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Abstract

Gene expression analysis aims to improve the understanding of the intrinsic cellular pro-

cesses and contribute towards the successful implementation of personalized medicine. The ad-

vent of high-throughput gene expression technologies such as microarrays and RNA-sequencing

(RNAseq) as well as the recent reduction of cost resulted in an explosion of publicly-available

datasets. The generated datasets are inevitably high-dimensional with typically small sample

size that severely limits the potential for developing reproducible prognostic models. Being able

to increase the predictive power without losing the information of the measured genome on a

newly-produced dataset is of paramount importance. Despite the fact that various studies at-

tempt to perform dimensionality reduction and dataset integration so as to increase classification

performance and robustness, there are still challenging issues primarily due to the limited number

of data as well as the technological diversity and heterogeneity across the datasets.

Exploiting the redundancy of genomics data, we constructed low-dimensional, universal, latent

feature spaces of the genome utilizing several dimensionality reduction approaches and a diverse

set of curated datasets. Standard Principal Component Analysis (PCA), kernel PCA and Neu-

ral Network Autoencoders were applied on datasets from four different platforms. While linear

techniques showed better reconstruction performance, nonlinear approaches were able to capture

more complex gene interactions, and thus enjoyed stronger classification power. When newly-

seen gene expression datasets projected to a latent space of 200 dimensions, the classification

power was improved. Moreover, we performed a large-scale experiment where the dimensionality

reduction methods were trained on an integrated set of 59864 unique samples. The classification

power was further improved especially for Autoencoder. Rather surprisingly, the statistical vari-

ability of the additional datasets increased the classification performance implying that intricate

biological features were better learn. We additionally tested the possibility of cross-platform

data augmentation by constructing an intermediate feature space showing that when platforms

share common characteristics (such as GLP570 and GLP96) the predictive performance was also

improved.
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Περίληψη

Η ανάλυση γονιδιακών εκφράσεων στοχεύει στη βελτίωση της κατανόησης των ενδογενών κυτ-

ταρικών διεργασιών και συμβάλλει στην επιτυχή εφαρμογή της εξατομικευμένης ιατρικής. Η εμφάνσιση

των τεχνολογιών γονιδιακών εκφράσεων υψηλών αποδόσεων όπως οι μικροσυστοιχίες (microarrays)

και η αλληλουχία RNA (RNAseq) καθώς και η πρόσφατη μείωση του κόστους οδήγησαν στην έκρηξη

δημόσιων-διαθέσιμων συνόλων δεδομένων. Τα παραγόμενα σύνολα δεδομένων είναι αναπόφευκτα

μεγάλης διαστάσεως με τυπικά μικρό μέγεθος δείγματος που περιορίζει σοβαρά τις δυνατότητες

δημιουργίας αναπαραγώγισιμων προγνωστικών μοντέλων. Η δυνατότητα αύξησης της προβλεπτικής

ισχύος χωρίς απώλεια πληροφοριών του μετρηθέντος γονιδιώματος σε ένα νεοσύστατο σύνολο δε-

δομένων είναι ύψιστης σημασίας. Παρά το γεγονός ότι διάφορες μελέτες έχουν προσπαθήσει να

επιτύχουν μείωση των διαστάσεων και συγχώνευση συνόλων δεδομένων, ώστε να αυξηθεί η απόδοση

και η ευρωστία της ταξινόμησης, εξακολουθούν να υπάρχουν προκλήσεις κυρίως λόγω του περιορ-

ισμένου αριθμού δεδομένων καθώς και της τεχνολογικής ποικιλομορφίας και ετερογένειας στα σύνολα

δεδομένων.

Αξιοποιώντας την πλεοναστικότητα των γονιδιακών δεδομένων, κατασκευάσαμε καθολικούς κρυμμένους

χώρους μικρότερων διαστάσεων του γονιδιώματος, χρησιμοποιώντας διάφορες προσεγγίσεις μείωσης

των διαστάσεων και ένα ποικίλο σύνολο συνόλων δεδομένων. Οι τεχνικές Principal Component

Analysis (PCA), kernel PCA και Neural Network Autoencoders εφαρμόστηκαν σε σύνολα δε-

δομένων από τέσσερις διαφορετικές πλατφόρμες. Ενώ οι γραμμικές τεχνικές έδειξαν καλύτερες

επιδόσεις ανασυγκρότησης, οι μη γραμμικές προσεγγίσεις ήταν σε θέση να καταγράψουν πιο πολύπλοκες

γονιδιακές αλληλεπιδράσεις, απολαμβάνοντας έτσι ισχυρότερη προβλεπτική δύναμη. ΄Οταν νεοφανή

σύνολα γονιδιακών εκφράσεων προβάλλονται σε ένα κρυμμένο χώρο 200 διαστάσεων, η προβλεπτική

ισχής βελτιώθηκε. Επιπλέον, πραγματοποήσαμε ενα πείραμα μεγάλης κλίμακας, όπου οι μεθοδοι

μείωσης των διαστάσεων εκπαιδεύτηκαν σε ένα σύνολο 59864 μοναδικών δειγμάτων. Η ισχύς

ταξινόμησης βελτιώθηκε περαιτέρω ειδικά για την τεχνική Autoencoder. Απροσδόκητα, η στατιστική

μεταβλητότητα των πρόσθετων συνόλων δεδομένων αύξησε την απόδοση ταξινόμησης, υπονοώντας

ότι μαθέυτηκαν καλύτερα περίπλοκα βιολογικά χαρακτηριστικά. Επιπλέον, εξετάσαμε τη δυνατότητα

αύξησης των δεδομένων χρησιμοποιόντας δεδομενα από διάφορες πλατφόρμες, κατασκευάζοντας έναν

ενδιάμεσο χώρο χαρακτηριστικών που δείχνει ότι οταν οι πλατφόρμες μοιράζονται κοινά χαρακτηρισ-

τικά (όπως GPL570 και GPL96) βελτιώνεται η προβλεπτική απόδοση.
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Chapter 1

Introduction

1.1 Motivation

Gene expression is the process by which genetic instructions synthesize gene products such as

proteins and hence controls the various cell mechanisms [1]. The information encoded in gene

expression data motivates scientists to computationally analyze them and extract new biological

knowledge. High-throughput technologies such as microarrays [2] and RNA sequencing [3] mea-

sure gene expression profiles in a fast and automated manner. The objectives of gene expression

analysis range from improving the identification of biomarkers which are differentially expressed

genes, to increasing the classification accuracy and determine the disease of a person/sample

as well as to obtain qualitative clusters of similar populations. Unfortunately, the produced

genetic datasets typically have low sample size due to the limited availability of patients (i.e.,

samples) as well as the formerly expensive measurement process. Furthermore, gene expression

datasets are high dimensional which entails not only high computational requirements but also

sophisticated algorithms since the large number of variables presents an intrinsic challenge to

classification problems. These limitations of individual genetic studies made computational tasks

such as disease classification less accurate and statistically not robust.

Despite being high-dimensional, many correlated variables do exist in genetic data, and thus

there is redundant information [4] which can be summarized utilizing dimensionality reduction

techniques. However, when performed on a single dataset, dimensionality reduction approaches

suffer from bias inconsistencies due to the specifics of each study such as laboratory procedures

and conditions (batch effects) which in turn imply that results might not be reproducible [5–7].

1.2 Related Work

Taking advantages of all available resources and cover all biological conditions of gene expres-

sion by combining multiple datasets overcomes these issues. Integration of similar gene expression
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datasets increases the sample size, thus increases the statistical power of the methods resulting

in more precise, reproducible and robust findings. Hughey and co-authors [8] concatenated five

datasets studying the same disease before building an elastic-net classifier. In other works [9,10]

nearly 9000 samples from the same microarray platform but different studies were fused before

PCA was applied. Authors further performed cluster analysis and claimed that just the first few

components had clear biological interpretation while the remaining contained irrelevant informa-

tion. Crucially, these studies do not consider how those constructed latent feature spaces behave

on new unseen datasets.

Combining information of data obtained from multiple technologies would be crucial for ex-

tracting the maximum biological information because they provide different partly and comple-

mentary aspects of the whole genome. Data integration over different microarray platforms has

also been studied, mainly following two different directions, namely late and early stage integra-

tion. The late stage integration is a ’meta-analysis’ application, where each platform is examined

independently and then the results are combined. This approach is suitable for the purpose of

biomarker discovery using statistical or regularization methods [11–13]. In the early stage inte-

gration datasets from different platforms are merged solely over the common genes [14–16]. Its

main advantage over the late stage integration approach stems from its higher statistical relevance

due to the large number of samples in the fused dataset that naturally leads to more powerful

inference. However, discarding the non-common features leads to the loss of information since

interdependencies among the genes are not taken into account. A possible option that overcomes

this issue is to concatenate the datasets using their first principal components as it is proposed by

Gregory and co-authors [17], where the authors concatenated matched tumor samples from dif-

ferent platforms to create a large dataset to increase their predictive power. This study is quite

specific for the considered disease and does not give general conclusions about its PCA-based

method used for gene expression data integration.

1.3 Contribution

In this study, we build a universal, low-dimensional latent representation able to capture the

biological information contained in the whole human genome. To this aim, we performed an ex-

tended analysis and constructed several low dimensional feature spaces that aim to preserve the

biological information and enhance machine learning algorithms for newly-seen datasets indepen-

dently of their attributes such as sample size, sample categories etc. We collected hundreds of

datasets with various cell types and diseases such as healthy tissues, cancer subtypes, AML etc.

from three microarray platforms and from one Next Generation Sequencing RNA-Seq platform.

We initially merged the datasets from each platform creating four large super-populations of gene

expression datasets containing thousands of samples each. Then, we applied several dimensional-

ity reduction methods such as PCA [18], Kernel PCA [19] and the state-of-the-art Autoencoder
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Neural Networks [20] on these sets. To the best of our knowledge, this is the first time a neural net-

work approach is applied for gene expression integration. Various compression magnitudes were

tested and evaluated in terms of reconstruction error and predictive performance on newly-seen

datasets. Classification models were trained with the Just Add Data Bio v0.57 (JAD Bio; Gnosis

Data Analysis; www.gnosisda.gr), an evolution of the BioSignature Discoverer plug-in. JAD Bio

employs a fully-automated machine learning pipeline for producing a classification model given a

training dataset, and an estimate of its predictive performance in terms of area under the ROC

curve (mean and confidence interval). The total number of classification performance that we

obtained for this study was 4339 since we desired to do an extensive investigation of gene’s latent

structure.

We observed that the constructed latent representations are universal since the extracted low

dimensional features on unseen datasets (i.e., datasets not used for training the dimensionality

reduction methods) maintained and slightly improved the average predictive power for all four

platforms when the dimension of the feature space is 200. Decreasing the dimensionality, or,

equivalently, increasing the compression rate resulted in reducing the averaged accuracy of the

classifiers. Hence, biological information do exist in higher dimensions contrary to previous

studies [9] which reported global feature space with lower dimensionality. We also observed that

there is no particular dimensionality reduction method that outperforms on every platform for

both reconstruction error and prediction accuracy. PCA was usually the dominant method in

terms of reconstruction error while nonlinear methods produced better classification outcomes

since they were able to encode complex gene-gene interactions.

