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Abstract

A large scale magnetic field permeates the interstellar medium (ISM) of our Galaxy. The
ISM magnetic field strength is notoriously difficult to measure, and for this reason there is
a longstanding debate about its dynamical importance in the star formation process. The
magnetic field strength can be directly measured, with the Zeeman effect, only in a limited
number of cases. For this reason, indirect methods have been developed for estimating the
magnetic field strength. The most widely accessible methods are based on dust polarization.
Dust polarization probes directly the plane-of-the-sky magnetic field morphology, but not its
strength. These indirect magnetic field strength estimation methods are based on the energy
balance of incompressible turbulence. Observations, however, indicate that turbulence in the
ISM is highly compressible, hence the assumptions of the existing methods are incompatible
with the observations. In this thesis, we propose a novel method for estimating the magnetic
field strength from dust polarization based on the energetics of compressible turbulence. We
assess the accuracy of the proposed method with synthetic data produced from a suite of
numerical simulations. We find that with the proposed method an accuracy better than a
factor of two can be achieved.
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Chapter 1

Introduction

"The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our ap-
ple pies were made in the interiors of collapsing stars. We are made of starstuff", Carl Sagan.

The interstellar medium (ISM) is the space between stars and consists of radiation,
magnetic fields, and matter (gas and dust). The ISM matter can be found in three stable
phases, where gas heating balances cooling [52, 119]: 1) the cold neutral medium (CNM), 2)
the warm neutral medium (WNM), and 3) the warm ionized medium (WIM). In the CNM,
temperature (T ) ranges from 10 up to 500 K while densities are n ≥ 50 cm−3, in the WNM
T ∼ 103 −104 K and n ∼ 0.1 cm−3, while in the WIM T ∼ 104 K and n ∼ 0.1 cm−3. There
is also an unstable phase, referred to as the lukewarm neutral medium (LNM), where gas is
exchanged between WNM and CNM [157, 73, 91]. It is considered that colder and denser
phases are embedded within warmer and more diffuse phases [119]. Therefore, CNM, and
WIM have the minimum and maximum volume filling factors in the ISM respectively. Star
formation takes place in CNM overdensities (clouds).

CNM clouds can be classified into three different classes, based on the atomic-to-
molecular hydrogen abundance [17]: 1) atomic clouds with logNH ≲ 20 cm−2, where
gas is mostly atomic, 2) transition clouds with 20 ≲ logNH ≲ 21 cm−2, where gas is mixed
with both atomic and molecular hydrogen, and 3) molecular clouds with logNH > 22 cm−2,
where hydrogen is molecular.

Stars form in molecular clouds because only there gravitational energy is sufficient, due to
high densities, to initiate the gravitational collapse. However, self-gravity is not the only force
exerted in molecular clouds. There are three kinds of pressure which oppose self-gravity:
1) thermal, 2) turbulent, and 3) magnetic pressure. Only thermal pressure can be neglected
since typical temperatures in ISM molecular clouds are very low, T ∼ 10 K.
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There is a longstanding debate on the relative role of turbulence and magnetic fields in the
star formation process [118]. The debate is open for decades, because kinetic and magnetic
energies are in rough equipartition in the ISM [44], and thus it is challenging to distinguish
the dominant component (turbulence or magnetic fields). In order to study the relative ratio
between turbulence and magnetic pressure we need high accuracy measurements of the
magnetic field properties. For this reason, some of the most important questions in the star
formation process are still open [95], e.g.: Why is the star formation rate in our galaxy so
low (∼ 1.3 M⊙/yr) compared to the total mass reservoir of the ISM gas which suggests that
the star formation rate should be of the order ∼ 100 M⊙/yr [188, 189, 47]? What is the
characteristic timescale of star formation? What is the origin of the initial mass function?
Depending on whether we consider turbulence or magnetic fields as dominant we obtain
different answers. Below we briefly explain the role of each of the three major "players",
gravity, turbulence, and magnetic fields in the star formation process.

1.1 Competing forces in star formation

1.1.1 The role of gravity

A spherical cloud supported only by its own thermal pressure is gravitationally unstable
under perturbations with wavelengths λ > λJ , where λJ is the Jeans’ length defined as
λJ = cs

√
π/Gρ , cs is the sound speed, ρ is the gas density, and G the gravitational constant.

This is called the Jeans instability [87]. In that case, a cloud would collapse due to its
own self-gravity. On the other hand, if λ < λJ a cloud would remain gravitationally stable.
According to Jeans’ model, the collapse of an unstable cloud happens at the free-fall time,
which in that case represents the characteristic timescale of star formation, and is [118],

t f f = 1.37×106
(

103cm−3

n

)
yr. (1.1)

Jeans’ instability leads naturally to hierarchical fragmentation [85]. According to the
so-called hierarchical collapse model when the global collapse of a cloud is initiated, then the
density of the cloud increases, hence λJ , can decrease locally. As a result, during the cloud
collapse there are several sub-regions within the parent cloud satisfying the gravitational
collapse criterion (λ > λJ). As time progresses, λJ keeps decreasing, and hence even more
sub-regions satisfy the gravitational collapse condition. This means that the gravitational
collapse is transferred from cloud to smaller scales, hence forming a cascade-like behaviour
of mass transfer [71, 181, 182, 187, 101, 183]. This hierarchical fragmentation ends when
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monolithic structures have been formed at very small scales, i.e. stars. It has been proposed
that low mass stars are born first at Myrs timescales, while after a few Myrs more massive
stars form [183]. The low star formation efficiency can be attributed to feedback processes
[e.g., 173] from newly born stars which slow down the formation of next generation stars.

1.1.2 The role of magnetic fields

The ISM of our Galaxy is magnetized [e.g., 80, 153]. For magnetized clouds, it is essential
to introduce the mass-to-flux ratio (µφ ) defined as the ratio between the self-gravitating mass
and the magnetic flux. Clouds can collapse only if µφ is larger than a critical value, which
is µφ ,cr = 1/

√
63G [134]. In that case self-gravity dominates over magnetic pressure and

clouds are considered to be super-critical. If µφ < µφ ,cr, then the cloud is considered to be
magnetically supported and cannot collapse, (sub-critical cloud); even moderate magnetic
field strengths, ∼ 1µG, can prevent a cloud from collapsing, provided that the magnetic
field is frozen in the gas [28, 120]. Flux-freezing (or Alfvén’s theorem) [1] states that in a
medium with infinite conductivity, gas is perfectly attached to the field lines, and magnetic
flux is preserved. For example, if we consider a spherical cloud with an initial radius R0

and magnetic field strength B0, and then compress the size of the cloud by a factor of 10,
(R1 = 0.1R0), then the magnetic field strength would become 100 times larger than the initial
field. The contraction of a cloud keeps increasing the magnetic flux and thus the gravitational
force will eventually be balanced by magnetic pressure, if the cloud is initially sub-critical.
Since magnetic forces are exerted perpendicular to the field lines, clouds are magnetically
supported only perpendicular to them, while along the field lines gas can free stream and
collapse. This process is known as non-homologous collapse and leads to oblate cloud shapes
[129, 131].

Flux freezing is an accurate approximation when gas densities are relatively small,
n ∼ 100 cm−3, and the ionization fraction of a cloud is high due to the penetrating UV
interstellar radiation, hence the conductivity is high. However, as density increases the
ionization rate is significantly reduced in the interior of a cloud. The reason is that density
enhancements can shield the interior of the clouds from the ISM radiation field [67]. Lower
ionization means that the collision rate between ions and neutrals is reduced. Magnetic forces
are directly exerted on the ions and indirectly to neutrals, since ions drag neutrals due to
collisions. If the ion-neutral collision rate is reduced, then neutrals are not perfectly dragged
by ions hence a velocity drift between the two species is induced. This process is known as
ambipolar diffusion.

There are two types of ambipolar diffusion processes: magnetically-, and gravitationally-
driven ambipolar diffusion [133]. Magnetically-driven ambipolar diffusion refers to the
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relative drift between neutrals and ions due to their imperfect coupling and can be present
even in the absence of self-gravity. On the other hand, gravitationally-driven ambipolar
diffusion takes place when overdensities have been formed and act as local centers of gravity
by attracting preferentially neutral gas, since the attraction of the ionized gas is balanced
by magnetic forces. Magnetically-driven diffusion precedes and may lead to the onset of
gravitationally-driven ambipolar diffusion (by dissipating turbulence and hence any extra
support by turbulent pressure), which tends to increase µφ in the inner parts of a cloud and
initiate the gravitational collapse when the critical value is exceeded.

The characteritistic timescale of magnetically-driven ambipolar diffusion is [133],

τAD,m ≈ 7.55
(

λ

1pc

)2(30µG
B

)2( n
2×103cm−3

)2(
χi,o

2×10−7

)
yr, (1.2)

where χi,o is the gas ionization, and λ is the wavelength of waves propagating in the cloud.
The timescale of gravitationally-driven ambipolar diffusion is [133],

τAD,g ≈ 1.1×106
(

χi,o

10−7

)
. (1.3)

Ambipolar diffusion sets the magnetically-driven star formation timescale which could
be up to an order of magnitude larger than the free-fall time [175, 135, 10]. The magnetized
star formation process is significantly slower than the non-magnetized, and this can explain
the low star formation rate [47].

1.1.3 The role of turbulence

If we ignore magnetic fields, and consider that clouds are "born" super-critical (µφ > µφ ,cr)
[97, 98, 96], then only turbulence pressure can withstand self-gravity.

In the turbulence-driven star formation scenario the sonic length scale (λs) defines the
scale where turbulent motions transition from supersonic (Ms > 1) to subsonic (Ms < 1)
[51]; Ms is the sonic Mach number. Numerical simulations [51] show that λs is strongly
correlated with the formation of filamentary structures in clouds. Filaments have been widely
observed in ISM clouds and observations show that they host protostellar objects [7, 125].
However, the sonic scale theories do not take into account the observational evidence that
filaments are significantly affected by magnetic fields [6, 143, 115, 116, 145].

A brief overview of the sonic scale theories [97] is the following: Consider a cloud
which is initially spherical with uniform density. If the cloud is highly supersonic, Ms ∼ 10
[90], then turbulent flows will form local regions of highly compressed gas. These local
overdensities are the sites where gas can become gravitationally unstable, since thermal and
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turbulent pressure cannot withstand self-gravity. The necessary condition for collapse is
λJ < λs. This theory postulates that molecular cloud density distributions are log-normal.
Log-normal density distributions are found in many kinds of numerical simulations [16, 180,
146, 124]. Observations had originally been thought to show log-normal density distributions
[89], though recent evidence suggests that observational uncertainties may be hampering our
ability to measure them [2]. Regions satisfying the gravitational collapse condition lie at the
tails of the log-normal density distribution, which correspond to a minor fraction of the cloud,
while the majority of the cloud remains supported due to turbulence pressure (λJ > λs). It
is important to note that the two forms of the Kennicutt-Schmidt relation [158, 159, 93, 92]
naturally arise from this theory.

1.2 Probing the ISM magnetic field

The major difference between the various star formation theories is the assumed initial
conditions regarding the magnetization level of ISM clouds. If clouds were initially sub-
critical (µφ < µφ ,cr) [30], then collapse could only happen through ambipolar diffusion,
because otherwise magnetic forces would support a cloud against its self-gravity. On the
other hand, if clouds were initially super-critical (µφ > µφ ,cr), then collapse could happen
in highly compressed regions due to supersonic turbulent flows or due to gravitational
hierarchical collapse.

The mass-to-flux ratio of ISM clouds can be observationally constrained from the mag-
netic field strength versus density relation, B ∝ nα where α is a proxy of µφ . When α = 2/3,
then the collapse is homologous, which is realizable only in clouds with dynamically in-
significant magnetic field, while for α = 1/2 the collapse is non-homologous as indicated by
the ambipolar diffusion theory, which means that clouds could be initially sub-critical [177].
We need high accuracy measurements of the magnetic field strength in order to be able to
distinguish the two α indices. The question is, how well can we measure the ISM magnetic
field properties?

There are five observables tracing the ISM magnetic field properties:

• Zeeman effect: Data of Zeeman splitting of atomic or molecular emission lines. With
these data one can directly probe the magnitude and orientation of the line of sight
(LOS) component of the magnetic field [39, 40].

• Faraday rotation: Tracing the rotation of polarization angle of a radio polarization
signal as it passes through the ISM [170–172]. Faraday rotation is the integrated
product of thermal electron density and the LOS magnetic field strength.
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• Synchroton Radiation: Radiation emitted when relativistic charged particles are ac-
celerated. Synchroton radiation traces the plane of the sky (POS) orientation of the
magnetic field.

• Goldreich-Kylafis (GK) effect: Emission lines get polarized due to anisotropies in the
radiation transfer induced by magnetic fields. The imparted polarization can be either
parallel or perpendicular to the magnetic field [63, 64].

• Dust polarization: Probes the density-weighted magnetic field orientation in the POS
[4].

1.2.1 Direct detection of the ISM magnetic field strength

Zeeman is the only observable which traces directly the amplitude of the LOS magnetic field
component in CNM clouds. Using Zeeman data, Crutcher et al. [40] found that the maximum
total magnetic field strength scales as,

B ∝

constant, n ≤ 300 cm−3

n2/3, n > 300 cm−3
. (1.4)

The same authors concluded that the 2/3 scaling is consistent with spherically collapsing
cores where the magnetic field has but a minor role in the cloud dynamics, which means
that clouds should have been "born" super-critical. In addition, they mentioned that α = 0 at
n≤ 300 cm−3 because gas accumulates preferentially along the magnetic field lines. However,
the data of Crutcher et al. [40] are noisy and in order to reach to the aforementioned scalings
(Eq. 1.4), they relied on several prior assumptions applied within a Bayesian framework. For
this reason, the conclusions of Crutcher et al. [40] have been questioned [177, 88].

Tritsis et al. [177] mentioned that the gas volume density uncertainties in the analysis
of Crutcher et al. [40] have been significantly underestimated. These authors used the same
Zeeman dataset, but considered only the most accurate density points. They concluded that
the data are better described by B ∝ n1/2 at n > 300 cm−3 [177]. The α = 1/2 scaling is
consistent with the non-homologous collapse model, which is consistent with the ambipolar
diffusion theory [130, 132]. Other authors [88] pointed out that the results of Crutcher et al.
[40] are debatable since the Zeeman data are too noisy, hence their analysis is dominated by
statistical biases.

There is also another caveat in the Zeeman analysis of Crutcher et al. [40]. Zeeman data
trace the LOS magnetic field strength, while in order to constrain α , the total strength of the
field is required. In order to overcome this problem Crutcher et al. [40] hypothesized that
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the magnetic field inclination angle with respect to the LOS throughout their data sample
is random; this allowed them to reconstruct the posterior distribution of the total magnetic
field strength through a Bayesian analysis. However, it has been pointed out that there is a
projection bias which tends to favor geometries where the magnetic field is mostly on the
POS and not uniform [3, 148, 151].

