progress
since they are more prone to restart their operations.

Next, the total throughput of operations is measured when range queries are
added to the operation mix (Fig. 7.16 and 7.17). This diagram clearly shows the
importance of batching degree: PNB-BST can be thought to have a batching
degree of 1, and the algorithms that use batching perform significantly better.
Experiments of the same type, with more than 10% range queries (as in Fig. 7.16a
and 7.16b), produce similar results. This is because, since range queries are slower
than the other operations, threads spend a great fraction of their time performing
range queries in such experiments. Figures 7.17a and 7.17b show the performance
of the different algorithms for reduced values of this fraction, as many applications
spend a smaller portion of their time executing range queries.

In the last experiment (Fig. 7.18), we consider how the size of the range be-
ing scanned affects performance. Half of the threads are RangeQuerers and the
other half are updaters, which perform Inserts and Deletes. The throughput of
the two groups is depicted in separate diagrams. For the throughput of updaters
(Fig. 7.18a), LFCA tree performs better for small range query sizes, whereas PNB-
BST and BPNB-BST outperform LFCA tree for large range query sizes. This
diagram supports the claim that we’ve made about the diagrams of Fig. 7.13, 7.14
and 7.15: For small range query sizes, the rate of change of Counter variable in

76 CHAPTER 7. EXPERIMENTAL ANALYSIS

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	4 	8 	16 	32 	80 	128

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find,	KeyRange:	106

NB-BST
KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	64

(a)

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	4 	8 	16 	32 	80 	128

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

40%	Insert,	30%	Delete,	30%	Find,	KeyRange:	106

NB-BST
KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	64

(b)

Figure 7.11: Total throughput without RangeQueries in big trees

	0

	20

	40

	60

	80

	100

	1 	2 	4 	8 	16 	32 	80 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find,	KeyRange:	104

NB-BST
KIWI

LFCA
PNB-BST

BPNB-BST	16
BPNB-BST	64

(a)

	0

	10

	20

	30

	40

	50

	60

	70

	1 	2 	4 	8 	16 	32 	80 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

40%	Insert,	30%	Delete,	30%	Find,	KeyRange:	104

NB-BST
KIWI

LFCA
PNB-BST

BPNB-BST	16
BPNB-BST	64

(b)

Figure 7.12: Total throughput without RangeQueries in small trees

7.3. PERFORMANCE COMPARISON 77

	0

	5

	10

	15

	20

	25

	30

	1 	2 	4 	8 	16 	32 	72 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find
	KeyRange:	106,	RQSize:	103

PNB-BST	(no	RQers)
PNB-BST	(+1	RQers)
PNB-BST	(+4	RQers)
PNB-BST	(+8	RQers)

(a)

	0

	10

	20

	30

	40

	50

	60

	70

	1 	2 	4 	8 	16 	32 	72 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find
	KeyRange:	104,	RQSize:	103

PNB-BST	(no	RQers)
PNB-BST	(+1	RQers)
PNB-BST	(+4	RQers)
PNB-BST	(+8	RQers)

(b)

Figure 7.13: RangeQuery Overhead in PNB-BST

	0

	5

	10

	15

	20

	25

	30

	1 	2 	4 	8 	16 	32 	72 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find
	KeyRange:	106,	RQSize:	103

LFCA	(no	RQers)
LFCA	(+1	RQers)
LFCA	(+4	RQers)
LFCA	(+8	RQers)

(a)

	0

	10

	20

	30

	40

	50

	60

	70

	80

	1 	2 	4 	8 	16 	32 	72 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find
	KeyRange:	104,	RQSize:	103

LFCA	(no	RQers)
LFCA	(+1	RQers)
LFCA	(+4	RQers)
LFCA	(+8	RQers)

(b)

Figure 7.14: RangeQuery Overhead in LFCA tree

78 CHAPTER 7. EXPERIMENTAL ANALYSIS

	0

	5

	10

	15

	20

	25

	30

	35

	1 	2 	4 	8 	16 	32 	72 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find
	KeyRange:	106,	RQSize:	103