In order to provide a biological interpretation of the computed latent feature representations,

we performed Gene Set Enrichment Analysis (GSEA) that determines when a pre-defined group

of genes (pathway) is differentially expressed. We used the weights of PCA’s projection vector

as enrichment scores and observe that the first 20 vectors enrich almost all the KEGG pathways

[21–23] despite the fact that more PCA projections are required for increased predictive power.

This could be justified by the fact that higher components enrich some pathways that have not

been enriched by the first PCs, showing that they capture some specialized pathways.

Finally, since we observed an increase of predictive power when more samples were consid-

ered for the construction of the latent space, we additionally investigated the merging of gene

expression profiles from different platforms. We tested the fusion of the four platforms in several

combinations by initially projecting them into their largest 500 Principal Components, which

express 96% of the variance in average. Then, we performed additional dimensionality reduction.

Cross-platform microarrays integration marginally improved the predictive performance, with the

highest improvement occurred when GPL570 and GPL96 are merged indicating that a common

cross-platform latent feature space is also feasible. Unfortunately, different combinations like

microarrays with NGS had not the same performance with this manner of fusion showing that

different mechanisms exist and different treatment is required.
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1.4 Outline

The rest of the thesis is structured as follows. Chapter 2 introduces the appropriate back-

ground that is required to understand the technical details about this research study. However

even without these basic knowledge, it is hoped that the idea and results of this research will

be perceptible. Chapter 3 presents the datasets that were used, as well as their importance that

prompted us to computational analyze them. Capter 4 gives a brief review of used dimension-

ality reduction methods and shows how we utilized them. Chapter 5 presents extensively the

experiments and the results of this study. Provides details about how we perform the within and

cross-platform integration of gene expression data, the construction of latent feature space and

the evaluation of this latent space measuring statistical, reconstruction and prediction power.

Finally in Chapter 6 we have an overview of the thesis and discuss the interpretation of the

results.



Chapter 2

Background

In this Chapter we briefly review some basic machine learning notations and preliminaries that

we will refer back to throughout this thesis so that is also readable for someone non-specialist

in the field. In Section 2.1 we describe what is classification and how it works, it is a significant

part of this thesis since we manage to increase the predictive power of gene expression data.

A valid way to evaluate a classification task and the one used in this thesis is Area Under the

Curve which is described in Section 2.2. A general idea about the scope of using dimensionality

reduction techniques such those which are used in this study (Section 4), is described in Section

2.3, mentioning advantages and an intuitive point of view behind these methods. The basic

objective of an Autoencoder (Section 4.3) is to minimize an objective function using optimization

techniques. So we give an explanation about optimization theory in Section 2.4. Finally in

Section 2.5 we proceed with the description of Hypothesis testing which is the main procedure

of Enrichment Analysis (Section 5.3) and in the process of comparing the obtained results.

2.1 Classification

The task of classification occurs in a wide range of human activity. At its broadest, the term

could cover any context in which some decision or forecast is made on the basis of currently

available information, and a classification procedure is then some formal method for repeatedly

making such judgments in new situations. We shall assume that the problem concerns the

construction of a procedure that will be applied to a continuing sequence of cases, in which

each new case must be assigned to one of a set of pre-defined classes on the basis of observed

attributes or features. The construction of a classification procedure from a set of data for which

the true classes are known has also been variously termed pattern recognition, discrimination, or

supervised learning. X“n example on the data of this study, classification is the process of learning

a function from labeled gene expression data by the observed characteristics (probes-genes) and

then assigning a diagnosis (e.g. disease or not) on a new patient. The mathematical definition

is the following, given a set of data samples with pairs tă xi, yi ą: i “ 1, ..., nu where xi is the



6

representation of an object usually is a vector and yi the representation of a known outcome (a

specific categorical label) of the object. The objective is to learn a function f (machine learning

algorithm), using these data, that would be able to predict an outcome of interest yi for the

object xi (fpxiq “ yi) and can generalize on new unseen pairs ă x1, y1 ą of the same problem.

Fig 2.1 visualizes this process. For more details read ”Machine learning, neural and statistical

classification” [24].

Figure 2.1: Classification process
.

2.2 Evaluation of Classification - Area Under the ROC Curve

When developing a classification system, its going to be indispensable to have an objective

metric by which we can know how well it performs. Accuracy is often the starting point for ana-

lyzing the quality of a predictive model, as well as an obvious criterion for prediction. Accuracy

measures the ratio of correct predictions to the total number of cases evaluated. It may seems

obvious that the ratio of correct predictions to cases should be a key metric. However, a predic-

tive model may have high accuracy, but be useless. Accuracy does not account distributions of

each class, this can create the accuracy paradox which states that predictive models with a given

level of accuracy may have greater predictive power than models with higher accuracy. It may

be better to avoid the accuracy metric and use an other metric such is Area Under the Receiver

Operating Characteristic Curve (AUC) [25]. AUC is explained in details in the below paragraph.

Lets consider the classification problems that have only two classes, binary classification

problems. First we should refer some necessary terminology. For the ease of distinguishment two
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classes are denoting as positive and negative. Given a classifier and an instance, there are four

possible outcomes. If the instance is positive and it is classified as positive, it is counted as a true

positive; if it is classified as negative, it is counted as a false negative. If the instance is negative

and it is classified as negative, it is counted as a true negative; if it is classified as positive,

it is counted as a false positive. True positive rate (TPR) or sensitivity (eq: 2.1), intuitively

corresponds to the proportion of positive data points that are correctly considered as positive,

with respect to all positive data points. In other words, the higher TPR, the fewer positive data

points we will miss. False positive rate (FPR) (eq: 2.2), intuitively is a metric that corresponds

to the proportion of negative data points that are mistakenly considered as positive, with respect

to all negative data points. In other words, the higher FPR, the more negative data points we

will missclassified.

TPR “
true positives

total positives
(2.1)

FPR “
false positives

total negatives
(2.2)

Using TPR and FPR we can create the Receiver Operating Carachteristic (ROC) graph which

is useful technique for organizing classifiers and visualizing their performance. ROC graphs are

two-dimensional graphs in which TPR is plotted on the Y axis and FPR is plotted on the X

axis. A ROC graph depicts relative trade-offs between benefits (true positives) and costs (false

positives). If the model is a discrete classifier that outputs only a class label,only a (FPR,TPR)

pair is produced , which corresponds to a single point in ROC space. On the other if our classifier

is a probabilistic model, ie it produces probabilities that represent the degree to which our samples

are member of a class, we can construct the ROC and consequently find AUC. Ranking these

probabilities can be used with a threshold to produce a discrete (binary) classifier: if the classifier

output is above the threshold, the classifier produces a possitive, else a negative. Each threshold

value produces a different point in ROC space. Conceptually, we may imagine varying a threshold

from `8 to ´8 and tracing a curve through ROC space. The AUC is equal to the probability

that the classifier will rank a randomly chosen positive example higher than a randomly chosen

negative example, thus a random classifier will produce a ROC point that ”slides” back and

forth on the diagonal, so will have an AUC “ 0.5. A classifier with AUC ă 0.5 is not a realistic

classifier and 0.5 is commonly used as a baseline to see whether the model is useful. A reliable and

valid AUC estimate can be interpreted as the probability that the classifier will classify correctly

a pair of samples with different classes.

Some of the data sets under consideration are multi-class, as we can see at the tables 1,2,3,4

and 5. The calculation of AUC on multi-class problems it is reduced to calculation of multiple

AUCs. Each AUC is measured by the ROC of a class i P C as positive class and all the others as

the negative. Then the general AUC is equal to the sum of the AUCs weighted by the reference
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class’s prevalence in the data ppciq (eq: 2.3).

AUCtotal “
ÿ

ciPC

AUCpciq ¨ ppciq (2.3)

2.3 Dimensionality Reduction

The curse of dimensionality refers to various phenomena that arise when analyzing and or-

ganizing data in high-dimensional spaces. In machine learning problems that involve learning a

”state-of-nature” from a finite number of data samples in a high-dimensional feature space with

each feature having a number of possible values, an enormous amount of training data is required

to ensure that there are several samples with each combination of values. In addition, analysis

with a large number of variables generally requires a large amount of memory and computational

power, also it may cause a classification algorithm to overfit to training samples and general-

ize poorly to new sample. Hughes phenomenon describes exactly the curse of dimensionality,

which says that for a given sample size, there is a maximum number of features above which the

performance of our classifier will degrade rather than improve [26].

Dimensionality reduction is the process of reducing the number of existing variables under

consideration, via obtaining a set of principal variables. It can be divided into feature selection

which try to find a subset of the original variables and feature extraction which transform the

variables to a space of fewer dimensions. Feature selection is above the purpose of this work so

it is not covered in depth. An interesting paper about feature selection is ”Forward-Backward

Selection with Early Dropping” [27].

The problem of feature extraction can be stated as follows. Given a feature space xi P <D

fid a mapping z “ fpxq : <D Ñ <d with d ă D such that transformed feature vector zi P <d

preserves the information or structure in <D. The selection of the feature extraction mapping

z “ fpxq is guided by an objective function that we seek to minimize (or maximize), more details

in Section 2.4. Depending on the objective function, the goal of the feature extraction mapping

is either to represent the samples accurately in a lower space (trying to minimize Reconstruction

Error) or to enhance the class-discriminatory information in the lower-dimensional space. After

extracting dimensionality reduced features, these are going to be the examining representation

of the object mentioned in Section 2.1.

Concluding the advantages of dimensionality reduction are that it reduces the time and storage

space required, removal of multi-collinearity which improves the performance of the machine

learning model and it becomes easier to visualize the data when reduced to very low dimensions

such as 2D or 3D.
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2.4 Mathematical Optimization

The process of finding the maximum or minimum of a function with some constraints is

referred as optimization. Optimization is the basic learning process for neural networks (Section

4.3), one of the three dimensionality reduction techniques used in this study.

A mathematical optimization problem has the form:

minimize
x

f0pxq

subject to fipxq ď bi, i “ 1, . . . ,m.
(2.4)

Here the vector x “ px1, . . . , xnq is the optimization variable of the problem, the function

f0 : <n Ñ < is the objective function, the functions fi : <n Ñ <, i “ 1, . . . , n are the (inequality)

constraint functions and the constant b1, . . . , bm are the limits for the constraints. A vector x˚

is called optimal or a solution of the problem 2.4 if it has the smallest objective value among

all vectors that satisfy the constraints, for any z with f1pzq ď b1, . . . , fmpzq ď bm, we have

f0pzq ě f0px
˚q

A task in machine learning where we use optimization theory is to find a model, from a family

of potential models, that best fits some observed data and prior information. Here the variables

are the parameters in the model, and the constraints can represent prior information or required

limits on the parameters (such as non negativity). The objective function might be a measure of

misfit or prediction error between the observed data and the values predicted by the model, or a

statistical measure of the unlikeliness or implausibility of the parameter values. The optimization

problem 2.4 is to find the model parameter values that are consistent with the prior information,

and give the smallest misfit or prediction error with the observed data. Note that for many

problems, more than one optimum (referred to as local optimum) may exist.