The interpretation of the B ∝ nα constraints (Eq. 1.4) is complicated if we consider
numerical simulations. Zeeman observations suggest that in the diffuse ISM, n ≤ 300 cm−3,
the α index is zero [40], while numerical simulations show that for these densities α > 0
[155, 21].

Zeeman data are the only direct measurement of the ISM magnetic field strength. For
this reason, Zeeman data were considered as the golden standard for assessing the role of
the ISM magnetic field. However, these data are notoriously difficult to obtain, and as we
mentioned above their interpretation is highly complex. Therefore, the question whether
clouds are initially sub-, or super-critical is still open and Zeeman does not seem to able to
provide a robust way to attack this problem.

1.2.2 Indirect estimates of the magnetic field strength

Dust polarization is the most accessible observable, amongst the other, tracing the ISM
magnetic field properties in CNM clouds. Dust polarization is induced by the interaction of
the ISM magnetic field with aspherical dust grains. Aspherical grains align their short axis
with the local magnetic field [41]. The prevailing theory suggests that this alignment happens
due to radiative torques induced by radiation feedback [4, 5, 43, 45, 103]. Aligned dust grains
act as polarizers and when starlight passes through a dusty cloud it gets preferentially extinct
along the long dust grain axis, inducing polarization parallel to the magnetic field. In addition,
the same dust grains emit thermally polarized radiation at sub-mm wavelengths; in this case
the emission is polarized along the long axis of dust grains, which is perpendicular to the
magnetic field. Both optical and sub-mm polarization trace accurately the magnetic field
orientation in the plane of the sky (POS) [4, 164]; there is a π ambiguity in the polarization
angle, hence only the orientation of the magnetic field can be constrained and not the direction
of the field.

Dust polarization also traces the magnetic field properties of ISM clouds at various scales.
There are several projection biases affecting the interpretation of dust polarization data [190],
but they are usually densely sampled [115, 116, 144, 145, 38, 143, 152, 163, 9, 149], which
allows us to use statistical tools to account for these biases. The major limitation is that
dust polarization probes only the morphology of the magnetic field in the POS and not its
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strength. However, there are indirect ways to infer the POS magnetic field strength from dust
polarization maps, given some assumptions about the properties of the ISM clouds [42, 27].

The first method to estimate the magnetic field strength from dust polarization was
presented by Davis [42] and Chandrasekhar and Fermi [27] (DCF). They assumed that
magnetic field lines are distorted due to the propagation of the incompressible transverse
magnetohydrodynamic (MHD) waves, known as Alfvén waves. This distortion induces
spread in the polarization angle distribution, which, combined with the gas turbulent motions
from spectroscopic data, allows the estimation of the true magnetic field strength. It was
realized that external forces, like self-gravity, can bend the field lines and induce extra
dispersion in the polarization angle distribution. In order to treat the problem, one can fit
parabolas to the polarization data and remove the large-scale hour-glass bending from the
polarization data of a pre-stellar core [62]. A similar, but more sophisticated approach, was
followed by Pattle et al. [150]. On the other hand, Hildebrand et al. 2009 and Houde et
al. 2009 [78, 84] (HH09) developed an analytical model for the polarization data, which
measures the turbulence-induced spread in the presence of any external source of magnetic
field bending. There are many modifications of the DCF method [72, 99, 48, 35, 186, 104]
summarized in several reviews [148, 86, 149]. All these methods rely on the assumption
that the Alfvén waves are producing the observed polarization angle dispersion, and use the
linewdiths in the emission spectra to infer the turbulent velocity spreads.

The interstellar medium (ISM) is, however, highly compressible [70] and other than the
Alfvén waves, contains MHD wave modes that induce density compressions. These are
known as fast and slow magnetosonic modes and their existence in astrophysical plasmas
is inevitable because they are excited by the Alfvén waves [76]. In addition, the so-called
entropy modes can contribute to the observed compressibility of the ISM [109], however
they produce zero velocity and magnetic field fluctuations. Compressible modes have not
been taken into account in the DCF method and this can lead to significant inaccuracies in
the estimates.

DCF considered that the mean magnetic, ⟨δB2⟩/(8π), and kinetic, ρδ ⟨u2
turb⟩/2, energy

densities reach an equipartition. However, numerical simulations of strongly magnetized
and compressible turbulence show that the kinetic energy is always larger than the magnetic,
i.e. ρδ ⟨u2

turb⟩/2 > ⟨δB2⟩/(8π) [72, 49, 108, 14] and that their ratio is a function of the
strength of the initial magnetic field component (B⃗0) [50, 108, 14, 161, 15]. For this reason,
the classical DCF method (without an appropriately calibrated f factor) is found to be
highly inaccurate when tested in compressible MHD simulations. There are several authors
who attributed this bias to projection effects [190, 139, 84, 35]. But, DCF produces highly
biased estimates even when it is combined with sophisticated techniques [162], such as the
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dispersion function analysis [78, 84, 83], which takes into account the LOS effects. The DCF
method produces reasonable estimates only when f ≤ 1/2 [139, 72, 142, 162, 110], which
means that DCF estimates without a fine-tuned f are more than 100% larger than the actual
values. The major limitation of the DCF method is that it misses a large fraction of the total
energy, which corresponds to the compressible modes.

Then, the following questions arise: Can compressible modes account for the bias of the
DCF method? Do kinetic and magnetic energies reach an equipartition when compressible
modes are present? Can we add the compressible modes contribution in the estimation of the
magnetic field strength from dust polarization? If yes, then do we achieve better estimates
of the magnetic field strength? The aforementioned questions can be summarized in one
question, which defines the problem that we aim to answer in the current thesis: How can
we estimate the magnetic field strength from dust polarization with high accuracy, such
as that deviations do not exceed a factor of two?

The timing for addressing this problem is excellent. The reason is that the polarization
data influx has dramatically increased over the last decade due to the Planck satellite [153]
and balloon experiments [53], and will keep increasing over the next decade due to upcoming
optical polarization surveys, such as PASIPHAE [176]. In addition, Gaia [58, 59] enabled
for the first time the accurate characterization of the 3D shapes of ISM clouds [69, 102, 106],
hence of gas volume density, which is essential for magnetic field studies (e.g., Eq. 1.4).

The thesis presents a novel method for estimating the magnetic field strength from dust
polarization in compressible media, like the ISM clouds, and is organized as follows: in
§ 2 we present the numerical simulations employed in this work, in § 3 we present an
overview and criticism on the past methods for estimating the magnetic field strength from
dust polarization. In § 4 we explore analytically the energetics of compressible fluctuations
using a Lagrangian formulation and show that by taking into account the compressible modes
we can perfectly describe the properties of numerical simulations. In § 5 we present a new
method for estimating the magnetic field strength from dust polarization, while in § 6 we test
both the DCF and our proposed method in synthetic data that we produce from numerical
simulations. Finally, in § 7 we summarize our results.





Chapter 2

Numerical simulations

The Alfvénic Mach number (MA) is the ratio between turbulent velocities over the character-
istic propagation speed VA (Alfvénic speed) of magnetized fluctuations; MA is a metric of
the magnetic fluctuations’ contrast in a fluid (MA ≡

√
⟨u2⟩/VA). The sonic Mach number

(Ms) is the ratio between turbulent velocities over the sound speed and is a metric of the
density contrast in a fluid (Ms ≡

√
⟨u2⟩/cs). ISM turbulence spans a wide range of MA and

Ms values. There is overwhelming observational evidence that ISM turbulence is sub-, trans-
Alfvénic (MA ≲ 1) [135, 55, 152, 145, 154, 38, 179] and highly compressible (Ms > 1)
[70, 122, 22, 25, 138, 137, 13]. The numerical simulations employed in this work enable us
to test our theoretical arguments and the various magnetic field strength estimation methods
to a large number of MHD simulations with a wide range of parameters consistent with
observations.

We used data from the following simulations in our tests. "Cho-ENO" [33, 24, 156,
20] simulations from the publicly available CATS1 database [23]: These are ideal-MHD,
isothermal simulations without self-gravity. Turbulence is driven in velocity Fourier space by
injecting solenoidal modes only at scales equal to half the size of the simulated cube. Models
are characterized by MA = 0.7 and 2.0, while Ms ranges between 0.7 and 7.0. [162] have
tested the two methods in the MA = 0.7 simulations of this dataset, but we also included
them in our results for completeness. Simulation data are dimensionless and scale-free. A
dimensionless sound speed, which is defined as c̃s =

√
P̃/ρ̃ , regulates the units. We assume

that the sound speed is 0.91 km/s for every model and follow [79] in order to convert to cgs
units. The resolution is 2563.

"AREPO" simulations from the CATS database [23]: The simulations setup is presented
in detail in [123, 26]. These are isothermal, ideal-MHD simulations run with the AREPO
code [166]. Turbulence is driven solenoidally until a quasi-static state was reached with

1https://www.mhdturbulence.com/

https://www.mhdturbulence.com/
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Ms = 10 and then self-gravity is switched on. We used the model with MA = 0.35 at a time
step without self-gravity. The resolution of this model is 2563.

Simulations from [14, 16]. They solve the ideal-MHD equations without self-gravity and
isothermal conditions using a modified version of the FLASH code [56, 46, 51]. Turbulence
is driven in Fourier space by injecting the same amount of power between compressible and
solenoidal modes at large scales. Sound speed is cs = 1 in every model and gas velocities
are expressed in Ms units. The Alfvénic and sonic Mach numbers cover a wide range of the
parameter space, MA = 0.1−2.0 and Ms = 0.5−20. Models with Ms = 0.5 have resolution
equal to 5763, while every other model 5123.

Simulations of [94]. These are ideal-MHD, isothermal simulations without self-gravity,
which were run with the FLASH code [56]. These simulations are in cgs units with T = 11
K, that is sound speed is equal to 0.2 km/s, and n = 536 cm−3. We used the model with
MA = 0.5 and Ms = 7.5 driven solenoidally. The resolution is 5123.

Boundary conditions are periodic in every simulation presented here. In total we used 26
MHD numerical simulations with properties summarized in Table 6.2.



Chapter 3

Overview of past methods

In this chapter we present a brief overview of the two most widely used methods for estimating
the magnetic field strength from dust polarization: 1) the classical DCF [42, 27], and 2) the
combination of the DCF with the Hildebrand and Houde (HH09) method [78, 84]. We also
stress the major caveats of each method.

3.1 Classical DCF method

3.1.1 Foundations of the method

We decompose the total magnetic field into a mean, B⃗0, and a fluctuating component δ⃗B, and
consider that B⃗0 is in the POS. The total field is B⃗ = B⃗0 +δ B⃗ with a total magnetic energy
density equal to,

B2

8π
=

1
8π

[B2
0 +δB2 +2δ B⃗ · B⃗0], (3.1)

The last two terms correspond to changes of the magnetic energy, δεm, due to δ⃗B fluctuations.
DCF assumed that the ISM plasma conductivity is infinite. This means that the magnetic
field is "frozen-in" the gas, hence both gas and field lines oscillate in phase. Turbulent gas
motions perturb the field lines and initiate small amplitude fluctuations, |δ B⃗| ≪ |B⃗0|, in the
form of Alfvén waves about the mean field. DCF assumed that the kinetic energy of turbulent
motions will be equal to the fluctuating magnetic energy density,

1
2

ρ⟨v2
⊥⟩=

⟨δB2⟩
8π

, (3.2)
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where ρ is the gas density and ⟨v2
⊥⟩1/2 the rms velocity. Note that B⃗0 · δ⃗B = 0, since Alfvén

waves are transverse. We divide both sides by B2
0 and after rearranging we obtain,

B0 =
√

4πρ⟨v2
⊥⟩1/2

[
δB
B0

]−1

. (3.3)

The magnetic field orientation is traced by dust polarization (with a π ambiguity) and
the dispersion of the polarization angle distribution, δθ , is a metric of δB/B0. If the mean
field is stronger than the fluctuating component, the field lines will appear approximately
straight, hence δθ will be small. If, on the other hand, the fluctuations are relatively large,
field lines will be dispersed by turbulent motions and δθ will increase. Thus, DCF assumed
δθ = δB/B0, yielding,

B0 =

√
4πρ

3
⟨v2

⊥⟩1/2

δθ
, (3.4)

where the factor 1/
√

3 was inserted by DCF because they assumed that turbulent motions
are isotropic and only one of the three Cartesian velocity components perturbs the field lines.
Other authors [139] proposed a different correction factor f . The generalized DCF equation
is then,

B0 = f
√

4πρ
⟨v2

⊥⟩1/2

δθ
. (3.5)

The mean magnetic field, B0, can be written in velocity units by dividing by
√

4πρ thus,

VA = f
⟨v2

⊥⟩1/2

δθ
, (3.6)

where VA is the Alfvén speed and is equal to VA = B0/
√

4πρ .

3.1.2 Caveats of the method

The DCF approach is based on the assumption of equipartition between kinetic and magnetic
energy, which holds for travelling MHD waves. For standing waves the total energy oscillates
between magnetic and kinetic forms. Since our observables (polarization angles and spec-
troscopic data) are instantaneous, equipartition between kinetic and magnetic energies can
only happen in standing waves twice in a phase cycle. Standing waves have been produced
in MHD simulations [99], and have been identified in the ISM, e.g. in the Musca molecular
cloud [179]. We consider only travelling MHD waves.
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Fig. 3.1 Distribution of the synthetic polarization angles for different simulation models.
Black histogram corresponds to observations weighted by density, while the red one without
the density weighting. Left: Simulation model with MS = 0.7, Middle: Simulation model
with MS = 2.0, Right: Simulation model with MS = 7.0.

Turbulent velocities and compressible modes

The DCF method has been used extensively in atomic and molecular clouds. Turbulent
velocities, denoted as δv or σv, are measured using spectroscopic data, e.g. H I 21cm
line, CO(J=1-0) line, etc. Emission lines are approximated as Gaussians and non-thermal
linewidths are usually observed. The non-thermal broadening, σv,turb, is attributed to turbulent
gas motions,

σ
2
v,turb = σ

2
v,tot −σ

2
v,thermal, (3.7)

where σv,tot is the total observed spread and σv,thermal the thermal broadening.
Turbulent broadening, σv,turb, may contain contributions from wave modes other than the

Alfvén modes. MHD plasma also supports the propagation of fast and slow modes, which
can be excited even if they are not initially in the system [76], due to their coupling with
Alfvén modes. These modes could induce extra dispersion in the observed velocities and
affect the DCF method, which neglects their contribution.

The ISM is highly compressible [70]. This implies that σv,turb includes velocities from
both Alfvén and compressible modes. As a result, σv,turb will always be higher than by
Alfvén waves alone, hence B0 will be overestimated. This makes the mode decomposition
necessary in order to apply the DCF method accurately. However, mode decomposition is
not trivial in observations.
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Projection effects and the polarization angle distribution

Similar to velocities, fast and slow modes can also induce δB/B variations [32]. As a result,
non-Alfvénic modes will contribute to the observed signal, which will be larger than the
Alfvénic. Observationaly δB/B0 is computed from the spread in the polarization angle
distribution, δθ . However, δθ may not trace δB/B0 accurately. We present two projection
effects that are related to this discrepancy. The first one has been demonstrated in previous
works, while to our knowledge we are the first to demonstrate the second.

