EMPOWERING MOBILE DEVICES IN DISTRIBUTED
SERVICE-ORIENTED ENVIRONMENTS

loanna Zidianaki

Thesis submitted in partial fulfillment of the requirements for the
Masters of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Professor Constantine Stephanidis

This work has been supported by the Institute of Computer Science (ICS), Foundation for
Research and Technology Hellas (FORTH).

ii|Page

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

EMPOWERING MOBILE DEVICES IN DISTRIBUTED
SERVICE-ORIENTED ENVIRONMENTS

Thesis submitted by
loanna Zidianaki
in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

Author:
lwavva Zndlavakn, Navemiotipio KpRtng
loanna Zidianaki, University of Crete
Committee
approvals:
KaBnyntrig Kwvotavtivog 2tedavidng (Emomtng), Navenotuto KpRtng
Professor Constantine Stephanidis (Advisor), University of Crete
Enikoupog KaBnyntng Nwpyocg Mamaytavvakng, Mavemiotiuo KpAtng
Assistant Professor George Papagiannakis, University of Crete
KOplog Epeuvntng Ap. Anunteng MNpappévog, lvotitouto MAnpodoptkig ITE
Principal Researcher Dr. Dimitris Grammenos, ICS-FORTH
Department
approval:

KaBnyntrng Avtwvng Apyupog, Mpoedpog EMITPOMNAG LETATITUXLOKWY OTIOUSWV
Professor Antonis Argyros, Director of Graduate Studies

Heraklion, March 2017

iii|Page

iv|Page

Aplepwévo atouc yoveic uou MNnwpyo, KaAAomnn
Kat otov adeppo pou Mavo...

v|iPage

vi|]Page

Declaration of Originality

| declare that this thesis is my own work. Information derived from published or unpublished
work of others has been formally acknowledged.

vii|Page

viii|Page

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

EMPOWERING MOBILE DEVICES IN DISTRIBUTED
SERVICE-ORIENTED ENVIRONMENTS

Thesis submitted by
loanna Zidianaki
in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

ABSTRACT

Distributed systems are collections of computers that act, work, and appear as a single coherent
system. According to the model of Distributed Computing, software services components run in
different computers, whereas data are shared among the network. Middleware technologies are used
in the context of distributed computing systems in order to facilitate distributed object
communication. For example, ICS-FORTH FAmINE middleware contributes to the interconnection of
distributed services within Aml environments. In particular, it provides a common set of APIs targeting
a variety of heterogeneous platforms and different programming languages such as Java, C++, .NET,
and Python.

The increasing availability and use of wireless mobile devices brings about opportunities for new types
of distributed applications. However, towards this objective, the adopted middleware needs to support
mobile devices. The work reported in this thesis aims to build a FAmINE middleware extension, called
FAmINE4Android. The proposed extension library facilitates the development process of distributed
Android mobile applications. In details, it provides the required mechanism and tools in order to
support remote communication with distributed objects running on both ordinary PCs and Android
mobile devices. The proposed library offers to Android developers functionality identical to FAmMINEs,
in a seamless way based on an intuitive Java API. Using FAmINE4Android, Android developers are able
to effortlessly create (or re-use existing) distributed real-time applications.

The features of the FAmINE4Android middleware have been demonstrated by implementing a case
study application in the domain of cultural heritage. This case study refers to a museum guide
application, which provides information automatically based on visitors’ location. The museum guide
application uses the functionality provided by a FAmINE tracking service running on Windows OS. The
tracking service builds upon advanced computer vision algorithms in order to track multiple persons
within exhibition spaces using a network of RGB-D cameras. The case study highlights the contribution
of the FAmINE4Android middleware towards including mobile devices in distributed computing
platforms.

ix|Page

Xx|Page

MNANENIZTHMIO KPHTH2Z
TMHMA ENIZTHMHZ YIIOAOTIZTQN

AZ=IOMNOIHZH KINHTQN 2YZKEYQN ZE MNMEPIBAAAONTA
KATANEMHMENQN YTMNHPEZIQN

lwavva ZndLavakn

Metamntuyiakn Epyacia
NMEPIAHWH

Me Tov 0po KATAVEUNUEVA CUOTHUOTA EVWOOU LLE TNV GUAAOYI UTTOAOYLOTWV oL omtolot cuvepyalovtal
yla £Val KOLWVO OKOTIO KOl ETILKOLVWVOUV HETAED TOUG LECW SIKTUOU. 2TO TTAALOLO TWV KATAVEUNUEVWY
UTIOAOYLOTIKWY cUOTNUATWY, Yivetal xprion middleware texvoloyLwv npokelpévou va SleukoAUVOEL n
€€ aMooTAcEWC eMLKOVWVia Touc. MNa mapadstypa, n mhatpopua FAmMINE, wg middleware texvohoyia
tou IM-ITE, cupBarAel otn SLOCUVEEDN TWV KATAVEUNUEVWY CUCTNUATWY O TEPLBAAAovTA ALaUTNG
NonuoolvNC. ZUYKEKPLUEVA, TIAPEXEL Eva UVOAO amd APIs yLo TNV UTTOOTAPLEN TIOLKIAWVY ETEPOYEVWV
TePLBAANOVTWYV Kol SLadopETIKWY YAWCSOWVY Tipoypappatiopol onwg Java, C ++, .NET, kat Python.

H au€avopevn xprion KvNTwv GUCKEVWY HE SUVATOTNTEC OLOUPHOTNG SIKTUWONG EXEL WG ATTOTEAECHA
TN dnuloupyila pPLag VEOG KATNYOPLOG KATAVEUNUEVWY CUSTNUATWY. ITOX0G TNG MApoUoag Epyaciog
elval n enéktaon tng mAatdpopuoc FAMINE yia tnv umoothplen KvNTwV CUCKEUWV. JUYKEKPLUEVQ,
npoteivetal n BLBAL0BNkn FAMINE4Android n omolo e0wKAELEL OGAOUG TOUC AMAPAITNTOUG UNXOVLOOUG
Kol epyaAeia TTPOKELEVOU Va UTIOOTNPLXOEL N eMKOVWVIA LETAEY KATAVEUNUEVWY CUOTNUATWY TIOU
eKTEAOUVTOL OE€ UTIOAOYLOTEG AAAQ KOl 0€ GUOKEUEG TUTIOU Android. ZUyKeKpLUEVa, LECW Miag, EUKOANG
otn xpnon, dlemadng mpoypappatiopol epoppoywv (API) o Java, n BBALoBrKn FAMINE4Android
TipoodEPEL OTOUC MPOYPAUUATIOTEG Android edapUoywy, TAVOUOLOTUTIN AELTOUPYLKOTNTA OMWGE AUTH
Tou mpoadépetat anod tnv nhatpopua FAMINE IN-ITE. Q¢ ek ToUTOU, OL IPOYPOUHATIOTEG YITOpOUV
gUukoAa va avarmtioouv Android ebapuoyeg pe SuvaTtOTNTEG EMIKOWVWVIAG HETOED KOTAVEUNUEVWY
OUGCTNUATWY OE TIPAYHATIKO XPOVO.

‘Evag PYnolakog €evayog yia cuokeuég tumou Android avamtuxBnke pe okomo tnv avadelén tng
xpnotikotntag tng FAMINE4Android BLpAoBbnkng. O Yndlakdc Eevayog minpodopsel avtdpata Toug
ETILOKETTEC EVOC LOUOELOU avaAoya e To £kOepa To omoio eniokémntovral/ MANoLA{ouV. JUYKEKPLUEVQ,
XPNOLUOTIOLEL TN AEITOUPYIKOTNTO TIOU Ttapéxetal amd uia unnpecia mapakoAolONong atdpwy otov
Xwpo Baon moAamAwv RGB-D kapepwv. H umnpecio mopakoAolONonG ekteleitol og umoAoyloth
Windows kat kavel xprion tng mhatdpopuas FAmINE IN-ITE oUtwg wote va ekBEoel, péow Siktuou,
TANpodopleg yla Ta ATopa Tou eviomiel KAvovtag XpHon MPonNYUEVWY oAyopiBUwY UTIOAOYLOTIKNG
opaong. H mepimtwon tou YPndlakol Eevayou avadelkviel pe oadnvela, Tn ocuvelodpopd TG
BBALoBNKNG FAMINE4Android, meplAapuPdavovtag MAEOV TIC KLVNTEC OUOKEUEC OTO OGUVOAO TwV
KOTAVEUNUEVWY UTIOAOYLOTIKWY TIAATPOPHUWV.

xi|Page

xii|Page

Euxapiotieg (Acknowledgements)

Oa nbsha va guXAPLOTAOW TOV EMOMTN TNG METAMTUXLOKAG HoU egpyacioc Kabnynt Kwvotavtivo
Jtedavidn yla tnv ocuvexn kabodnynon kal umtootrplEn Tou ta teheutaia SUo xpdvia oto Aaiolo Tou
npoypappatog Awdxutng Nonpoouvng (Ambient Intelligence) tou Ivotitoutou MAnpodopikng tou
I6pUpatog Texvoloylag kat Epguvac kot el8IKOTEPA OTO TTAALOLO TNG EKTIOVNONG TN LETATITUXLAKIG LOU
gpyoaoiag.

Oa NBela emiong va euxaplotiow Tov AnunTpen MPAUMUEVO YyLO TNV OUCLACTLKA TOU UMooThpLEn otnv
Sopn NG LETAMTUXLAKAG Hou epyaciag, Onwce eniong kal tnv Mapyapita Avtova yla tnv kabBodrynon
KoL EMLUEAELD avaPOPLKA LE TN cuyypadr) TNG LETATTTUXLAKAG LOU EPYAOLOC.

T€Aog, €va peyaho suxaplotw otov adepdo pou Mavo yla tnv cuvexn kaBodnynon kat Bonbela tou
kaBwg emiong tnv ¢iAn pou Eprvn yia tnv S10pOwaon Tou KELHEVOU Kal TNV Slapkr UTooTnPLEn TNG.

xiii|Page

xiv|Page

Table of Contents

FAY o1 1 T SO P USSP PPOPRRRPRRRP iX
TTEDIANWIN ettt ettt ettt e et e e ettt e et e e e baeeebeeeeteeeeabeeebeseeabeesabesesseesabeeessseeeabaeenbaeesabeeenteeeanreeeseeennrs xi
1 T 1Ay e e [ot o] oINPT TSP PP PRSP 1
1.1 Distributed services in Ambient INtEIlIGENCEccccuvveiieiiieeeeeeece e 1
1.2 Middleware technologies in the context of Ambient Intelligence........cccccoeevvveeiciieeeeicnnenn. 1
13 CONETIDULION Lttt st st e b e s be e st st e e beesbeesaee e 2

2 Background and ReIated WOIKooeeeuiiiiieiiie ettt ettt e e et e e e saaae e e s anaee e seaeaaeeean 3
2.1 Ambient Intelligence ENVIFONMENTS......cciiiiiiii et e e e ree e e 3
2.2 Distributed Service TEChNOIOZIESccivcuiiieieiiie e e e s saaee e 4
2.2.1 Middleware distributed technologies in the context of Amlccoocvveeiviiieeiccien e, 4
2.2.2 MiddIEWAre @pPrOaCRESvii it e e e e aree s 5
2.2.3 FAMINE: A middleware library for Ami environmentscccoccveeeivciieecnciee e, 8

2.3 Y Y Lo Yol o W11 Lo [T = o] Fo Yol &3PS 11
23.1 Adaptive Communication ENVIFONMENTcccvieiiiiiieiciiie e see e 11
2.3.2 Interface Definition LANGUAEEcciveiiieiieiiee ettt et e e e e s e e e areeas 11
2.3.3 TAO IDL COMPIIET .ttt ettt e e et e e et e e e e s abe e e e sabaeeessbeeeeenaseeas 11
2.3.4 Android Studio dePeNAENCIES.ccccuviiiiiiiiee e e 12
2.3.5 Light-weight data exchange formatscccooocuiei e 12
2.3.6 Run Time Type Reflection lIDrary.........ooeee et 13

3 FAmMINE4Android: A FAMINE extension library supporting Android mobile devices.................... 17
3.1 Employing a freely available, open-source, and standards-compliant real-time CORBA
implementation iN ANAIrOIdccuiieieiie et e e et e e e e ebte e e e e ebee e e e ebteeaeenteeeeennes 18
3.11 Comparison of existing CORBA implementationsccccccuveeeeciieececieee e 19
3.1.2 Porting ACE/TAO t0 ANAIOid........ccviieiieeciieeeiee ettt ettt ettt e e tae e ereeeeanas 20

3.2 FAMINE4Android: Design and Implementation........cccooveciiiiieeee e 21
3.2.1 Initialization and ClEANUD ceeeeceeeiiieeee e e e e e e et r e e e e e e e e nnrnnes 21
3.2.2 Service IMpPleMENtAtioON e e 22
3.2.3 SErviCe reSOIVE aNd USAZEuuviiiiciiiieiecieieeettee e ettt e e et e e et tae e e e arae e e ssataeeeesntaeeesnnsaeeeeas 25

33 Addressing interoperability issues between Android Java and JNI........ccccccvveeviiieeeccineenn. 27
3.3.1 Calling native functions fromM JaVvacooiciiiii i 28
332 Calling Java functions from Native CoOdeciiviiiiiiiiiii e 29

3.4 Facilitating interoperability between Java and native codeccoceevviieeecciiee e, 30
34.1 Reification and Reflection in CH.....coouiiiiiiiiiiiiceccteeeeee e 30
3.4.2 [DF 1=) ol ¥ =L TR 32

xv|Page

4 Case study: Museum Guide Application using Android mobile devices.........ccocveeeciveeiicineeennnns 41

4.1 Tracking persons using a network of RGB-D Cameras.........cccceeecuveeeeiiieeecciieeeecieeeeeevnee e 41
4.2 Museum Guide application for Android mobile devices..........ccceecveeeeiiiee e, 43
4.2.1 Design and USABE SCENATIOccuviiieieiieeeeeiiee e ceitee e et e estre e e s sbee e e e sbee e s esabee e e ssnbeeessnseeas 44
4.2.2 IMmplementation details........oueiiei i 46

4.3 LR = 2T PP OR PP PPPPUPUPPRE 46

5 Conclusion and FULUIE WOTKoouiiiiiiie ettt ettt sree e e 47
51 SUMMAry Of AChIEVEMENTS ..o e s e e s sbte e e s sbaeeessanes 47
5.2 FUBUPE WOTK ittt ettt ettt ettt ettt e st e s bt e e sabe e sabeeesabeesabeesabeeesaseennns 47

6 REFEIEINCES ..ottt ettt e s bt e s bt e e st e s bt e e s abe e sabeeesabeesabeesanbeesabeeennnes 49
APPENDIX A: Step-by-step procedure of porting TAO to Android architecture........cccccceveecveeeiicnnennnn. 53
APPENDIX B: Programming TULOFIAleeeiicuiiiiiiiiiie et eeteee sttt e st e s e e e s aae e e ssaeae e e snsaeeesnnsnaeeens 57
B.1. Generating client/server stubs from .idl file..........cccccveviieiieiiiiieeccee e 57

B.2. Service type deClarationcueeieeciiie et e e et e e e ara e e e e nreeas 57

B.3. Set up Programming ENVIFONMENTuuuiiiiiiiiiiiiiv e eaaaaeees 57

B.4. Service iMpPlemMENtatioNnccuiiiiiiiiiec e et e e et e e e e et e e e e nre e e e eeareeas 63

=TT U] 0= TEY = Y ol = N 67

B.B. SENAING EVENTS ..eeiiiii it e e e e e e tee e e e e e e e s bt ae e e e e e s eesnataaeeeeeeeennnnnraneaeans 68

B.7. RECEIVING EVENTSuvuiuiriiiiiiiiiiiiiiitiituieiitie e e e e aaaaaaaaaearaaaaaaaaaaasasaaasasasasasasesssnsnsnnnnnnnnnnnnns 69

B.8. Call FUNCLION ..ttt ettt b e bt bt st e et e et e e sbeesbeesanenas 70

xvi|Page

List of Figures

Figure 1: CommuNication MECRANISMuuiiiiiiiiie ettt e e s e e s s ree e e sabee e e snbeeas 10
Figure 2: High-level architecture of FAMINE4Android middIewarecccccveveeeciieeecceee e, 18
Figure 3: Setup consisted of fOUr RGB-D SENSOIScccciuiiiieiiiiiieeiieeeeeciee e esree e eeiree e e eeree e e eaaae e e enreeas 42
Figure 4: Multiple human tracking based on geometric and color informationccccccceveeciieeeennen. 42
LT O T T 1Y/ -1 TN = 0 1 N 44

Figure 6: Using the mobile application to browse the digital exhibits, based on tracking technology. 45