Most common techniques of finding a local optimum are gradient-based, which as indicated

by the name, make use of gradient information to find the optimum solution of equation 2.4. The

general process is described in Algorithm 1, where t ě 0 is learning rate. The interest reader is

referred to [28] for a rough description of the field.

Algorithm 1 Gradient descent method

Input: a starting point x P dompfq
1: repeat
2: update: x :“ x´ t ¨∇fpxq
3: until stopping criterion is satisfied (e.g. ‖∇fpxq‖2ď η where η is small and positive)

2.5 Hypothesis Testing

A statistical hypothesis is an assumption about a population parameter. This assumption

may or may not be true. Hypothesis testing refers to the formal procedures used by statisticians
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to accept or reject statistical hypotheses. The best way to determine whether a statistical hy-

pothesis (certain condition) is true would be to examine the entire population. Since that is often

impractical, researchers examine a sample of data to infer what is true for the entire population.

Particularly, a hypothesis test examines two opposing hypothesis about a population: the null

hypothesis denoting as H0 which is the statement being tested and is the contrary of what we

want to coclude ie that our observations results purerly from change. And the alternative pH1q

hypothesis is the statement we want to be able to conclude is true. To determine if the Null

hypothesis will be rejected or not a test statistic T needs to be defined in such a way as to

quantify, within observed data, behaviours that would distinguish the null from the alternative

hypothesis. The next step is to find the value t0 of the chosen test statistic T on the sample data.

Then it is decided if H0 is true or not using a predefined decision rule. A decision rule could be a

critical region in the distribution of our test stastic (usually knonwn), if the observed value t0 is

in the critical region reject H0 otherwise ”fail to reject” the null hypothesis. Algorithm 2 details

the method.

Algorithm 2 Hypothesis testing process

1: Decide what you what to ”prove” and state it as Null and Alternative Hypothesis
2: Find a suitable test statistic T and consider the statistical assumptions being made about

the sample in doing the test; for example, assumptions about the statistical independence or
about the form of the distributions of the observations.

3: Derive the distribution of T under the null hypothesis from the assumptions
4: Select a significance level (α), a probability threshold below which the null hypothesis will

be rejected (e.g. 0.05,0.01).
5: Find the rejection region using α and the distribution of the test statistic T
6: Compute from the observations the observed value t0 of the test statistic T
7: Decide to either reject the null hypothesis if the observed value t0 is in the critical region,in

favor of the alternative or otherwise not reject it.

A intuitive example from [29], suppose we wanted to determine whether a coin was fair and

balanced. A null hypothesis might be that half the flips would result in Heads and half, in Tails.

The alternative hypothesis might be that the number of Heads and Tails would be very different.

Symbolically, these hypotheses would be expressed as

H0 : P “ 0.5

H1 : P ‰ 0.5

Suppose we flipped the coin 50 times, resulting in 40 Heads and 10 Tails. Given this result, we

would be inclined to reject the null hypothesis. We would conclude, based on the evidence, that

the coin was probably not fair and balanced.
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Data sets

A gene is a specific base sequence of DNA that encodes function. Gene expression is the process

by which information from a gene is used in the synthesis of a functional gene products. These

products are often proteins, but in non-protein coding genes such as rRNA genes or tRNA genes,

the product is a structural or housekeeping RNA. The data that are being used in our analysis

are Microarray and Next Generation Sequencing. Typically to obtain microarray data [2, 30]

biologists extract mRNA from samples as experimental samples and control samples then make

labeled cDNA through reverse transcription, mix samples and hybridize to cDNA microarray

after mixing, the cDNA is placed on a microarray slide and left to hybridize and in the end the

microarray is placed in the scanner and passes 2 times the slide and reads the intensity emitted by

each fluor and generates 2 different 16-bit gray scale images. A false coloring is a applied in these

two images, one red and one green, based on a temperature scale then the combination of these

two colorized images yields a graphical representation of different gene expression between the two

samples. RNA sequencing (RNA-seq) is an alternative technique to measure gene expression [3].

High-trhoghput Sequencing applies to genome sequencing, genome resequencing, transcriptome

profiling (RNA-seq). The main difference of microarray data with RNASeq data is that in the

later we are dealing with counts instead of just intensities.

We collected gene expression studies from four different platforms. From Gene Expression

Omnibus database [31], which is an international repository with gene expression and other ge-

nomics data we gathered microarray datasets with sample size greater than 20. More specifically,

we obtained datasets from Affymetrix Human Genome U133 Plus 2.0-GPL570 (subsection 3.0.1),

Affymetrix Human Genome U133-GPL96 (subsection3.0.2) and ”Mus musculus” datasets from

Affymetrix Mouse Genome 430 2.0-GPL1261 (subsection 3.0.3). RNA sequencing also called

Next Generation Sequencing (NGS) is an alternative technique to measure gene expression, thus

we collected also datasets from ReCount database [32] (subsection 3.0.4) . In order to evaluate

the results, using text mining and manual curation, we managed to label the samples of 10% of

the studies for each platform. Labels correspond to information regarding disease states, cancer

subtypes, smoking status etc..
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3.0.1 Affymetrix Human Genome U133 Plus 2.0-GPL570

This platform’s datasets are homo-sapiens microarray gene expression data. GPL570 measures

54675 features-probes. In these measurements, there are genes that are being referred from more

than one probe and probes that not refer to any gene. We collected a total number of 199

different datasets. We labeled 10% (20 sets) of them which are being held out as Test-set. Sets

that belong to the Test-set have different types and number of classes as we can see in figure 1

and with extensive details on table 1 in Appendices section. We concatenated the remaining 179

data sets. Then randomly split to 90% of Train-set and 10% of Validation-set, 6795 samples and

756 samples respectively. The Train-set is being used to train our methods and Validation-set

for an initial estimate of how the process of method training goes.

In addition, in order to prove that our findings are general and do not altered as the available

data increases, we gathered a larger number of studies of GPL570 (899 studies). We labeled 80

out of 899 studies that were used for evaluaton (Test-sets, more detailes in table 5) and the rest

after removing dubllicates assembled a dataset of 59864 samples which was used as Train-set.

3.0.2 Affymetrix Human Genome U133-GPL96

GPL96 also measures homo-sapiens microarrays. The total number of features that being

measured is 22834. There is a peculiarity with the measurements of GPL96, features-probes

represented on the GPL96 are subset of probes that are examined on the GPL570. The number

of data sets that are being used from this platform is 86 where 10% of them i.e. 9 are being

kept for Test-set. As before Test-set contains different sizes of data from 20 samples to 100 and

different number of classes, more details we can see in table 2. The other 77 are being separated

to Train (3331 samples) and Validation (371) set.

3.0.3 Affymetrix Mouse Genome 430 2.0-GPL1261

Data sets of this platform are microrrays from an organism named ”Mus musculus”, a small

mammal which has been domesticated as the pet or fancy mouse, and as the laboratory mouse,

which is one of the most important model organisms in biology and medicine. We obtained 200

data sets, 20 of them are being kept as Test-set, table 3. The other 180 are being blended and

then split to Train-set (7282 samples x 45101 features) and Validation-set(810 samples x 45101

features).

3.0.4 Next Generation Sequencing-NGS

Finaly we took in account 175 data sets measured by RNA-seq technique with number of

samples greater than 40 and a feature space sized 23779. Again 10% of them ie. 17 labeled data

set (table 4) were kept for Test-set and the rest 157 were merged to a set (Train-set) of 21609

samples and 23779 features.
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Methods and Materials

In this Chapter we describe the dimensionality reduction methods used for the porpuse of this

analysis. First in Section 4.1, we explain how linear PCA works and its relation to Singular Value

Decomposition. Then Section 4.2 refers to Kernel PCA which is the nonlinear aspect of PCA.

Section 4.3 presents a more complex technique, the Deep Learning approach of dimensionality

reduction the Autoencoder Neural Network. Finally, in Section 4.4 we briefly describe the auto-

mated machine learning tool (JAD bio) which is used to measure the predictive performance of

datasets of this study.

4.1 Principal Component Analysis

The most common technique for dimensionality reduction is Principal Component Analy-

sis [18]. PCA uses an orthogonal transformation to convert a set of possibly correlated features

into a smaller set of linearly uncorrelated variables. This orthogonal linear transformation trans-

forms our data to a new coordinate system such that the greatest variance by some projection

of the data comes to lie on first coordinate called first principal component and each succeeding

component in turn has the highest variance possible under the constraint that it is orthogonal

to the preceding components. Let X be our data matrix with m zero mean columns and n

rows, columns represent features of data and rows the samples. In mathematical terms, PCA at-

tempts to find a linear mapping M that maximizes the cost function tracepMᵀcovpXqMq , where

covpXq is the sample covariance matrix of the data X. It turns out that this is done by find-

ing the eigenvalues and eigenvectors of the sample covariance matrix. Therefore, the eigevector

that corresponds to the i-th eigenvalue λi of the covariance matrix is the i-th principal direction.

Consequently, the i-th principal component is the projection of X into the i-th principal direction.

Feature dimensions of gene expression datasets are several thousands, so the construction

and the manipulation of the covariance matrix is unprofitable since it causes time issues. Ad-

ditionally, the number of sample size in our data is usually extremely lower than the number
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of features making the procedure of finding every eigenvectors unnecessary since the most of

them are nearly equal to the zero vector. So, we used another approach named Singular Value

Decomposition (SVD) which is a matrix factorization and gives an equivalent solution [33]. SVD

factorizes X as X “ UΣV T . Σ is an n-by-m rectangular diagonal matrix. The diagonal values of

Σ are the positive numbers σk called singular values of X, and σk “
?
λk where λk is the k-th

eigenvalue of covariance matrix of X. U and V called the left and the right singular vectors of

X, orthogonal matrices. The right singular vectors V are equal with eigenvectors of the covari-

ance matrix. Therefore, the right singular vectors V are the principal directions-weights (PCWs).

Figure 4.1: The image shows the transformation of a high dimensional data (3 dimension) to
low dimensional data (2 dimension) using PCA. Not to forget, each resultant dimension is a
linear combination of d features (Credits: www.analyticsvidhya.com,Practical Guide to Principal
Component Analysis)

4.2 Kernel-Principal Component Analysis

Kernel PCA [19] generalizes standard PCA to nonlinear dimensionality reduction. The naive

way to perform PCA nonlinearly, is to initially use a nonlinear transformation function φpxq from

the original dimensional feature space to a latent feature space and then perform PCA. This

transformation function φpxq could be very-high-dimensional making the projection extremely

costly and inefficient. The explicit calculation of the new feature space can be avoided using the

Kernel trick. The Kernel trick refers to creating a Kernel function (similarity function) which is

used over pairs of data points in raw representation Kpx, x1q “ φpxqᵀφpx1q. The Kernel function

is a matrix N ˆN which it’s eigenvectors V are equivalent to the principal component weights in

the latent space created by φpxq. There exist coefficients α1, . . . , αN such that V “
řN

i“1 αiφpxiq,
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consequently the principal components in the nonlinear space are equal with

y “ V φpxq “
N
ÿ

i“1

αiφpxiqφpxq “
N
ÿ

i“1

αiKpxi, xq (4.1)

. If the projected dataset φpxiq does not have zero mean, we can use the Gram matrix rK to

substitute the kernel matrix K. The Gram matrix is given by

rK “ K ´ 1NK ´K1N ` 1NK1N (4.2)

where 1N is the N ˆN matrix with all elements equal to 1{N [34]. The power of kernel methods

is that we do not have to compute φpxiq explicitly. The most widespread kernels are Polynomial

and Gaussian. We apply Polynomial Kernels of degree 2 and 3 and Gaussian Kernel with gamma

parameter equal with 1
#features .