1. Degeneracy with the LOS angle
According to Eq. (3.5), B0 is inversely proportional to δθ . This means that regions with

highly disordered magnetic field, i.e. high δθ , have a weak field strength. However, high δθ

can also be obtained if the magnetic field is mostly parallel to the LOS. In this case, even
small perturbations will lead to POS fields that look highly disordered [139, 48, 74]. Thus,
there is a degeneracy in δθ between the viewing angle of the magnetic field and the field
strength [139, 48]. Houde [82] demonstrated the appropriate geometrical modification of the
DCF method in order to account for magnetic fields inclined with respect to the LOS. Such
approach, however, requires knowledge of the magnetic field LOS viewing angle.

2. Non-homogeneity effect
It was proposed that the dispersion of the polarization angles, δθ , is systematically lower

due to line of sight averaging of the magnetic field directions [190, 136]. The reason is that
the polarization signal is averaged over N distinct, independent regions (turbulent cells) along
the LOS. Thus, due to the central limit theorem, δθ is biased towards lower values, and the
magnetic field strength is systematically overestimated [184, 84, 35].

Consider, however, a Cartesian coordinate system with (discrete) independent variables
i, j, k. The i j plane is the POS and k is parallel to the LOS. The Stokes parameters are
[105, 48],

Ii j =
L

∑
k=1

ρi jk, (3.8)

Qi j =
L

∑
k=1

ρi jk
(Bi

i jk)
2 − (B j

i jk)
2

B2
i jk

, (3.9)

Ui j =
L

∑
k=1

2ρi jk
Bi

i jkB j
i jk

B2
i jk

, (3.10)

where L is the LOS dimension of the cloud, ρi jk the volume density of the gas, Bi
i jk, B j

i jk are
the i and j component of the magnetic field respectively, and B2

i jk the square of the total field



3.1 Classical DCF method 17

strength. The polarization angle is,

χ = 0.5arctan(U/Q), (3.11)

and the degree of polarization,
p =

√
Q2 +U2. (3.12)

Since the Stokes parameters are averages with density weights, density variations along the
LOS may increase δθ . We produce synthetic observations of 3D simulations in order to
demonstrate this effect. Here we assume infinite resolution, which corresponds to optical
polarization data. However, beam convolution should be taken into account if sub-mm data
were to be simulated [72, 184, 48, 84].

We use data from the the "Cho-ENO" (§ 2) numerical simulations. We only use the
models with MA = 0.7 in order to match observations, which indicate that the ISM turbulence
is sub/trans-Alfvénic (§ 3.1.2).

We create synthetic polarization maps for every simulation model by computing the
Stokes parameters and the polarization angles with equations (3.8) - (3.11). The dispersion
of the polarization angles, δθ , for each model is shown in Table 6.1 in column 4.

In Fig. 3.1, we show the polarization angle distributions from three different simulation
setups with Ms = 0.7 (left panel), Ms = 2.0 (middle panel), Ms = 7.0 (right panel). The
black histogram corresponds to the polarization angles computed using Eq. (3.11). The
red histograms correspond to the distribution of polarization angles when we integrate by
setting ρ = 1 everywhere in the box. Histograms are normalized so that the area under
each histogram integrates to one. The un-weighted distributions become narrower at larger
Ms, because more independent turbulent cells are created along the LOS. On the other
hand, the density-weighted distributions (black) become wider, because more significant
overdensities are created due to enhanced compression at larger Ms. It appears that density
fluctuations can induce extra dispersion in the observed polarization angle distribution. This
result is consistent with previous works [48], where it is found that the degree of polarization
decreases as Ms increases. Thus, in contrast to previous works [190, 136], we have found
that the LOS averaging of the polarization angles can induce extra dispersion, and as a result
the magnetic field strength is systematically underestimated.

Different f values

DCF assumed that turbulent motions are isotropic and they adopted f = 1/
√

3. If the field
strength is weak, turbulent motions will drag the field lines towards random directions and
turbulence will be isotropic (super-Alfvénic turbulence). However, there is overwhelming
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observational evidence that magnetic fields in the ISM have well-defined directions indicating
that turbulence is sub/trans-Alfvénic, and hence turbulent properties are highly anisotropic
[128, 160, 77, 168, 65, 66]. CO data revealed that velocity structures in Taurus are highly
anisotropic [75]. In the same region other authors [68] reported the existence of highly-
anisotropic density structures, which are aligned parallel to the mean field, known as striations.
Striations have also been observed in the Polaris Flare [144], and Musca [38, 179] and they
are formed due to magnetosonic waves [178] in sub-Alfvénic turbulence [12]. More evidence
for ordered magnetic fields in molecular clouds have been reported by several other authors
[55, 54, 152, 81, 174]. Stephens et al. [169] explored the magnetic field properties of 52 star
forming regions in our Galaxy and concluded that more than 80% of their targets exhibit
ordered magnetic fields. The diffuse atomic clouds in our Galaxy are preferentially aligned
with the magnetic field [37] implying the importance of the magnetic field in their formation.
Planck Collaboration et al. [154] studied a larger sample of molecular clouds in the Gould
Belt and concluded that density structures align parallel or perpendicular to the local mean
field direction. This is also consistent with sub/trans-Alfvénic turbulence [165]. In addition,
Mouschovias et al. [135], using Zeeman data, concluded that turbulence in molecular clouds
is slightly sub-Alfvénic as well. All these lines of evidence indicate that ISM turbulence is
sub/trans-Alfvénic, and hence anisotropic.

Other f values were proposed when the DCF method was applied in numerical simula-
tions. Ostriker et al. [139] performed MHD numerical simulations of giant molecular clouds.
They produced synthetic observations and suggested that the DCF equation with f = 0.5
produces accurate measurements for their sub-Alfvénic model. Padoan et al. [142] simulated
protostellar cores and tested the DCF equation in three different cores in a super-Alfvénic
MHD turbulent box. They varied the position of the observer with respect to the magnetic
field direction and found that on average f = 0.4. However, note that their values range from
0.29 up to 0.74 (see their Table 1). Heitsch et al. [72] performed 3D MHD simulations of
molecular clouds. They found that f lies in the interval 0.3− 0.5 (Figure 6 [72]) in their
three models with strong magnetic fields (sub-Alfvénic turbulence).

In these works f was found to vary significantly, but a value of f = 0.5 is widely used
[148]. However, no physical connection of f with the turbulent properties of the medium or
with specific LOS averaging effects has been demonstrated. Thus, it remains unclear, which
value of f is most appropriate for any given real physical cloud. The number of turbulent
eddies along the line of sight may be a relevant metric of f and can be estimated with the
HH09 method or following other approaches [35, 186].
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3.2 HH09 method

3.2.1 Foundations of the method

An alternative way to estimate the δB/B0 ratio has been presented by HH09. The method
was developed in order to avoid inaccurate estimates of the magnetic field strength induced
by sources other than MHD waves, e.g. large-scale bending of the magnetic field due to
gravity [62]. HH09 computed the isotropic dispersion function of the polarization map as,

⟨cos [∆φ(l)]⟩= ⟨cos
[
Φ(x̃)−Φ(x̃+ l̃)

]
⟩. (3.13)

The quantity Φ(x) denotes the polarization angle measured in radians, x⃗ denotes the 2D
coordinates in the POS, l⃗ the spatial separation of two polarization measurements in the POS
and brackets averaging over the entire polarization map. The polarization angle differences
are constrained in the interval [0◦,90◦].

HH09 defined the total magnetic field as B⃗tot = B⃗0 + B⃗t , where B⃗0 is the mean magnetic
field component and B⃗t the turbulent (or random) component. HH09 assumed that the
strength of B⃗0 is uniform and B⃗t is induced by gas turbulent motions. They derived the
following analytical relation for Eq. (3.13),

1−⟨cos [∆φ(l)]⟩ ≃
√

2π
⟨B2

t ⟩
B2

0

δ 3

(δ 2 +2W2)∆′ × (1− el2/2(δ 2+2W2))+ml2, (3.14)

where m is a constant, ∆′ is the effective cloud depth and W the beam size. The effective
cloud depth is always smaller than the size of the cloud (L), ∆′ ≤ L, and is defined as the
FWHM of the auto-correlation function of the polarized intensity [84]. The validity of this
relation is limited to spatial scales δ ≤ l ≤ d, where δ is the correlation length of B⃗t and d
is the upper limit below which B⃗0 remains uniform. This equation is used to estimate the
⟨B2

t ⟩1/2/B0 term, which is then inserted in the DCF formula as,

V DCF+HH09
A ≃ σv

[
⟨B2

t ⟩1/2

B0

]−1

. (3.15)

The only difference to the classical DCF is that the δB/B0 term is obtained from the fit of
Eq. (3.14) instead of the dispersion of the polarization angle distribution.

In order to use the method, one has to compute the dispersion function using Eq. (3.13),
and then fit the model in the right hand side of Eq. (3.14). The fit has the following three free
parameters: ⟨B2

t ⟩/B2
0, δ and m.
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3.2.2 Caveats of the method

Omission of the B⃗0 ·δ B⃗ term

Hildebrand et al. [78], and Houde et al. [84] assumed that the correlation of Bt and B0 is
zero, i.e. ⟨B⃗0 · B⃗t⟩= 0, where the averaging is over the full map (see their equation A2). We
identify three different regimes, in which ⟨δ B⃗ · B⃗0⟩= 01:

1. Super-Alfvénic turbulence
In the highly super-Alfvénic regime, MHD turbulence behaves like hydro turbulence
and δ⃗B is random, i.e. ⟨δ B⃗⟩= 0. In this case B⃗0 is much weaker than δ B⃗ and the two
quantities are statistically independent. Thus,

⟨δ B⃗ · B⃗0⟩= ⟨δ B⃗⟩ · ⟨B⃗0⟩= 0. (3.16)

2. Purely Alfénic (or incompressible) turbulence
For Alfvénic turbulence δ B⃗ · B⃗0 = 0, because Alfvén waves are transverse and their
field fluctuations, δ B⃗, are always perpendicular to the mean field B⃗0 [65].

3. Force-free field
If we use the linearized (|δ B⃗| ≪ |B⃗0|) induction equation,

δ B⃗ = ∇⃗× (⃗ξ × B⃗0), (3.17)

where ξ⃗ denotes the gas displacements vector, it can be shown that [167],

⟨δ B⃗ · B⃗0⟩=− 1
4π

∫
ξ⃗ · [(⃗∇× B⃗0)× B⃗0]dV. (3.18)

If the field is force-free, (⃗∇× B⃗0)× B⃗0 = 0, the above equation implies that ⟨δ B⃗ · B⃗0⟩=
0. Although it is occasionally used as an approximation a force-free field naturally
decays without causing fluid motions [29].

The cross term, ⟨δ B⃗ · B⃗0⟩, is connected with the compressible modes [127], for which
δ B⃗ · B⃗0 ̸= 0 [65]. Using standard perturbation theory it can be shown that [18, 19]:

δ B⃗ · B⃗0

4π
+δP = 0, (3.19)

1Note that we use the more general notation δ⃗B instead of B⃗t since it refers to the fluctuating component of
the magnetic field not necessarily in turbulent conditions.
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where δP2 is the gas-pressure perturbations. The equation of state connects gas density and
pressure, and hence,

δρ ∝ δ B⃗ · B⃗0 (3.20)

where δρ are the gas density perturbations. Eq. (3.20) explicitly shows the coupling between
δρ and δ B⃗ · B⃗0. The omission of the δ B⃗ ·B0 term may lead to significant inaccuracies of
the estimate of ⟨B2

t ⟩1/2/B0 when the HH09 method is applied in sub/trans-Alfvénic and
compressible turbulence.

Isotropic turbulence

HH09 assumed that turbulence is isotropic and they used a global correlation length, δ .
However, this is against observational evidence, which shows highly anisotropic structures
and properties (§ 3.1.2). Anisotropic media exhibit different correlation lengths perpen-
dicular and parallel to the mean field. This has been shown in observations [77, 75] and
by theoretical works [160, 65, 168, 34, 117]; for a recent review on this topic we refer to
Oughton and Matthaeus [140]. This indicates that anisotropic structure functions should
be used instead [34, 117]. Chitsazzadeh et al. [31] and Houde et al. [83] refined the HH09
method and considered the anisotropic turbulent properties of sub/trans-Alfvénic turbulence.
Our criticism, however, focuses on the original isotropic version of the method, which is still
often applied [e.g., 36].

Sparsity of data and the HH09 method

The computation of the dispersion function (Eq. 3.13) for sparsely sampled data introduces
a bias. When the dispersion function is computed with optical polarization it is slightly
different than the one computed with sub-mm data [164]. The structure function with the
optical data systematically overestimates the intercept of the function. As a result, for the
case of the sparse sampling, the ⟨B2

t ⟩1/2/B0 parameter would be biased towards higher values.
No solution to this problem has been suggested yet.

2Note that Bhattacharjee and Hameiri [18] and Bhattacharjee et al. [19] use the subscript 1 instead of δ for
the perturbed quantities.





Chapter 4

Compressible sub-Alfvénic turbulence
energetics

The incompressible turbulence energy equipartition employed by DCF reads: ρ⟨u2⟩/2 =

⟨δB2⟩/8π . However, direct numerical simulations of sub-Alfvénic and compressible tur-
bulence show that kinetic energy is larger than ⟨δB2⟩/8π [72, 108], and that their ratio is
a function of the strength of the initial magnetic field component (B⃗0), or equally of MA

[50, 108, 14, 161, 15]. DCF omitted the compressible modes contribution expressed by
B⃗0 · δ B⃗, which is the dominant potential term when turbulence is sub-Alfvénic, because
since |B⃗0| ≫ |δ B⃗|, the B⃗0 · δ B⃗ term is of first order while δB2 is of second order. The
coupling potential is realizable only in compressible turbulence [127, 18, 19, 57], since for
incompressible turbulence it is by definition zero [65].

In this section, we present an analytical description of the energy exchange in sub-
Alfvénic, compressible turbulence. Using a Lagrangian formulation of elastically interacting
cylindrical fluid parcels, we calculate analytically the energetics as a function of MA only,
and derive explicitly the contribution of B⃗0 · δ B⃗ to the energetics. The cylindrical fluid
parcel approach allows us to study turbulence dynamics without specifying the properties of
individual modes, or modes coupling [114, 61, 117, 32, 185, 61], since the motion of a fluid
parcel is the net effect of all modes propagating through it.

Statistical properties of strongly magnetized turbulence are axially symmetric, with B⃗0

being the axis of symmetry [65, 117]. For this reason, we consider a fluid consisting of
coherent flux tube segments (or fluid parcels) with coordinates (r(t),φ(t),z(t)). We assume
the following initial conditions: 1) uniform temperature; 2) uniform density (ρ); 3) no bulk
velocity; 4) uniform static magnetic field (B⃗0 = B0ẑ). We ignore gravity.