BPNB-BST	64	(no	RQers)
BPNB-BST	64	(+1	RQers)
BPNB-BST	64	(+4	RQers)
BPNB-BST	64	(+8	RQers)

(a)

	0

	5

	10

	15

	20

	25

	30

	35

	40

	45

	1 	2 	4 	8 	16 	32 	72 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	70%	Find
	KeyRange:	104,	RQSize:	103

BPNB-BST	64	(no	RQers)
BPNB-BST	64	(+1	RQers)
BPNB-BST	64	(+4	RQers)
BPNB-BST	64	(+8	RQers)

(b)

Figure 7.15: RangeQuery Overhead in BPNB-BST 64

	0

	1

	2

	3

	4

	5

	6

	7

	1 	2 	4 	8 	16 	32 	80 	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

20%	Insert,	10%	Delete,	35%	Find,	35%	RQ
	KeyRange:	106,	RQSize:	103

KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	64

(a)

	0

	2

	4

	6

	8

	10

	1 	2 	4 	8 	16 	32 	80	128

Th
ro

ug
hp

ut
	(o

ps
/μ

s)

Number	of	Threads

40%	Insert,	30%	Delete,	15%	Find,	15%	RQ
	KeyRange:	106,	RQSize:	103

KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	64

(b)

Figure 7.16: Total throughput with RangeQueries - high RQ percentage

7.3. PERFORMANCE COMPARISON 79

	0

	5

	10

	15

	20

	1 	2 	4 	8 	16 	32 	80 	128

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

40%	Insert,	30%	Delete,	29%	Find,	1%	RQ
	KeyRange:	106,	RQSize:	103

KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	64

(a)

	0

	5

	10

	15

	20

	25

	1 	2 	4 	8 	16 	32 	80	128

Th
ro
ug

hp
ut
	(o

ps
/μ
s)

Number	of	Threads

40%	Insert,	30%	Delete,	29.9%	Find,	0.1%	RQ
	KeyRange:	106,	RQSize:	103

KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	64

(b)

Figure 7.17: Total throughput with RangeQueries - low RQ percentage

PNB-BST and BPNB-BST (which is the synchronization point between updaters
and RangeQuerers) is greater because the throughput of range queries is high, as
they only have to traverse a small portion of the tree. Thus, handshaking fails
more often and updaters have to restart their operation quite frequently, causing
their performance to drop. From Fig. 7.18b we can deduce that RangeQuerers per-
form faster when batching is employed. This is why BPNB-BST 16 is better than
BPNB-BST 32, and BPNB-BST 32 is better than BPNB-BST 64 in Fig.7.18a: the
faster the RangeQuerers, the more likely the updaters are to restart their opera-
tion. On the other hand, LFCA tree cannot keep its high performance for updates
when range queries of large range query sizes are executed, because it employs a
heavy helping mechanism: many updates are forced to help a large range query to
complete, before they make progress themselves. As we can see in Fig. 7.18, up-
dates and range query operations of BPNB-BST 16 scale better with range query
size than the corresponding operations of PNB-BST. Furthermore, by selecting a
proper value of the batching degree for BPNB-BST, one can trade update perfor-
mance for range query performance. As expected, Fig. 7.18b shows that, for every
algorithm, the throughput of RangeQuerers decreases as the range query size in-
creases, because the range query has to traverse a bigger portion of the tree to
complete. Depending on the batching degree, range queries of BPNB-BST can be
up to an order of magnitude faster than those of PNB-BST. The performance of
RangeQuerers in BPNB-BST 64 and LFCA tree (which also has batching degree
64) is almost identical for all range query sizes. This provides further evidence
that the high performance of range queries in LFCA tree (illustrated in Figure
7.16) comes mainly from the key batching.