Figure 4.2: Kernel PCA is implicitly performing a linear PCA in some high dimensional feature
space, that is nonlinearly related to input space. (Scholkopf et al., International Conference on
Artificial Neural Networks (1997))

4.3 Auto-Encoder

Hinton and Salaktutdinov [20] proposed Deep Learning Autoencoders in order to convert high-

dimensional images to low-dimensional codes with compact information. Neural Networks require

large datasets and computational power due to their complexity. Only recently, Neural Networks

have been used in biological research due to the limited number of samples. We alleviate this

issue by dataset integration which resulted in tens of thousands of gene expression samples.

Autoencoder is Neural Network that has two parts: the encoder,f , that maps input x into a

nonlinear represantation h “ fpxq and the decoder,g, that maps h back to the original space. The

way Autoencoder is trained is by finding the appropriate weights w which are the coefficients of
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the functions. Appropriate weights w are the ones that minimize an error function that compares

the output of the Network with its input. A trivial Autoencoder whith one hidden layer trained

using mean square error and a linear function f is equivalent to computing the first principal

components of the data. When the hidden layer is nonlinear, the Autoencoder behaves differently

from PCA. Neural Networks are able to capture multi-modal aspects of the input distribution.

To capture even more complex information of data, more hidden layers are used allowing them

to compactly represent highly nonlinear and highly-varying functions.

Figure 4.3: The structure of an Auto-Encoder. As input is every sample of data and the goal is to
learn a representation (encoding) and then reconstruct the input (decoding) as better as possible.
Find weights for each connection that minimize the reconstruction error minwDpx, fwpxqq

.

We trained the Networks using a greedy layer-wise unsupervised learning algorithm with Re-

stricted Boltzmann Machines [35]. Restricted Boltzmann Machines or RBMs [36] are a one layer

Autoencoder where all units of visible layer are connected to all hidden units, trying to learn

nonlinear features from input data with the ability to reconstruct this input with effectiveness.

So what greedy layer-wise unsupervised algorithm does is to pre-train each layer separately for

some iteration-epochs starting from the first layer of the Autoencoder, i.e. the first RBM has

as input and hidden layer the input and the first hidden layer of Autoencoder respectively, the

second RBM’s input is the first hidden layer and as hidden layer uses the second layer of Au-

toencoder and so forth. When pre-training completed a fine-tuning all over the network is being

performed.

Learning of Neural Networks is nontrivial. There are several parameters that should be

tuned, the most significant is the selection of the network’s structure. To decide the structure,
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we tried a series of experiments with different number of hidden layers and number of units. In our

experiments we use a 3 hidden layer Autoencoder. The exact structures that are used are declared

in table 4.1. As transformation functions we used encoder function to be the sigmoid function

(equation 4.3) and the decoder function also the sigmoid with transposed weights. Also learning

rate, the number of iterations and the number of batches are some other hyper-parameters that

should be pre-defined. We performed pre-training for 600 epochs(iterations) where we used a

minibatch size 100 and a learning rate 0.01. After pre-training, we performed a tunning on the

whole structure for 3000 epochs with a vanilla gradient descent. Used learning rates were 0.1

on first 1500 epochs, 0.03 for epochs 1501-2300, 0.01 for 2301-2800 and 0.003 for the the last

epochs. Finally, the cross-entropy (equation 4.4) function was used as the objective function

to be minimized because of its appropriateness on networks with sigmoid function as transfer

function [37]

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3

500 700 500 200

500 700 200 50

500 700 200 20

500 700 200 10

500 700 200 5

500 700 200 2

Table 4.1: Autoencoder’s structures

σpxq “
1

1` e´wX´b
(4.3)

X is the input, W the weights of the edges and a bias vector b

C “ ´
1

n

N
ÿ

n“1

yn logpy1nq ` p1´ ynq logp1´ y1nq (4.4)

N is the total number of samples of training data, the sum is over all training inputs, yn is

the corresponding desired output in auto-encoder’s case is equal xn, and y1n is the output of the

network.

4.4 JAD Bio

For our computational experiments, we used the Just Add Data tool (JAD Bio; Gnosis Data

Analysis; www.gnosisda.com). Just Add Data is an automated tool that produces a supervised

machine learning model and an estimate of its predictive performance. For classification problems

(i.e., when the outcome is an integer value), JAD employs state-of-the-art machine learning
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algorithms, such as random forest (RF) [38], support vector (SVM) [39] using both polynomial

and Gaussian kernels and linear although the list is continuously being enriched. A high-level

overview of the pipeline used by JAD is shown in figure 4.4. All those algorithms require the

user to set a number of parameters (called hyperparameters in this context) that determine their

behavior, and whose optimal values are problem-dependent. Results can greatly vary depending

on correctly tuning the values of the hyper-parameters. The hyper-parameters are depicted as

sliders in figure 4.4. Their optimal values cannot be found analytically; their values must be found

by trial-and-error. JAD uses the statistical properties of the input data (such as the number of

training examples and number of features) to determine a set of hyper-parameter combinations

(called configuration hereafter) to try. In order to find the best algorithm and hyper-parameter

configuration and to learn a final model, JAD uses the K-fold cross-validation protocol, described

next. The K-fold cross-validation protocol splits the data into K non-overlapping approximately

equal-sized sets (called folds). Each of them is held-out for testing purposes and the rest are used

for training. It proceeds by keeping each fold out once, training models using all configurations on

the remaining K-1 folds, and estimating their performance on the held-out fold. The held-out test

sets are used to simulate the application of the models on new data. In the end, K performance

estimates are computed and average of them is equal with the predictive performance of the

dataset.

JAD has also been recently successfully applied to the prediction of proteins to periplasmic

or cytoplasmic given their mature amino acid sequence [40]. The application shows the ability of

the automated pipeline to learn patterns from data that generalize to new data. JAD employs a

fully-automated machine learning pipeline for producing a model from a dataset and an estimate

of its predictive performance on new. The latter is especially important, as the main goal is to

create a model that is able to perform well on new data, rather than the data used for producing

it.
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Figure 4.4: Schematic representation of the analysis pipeline employed by JAD. Based on the
type of data and its size, the tool determines a set of combinations of tuning hyper-parameter
values to try, called configurations. Hyper-parameters are depicted as tuning sliders. The data
are partitioned to K folds and for each fold and configuration a predictive model is trained.
These are evaluated on the held-out folds and the average performance of each configuration is
estimated. Based on the best configuration found a final model is produced on all data. In our
study we did not utilize the feature selection part.



20



Chapter 5

Experiments and Evaluation

5.1 Within platform integration

For each platform, we merged randomly 90% of the collected studies and generated an inte-

grated dataset with thousands of samples which served as the training set to the dimensionality

reduction algorithms. Figs. 5.1(a.1) & 5.1(b) depict the integration and the latent feature

construction processes, respectively. PCA as well as kernel PCA were applied on the original di-

mension, however, training a deep Autoencoder was impractical on the raw data, due to the fact

that the number of Autoencoder’s parameters were too large making the training infeasible given

the relatively limited number of training samples. In order to overcome this issue, we performed

an initial dimensionality reduction using PCA and kept the 500 largest Principal Components

(PCs) of each set. Note that 500 PCs explained in average 96% of the relative variability (i.e.,

one minus the ratio between reconstruction error and squared Euclidean norm). Hence, without

loss of any significant information, these PCs were used as input to the Autoencoder for further

dimensionality reduction (see also Fig. 5.1(b)). The evaluation of the dimensionality reduction

performance is measured with the reconstruction error on newly-seen studies (the 10% of datasets

that were kept out) defined as the mean squared error between the original and the reconstructed

datasets. We additionally employed JAD Bio which is an automated Machine Learning tool to

measure the prediction performance as shown in Fig. 5.1(c). As an evaluation metric for classifi-

cation performance we reported the Area Under the ROC Curve (AUC). AUC is a reliable metric

since it is invariant of the sample size of each category. Finally, the AUC on the raw datasets was

also computed and used as a reference point. For a statistical robust comparison between the

AUCs of the reference and the latent features AUCs, we performed a t-test which is a statistical

hypothesis which determines if two sets of data are significantly different from each other.

Fig. 5.2 presents the reconstruction error (upper row of panels) as well as the AUC (lower

row of panels) on newly-seen datasets. We chose to compute the performance metrics at 200,

50, 20, 10, 5 and 2 latent feature space dimensions which constitute a wide range of values. As

expected, the reconstruction error is increased as the dimension of the latent space is decreased.
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Figure 5.1: Outline of our integration analysis approach: (a) Data Integration. We merged 90%
(i.e., n1 “ ceilp0.9nq) of the collected studies and denoted them as the Train set. Two cases were
considered; (a.1) the ”within platform integration” case where we straightforwardly concatenated
the datasets and (a.2) the ”cross platform integration” case where we initially performed dimen-
sionality reduction using PCA keeping the first 500 PCs (which explain in average 96% of the
relative variance) and then we concatenated the projected samples of each platform. (b) Latent
Feature Space Construction. After fusion, we applied several dimensionality reduction methods
with various values for the latent space dimension. For the Autoencoder’s approach in ”within
platform integration” case, we first projected to the first 500 PCs because the number of param-
eters became very large making the neural network training impractical. (c) Evaluation Process.
We projected the remaining 10% of the studies (i.e., the Test set) onto the constructed latent
feature space. Then, we evaluated the quality of the dimensionality reduction algorithms in terms
of both the reconstruction error in the original space and the classification performance using
JAD Bio.

We also observe that nonlinear dimensionality reduction methods perform slightly worse than

PCA (blue line) in terms of reconstruction error in almost all cases. More specifically, using 200

dimensions, in average for each platform PCA explains 87% of the relative variance compared

to 81% of Autoencoder (green line) which is the second best method. Moreover, it is evident

that Autoencoder produced similar reconstruction error with PCA when it was trained with

NGS dataset Fig. 5.2(d) which is the platform with the largest number of training samples.

Regarding the significant high reconstruction error using the Gaussian kernel PCA in NGS is due

to inappropriate for this case hyperparameter gamma (gamma parameter equal with 1
#features).

In contrast, the predictive performance as measured by averaged AUC was higher for the

Autoencoder method than PCA particularly using human microarray datasets. On the other
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Kernel PCA methods had a consistent modest performance on all platforms. For GPL570 (Fig.

5.2(e)), we were able to slightly improve the performance by 1% when compared with the reference

AUC (pink line) for PCA (blue line), Autoencoder (green line) when the latent feature dimension

is set to 200. For GPL96 (Fig. 5.2(f)), Autoencoder and PCA with gaussian and 2-polynomial

kernels improved the classification accuracy compared to the reference, again, for 200 dimension.