We perturb the magnetic field of a fluid parcel (perturbation volume) by δ B⃗ such that
|B⃗0| ≫ |δ B⃗|, which applies to sub-Alfvénic turbulence. Magnetic perturbations tend to
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redistribute the magnetic flux within a fluid. For ideal-MHD (flux-freezing) conditions,
the magnetic flux is preserved. Thus, the perturbed volume’s surface S⃗ would follow the
magnetic field lines. The motion of the field lines, and hence of S⃗, can be either parallel or
perpendicular to B⃗0; squeezing and stretching of S⃗ along B⃗0 leads to parallel motions, ż ̸= 0;
fluctuations of r lead to perpendicular motions, ṙ ̸= 0; twisting of the perturbed volume
leads to rotational motions, φ̇ ̸= 0. The motion of S⃗ is coherent, which means that every
sub-volume embedded within the perturbation volume would follow the aforementioned
movement. This naturally defines the height z and radius r as the coherence lengths of the
perturbed volume parallel and perpendicular to B⃗0 respectively. We invoke as a boundary
condition the presence of a local environment beyond the coherence length that defines the
size of our fluid parcel (”pressure wall”).

The flux freezing theorem can be expressed as,

dB⃗
dt

· S⃗ =−B⃗ · dS⃗
dt

. (4.1)

The cross sections of the perturbed volume perpendicular and parallel to the initial field
B⃗0 are S⃗⊥ = 2πrzr̂, and S⃗∥ = πr2ẑ respectively, where r̂ and ẑ are the corresponding unit
vectors for each direction. The cross section related to the rotational motion of the perturbed
volume is S⃗φ = zrφ̂ . The total magnetic field in cylindrical coordinates can be expressed as
B⃗ = δBr r̂+δBφ φ̂ +

(
B0 +δB∥

)
ẑ. From Eq. 4.1 we obtain that when |B⃗0| ≫ |δ B⃗| magnetic

perturbations along S⃗∥ are associated with a movement of the perturbed volume surface such
that,

ṙ(t) =−
δ Ḃ∥(t)

2B0 +δB∥
r(t)≈−

δ Ḃ∥(t)
2B0

r(t), (4.2)

along S⃗⊥ we find that,

ż(t)≈−
(

δ Ḃr(t)
δBr(t)

−
δ Ḃ∥(t)

2B0

)
z(t), (4.3)

while along S⃗φ is,

φ̇(t)≈−
(

δ Ḃr(t)
δBr(t)

− δ Ḃφ (t)
δBφ (t)

)
. (4.4)

In order to derive the above equation we have used the following relation,

δ Ḃr(t)
δBr(t)

≈−
(

ṙ(t)
r(t)

+
ż(t)
z(t)

)
, (4.5)

which can be obtained from Eqs. 4.2, and 4.3.
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4.1 Lagrangian formulation

We employ the Lagrangian of the perturbed volume in order to explore its dynamics. We
place the reference frame at the center of mass of the perturbed fluid parcel, and hence there
is no bulk velocity term in the Lagrangian. Therefore, all the velocity components are solely
due to internal motions induced by magnetic perturbations. In addition, we focus on low
plasma beta fluids where thermal pressure is subdominant, and hence can be neglected. Then,
the local perturbed Lagrangian [8, 100] of the perturbed volume is:

δL =
1
2

ρu2 −
B0δB∥

4π
− δB2

8π
(4.6)

For a cylinder u⃗ = ur r̂+uφ φ̂ +uzẑ, which is equal to u⃗ = ṙr̂+ rφ̇ φ̂ + żẑ. Through Eqs. 4.2,
4.3, and 4.4 the Lagrangian can be written as:

δL =
1
2

ρ

δ Ḃ2
∥

4B2
0

L2 +
1
2

ρ
δ Ḃ2

r
δB2

r
L2 +

1
2

ρ
δ Ḃ2

φ

δB2
φ

r2 −ρ
δ Ḃr

δBr

δ Ḃφ

δBφ

r2−

−1
2

ρ
δ Ḃr

δBr

δ Ḃ∥
B0

z2 −
δB2

∥
8π

− δB2
r

8π
−

δB2
φ

8π
−

B0δB∥
4π

,

(4.7)

where L2 = r2 + z2.
When MA ≪ 1, magnetic tension (B⃗ ·∇B⃗/4π) dominates over the magnetic pressure

(∇B2/8π) force due to the presence of the strong background field [147]. The large tension
rapidly suppresses transverse oscillations of the perturbed volume, such as kink motions,
and induces large restoring torques. This means that the perturbed volume would primarily
oscillate as an untwisted body [14], hence motions would be mostly longitudinal. φ̇ has
minimum contribution to the dynamics [e.g., 112], for this reason, we neglect twisting
(φ̇ ,δBφ ≈ 0).

The parallel and perpendicular velocity components of the cylindrical fluid parcel would
be u∥ = ż, and u⊥ = ṙ. Since δL has no δBφ dependence, perpendicular fluctuations
would be due to δBr, hence δB⊥ = δBr. Then, due to Eqs. 4.2, and 4.3, δB∥, and δB⊥ are
generalized coordinates of δL which can be split into parallel (∥) and perpendicular (⊥)
terms to B⃗0; for simplicity we henceforth use the following notation: z = L∥, and r = L⊥,
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then δL :

δL =

δL⊥︷ ︸︸ ︷(
1
2

ρ
δ Ḃ2

⊥
δB2

⊥
L2
⊥− δB2

⊥
8π

)
+

δL∥︷ ︸︸ ︷(
1
2

ρ

δ Ḃ2
∥

B2
0

[
L2
⊥+L2

∥
]
−

B0δB∥
4π

−
δB2

∥
8π

)
−

δL⊥∗δL∥︷ ︸︸ ︷
ρ

δ Ḃ⊥
δB⊥

δ Ḃ∥
B0

L2
∥ .

(4.8)
Since we have not imposed any physical constraints on the length scales L∥ and L⊥, the
dynamics of the perturbed volume are scale free.

In the sub-Alfvénic regime, Eqs. 4.2, and 4.3 can be simplified, to first order, as,

u⊥(t)≡ ∆ṙ(t)≈−
δ Ḃ∥(t)

2B0
L⊥(t)≈−

δ Ḃ∥(t)
2B0

L⊥,0, (4.9)

where we have considered that L⊥,0, which is the initial dimension of the perturbed volume
perpendicular to the ordered magnetic field B0, is much larger than its perturbations, and,

u∥(t)≡ ∆ż(t) =−
(

δ Ḃ⊥(t)
δB⊥(t)

−
δ Ḃ∥(t)

2B0

)
L∥(t)≈−δ Ḃ⊥(t)

δB⊥(t)
L∥(t). (4.10)

In the approximate expressions we have employed that |B⃗0| ≫ |δ B⃗|. In that case parallel
and perpendicular motions can be considered independent, hence δL⊥ ∗δL∥ ≈ 0 in Eq. 4.8.
However, Eq. 4.3 makes the coupling of parallel and perpendicular perturbations inevitable
when |B⃗0| ∼ |δ B⃗|; this coupling would initiate sausage-like oscillations.

The approximate (uncoupled) expressions of Eqs. 4.9, and 4.10 imply that,

δB∥(t) ∝ −B0 logL⊥(t), (4.11)

δB⊥(t) ∝ L−1
∥ (t). (4.12)

When L⊥ decreases, i.e. the perturbed fluid parcel’s surface is compressed and magnetic field
lines are dragged with it, then, according to Eq. 4.11, δB∥ increases, while when the surface
is stretched, δB∥ decreases. Similarly, when L∥ increases, the side surface is stretched along
B0, and, according to Eq. 4.12, any δB⊥ fluctuations decrease (and vice versa). This behavior
is consistent with Bernoulli’s principle for magnetized fluids.

The scaling difference in Eqs. 4.11 and 4.12 is due to the Lorenz force by B⃗0, which
affects perpendicular motions, while it has no effect in parallel motions. As a result, it
is harder to compress (or rarefy) δB∥, which is associated with perpendicular motions,
than δB⊥, associated with parallel motions. This explains why the relation in Eq. 4.11 is
logarithmic and not linear as in Eq. 4.12.
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From Eq. 4.12, we obtain that L∥(t) =C/δB⊥(t), where C is a constant determined from
the initial conditions. With this expression we eliminate L∥ from the Lagrangian, which up
to second order terms, is:

δL⊥
(
δB⊥,δ Ḃ⊥

)
≈ 1

2
ρC2 δ Ḃ2

⊥
δB4

⊥
− δB2

⊥
8π

, (4.13)

δL∥
(
δB∥,δ Ḃ∥

)
≈ 1

8
ρ

δ Ḃ2
∥

B2
0

L2
⊥,0 −

B0δB∥
4π

−
δB2

∥
8π

, (4.14)

where L⊥(t = 0) = L⊥,0, and δL⊥ ∗δL∥ ≈ 0 since fluctuations are sub-Alfvénic. Below we
present the solutions of the Euler-Lagrange equations for δL∥ and δL⊥.

Solutions of δL∥

Dropping the second-order term, the Euler-Lagrange equation of δL∥ becomes:

δ B̈∥(t)+
4B0V 2

A

L2
⊥,0

≈ 0 , (4.15)

where VA is the Alfvénic speed.
Initially we compress the perturbed volume perpendicularly to B⃗0, then release it and let

the compression propagate (initial conditions: u⊥(t = 0) = 0, δB∥(t = 0) = δB∥,max). We
derive that,

δB∥(t)≈ δB∥,max −
2B0V 2

A

L2
⊥,0

t2. (4.16)

The above solution through Eq. 4.9 yields,

u⊥(t)≈
2V 2

A
L⊥,0

t. (4.17)

Since u⊥(t) = ∆ṙ, we obtain that the stretching of the perturbed volume perpendicular to B⃗0

is:

L⊥(t)≈ L0,⊥

(
1+

V 2
A

L2
0,⊥

t2

)
. (4.18)

As the magnetic field of our perturbed volume decompresses, magnetic energy converts to
kinetic, and u⊥ increases. However, for sub-Alfvénic flows u⊥ <VA, which means that the
increase of u⊥ cannot continue forever. Therefore, the edge of the fluid parcel will ultimately
"bounce" off the rest of the fluid, reversing the direction of u⊥ when δB∥ =−δB∥,max, as we
argue below.
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When we initially compress the magnetic field of the perturbed volume, then due to
Eq. 4.11, L⊥ decreases. This decrease of L⊥ will make the surface of the environment of the
perturbed volume to increase by equal amounts. Thus, the initial increase of the magnetic
field by +δB∥,max of the fluid parcel forces the magnetic field of the environment to decrease
by −δB∥,max due to flux freezing. If we consider that the fluid is ergodic, then different
fluid parcels correspond to different oscillation phases of the target fluid parcel [126, 60].
Therefore, the −δB∥,max of the environment, corresponds to the maximum rarefraction of
the perturbed volume.

Non-linear effects can break the symmetry between +δB∥,max and −δB∥,max. When
δB∥(t)<−δB∥,max, then u⊥ starts growing non-linearly until it forms a shock. During the
shock formation the perturbed volume interacts with its environment, which acts as a pressure
wall and reverses the motion instantaneously. At the post-shock phase, perpendicular motions
are reversed and the perturbed volume starts contracting again, but it does not have enough
energy to reach +δB∥,max since energy has been dissipated by the shock. These "damped"
oscillations will continue until all the energy is dissipated [11]. However, if we consider the
presence of an external turbulent driving mechanism [113], energy can be maintained in a
steady state. This is equivalent to adding kinetic energy to the perturbed volume, during the
reversal of the motion, such that the maximum increase of the magnetic field would always
be +δB∥,max.

The perturbed volume spends most of its time in the linear regime, since the non-linear
growth is very fast. This means that our approximation only misses a minor fraction of
the dynamics. However, the energetics of the perturbed volume are equivalent to that of
quasi-static turbulence, since time symmetry is preserved in the approximated Lagrangians
(Eq. 4.13, 4.14), hence energy is conserved.

Overall, in the linear approximation δB∥ would follow ballistic profiles, δB∥ ∝ t2, and

bounce between +δB∥,max and −δB∥,max with period Tb = 4L⊥,0V−1
A

√
δB∥,max/2B0. The

perturbed volume would spend most of its time in the compressed state, since there the
velocity is minimum. On the other hand, the velocity of the fluid parcel is maximum when
it is rarefied, and hence the fluid parcel would spend minimum amount of time there. As a
result, due to ergodicity, the majority of the fluid parcels at a given time should be compressed
(δB∥ > 0), which is verified by numerical simulations [15].
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Solutions of δL⊥

From the Euler-Lagrange equation of δL⊥ we obtain,

δ B̈⊥(t)δB⊥(t)−2δ Ḃ2
⊥(t)+

δB6
⊥(t)

4πρC2 = 0 (4.19)

From Eq. 4.12 we can determine the constant C. If we consider the following initial condition:
δB⊥(0) = δB⊥,max and L∥(0) = L∥,0, then C = L∥,0δB⊥,max. We divide the Eq. 4.27 with B2

0

and obtain that,

g̈g−2ġ+2g2 +
δB2

⊥
4πρ

δB2
⊥

δB⊥,max

1
L∥,0

= 0 (4.20)

where g(t) = δB⊥(t)/B0. The units of the above equation are T−2. Thus, we can write
the equation in a dimensionless form if we multiply with some characteristic timescale.
The Alfvénic speed introduces naturally the following timescale: TA = L0,∥/VA, which
corresponds to the crossing time of the fluid parcel along B⃗0. Then Eq. 4.27 in dimensionless
form becomes:

g̈gT 2
A −2ġT 2

A +g2 4πρL∥,0
B2

0

δB2
⊥

4πρ

δB2
⊥

δB⊥,max

1
L∥,0

= 0, (4.21)

which is simplified to,

g̈gT 2
A −2ġT 2

A +g4 δB2
⊥

δB2
⊥,max

= 0. (4.22)

We change variables in the above equation from t to τ = t/TA following the chain rule:

ġ =
dg
dt

=
dg
dτ

dτ

dt
=

1
TA

dg
dτ

=
1
TA

g′ (4.23)

g̈ =
d2g
dt2 =

d2g
dτ2

(
dτ

dt

)2

+
dg
dτ

d2τ

dt2 =
1
TA

d2g
dτ2 =

1
TA

g′′. (4.24)

Then we obtain that:

gg′′−2(g′)2 +g4 δB2
⊥

δB2
⊥,max

= 0, (4.25)

The g4 is a fourth order term and is multiplied with a fraction which is always smaller than
one, since δB⊥(t)≤ δB2

⊥,max. Therefore, the g4 term is negligible compared to the other two
terms for every time. Then the above equation can be simplified to:

gg′′−2(g′)2 ≈ 0, (4.26)
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which in dimensional form is,

δ B̈⊥(t)δB⊥(t)−2δ Ḃ2
⊥(t)≈ 0. (4.27)

Solutions of the above equation have the following form:

δB⊥(t) =− 1
c1t + c2

, (4.28)

where c1 and c2 are constants determined from the initial conditions.
The total pressure of the perturbed fluid volume exerted by δB⊥ is transferred to parallel

motions (Eq. 4.10) and then ρu2
∥,max/2= δB2

⊥,max/(8π). For Eq. 4.27 we derive the following
solutions:

δB⊥(t)≈
f B0

1± fVAL−1
∥,0t

, u∥(t)≈± fVA, (4.29)

where L∥(t = 0) = L∥,0, and f = δB⊥,max/B0 ≪ 1. Initially we consider that δB⊥(t =
0) = δB⊥,max, and u∥(t = 0) = u⊥,max. In the above equations signs depend on the initial
conditions. The adopted initial conditions lead to positive signs.