Figure 7: MUuseum GUIAE FEATUIEScccuuiiieeiiee ettt ettt e e s tee e e e abe e e e e atae e e eabae e e e nreeas 45
T U IR T D1 G o Yo £y TSR 58
Figure 9: CUSTOMIZE CHd SUPPOIT. .. uuiiiiiii e aaae s aaassaasasnsssnennnannnens 59
Figure 10: Build.Gradle configUration..........cccuviiieciiie ettt e et e e e e atae e e e 59
Figure 11: CMakefile CONFIGUIAtioNcc.uiiiieiiee et et e e e e e e eabee e e e nreeas 60
Figure 12: AndroidManifest cCoNfigurationooocuiiiiiiiii i 60
Figure 13: Assets folder configuration (left), Import AAR package (right), Import Module Dependency
(oo o] o) PSR 62
Figure 14: Import Library DEPENUENCYciiiciiiiiiiiee ettt ettt e e re e e e s e e e s sbee e e ssbeeeesnreeas 63
Figure 15: Chaos generated files Imported to Android Studio projectccccceeeevcieeeevciee e, 65
Figure 16: Service type declaration for CAA0S SEIVICE.......ciucuiiiiiiiiiee ittt e 65
Figure 17: Configuration of the CMakeList.txt file for the Chaos service.........ccccecveviivceeeeeccieeeeenen. 65
Figure 18: Implementation of Chaosimplementation Java classccccueeevcieieiiciiee s, 66
Figure 19: Register Service ChOOS INJAVA ...ccccuviiiiciiiiiiiiiie ettt sree e e s e bee e s bee e e s nbae e e s neeeas 66
Figure 20: Chaos generated files Imported to Android Studio project (resolve)ccccccveeeecveeeeennnenn. 67
Figure 21: Service type declaration for Chaos service (reSolVe)........cccoecvieeecciiie e, 67
Figure 22: Configuration of Chaos service in the CMakeList.txt file.......cccceeeeiieeieciiiiicie e, 67
Figure 23: Example of Service USage/IreSOIVEccuiiiuieeciieeceee ettt et e et 68
FIBUIE 24: SENG EVENL ..ottt e e e e e e ettt e e e e e e e e e abtaeeeeeeeessnnbsaaeeseeeseannseaneeaeseannns 69
Figure 25: earthquake event handIEroo e e e e ee e e e e e e e 69
Figure 26: Invocation example of the earthquake method............ccccoooeiiiiiciiiie i, 70

xvii|Page

List of Tables

Table 1: Communication technologies requIremMENTESoccviii i 8
Table 2: Mapping between the Java types and the native Signaturescccccevvecieeeiicieiecciee e, 29
Table 3 : Mapping of Java types t0 NatiVes tYPESuii ittt e e seaee e 32
Table 4 : Mapping of Java arrays to native arrays and CORBA arraysccccccececurreeeeeeeeeciiinreeeeeseeesssnnnns 33

xviii |Page

List of CodeBlocks

CodeBlock 1: Using t0JSON METNOMccoiiiiii ittt e e e s s sbee e e s reeas 13
CodeBlock 2 Using fromJson MEthodcccuviiiiiiiiii ittt e e e e e eaaee e e 13
CodeBlock 3: Registration scope for the “TestStruct” data structure........cccoccoveeeeecieeeecciee e, 14
CodeBlock 4: Invocation of unknown type 0bJECT........cccuiiiiiciiie e 14
CodeBlock 5: Construction of unknown type variables..........ccceeevoiiiiiciii e, 15
CodeBlock 6 : Setter and getter properties in unknown type object........cccceecieeieciiii e, 15
CodeBlock 7: Iteration of UnkNOWN type OBJECLSceeiiiiiiiieiiee e e 15
CodeBlock 8: Initialization Of the ORB.........couiiiiiieieeeeee e st as 21
CodeBlock 9: Service type declaration @Xample..........cooiiri e e 23
CodeBlock 10 : Event dispatching @Xampleccoouiiii it ree e e e e e e e e 24
CodeBlock 11: Process of controlling the event’s elements typecccoccveeeeecieeeccciee e, 24
CodeBlock 12: Instructions to FamineManager in case of Service Usage........ccccvevvveeeevrieeeesecvveeeeennen. 25
CodeBlock 13: An example of event arguments’ data conversion among various CORBA types......... 26
CodeBlock 14: Remote procedure call @XampPle......cueiiieiiiiiiciiee et 27
CodeBlock 15: Load library iNVOCAtioNccoiciiiiiiiiie ettt e s e e beeas 28
CodeBlock 16: Auto generated NAtiVe filccuuii i e 28
CodeBlock 17: Call a Java method from native code using FindClass method..........ccccoccvevivviienennnen. 29
CodeBlock 18: Call a Java method from native code using GetObjectClass method............ccceeenneeee. 29
CodeBlock 19: Example::Echo; service definition in IDL.........cccueiiieiiiiiiciiie e 31
CodeBlock 20: Injected code of the Example::EChO Servicecccovvviiiciiiiicciee e, 31
CodeBlock 21: Example of primitive data type checking and equivalent conversion to native code... 32
CodeBlock 22: Example of primitive data type checking and equivalent conversion to native code... 33
CodeBlock 23 : Conversion of CORBA type variable to jObject type variable.........cccccoeecieeeeeiieeeennneen. 33
CodeBlock 24 : Conversion of CORBA type array to jobject type variable.........cccccoveiiecieiicccieeeeen. 34
CodeBlock 25: Call toJson() method and fromJson() iN Javacccceeeecciieeeciiee e 35
CodeBlock 26: Implementation of the convert_from_json in the case of the AdvancedMessage
L3 1101 o U UERRRNE 36
CodeBlock 27 : Dynamic complex data type JSON deserialization..........cccouvveeeeiiiiccciiiieeee e, 36
CodeBlock 28: Implementation of the convert from_json in the case of the AdvancedMessageSeq
L3 1101 o1 L= EPRRE 37
CodeBlock 29: Type checking logic of the RPC returned valueccocvieiieiiiee e, 38
CodeBlock 30: Implementation of the convert_to_json in the case of the AdvancedMessage example
.. 38
CodeBlock 31: Automatically generated injected code in the case of custom sequence of complex
(o 1= T8 Y/ o1 PSSP 39

Xix |Page

CodeBlock 32: “Tracking persons using a network of RGB-D cameras” service definition in IDL......... 43

CodeBlock 33: Handling incoming @Vent iN JAVacoiiiiiiiieciiec ettt et 46
COdEBIOCK 34: SEIVICETYPES SCOPE .uvvreeiiiiieeeetieeeeetteeeeetteeeesteeeessteeesssteeeeestaeeeeassaeeeeansesesennseeeeennsens 57
CodeBlock 35: Service INterface “Chans”ccciiiiiicieei ettt e e e s e sree e s s sbee e e s nreeas 64

xx|Page

1 Introduction

Over the past few years, a large number of advances in computing and communication technologies
have made it possible for computing to occur anywhere. The increasing availability and use of wireless
mobile devices entails opportunities for new types of distributed applications. This work aims at
empowering mobile devices in distributed service-oriented environments. The next sections briefly
present the role of distributes services within an Ambient Intelligence environment followed by the
objectives of middleware technologies for distributed services. The chapter concludes with a discussion
on the contribution of the proposed work.

1.1 Distributed services in Ambient Intelligence

Distributed systems are collections of computers that act, work, and appear as a single coherent
system. According to the model of Distributed Computing, software services components located on
networked computers communicate and coordinate their actions by passing messages [7]. The
components interact with each other in order to achieve a common goal. Examples of distributed
systems vary from SOA-based systems [31] to massively multiplayer online games [29] to peer-to-peer
applications [30].

One of the most typical properties that a distributed system includes is failure tolerance in individual
components [17]. Another, according to [41], is that the structure of the system (network topology,
network latency, number of computers) is not known in advance. In this context, the system may
consist of different kinds of computers and network links, and it may change during the execution of a
distributed program.

Ambient Intelligence (Aml) is an emerging research field that aims to make many of the everyday
activities of people easier and more efficient [5]. This paradigm gives rise to opportunities for novel,
more efficient interactions with computing systems. At a technical level, the vision of Ambient
Intelligence is realized by the seamless confluence of diverse computing platforms. In an Aml
environment, where interactions are realized by the confluence of different interconnected computing
systems, the organization of the overall system architecture in a well-defined set of distributed
software entities is crucial [16]. An Aml infrastructure consists of a collection of interconnected
distributed services, i.e., a collection of software entities that run on different machines, able to
communicate with each other in order to provide to the infrastructure all the required functionality
for sensing, drawing inferences, and responding to the needs of its users.

1.2 Middleware technologies in the context of Ambient Intelligence

In the context of Aml, a distributed technology enables: a) the flexible and dynamic extension of the
overall system with novel functionality, b) system scalability, by sharing computation demands among
different computers, c) enhanced robustness, by isolating potential failures of individual software
entities, and d) unambiguous and straightforward modularization of the system’s architecture.

The term Middleware in the context of distributed computing systems refers to a set of programming
libraries and programs (services) that constitute an indivisible platform, which offers a comprehensible
abstraction over the complexities and potential heterogeneity of the target problem domain [0]. In an
inherently distributed environment such as Aml, the communication middleware should abstract over
the intricacies of the underlying communication technologies, machine architectures and operating
systems. Moreover, it should hide the distribution of the different parts that comprise the system and

1|Page

enable programs written in different programming languages to communicate seamlessly. To this end,
a software framework (middleware) is essential to enable heterogeneous computing systems to
interoperate. Middleware technologies are used in the context of distributed computing systems, in
order to facilitate distributed object communication. A middleware technology example, named
FAmMINE (FORTH’s Aml Network Environment), is presented in [16]. FAmMINE provides the necessary
functionality for the intercommunication and interoperability of heterogeneous distributed services
hosted in Aml environments. It encapsulates mechanisms for service discovery, event driven
communication and remote procedure calls. To this end, FAmINE provides a common set of APls
targeting a variety of heterogeneous platforms and different programming languages.

1.3 Contribution

Although FAmINE middleware facilitates the interoperability of heterogeneous distributed services
hosted in diverse platforms, it does not provide support for mobile devices. This work aims at
empowering mobile devices in distributed service-oriented environments. To this end, a FAmINE
middleware extension, called FAmINE4Android, is proposed aiming to facilitate the development
process of distributed Android mobile applications/services. FAmINE4Android provides the required
mechanisms and tools in order to support remote communication with distributed objects running on
both ordinary PCs and Android mobile devices.

The FAmINE4Android library builds upon the FAmINE middleware, which caters for the creation of
distributed services enabling the exposure of software and hardware resources in Aml environments.
The proposed library provides mechanisms for service discovery, event driven communication and
remote procedure calls through a seamless and intuitive Java APl. FAmINE4Android allows Android
developers are able to develop applications enabled with distributed computing capabilities in an
effortless manner.

2|Page

2 Background and Related Work

This work aims to build a middleware extension library to facilitate the development process of
interconnected distributed objects for Android mobile devices in the context of Ambient Intelligence.
This section establishes the foundations of this research work by identifying the state of the art in the
targeted application domains.

2.1 Ambient Intelligence Environments

The term Ambient Intelligence (Aml) refers to electronic environments that are sensitive and
responsive to the presence of people [40]. According to ISTAG [10], the concept of Aml provides a
vision of the Information Society where the emphasis is on greater user-friendliness, more efficient
services support, user-empowerment, and support for human interactions. People are surrounded by
intelligent intuitive interfaces that are embedded in all kinds of objects and any environment that is
capable of recognizing and responding to the presence of different individuals in a seamless,
unobtrusive and often invisible way.

Ambient intelligence deals with a new world of ubiquitous computing devices where physical
environments interact intelligently with people. These environments should be aware of people's
needs, customizing requirements and forecasting behaviors. Aml environments can be diverse, such
as homes, offices, meeting rooms, schools, hospitals, museums, control centers, vehicles, tourist
attractions, stores, sports facilities, and public spaces. Artificial intelligence research aims to include
more intelligence in Aml environments, allowing better support to humans and access to the essential
knowledge for making better decisions when interacting with these environments [10]. Furthermore,
Aml environments enclose computing interfaces and technologies embedded to the context-
awareness requirement on data management strategies and solutions. Aml implies a seamless
environment of computing, advanced networking technology and modularized interfaces [36].

The vision of Aml assumes a shift in computing from desktop computers to a multiplicity of computing
devices in our everyday lives, whereby computing moves to the background and intelligent ambient
interfaces to the foreground. The elaboration of new interaction techniques is becoming the most
prominent key to a more natural and intuitive interaction with everyday things [5]. Natural interaction
between people and technology can be defined in terms of experience: people naturally communicate
through gestures, expressions, movements. To this end, people should be able to interact with
technology as they are used to interact with the real world in everyday life [5]. Additionally, Aml
systems must be sensitive, responsive, and adaptive to the presence of people.

According to the Institute for the Future [4], emerging technologies are transforming everything that
constitutes our notion of “reality”; our ability to sense our surroundings, our capacity to reason, and
our perception of the world. In the context of Ambient Intelligence, several challenges emerge in the
contributing domains of ubiquitous computing, and Human Computer Interaction (HCI), where many
network devices are integrated into the environment. The environment system can judge the situation
from the device input, and backend devices share information with the environment system to support
users in physical space.

Ubiquitous Computing has as its goal to enhance computer use not only by making many computers
available throughout the physical environment, but also by making them effectively invisible to the
user [56]. The idea of ubiquitous computing was first thought by Mark Weiser in 1998 at the Computer

3|Page

Science Lab at Xerox PARC!. He envisioned computers embedded in walls, tabletops, and everyday
objects. A person might interact with hundreds of computers at a time, each invisibly embedded in the
environment and wirelessly communicating with each other [55]. A number of researchers around the
world are now working in the ubiquitous computing framework. Their work affects all areas of
computer science, including hardware components (e.g., chips), network protocols, interaction
substrates (e.g., software for screens and pens), applications, privacy, and computational methods.
Some researchers say that ubiquitous computing is the Third Wave of Computing [44]. The First Wave
was “many people, one computer”, and the Second Wave, the PC, is the era of “one person, one
computer”. The Third Wave will be the era of “many computers per person”.

According to [11], ubiquitous or pervasive computing assumes a large number of ‘invisible’ small
computers embedded into the environment and interacting with mobile users. Users will experience
the world through devices to wear (e.g., medical monitoring systems), to carry (e.g., personal
communicators that integrate mobile phones and PDAs), devices that are implanted in the vehicles or
the public spaces (e.g., car and public space information systems), and devices integrated in the
architectural environment (e.g., interactive walls and furniture). This heterogeneous collection of
devices will interact with intelligent sensors and embedded actuators in homes, offices, public spaces
and transportation systems, in order to form a mobile ubiquitous computing environment, which aids
normal activities related to work, education, entertainment and healthcare. The environment will also
provide access to wired backbone computing resources, connected to the Internet.

At a technical level, the confluence of different computing platforms is crucial to accomplish the vision
of Ambient Intelligence. In order to achieve this, a software framework (middleware) is essential to
enable heterogeneous computing systems to interoperate, supporting human interaction in physical
environments in an intuitive and ubiquitous way [16].

2.2 Distributed Service Technologies

Aml environments provide customized interaction through context-aware technologies in order to
perceive stimuli from both users and environments [50]. Thus, self-adaptable technologies are
important in order to provide an adequate interaction to users and to develop dynamic distributed
systems in the context of Aml. This requires the contribution of software entities that are flexible and
scalable. According to the model of Distributed Computing, software services components run in
different computers and data are shared among the network in order to improve the efficiency and
the performance, such as to avoid crashes and enhance the response time of the applications.

2.2.1 Middleware distributed technologies in the context of Aml

Middleware contributes the development of heterogeneous networking environments, supporting
programming libraries and services in any programming language. Middleware technologies are used
in the context of distributed computing systems [16]. In communication middleware platforms,
applications of different programming languages are structured in objects that interact in different
programming systems, via transparent method invocation support, reflecting the “request/response”
communication protocol. In Aml environments, middleware enables distributed objects to
communicate remotely. Synchronous communication is essential for the interaction between services
hosted in Aml environments, as it allows the direct transmission of service calls. However, synchronous
communication is inefficient to support the modeling of all interactions applied in an Aml environment.

L http://www.parc.xerox.com

4|Page

For this reason, asynchronous, event-based communication is required in order to enable Aml services
to notify interested parties about changes in the internal state or to communicate the occurrence of
an external (expected or unexpected) event. As stated in [16], one of the most important and
extensively researched properties of distributed systems is fault tolerance. Fault tolerance refers to
the property that enables an Aml infrastructure to continue to function properly even in the event of
failures. In the context of an Aml communication middleware, such as the proposed one, the following
set of requirements should be met:

e failures isolation
e elimination of single points of failure within the core middleware infrastructure
e restart failing services before the clients that use those services are affected

e provision of mechanisms for notifying higher level entities about the irreparable failure of a
specific service.

Additionally, another important requirement of an Aml middleware is security. Apparently, security, in
order to be effective, should be considered throughout all the layers of an Aml infrastructure. In this
context, however, the security is the ability of the middleware to prevent malicious code from
eavesdropping the data exchanged through the network channels that enable services to communicate
with each other.

As presented in chapter 0, the proposed middleware extension library builds upon the FORTH’s FAmINE
middleware. As a result, all the aforementioned requirements are satisfied thanks to FAmINE, which
caters for the creation of distributed services enabling the exposure of software and hardware
resources in Aml environments.

2.2.2 Middleware approaches

In this section, existing communication technologies are briefly presented as basic communication
tools for an AmI middleware.

2.2.2.1 CORBA

According to [51], the Common Object Request Broker Architecture (CORBA) was defined by the Object
Management Group (OMG), a non-profit organization that promotes the use of object-oriented
technologies. Many people refer to CORBA as a middleware or integration software, because CORBA
is often used to standalone applications communicating with each other. The phrase common
architecture means a technical standard for Object Request Broker (ORB), a mechanism for invoking
operations on an object in remote process. In particular, it allows applications to talk to each other
even if the applications are running on the same or a different computer, different operating systems
or different CPU types, implemented with different programming languages. In addition, CORBA is an
object-oriented distributed middleware; this means that client does not make calls to a server process.
Instead, a CORBA client makes calls to objects. CORBA has many strong points. It allows applications in
different programming languages to communicate each other, even if they are running on different
operating systems, on different computers, and on different CPU types.

The advantages of the CORBA architecture are numerous. First, in order to define public Application
Programming Interfaces (APIs), CORBA makes use of the Interface Definition Language (IDL) [28], which
defines a mapping between IDL definitions and constructs of the target programming language. This
mapping enables the invocation of attributes and operations between distributed services. In addition,
CORBA supports synchronous and asynchronous communication between services, using the standard
Notification Service. One more advantage is that CORBA takes account of fault tolerance, obtaining

5|Page

references to services through the standard Implementation Repository (ImR) service in order to allow
infrastructure functions properly, even if a fault has occurred. Moreover, CORBA provides the needed
security disincline malicious code, using encrypted communication channels. Even if CORBA is
considered difficult to use, there are many open source implementations for each target programming
language.

2.2.2.2 ICE

The Internet Communication Engine technology (ICE) defined by the ZeroC company relies on the
CORBA architecture [18, 57]. ICE provides an extra functionality, improving the unnecessary complexity
of CORBA, purveying protocols to reduce network bandwidth and creating robust security systems. ICE
provides many useful standard services, such as lcePatch and Glacier. IcePatch updates software
around the distributed infrastructure and sends notifications when services communicate with each
other. Whereas Glacier is responsible to provide enhanced security and firewall protection. Moreover,
ICE makes use of Slice in order to define the service public API. Slice allows to programmers to define
the state of ICE objects, so that they can be stored and loaded automatically. However, an important
restriction is that ICE applications and services have to be implemented under the ICE General Public
License (GPL) and each extra feature has a corresponding fee.