Irrespectively of the method, we obtained equal or slightly higher results than raw data when the

latent feature space dimension is 200. Interestingly, Autoencoder, PCA and 2-kernel PCA for

GLP96 got better or equal classification performance than the reference even for 20 dimensions

showing that the gene expression data might be represented with only 20 features. The other

two platforms GPL1261 (Fig. 5.2(g)) and NGS (Fig. 5.2(h)) showed similar behavior to GPL570.

Looking also the t-tests results (details in tables 7,8,9 and 10 at Appendices), when we reduce the

dimensions to 200, independent the platform there is no statistically significant difference from

the reference’s results, since almost all p-values are larger than 0.05. Indicating that we obtain

similar results with the results from the initial high dimensional space. In addition, GPL96 and

GPL1261 show not statistically important difference even in a latent space sized 20. For example

using pca and 20 dimensional space, we obtain p-values 0.99 and 0.18 for GPL96 and GPL1261

respectively.

The overall conclusion is that indeed gene expression data are redundant with two to three

orders of magnitude lower intrinsic dimensionality. A fact that demonstrates that gene expression

can even be represented with few latent features. Nevertheless, in order to preserve the predictive

performance, gene expression data can be reduced to a latent feature space with approximately

200 dimensions. This value is larger than the reported in previous studies indicating that there is

crucial biological information in higher dimensions that boosts the machine learning algorithms

to achieve better predictive results.



24

Figure 5.2: Performance assessment of dimensionality reduction techniques on new datasets for
each platform in ”within platform integration”, regarding the reconstruction error (first row) and
classification AUC (second row). It is evident that the fewer the number of features the larger
the reconstruction error. The reference point (pink line) is the squared Euclidean norm of the
sets and practically it is the variance since sets are centered. PCA (blue line) is the dominant
method in terms of the reconstruction performance. Regarding classification performance, it is
verified that a strong reduction, below 200 dimension, results in a loss of accuracy. Nevertheless,
in a latent feature space sized 200 the prediction performance is equal or better compared to the
raw data performance for all platforms.
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5.2 Large scale within platform integration

As gene expression data become more available, we would like to verify that the results pre-

sented above are robust as we increase the number of training datasets and generalize on any

newly-produced dataset provided by the biologists. In addition, we would like to investigate if

higher the sample size the higher the performance. For these purpose, we gathered 899 studies

from GPL570 assembling a large dataset of 59864 unique samples. We merged 90% of the datasets

and then performed dimensionality reduction as in Section 5.1 while the rest 80 labeled datasets

are used for performance evaluation. We chose as latent feature size the values 500, 200, 50, 20.

Fig. 5.3 presents both the mean reconstruction error (left column) and the mean prediction

performance (right column). In terms of reconstruction error, we observe that PCA (blue line)

outperforms kernel PCA (cyan & red lines). Interestingly, PCA is less accurate than Autoencoder

(magenta line) which has lower reconstruction error revealing again that Autoencoder can be a

highly competitive method when enough samples are available. For instance, when the dimen-

sion of the latent feature space is 20, 74% of the relative variance is kept using Autoencoder

which is 10% higher than PCA’s relative variance. Autoencoder is also the leading method in

the classification task and achieves higher AUC when compared to the PCA-based methods. As

in Section 5.1, the larger the latent feature space the better the classification accuracy as it is

evident from Fig. 5.3. The 2-polynomial kernel PCA and linear PCA managed an increase of

mean AUC by 3% with 500 latent dimension, which was also achieved by Autoencoder in only

200 dimension. In all cases where we reach better mean AUC from the reference, we observe

very low p-values (e.g. p-value of Autoencoder200 “ 0.004) as shown in table 11. Demonstrat-

ing that the improvement is statistical significant. Also in 20 dimension using Autoencoder the

p-value is larger than 0.05, which means that the results on the reduced latent feature space

(mean AUC 0.84) are not statistically different with the reference (mean AUC 0.85). We also

report in Fig. 5.4 the classification accuracy for each individual test dataset. Using Autoencoder

with a representation of 200 dimension, 12 datasets have improved AUC by at least 10% while

only 1 dataset’s performance deteriorated by the same percentage compared to the raw dataset’s

performance.

The larger sample size gave the opportunity for higher dimensionality reduction. Evidently,

we were able to get comparable results with the reference AUC when Autoencoder was applied

for the construction of a 50 and even 20 dimensional latent feature representation. Overall, the

increase of training sample size instead of negatively affecting the robustness of the dimensionality

reduction methods, it actually yields improved classification accuracy to newly-seen datasets and

allows further reduction of the dimension of latent spaces implying that the nonlinear interactions

between genes and/or experimental conditions can be captured by applying more sophisticated

reduction methods given the availability of a large number of samples. These facts encourage us

to gather more datasets and create even larger integrated sets.

In order to further substantiate the statement that larger integrated dataset results in higher
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classification performance, we trained Autoencoders using variable number of sample sizes. We

tested 5, 10 and 30 thousands of training samples and showed (Fig. 5.5) that the predictive

performance is increased with the size of the training set. Showing the importance of learning

from a large data gene expression dataset which includes a variety of sets from various diseases and

different laboratories in order to remove bias and retain only important biological information.

Figure 5.3: Mean reconstruction error (first row) and classification accuracy in terms of AUC
(second row) for 80 newly-seen datasets. Standard PCA (blue line) and Autoencoder (green
line) have comparable reconstruction error. However, Autoencoder is superior in classification
performance compared to all the other methods with high mean AUC even in lower dimensions.
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Figure 5.4: Predictive performance comparison of Autoencoder 200 feautes with Full dimension
data. First row depicts the AUC of each of the new 80 datasets for 200 features obtained by
Autoencoder (red line) and the full dimensional datasets (blue line). Second row shows the
percentage difference between these two feature spaces in each dataset. Demonstrating that 12
datasets have improved by at least 10% their perfomance in the latent feature space created
by Autoencoder. On the other hand, only the dataset 32 (named GSE14671) has reduced its
performance by 10%. Which has low predictive power on full dimension space as well.
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Figure 5.5: The behavior of performance relative to the number of training samples. The increase
of training sample size yields improved reconstruction and classification performance. Moreover,
it allows higher dimensionality reduction. Given that we have almost equivalent reconstruction
error in a latent space sized 20 compared to 200 features when using 60000 samples. Also, the
predictive power in 20 dimensions reaches the full dimensional space performance as we increase
the size of the training sample.
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5.3 Gene Set Encrichment Analysis

We presented objective measures such as reconstruction error and discriminative biological

measures such as classification accuracy for assessing the dimensionality reduction methods.

However, biologists are also interested on particular biomarkers (i.e., features) that are able

to discriminate the states of the measured cells. For a more detailed biological perspective of the

features, we performed Gene Set Enrichment Analysis (GSEA) [41] using principal component

directions-weights (PCWs) as enrichment scores. PCWs, which are d ˆ 1 vectors (d number of

features), correspond to the columns of transformation matrix in PCA analysis while GSEA is the

process that determines when a pre-defined group of genes is differentially expressed. These pre-

defined groups of genes are called pathways and have been prescribed by biologists over the years.

Each group contains genes that are involved in the same biological processes and function or have

similar patterns. A popular pathway database is KEGG [21–23] from which we downloaded 186

different gene sets. For each gene set of KEGG we separate the PCW into weights of genes that

belong to the set-pathway (A1) and the rest (A2). Intuitively if A1 is statistical different from A2

we say that this gene set is being enriched. We used Wilcoxon Rank Test [42] as statistical test

and α “ 0.05 as p-value threshold. To increase the statistical power with the risk of incorrectly

rejecting a true null hypothesis (a ”false positive”), a control of False Discovery Rate (FDR) [43]

is being used. For robustness purposes, we do not take into account probes that do not indicate

on any gene as well as probes that point to the same gene. Finally, we exclude gene-sets that

belong to KEGG but have less than 10 genes measured by the analysed platforms. The remaining

gene-sets are 143 and 161 for GPL570 and GPL96 platforms, respectively. The same process is

repeated for each of the 200 PCWs with the highest eigenvalues for both platforms.

Fig. 5.6 graphically demonstrates the results of GSEA for each gene-set on every PCW. The

x-axis represents gene-sets while the y-axis corresponds to PCWs. A dot indicates that the cor-

responding gene-set has been enriched by the corresponding PCW. Different colors distinguish

gene-sets on six broad biological categories reported in the legend of Fig. 5.6. Almost all of

the examined pathways were enriched, 142 from 143 for GPL570 and 156 from 161 for GPL96.

As expected the strongest 20 PCs enrich most of the pathways for both platforms, since the

strongest 20 PCs enriched 140 out of 142 pathways for GPL570 and 142 out of 156 for GPL96

demonstrating that the strongest PCWs have crucial biological information. However, as we

can see in Fig. 5.7 more PCWs are required to enrich the rest pathways indicating that weaker

components are necessary for a complete gene expression analysis. Finally, an interesting ob-

servation is that there are 7 gene-sets in Fig. 5.6 that were enriched for the majority of PCWs

and for both GPL570 and GPL96 platforms. These gene-sets are: ’Oxidative Phosphorylation’,

’Ribosome’, ’Complement and Coagulation Cascades’, Alzheimers Disease, ’Parkinsons Disease’,

’Huntingtons Disease’ and ’Systemic Lupus Erythematosus’. On the other hand, there are sets

like ’Regulation of Autophagy’ that were not enriched from any of the first 200 PCWs of GPL570

and the sets ’Glycosaminoglycan Biosynthesis Heparan Sulfate’, ’Hedgehog Signaling Pathway’,
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’Melanoma’ and ’Small Cell Lung Cancer’ from GPL96. The importance of these findings comes

from that PCWs consider interactions of genes and seems that they capture the underlying bio-

logical mechanisms of gene expression.

Figure 5.6: Gene Set Enrichment Analysis. Each dot at position (i,j) indicates that the i-th gene-
set is being enriched by the j-th Principal Component Absence of a dot at (i,j) means the contrary.
The upper plot correspond to GPL570 platform while the lower plot to GPL96. Different colors
distinguish the biological categories that each KEGG gene-set belongs to.
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Figure 5.7: Summary of the accumulated number of gene-sets that have being enriched using
PCs. The black dashed line shows number of all 186 KEGG gene-sets. Blue dashed line is equal
to 143 which is the number of gene-sets considered using GPL570. Red dashed line is 161 which
coresponds to number of genesets of GPL96 .They are less than the complete number of gene-
sets because we do not consider gene-sets that have fewer than 10 genes represented from the
corresponding platform. The two solid lines show how many unique gene-sets are being enriched
using a number of principal component, max for GPL570 is 142 and for GPL96 is 156.
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5.4 Cross-platform integration

Motivated by the large scale experiment, we investigated whether the increase of samples by the

integration of different platforms could be beneficial to the dimensionality reduction techniques.