80 CHAPTER 7. EXPERIMENTAL ANALYSIS

	0

	2

	4

	6

	8

	10

	12

	8 	32 	128 	512 2K 8K 32K 128K 512K

Th
ro
ug

hp
ut
	o
f	U

pd
at
er
s	(

op
s/
μs
)

RangeQuery	Size

40	Updaters	(50%	Insert,	50%	Delete)
+	40	RQers,	KeyRange:	106

KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	32
BPNB-BST	64

(a)

10-4

10-3

10-2

10-1

1

10

	8 	32 	128 	512 2K 8K 32K 128K 512K
Th

ro
ug

hp
ut

	o
f	R

Qe
rs

	(o
ps

/μ
s)

RangeQuery	Size

40	RQers
+	40	Updaters	(50%	Insert,	50%	Delete),	KeyRange:	106

KIWI
LFCA

PNB-BST
BPNB-BST	16
BPNB-BST	32
BPNB-BST	64

(b)

Figure 7.18: Throughput of (a) Updaters and (b) RangeQuerers

7.4 Conclusions

The completion of this thesis resulted to the following lessons learned:

• Two of the most important factors that affect the performance of
an implementation are: 1) the contention of threads, and 2) the
cache miss rate of operations. While the cache miss rate has the same
meaning for every implementation, contention can have different meanings,
depending on the specific algorithmic choices of each implementation. More
specifically, the amount of helping every thread has to perform seems to be a
source of contention for all presented algorithms. For PNB-BST and BPNB-
BST in particular, the global integer variable used for versioning nodes seems
to be an additional source of contention. Performance seems to degrade when
either contention, or the cache miss rate, or both, increase. Memory footprint
does not affect performance in general, although it may affect performance
indirectly, by increasing the cache miss rate.

• Key batching can play a critical role in performance, as it signif-
icantly decreases the cache miss rate. This is true especially for Find
and Range Query operations. However, there is the following trade-off: Ex-
cessive batching may increase contention, and can thus have a negative effect
on performance in some cases.

• Algorithmic choices can seriously affect performance, since they
determine both the contention and the cache miss rate. The per-
sistence property of PNB-BST and BPNB-BST reduces contention between

7.4. CONCLUSIONS 81

updates and large range queries. The same is not true for LFCA tree: Be-
cause updates are forced to help range queries, this becomes detrimental to
performance as the range query size approaches the tree size. On the other
hand, Finds and updates in PNB-BST and BPNB-BST are forced to help
other updates that block their own progress. This can cause an additional
performance penalty in cases of high contention.

To conclude, we showed that BPNB-BST is an algorithm that performs bet-
ter than PNB-BST in most cases and compares well with other state-of-the-art
implementations. It provides up to an order of magnitude faster range queries
than PNB-BST. It also provides updates whose performance scale well with range
query size. This is without sacrificing progress for performance, since BPNB-BST
maintains the same progress guarantees as PNB-BST.

82 CHAPTER 7. EXPERIMENTAL ANALYSIS

Bibliography

[1] M. Herlihy, N.Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers, 2008.

[2] H. Attiya, J. Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. Morgan Kaufmann Publishers, 1998.

[3] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[4] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary
search trees. In Proc. 29th ACM Symposium on Principles of Distributed Com-
puting (PODC 10), pages 131-140, 2010.

[5] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary
search trees. Technical Report CSE-2010-04, York University, 2010.

[6] T. Brown. Software Artifacts. https://bitbucket.org/trbot86/

implementations/src/master/

[7] P. Fatourou, E. Papavasileiou and E. Ruppert. Persistent non-blocking bi-
nary search trees supporting wait-free range queries. In the 31st ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’19). ACM,
New York, NY, USA, pages 275-286, https://doi.org/10.1145/3323165.

3323197, 2019.

[8] P. Fatourou, E. Papavasileiou and E. Ruppert. Persistent non-blocking bi-
nary search trees supporting wait-free range queries. https://arxiv.org/abs/
1805.04779, 2019.