2.2.2.3 Web Services

Web Services is a new perspective of modern distributed systems. Using an XML-based protocol, Web
Services allow applications to publish data across the Web. This middleware uses the Simple Object
Access Protocol (SOAP), which defines: a) the format of transferred messages between services, b) the
rules for the data format transferred via messages and c) a set of conventions in order to achieve
remote procedure calls [48]. While universal firewall traversal is very important for geographically
distributed services, it is not essential in the context of an Aml environment where the majority of the
deployed services are restricted within a Local Area Network (LAN). Furthermore, Web Services
approach supports synchronous and asynchronous communication between services. However, the
asynchronous request-response communication works only with HTTP protocol and not with the
HTTPS. Moreover, the programming of Web Service abstractions requests libraries and tools, which
are not available for many programming languages. As a result, the Web Service approach is an
insufficient middleware to support an Aml infrastructure, due to the absence of high level
programming idioms and communication guarantees.

2.2.2.4 Thrift

Thrift technology is a software library and set of code-generation tools developed at Facebook to
expedite development and implementation of efficient and scalable backend services [49].
Additionally, it allows developers to define datatypes and service interfaces in a single language-neutral
file and generate all the necessary code to build RPC clients and servers. Thrift is a communication
platform that imports distributed services in many different programming languages. Thrift, like
CORBA, uses IDL, which enables the invocation of attributes and operations between distributed
services, separating service definition from its actual implementation. Even if this approach is very well
structured and efficient, Thrift does not import Naming and Notification Service, something that makes
the asynchronous communication impossible.

2.2.2.5 Etch

Etch technology is defined by Cisco and is a framework for building network services [6, 12]. Etch is a
cross-platform, language- and transport-independent framework that builds and consumes efficient
RPC network services in a resource limited and heterogeneous environment. Etch uses a Network

6|Page

Service Description Language (NSDL) which, similarly to IDL, separates service definition from the
actual implementation. Etch toolset includes a network service description language, a compiler for
code generation, and binding libraries for a variety of programming languages, such as C, C++, C# and
Java. Etch supports synchronous and asynchronous communication, providing a Naming Service and a
Router Service for fault tolerance that supports service replication. However, this approach is not able
neither to use a service object as parameter of a method nor as return value. Etch provides the
requested functionality for an Aml environment, although it is incomplete.

2.2.2.6 ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software, which runs only
on Debian and Ubuntu [45]. ROS makes use of IDL and supports a system tool, which manages the
details of distributed synchronous and asynchronous communication between the interacting services.
In addition, this approach provides an extensive set of configuring tools and libraries. Although ROS
supports asynchronous messaging, it does not support synchronous “request/response” interaction
between processes. In general, ROS provides many of the requested functionality of an Aml
middleware, but it is very restrictive given that it targets only a restricted number of programming
languages, such as C++, Python, LISP and Javascript.

2.2.2.7 RIO

Rio is a dynamic framework able to develop, deploy and manage distributed systems composed of Java
services [43]. Rio provides an infrastructure to dynamically instantiate, monitor and manage services,
which provide context on service requirements and dependency parameters. In addition, RIO purveys
a policy approach based on fault detection and recovery, scalability and dynamic deployment. Key to
the architecture are a set of dynamic capabilities and reliance on policy-based mechanisms. RIO turns
a network of computing resources into a dynamic service, providing a policy-based approach for fault
detection and recovery, scalability and dynamic deployment. To this end, RIO is restrictive enough due
to a limited number of running platforms that it supports.

2.2.2.8 Crossbar.io

Crossbar.io is an open source application-networking platform for distributed and micro service
applications [8], implementing the open Web Application Messaging Protocol (WAMP), which offers
both Publish and Subscribe (PubSub) and Remote Procedure Calls (RPC) [54]. In order to facilitate RPC
functionalities in Crossbar.io, a client exposes some code and another asks for its execution. WAMP
clients are already implemented for almost twelve different programming languages, covering the
necessary communication patterns and functionality within the context of the application. Moreover,
Crossbar.io provides tools in order to handle a wide set of standard aspects of distributed applications.
In addition, Crossbar.io can be used from any Web application framework that is able to serve
(outgoing) HTTP/POST requests, providing many of the requested functionalities for distributed Ami
environments. However, the implementation of WAMP does not provide full remote object passing
like CORBA, as well as complex data types.

2.2.2.9 Related technologies approaches

Express is a minimal and flexible Node.js web application framework designed to run in Node.js
platform [13]. Koa.js is a JavaScript web application framework. It is an evolution on the Express.js
framework supporting object-oriented programming [35]. The EMISS (Energy Monitoring via the
Internet and Sensors for Sustainable living) implemented with Java, illustrates the idea to provide a
modular and simple platform for the design and deployment of a wireless sensor network [9]. OSGi
framework implements services in Java [39]. The OSGi technology facilitates the componentization of

7|Page

software modules and applications and assures remote management and interoperability of
applications and services over a broad variety of devices. The .NET Web Services framework and tools
for implementing services provide a standard means of interoperating between different software
applications, running on various platforms and/or frameworks. In addition, Hydra framework uses a
Web Services-based approach, where network technologies create and consume services [52]. The
Hydra middleware allows developers to incorporate heterogeneous physical devices into their
applications by offering easy-to-use web service interfaces. These efforts are yet very restrictive, since
they support only a narrow range of programming languages, such as Java, C++, .NET-based, Python,
JavaScript and Node.js.

2.2.2.10 Discussion

Presenting the basic requirements of an Aml middleware, among the aforementioned communication
technologies [Table 1], CORBA and ICE Object-oriented middleware approaches are more effective in
providing implementation for Aml environments. Both provide specifications and features, such as
heterogeneity, which supports multiple programming languages and computing platforms.
Additionally, they import synchronous request/response and asynchronous communication, a crucial
factor for the development of an Aml environment. Furthermore, both the aforementioned
approaches have the ability to use encrypted communication channels, providing essential security to
all the entities of an Aml environment. Finally yet importantly, they provide ease of use via the intuitive
usage of each target language. These factors make CORBA and ICE technologies independent of target
domain, with the exception that ICE applications and services have to be implemented under the ICE’s
General Public License (GPL) and the extra features are being offered for a fee.

Table 1: Communication technologies requirements

Technology Multiple Synchronous & Handling Secure Ease of Use for

Language Asynchronous of Failures communication target language

Support Communication
CORBA v v v v v
ICE v v v v v
Web Services (v) (v) v v
Thrift v (v) (v) v v
Etch (v) (v) (v) v v
ROS (v) v v v v
RIO (v) v v v v
Crossbar.io v (v) v v v

2.2.3 FAmINE: A middleware library for Ami environments

FAmINE is a software architecture for Ambient Intelligence environments that enables the
implementation and deployment of software abstractions [15]. FAmINE contributes to the creation of

8|Page

distributed services that enable the exposure of the software and hardware resources available in an
Aml environment. Using the FAmINE middleware, the deployment of high-level object-oriented
abstractions for programming and using services has been achieved in the context of many Aml
development projects. FAmINE provides architectural abstractions, interaction capabilities and
composability methods. In details, the FAmINE middleware supports many different programming
languages in order to constitute a viable platform for developing Ambient Intelligence services. In
addition, a set of core services is provided for discovery and deployment functionality of the services
infrastructure. FAmINE’s design is based on high-quality implementation supporting both synchronous
and asynchronous communication strategies.

The FAmINE middleware builds upon a variety of CORBA libraries according to characteristics of the
implementation environment, such as supported platform and programming language. The following
subsections describe the service-oriented features that FAmINE provides.

2.2.3.1 Service Implementation

The syntax of a service description is based on the Interface Definition Language (IDL), which defines
an Application Programming Interface (API), in a way that is independent of any particular
programming language. The type of a CORBA object is called an interface, which is similar in concept
to a C++ class or a Java interface. The implementation of service description is based on the definition
of the methods, events and primitive types. In addition, complex types are defined using structures,
enumerations, unions and sequences. Primitive and complex types are used as arguments or returned
values on methods and events. In addition, the description of service implementation is validated by
CORBA IDL, where the service signature is defined from the name of the module and the name of the
interface, separated by the scoping operation in IDL “::”. This construct has a similar purpose to a
namespace in C++ or to a package in Java. The events are defined as void methods; whose name starts
with the prefix Event_ followed by the event name. The main functionality of the service is provided
by the actual implementation of the methods and events. When the service is fully implemented, it
can be exposed by instantiating an object that is able to accept and make remote procedure calls.

2.2.3.2 Service discovery and invocation

The CORBA COS (Common Object Services) Naming Service provides a tree-like directory for object
references implemented on top of the COS Naming Service specification [1]. A name-to-object
association is called a name binding. A name binding is always defined according to the naming context.
A naming context is an object that contains a set of name bindings in which each name is unique.
Different names can be bound to an object in the same or different context simultaneously. Before the
client and server start running, they should both agree on which root-naming context to use. At first,
the server invokes the bind or rebind method in order to associate a name with an object reference.
Secondly, the Naming Service adds this object reference binding to its namespace database. Thirdly, a
client application invokes the resolve method to obtain an object reference with the given name. At
the end, the client uses an object reference to invoke methods on the target object. The invocation of
methods can be achieved by obtaining a reference to an exposed service. As illustrated in Figure 1, a
client makes a remote invocation upon a proxy object. When the client application invokes an
operation on a proxy object, the proxy object uses an inter-process communication mechanism to
transmit the request to the “real” object as it is shown in the next figure. Then the proxy object waits
to receive the reply and passes back this reply to the application-level code in the client [1].

9|Page

Client process Server process

Figure 1: Communication mechanism

The Object Request Broker (ORB) in the client process waits to read a reply message from the server
process and then returns the reply buffer back to the proxy object. On the server side, a thread inside
the ORB runs in an event loop, waiting for incoming requests. When a request arrives, the ORB reads
and dispatches the request to the target servant. When the operation in the servant returns, via the
POA to the server-side ORB, it transmits the reply message across the network to the client process.
Consequently, through this servant the user program is able to handle the income events by defining
a method with the same name of the event.

2.2.3.3 Repository server

Regarding the repository server, CORBA architecture uses the term of Implementation Repository
Server (IMR) to describe the repository that is responsible for the storage details of CORBA server
applications. The repository server keeps a configuration database that specifies on which machine a
specific service should run. The IMR is responsible to redirect the invocation call to the service’s actual
network location. In case the requested service is not running, due to network failures or in case the
server has not start running yet, the resolution process starts again from the beginning. The resolution
process supports the resolving of the client service by obtaining a reference to IMR. In case the IMR
execution is not responding, the resolution process must be restarted. That means long delays to the
client’s invocations. The repository server has to import another server in order to be able to either
start or restart a service. That server, called Service Activator, aims to configure which machine has
the specific service to run and check if the executable program of the specified service is accessible
from the local machine. The Service Activator is responsible to check if the executable is available,
either at a central file repository as part of the middleware infrastructure or on the local machine.
Additionally, it checks if there is an updated version at the central file repository and, in case there is,
it downloads and replaces the old version in order the updated version of the service to be deployed.

2.2.3.4 Context and Zones

Concerning the network IP address, on which the IMR is executed, the term context is used to define
a runtime, dynamic property of a service that describes and identifies its current instantiation within
an Ambient Intelligence environment. Regarding the term zone, it can be seen as an isolated
middleware infrastructure where services deployed in a specific zone cannot access and affect the
services deployed in another zone. Given that a service can be resolved regardless of its actual network
location many times, the term context is necessary for indicating the availability of alternative
implementations, by providing access to different sets of resources, or even for implementing
application-level redundancy.

10|Page

2.2.3.5 Asynchronous events

Regarding the FAmINE4Android asynchronous communication, the messages that are transferred
among the services can be produced and dispatched by any service. Through this mechanism, the
producer of an asynchronous message directly propagates it to all its consumers. On the other side,
any consumer that had previously declared interest in that specific event is notified asynchronously
while the event is delivered to the “event handler” method.

2.3 Major building blocks

In this section, the necessary components contributed for the implementation of the proposed work,
are presented. More details are presented in section 3.1.

2.3.1 Adaptive Communication Environment

The presented middleware library is implemented on top of the Common Request Broker Architecture
(CORBA) [47], using the Adaptive Communication Environment (ACE), an open-source object-oriented
framework, which implements many core patterns for concurrent communication software.
Furthermore, ACE enhances portability, meaning that ACE components make it easy to write
networked applications on one OS platform and then port them to different OS platforms, providing
reusable components and patterns. Additionally, ACE components are designed in such a way to
provide flexibility, extensibility, reusability, and modularity of communication software. An additional
benefit of ACE components is the support of Quality of Service (QoS), which provides high performance
for bandwidth-intensive applications and recurrence for real-time applications. Furthermore, ACE
provides a rich set of reusable C++ wrapper facades and framework components that perform common
communication software tasks across a range of operating system platforms. TAO simplifies the
development of distributed applications by automating and encapsulating object location, connection
and memory management, parameter (de)marshaling, event and request de-multiplexing, error
handling and fault tolerance, object and server activation, concurrency and security. These capabilities
allow applications to interoperate across networks without hard-coding dependencies on their
location, programming language, operating system platform, communication protocols and hardware
characteristics.

2.3.2 Interface Definition Language

One of the key factors of CORBA is the language independence. Language independence is achieved
using a specification meta-language that defines the interfaces of an object. The IDL is used for the
description of a service interface. The chosen types, methods and events are meant to highlight many
of the service’s capabilities for exchanging messages through the abstraction of method invocations.

2.3.3 TAO IDL compiler

An IDL compiler translates IDL service definitions into similar definitions for the targeted programming
language. For each IDL interface, the tao_idl4Android compiler generates both stub code, a dummy
implementation, and skeleton code, which describes the server-side code for reading incoming
requests and dispatching them to application-level objects. In a distributed system like CORBA, remote
calls are implemented by the client making a local call upon a stub procedure/object. The stub uses an
inter-process communication mechanism to transmit the request to a server process and receive back
the reply. ACORBA stub is a client-side object that acts on behalf of the “real” object in a server process.
The so-called skeleton provides supporting infrastructure that is required to implement server

11| Page

applications. The The ACE ORB (TAO) provides a compiler which is responsible for the generation of the
stub and skeleton code.

2.3.4 Android Studio dependencies

This section presents the main components that are provided by Android Studio and are contributed
to the implementation of the presented work.

2.3.4.1 Java Native Interface

The Java Native Interface (JNI) is a programming framework that enables Java code running in a Java
Virtual Machine (JVM) to call and be called by native applications (programs specific to a hardware and
operating system platform) and libraries written in other languages such as C or C++ [33]. JNI has the
role of moderator, providing the mapping between variables and methods. In addition, JNI supports
the loading code from dynamic shared libraries efficiently and this factor is crucial for the
implementation of the presented middleware library. The contribution of JNI in the presented
middleware implementation is described in sections 3.3.1 and 3.3.2.

2.3.4.2 Native Development Kit

The Native Development Kit (NDK) is a set of tools which allow the use of C++ programming language
in Android Studio [38]. NDK provides platform libraries in order to manage native code. In addition, in
the last versions of Android Studio, CMake is imported. CMake is an external build tool that works
alongside to build native libraries and Java Native Interface (JNI), which is the interface via which the
Java and C++ components collaborates. Finally yet importantly, the NDK supports the use of prebuilt
libraries, both static and shared. This feature of the NDK assists to the functionality of the presented
middleware library as described in the following sections.

2.3.5 Light-weight data exchange formats

According to [25], JSON is a completely language independent text format that uses conventions
familiar to programmers of the C-family of languages, including C, C++, CH, Java, JavaScript, Python,
etc. These properties make JSON an ideal data-interchange language, capable to encode objects in
string format; this process is called serialization. JSON structure is based on the collection of
name/value pairs. In detail, as JSON representation components are the following:

H[ll

e Array: square bracket (“[“) represents a JSON array

e Objects: curly bracket (“{“) represents a JSON object
e Key: aJSON object contains a key that is just a string. Pairs of key/value make up a JSON object
e Value: each key has a value that could be string, integer or double e.t.c

Therefore, an object begins with “{“(left brace) and ends with “}” (right brace), whereas each name is

aw.n " n

followed by “:” (colon) and the name/value pairs are separated by “,” (comma).

For the purpose of the presented work, a Java library that can convert Java Objects into their JSON
representation and similarly, a JSON string to an equivalent Java object, is used. This library is called
Gson and is able to collaborate with arbitrary Java objects, providing several built in serializers and
deserializers. A serializer allows the conversion of a JSON string to corresponding Java type while
deserializers allows the conversion from Java object to a JSON representation. Gson library provides
two main methods which are able to convert Java objects to JSON and vice-versa, these methods are

12| Page

called toJson() and fromJson(). As depicted in CodeBlock 1, the toJson() method takes as argument an
instance of a Java object and returns its JSON representation.

public class UserProfile
{ "name": "John",

L "age": 26,

String name; .

"isStudent": true }

int age;

boolean isStudent;
}
UserProfile userObject = new UserProfile("John", 26, true);
Gson gson = new Gson{();
String userJson = gson.toJson (userObject);

CodeBlock 1: Using toJson method

Similarly, in CodeBlock 2 is illustrated the call of fromJson() method that takes as first argument a JSON
string and as second argument the expected Java object.