The fusion of datasets from different platforms is not trivial due to the increased heterogeneity

of the measurements. Indeed, not only their initial feature spaces are different but also each

platform has its statistical characteristics which results in strong batch effects. Nevertheless,

we perform cross platform integration by initially projecting each platform’s datasets to a 500

dimension space using PCA as shown in Fig. 5.1(1.b), then we concatenate the projected samples

from the different platforms and perform further dimensionality reduction. We do not preprocess

the projected data for batch effect removal letting the dimensionality reduction methods to learn

the batch information of the platforms. After merging the datasets from two or more platforms,

we follow the same procedure as in the ”within platform integration” case.

Two different human microarray platforms GPL570 and GPL96 are integrated in one dataset.

Since the probe set of GPL96 is a subset of the probes of GPL570, it is highly probable that a

joint analysis would create a common latent feature space. We have also visualized the results

obtained from within platform integration (dark blue bars) for reference comparison. Further-

more, we compared the reference with the new results using t-test, with the detailed results being

in the tables 12,13 and 14. Utilizing PCA and Autoencoder, the reconstruction error remained

stable (Fig. 5.8(a) & 5.8(b)) and the classification accuracy was slightly increased when the two

microarray platforms were merged as it is evident from Fig. 5.8(e) & 5.8(f) (light blue bars com-

pared to the dark ones). Kernel PCA with 2 polynomial kernel had an increased reconstruction

error however the predictive performance did not highly affected. On the other, gaussian Kernel

PCA, independent the fusion combination, had very poor results on both reconstruction and

classification performance due to the inappropriate gamma training parameter. Overall, the inte-

gration of the two human microarrays leaded us to learn a broad map of human gene expression

which enabled increased predictive accuracy of newly-seen datasets from both platforms espe-

cially when the dimensionality reduction was performed utilizing autoencoder neural networks.

In addition, we examined if there is a common latent feature space for microarray dataset in-

dependent the analyzed species. Therefore, we integrated the human microarray platforms with

a mice muscul microarray platform denoted by GPL1261. Moreover, we explore the possibility

of integrating NGS data which also measure human gene expression profiles with the human

microarrays improve the performance in terms of predictive accuracy. Both reconstruction error

and AUC did not reveal any specific trend when either GPL1261 or NGS data are merged with

the human microarrays (green and yellow bars in Fig. 5.8).

Interestingly, we observe no deterioration of the performance in almost all cases which is also

evidenced by the statistical tests that have been carried out. Implying that the constructed latent

spaces are still valid and contain biological information that can be utilized for prognostic and

predictive purposes. However, it seems that more sophisticated integration is required in order
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to gain statistically better results.

Figure 5.8: Performance metrics for integrating different platforms from the same as well as dif-
ferent species and differentechnologies. The reconstruction error (upper row of panels) remianed
majorly unaffected by the merging of heterogeneous datasets. In contrast, the classification power
(lower row of panels) of microarrays is mostly increasing after the fusion of the platforms’ sets
(blue and light blue bars at (e) and (f)), especially with Autoencoder which needs large amounts
of data in order to be correctly trained. Furthermore, the fusion of three different microarray
platforms (green bars at (e), (f) and (g)) shows that the prediction power does not deteriorate.
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Chapter 6

Summary

6.1 Discussion

In this study, we analyzed a large number of available gene expression datasets, apply and

compare dimensionality reduction methods and fuse datasets from the same as well as different

platforms. Despite not being the first who applied dimensionality reduction techniques on gene

expression data, our novelty stems from the fact that we are utilizing hundreds of datasets

that belong to the same platform or belong to different platforms and extensively search for

the appropriate dimension of the latent representations. The constructed latent feature spaces

produced robust performance results on newly-seen datasets thus we could benefit from memory

space saving and exceptional reduction of calculation time while maintaining or even improving

the classification performance. As we showed earlier, the mean prediction accuracy of a new

dataset is markedly improved in the constructed latent feature space compared to the accuracy on

the raw features. Moreover, we significantly reduced the computational time of a comprehensive

predictive analysis required by machine learning tools such as JAD Bio. For instance, a predictive

analysis using raw gene expression data takes hours, in contrast to the same analysis in the

constructed latent feature space which requires only few seconds. An additional advantage is that

we gain a high compression of the data without deteriorating their performance. For example,

the Test-sets that we used in Section 5.2 (Large scale within platform integration experiment)

from 2.68 GB can be converted to 200 dimensions in 10.3 MB making feasible a quick real-time

analysis using even a mobile phone with much higher accuracy as evidenced by the results.

Additionally, we integrated gene expression data of different platforms effectively since we

obtained similar or slightly improved reconstruction and classification performance. Our approach

considers every dependency relationships among the genes across platforms without discarding

information. However, a more sophisticated approach is required for statistically improved results.

It is expected that this will guide to further research as to train thoroughly a Neural Network

with all available studies from several platforms. In general, being capable of integrating studies

from different platforms opens new scientific direction to bioinformatics and brings closer the
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dream towards personalized medicine.

6.2 Conclusion

Gene expression datasets have low sample number and are high dimensional making the in-

tegration as well as the dimensionality reduction two mandatory steps for robust and reliable

statistical and computational analysis. In this study, we integrated hundreds of studies from four

different platforms and extensively investigated the construction of latent feature spaces using

various dimensionality reduction methods (PCA, Kernel PCA, Neural Network Autoencoder).

We demonstrated that a large dimensionality reduction is possible without affecting the underly-

ing biological information. In addition, we showed that dimensionality reduction techniques that

can handle nonlinear interactions of genes achieved better classification outcomes. Furthermore,

we scaled up to approximately 900 datasets with 59864 unique samples where we observed that

our results are very robust. Actually, we managed to increase both the reconstruction accuracy

and the classification performance on unseen datasets showing that the integration of all available

gene expression datasets can lead to the construction of low-dimensional latent representations

with high predictive performance. We also performed a two-step cross-platform integration where

we showed that the fusion of related microarray platforms (such as GPL570 and GPL96) results in

maintaining predictive performance. Overall, the Neural Network Autoencoder method demon-

strated the best performance in terms of classification accuracy, especially when the number

of available samples is large paving the road for further research on training and use of neural

networks on genomics data applications.
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Figure 1: Categories of Test sets’ labels for each platform
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Data-set #Samples #Classes Type of Classes

1 GDS1269 45 3 non-smoker control/ asthmatic disease control/ smoker

2 GDS1962 180 4 non-tumor/ astrocytomas/ glioblastomas/ oligodendrogliomas

3 GDS2821 25 2 control/ Parkinson’s disease

4 GDS3341 41 2 control/ nasopharyngeal carcinoma

5 GDS3627 58 2 squamous cell carcinoma/ adenocarcinoma

6 GDS3795 200 2 myelodysplastic syndrome/ healthy

7 GDS4130 104 2 control/ thapsigargin

8 GDS4181 80 2 AML-multilineage dysplasia sole (AML-MLD-sole)/ AML-not
otherwise specified (AML-NOS

9 GDS4206 197 3 early relapse/late relapse/ no relapse

10 GDS4602 180 2 psoriasis/ healthy

11 GDS4837 88 3 control/bipolar, medicated/bipolar, first-episode unmedicated

12 GDS3884 50 3 type 2 diabetes/normoglycemia (FH-)/ normoglycemia (FH+)

13 GDS4198 70 3 gastric cancer subtype: invasive/ gastric cancer subtype:
metabolic/ gastric cancer subtype: proliferative

14 GDS4274 130 2 septic shock/ healthy control

15 GDS3539 82 2 control/ psoriasis

16 GDS3837 120 2 lung cancer/ control

17 GDS3952 162 6 benign breast abnormalities/ ectopic (gastrointestinal and
brain) cancers/ malignant breast cancer/ healthy/Pre-Surgery
(malignant)/Post-Surgery (malignant)

18 GDS4182 96 2 AML-myelodysplasia related changes (AML-MRC)/AML-
multilineage dysplasia sole + AML-not otherwise specified
(AML-MLD-sole + AML-NOS)

19 GDS4265 143 3 COPD Stage 2/COPD Stage 3/ COPD Stage 4

20 GDS4456 93 5 stage pTa/ stage pT1/ stage pT2/ stage pT3/ stage pT4

Table 1: GPL570 Test-set used in ”Within platform integration” experiment
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Data-set #Samples #Classes Type of Classes

1 GDS1062 27 2 no metastasis/ metastasis

2 GDS1815 100 4 WHO grade III/ WHO grade IV/ WHO grade IV without
necrosis/ WHO grade IV with necrosis

3 GDS2880 20 3 normal stage I cRCC stage II cRCC

4 GDS3057 64 2 leukemia/ normal

5 GDS3713 79 2 stress (control/ cigarette smoke)

6 GDS810 31 4 control/ incipient AD/ moderate AD/ severe AD

7 GDS2643 56 4 normal/ Waldenstrom’s macroglobulinemia/ chronic lympho-
cytic leukemia/multiple myeloma

8 GDS3097 48 2 non-inflammatory breast cancer/ inflammatory breast cancer

9 GDS2362 71 3 uninfected/ presymptomatic, experimentally acquired/ symp-
tomatic, naturally acquired

Table 2: GPL96 Test-set used in ”Within platform integration” experiment



Chapter 6. Summary 41

Data-set #Samples #Classes Type of Classes

1 GSE58307 20 2 kras expression: No/ Yes

2 GSE58629 23 3 Mouse cerebellar tumour/ Non-neoplastic mouse cerebellar

cell/ Non-neoplastic mouse cerebellar tissue

3 GSE58654 25 2 exposure: Air/Hyperoxia

4 GSE60413 89 4 tissue: cerebellum/ liver/ midbrain/ striatum

5 GSE6116 71 3 Bioanalyzer Results: Good/ Sample Preservation: RNA later/

Strain or Line: B6C3F1

6 GSE61659 58 2 genotype/variation: loxP TP53/RB/PTEN (no Cre)/ strain

background: FVB

7 GSE61937 37 6 Cortex from tamoxifen treated mouse/ Cortex from vehicle

treated mouse/ Hippocampus from tamoxifen treated mouse/

Hippocampus from vehicle treated mouse/ Hypothalamus from

tamoxifen treated mouse/ Hypothalamus from vehicle treated

mouse

8 GSE63027 39 4 disease status: healthy/ hepatocellular carcinoma/ non-

aollcoholic steatohepatitis/ steatosis

9 GSE65997 50 2 gender: female/ male

10 GSE67985 60 2 tissue: Distal bonetissue/Proximal bone

11 GSE68515 20 4 group: aged/impaired/ unimpaired/young

12 GSE7404 144 2 mouse leukocytes/ mouse splenocytes

13 GSE76628 78 8 tissue: flank/ treated with: DC101 20 mpk at day 20/ DC101

20 mpk at day 5/ DC101 20 mpk at day 60/ G6 10 mpk at day

20/ G6 10 mpk at day 5/ G6 10 mpk at day 60/none

14 GSE7793 48 2 agent: saline/ vancomycin

15 GSE8150 20 2 Old neocortex/ Young neocortex

16 GSE84245 23 2 genotype: Ezh1; Ezh2 Camk Cre/ genotype: WT

17 GSE8790 22 2 Air exposed /CS exposed

18 GSE8949 20 7 Aorta from: P465L PPAR gamma/ control mice/mice at a dose

of 10 mg/kg/day for 14 days/ mice at a dose of 10 mg/kg/day

for 2 days/ mice at a dose of 3 mg/kg/day for 14 days/ mice

at a dose of 3 mg/kg/day for 2 days/ wildtype mice
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19 GSE9444 131 12 Strain: AKR/J, Tissue: Liver/ Strain: AKR/J, Tissue: whole

brain/ Strain: C57BL/6J, Tissue: Liver/ Strain: C57BL/6J,

Tissue: whole brain/ Strain: DBA/2J, Tissue: Liver/ Strain:

DBA/2J, Tissue: whole brain/ mRNAs pull-down, control/

mRNAs pull-down,sleep deprivation/ total RNA pull-down su-

pernatant, control/ total RNA pull-down supernatant, sleep

deprivation/ total RNA, control/ total RNA, sleep deprivation

20 GSE9763 20 4 Control embryonic progenitors/ Control postnatal progeni-

tors/ Transduced embryonic progenitors/ Transformed postna-

tal progenitors

Table 3: GPL1261 Test-set used in ”Within platform integration” experiment
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Data-set #Samples #Classes Type of Classes

1 SRP026126 422 4 tissue: Brain, reference rna: Agilent Universal Human

Reference RNA, referen.../ tissue: Brain, reference rna:

FirstChoiceB Human Brain Reference Total RNA.../ tissue:

Pooled tumor, reference rna: Agilent Universal Human Ref-

erence RNA../ tissue: Pooled tumor, reference rna: Agilent

Universal Human Reference RNA...