Perpendicular motions are suppressed, while parallel motions can free stream due to the
absence of any restoring force. If we do not add initial velocity along B⃗0, then both u∥ and
δB⊥ would remain static. In general, there is always a coupling of parallel and perpendicular
motions, due to Eq. 4.10. Therefore, parallel motions, and hence δB⊥, will eventually start
evolving when δ Ḃ∥ ̸= 0. However, in the linear regime that we are focusing this cannot
happen, and hence we initiate parallel motions from the initial conditions. From Eq. 4.12 we
obtain that the free streaming of our perturbed fluid volume causes L∥ to expand as:

L∥(t)≈ L∥,0

(
1+

fVA

L∥,0
t

)
(4.30)

However, this expansion will not continue forever. As the target fluid parcel expands its
environment along the B⃗0 axis contracts, provided that the fluid has fixed boundaries. Due to
the expansion of the target volume, the initial velocity of the environment would be u∥(t =
0) =−u∥,max, which results to negative sign in the denominator of Eq. 4.29, and hence δB⊥
increases in the environment. On the other hand, δB⊥ in the target volume stops increasing
when tc = L∥,0/( fVA), because δB⊥ in the environment becomes infinite. In sub-Alfvénic
flows |B⃗0| ≫ |δ B⃗⊥| and hence this infinity should be treated as an asymptotic behaviour of
δB⊥, which means that there is a physical limit above which δB⊥ cannot grow. After tc, the
motion will be reversed and the environment, along B⃗0, will start expanding, hence causing
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the target volume to contract with δB⊥ growing as δB⊥(t)≈ f B0/(2− fVAL−1
∥,0t) 1 until it

reaches δB⊥,max. If the interaction between the target fluid parcel and its environment were
elastic, then the target volume would oscillate periodically, since there would be no energy
losses, between δB⊥,max and δB⊥,max/2 with period T∥ = 2L∥,0/( fVA).

4.2 Energetics

For an ergodic fluid [126, 60], fluctuations of a single fluid parcel resemble the statistical
properties of the total volume of the fluid: other fluid parcels oscillate at different phases,
but with similar amplitudes. The volume-averaged energetics of the fluid at a given time
are equivalent to the time-averaged energetics of a single fluid parcel. We next calculate
analytically the time-averaged and compare against the volume-averaged energetics, extracted
from MHD numerical simulations.

Kinetic energy

The averaged total kinetic energy of our perturbed volume is,

1
2

ρ

(
⟨u2

⊥⟩+ ⟨u2
∥⟩
)
≈

B0δB∥,max

6π
+

δB2
⊥,max

8π
, (4.31)

where brackets denote averaging over a single period. The kinetic energy is dominated, to
first order, by u⊥. Thus, the average Alfvénic Mach number is, to first order,

MA ≡ ⟨v2⟩1/2

VA
≈
√

4δB∥,max

3B0
. (4.32)

Harmonic potential

From Eqs. 4.16, and 4.29 we find that ⟨δB2
∥⟩= 7δB2

∥,max/15, and ⟨δB2
⊥⟩= δB2

⊥,max/2. The
total average harmonic potential energy density is equal to,

⟨δB2
tot⟩

8π
≈

δB2
∥,max

8π

(
7
15

+
ζ 2(MA)

2

)
, (4.33)

where ζ = δB⊥,max/δB∥,max. Sub-Alfvénic turbulence is anisotropic [160, 77, 141, 65], with
the anisotropy between δB⊥ and δB∥ depending on MA [14]. To account for this property

1This solution is obtained by considering that the initial conditions in the reversed motion of the fluid parcel
are: δB⊥(0) = δB⊥,max/2, u∥(0) =−u∥,max, and L∥(0) = 2L∥,0. These values correspond to the solutions of
Eqs. 4.29, and 4.30 for t = tc.



32 Compressible sub-Alfvénic turbulence energetics

in our formalism we consider that ζ , which is a metric of anisotropy between parallel and
perpendicular magnetic perturbations, is a function of MA. When MA → 0, B⃗0 suppresses
any bending of the magnetic field lines with the amplitude of δB∥ being larger than that of
δB⊥ [14], hence ζ → 0. For MA → 1, fluctuations tend to become more isotropic, and hence
ζ →

√
2. These limiting behaviors are consistent with numerical simulations [14, 15].

Coupling potential

According to Eq. 4.31, B⃗0 ·δ B⃗ contributes to the average kinetic energy of the fluid element
as,

B0δB∥,max

6π
=

√
15
7

B0⟨δB2
∥⟩1/2

6π
≈

B0⟨δB2
∥⟩1/2

4π
. (4.34)

This demonstrates that energy stored in the coupling term is in equipartition with the average
kinetic energy when turbulence is sub-Alfvénic.

Energetics ratios

We compute the following two energy ratios: 1) kinetic (Ekinetic, Eq. 4.31) over coupling term
(Ecoupling, Eq. 4.34), and 2) Ecoupling over the harmonic potential (Eharmonic, Eq. 4.38).

For the first ratio we find that,

Ekinetic

Ecoupling
=

2πρ⟨u2
tot⟩

B0⟨δB2
∥⟩1/2 ≈ 1+

9
16

M 2
A ζ

2(MA). (4.35)

When MA → 0 the coupling term is equal to the kinetic energy, while for MA → 1 kinetic
energy becomes larger than the coupling term energy. The reason is that the contribution
of u∥ in the total kinetic energy increases at larger MA. When MA → 1, ζ ≈

√
2, so the

Ekinetic/Ecoupling ratio would scale with MA as,

Ekinetic

Ecoupling
≈ 1+

9
8
M 2

A . (4.36)

Regarding the Eharmonic/Ecoupling ratio we find that,〈
δB2

tot
〉

2B0

〈
δB2

∥

〉1/2 =
3
8

√
15
7

M 2
A

(
7

15
+

ζ 2(MA)

2

)
, (4.37)
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Fig. 4.1 Comparison between analytical and numerical results. Solid and dashed thick black
lines correspond to the Eharmonic/Ecouplingratio obtained analytically for MA → 0 (ζ = 0) and
MA → 1 (ζ =

√
2) respectively. Numerical data are shown with colored dots. The blue line

corresponds to the analytically-obtained Ekinetic/Ecoupling ratio, while colored triangles show
the same quantities calculated from numerical data. Red boxes correspond to Ekinetic/Em,total.
The thin green line shows energy terms in equipartition. The colorbar shows the sonic Mach
number (Ms) of the simulations.



34 Compressible sub-Alfvénic turbulence energetics

which, for the limiting cases, becomes,

Eharmonic

Ecoupling
≈


0.25 M 2

A , MA → 0

0.80 M 2
A , MA → 1

. (4.38)

4.3 Comparison against numerical simulations

We compare our analytically calculated energy ratios against numerical results extracted from
a published table [15]. The numerical data correspond to simulations of ideal, isothermal
MHD turbulence, without self-gravity.

In Fig. 4.1 we show the comparison between analytical and numerical results. The black
solid and dotted lines show the analytical relation for Eharmonic/Ecoupling when MA → 0 and
MA → 1 respectively. Colored dots correspond to the numerical ratios. The numerical data
behave exactly as predicted by the two limiting cases in Eq. 4.38. For MA > 1, points start
deviating from the inferred limits, as expected, since our |B⃗0| ≫ |δ B⃗| approximation breaks
down in this case.

The blue solid curve corresponds to the Ekinetic/Ecoupling ratio calculated analytically,
while triangles correspond to the numerical ratios. Triangles follow the analytical curve
remarkably well. Here also the numerical data deviate from our analytical relations when
MA > 1. Accounting for the contribution from both B⃗0 ·δ B⃗ and δB2, the total energy stored
(Em,total = Ecoupling + Eharmonic) in magnetic fluctuations is very close to equipartition with
kinetic energy, as shown by the red boxes.

We conclude that when MA ≤ 1, the total magnetic energy density transferred to ki-
netic is equal to

(
2B0

√
⟨δB2

∥⟩+ ⟨δB2⟩
)
/8π . This result emphasizes the significance of

compressible modes in the energetics of MHD turbulence.



Chapter 5

A new method for estimating the
magnetic field strength from dust
polarization

Motivated by the existence of compressible modes and the contamination they induce in
the DCF method, we propose a generalized method, which takes into account these modes.
Similar to DCF, we assume that gas is perfectly attached to the magnetic field and that
turbulent motions are completely transferred to magnetic fluctuations. Unlike DCF method,
we assume that all MHD modes are excited, including the compressible modes. In this
case, we do not omit the cross-term in the magnetic energy, which for the general case is
δ B⃗ · B⃗0 ̸= 0 (§ 3.2.2). When |δ B⃗| ≪ |B⃗0|, the dominant potential energy term is (§ 4):

δεm ≈
B0δB∥

4π
. (5.1)

We also showed that, to first order, when turbulence is sub-Alfvénic the energy stored in the
coupling potential reaches an equipartition with the kinetic energy as (§ 4):

1
2

ρ⟨v2
⊥⟩ ≈

B0⟨δB2
∥⟩1/2

4π
(5.2)

We rearrange the above equation and obtain:

B0 ≈
√

4πρ

√
⟨u2

⊥⟩

2

√
⟨δB2

∥⟩
B0

−1/2

. (5.3)
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Since the turbulent-to-ordered magnetic field ratio can be estimated from the dispersion of
the polarization angles, we assume that δθ = ⟨δB2

∥⟩1/2/B0, and we obtain [161, 162]:

B0 ≈
√

4πρ
⟨u2

⊥⟩1/2
√

2δθ
, (5.4)

which can be solved in terms of the Alfvénic speed as,

VA ≈ ⟨u2
⊥⟩1/2

√
2δθ

. (5.5)

We note that the ⟨u2
⊥⟩ that we probe observationally refers to the LOS component of the

velocity, since velocity dispersions are obtained from the Doppler broadening of emission
lines.

Overall, as in the DCF method, we assume that there is a guiding field about which MHD
waves propagate. We also assume that turbulent kinetic energy is equal to the fluctuating
magnetic energy, which is given by B⃗0 ·δ B⃗, since it is the dominant (first order) term in the
magnetic energy.

Can we trace B⃗0 ·δ B⃗ with polarization data?

Polarization angle spread is considered to be tracing only fluctuations perpendicular to the
mean magnetic field [191] and, as such, is dominated by the Alfvénic modes. However, in
the proposed method (Eq. 5.4) it is the ⟨δB2

∥⟩1/2/B0 term that is inserted in the energetics,

rather than ⟨δB2
⊥⟩1/2/B0. Here we explore if this indeed poses a problem, or whether we can

indeed probe parallel magnetic fluctuations from δθ .
Consider an ISM cloud permeated initially by an undisturbed and homogeneous magnetic

field B⃗0 = (B0,0,0). We perturb B⃗0 with δ B⃗ = (δBx,δBy,δBz) and we assume that δ B⃗ is
random, and hence ⟨δ B⃗⟩= 0. The total magnetic field is B⃗tot = B⃗0 +δ B⃗,

B⃗tot = (Bx,By,Bz) = (B0 ±δBx,±δBy,±δBz). (5.6)

If the LOS is parallel to the z-axis, then the projected magnetic field morphology of B⃗tot as
traced by dust polarization will be given by the Stokes parameters [105],

I(x,y) =
∫

ρdz, (5.7)

Q(x,y) =
∫

ρ
B2

x −B2
y

|B|2 dz, (5.8)
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U(x,y) = 2
∫

ρ
BxBy

|B|2 dz, (5.9)

where |B| denotes the total strength of the field and we have considered perfect grain
alignment. The above equations hold when dust grain properties are uniform and temperature
is constant throughout the cloud. For simplicity we assume that density is uniform along
each LOS and that |B|2 variations along the LOS are negligible (that is that the ρ0 and B2

0

terms strongly dominate ρ and |B|2, respectively, and thus the latter can be pulled out of the
integrals). From Eq. (5.6) and (5.8), we derived for the Q Stokes parameter,

Q(x,y)≈ ρ0B−2
0

∫ (
B2

0 ±2B0δBx + ˜δB
2
)

dz, (5.10)

where ˜δB
2
= δB2

x −δB2
y . Using Eq. (5.6) and (5.9), the U Stokes parameter can be expressed

as,
U(x,y)≈ 2ρ0B−2

0

∫
(±B0δBy ±δBxδBy)dz . (5.11)

If |B⃗0| ≫ |δB|, then we can drop the second-order terms, obtaining:

Q(x,y)≈ ρ0B−2
0

∫ (
B2

0 ±2B0δBx
)

dz, (5.12)

U(x,y)≈ ρ0B−2
0

∫
2(±B0δBy)dz. (5.13)

The polarization angle is tan2θ =U/Q. In the |B⃗0|≫ |δ B⃗| regime θ is small and tan2θ ≈ 2θ .
From Eq. (5.12) and (5.13) we obtain,

θ ≈ U
2Q

≈
∫
(±δBy)dz∫

(B0 ±2δBx)dz
. (5.14)

The δBx term in the denominator of Eq. (5.14) is due to turbulence compressibility. In the
limit where perturbations are limited only to Alfvén waves, this term is by definition zero
and θ traces the perpendicular fluctuations of the magnetic field fluctuations [191].

The dispersion of polarization angles is δθ 2 = ⟨θ 2⟩2D−⟨θ⟩2
2D = ⟨θ 2⟩2D, since ⟨θ⟩2D = 0,

where brackets here denote averaging in the x-y plane. For convenience we adopt the
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Fig. 5.1 Ratio of perpendicular over parallel LOS averaged magnetic field fluctuations.

following notation:

∆By =
∫

(±δBy)dz, (5.15)

∆Bx =
∫

(±δBx)dz, (5.16)

B̃0 =
∫

B0dz. (5.17)

Thus, we obtain,

δθ =

〈
∆B2

y

B̃0
2
+4B̃0∆Bx +4∆B2

x

〉1/2

2D

. (5.18)
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Since |B⃗0| ≫ |δ B⃗|, 4∆B2
x is of second order, and hence δθ is simplified to,

δθ ≈
〈

∆B2
y

B̃0
2
+4B̃0∆Bx

〉1/2

2D

. (5.19)

The B̃0∆Bx term is due to δBx and represents the average coupling of B⃗0 with δ B⃗.
It is therefore clear that although ∆Bx does contribute to the dispersion of δθ , this

contribution comes from a first-order term in the denominator of the average in the right hand
side of Eq. (5.19). When |B⃗0| ≫ |δ B⃗|, parallel fluctuations have but a limited contribution
in δθ and can be neglected. Thus, to first order, δθ represents perpendicular fluctuations:
δθ ∼

√
⟨∆B2

y⟩/B̃0.
However, in the proposed method (Eq. 5.4), it is parallel fluctuations that need to be

estimated and used in. Only when ⟨∆B2
y⟩2D/B̃0 ∼ ⟨∆B2

x⟩2D/B̃0 would δθ be an adequate
metric of parallel fluctuations. The question then becomes: do parallel and perpendicular
fluctuations have similar dispersions in compressible turbulence?