Gson gson = new Gson{();
String userJson = " { 'name':'John', 'age':26, 'isStudent':true } " ;

UserProfile userObject = gson.fromJson (userJson, UserProfile.class);

CodeBlock 2 Using fromJson method

According to the aforementioned data exchange approach, a corresponding data exchange data library
in C++ is RapidJson [21]. RapidJson library can convert C++ Objects into their JSON representation and
similarly, a JSON string can convert to an equivalent C++ object. RapidJson is based on the Simple API
for XML (SAX) style format. A RapidJson object is a collection of key-value pairs and it must be a string
value. Moreover, the main components of the RapidJson library are the Reader method, which parses
a JSON representation from a stream and the Writer method, which converts JSON into the
corresponding object. In detail, as RapidJson representation components are the following:

e StartArray: start a JSON array object using the “[”
e EndArray: end a JSON array object using the “] “.

e StartObject: start a JSON array object using the “{”
e EndObject: end a JSON array object using the “}”

2.3.6 Run Time Type Reflection library

Even if many programming languages (i.e., Java) provide built-in reflection mechanisms, C++ does not.
Regarding the requirements of the present work, the application of a generic code approach was
required, which could operate with unknown type variables and various instances objects. The
proposed work is supported by the Run Time Type Reflection (RTTR) library, which is provided by readily
available custom and open source implementations that aims to employ Reflection features in C++.
The RTTR library describes the ability of a computer program to modify an object at runtime, in an easy
and intuitive way. The functionality of the Run Time Type Reflection (RTTR) library requires the

13| Page

registration procedure of properties, methods, enumeration and constructors to the file where the C++
structure is declared [42]. In detail, the RTTR library provides the following advanced functionality:

Registration of constructors, properties, methods and enumerations. The registration process is
the entry point for the information reflection to the type system (see CodeBlock 3)

Method invocation process premise that the number of arguments must be provided and the type
itself must 100% match the type of the registered function. A method will be successfully invoked
when the provided instance can be converted to the declared class type (see CodeBlock 4)

Constructor invocation, which aims to obtain an instance of a unique type object. The
construction of unknown type’s variables is able by creating instances of the actual class type,
wrapped inside a variant object (see CodeBlock 5)

Set/Get property process. According to a property set process, it premises that the provided
instance can be converted to the declared class type, whereas the get process returns the value
of the property (see CodeBlock 6).

Retrieve object type process. The objective of this process is the retrieve of an object type, in
which the type information is hold in the Type class of the RTTR library (see CodeBlock 7).

#include <rttr/registration>
using namespace rttr;

struct TestStruct {

RTTR_REGISTRATION {

TestStruct () {};
boolean isvalid() {};:

int id;

registration::class <TestStruct>("TestStruct")
.constructor<> ()
.property ("id", &TestStruct::id)

.method ("isvValid", &TestStruct::isValid);

CodeBlock 3: Registration scope for the “TestStruct” data structure

TestStruct obj;

method meth = type::get(obj).get method("isvalid");

meth.invoke (obj) ;

variant var = type::get(obj) .create();

meth.invoke (var) ;

CodeBlock 4: Invocation of unknown type object

14| Page

type t = type::get by name ("TestStruct");

variant var = t.create();

constructor ctor = t.get constructor();
var = ctor.invoke();

std::cout << var.get type().get name();

CodeBlock 5: Construction of unknown type variables

TestStruct obj;
property prop = type::get(obj).get property("id");

prop.set value (obj, 3);

variant var prop = prop.get value (obj);

std::cout << var prop.to _int(); // prints '3'

CodeBlock 6 : Setter and getter properties in unknown type object

type t = type::get<TestStruct>();

for (auto& prop : t.get properties())

std::cout << "name: " << prop.get name() << std::endl;

for (auto& meth : t.get methods())

std::cout << "name: " << meth.get name () << std::endl;

CodeBlock 7: Iteration of unknown type objects

15| Page

16 |Page

3 FAmINE4AnNndroid: A FAMINE extension library supporting
Android mobile devices

This chapter describes the implementation of the developed middleware library, called
FAmINE4Android, aiming to facilitate the development process of distributed Android mobile
applications. FAmINE4Android provides the required mechanism and tools in order to support remote
communication with distributed objects running on both ordinary PCs and Android mobile devices. The
FAmINE4Android library builds upon the ICS-FORTH FAmINE middleware, which caters for the creation
of distributed services enabling the exposure of software and hardware resources in Aml
environments. The ICS-FORTH FAmINE middleware provides a common set of APIs for different
programming languages, Java, C++, .NET and Python, on a wide range of different types of devices. The
core components of the FAmINE4Android middleware are directly derived from the source code of the
C++ FAmINE middleware, ensuring maximum compatibility between the already developed modules
and those that are developed for the requirements of the Android architecture. Given that the primary
and most popular programming language for the development of Android applications is Java, but no
suitable CORBA implementation in Java was readily available, the C++ ACE ORB (TAO) was selected as
the optimal choice (see 3.1).

Figure 2 illustrates the high-level architecture of the FAmINE4Android middleware extension library.
The main components contributing to the overall architecture’s synthesis and functionality are the
following:

e |ICS-FORTH FAmINE middleware provides the creation of distributed services, enabling the
exposure of software and hardware resources in Aml environments. ICS-FORTH FAmINE
middleware builds on The ACE ORB (TAOQ), which is a CORBA middleware framework that allows
clients to invoke operations on distributed objects

e Service Reification Manager implements a service type agnostic approach based on the Run Time
Type Reflection (RTTR). Reification Manager is able to import generic code and operate with
unknown type variables and various instance objects of different C++ classes, encapsulating the
heterogeneity between Java and C++ FAmINE middleware (see 3.4.1)

e FAmINE Manager facilitates the service registration and resolve process. In detail, FAMINE
Manager keeps in internal data structures information about available service types, JNI
environment, etc. Furthermore, it facilitates type agnostic object instantiation in case of service
registration (see 3.2.2.1)

e FAmINE4Android is the main contribution of the present work aiming to facilitate the development
process of distributed Android mobile applications (3.2). FAmINE4Android builds on top of ICS-
FORTH FAmINE middleware

e Data Exchange Controller implements a lightweight data exchange format approach based on the
JSON framework in order to facilitate the object passing between Java side and the
FAmINE4Android middleware (see 3.4.2)

e FAmINE4Android Controller encapsulates the functionality provided by the FAmINE4Android
middleware and through a seamless to use Java API is distributed to the Java developers as a
unified AAR library (APPENDIX B presents a complete programming tutorial).

The following sections will further discuss the implementation details and role of the aforementioned
components within the proposed middleware extension library.

17| Page

FORTQEE
FAM! le
middleware Rapid go:gn
RO camine JSON &
- Manage’

gervice

Re'\ﬁca“o“
e

Manage’
id controlle
cAmMINEAANAT!

Figure 2: High-level architecture of FAmINE4Android middleware

3.1 Employing a freely available, open-source, and standards-compliant real-
time CORBA implementation in Android

For the purposes of the present work, a freely available, open-source, and standards-compliant real-
time CORBA implementation was preferred. Given that the primary and most popular programming
language for the development of Android applications is Java, research was initially focused on Java
based CORBA ORB implementations. However, to the best knowledge of the author, there is no readily
available such solution. To this end, the implementation of the proposed extension middleware library
relies on TAO [51]. As presented in 2.3.1, TAO [23] is a CORBA middleware framework that allows
clients to invoke operations on distributed objects without concern for object location, programming
language, OS platform, communication protocols and hardware. In addition, it provides a rich set of
reusable C++ framework components that perform common communication software tasks across a
range of OS platforms. Some indicative powerful features that TAO provides are: a) event handler
dispatching, b) heterogeneity, c) service initialization, and d) dynamic (re)configuration of distributed
services. The FAmINE C++ middleware builds on top of the same CORBA implementation TAO (see
2.2.3). This offers the following advantages: a) robustness, b) re-use capability of FAmINE’s source code
fragments, c) provision of identical functionality to developers as the FAmINE C++ middleware does,
and d) reduction of the required efforts to maintain overtime.

In the present work, efforts have been focused on the porting process of the TAO to Android
architecture using the Java Native Interface (JNI) and Android Native Development Kit (NDK) (see
3.1.2). In addition, focus has been given to the design and development of the FAmINE4Android
extension library in order to encapsulate all the complex functionality provided by TAO from Java

18| Page

developers. To this end, through a seamless use of the provided Java API, Android developers are able
to create distributed and embedded real-time applications in an effortless manner.

3.1.1 Comparison of existing CORBA implementations

In this section, a comparison of existing CORBA implementations for the Android architecture is
presented. The section begins with the requirements that have to be met during programing on
distributed objects. According to [47], CORBA Object Request Brokers (ORBs) allow clients to invoke
operations on distributed objects without concern for the following criteria:

Object location: A CORBA object either can be collocated with the client or distributed on a
remote server, without affecting its implementation or use,

Programming language: The languages supported by CORBA include C, C++, Java, among others,

OS platform: CORBA runs on many OS platforms, including Win32, UNIX and real-time embedded
systems, such as Chorus,

Communication protocols: The communication protocols that CORBA supports is TCP/IP, etc.

Hardware: CORBA shields applications from side effects stemming from hardware diversity, such
as different storage layouts and data type sizes/ranges,

Client: A client is a role that obtains references to objects and invokes operations on them to
perform application tasks,

Object: Each object is identified by an object reference, which associates one or more paths
through which a client can access an object on a server,

Servant: A client never interacts with servants directly, but always through objects identified by
object references,

ORB Core: When a client invokes an operation on an object, the ORB Core is responsible for
delivering the request to the object and returning a response to the client,

ORB Interface: An ORB is an abstraction that can be implemented in various ways, e.g., one or
more processes or a set of libraries. To decouple applications from implementation details, the
CORBA specification defines an interface to an ORB,

OMG IDL Stubs and Skeletons: IDL stubs and skeletons serve as a “glue” between the client and
servants, respectively, and the ORB. Stubs implement the Proxy pattern and provide a strongly-
typed, static invocation interface that marshals application parameters into a common message-
level representation,

IDL Compiler: An IDL compiler transforms IDL definitions into stubs and skeletons that are
generated automatically,

Interface Repository: The Interface Repository provides run-time information about IDL
interfaces. Using this information, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet be able to determine what
operations are valid on the object and make invocations on,

Implementation Repository: The Implementation Repository contains information that allows an
ORB to activate servers to process servants. Most of the information in the Implementation
Repository is specific to an ORB or OS environment,

19| Page

¢ Dynamic Invocation Interface (DII): The DIl allows clients to generate requests at run-time, which
is useful when an application has no compile-time knowledge of the interface it accesses,

¢ Dynamic Skeleton Interface (DSI): The DSl is the server’s analogue to the client’s DIl. The DSI
allows an ORB to deliver requests to servants that have no compile-time knowledge of the IDL
interface they implementation.

Although there is a large variety of ORBs implementations, the vast majority of them are written in
C++, such as omniORB [47], TAO [22], MICO [26] and ORBit [20]. To the best knowledge of the author,
there are very limited ORBs implementations written in Java, such as Jacorb [24] or ORBexpress for
Android [27]. Although Jacorb is a Java based implementation, it is not suitable for the Android
architecture. This is due to the fact that Jacorb relies on Java JDK 1.6 whereas Android is essentially a
Java SE with a different set of libraries. ORBexpress for Android provides an easy-to-use communication
protocol for distributed systems. In addition, ORBexpress for Android provides features beyond CORBA,
along with a development environment for building reliable distributed systems. However, the main
drawback of ORBexpress for Android is the not open-source availability due to the license fee required.
As a result, for the purposes of the present work, a C++ ORB implementation was preferred even
though such an approach would imply a significant overhead due to the required porting process to
the Android architecture. To the best knowledge of the author, the most prevalent C++ ORB
implementations are omniORB and ACE ORB (TAO). omniORB is an Object Request Broker (ORB) that
implements the specification of the Common Object Request Broker Architecture, providing a robust
high performance CORBA ORB for C++. It is freely available under the terms of the GNU Lesser General
Public License (for the libraries) and GNU General Public License (for the tools). Moreover, omniORB
has been tested and certified as a fast and standards compliant CORBA ORB. It also provides the IDL
compiler, which creates C++ definitions into stubs and skeletons. However, omniORB is not (yet) a
complete implementation of the CORBA core. omniORB does not have its own Interface Repository
and even if omniORB supports interceptors, it does not support the standard Portable Interceptor API
[19]. TAO satisfies all the design principals for the invocation of remotely distributed objects
implemented in different programming languages running in different OS. TAO is a highly extensible
ORB targeted for applications with real-time QoS requirements, containing network interface,
communication protocol, and CORBA-compliant middleware components and services. In addition,
TAO supports the standard OMG CORBA reference model and Real-time CORBA specification with
enhancements designed to ensure efficient, predictable, and scalable QoS behavior for high-
performance and real-time applications. To this end, TAO was preferred over other C++ CORBA ORBs
in the context of the proposed extension middleware library.

3.1.2 Porting ACE/TAO to Android

This section presents the procedure that was followed in order to port the TAO to the Android
architecture. TAO version 6.2.3 was ported using the Android Native Development Kit (NDK) toolset.
According to the literature, the port of TAO to the Android architecture has already been tested with
limited number of Android NDKs versions such as v6 and v8e. For the purposes of the present work,
the NDK version v8e was selected in order to build and produce the necessary shared TAO dynamic
libraries (.so). However, it is worth mentioning that newest versions of NDK were tested but due to a
plethora of various compilation errors such as mismatch in methods signatures, their use was
considered impractical. In order to port TAO to the Android architecture, a cross-compilation approach
was followed. In details, a cross compiler capable of creating executable code for an Android platform
(NDK) was used on a Linux based (x64) host machine. Afterwards, the produced dynamic shared
libraries were linked and tested successfully in Android Studio, using the latest stable version (r13b) of
the NDK and minimum Android APl 14. The step-by-step procedure followed in order to accomplish
the porting process is presented in APPENDIX 1.

20|Page

3.2 FAmINE4AnNdroid: Design and Implementation

The design and functionality of the FAmINE4Android middleware extension library is inherited from
the corresponding C++ FAmINE middleware. The source code of the C++ FAmINE middleware was
imported into an Android Studio project and built using NDK version r13b. The source code of the C++
FAmMINE middleware was slightly changed to meet the requirements of the Android development’s
nature, such as variations of file storage policies. FAmINE4Android consists of a set of core components,
each responsible for a specific functionality. In details, every component implements a specific C++
FAmINE middleware module functionality, such as service registration and sending events, by
provisioning a connection bridge between the native implementation (JNI) and the Java API provided
by the FAmINE4AndroidController. Efforts have been focused on the provision of a service type agnostic
solution in a way that any FAmINE service, either registered or resolved, can be integrated in a seamless
and effortless manner. The following sections will discuss the implementation details of the
functionality provided to Android developers.

3.2.1 Initialization and Cleanup

3.2.1.1 |Initialization

An initialization procedure has to be completed prior to any further service registration or resolve, in
order for the FAmINE4Android library to be properly initialized. This initialization procedure refers to
an internal configuration mechanism responsible to establish some initial connections with the
Interoperable Naming Service (INS) and Implementation Repository (ImR), based on configuration data
existed in the specific text files zones.txt and options.txt. That files contain easily modifiable values.
The Java developer has to place them specifically under an Android resources dedicated folder named
assets. The syntax of each text file’s configuration data is straightforward and easy to follow. The first
text file, zones.txt, is used to define the zone, which can be seen as an isolated middleware
infrastructure where services deployed in a specific zone cannot access and affect the services
deployed in another zone. On the other hand, the second text file, options.txt, is used to define the
repository network locations of the corresponded zone responsible for the storage details of the
deployed services.

std::string hostSpec = "-ORBInitRef NameService=corbaloc:iiop:" + namingHost +
"/NameService";

std::string imrSpec = "-ORBInitRef ImplRepoService=corbaloc:iiop:" + s imrHost +
"/ImplRepoService";

char* argv_[] = {

"FAMINE Application",
const cast<char*>(hostSpec.c str()),
const cast<char*>(imrSpec.c str()

}i

s _orb = CORBA::ORB init (3 , argv);

CodeBlock 8: Initialization of the ORB
Regarding the invocation details of the library initialization process, the Java developer has to call the

void Initialize(AppCompatActivity app) method provided by the FAmINE4AndroidController Java API. At
first, the Initialize method uses the value of the parameter app in order to access the aforementioned

21| Page

configuration files and extract selected execution zone from their contents (i.e., host and port of
nameService and imrService endpoints). Afterwards, it calculates a unique identifier based on the
device’s name and mac address, which is globally unique. That identifier is used later during the Naming
service activation process. Subsequently, it uses the C++ FAmINE middleware’s provided functionality
to open a socket connection to the specified ‘host and port’. The connection protocol for each endpoint
is configured as corbaloc:iiop (see example in CodeBlock 8). The corbaloc URL scheme specifies a text
string reference that uniquely identifies an object on a remote server, whereas the iiop specifies the
communication protocol, which is used to facilitate network interaction between distributed objects.

3.2.1.2 Run process

The run process refers to the FAmINE4Android internal execution mechanism, which creates handling
threads running ORB's event loops managing connection requests and handler threads, which serve
requests from established connections. In detail, the Java developer calls the initialization procedure
(see 3.2.1.1) prior to any service registration or resolve. The initialization procedure, apart from the
aforementioned configuration/initialization functionality, creates a separated thread, which calls in
infinite loop the TAO’s ORB::run method with interval time of 10 milliseconds. During the execution of
ORB::run method, the system accepts connections from other services, reads incoming requests and
makes remote procedure calls. The reason for having a separated Java thread is to avoid the block of
the Android application’s Ul thread. Finally, when the Java developer calls the native Cleanup method
(see 3.2.1.3) the shutdown process takes place, the thread is exited and the ORB's event loops stop
running.

3.2.1.3 Clean Up

The cleanup method refers to the FAmINE4Android internal mechanism which deactivates all the
registered or resolved services freeing up the reserved memory. In addition, the thread started by the
Initialization process (3.2.1.2) exits and the ORB's event loops stop running. Hence, the implemented
services are not accessible any more for invocation or for remote procedure calls. In order to enable
again the FAmINE4Android functionality, the Initialization process has to be restarted and the service
registration/resolve process must be repeated from scratch.