2 SRP030617 113 5 cdna synthesis method: Clontech SMARTer/ NuGEN Ovation/

NuGEN Ovation/ Sigma WTA TransPlex/ Superscript RT

3 SRP032775 232 4 time point, infection agent: post-infection Plasmodium falci-

parum/ pre-infection, n/a/ Post-infection, Plasmodium falci-

parum (Pf)/ Pre-infection, n/a

4 SRP033266 144 2 tissue: Bone marrow/ Heparinised blood

5 SRP033725 62 2 disease state: BD/ Control

6 SRP035988 179 2 tissue type: lesional psoriatic skin/ normal skin

7 SRP037775 63 6 cell line, drug treatment: BT474, drug treatment: no drug/

BT474, trastuzumab/ BTR50, no drug/ BTR50, trastuzumab/

HCC1954, no drug/ HCC1954, trastuzumab

8 SRP041471 313 4 cell line,time, treatment : HeLa, 0 min, 3 h DRB 0 min 4sU/

HeLa, 4 min, 3 h DRB 4 min 4sU/ HeLa, 8 min, 3 h DRB 8

min 4sU/ HeLa, control, untreated

9 SRP041538 189 2 disease state: COPD/ Normal

10 SRP042620 168 6 psoriasis/ healthy

11 SRP044668 94 3 tissue type: glioma - contrast-enhancing sample glioma - non-

enhancing FLAIR+ sample non-neoplastic brain

12 SRP048759 434 3 tissue: Bone marrow leukemia/ Heparinised blood/ Leuka-

pheresis

13 SRP050223 402 2 tissue: T cell acute lymphoblastic leukemia/ normal thymus

14 SRP050992 460 2 passages: 30-35, treatment: not sorted/ passages: 35-40, treat-

ment: FACS sorted

15 SRP051848 188 4 condition,time-point: Case (PTSD risk), Pre-deployment/

Case (PTSD),Post-deployment/ Control Post-deployment/

Control, Pre-deployment

16 SRP052740 169 3 mapki sensitivity,treatment: resistant, BRAFi/ resistant,

BRAFi+MEKi/ sensitive, none
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17 SRP056295 525 4 tissue: Bone marrow/ EDTA Blood/Heparinised blood/ Leuka-

pheresis

Table 4: NGS Test-set used in ”Within platform integration” experiment
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Data-set #Samples #Classes Type of Classes

1 GSE2125 45 3 non-smoker control/ asthmatic disease control/ smoker

2 GSE2125 180 4 non-tumor/ astrocytomas/ glioblastomas/ oligodendrogliomas

3 GSE7621 25 2 control/ Parkinson’s disease

4 GSE12452 41 2 control/ nasopharyngeal carcinoma

5 GSE10245 58 2 squamous cell carcinoma/ adenocarcinoma

6 GSE19429 200 2 myelodysplastic syndrome/ healthy

7 GSE19519 120 2 control/ thapsigargin

8 GSE21261 80 2 AML-multilineage dysplasia sole (AML-MLD-sole)/ AML-not

otherwise specified (AML-NOS

9 GSE13576 197 3 early relapse/late relapse/ no relapse

10 GSE13355 180 2 psoriasis/ healthy

11 GSE46449 88 3 control/bipolar, medicated/bipolar, first-episode unmedicated

12 GSE25462 50 3 type 2 diabetes/normoglycemia (FH-)/ normoglycemia (FH+)

13 GSE35809 70 3 gastric cancer subtype: invasive/ gastric cancer subtype:

metabolic/ gastric cancer subtype: proliferative

14 GSE26440 130 2 septic shock/ healthy control

15 GSE14905 82 2 control/ psoriasis

16 GSE19804 120 2 lung cancer/ control

17 GSE27567 162 6 benign breast abnormalities/ ectopic (gastrointestinal and

brain) cancers/ malignant breast cancer/ healthy/Pre-Surgery

(malignant)/Post-Surgery (malignant)

18 GSE21261 80 2 AML-myelodysplasia related changes (AML-MRC)/AML-

multilineage dysplasia sole + AML-not otherwise specified

(AML-MLD-sole + AML-NOS)

19 GSE22148 143 3 COPD Stage 2/COPD Stage 3/ COPD Stage 4

20 GSE31684 93 5 stage pTa/ stage pT1/ stage pT2/ stage pT3/ stage pT4

21 GSE10041 72 3 no relaxation response practice/ 8 weeks of relaxation response

practice/ long-term daily relaxation response practice

22 GSE10063 60 2 smoker/non-smoker

23 GSE10810 58 2 control/ tumor

24 GSE10927 65 3 Human adrenocortical carcinomas (33)/ adenomas (22)/ and

normal adrenal cortex (10)

25 GSE11135 204 2 five-day course of protocol training/ independent proficiency

testing
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26 GSE11869 75 5 5 Doses [Vehicle Control/Very Low (1 pM)/ Low (100 pM)/

High (1 nM)/ Very High (1 uM)]

27 GSE13139 54 2 LOX-1 overexpression/control

28 GSE13367 56 2 mucosal colonic biopsies /isolated colonocytes

29 GSE13548 42 4 treated cells [glucose free/ medium normal growth condition/

2-Deoxy-D-glucose (2DG)/ Tunicamycin (TM)]

30 GSE13732 113 2 CIS patients / controls

31 GSE13911 69 2 gastric tumors/control

32 GSE14671 59 2 responce in chronic phase cml patiens treated with imatinib/

not response

33 GSE14924 41 2 AML/ healthy

34 GSE15605 74 3 normal skin/ primary melanoma/ melanoma metastasis

35 GSE15913 40 2 thalidomide treated/ untreated

36 GSE16059 88 3 controls/ chronic fatigue syndrome/ idiopathic chronic fatigue

37 GSE16214 240 3 controls/chronic fatigue syndrome / idiopathic chronic fatigue

38 GSE16515 52 2 pancreatic tumor/ control

39 GSE17612 51 2 schizophrenic/ control

40 GSE18206 48 2 skin irritants SLS/ non

41 GSE18781 55 3 Axial Spondyloarthropathy/ control/ Sarcoidosis

42 GSE18842 91 2 lung cancer/ control

43 GSE19188 156 2 tumor/ normal lung tissue samples

44 GSE20489 54 2 acute ethanol exposure/ control

45 GSE21138 59 2 schizophrenic/ control

46 GSE21545 223 2 carotid plaques/ peripheral blood mononuclear cells

47 GSE21610 68 3 non-failing hearts (NF)/ VAD-HTx/ VAD-IP

48 GSE22229 58 3 Tolerant (TOL) participants/ Standard Immunotherapy (SI)

participants/ Healthy Controls (HC)

49 GSE22459 65 3 histologically normal pn “ 25, i{cg{ci “ 0q/ IF/TA pn “

24, i{cg “ 0, ci ą 0q/ IFTA+i pn “ 16, cg “ 0, i{ci ą 0q

50 GSE24147 42 2 recent-onset (RO) T1D sera/ control

51 GSE26051 46 2 diseased tendons/ healthy

52 GSE27383 72 2 schizophrenic/ control

53 GSE27536 54 2 COPD patient/ healthy

54 GSE27858 56 2 before/ after treatment with SPC2996

55 GSE28750 41 3 Sepsis/ Post-Surgical/ Control
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56 GSE29265 49 3 control/ Papillary thyroid carcinoma/ Anaplastic thyroid car-

cinoma

57 GSE29722 20 2 cancer/ healthy

58 GSE31189 92 2 Cancer Urothelia/ non- Cancer Urothelia

59 GSE32448 80 2 HomoProstateN/ HomoProstateT

60 GSE32688 32 2 Pancreatic Cancer/ non-malignant pancreas

61 GSE36895 76 3 clear-cell renal cell carcinoma (ccRCC) primary tumors/ tu-

mors growing in immunodeficient mice (tumorgrafts)/ and nor-

mal kidney cortices

62 GSE38666 45 3 Normal/ Cancer Stroma/ Cancer Epithelia

63 GSE39156 64 2 hydrogen peroxide/ control

64 GSE40595 77 4 Normal/ Ovarian cancer sttroma/ Human ovarian surface

epthelium/ Tumor epthelial component

65 GSE40611 49 2 control/ primary Sjogren syndrome

66 GSE40791 194 2 non-neoplastic (N) lung samples/ lung adenocarcinoma (AD)

frozen tissues

67 GSE4183 53 4 frozen colonic biopsies of patients with CRC/ adenoma/ IBD

/healthy normal controls

68 GSE42057 136 2 chronic obstructive pulmonary disease/ control

69 GSE42568 121 2 Breast cancer/ control

70 GSE43592 20 2 multiple sclerosis (MS)/ control

71 GSE46474 40 2 rejection kidney transplant patients/ non-rejection

72 GSE47908 60 4 left-sided colitis/ pancolitis/ UC-associated dysplasia/ controls

73 GSE50006 279 2 hronic lymphocytic leukemia (CLL) tumors/ healthy donors

74 GSE50772 81 2 SLE patients/ controls

75 GSE51024 96 2 Malignant Pleural Mesothelioma Tumor/ Normal Lung tissue

76 GSE58294 92 2 CardioembolicSTROKE/ control

77 GSE59312 79 2 HCV/ control

78 GSE59312 129 2 SLE patient/ healthy

79 GSE63514 128 5 normal/ CIN1 lesions/ CIN2 lesions/ CIN3 lesions/ cancers

specimens

80 GSE64300 42 3 PBMC-tolerant/ PBMC-non-tolerant/ control

Table 5: GPL570 Test-set used in ”Large scale within platform integration” experiment
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Dimensions PCA 2-PCA 3-PCA Gaussian PCA Autoencoder

20 0.00002 0.00012 0.00007 0.00019 0.08180

50 0.04090 0.05550 0.01360 0.05250 0.47240

200 0.02760 0.11910 0.26690 0.31010 0.00410

500 0.00150 0.00190 0.00930 0.00630 -

Table 6: P-values obtained by performing a t-test in order to compare the AUC results between
the reference ( full dimension ) and constructed latent feature spaces in ”Large scale within
platform integration” experiment. If p-value ă 0.05 there is a statistically important difference
between AUC of the reference (full dimensional) and the AUC in the constructed latent feature
space; gray color cell.