[9] E. Papavasileiou. Implementations of concurrent data structures. https://

github.com/elias-pap/concurrent-data-structures

[10] K. Winblad, K. Sagonas, and B. Jonsson. Lock-free contention adapting search
trees. In Proceedings of the 30th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’18, New York, NY, USA, 2018.

[11] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica 16, 4 (01
Oct. 1996), 464-497. https://doi.org/10.1007/BF01940876, 1996.

83

84 BIBLIOGRAPHY

[12] K. Winblad, K. Sagonas, and B. Jonsson. Lock-free contention adapt-
ing search trees (extended version), http://www.it.uu.se/research/group/
languages/software/ca_tree, 2018.

[13] K. Winblad. JavaRQBench. https://github.com/kjellwinblad/

JavaRQBench

[14] D. Basin, E. Bortnikov, A. Braginsky, G. Golan-Gueta, E. Hillel, I. Keidar,
and M. Sulamy. KiWi: A key-value map for scalable real-time analytics. In
Proc. 22nd ACM Symposium on Principles and Practice of Parallel Program-
ming, pages 357-369, 2017. https://github.com/sdimbsn/KiWi.

[15] T. Brown and H. Avni. Range queries in non-blocking k-ary search trees.
In Proc. 16th International Conference on Principles of Distributed Systems,
pages 31-45, 2012.

[16] A. Prokopec, N.G. Bronson, P. Bagwell and M. Odersky. Concurrent Tries
with Efficient Non-blocking Snapshots. In Proc. 17th ACM Symp. on Principles
and Practice of Parallel Programming, pages 151-160, 2012.

[17] E. Petrank and S. Timnat. Lock-Free Data-Structure Iterators. In Proc. 27th
International Symposium on Distributed Computing, pages 224-238, 2013.

[18] B. Chatterjee. Lock-free Linearizable 1-Dimensional Range Queries. In Proc.
18th Intl. Conference on Distributed Computing and Networking, pages 9:1–
9:10, 2017.

[19] M. Arbel-Raviv and T. Brown. Harnessing Epoch-based Reclamation for Effi-
cient Range Queries. In Proc. 23rd ACM Symposium on Principles and Practice
of Parallel Programming, pages 14-27, 2018.

[20] H. Avni, N. Shavit and A. Suissa. Leaplist: Lessons Learned in Designing
TM-supported Range Queries. In Proc. 2013 ACM Symposium on Principles
of Distributed Computing, pages 299-308, 2013.

[21] N.G. Bronson, J. Casper, H. Chafi and K. Olukotun. A Practical Concurrent
Binary Search Tree. In Proc. 15th ACM Symposium on Principles and Practice
of Parallel Programming, pages 257-268, 2010.

[22] Y. Nikolakopoulos, A. Gidenstam, M. Papatriantafilou and P. Tsigas. Of Con-
current Data Structures and Iterations. Algorithms, Probability, Networks and
Games: Scientific Papers and Essays Dedicated to Paul G. Spirakis on the
Occasion of his 60th Birthday. pages 358-369, 2015.

[23] Y. Nikolakopoulos, A. Gidenstam, M. Papatriantafilou and P. Tsigas. A Con-
sistency Framework for Iteration Operations in Concurrent Data Structures.
In Proc. IEEE International Parallel and Distributed Processing Symposium,
pages 239-248, 2015.

BIBLIOGRAPHY 85

[24] P. Fatourou, Y. Nikolakopoulos and M. Papatriantafilou. Linearizable Wait-
Free Iteration Operations in Shared Double-Ended Queues. In Parallel Pro-
cessing Letters, 27(2), pages 1-17, 2017.

[25] N.D. Kallimanis and E. Kanellou. Wait-free Concurrent Graph Objects with
Dynamic Traversals. In Proc. 19th International Conference on Principles of
Distributed Systems, 2015.

[26] A. Spiegelman and I. Keidar. Dynamic Atomic Snapshots. In Proc. 20th In-
ternational Conference on Principles of Distributed Systems, 2016.