3.2.2 Service implementation

3.2.2.1 Service registration

The service registration refers to the process followed by the Java developer in order to implement a
service oriented Android application. The first required step followed by the Java developer is to
describe the functionality of the service using a standardized definition language. The preferred
language is the Interface Definition Language (IDL), which defines the public application-programming
interface exposed by CORBA objects in a server application [38]. The description of a service in IDL may
contain attributes and operations such as complex data types, enumerations, method signatures, etc.
The second step followed by the Java developer is to use the TAO IDL compiler (tao_idl) to generate
the corresponding stub and skeleton code of the service in C++ (see 2.3.3).

It is worth mentioning that the two aforementioned steps are identical as those followed in the C++
FAmINE middleware. In the case of the C++ FAmINE service registration process the C++ developer has
to implement within a dedicated C++ class the whole functionality declared in the service’s IDL
description. That class, called servant, inherits from the service’s skeleton generated using the tao _idl.
The servant’s functionality becomes publicly available when its object reference is exposed to the
Interoperable Naming Service (INS). Regarding the FAmINE4Android approach, the Java developer
does not need to implement the servant’s required functionality in C++. On the contrary, in the third

22| Page

step, the Java developer provides the service implementation within a dedicated Java class (i.e., Java
servant) and registers that Java servant to the INS by using the provided Java API. In order to support
the mixing between the Java servant and the C++ (actually required), the following method was
adopted. The tao_idl compiler was modified in order to be able to generate a slightly changed stub
code of the dummy C++ servant. The dummy C++ servant contains the initial (dummy) service
implementation along with some extra code, called injected code. The injected code aims at bridging
the communication between C++ servant and the corresponding Java servant through a set of libraries
and functionality provided by the FAmINE4Android library and JNI.

To complete the service registration procedure, a service type declaration is needed in terms of
updating/extending the gamma of the available services. In details, the Java developer has to write
some very simple C++ instructions within a specific block declared in a cpp file compiled by the NDK
(e.g., inside the native.cpp that is a automatically generated file containing a sample example of a
native function). Those instructions constitute the update/notification of the FamineManager about
the available service definitions. As depicted in CodeBlock 9, the Java developer has to include each
generated stub header file and place two specific instructions for each service implementation within
the ServiceTypes block. The first one, RegisterToMapTypelnfo, keeps in a C++ Standard Template
Library (STL) container (i.e., map) a relation between the service type (i.e., captured via the template
argument service type) and a unique identifier of the service (i.e., id) given as parameter. To this end,
future references of a service type can be easily retrieved using the id as a key while searching in
FamineManager’s internal container. The second one, RegisterToMapServantPair, is used to keep
internally in a STL container (i.e., map) a pointer to a specific templated function (i.e., createlnstance)
bound to a unique identifier of the service (i.e., id) given as argument. The role of the templated
function createlnstance is to create an instance of the dummy C++ servant on every call. To this end,
every time a new instance of a dummy C++ servant is required, the FamineManager can provide the
corresponding function pointer.

#include "<service generated stub>.h"
ServiceTypes {
FamineManager: :getInstance () ->RegisterToMapTypeInfo<service type>("id");

FamineManager::getInstance () ->RegisterToMapServantPair (
& (FamineManager: :createInstance<dummy implementation with injected code>), "id");

}

CodeBlock 9: Service type declaration example

For the completion of the 3™ step, the Java developer has to call the void RegisterService(String []
events, String id, String contextName, Object servant) method of the FAmINE4Android library. That
method takes as first argument an array of event names, in order to facilitate the subscription of the
supported events to the registered clients. The second one is the identifier id, which was used earlier
in the process of service type declaration. The id is used to find the previously stored service type
information necessary to the C++ FAmINE registration procedure and make the appropriate
initializations. The third argument, contextName, defines the current instantiation of the service as
presented in 2.2.3.4. Finally, the fourth argument is the Java servant providing the actual
implementation of the service’s functionality.

3.2.2.2 Eventdispatching

The FAmINE4Android library provides a flexible mechanism for synchronous and asynchronous
communication between distributed objects. The objective of that mechanism is to dispatch events,
accompanied with a list of arguments to one or more registered clients across the network. The Java

23| Page

developer has to call the method void SendEvent(String id, String contextName, String eventName,
Object[] param_list) of the provided Java API as depicted in CodeBlock 10. This method takes as first
argument the identifier id, which was used earlier within the process of the service type declaration
(see 3.2.2.1). The id is used by FamineManager in order to retrieve the previously stored service type.
The second argument, contextName, defines the current instantiation of the service as presented in
2.2.3.4. The third argument is the name of event that is going to be propagated. Finally, the fourth
argument is a Java array, which provides a list of arguments in order to be propagated with the event.

String [] providedEvents = {"time changed"};
ami.Famine.getInstance () .Register (providedEvents,
"id",
"mycontext",
new ImplServiceClass());
ami.Famine.getInstance () .SendEvent ("id",
"mycontext",
"time_ changed",

new Object[]{LocalDateTime.now () .toString()});

CodeBlock 10 : Event dispatching example

jobject myobj

(jobject) (env->GetObjectArrayElement (j eventArgs, 1i));

if (env->IsInstanceOf (myobj, stringClass) == JNI_ TRUE)

{
jstring stringVar = (jstring) (env->GetObjectArrayElement (j eventArgs, 1i));
const char *str = env->GetStringUTFChars (stringVar, 0);
evt.AppendArg (str) ;

}

//etc..
else if (env->IsInstanceOf (myobj, intClass) == JNI_TRUE)

{
jmethodID getVal = env->GetMethodID(intClass, "intValue", " ()I");
jint 1 = env->CallIntMethod (myobj, getVal);
evt.AppendArg (i) ;

}

ami::Famine::SendEvent (servant, (const std::stringé&)eventName, (const
ami::LocalEventé&)evt);

CodeBlock 11: Process of controlling the event’s elements type

As illustrated in CodeBlock 11, the communication mechanism is responsible to convert the supplied
Java arguments into C++ equivalent and, in turn, remote procedure call of the corresponding event
handler of each registered client. In details, the following steps take place:

e Instantiation and initialization of a C++ array, which will be the container of the arguments.

o Type checking of every event Java argument in order to create a corresponding temporal C++
variable. The value of that variable will be set with the event argument’s value and used in the
next steps.

e Append the C++ variable to the C++ array

e Internally call of the FAmINE’s library, SendEvent method in order to propagate the event to
the interested clients across the network

24| Page

3.2.2.3 Unregister service

The unregister service method refers to the FAmINE4Android internal mechanism which deactivates
all the given as parameter registered service freeing up the reserved memory. Hence, the implemented
service is not accessible for remote procedure calls any more.

3.2.3 Service resolve and usage

The service resolve refers to the process followed by the Java developer in order to use a distributed
service within an Android application. The 1 step is the usage of the TAO IDL compiler (e.g., tao_idl)
in order to generate the corresponding stub code of the IDL service description in C++. The IDL service
description is considered to be readily available as long as the distributed service has previously been
implemented. Worth noting that this step is identical to that followed in the C++ FAmINE middleware.

In the C++ FAmMINE service resolve process, the C++ developer has to implement in a C++ class an event
handler for each event declared in the service’s IDL description. However, in FAmINE4Android the Java
developer does not deal with C++ at all. Instead, the Java developer has to implement an event handler
for each requesting event in a dedicated Java class. The event handler method takes as parameter a
Java Object array. The event handler will be called automatically at the time the remote servant sends
the corresponding event. Event parameters’ values will be propagated to the event handler though the
array argument.

At this point, a service type declaration is needed in terms of updating/extending the gamma of the
available services. Similarly to 3.2.2.1, the Java developer has to write some very simple C++
instructions within a specific block declared in a cpp file compiled by the NDK. Those instructions
constitute to the update/notification of the FamineManager about the available service definitions. As
depicted in CodeBlock 12, the Java developer has to include each generated stub header file and place
one specific instruction for each service usage within the ServiceTypes block. The instruction
RegisterToMapTypelnfo makes FamineManager to keep in a C++ Standard Template Library (STL)
container (i.e., map) a relation between the service type (i.e., captured via the template argument
service_type) and a unique identifier of the service (i.e., id) given as parameter.

#include "<service generated stub>.h"
ServiceTypes {

FamineManager::getInstance () ->RegisterToMapTypeInfo<service type>("id");

CodeBlock 12: Instructions to FamineManager in case of service usage

In the second step, a Java developer has to invoke the void ResolveService(Object [] events, String id,
String contextName, Object eventHandlers) method of the provided Java APL. That method calls
internally the equivalent C++ FAmINE middleware’s Resolve method in order to resolve a reference to
the targeted distributed object. That reference is kept internally by the FamineManager for future
access. This method takes as first argument an array of event names, which are being used for the
corresponding event subscription so as the servant to propagate those events to the registered client.
The latter is the identifier id, which was used earlier in the service type declaration. The id is used to
find the previously stored service type information necessary to the C++ FAmINE resolve procedure
and the appropriate initializations. The third argument, contextName, defines the current instantiation
of the service as presented in 2.2.3.4. Finally, the fourth argument is the Java class providing the actual
implementation of the event handlers’ functionality.

25| Page

3.2.3.1 Events reception

FAmINE4Android library implements a mechanism for the propagation of the incoming events’
argument values to the corresponding event handler. The objectives of that mechanism is to retrieve
all the arguments, convert them to equivalent JNI variables and pass them to the corresponding Java
event handler method. As illustrated in CodeBlock 13, during the execution of that mechanism, the
following steps are taking place:

e Type checking of every event argument in order to create a corresponding native variable. The
value of that variable will be set temporarily with the event argument’s value and be used from
the next steps.

e Instantiation of a JNI Object array, which will be returned to the Java side.
e Instantiation and initialization of the corresponding JNI variable.
e Append the JNI variable to the JNI Object array.

e Search the corresponding Java event handler method within the given eventHandlers Java class
and call with argument the JNI object array.

ami::AnySeq args = event.GetAllArgs();
int length = args.length();

jobjectArray returned array = (jobjectArray)FamineManager::getlInstance ()->env-
>NewObjectArray(length, FamineManager::getlInstance ()->env->FindClass("java/lang/Object"),
NULL) ;

for (int i =0;i< length;++i) {
CORBA: :Any any = args[i];
CORBA: :TCKind kind = any.type ()->kind();
if (kind == CORBA::tk_short) {
short shortvalue;

any >>= shortValue;

FamineManager::getInstance () ->env->SetObjectArrayElement (returned array, i,
ConversionUtils::CreateShortObject (FamineManager: :getInstance () ->env, shortValue));
}
else if (kind == CORBA::tk_boolean) {

bool boolValue;

any >>= ACE InputCDR::to boolean (boolValue);

FamineManager::getlInstance () ->env->SetObjectArrayElement (returned array, i,
ConversionUtils::CreateBooleanObject (FamineManager::getlInstance()->env, boolValue));
}
//etc.

}

JjmethodID methodID = FamineManager::getInstance () ->env->GetMethodID (hostClass,
event.GetName () .c_str(), "([Ljava/lang/Object;)V");

FamineManager::getInstance () ->env->CallVoidMethod (hostClass, methodID, returned array);

CodeBlock 13: An example of event arguments’ data conversion among various CORBA types

3.2.3.2 Call service process

The call service process refers to the steps followed by the Java developer in order to make a remote
procedure call to a distributed service. The call service process consists of two steps. In the first step,

26| Page

the Java developer has to resolve a distributed service. As mentioned above, a reference to the
resolved object is kept by the FamineManager for future access. The remote procedure call is executed
upon the retrieved reference of the resolved object. Regarding the second step, the Java developer
has to call the Object CallFunction(String id, String contextName, String functionName, Object[] arr) of
the provided Java API (see example in CodeBlock 14). This method takes as first argument the identifier
id, which was used earlier within the process of the service type declaration. The id is used to find the
previously stored service type information necessary to the C++ FAmINE resolve procedure and the
appropriate initializations. The second argument, contextName, defines the current instantiation of
the service as presented in 2.2.3.4. The third argument is the name of method that is going to be
invoked. Finally, the fourth argument is a Java array, which provides a list of arguments to be
propagated to the calling method. That method returns a Java object, which contains the returned
calling method’s returned value. The CallFunction converts the given arguments by the Java developer
to equivalent C++ values and uses them at the invocation of the corresponding resolved object’s
method. Further details about the conversion strategies can be found in section 0.

Object [] eventsForSubscription = {"event name 1"};
ami.Famine.getInstance () .ResolveService (eventsForSubscription,
"id",
"mycontext",

new EventHandlers()):;
Object result = ami.Famine.getInstance().CallFunction("id",
"mycontext",
"add",
new Object[]{"paraml", 2, 3});

System.out.println("method add returned" + result);

CodeBlock 14: Remote procedure call example

3.2.3.3 Dispose service

The dispose service method refers to the FAmINE4Android internal mechanism responsible to release
the resolved service reference and freeing up the reserved memory. In addition, the process updates
the distributed service to unsubscribe the associated event handlers so as dispatched events are no
further received by this registered client.

3.3 Addressing interoperability issues between Android Java and JNI

One of the benefits of programming in Java is that the Java Virtual Machine (VM) hides platform
differences. The Java Virtual Machine is an abstraction layer software placed between the physical
machine and the actual program. Applications can be developed once and run anywhere a Java VM is
implemented, in contrast to C++ where there is no guarantee that a C++ program that has written for
one platform will perform on another. Java does not support functions that exist outside a class, so
code that is written in C++ must be wrapped up in a Java class definition [33]. The methods that are
implemented in C++ but are declared in Java are called native methods and using the Java Native
Interface (JNI), the Java and C++ components are able to talk to each other and call methods among
them. The following sections introduce interoperability issues stemming from hosting native code in
an Android Java application.

27 |Page

3.3.1 Calling native functions from Java

The procedure of making native methods callable from Java demands the declaration of the native
methods’ signature in Java code. The native methods’ signature consists of the declaration type of the
arguments and the return value. The compiled code of native methods, type definitions, and possible
constants lies on static or dynamic libraries produced by a NDK suitable compiler. Thus, in order for a
native method to be callable, the Java developer has to invoke the void System.loadLibrary(library-
name) where the parameter library-name points to the corresponding library file (.so) containing the
compiled code of the method’s body. As depicted in the example of CodeBlock 15, the invocation of
the System.loadlLibrary(library-name) has to be placed in a static initializer so as to load the native
library just when the Java class is loaded by the classloader.

Static {
System. loadLibrary ("famine_proxy-1ib");
}

CodeBlock 15: Load library invocation

Regarding the signature of the native methods, a convention treatment is applied. The native methods’
signature consists of the following pattern:

returned_type Java_{package and_classname} {function_name}(JNIEnv*, jobject, arg1, arg2, ...)

The first segment {package _and_classname} corresponds to the package and class name of the Java
class in which the method is declared. The second segment, {function_name} represents the name of
the native method. Finally, the last one segment (JNIEnv*, jobject, arg1, arg2, ...) is a list of arguments
in which the first two are required by the JNI programming rules. In detail, the argument JNIEnv* is a
reference to JNI environment, which allows the access to all native system methods and the second
jobject argument is a reference to the Java class object containing the native declaration. Furthermore,
as depicted in the auto-generated file of CodeBlock 16, the keyword extern is placed prior the
declaration of the native method, allowing the function to be exposed in the shared library at runtime.
It is worth mentioning that every native file starts with the inclusion of the header file jni.h, which lists
all the available JNI functions and datatypes.

#include <jni.h>

#include <string>

extern "C"
jstring
Java com example zidian myapplication MainActivity stringFromJNI (
JNIEnv *env,
jobject /* this */) {
std::string hello = "Hello from C++";

return env->NewStringUTF (hello.c str());

CodeBlock 16: Auto generated native file

For the purposes of the present work, the FAmINE4Android library facilitates also the usage of the
implemented native functions through an easy to use Java APl. In details, the middleware’s
functionality is seamlessly integrated into the FAmINE4Android Controller and is available to Java
developer through a set of functions. The majority of those are directly linked to native JNI functions,

28| Page

whereas others encapsulate additional functionality based on Java libraries and if necessary they use
internally which native JNI functions are in need of usage.

3.3.2 Calling Java functions from native code

Regarding to the communication ability between native and Java code, JNI operates as the medium
providing the appropriate mechanism and toolset. JNI provides the necessary functionality in order to
enable Java method calls and data conversion from Java to C++ objects and vice-versa. Consider the
example of Java method declared in a specific Java class named A. As depicted in CodeBlock 17, the JNI
method FindClass acts as a native class loader used to retrieve a reference to an appropriate .class in
the list of directories that was provided at Java Virtual Machine initialization. The FindClass method
takes as argument the fully qualified class name that consists of the Java package name delimited by
“/” and followed by the class name (e.g., “/com/ami/A”). Thereafter, the class reference is used by the
JNI method GetMethodld in order to retrieve a method reference within the class. The GetMethod|d
takes three arguments: a) the Java class reference in which the calling method is declared, b) the name
of the targeted Java method and c) the method signature regarding the types of the arguments and
the returned value. In case of mismatch, the GetMethodld returns zero value indicating that not such
a method is declared within the Java class. For example, the signature term"()" means that the Java
method receives no parameter while the term "V" means that the return type is void. The available
mappings between the Java argument types and the corresponding native signatures (i.e., used in
GetMethodld) are presented in Table 2.

extern "C"
void Java Test Call Java Method (JNIEnv* env, Jjobject obj) {
jclass activityClass = env->FindClass (“/com/ami/A”);
jmethodID method = env->GetMethodId(activityClass, "myJavaMethod", " ()V");

env->CallVoidMethod (activityObj, method);

CodeBlock 17: Call a Java method from native code using FindClass method

JNIEXPORT

void Java Test Call Java Method (JNIEnv* env, jobject obj, jobject classObj) {
jclass activityClass = env->GetObjectClass (classOb) ;
jmethodID method = env->GetMethodId(activityClass, "myJavaMethod", " ()V");

env->CallVoidMethod (activityObj, method) ;

CodeBlock 18: Call a Java method from native code using GetObjectClass method

Table 2: Mapping between the Java types and the native signatures

Signature Java Type
v void

Z boolean

B byte

C char

29| Page

S short

I int

J long

F float

D double

L fully-qualified-class fully-qualified-class
[type typell

(arg-types) ret-type method type

Depending on the type of Java method’s return value (e.g., Void), the corresponding JNI function is
used to establish the actual invocation (e.g., CallVoidMethod, CallintMethod, CallBooleanMethod,
etc.). An alternative approach for retrieving a Java class reference is the JNI method GetObjectClass
that searches using an object instance instead of the class name as required in the case of FindClass
method. An example of the INI GetObjectClass is depicted in CodeBlock 18.