The answer is “yes”, as we show in Fig. 5.1, where we have plotted the
√
⟨∆B2

⊥⟩2D/⟨∆B2
∥⟩2D

ratio, calculated from numerical simulation, as a function of MA. We find that in all cases
the dispersion of perpendicular fluctuations is comparable to that of parallel fluctuations,
with deviations always smaller than a factor of 2. These results are consistent with numerical
simulations [14]. We note that in Fig. 5.1 we are displaying the square root of the dispersions
of the LOS averages of perpendicular and parallel fluctuations, respectively, since these are
the relevant quantities in relating our observable (δθ ) with the quantity of interest for the
proposed method (δB∥).

5.0.1 An analogy with gravity

For incompressible turbulence, one can directly derive the classical DCF equation, Eq. (3.5),
with the substitutions δu →

√
⟨δu2⟩ and δB →

√
⟨δB2⟩, with δθ probing

√
⟨δB2⟩/B0.

For compressible turbulence B⃗0 ·δ B⃗ ̸= 0, since it is connected with the density fluctuations
[18, 19]. However, for a periodic signal the number of rarefactions (δ B⃗ · B⃗0 < 0) is equal to
the number of compressions (δ B⃗ · B⃗0 > 0), and hence ⟨δ B⃗ · B⃗0⟩= 0 [107, 111, 104]. This on
a first reading implies that the DCF method (Eq. 3.5) also applies to compressible turbulence.
And yet, the DCF energy equipartition is found to be highly inaccurate when tested in
compressible MHD simulations (Fig. 4.1). On the other hand, the energy equipartition
that we derived, including the couplinge term is significantly more accurate in simulations
with compressible turbulence than the DCF (Fig. 4.1). Therefore the argument that the
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B⃗0 ·δ B⃗ term cancels out in the averaged energetics of strongly magnetized and compressible
turbulence does not hold. Below we discuss why is so, by doing an analogy with gravity.

Does the B⃗0 ·δ B⃗ term contribute to the average energetics of compressible turbulence?

The coupling term is by definition zero in the incompressible regime and the averaged total
energy (kinetic and magnetic) in the perturbations/waves is,

⟨δε⟩= 1
2

ρ0⟨δu2⟩+ ⟨δB2⟩
8π

. (5.20)

This is similar to the energy equation of a harmonic oscillator, where energy fluctuates
between kinetic and potential (here magnetic) forms. The physical analogy in incompressible
Alfvénic turbulence works well: the magnetic field oscillates harmonically about B⃗0. The
lowest value of the potential energy is achieved at the equilibrium state where δB = 0. We
can thus consider each fluid element as a harmonic oscillator perturbed around B2

0/(8π).
According to the ergodic theorem, time averaging is equivalent to spatial averaging (equiva-
lently, we can say that within the cloud there exist all possible oscillation phases); Eq. (5.20)
therefore holds - but, in addition, as in the harmonic oscillator, the average values of kinetic
and potential energy are equal, ρ0⟨δu2⟩/2 = ⟨δB2⟩/8π , whence DCF Eq. (3.5) is obtained.

In compressible and strongly magnetized turbulence the fluctuations are also periodic.
The B⃗0 ·δ B⃗ term, although much higher in absolute value than δB2, can be either negative or
positive. Therefore ⟨B⃗0 ·δ B⃗⟩= 0, Eq. (5.20) holds, and it would appear that once again the
problem can be reduced to that of a harmonic oscillation. However, in this case the physical
analogy is incorrect. There are two reasons for this.

First, unlike a harmonic oscillator, the equilibrium state (δB = 0) is not the state of
lowest potential energy; the maximum rarefaction state (δB = −|δB|max) is. The cross
term, B⃗0 · δ B⃗, can be either positive or negative and this means that locally it can either
add or remove magnetic flux from the fluid elements. When B⃗0 · δ B⃗> 0, then the mean
energy density, B⃗0

2
/(8π), locally increases by 2|B⃗0 ·δ B⃗|/(8π) due to the compression of the

magnetic field lines. On the other hand, in regions where B⃗0 ·δ B⃗< 0 the mean energy density
locally decreases by −2|B⃗0 ·δ B⃗|/(8π) due to the decompression of the magnetic field lines.
In contrast, in a harmonic oscillator (as well as incompressible Alfvénic turbulence), any
deviation from the equilibrium position will only increase the potential energy (the magnetic
energy, in the case of our fluid elements).

Second, the dependence of the "potential energy" on the perturbation (here of the magnetic
field) is linear: δεp,compressible ∝ δB). In contrast, in a harmonic oscillator the dependence is
quadratic: δεp,harmonic ∝ δB2. Therefore, neither δu nor δB of a fluid element will behave
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harmonically with time. It is thus clear that the harmonic oscillator is not the appropriate
physical analog to our problem. Can we substitute it with a more appropriate mechanical
analog to guide our intuition?

Indeed we can. Let us consider a shaft with depth |h| below the Earth’s surface. We let a
basketball fall from height +h above the Earth’s surface into the shaft. In classical Newtonian
mechanics, the ball will accelerate from a height +h down to the bottom of the hole, −h,
where it will bounce upward. In the absence of energy losses, the ball executes the reverse
motion as if the clock now runs backwards, and the ball will again reach +h, before moving
once more downwards toward the bottom of the shaft, continuing these oscillations forever.
Consider now that we make the choice of taking the zero point of gravitational potential
energy to be at the Earth’s surface, at its midpoint between its highest value (achieved at
+h) and lowest value (achieved at −h). Now the potential energy mgz is positive above the
surface of the Earth (z > 0), negative below the surface of the earth (z < 0), and its average
value over an entire cycle is ⟨mgz⟩ = 0. At the same time, the kinetic energy is always
non-negative, ⟨mv2/2⟩ > 0. It is obvious that in this case, unlike the harmonic oscillator,
⟨mv2/2⟩ ̸= ⟨mgz⟩. Equating them would lead to an absurdity. The absurdity is resolved when
we compare the absolute maximum potential energy (that is the difference in potential energy
between highest and lowest points) with the maximum kinetic energy1: mv2

max/2 = 2mgh
yields the correct relation between the maximum positive height h, and maximum velocity,
vmax.

The analogy with B⃗0 ·δ B⃗ oscillations works very well if we replace the basketball with a
fluid element and the gravitational potential energy with magnetic energy, where δB∥ now
plays a role similar to the height of the bouncing ball. The magnetic field of fluid elements
oscillates around B⃗0, just as the ball height fluctuates around z= 0. For this reason B⃗0 ·δ B⃗ can
be positive or negative, that is fluctuations in magnetic energy can be positive or negative if
its zero point is defined at δB∥ = 0 (B⃗ =B⃗0), just as fluctuations in the gravitational potential
energy of the ball can be positive or negative if its zero point is defined at z = 0. If oscillations
are periodic, we obtain ⟨B⃗0 ·δ B⃗⟩= 0. Still, we should not be concluding that the coupling
term does not contribute to the average energy budget, any more than we should conclude
that the potential energy of the bouncing ball does not contribute to its average energy budget.

1The reader might notice that this is not an exact mechanical equivalent to the case of fluid elements in
magnetized compressible turbulence, since in the case of turbulence a second-order term which is always
positive is present. To preserve the exact analogy, consider in our mechanical analog that the ball is attached to
a spring which is anchored to the bottom of the shaft, with natural length h, and with spring constant k such
that kh2/2 ≪ 2mgh. The potential energy term is still dominated by mgz and the average kinetic energy will be
comparable to 2mgh; equating it to the average of kz2/2 would still lead to an absurd result, exactly as DCF
leads to an incorrect estimate of the ordered magnetic field strength, and an incorrect scaling of δθ with MA
when the B⃗0 ·δ B⃗ term is dominant in absolute magnitude over δB2.
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For each fluid element energy oscillates between kinetic and magnetic forms. The total
energy density of a fluid element is,

Etot =
1
2

ρδu2 +
B2

8π
, (5.21)

where Etot = E0 + δε . In the unperturbed case the total energy of each fluid element is
E0 = B2

0/(8π), which is the mean magnetic energy density. When |B⃗0| ≫ |δB|, the perturbed
energy of each fluid element is,

δε ≈ 1
2

ρδu2 +2
B⃗0 ·δ B⃗

8π
, (5.22)

in the fluid rest frame where u0 = 0. The δB2/8π term is second order, and hence it was
neglected. The δε are energy fluctuations around E0 and can be negative when δu → 0
and B⃗0 ·δ B⃗ < 0. If we assume undamped oscillations, then the kinetic energy is completely
transferred to magnetic and backwards periodically. It is reasonable to assume that kinetic
energy fluctuations are dominated by δu2 fluctuations when the temperature is constant
within a cloud implying ρ ≈ ρ0.

To make further progress, we should identify the physically correct way to relate the
kinetic energy term with the first-order magnetic energy term. As in the case of the bouncing
ball, the maximum kinetic energy of the fluid element will be comparable to the absolute
maximum magnetic energy (that is the difference between maximum compression and
maximum rarefaction):

ρ0δu2
max/2 ∼ 2B0δB∥,max/4π. (5.23)

Of course, neither δumax nor δB∥,max can be probed observationally. The quantities that we
do have access to from observations are the spatially-averaged kinetic energy fluctuations,
⟨δu2⟩ and magnetic field fluctuations

√
⟨δB2⟩ (Sect. 5), which, by virtue of the ergodic

theorem, correspond to the time-averaged fluctuations over an entire period of the evolution.
What we need then is a way to relate δumax to ⟨δu2⟩, and

√
⟨δB2⟩ to δB∥,max.

In the case of the bouncing ball, the time evolution of its velocity v and height z are
straightforward to obtain, so we can in fact calculate these relations between v2

max and ⟨δv2⟩,
and between zmax and

√
⟨z2⟩. Before we do so, however, and use them in the problem at

hand, we should investigate how far we can take the analogy between bouncing ball and fluid
element in compressible, strongly magnetized turbulence. Would the time behavior of the
fluid element have in fact the same functional form as in the bouncing ball?

The answer is "yes", provided that we can write a formally equivalent Lagrangian for
the two systems, and show that the boundary conditions of the problem are similar. If we
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take the magnetic field perturbation parallel to B⃗0, δB∥, to be a generalized coordinate for
the problem, then the generalized velocity would be ˙δB∥, which, by virtue of flux freezing,
is proportional to δu⊥ (the velocity of the fluid element perpendicular to the magnetic field)2.
In the bouncing ball case, we have a potential energy term that is proportional to z, and a
kinetic energy term that is proportional to ż2. Similarly, for the fluid element responsible
for a magnetic field compression or rarefaction, we have a potential energy term that is
proportional to δB∥, and a kinetic energy term that is proportional to δu2

⊥ ∝ ˙δB∥
2
. The

Lagrangians of the two problems are thus formally equivalent. The boundary conditions of
the problem are also similar: the presence of the bulk medium and its large-scale magnetic
field acts as the “ground”, forcing the fluid element with increasing velocity undergoing a
rarefaction to reverse course back toward increasing magnetic field with velocity decreasing
in magnitude. As a result, the time evolution profiles of δB∥ and ˙δB∥ will be similar to those
of z and v, respectively, in the bouncing ball problem.

For the bouncing ball, over one period of the motion ⟨v2⟩= v2
max/3 and ⟨z2⟩= 7h2/15.

Therefore, by eliminating v2
max in favor of ⟨v2⟩, and h in favor of

√
⟨z2⟩, the relation between

maximum kinetic and potential energies, mv2
max/2 = 2mgh, can be rewritten as,

1
2

m⟨v2⟩= 2
3

√
15
7

mg
√

⟨z2⟩ ≈ mg
√

⟨z2⟩, (5.24)

which is equivalent to the energy equipartition that we derived analytically for sub-Alfvénic
and compressible turbulence (§ 4).

5.0.2 Comments on the assumptions and approximations of the pro-
posed method

Here we discuss some assumptions entering our proposed method which can limit its accuracy.
Firstly, we assumed that oscillations are undamped in compressible turbulence, but in reality
shocks lead to significant energy loss and nonideal effects (e.g., ambipolar diffusion) can
induce significant loss of magnetic flux from the cloud. Even in ideal-MHD simulations there
is significant energy dissipation due to the presence of shocks and numerical diffusion. In
these cases, equipartition between the root-mean-square (rms) kinetic and magnetic energy
is not guaranteed. In nature, equipartition can hold when there is a constant energy source
at large scales injecting energy to the cloud. In numerical simulations this is achieved with
the so called forcing, applied in most cases. Secondly, we assumed that magnetic pressure
dominates over gas pressure. This is a reasonable approximation for clouds with MA < 1 and

2The result can be obtained, for example by differentiation with respect to time of Alfvén’s theorem.
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Ms > 1, but when B⃗0 ·δ B⃗ < 0 the magnetic pressure may locally become comparable to the
gas pressure (especially in cases when B⃗0 ·δ B⃗ is close to its negative minimum). However,
an oscillator spends only a limited amount of time at its negative minimum, which through
ergodicity means that gas pressure will be important only for a small volume fraction of
the cloud. Thirdly, to arrive to Eq. (5.2) we assumed that gas density fluctuations are much
smaller than u2, and hence that density is approximately constant in the Lagrangian, ρ ≈ ρ0

(Eq. 4.8). Thus, Eq. (5.2) omits any contribution from density fluctuations in the kinetic
energy, ⟨δρu2⟩/2.



Chapter 6

Numerical assessment of interstellar
magnetic field strength estimation
methods

6.0.1 How good are the energy equipartition assumptions?

In order to assess the validity of Eqs. (3.2) and (5.2), we tested them in numerical simulations.
We computed the kinetic energy term (ρ0⟨u2

⊥⟩/2) and compared it against the two different
magnetic energy terms.

In Fig. 6.1 we show in the vertical axis the ratio of kinetic over magnetic energy, with
both terms calculated from Eq. (3.2) (DCF). In the horizontal axis, we show the ratio of
kinetic over magnetic energy, with both terms calculated from the proposed equation (Eq. 5.2,
henceforth ST). Different color points correspond to simulations with different MA, while
different shapes correspond to simulations with different Ms. Subsonic (Ms < 1) simulation
results are shown with dots, supersonic models with 1 < Ms ≤ 4 are shown with an "x" and
Ms > 4 models are shown with triangles. The vertical line indicates exact equipartition à la
ST and the horizontal line exact equipartition à la DCF. Diagonal lines separate the regions
where each method outperforms the other. Green-shaded regions are closer to the horizontal
than the vertical line; there, it is the quadratic term in magnetic energy that dominates and is
better comparable to the kinetic energy. White-shaded regions are closer to the vertical line;
there, it is the coupling term in the magnetic energy that dominates, and it is that term that is
closer to the kinetic energy.