Dimensions PCA 2-PCA 3-PCA Gaussian PCA Autoencoder

5 0.00002 0.00001 0.00001 0.00006 0.00340

20 0.01640 0.00490 0.00360 0.00500 0.10380

200 0.27140 0.28250 0.07750 0.04410 0.21450

Table 7: P-values obtained by performing a t-test in order to compare the AUC results between
the reference ( full dimension ) and constructed latent feature spaces in ”Within platform
integration” experiment for GPL570 sets. If p-value ă 0.05 there is a statistically important
difference between AUC of the reference (full dimensional) and the AUC in the constructed latent
feature space; gray color cell.

Dimensions PCA 2-PCA 3-PCA Gaussian PCA Autoencoder

5 0.09040 0.20670 0.02680 0.02380 0.16560

20 0.99640 0.85800 0.13240 0.28050 0.70460

200 0.55700 0.24100 0.87180 0.39890 0.19650

Table 8: P-values obtained by performing a t-test in order to compare the AUC results between
the reference ( full dimension ) and constructed latent feature spaces in ”Within platform
integration” experiment for GPL96 sets. If p-value ă 0.05 there is a statistically important
difference between AUC of the reference (full dimensional) and the AUC in the constructed latent
feature space; gray color cell.

Dimensions PCA 2-PCA 3-PCA Gaussian PCA Autoencoder

5 0.00043 0.00240 0.00036 0.00150 0.00190

20 0.17760 0.08300 0.08880 0.00210 0.03080

200 0.43830 0.35490 0.04800 0.09640 0.59890

Table 9: P-values obtained by performing a t-test in order to compare the AUC results between
the reference ( full dimension ) and constructed latent feature spaces in ”Within platform
integration” experiment for GPL1261 sets. If p-value ă 0.05 there is a statistically important
difference between AUC of the reference (full dimensional) and the AUC in the constructed latent
feature space; gray color cell.
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Platform PCA 2-PCA Gaussian PCA Autoencoder

GPL570 0.09360 0.07050 0.00000 0.09370

GPL96 0.55670 0.83580 0.00730 0.67590

Table 12: P-values obtained by performing a t-test in order to compare the AUC results between
the reference the constructed latent feature spaces in ”Within platform integration” experiment
and and Cross-Platform Integration using GPL570 and GPL96 sets. If p-value ă 0.05
there is a statistically important difference between AUC of the reference (full dimensional) and
the AUC in the constructed latent feature space; gray color cell.

Platform PCA 2-PCA Gaussian PCA Autoencoder

GPL570 0.47940 0.45920 0.00000 0.08260

GPL96 0.25610 0.09620 0.00110 0.78130

GPL1261 0.45890 0.84240 0.00000 0.64470

Table 13: P-values obtained by performing a t-test in order to compare the AUC results between
the reference the constructed latent feature spaces in ”Within platform integration” experiment
and and Cross-Platform Integration using GPL570, GPL96 and GPL1261 sets. If p-
value ă 0.05 there is a statistically important difference between AUC of the reference (full
dimensional) and the AUC in the constructed latent feature space; gray color cell.

Dimensions PCA 2-PCA 3-PCA Gaussian PCA Autoencoder

5 0.02470 0.00200 0.00250 0.00250 0.00730

20 0.03620 0.00910 0.00740 0.00240 0.03540

200 0.05920 0.02880 0.03240 0.01970 0.09160

Table 10: P-values obtained by performing a t-test in order to compare the AUC results between
the reference ( full dimension ) and constructed latent feature spaces in ”Within platform
integration” experiment for NGS sets. If p-value ă 0.05 there is a statistically important
difference between AUC of the reference (full dimensional) and the AUC in the constructed
latent feature space; gray color cell.

Dimensions PCA 2-PCA 3-PCA Gaussian PCA Autoencoder

20 0.00002 0.00012 0.00007 0.00019 0.08180

50 0.04090 0.05550 0.01360 0.05250 0.47240

200 0.02760 0.11910 0.26690 0.31010 0.00410

500 0.00150 0.00190 0.00930 0.00630 -

Table 11: P-values obtained by performing a t-test in order to compare the AUC results between
the reference ( full dimension ) and constructed latent feature spaces in ”Large scale within
platform integration” experiment. If p-value ă 0.05 there is a statistically important difference
between AUC of the reference (full dimensional) and the AUC in the constructed latent feature
space; gray color cell.
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Platform PCA 2-PCA Gaussian PCA Autoencoder

GPL570 0.12070 0.68980 0.00000 0.23260

GPL96 0.92540 0.58380 0.01410 0.45360

NGS 0.30260 0.83790 0.00000 0.53660

Table 14: P-values obtained by performing a t-test in order to compare the AUC results between
the reference the constructed latent feature spaces in ”Within platform integration” experiment
and and Cross-Platform Integration using GPL570, GPL96 and NGS sets. If p-value
ă 0.05 there is a statistically important difference between AUC of the reference (full dimensional)
and the AUC in the constructed latent feature space; gray color cell.

Figure 2: Area Under the Curve comparison of pre-trained features using integration and features
obtained by simple PCA on each dataset seperately. We observe that 20 first PCs of each datasets
perform slightly better than 20 autoencoder’s features. However getting PCs from the whole
datasets violates Golden Rule, which says learn from S then test on new samples S’. Since the
validation set that is used in Cross-validation had been ”seen” before the estimation procedure
by PCA.
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as alternative approaches for integrative gene expression analysis,” ISRN bioinformatics, vol.
2014, 2014.

[14] A. Buness, M. Ruschhaupt, R. Kuner, and A. Tresch, “Classification across gene expression
microarray studies,” BMC bioinformatics, vol. 10, no. 1, p. 453, 2009.



52

[15] P. Warnat, R. Eils, and B. Brors, “Cross-platform analysis of cancer microarray data im-
proves gene expression based classification of phenotypes,” BMC bioinformatics, vol. 6, no. 1,
p. 265, 2005.

[16] S. A. Mitchell, K. M. Brown, M. M. Henry, M. Mintz, D. Catchpoole, B. LaFleur, and D. A.
Stephan, “Inter-platform comparability of microarrays in acute lymphoblastic leukemia,”
BMC genomics, vol. 5, no. 1, p. 71, 2004.

[17] K. B. Gregory, A. A. Momin, K. R. Coombes, and V. Baladandayuthapani, “Latent feature
decompositions for integrative analysis of multi-platform genomic data,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics (TCBB), vol. 11, no. 6, pp. 984–994,
2014.

[18] J. E. Jackson, A user’s guide to principal components. John Wiley & Sons, 2005, vol. 587.

[19] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” in Inter-
national Conference on Artificial Neural Networks. Springer, 1997, pp. 583–588.

[20] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[21] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, “Kegg: new perspec-
tives on genomes, pathways, diseases and drugs,” Nucleic Acids Research, vol. 45, no. D1,
pp. D353–D361, 2017.

[22] M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, “Kegg as a reference
resource for gene and protein annotation,” Nucleic acids research, p. gkv1070, 2015.

[23] M. Kanehisa and S. Goto, “Kegg: kyoto encyclopedia of genes and genomes,” Nucleic acids
research, vol. 28, no. 1, pp. 27–30, 2000.

[24] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, “Machine learning, neural and statistical
classification,” 1994.

[25] T. Fawcett, “Roc graphs: Notes and practical considerations for researchers,” Machine learn-
ing, vol. 31, no. 1, pp. 1–38, 2004.

[26] G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE transactions
on information theory, vol. 14, no. 1, pp. 55–63, 1968.

[27] G. Borboudakis and I. Tsamardinos, “Forward-backward selection with early dropping,”
arXiv preprint arXiv:1705.10770, 2017.

[28] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[29] S. Trek, “Hypothesis test: difference between proportions,” StatTrek. com, 2016.

[30] V. Trevino, F. Falciani, and H. A. Barrera-Saldaña, “Dna microarrays: a powerful genomic
tool for biomedical and clinical research,” MOLECULAR MEDICINE-CAMBRIDGE MA
THEN NEW YORK-, vol. 13, no. 9/10, p. 527, 2007.

[31] E. Clough and T. Barrett, “The gene expression omnibus database,” Statistical Genomics:
Methods and Protocols, pp. 93–110, 2016.

[32] L. Collado-Torres, A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub, K. D. Hansen, A. E.
Jaffe, B. Langmead, and J. Leek, “Recount: A large-scale resource of analysis-ready rna-seq
expression data,” bioRxiv, p. 068478, 2016.

[33] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint arXiv:1404.1100,
2014.

[34] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.



BIBLIOGRAPHY 53

[35] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise training of deep
networks,” Advances in neural information processing systems, vol. 19, p. 153, 2007.

[36] G. Hinton, “A practical guide to training restricted boltzmann machines,” Momentum, vol. 9,
no. 1, p. 926, 2010.

[37] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[38] A. Liaw, M. Wiener et al., “Classification and regression by randomforest,” R news, vol. 2,
no. 3, pp. 18–22, 2002.

[39] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, “Sup-
port vector machine classification and validation of cancer tissue samples using microarray
expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000.

[40] G. Orfanoudaki, M. Markaki, K. Chatzi, I. Tsamardinos, and A. Economou, “Maturep: pre-
diction of secreted proteins with exclusive information from their mature regions,” Scientific
Reports, vol. 7, 2017.

[41] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette,
A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander et al., “Gene set enrichment analysis:
a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings
of the National Academy of Sciences, vol. 102, no. 43, pp. 15 545–15 550, 2005.

[42] F. Wilcoxon and R. A. Wilcox, Some rapid approximate statistical procedures. Lederle
Laboratories, 1964.

[43] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and power-
ful approach to multiple testing,” Journal of the royal statistical society. Series B (Method-
ological), pp. 289–300, 1995.


	Abstract
	List of tables
	List of figures
	Introduction
	Motivation
	Related Work
	Contribution
	Outline

	Background
	Classification
	Evaluation of Classification - Area Under the ROC Curve
	Dimensionality Reduction
	Mathematical Optimization
	Hypothesis Testing

	Data sets
	Affymetrix Human Genome U133 Plus 2.0-GPL570
	Affymetrix Human Genome U133-GPL96
	Affymetrix Mouse Genome 430 2.0-GPL1261
	Next Generation Sequencing-NGS


	Methods and Materials
	Principal Component Analysis
	Kernel-Principal Component Analysis
	Auto-Encoder
	JAD Bio

	Experiments and Evaluation
	Within platform integration
	Large scale within platform integration
	Gene Set Encrichment Analysis
	Cross-platform integration

	Summary
	Discussion
	Conclusion