3.4 Facilitating interoperability between Java and native code

The proposed middleware library embeds advanced communication mechanisms to support
interconnection between Java and native code in order to provide seamless functionality to the
Android developer. The main goal of the FAmINE4Android library is to support the development
process of distributed and embedded real-time applications. To this end, the FAmINE4Android library
provides the Java developer with an appropriate and intuitive to use Java API, hiding the heterogeneity
issues between Java and native code. The following sections present the developed mechanisms
facilitating the data exchange process between Java and internal native functionality provided by the
FAmMINE middleware and TAO.

34.1 Reification and Reflection in C++

The reification and reflection process refers to the collaboration ability of unknown type variables and
object instances of different classes, through a mechanism able to operate with generic type code. This
mechanism is called Reflection, and even if many programming languages provide built-in reflection
mechanism, C++ does not support it. In details, Reflection is able to: a) investigate the object type of
class at runtime, b) has access to every object's fields/properties and c) method invocation. Given that
the core components of the FAmINE4Android library are directly derived from the source code of the
C++ FAmINE middleware, the contribution of the Reflection mechanism was crucial. In addition, the
Reflection mechanism stands as a prerequisite in order to support types of not known distributed
services as they are produced dynamically through the tao_idl compiler. This is supported using the
Run Time Type Reflection (RTTR) library. The RTTR library facilitates Reflection in a semi-automated
manner in which pre-defined information regarding method signatures, types, etc., are required by the
developer. The RTTR’s provided functionality is further presented in section 2.3.6.

In order to employ the functionality of the RTTR library, the (RTTR) registration of each distributed
service’s methods and defined data types is required. Normally, the (RTTR) registration is performed
from the user/developer of the RTTR library. For the purposes of this work, a fully automated approach
was adopted. Taking into account that each service is declared into the corresponding generated stub
and skeleton files (see 2.3.3), the need of automatically placing the necessary (RTTR) registration code

30| Page

within those files was evolved. The term injected code is used to describe the aforementioned (RTTR)
registration code. To this end, the tao_idl compiler was modifies accordingly (tao_idl_4Android). The
tao_idl_4Android compiler contributes towards the auto-enrichment of a service stub with the injected
code required for the proper operation of RTTR library. The additional functionality of the
tao_idl_4Android compiler is illustrated below by indicating some injected code examples in the case
of a sample service named Example::Echo (see CodeBlock 19).

#include <ami.idl>
module Example {
interface Echo ({
enum Priority {PR INFO, PR WARNING, PR ERROR};
struct AdvancedMessage {
Priority priority;
string msg;
long number;
}i
string EchoString (in string text);

void Event NewMessage (in AdvancedMessage msg);

CodeBlock 19: Example::Echo; service definition in IDL

using namespace rttr;

RTTR_REGISTRATION {

.enumeration<Example::Echo::Priority ("Example:: Echo::Priority") (
value ("PR_INFO", Example::Echo::Priority::PR INFO),
A value ("PR_WARNING", Example::Echo::Priority:: PR WARNING),

value ("PR_ERROR", Example::Echo::Priority::PR ERROR)

£3 .method ("EchoString ", &Example: :Echo::EchoString)

registration::class <Example: :Echo::AdvancedMessage> ("Example: :Echo: :AdvancedMessage")
.property ("pr", &Example::Echo::AdvancedMessage:: priority)

.property("msg", &Example::Echo::AdvancedMessage: :get msg,
&Example: :Echo: :AdvancedMessage: :set msg)
.property ("number", &Example::Echo::AdvancedMessage: :number)

[) registration::class <Example::Echo>("Example::Echo")

CodeBlock 20: Injected code of the Example::Echo service

The injected code generated by the tao_idl_4Android compiler, taking as input the definition of the
Example::Echo service, consists of the following declaration categories: a) enumerations, b) complex
data types (e.g., structs), and c) methods (or event methods). In the case of the Priority enumeration,

31| Page

the equivalent injected code is depicted in CodeBlock 20 (A). The declaration of the EchoString method
is responsible for the injected code illustrated in CodeBlock 20 (B). It is worth mentioning that the
event’s declaration does not create any injected code, as it is not necessary for reflection. That happens
because the event dispatching process is implemented with a service type agnostic approach. Similarly,
the struct AdvanceMessage creates the injected code as figured in CodeBlock 20 (C). Finally, the service
type information has to be registered in the RTTR as depicted in CodeBlock 20 (D). All the
aforementioned injected code snippets constitute the additional outcome of the tao_idl 4Android
placed at the end of the corresponding stub file.

3.4.2 Data exchange

A mechanism responsible for data exchange between Java and native code was implemented in the
context of the present work. Such mechanism is able to exchange the format of primitive or complex
data types in order to facilitate the data type differences between Java and native code. In detail, JNI
native functions are used to smoothly accomplish the conversion of primitive types (e.g., such as
integer, float, string, etc.) between the two languages. Complex types are also supported as presented
in the next sections.

3.4.2.1 Primitive types

The conversion approach of Java primitive types such as int, float, string, etc. to native equivalents is
facilitated by the underlying functionality of the JNI. The data types’ names remain identical between
Java and C++. The only difference is that the JNI data type name has as prefix the character 'j' as
illustrated in the first two columns of Table 3. Regarding the conversion of Java string variable to a
native one, a special approach is required. In detail, the JNI native function const char*
GetStringUTFChars(jstring, jboolean) is required to convert a jstring to a sequence of characters (e.g.,
char []). As depicted in CodeBlock 21, that function takes two arguments; the first one is the jstring and
the second one is a boolean variable (in case of INI_TRUE (1) the returned string is a copy of the original
java.lang.String instance, otherwise, in case of JNI_FALSE (0), the returned string is a direct pointer to
the original String instance).

Table 3 : Mapping of Java types to natives types

Java Type JNI Type Native Type
boolean jboolean bool
byte jbyte unsigned char
char jchar char
short jshort short
int jint int
long jlong long
string jstring char*
float jfloat float
double jdouble double
void Void void
const char * str = env->GetStringUTFChars(jstring m, 0);

args.push _back (* (new variant(str)));

CodeBlock 21: Example of primitive data type checking and equivalent conversion to native code

Regarding the arrays of primitive types, a special treatment is also required because there is no direct
mapping supported by JNI. For example, an array of Short variables in Java (e.g., Short[]) is mapped to
a jshortArray instead of jshort[] as should expected. In addition, for the purposes of this work, the

32|Page

conversion of arrays (primitive types) into the specific arrays supported by CORBA specification was
necessary (see the last two columns of Table 4). As a result, special JNI functions are used to retrieve
each specified short element from a jshortArray as illustrated in CodeBlock 22.

Table 4 : Mapping of Java arrays to native arrays and CORBA arrays

Java Type JNI Type CORBA types

Object|[] jobjectArray Not Applicable

Boolean(] jbooleanArray : :CORBA: :BooleanSeq BooleanSeq;
Bytel[] jbyteArray : :CORBA: :OctetSeq OctetSeq;
Char[] jcharArray ::CORBA: :OctetSeq OctetSeq;
Short[] jshortArray : :CORBA: :ShortSeqg ShortSeq;
Int[] jintArray : :CORBA: :LongSeq LongSeq;

Long[] jlongArray : :CORBA: :LongLongSeq LongLongSeq;
Float[] jfloatArray ::CORBA: :FloatSeqg FloatSeq;
Double[] jdoubleArray : :CORBA: :DoubleSeq DoubleSeqg;
Stringl[] jobjectArray ::CORBA: :StringSeq StringSeq;

int length = env->GetArrayLength(m jshortarray);
jshort *it = env->GetShortArrayElements ((jshortArray)m jshortarray, NULL);

ami::ShortSeqg *numbers = new ami::ShortSeqg();
numbers->length (length) ;

for (int j=0;j<length;j++) {
(*numbers) [j] = it[j];
}

CodeBlock 22: Example of primitive data type checking and equivalent conversion to native code

Additionally, a mechanism was implemented in order to facilitate the data transportation from C++ to
Java code. Primitive type variables as well as CORBA’s specifics are converted into the JNI's generic
data type (i.e., jobject) which subsequently is passed to the Java-side. Specific NI functions are used in
the conversion process according to the type of each native variable. According to the conversion
approach followed in the FAmINE4Android library, every native variable is converted to a generic JNI
object, which encloses its type for further type retrospection from Java side. Regarding the specific
types provided by CORBA specification (e.g., ::CORBA:Short), they are also converted to jobject. In
details, the conversion process requires the construction of a new jobject variable, using the
corresponding type-based class constructor. Afterwards, the jobject variable is passed to the Java-side
along with the corresponding value of the native variable as depicted in CodeBlock 23.

: :CORBA: :Short extracted value = val.get value<::CORBA::Short>();

jclass shortClass = (env)->FindClass ("java/lang/Short");
JjmethodID shortConstructor = (env)->GetMethodID (shortClass, "<init>", " (S)V");
jobject return value = (env)->NewObject (shortClass, shortConstructor, extracted value);

CodeBlock 23 : Conversion of CORBA type variable to jObject type variable

Concerning C++ primitive arrays, as well as the special primitive array of types provided by the CORBA
specification, a similar conversion process is required. As illustrated in CodeBlock 24, the steps required
for the conversion of primitive array types to JNI Objet type variables are the following:

e Initialization of a JNI wrapper definition for a type-based array (e.g., jshortArray jnumbers),

e |Initialization of a NI primitive array (e.g., jshort cArray[length];),

33| Page

e lteration through the actual data (e.g., ami::ShortSeq *numbers) and insertion to the primitive,

e Copy the whole region of the primitive array to the JNI wrapper array (e.g.,
SetShortArrayRegion(jnumbers, 0, length, cArray)).

Finally, a jobject variable with value the wrapper array object is returned to the Java side.

ami::ShortSeq *numbers = ret.get value<ami::ShortSeg*>();

int length = numbers->length();

jshortArray jnumbers = env->NewShortArray (numbers->length());
jshort cArray([lengthl];

for (int i =0; i<length; ++i) {
cArray[i] = (*numbers) [i];
}

env->SetShortArrayRegion (jnumbers, 0, length, cArray);
jobject return value = jnumbers;

return return value;

CodeBlock 24 : Conversion of CORBA type array to jobject type variable

3.4.2.2 Complex data types

For the purposes of the present work, focus has been given to support not only the aforementioned
primitive types but also complex data types. In this direction, a common ground had to be established
due to the lack of support provided by JNI native functions to convert C++ structs/class instances to
Java objects and vice-versa. FAmINE4Android implements a common ground mechanism by employing
a popular data description language such as XML or JSON. That approach facilitates the variables’
values storage and transportation between the two programming languages in an efficient manner.
JSON was preferred thanks to its increased processing speed over XML [2.3.5]. To this end, the values
of a C++ instances are stored in a JSON format (e.g., as pure text), which subsequently are transported
to Java-side. Transported values can be similarly translated back to a corresponding Java object thanks
to the functionality provided by a plethora available Java serialization/ deserialization libraries. The
aforementioned procedure operates similarly in the case of values transportation from Java to C++.

The exchange process of complex data from Java to native code is facilitated by the Gson Java library
[32]. Gson can be used to convert Java Objects into their JSON representation. It can also be used to
convert a JSON string to an equivalent Java object. Gson can work with arbitrary Java objects without
requiring the placement of specific Java annotations in the classes. It also fully supports the use of Java
Generics leading to be the most prevalent choice for the purposes of the proposed work.

Gson provides through an easy to use Java API the toJson() and fromJson() methods to convert Java
objects to JSON and vice-versa. The example illustrated in the CodeBlock 25 consists of the clock::alarm
service definition (see CodeBlock 25 (A)), the equivalent class definition of the struct Time in Java (see
CodeBlock 25 (B)), as well as an invocation example of the FAmINE4Android library’s CallFunction based
on Time references (see CodeBlock 25 (C)). In detail, the toJson() method is used to convert each object
instance of the Time class (e.g., currentTime, snoozeTime) to JSON format. Consequently, the JSON
values are given as parameters to the invocation of the CallFunction. Within the internal functionality
of the FAmINE4Android library, the input parameters are used in order to generate the equivalent C++
struct instances declared in the service’s definition stub files. At this point, the fromJson() method is
used in order to deserialize the JSON value and construct the Time instance appropriately. The returned
Time value of the service function add is converted back to JSON format and transported to the Java
side through a jobject variable (details are presented in the following paragraph).

34|Page

#include<ami.idl>
module clock {
interface alarm {
struct Time {
long hours;
long minutes;
}i

Time add(in Time a, in Time b);

public class Time {
int hours;
int minutes;
Time (int hours, int minutes) {
this.hours = hours;

this.minutes = minutes;

Time currentTime = new Time (LocalDateTime.now () .getHour (),

LocalDateTime.now () .getMinute()) ;

Time snoozeTime = new Time (0, 9);
String currentTimeJSON = Famine.getInstance () .gson.toJdson(currentTime) ;
String snoozeTimeJSON = Famine.getInstance () .gson.todson (snoozeTime) ;

Object retObj = Famine.getInstance () .CallFunction (“id”,
mycontext,
"add",
new Object[] {currentTimeJSON,
snoozeTimeJSON}) ;

Time alarmTime = ami.Famine.getInstance () .gson.fromJson (retObj.toString(), Time.class);

CodeBlock 25: Call toJson() method and fromJson() in Java

Regarding the deserialization process of JSON within native code, an ad hoc approach is followed. As
briefly presented in 3.2.2.2, a type checking approach is followed in order to convert a Java variable to
the corresponding C++ variable. The type checking begins with the checking of the available primitive
types as well as with those declared by CORBA (e.g., sequences of data types such as
::CORBA::LongSeq). Given that the incoming data type is different from the aforementioned, the
procedure continues with the assumption that the type of the checking variable corresponds to a
complex data type. Thus, the actual value of the passed jobject argument should be equal to the JSON
representation of a complex data type. At this point, RTTR functionality is employed in order to
retrospect the complex data type based on information already registered to RTTR by the
corresponding injected code. As partially presented in 3.4.1, the injected code declares information
about service’s types and methods to the RTTR facilitating the reflection underlying mechanism (see
CodeBlock 20). The injected code is extended with the declaration of two JSON-oriented static methods

35| Page

in the case of complex data types. As depicted in CodeBlock 26 (A), tao_idl4android compiler
automatically generates an appropriate convert_from_json method for each complex data type. In
addition, tao_idl4android declares the existence of that method to the RTTR library as depicted in
CodeBlock 26 (B). As its name describes, the convert_from_json method takes as an argument the JSON
representation of a complex data type value and constructs the corresponding native instance using
the RTTR’s provided functionality for JSON serialization and deserialization. To sum up, the
retrospection as well as the invocation of the corresponding convert_from json static method in order
to deserialize a native complex data type is illustrated in CodeBlock 27.

const Example::Echo::AdvancedMessage
Example: :Echo: :AdvancedMessage: :convert from json(const std::stringé& json) {

Example: :Echo: :AdvancedMessage item;
Z&- io::from json(json, item);

return item;

£3 .method ("convert from json", &Example::Echo::AdvancedMessage::convert from json);

CodeBlock 26: Implementation of the convert_from_json in the case of the AdvancedMessage example

jstring str = (Jjstring) (env->GetObjectArrayElement (j arguments, argument index));

std::string json (env->GetStringUTFChars (str, 0));

rttr::string view name = info.get type().get name();

method methO = type::get by name (name).get method("convert from json");

if (meth0.is valid()) {
variant res = methO.invoke (instance(), json);

args.push back (* (new variant (res)));

CodeBlock 27 : Dynamic complex data type JSON deserialization

A similar approach is followed for the serialization/deserialization needs of custom sequences of
complex data types. The convert from json static method is also automatically injected by
tao_idl4Adnroid compiler within the scope of a custom sequence definition. CodeBlock 28 illustrates
the implementation of the convert_from_json method (see CodeBlock 28 (B)) triggered by the user’s
custom sequence definition in IDL (see CodeBlock 28 (A)).

Z%- typedef sequence<AdvancedMessage> AdvancedMessageSeq;

const Example::Echo::AdvancedMessageSeq
Example: :Echo: :AdvancedMessageSeq: :convert from json(const std::string& json) {

Example: :Echo: :AdvancedMessageSeq seq;

EB rapidjson::Document document;

if (document.Parse(json.c_str()) .HasParseError())
return seq;

assert (document.IsArray());

36| Page

seq.length (document.Size()) ;

for (rapidjson::SizeType i = 0; i < document.Size(); ++i) {
Example: :Echo: :AdvancedMessage item;
io::fromjson recursively(item, document([i]);
seq[i] = item;

}

return seq;

CodeBlock 28: Implementation of the convert_from_json in the case of the AdvancedMessageSeq example

A similar approach is followed in order to transport complex type values from native code to Java-side.
As briefly presented in the example of CodeBlock 25 (C), JSON functionality is employed in order to
serialize CallFunction’s returned complex value. In addition, JSON serialization functionality is also used
in the case of event’s arguments management. In detail, within the internal functionality of the
CallFunction method, a type checking procedure is followed in order to determine the type of the value
returned by the remote procedure call. That value is temporarily stored in a generic holder provided
by RTTR library (e.g., rttr::variant class that allows storing data of any type). As depicted in CodeBlock
29, the procedure starts checking against the known primitive types and then continues with the

available CORBA types and sequences as well.

if (return value type == type::get<void>()) { //the remote procedure call returns VOID
return env->NewByteArray (0) ;

}

//handle primitive (CORBA) types

if (return value type == type::get<char *>()) {
ret = env->NewStringUTF (return value.get value<char *>());

}

else if (return value type == type::get<int>()) {
int extracted value = return value.get value<int>();
ret = ConversionUtils::CreateIntegerObject (env, extracted value);

}

else if (return value type == type::get<::CORBA::Short>()) {
: :CORBA: :Short extracted value = return value.get value<::CORBA::Short>();
ret = ConversionUtils::CreateShortObject (env, extracted value);

}

//etc.. now continue checking against CORBA sequences

else if (return value type == type::get<ami::FloatSeg*>()) {
ami::FloatSeq *numbers = return value.get value<ami::FloatSeg*>();
jfloatArray jnumbers = env->NewFloatArray (numbers->length());

jfloat cArray[numbers->length()];

for(int i = 0; I < numbers->length(); ++i) {
cArray[i] = (*numbers) [i];

}

env->SetFloatArrayRegion (jnumbers, 0, numbers->length(), cArray);

ret = jnumbers;

}

else if (return value type == type::get<ami::ShortSeg*>()) {
ami::ShortSeq *numbers = return value.get value<ami::ShortSeg*>();
jshortArray jnumbers = env->NewShortArray (numbers->length());
jshort cArray[numbers->length()];
for(int i =0; i< numbers->length(); ++i) {

cArray[i] = (*numbers) [i];

}
env->SetShortArrayRegion (jnumbers, 0, numbers->length(), cArray);
ret = jnumbers;

}

//etc..