Our results suggest that Eq. (3.2) (DCF) is highly inaccurate (by factors of several to
100) in sub-Alfvénic simulations, performs comparably to Eq. (5.2) (ST) in trans-Alfvénic
simulations, and clearly outperforms Eq. (5.2) (ST) only in trans-, super- Alfvénic turbulence
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Fig. 6.1 Relative ratio of kinetic over magnetic energy density using Eq. (3.2) (vertical axis)
and Eq. (5.2) (horizontal axis). Colors correspond to different MA as shown in the legend.
Dots correspond to simulations with Ms < 1, "x" to 1 < Ms ≤ 4 and triangles to Ms > 4.

simulations driven solenoidally (Fig. 6.2, and § 6.0.2). This shows the weakness of the incom-
pressible approximation to accurately describe the energetics of sub-Alfvénic turbulence and
indicates that the DCF method is precarious to use when the MA of a cloud is unknown. On
the other hand, ST is fairly accurate (better than factor of 2) in the entire sub-, trans- Alfvénic
regime, even for high Ms cases. Overall, the coupling term dominates in the energetics over
the δB2 term when MA < 1 and cannot be ignored.

6.0.2 How does the forcing affect the energetics?

Turbulence in MHD simulations is driven in order to achieve the desired Ms. Driving is
implemented by injecting compressible or incompressible or a mixture of modes in the cloud
through a stochastic process in Fourier space. This process is supposed to mimic the driving
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Fig. 6.2 Same as in Fig.6.1, but the dots correspond to models driven with a mixture of
compressible and solenoidal modes and "x" denotes models driven solenoidally.

mechanisms found in nature. We explored if there is any dependence of the results shown in
Fig. 6.1 on the forcing mechanism.

In Fig. 6.2 we show the same data as in Fig. 6.1, but here dots correspond to models driven
with a mixture of compressible and incompressible modes, and "x" represents solenoidally
driven simulations. The driving mechanism of each simulation is shown in the second column
of Table 6.2. The majority of simulations used in the current work were driven with an equal
mixture of modes, but there are also a few driven solenoidally. Overall, our results in Fig. 6.2
are weakly affected by the forcing mechanism in the sub-Alfvénic simulations.

We compared the effect of forcing at models with MA = 0.5 and MA = 2.0, since we
have an overlap of both solenoidally and mixed driven simulations. Blue points correspond
to models with MA = 0.5. The solenoidally driven model (shown with the blue "x") has the
largest kinetic over B0⟨δB2

∥⟩1/2 ratio. The reason is that forcing injects only incompressible
modes in the cloud which are only traced by δB2. On the other hand, when mixed forcing
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Table 6.1 3D MHD simulations

MS V true
A σv δθ V DCF

A ( f = 1) ⟨B2
t ⟩

0.5
/B0 V DCF+HH09

A V new
A

0.7 0.91 0.46 0.097 4.7 0.11 4.1 1.0
1.2 1.60 0.58 0.116 5.0 0.13 4.5 1.2
2.0 2.87 1.36 0.128 10.6 0.19 7.1 2.7
4.0 5.09 1.89 0.132 14.3 0.24 7.9 3.7
7.0 9.10 3.98 0.146 27.3 0.29 13.7 7.4

The following columns are measured in units of km s−1: V true
A , σv, V DCF

A , V DCF+HH09
A and V new

A . The quantities
δθ and

√
⟨B2

t ⟩/B0 are measured in radians.

is used the kinetic energy is equally shared among B0⟨δB2
∥⟩1/2 and δB2. For this reason,

the blue "x" point is shifted toward larger and smaller values in the horizontal, and vertical
axis respectively compared to the blue dots. However, the difference between the forcing
mechanisms does not create significant deviations between these models. In sub-Alfvénic
turbulence B⃗0 is much stronger than the forced perturbations and determines how energy is
transferred among the modes.

The effect of forcing in super-Alfvénic simulations is more prominent. We compared
the models with MA = 2.0 (shown with cyan) and mixed forcing (denoted by dots) with the
solenoidally driven models (denoted by ×). Models with mixed forcing are clustered in the
bottom left corner of Fig. 6.2, while models with solenoidal forcing in the right bottom corner.
The reason is that solenoidal modes are not represented by δBx, and hence all the injected
kinetic energy goes to δB2/(8π). On the other hand, when mixed forcing is applied the
injected energy is shared. In super-Alfvénic turbulence |B⃗0|< |δ B⃗|, and hence the dynamics
of the cloud are determined by δ B⃗, instead of B⃗0. In these cases the mode of the forced
fluctuations determines the cloud dynamics. Thus, there is a large separation between the
solenoidal and mixed driven simulations with MA = 2.0 in Fig. 6.2. Magnetic field lines
are highly curved in the solenoidally driven simulation, and hence δB2/(8π)≫ B0⟨δB2

∥⟩1/2.

On the other hand, in mixed driven simulations δB2/(8π)≈ 2B0⟨δB2
∥⟩1/2. This is in striking

contrast with the sub-Alfvénic turbulence where fluctuations evolve independently of the
forcing mechanism and fluctuations are dictated by B⃗0 and not by δ B⃗.

6.0.3 Testing HH09 with 3D simulations

We apply the HH09 method to the polarization angle maps, χ(x,y), we created in Sec-
tion 3.1.2 as suggested by [84]. We compute the dispersion function (Eq. 3.13) from our
synthetic data, black dots in Fig. 6.3. We then fit to the black dots the right hand side of
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Fig. 6.3 Black dots correspond to the dispersion function computed using Eq. (3.13) for the
Ms = 0.7 model. The model fit at large scales is shown with the black broken curve. Blue
points mark the dispersion function subtracted with the black broken line and the blue line
shows the fit of Eq. (6.1).
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Eq. (3.14), without including the exponential term. This fit, shown with the black broken
curve, is performed at larger scales, i.e l > 20 pixels. The black broken curve is then sub-
tracted from the black points and the result, shown with the blue dots, corresponds to the
turbulent auto-correlation function, i.e. to the second term of Eq. (3.14),

b2(l) =
√

2π
⟨B2

t ⟩
B2

0

δ 3

(δ 2 +2W 2)∆′ e
l2/2(δ 2+2W 2). (6.1)

We fit this term to the blue points and we derive the turbulent correlation length (blue broken
curve in Fig. 6.3), δ . The turbulent-to-ordered magnetic field ratio is ,

⟨B2
t ⟩1/2

B0
= b(0)

√
N, (6.2)

where N is the number of turbulent cells along the line of sight and is defined as,

N =
δ 2 +2W 2
√

2πδ 3
∆
′, (6.3)

where ∆′ is computed as in [84]. Like in optical polarization data beam resolution is infinite
in our synthetic observations, and hence W = 0 [55, 145]. In Appendix A we show the
dispersion function plots for the rest of the models and in Table A.1 the best fit parameters
are given. The turbulent-to-ordered ratio obtained for the different simulation models is
shown in column ⟨B2

t ⟩
1/2

/B0, in Table 6.1.

To obtain an estimate of δu ∼
√
⟨u2

⊥⟩ ∼ σturb, we created spectroscopic data in the form
of a position-position-velocity (PPV) cube [121]. We used the following equation,

Iv(x,y,v) = ∑
LOS

ρ(x,y,z)√
2πσ(x,y,z)

exp

[
−(vlos(x,y,z)− v)2

2σ(x,y,z)2

]
, (6.4)

where vlos(x,y,z) is the LOS velocity component and v is the central velocity of each velocity
channel. This equation assumes optically thin emission. In Eq. (6.4), σ(x,y,z) is due to
thermal broadening and is equal to

√
kBT/m, where kB is the Boltzmann constant. We then

fitted Gaussian profiles to every Iv spectrum and derived an "observed" line spread (σobs) as a
free parameter of the fitting. We computed the turbulent velocity by subtracting in quadrature
the thermal broadening,

σturb =

√
σ2

obs −
kBT
m

. (6.5)
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The estimated Alfvén speed when the HH09 method is combined with DCF is shown
in the same Table in the V DCF+HH09

A column. The DCF+HH09 estimates are significantly
improved compared to the classical DCF values (column: V DCF

A ( f = 1)) although the over-
estimation from the true Alfvén speed (V true

A ) is still prominent. We note, however, that if
we consider that the effective cloud depth is equal to the cloud size, i.e. ∆′ = 256 pixels, the
HH09 method produces more accurate estimates of the field strength for the models with
Ms = 4.0 and 7.0.

2 4 6
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ε(
%

)

DCF (f = 1)

DCF (f = 0.5)

DCF+HH09

New

Fig. 6.4 Absolute relative deviation (|ε|) of each method estimate for the different simulation
models. All the models have MA = 0.7.

For comparison we also apply the proposed method to the same numerical data. We use
the δθ and σv from Table 6.1. In the same Table we show in the V new

A column the value
computed using the proposed equation (5.4). It is evident that our model produces acceptably
accurate estimates of the true VA in all models.
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We asses the accuracy of each method using the relative deviation of the estimated VA

from the true one is,

ε(%) = 100
V true

A −V est
A

V true
A

. (6.6)

where V true
A is the true VA and V est

A is the estimated value from the various methods. In
Fig. 6.4 we show ε(%) for all models. The black points correspond to DCF (Eq. 3.6) with
f = 1 (solid line) and f = 0.5 (dotted line), blue to DCF+HH09 (Eq. 3.15), and red to the new
proposed method (Eq. 5.5). DCF systematically overestimates the true value and even with
the previously reported two-fold reduction, i.e. f = 0.5, the deviations are still significant.
DCF+ HH09 produces very large estimates in the models with low Ms, while at higher Ms

the method is more accurate. The proposed method produces very accurate values for the
field strength independently of Ms without using any external correction.

6.1 Testing scalings with numerical simulations

The major difference between DCF and our proposed method is the dependence of the
magnetic field strength on δθ . In DCF, B0 scales as δθ−1 (Eq. 3.5), while in the proposed
method it scales as ∼ δθ−1/2 (Eq. 5.4). One can divide both equations with

√
4πρ and obtain

the magnetic field strength in velocity units (the Alfvénic speed, VA). The scaling relations
of DCF and our new method expressed in terms of VA are VA ∼ δθ−1, and VA ∼ δθ−1/2,
respectively. The Alfvénic speed is VA = csMs/MA, where cs is the sound speed. Using
the above equation with the corresponding δθ scaling dependence of the two methods we
obtain:

δθ ∝

MA, DCF

M 2
A , proposed method

. (6.7)

This is the key difference between the two methods, and it is based on the different scaling
relation of MA with the magnetic fluctuations in the incompressible [65] and compressible
turbulence [49, 14]. We tested the two scalings in synthetic polarization data. We computed
synthetic Q and U Stokes parameters (Eq. 5.8 and 5.9 in § 5) and the polarization angles as
θ = 0.5arctanQ/U . Then, we computed the dispersion of the θ angles, δθ . All δθ values
are shown in Table 6.2.

In Fig. 6.5 we show δθ as a function of MA (we do not show the solenoidally driven
models with MA = 2.0 since their δθ is not representative of the actual fluctuating-to-ordered
magnetic field ratio, § 6.2.2). The blue line corresponds to the scaling of the proposed method,
and the magenta line to the DCF scaling. Both lines are normalized so that they pass through
the simulated data for MA = 1.0. The scaling of our new method shows a remarkable
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Fig. 6.5 Polarization angle dispersion as a function of the Alfvénic Mach number. Blue line:
scaling of the proposed method; magenta line: DCF scaling. The two lines are normalized so
that they pass through the data for MA = 1.0.

consistency with the data. In contrast, the DCF scaling fails to represent the synthetic data.
Even if we fine-tune the DCF relation with the use of a factor f à la Ostriker et al. [139],
agreement with the data is achieved only around the MA values used for the tuning. The
scaling slope of DCF is clearly inconsistent with simulation data, regardless of the presence
of f .

6.2 Applying the DCF and the proposed method in syn-
thetic data

In this section, we explore the accuracy of the DCF and ST methods in estimating the
magnetic field strength. We do not test the DCF+HH09 any further, since the HH09 method
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Fig. 6.6 Left panel: Relative error of the DCF method versus the relative error of the ST
method. Colors correspond to different MA as shown in the legend. Dots correspond to
simulations with Ms < 1, "x" to 1 < Ms ≤ 4, and triangles to Ms > 4. The black dotted box
marks the zoomed in region shown in the right panel. Right panel: Zoomed region of the
left panel.

only accounts for projection effects and has other caveats (§ 3) not related with the omission
of the compressible modes in the energy budget of a cloud.

To this end, we created synthetic data from every simulation and applied the DCF (with
an optimization factor f = 0.5) and ST methods. Both methods can be significantly affected
when the magnetic field is pointing toward the observer since the LOS angle fluctuations
induces extra dispersion in δθ [139, 48, 74]. For this reason, we consider that B⃗0 lies
completely in the POS.

To obtain an estimate of δθ , we applied the formalism of § 5 (Eqs. 5.8, and 5.9) to
calculate the Stokes parameters for each LOS, we estimated polarization angles through
tan2θ = U/2Q, and calculated the dispersion of θ over the entire cloud through δθ =√

⟨θ 2⟩2D (taking θ = 0 in the direction of the mean magnetic field). We then applied the
DCF method with f = 0.5, and the ST method, by inserting the synthetic δu and δθ in
Eqs. (3.5) and (5.4), respectively. We divided both equations with

√
4πρ0 in order to derive

the estimated magnetic field strength in Alfvénic speed units. Finally, we computed their
relative error Eq. 6.6.

In Fig. 6.6 we show the relative error of DCF (εDCF) versus ST (εST). Red color is used
for points when MA = 0.1, magenta for MA = 0.35, blue for MA = 0.5, green for MA = 0.7,
black for MA = 1.0 and cyan for MA = 2.0. We did not include models with MA = 2.0 and
solenoidal forcing, since the polarization angle distribution of these models is uniform, and
thus uninformative. Below we discuss the effect of forcing of these simulations in more
detail (§ 6.2.2). The green shaded region corresponds to a smaller error for DCF than for ST.
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We find that DCF is extremely inaccurate at low MA ≤ 0.5: when the method fails, it
fails by factors of several to tens. The accuracy of the method is improved for MA ≥ 1.0, as
expected, since it is in this regime for which the value of f we are using here ( f = 0.5) has
been optimized [139, 72, 142]. The overall trend of this figure is consistent with Fig. 6.1. The
DCF method estimates are systematically biased toward larger values, because the kinetic
energy of the cloud is much larger than the magnetic fluctuations, even for models with
Ms = 0.5 and 0.7. The incomressible approximation employed by DCF is reached when Ms

tends to zero, but even for weakly compressible flows (e.g., Ms ≈ 0.1) compressible terms
can dominate the dynamics [19]. Only in trans-, super- Alfvénic cases DCF starts yielding
reasonable estimates, because in this regime the contribution of the δB2/(8π) term in the
energy increases.
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Fig. 6.7 Left panel: Kernel density estimation of εDCF for different MA simulations. Right
panel: Zoomed in region of the left panel.