37| Page

else {//assumption: it’s a complex type! try serialize it to json
ret = env->NewStringUTF (io::to_json(return value).c_str());

}

CodeBlock 29: Type checking logic of the RPC returned value

If the type of the returned value is not a primitive one or equivalent to a CORBA sequence, the
procedure continues with the assumption that the type of the returned variable is equivalent to a
complex data type. As a result, the RTTR’s embedded functionality is employed to serialize the returned
value to JSON format and subsequently, to transport the serialized object to the Java side. In order to
support this process, the RTTR’s JSON capabilities have been enhanced as follows: a) complex data
types, and b) CORBA defined or custom-defined sequences declared within the scope of complex data
types. Furthermore, event handling functionality has also been enhanced. Given that each event
argument type is a generic type container (e.g., CORBA::Any) some extra-injected code is required to
automate the serialization process as illustrated in CodeBlock 30. In details, tao_idl4android compiler
automatically generates an appropriate convert to json method for each complex data type. In
addition, tao_idl4android declares the existence of that method to the RTTR library as depicted in
CodeBlock 30 (B). As its name describes, the convert_to _json method takes as an argument the CORBA
wrapper container of a complex data type and returns its corresponding JSON representation (see
CodeBlock 30 (A)).

std::string Example::Echo::AdvancedMessage::convert to json(const ::CORBA::Any
& tao_any) {

const Example::Echo::AdvancedMessage *msg;
Z&- _tao_any >>= msg;

return io::to_json(msg);

£3 .method ("convert to json", &Example::Echo::AdvancedMessage::convert to json)

CodeBlock 30: Implementation of the convert_to_json in the case of the AdvancedMessage example

A similar approach is followed for the serialization needs of custom sequences of complex data types
(e.g., CodeBlock 31 (A)). The convert_to_json static method is also automatically injected by
tao_idl4Adnroid compiler within the scope of a custom sequence definition. CodeBlock 31 (B) depicts
the implementation of the convert_to_json static method facilitating the event handling process for a
custom sequence argument type (e.g., AdvancedMessageSeq) wrapped in a generic type container
(e.g., ::CORBA::Any). CodeBlock 31 (C) illustrates the convert_to_json static method facilitating the
serialization process of the RPC returned value in case of custom sequence of complex data types.
CodeBlock 31 (D) presents the necessary injected code aiming to RTTR-register the custom sequence
type (e.g., AdvanceMessageSeq), as well as the aforementioned overloaded functions.

Z& typedef sequence<AdvancedMessage> AdvancedMessageSeq;

E3 std::string Example::Echo::AdvancedMessageSeq::convert to json(const ::CORBA::Any
& tao any) {

const Example::Echo::AdvancedMessageSeq *seq;
_tao_any >>= seq;
std::stringstream resu;

resu << "[";

38| Page

for (int i = 0; i < seg->length(); ++i) {
const Example::Echo::AdvancedMessage &item = (*seq) [1];
resu << io::to Jjson(item);
if (i + 1 < seg->length()) resu << ",";
}

resu << "]";

return resu.str();

std::string
C: Example: :Echo: :AdvancedMessageSeq: :convert to json (Example::Echo
seq) {
std::stringstream resu;
resu << "[";
for (int i = 0; i < seg->length(); ++i) {
const Example::Echo::AdvancedMessage &item = (*seq) [1];
resu << io::to Jjson(item);

if (i + 1 < seg->length()) resu << ",";
}
resu << "]";

return resu.str();

: :AdvancedMessageSeqg*

registration::class <Example::Echo::AdvancedMessageSeq> ("Example

D Seq")
.method ("convert to json", select overload<std::stri
&) > (& Example: :Echo::AdvancedMessageSeq: :convert to json))

.method ("convert to_ json",

Example: :Echo: :AdvancedMessageSeq: :convert to json))

select overload<std::string(Example::Echo::AdvancedMessageSeqg*)> (&

: :Echo: :AdvancedMessage

ng (const ::CORBA::Any

CodeBlock 31: Automatically generated injected code in the case of custom sequ

ence of complex data types

39| Page

40| Page

4 Case study: Museum Guide Application using Android mobile
devices

The last few decades, interactive technologies have been applied to museums in order to deliver
interactive and immersive user experience through on-site Virtual Exhibitions and augmented reality
technologies. In this context, the proposed work has been demonstrated by implementing an example
application in the domain of cultural heritage, named Museum Guide, suitable for android mobile
devices. That application builds upon the proposed FAmINE4Android library and aims to deliver
guidance support in an automatic manner based on visitors’ location. In details, the proposed case
study delivers rich museum touring guidance that escorts users during their visit while using their
mobile phones. The Museum Guide provides always-available information and multimedia, such as
images, videos and descriptive text, regarding all exhibits and other points of interest of the exhibition
area. Moreover, visitors are essentially accompanied by a comprehensive, intelligent guidance
functionality that enhances the museum experience by visualizing, interacting and navigating into the
available digital museum collections.

In order to deliver implicit location-based guidance within the exhibition spaces, a human body
recognition and localization approach was considered crucial. After conducting thorough research in
the field of human tracking and sensing technologies, it was decided to employ the “Tracking persons
using a network of RGBD cameras” [14] approach. This approach builds upon advanced computer
vision algorithms that achieve the detection and localization of humans in indoor environments.
According to [14], the underlying infrastructure consists of an RGB-D camera network aiming to track
multiple humans in real-time. The case study highlights the contribution of the FAmINE4Android library
in a distributed system where heterogeneous devices, such as PCs and Android devices, can
communicate in real-time.

The following sections present the employed infrastructure within a simulation space located in the
FORTH-ICS Ambient Intelligence Programme?,® Facility, along with some implementation details about
the used tracking service. Afterwards, the design and implementation of the Museum Guide are
elucidated followed by the presentation of the preliminary evaluation results.

4.1 Tracking persons using a network of RGB-D cameras

The implemented setup employs multiple visual sensors in order to enumerate, localize and track
individual persons. As depicted in Figure 3, a network of four Microsoft © Kinect (XBOX one) RGB-D
cameras have been placed to the corners of a rectangular area, evenly and high, surrounding a volume
in which persons can be localized and tracked. Multiview human localization methods perform a 3D
representation of the imaged users to be registered to a map of the oriented area, in order to provide
accurate information about the number and location of individuals.

The localization of humans is based solely on reconstructed volumes, which are projected on a
representation of the floor plane, whereas the detected individuals are tracked based on both
geometric and color information. The vision system assigns a unique identification number to each
person entering the room (Person ID) and remains same even in the case that two or more users are
situated very near each other, as illustrated in Figure 4.

2 http://www.ics.forth.gr/index_main.php?l=g&c=4
3 http://ami.ics.forth.gr/

41 |Page

The computer vision algorithm declares a Person ID, i.e., a unique ID for each individual that
discriminates from others. The Person ID is registered as long a visitor enters the cameras’ observed
area and corresponds to his/her visual representation. Since users are associated with a unique ID, the
tracking service stores geometric and color related information in order to re-recognize users when,
after a period of absence, they re-enter the room.

Figure 3: Setup consisted of four RGB-D sensors

Figure 4: Multiple human tracking based on geometric and color information

Except the aforementioned advanced computer vision algorithms, the tracking service builds upon the
FAmINE middleware in order to expose tracking results to any registered third party client applications.
Such a third party client applications can use a public API in order to receive that data (i.e., tracking
results) and proceed on them. The public APl has been defined in the interface PeopleTrackingService
using IDL asillustrated in CodeBlock 32. In detail, the interface consists of four data structures, in which
the Person data type contains the necessary information about the tracked individuals. The Person data
type consists of: a) a short variable that represents the identification id of the tracked person, b) a float
variable that describes the ellipse axes ratio, and c) a variable named Point2f. The Point2f data type
contains the accurate position of the person in the room in (x, y) coordinates. In addition, the service

42 |Page

defines a specific sequence as a container of Person instances. Finally, PeopleTrackingService
dispatches the NotifyTracked event to any registered client application with a frequency of 20fps. The
event’s arguments are the identification id of the tracked person as well as the relative position within
the observed area.

#include <ami.idl>
module Test {
interface PeopleTrackingService {

struct Point2f{
float x;
float y;

}i

struct Person{
short id;
float ellipse axes ratio;
Point2f position;

}i

struct MatF({
ami::FloatSeqg data;
long cols;
long rows;
long channels;

}i

struct MatU({
ami: :OctetSeqg data;
long cols;
long rows;
long channels;

bi

typedef sequence<Person> PersonSeq;

void NotifyTracked (in PersonSeq actors);

CodeBlock 32: “Tracking persons using a network of RGB-D cameras” service definition in IDL

For the purposes of the present case study, the FAmINE4Android library is used as a communication
medium with the “Tracking persons using a network of RGBD cameras” service, in order to develop a
mobile museum guide application that automatically presents information related to the visitor’s
current position.

4.2 Museum Guide application for Android mobile devices

The Museum Guide application for Android mobile devices, aims to facilitate the visit of individuals
within a museum and provide information related to their adjacent artefacts in an intuitive and user-
friendly way. Actually, the main goal of the case study is to assess the integration of the proposed
FAmINE4Android library in environments of distributed services. The following sections present the

43 |Page

design and explain its applicability through a usage scenario. Moreover, some implementation details
are presented at the end of this chapter.

4.2.1 Design and Usage scenario

The Museum Guide application allows users to use their mobile phones in order to get access to
information regarding the museum exhibits. The following usage scenario exemplifies its applicability.
Firstly, the museum visitor launches the application while entering the exhibition hall. The application
starts and four functionalities are presented as depicted in Figure 5. Those functionalities are: a)
navigation mode, b) points of interest, c) map, and d) about.

68 O ¥ . @ 1825

Inpeia e

Mionyntng EvblagpépovTog

o

Xaptng MAnpogopieg

Figure 5: Main menu

Regarding the first one, navigation mode, when a visitor is located adjacent to an artefact, a notification
on his mobile device will be received and information related to the artifact will be presented on the
screen (see Figure 6). As the user moves around the exhibition area, the presented information will be
updated automatically according to the distance from the nearby exhibits.

The second option, points of interest, presents the full list of available exhibits within the museum (see
Figure 7 (2)). The user is able to interact by selecting each artefact of his interest and view further
information about it. As presented in Figure 7 (1), the user has access to a representative image of the
selected exhibit as well as to relevant multimedia content.

The third option, map, depicts the floor plan where all exhibits are digitally illustrated according to
their actual position. As shown in Figure 7 (3), a moving green dot is dynamically depicted in order to
reflect the tracked position of the visitor, which is calculated by the tracking system in real-time. Lastly,

44 |Page

the option about provides information about the development of the Android application and its
copyrights.

Figure 6: Using the mobile application to browse the digital exhibits, based on tracking technology

[~] A HO1825 0 6 @ O®J Q1825 60 @ © ¥4 @ 1826

R e < @

' Zknvii BactAkou Kuvnylow

To oTEPAVL HUPTLAG TNG
Mnbdag

To oteavt JUPTLAG TNG 9
Mn50C H xpuor) Adpvaka tou
®Ainmouv B*

Hxpuof Mpvaxa
rou Dmmou B

To otepavt Bpebnke péca oTn Adpvaka padi
HE Ta Kapéva ootd Touv GLAinmou Kat enedn,
OTwG paivetat, 0 VEKPOG TO PopoUsE, OTav
TO OWHA TOU TIapadodnKe oTLG YPAOYES TNG
TAPLKNAG TIUPAG, EXEL KAKOTIABEL APKETA,
1Ritae ata wevtaivh Tan Tidna Ta sfaineTivn

Figure 7: Museum Guide features

45| Page

4.2.2 Implementation details

Within the mobile application’s Java code, a dispatched event is captured by the corresponding event
handler NotifyTracked, as it is described in CodeBlock 33. Subsequently, the event handler propagates
the received information for each tracked person to the map and guidance. As depicted in Figure 7
(3), the first module, map, is used to update the graphical representation of the position of the tracked
person within the observed area. The second module, guidance, checks the position of the person
tracked against the position of each exhibit/point of interest. In case of intersection, the content
manager receives an appropriate notification in order to present information relative to the exhibit
near the user. The exhibit’s position within the observed area is predefined into the application for the
purposes of this case study.

public void NotifyTracked (final Object [] arr)
{

Test.PeopleTrackingServicePackage.Person[] persons =
ami.Famine.getInstance() .gson.fromJson (arr[0].toString() ,

Test.PeopleTrackingServicePackage.Person([].class);
for (Test.PeopleTrackingServicePackage.Person p : persons)

{
Map.NotifyHandler (p.position.x, p.position.y);
Guidance Details.NotifyHandler (p.position.x, p.position.y);

CodeBlock 33: Handling incoming event in Java

The implementation of this case study was seamlessly achieved through the provided, intuitive to use,
Java API. Distributed programming on Android devices can effortlessly facilitated with the support of
the proposed FAmINE4Android middleware.

4.3 Testing

In the context of assessing the reliability of the mobile Museum Guide application, a multiuser informal
testing took place in the simulation space located in the Ambient Intelligence Facility of FORTH-ICS.
The simulation space was customized to accommodate some copy artifacts of the “Art of
Macedonians” collection. In details, two golden artefacts and a fresco of ancient Greece were placed
around the observed area acting as real exhibits within a museum exhibition area. Four users, aged
between 25 and 30 years old, were invited to participate in the preliminary user-based evaluation.
They were each asked by the evaluator to download and install the application to their mobile phones.
Afterwards, they were asked to launch the Museum Guide application and experiment with the four
provided options. Thereafter, the evaluator asked them to walk freely within the exhibition area and
show their interest to any of the three installed exhibits. All four of them were able to access
information related to the nearby exhibit and iterate through the description and multimedia content
that was automatically presented on their mobile screens. Additionally, they all were able to familiarize
their selves with the map presentation and navigate easily within the exhibition area. To conclude, the
case study showed that the proposed FAmINE4Android library contributes to the development process
of mobile user-friendly applications equipped with advanced functionality in the context of distributed
computing. Additionally, the case study proved that the FAmINE4Android extension library facilitates
real-time remote communication among distributed objects running on both ordinary PCs and Android
mobile devices.

46 | Page

5 Conclusion and Future Work

This chapter summarizes the achievements of the work reported in this thesis, discusses its findings
and contributions, and outlines directions for future research.

5.1 Summary of Achievements

This thesis has presented the development of a FAmINE middleware extension, named
FAmINE4Android, which aims at empowering Android mobile devices in distributed service-oriented
environments. FAmINE4Android builds upon the FAmMINE middleware, which caters for the creation of
distributed services enabling the exposure of software and hardware resources in Aml environments.
FAmINE4Android provides the required mechanisms and tools in order to support service discovery,
event driven communication and remote procedure calls, through a seamless and intuitive Java API.
Therefore, Android developers are able to develop effortlessly applications enabled with distributed
computing capabilities.

FAmINE4Android employs TAO, a freely available, open-source, and standards-compliant real-time
CORBA implementation in C++. Efforts have been focused on the provision of a service type agnostic
solution so that any FAmINE service, either registered or resolved, can be integrated in a seamless and
effortless manner. To this end, interoperability issues stemming from hosting native code in an Android
Java application have been addressed successfully. In addition, a mechanism responsible for data
exchange between Java and native code has been implemented. Such mechanism is able to exchange
the format of primitive or complex data types in order to address the data type variations between
Java and native code. In detail, JNI native functions were employed in order to accomplish smoothly
conversion of primitive types (e.g., such as integer, float, string, etc.) between the two languages. Data
transitions of complex data types as well as user or CORBA defined data sequences is also supported.
The intuitive usage of the FAmINE4Android library was exemplified thoroughly through a presented
programming tutorial and indicative examples.

The features of the FAmINE4Android library were demonstrated by implementing a case study
application in the domain of cultural heritage. This case study refers to a Museum Guide application,
which provides information automatically based on visitors’ location. In details, the museum guide
application uses the functionality provided by a FamineTrackingService running on Windows OS. The
tracking service builds upon advanced computer vision algorithms in order to track multiple persons
within exhibition spaces using a network of RGB-D cameras. The case study highlights the contribution
of the FAmINE4Android middleware towards increasing the number of distributed computing
platforms. An informal testing of the application took place in the simulation space located in Ambient
Intelligence Facility of FORTH-ICS in order to assess the reliability of the proposed work. The
preliminary evaluation results showed that the proposed FAmINE4Android library contributes to the
development process of mobile user-friendly applications equipped with advanced distributed
computing capabilities. Furthermore, the case study highlighted the exploitation capabilities of
distributed computing hosted in heterogeneous services in Ambient Intelligence Environments.

5.2 Future Work

Regarding future work, completing the development of tao_idl4Android compiler is critical along with
the development and integration of a mechanism able to generate Java bindings from a given IDL
containing the service definition. Such functionality seems to minimize the effort required for the
development of application based on distributed services that define complex data types. Moreover,
it is considered crucial to extend the support for more platforms, such as Microsoft Windows devices,

47 |Page

to holistically address the mobile computing market. Finally, it is considered essential to design an
evaluation strategy with the active contribution of Android developers in order to measure
FAmMINE4Android applicability and usability from an end-user perspective.