In contrast, the error of the ST method remains low and uniform across the different
models, because the kinetic energy remains comparable to the B⃗0 · δ B⃗ fluctuations over a
wide range of MA (Fig. 6.1). The ST method overestimates the magnetic field strength at
MA = 0.1, while at MA = 0.5 a transition happens. In the latter case half of the measurements
overestimate the magnetic field strength, while the rest underestimate it. The underestimation
is more prominent at large Ms, since the deviation between the estimated turbulent velocity
and the true one becomes larger (Table 6.2). ST systematically underestimates the magnetic
field strength at models with MA ≥ 0.7. However, in all cases the error of ST is lower than
50%.
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6.2.1 Statistical properties of εDCF and εST.

In Fig. 6.7 we show the error distribution for the DCF method, εDCF, at different MA, using
kernel density estimation. The colorbar indicates the MA of each distribution. Red, yellow,
green, cyan and blue correspond to simulations with MA of 0.1, 0.5, 0.7, 1.0, and 2.0,
respectively. It is evident that as MA increases εDCF decreases. Distributions become more
symmetric and narrow at larger MA since the properties of these models are more isotropic.
The εDCF mean, median, and standard deviation of all the models with MA ≥ 0.7 are 34%,
28%, and 49% respectively. This shows that the method estimates are systematically biased
toward large values and the distribution is skewed to positive values. We also computed
the same statistical quantities for the absolute values of εDCF for the same models. The
mean, median, and standard deviation of |εDCF| is 47%, 37%, and 37%, respectively. DCF
is completely inaccurate at lower MA, and hence we do not report any statistics for these
models.

The εST distributions at different MA are shown in Fig. 6.8. Colors are the same as in
Fig. 6.7. The ST estimates are biased toward larger values at MA = 0.1, while at MA ≥ 0.7 the
method estimates are systematically biased toward smaller values. The peak of the MA = 0.5
distribution is close to zero and the probability of overestimating and underestimating the
magnetic field strength is equal there. Distributions become more isotropic at larger MA,
which, similarly to εDCF, happens because the turbulent properties of these models are more
isotropic. The εST mean, median, and standard deviation of all the models are −2%, −6%,
and 24%, respectively and the distribution is close to a Gaussian. The same quantities for
|εST| are 20%, 18%, and 14%, respectively. The εST distribution is more symmetric and
peaks close to zero. Positive values are dominated by models with MA ≤ 0.5, while negative
by models with MA ≥ 0.7. The right panel of Fig. 6.7 and Fig. 6.8 show the error distributions
of the two methods (DCF and ST) on the same scale.

6.2.2 How does forcing affect the polarization data?

The dynamics of a sub-Alfvénic cloud are mainly determined by B⃗0 and forcing has a weak
role. On the other hand, in super-Alfvénic turbulence forcing plays a dominant role in the
cloud dynamics (§ 6.0.2). We could not apply the two methods (ST and DCF) in simulations
with MA = 2.0 that were driven solenoidally, but we did apply them to simulations with
MA = 2.0 and mixed forcing. The reason is that forcing has a strong impact on the distribution
of polarization angles in super-Alfvénic simulations. In Fig. 6.9 we show the normalized
polarization angle distributions of simulations with MA = 2.0 and Ms = 2.0. The black
histogram corresponds to a cloud driven solenoidally, while the blue histogram to a cloud



6.2 Applying the DCF and the proposed method in synthetic data 57

−50 0 50 100 150 200
εST(%)

0.1

0.5

0.7

1.0

2.0

M
A

Fig. 6.8 Kernel density estimation of εST of simulations with different MA.

driven with a mixture of modes. The black histogram is uniform and characterized by a
spread equal to 48o, while the blue histogram has still a well defined mean with a spread
equal to 28o. The dispersion in the black histogram (solenoidal driving) is so large it no
longer encodes the magnetic fluctuations, due to the limited domain range, δθ ε [−90o,90o].
In this case neither of the two methods can be applied.
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Table 6.2 Simulation properties and methods results.

Refs Driving MA Ms VA,true σturb δθ(o) V ST
A εST(%) V DCF

A εDCF(%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 mixed 0.1 0.5 5 0.36/0.27 0.06/0.05 7.8/6.8 55/36 165/167 3210/3243
1 mixed 0.1 2.0 20 1.47/1.52 0.09/0.09 26.4/27.1 32.3/35 476/480 2280/2302

1 mixed 0.1 4.0 40 3.25/2.43 0.09/0.08 57.8/44.9 32.3/12.3 1034/830 2485/1977

1 mixed 0.1 10.0 100 5.63/6.73 0.08/0.09 103.8/117.5 3.8/17.5 1910/2049 1810/1949

1 mixed 0.1 20.0 200 13.76/11.25 0.09/0.09 252.6/202.6 26.3/1.3 4636/3648 2218/1724

1 mixed 0.5 0.5 1 0.33/0.27 1.73/1.53 1.5/1.1 51.2/6.5 6.1/4.6 514/361

1 mixed 0.5 2.0 4 1.15/141 2.96/1.86 3.6/5.5 -9.6/38.2 11.3/21.7 181/442

1 mixed 0.5 4.0 8 1.98/2.44 2.57/2.10 8.3/9.0 3.7/12.7 27.7/33.3 246/316

1 mixed 0.5 10.0 20 6.11/5.76 3.04/2.63 18.8/19.0 -6.1/-5.1 57.6/62.6 188/213

1 mixed 0.5 20.0 40 8.92/13.01 3.00/2.63 35/2/41.5 -12.0/3.9 109/137 172/243

1 mixed 1 0.5 0.5 0.26/0.27 9.24/6.48 0.46/0.56 -7.6/12.7 0.8/1.19 63/137

1 mixed 1 2.0 2 0.83/1.09 9.89/9.16 1.41/1.9 -29.5/-3.5 2.4/3.41 19.9/70.6

1 mixed 1 4.0 4 1,62/2,08 10.12/8.61 2.7/3.8 -31.9/-4.9 4.6/6.9 14.6/73.4

1 mixed 1 10.0 10 4.33/4.41 10.86/10.14 7.0/7.4 -29.67/-26.0 11.4/12.5 14.2/24.4

1 mixed 1 20.0 20 8.68/9.70 10.27/10.14 14.5/16.3 -27.5/-18.5 24.2/27.4 21/37.0

1 mixed 2.0 2.0 1 0.82/0.87 32.91/27.65 0.76/0.88 -23.5/-11.5 0.7/0.9 -28.6/-9.9

1 mixed 2.0 4.0 2 1.68/1.96 37.77/33.43 1.5/1.8 -27.0/-9.2 1.3/1.7 -36.4/-15.9

1 mixed 2.0 10.0 5 4.09/4.89 37.33/32.82 3.6/4.6 -28.2/-8.7 3.1/4.3 -37.1/-14.7

1 mixed 2.0 20.0 10 7.69/10.88 33.63/30.36 7.1/10.6 -29.0/5.8 6.5/10.3 -34.5/2.7

2 sol 0.7 0.7 0.91 0.46./0.39 6.21/5.79 0.99/0.87 9.5/-3.4 2.1/2.0 135/115

2 sol 0.7 1.0 1.60 0.58 /0.71 7.00/6.25 1.2/1.6 -26.9/-5.0 2.4/3.3 47.9/103

2 sol 0.7 2.0 2.87 1.35/1.07 7.53/7.63 2.6/2.1 -8.1/-28.0 5.2/4.0 79.3/39.5

2 sol 0.7 4.0 5.09 1.89/2.08 8.11/7.96 3.6/3.9 -30.2/-22.4 6.7/7.5 31.3/47.3

2 sol 0.7 7.0 9.10 3.99/2.83 8.24/8.58 7.4/5.2 -18.1/-43.2 13.9/9.4 52.6/3.7

3 sol 0.5 7.5 2.86 0.76/0.71 2.6/2.9 2.5/2.2 -12.7/-21.5 8.1/7.1 185/147

4 sol 0.35 10 28.6 6.4/7.2 1.5/1.4 26.9/34.4 -5.8/20.3 348/525 299/475

Column 1: (1) Beattie et al. [14]; (2) Burkhart et al. [24]; (3) Körtgen and Soler [94]; (4)
Mocz et al. [123]. Column 2: "sol" refers to solenoidal forcing, and "mixed" to mixed forcing.
σturb is measured in km/s and δθ in degrees; when estimating V ST

A and V DCF
A , δθ is used in

radians.
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Fig. 6.9 Polarization angle distributions for two different simulations with MA = 2.0 and
Ms = 2.0. Black histogram corresponds to solenoidally driven cloud, while the blue to
mixed forcing. Both histograms are normalized by dividing each bin with the total number
of measurements. The legend shows the type of forcing.





Chapter 7

Conclusions

Dust polarization traces the magnetic field orientation in the POS, but not its strength. DCF
and HH09 are the most widely applied methods that employ polarization data in order to
estimate the strength of the field. They rely on the assumption that isotropic gas turbulent
motions induce the propagation of small amplitude Alfvén waves, |δ B⃗| ≪ |B⃗0|. Observations
indicate that turbulence in the ISM is highly anisotropic (§ 3.1.2). The sufficiently high Ms

in the ISM [70] implies that compressible modes are important. The DCF method neglects
the compressible modes, and hence the estimates of the magnetic field it provides deviate
significantly from the true value. We presented a Lagrangian description of the energy
transfer between kinetic and magnetic fluctuations of compressible and sub-Alfvénic fluids.
From the flux-freezing theorem, we showed that δB∥ and δB⊥ are generalized coordinates
of the fluid element Lagrangian. We derived analytically the linear relations, as a function
of MA, which connect kinetic and magnetic energy terms of sub-Alfvénic fluids. We found
that when MA ≤ 1, the total magnetic energy density transferred to kinetic is equal to(

2B0

√
⟨δB2

∥⟩+ ⟨δB2⟩
)
/8π (§ 4).

Using our analytical energy relations we derived a new method for estimating the mag-
netic field strength from dust polarization which, unlike DCF, includes the compressible
modes. We inferred that δθ ∝ M 2

A , while the DCF method, which employs the incompress-
ible approximation, infers that δθ ∝ MA. We tested both scalings with synthetic data that we
produced from ideal-MHD numerical simulations of isothermal clouds without self-gravity,
spanning a wide range of MA and Ms (Ms ε [0.5,20] and MA ε [0.1,2.0]). In total we used
26 different models. We found that the synthetic polarization data can be fit very well with
our new scaling and not with the DCF scaling (Fig. 6.5).

The major difference between the two methods is that in the DCF energy equation
(Eq. 3.2) by definition δ B⃗ · B⃗0 = 0, since only Alfvénic distortions are assumed to be present.
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On the other hand, we relaxed this assumption and considered the more general case of
compressible fluctuations where δ B⃗ · B⃗0 ̸= 0 (Eq. 5.4).

We have explored whether the averaging over the total volume of a cloud can make this
term vanish in the energetics, even if locally it is nonzero. We showed that ⟨δ B⃗ · B⃗0⟩ =
0 is obtained only if the zero-point of the magnetic "potential energy" is taken to be at
δ B⃗ = 0, rather than at the point of minimum potential energy, δ B⃗ =−δ B⃗max. By making
a simple analogy with the problem of a bouncing ball in Newtonian gravity, we showed
that for compressible fluctuations the correct energy conservation equation is obtained when
comparing the kinetic energy with the rms of the B⃗0 ·δ B⃗ in the magnetic energy equation,
which then naturally leads to our new equation for the magnetic field strength (Eq. 5.4). We
have tested our theoretical arguments with numerical data and found that indeed the rms of
B⃗0 ·δ B⃗ compares very well with the kinetic energy in all cases studied, with the exception of
super-Alfvénic simulations with solenoidal forcing (see Fig. 6.1). On the other hand, when
we omit this term, the kinetic energy can be up to two orders of magnitude larger than the
magnetic energy (§ 4). This explains why our method predicts the right scaling between δθ -
MA, while DCF do not.

We explored if B⃗0 ·δ B⃗ is imprinted in δθ . We showed analytically that when |B⃗0| ≫ |δ B⃗|
the zeroth order approximation of δθ refers to perpendicular magnetic field fluctuations and
the first order corrections correspond to compressible modes. However, the rms amplitude of
parallel and perpendicular fluctuations is in all cases comparable, with deviations smaller
than a factor of 2. As a result, δθ provides, indirectly, information about the amplitude of
parallel fluctuations even to zeroth order.

We tested the accuracy of the two methods in estimating the magnetic field strength.
We found that the DCF method with a “fudge factor” f = 0.5 failed completely in clouds
with MA ≤ 0.5 and only started producing reasonable estimates when MA ≳ 0.7. The
lowest errors for DCF were achieved for trans-,super- Alfvénic turbulence, MA ≥ 1.0,
because this is the regime for which the “fudge factor” f = 0.5 we have used was fine-tuned
[139, 72, 142]. Even in this regime (MA ≥ 0.7 clouds), the relative error of DCF lied
in the range [−37,137]%. Over the entire MA range, the error of DCF lied in the range
[−37,3500]%. ; Even when DCF was combined with the HH09 method, in order to account
for projection effects, the estimates improved only in a few cases (§ 6.0.3).

The proposed method, on the other hand, gave good results for all MA examined here,
without any fine tuning: the relative deviation from the true value lied in the range [−43,51]%
over the entire MA. We did not find any strong dependence of the accuracy of the methods
on Ms. Even in the cases where DCF would outperform the proposed method, the proposed
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method would still provide an adequate estimate of the magnetic field strength, while the
reverse is not true.

The main question posed in the current thesis was: How can we estimate the magnetic
field strength from dust polarization with high accuracy, such that deviations do not exceed
the factor of two? We conclude that the answer to this question is the following equation:

B0 =
√

4πρ
⟨u2

⊥⟩1/2
√

2δθ
.
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Appendix A

Dispersion function fitting

Table A.1 Fitting parameters of the HH09 method.

Ms δ (pixel) m b(0) ∆′ (pixels) N
0.7 15.5 0.0012 0.06 117 3.5
1.2 13.7 0.0016 0.07 117 3.4
2.2 13.1 0.0015 0.10 117 3.6
4.0 10.3 0.0009 0.12 108 4.2
7.0 8.6 0.0011 0.13 112 5.2

b(0) is computed from equation (3.14).

The dispersion function fits for the models with Ms = 1.2−7.0 are shown in Fig. A.1.
The best fit parameters for every model is given in Table A.1.
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Fig. A.1 As in Fig. 6.3 for the simulation models with Ms = 1.2−7.0.
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