48 | Page

6

10.

11.

12.
13.
14.

15.

16.

References

A simple C Client-Server in CORBA, https://www.codeproject.com/Articles/24863/A-Simple-C-
Client-Server-in-CORBA

Anastasopoulos, Michalis, et al. "Towards a reference middleware architecture for ambient
intelligence systems." ACM conference on object-oriented programming, systems, languages,
and applications. 2005.

Application Binary Interface, https://developer.android.com/ndk/guides/abis.html

Blended Reality report. Technology Horizons Program (2009). Institute for the Future, Palo
Alto: http://www.iftf.org/uploads/media/SR-122~2.PDF

Bouma, H. "True visions—The emergence of ambient intelligence, by E. Aarts, JL Encarnacéo;
2006." Gerontechnology 6, no. 1 (2007): 58-60. Valli, A. (2008).The design of natural

interaction. Multimedia Tools and Applications. 38(3): 295 - 305.
Cisco Unified Application Environment, http://www.cisco.com/web/developer/cuae

Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design.
pearson education.

Crossbar.io, http://crossbar.io

Dommel, P., Wagner, R., Edwards, R., and Doran, A. (2205). A Middleware Framework for the
Adaptive Home, in S. Girous and H. Pigot (Eds). From Smart Homes to Smart Care, 10S Press,
pp 167-173, http://www.cse.scu.edu/~hpdommel/publications/hpd.icost05.pdf

Ducatel, Ken, Marc Bogdanowicz, Fabiana Scapolo, Jos Leijten, and Jean-Claude Burgelman.
"Scenarios for ambient intelligence in 2010." Office for official publications of the European
Communities (2001). Ramos, C., Augusto, J. C., & Shapiro, D. (2008). Ambient intelligence—the
next step for artificial intelligence. IEEE Intelligent Systems, 23(2), 15-18.

Erickson, T.D. (1990). Working with Interface Metaphors. In B. Laurel (Ed.), The Art of Human-
Computer Interface Design (pp. 65-73). Reading, MA: Addison-Wesley Publishing Company,
Inc

Etch, https://cwiki.apache.org/confluence/display/ETCH
Express, http://expressjs.com/

Galanakis, G., Zabulis, X., Koutlemanis, P., Paparoulis, S., & Kouroumalis, V. (2014). Tracking
persons using a network of RGBD cameras. In the Proceedings of the 7th ACM International
Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2014),
Rhodes, Greece, 27-30 May.

Georgalis, I. (2013). Architectures, Methods and Tools for Creating Ambient Intelligence
Environments. PhD Thesis, University of Crete, Computer Science Department, June 2013,
https://www.didaktorika.gr/eadd/handle/10442/29423

Georgalis, Y., Grammenos, D., & Stephanidis, C. (2009). Middleware for Ambient Intelligence
Environments: Reviewing Requirements and Communication Technologies. In C. Stephanidis,
(Ed.), Universal Access in Human-Computer Interaction - Intelligent and Ubiquitous Interaction
Environments. - Volume 6 of the Proceedings of the 13th International Conference on Human-
Computer Interaction (HCl International 2009), San Diego, CA, USA, 19-24 July, pp. 168-177.
Berlin Heidelberg: Lecture Notes in Computer Science Series of Springer.Lim, A. (2201).
Distributed services for information dissemination in self-organizing sensor networks. Journal

49 |Page

http://www.iftf.org/uploads/media/SR-122~2.PDF

17.
18.

19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

37.

38.
39.
40.

41.

42.

of the Franklin Institute, Volume 338, Issue 6, September 2001, Pages 707-727,
http://dx.doi.org/10.1016/S0016-0032(01)00020-5.

Ghosh, S. (2014). Distributed systems: an algorithmic approach. CRC press.

Henning, M. (2204). A new approach to object-oriented middleware, in IEEE Internet
Computing, vol. 8, no. 1, pp. 66-75, Jan-Feb 2004.
http://ieeexplore.ieee.org/document/1260706/

http://omniorb.sourceforge.net/omni41/omniORB/omniORB0O01.html
http://orbit-resource.sourceforge.net/

http://rapidjson.org/index.html

http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.cs.wustl.edu/~schmidt/TAO-overview.html

http://www.jacorb.org/

http://www.json.org/

http://www.mico.org/
http://www.ois.com/Products/communications-middleware.html
https://en.wikipedia.org/wiki/IDL_(programming_language)
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://github.com/google/gson

Java Native Interface, https://developer.android.com/training/articles/perf-jni.html
Json Framework, https://developer.android.com/reference/android/util/JsonReader.html

Koa.js: A Future-Proof JavaScript Middleware Framework,
https://www.upwork.com/hiring/development/koa-js-a-future-proof-javascript-middleware-
framework/#sm.0002ct9xk12sjfoyq3ulrtrw765ce

Ling, F., Apers, P. MG., and Jonker, W. (2004).Towards context-aware data management for
ambient intelligence. In: Galindo F., Takizawa M., Traunmdiller R. (eds) Database and Expert
Systems Applications. DEXA 2004. Lecture Notes in Computer Science, vol 3180, pp-422-431.
Springer, Berlin, Heidelberg

McHale, C. (2007). Corba explained simply. http://www.ciaranmchale.com/corba-explained-
simply/

Native Development Kit, https://developer.android.com/ndk/index.html
OSGi Alliance, http://www.osgi.org

Partarakis N., (2005). Using Ambient Intelligence Technologies for Producing and
Disseminating Art. PhD Thesis. University of Crete, Computer Science Department.

Peleg, D. (2000). Distributed computing: a locality-sensitive approach. Society for Industrial
and Applied Mathematics.

Rapidjson, https://codeflu.blog/2015/02/26/understanding-rapidjson/

50| Page

43.
44.

45.
46.
47.

48.
49.

50.

51.
52.
53.
54.
55.

56.
57.
58.

Rio Dynamic Distributed Services, http://www.rio-project.org/

Riva G, Vatalaro F., Davide F., Alcaniz M. (2005). New Technologies for Ambient Intelligence;
10S Press.

ROS, http://www.ros.org/core-components/
Run Time Type Reflection, http://www.rttr.org/

Schmidt, D. C. and Cleeland, C. (1999). Applying patterns to develop extensible ORB
middleware. Comm. Mag. 37, 4 (April 1999), 54-63. http://omniorb.sourceforge.net/

Simple Object Access Protocol (SOAP), http://www.w3.org/TR/soap

Slee, M., Agarwal, A., and Kwiatkowski, M. (2207). Thrift: Scalable Cross-Language Services
Implementation. Technical Report, Facebook, Palo Alto, CA, USA, April
2007.https://thrift.apache.org/static/files/thrift-20070401.pdf

Tapia, D. I., Abraham, A., Corchado, J. M., & Alonso, R. S. (2010). Agents and ambient
intelligence: case studies. Journal of Ambient Intelligence and Humanized Computing, 1(2),
85-93.

The ACE ORB (TAO), http://www.cs.wustl.edu/~schmidt/TAO.html
The Hydra project, http://www.hydramiddleware.eu

The Object Management Group (OMG), http://www.omg.org
WAMP, http://www.wampserver.com/en/

Weiser, M. (1993). Some computer science issues in ubiquitous computing. Communications
of the ACM 36 7, pp. 75-84

Weiser, Mark. "Hot topics-ubiquitous computing.” Computer 26, no. 10 (1993): 71-72.
ZeroC, http://www.zeroc.com

Zhang, C., and Jacobsen, H.-A. (2204). Requirements Analysis for Middleware Aspects.
echnical Report, Middleware Systems Research Group, University of Toronto, July
200https://pdfs.semanticscholar.org/12b6/45e6a65592b9aeffd39a03117a9c886ff961.pdf

51| Page

52|Page

APPENDIX A: Step-by-step procedure of porting TAO to Android
architecture

The implementation of the presented middleware library relies on TAO. This section presents the step-
by-step procedure that was followed in order to port the TAO to the Android architecture using the
Android Native Development Kit (NDK) toolset (see 3.1.2).

We have installed GNU make 3.79. When using ACE's per-platform configuration method we

1 must use GNU make otherwise ACE will not compile successfully.
) Afterwards we have downloaded the ACE+TAO package
tar -xvf ACE+TAO-6.1.8.tar
Then create a clone directory for the host
3 cd ACE wrappers
mkdir -p build/HOST
./bin/create_ace _build build/HOST
In addition we have created a configuration file, SACE_ROOT/ace/config.h that includes the
appropriate platform/compiler-specific header configurations from the ACE source directory.
4

echo '#include "ace/config-linux.h"' > build/HOST/ace/config.h
echo 'include $(ACE ROOT)/include/makeinclude/platform linux.GNU' >
build/HOST/include/makeinclude/platform macros.GNU

Then we have changed to the build/HOST directory. After we have set the ACE_ROOT
environment variable to point to build/HOST. Bear in mind that we should also build the gperf
perfect hash function generator application and the host tools.

5 c¢d build/HOST
export ACE ROOT=$PWD
make -C ace

make -C apps/gperf/src

Define the TAO root, in order to build TAO_IDL tool
6 export TAO _ROOT=$PWD/TAO

make -C TAO/TAO_IDL

The cross compilation method requires the definition of the TARGET platform. Consequently,
we have created a clone directory for the target

7 cd../../
mkdir -p build/TARGET

./bin/create _ace build build/TARGET

We configured the target build

echo '#include "ace/config-android.h"' > build/TARGET/ace/config.h

Then we created a build configuration file, SACE_ROOT/include/makeinclude/
g platform_macros.GNU, that contained the appropriate platform/compiler-specific Makefile
configurations.

53| Page

10

11

12

13

14

15

16

17

18

echo 'include $(ACE ROOT)/include/makeinclude/platform android.GNU'>
build/TARGET/include/makeinclude/platform macros.GNU

We can point out that we can override the default values by adding several lines to our
platform_macros.GNU file. Assuming S$(HOST_ROOT) is set to the location of our host build
where we previously built gperf and tao_idl, we can change the target build by adding the
following lines in order TARGET build to use the HOST IDL compiler and gperf tools:

nano build/TARGET/include/makeinclude/platform macros.GNU
TAO _IDL := $(HOST ROOT)/bin/tao_idl

TAO IDLFLAGS += -g $(HOST ROOT)/bin/gperf

TAO IDL DEP := $(HOST ROOT)/bin/tao_idl

INSTALL PREFIX = $(ACE_ROOT) /output

static_libs_only=1

Then we set the ACE and TAO root paths
cd build/TARGET
export ACE_ROOT=$PWD

export TAO ROOT=$PWD/TAO

Then we have created the folder which included the outcome dynamic shared libraries of the
building. Headers had been installed to SINSTALL_PREFIX/include, executables to
SINSTALL_PREFIX/bin, documentation and build system files to SINSTALL_PREFIX/share and
libraries to SINSTALL_PREFIX/lib

mkdir output

Set Android architecture to arm.

export ANDROID ARCH=arm

Export the path of Android Native Document Kit

export NDK=/path/android-ndk-r8e

Exportation of the platform arch directory in order to set the standard alone toolchain. The
preferred standard alone version was 4.4.3 and the android API level was 14.

export SYSROOT=$NDK/platforms/android-14/arch-$ANDROID ARCH
cd $NDK

./build/tools/make-standalone-toolchain.sh --toolchain=arm-linux-androideabi-4.4.3 --
arch=arm --platform=android-14 --install-dir=../arm tools --system=linux-x86_ 64

Set the tools and the bin folder of the Android Native Development Kit

export NDK TOOLS=/path/arm tools

export PATH=$PATH:S$NDK TOOLS/bin

Afterwards we have changed to the HOST directory and set the HOST root
cd $ACE_ROOT/../../build/HOST

export HOST ROOT=$PWD

Then we run the perl script SACE_ROOT/bin/mwec.pl in the TAO_ROOT directory to try all the
tests

54 |Page

cd $TAO ROOT
perl $ACE ROOT/bin/mwc.pl TAO ACE.mwc -type gnuace

Then we have exported the library folder, that is included in the HOST folder, to the
LD_LIBRARY_PATH. Because ACE builds shared libraries, LD_LIBRARY_PATH has to be set to

19 the directory where binary version of the ACE library is built into

export LD LIBRARY PATH=$LD LIBRARY PATH:$HOST ROOT/lib

After concluded all the above steps we run ‘make’ and then ‘make install’.
20

This had built the ACE library, tests, the examples, and the sample applications.

55| Page

56 |Page

APPENDIX B: Programming Tutorial

This section presents a step-by-step programming tutorial for developers who would like to use the
Famined4Android library in order to develop mobile applications equipped with distributed computing
capabilities. The tutorial provides indicative to exemplify Famine4Android usage.

B.1. Generating client/server stubs from .idl file

Firstly, a service definition in IDL is required in order to implement or use a distributed service.
Secondly, the tao_idl4Android compiler is used to generate the corresponding stub and skeleton files
for either service implementation or use respectively. The files generated by the tao_idl4Android
compiler taking as input the .id/ file are imported in the Android project as depicted in the following
section.

B.2. Service type declaration

When the Android developer creates a new Android project, in which the support of C++ standards is
selected, the Android Studio auto-generates the native debug configuration file, which is called native-
lib.cpp. This file is located under the <project path>/app /src/main/cpp directory. In this file, the Java
developer should write the proper code for the service type declaration. As depicted in CodeBlock 34,
the service type is declared within the ServiceTypes static block as described in 3.2.2.1 section.
Thorough examples are presented in the following sub-sections B.4 and B.5.

#include "ServiceTypes.h"
#include "FamineManager.h"

ServiceTypes {

Service type registration instructions

CodeBlock 34: ServiceTypes scope

B.3. Set up Programming Environment

B.3.1. Configure Android Studio: NDK and Build Tools
The following components are prerequisites to the proper functionality of the proposed library:

e The Android Native Development Kit (NDK): a toolset that allows the use of C and C++ code with
Android, providing platform libraries that allow the management of native activities and access
physical device components.

e (CMake: an external build tool that works alongside Gradle, an advanced build toolkit that
automate and manage the build process. There is no need for this component unless there is plan
for ndk-build use.

e [LDB: the debugger Android Studio uses to debug native code.

The Android Software and Development Kit (SDK) Manager can be used for the installation of SDK tools,
platforms, and other components that help for the development of Android app. Figure 8 depicts the
selection of the aforementioned components within the Android Studio SDK tools.

57| Page

SDK Platforms ~ SDK Tools SDK Update Sites

Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.

L e M| Version | Staws

& v Not Instal...
com.android.support.constraint:constraint-layout-solver:1.0.0-al Installed

Android Auto API Simulators 1 Not instal...

Android Auto Desktop Head Unit emulator 1.1 Not instal...
Android SDK Platform-Tools 24-rc3 24.0.0 rc3 Installed
Android SDK Tools 25.1.7 25.1.7 Installed
Android Support Repository 32.0.0 Installed

& v 3.4.1 Not instal...
Documentation for Android SDK 1 Installed

GPU Debugging tools 1.0.3 Not instal...

Google Play APK Expansion library 1 Not instal...

Google Play Billing Library 5 Not instal...

Coogle Play Licensing Library 1 Not instal...

Google Play services 30 Not instal...
Google Repository 27 Installed

Google Web Driver 2 Not instal...
Intel x86 Emulator Accelerator (HAXM installer), rev 6.0.1 6.0.1 Installed

& I 12.0.2867246 ... Not insta..

Show Package Details

Figure 8: SDK tools

B.3.2. Creation of a new Android Project with C/C++ Support

According to the Android Studio documentation, creating of a new project with support for native code
is similar to creating any other Android Studio project. However, there are a few additional steps:

e C++ Support checkbox has to be selected within the configuration wizard,
e Minimum SDK has to be set to APl 14: Android 4.0 (IceCreamSandwich),

e As shown in the Figure 9, the following options has to be enabled in the C++
Support customization section:

o C++ Standard, which enables C++11 features,
o Exceptions Support, which enables the C++ exception handling,

o Runtime Type Information Support, which enables support for RTTI.

® Create New Project b4

H Customize C++ Support

Exceptions Support (-fexceptions)

Runtime Type Information Support (-friti)

Previous i Next) Cancel m

58 | Page

Figure 9: Customize C++ Support

B.3.3. Configure Build.Gradle

As depicted in Figure 10, some effort is needed in order to configure the NDK, CMake, and linking
properties to the FAmINE4Android library. In detail, the following sections has to be set appropriately

as listed below:

e As illustrated in Figure 10 (1), the GNU STL (shared library) property should be set to
gnustl_shared. In addition, gcc compiler flags should be set to —std=c++1 —frtti -fexceptions.
Moreover, the supported toolchain should be set to gcc

e The Application Binary Interface (ABI) should be set to armeabi-v7a as depicted in As illustrated
in Figure 10 (2). ABI defines how an application's machine code is supposed to interact with the
system at runtime. Famine4Android is only compatible with armeabi-v7a architecture.

e The configuration of CMake in order to import the Famine4Android’s required libraries (.so)
should be as shown in Figure 10 (3).

android |

compileSdkVersion 25
buildToolsVersion "25.0.2"
defaultlonfig |
applicationld "com.example
minjdkVersion 14

target3dkVersion 25
versionCode 1

versioniName "1.0"

.amidemo. test"

testInstrumentationBunner "android.support.test.runner.AndroiddUnitRunner"
externallativeBuild {

1

cmake |

}

cppFlags "-std=c++11 -friti -fexceptions"
arguments "-DANDROID STL—=gnustl shared", "-DANDROID TOOLCHATN=gcc"

!

ndk {

gbiFilters 'armeabi-v7

i @

}

buildTypes {
release |

1
1

minifyEnakled false

proguardFiles getDefaultProguardFile ('proguard-android.txt'),

externalNativeBuild |
cmake |

1
1

path "CMakelists.txt"

'proguard-rules.pro'

sourceSets.main {
jniLiks.srcDirs = [Syatem

System
System
System
System

~getenv('FAMINE ROOT') + '\\Android\\famine\\lib',
.getenv({ EAMINE ROOT'} + '\\Android\\famine proxy\\lib',
~getenv('FAMINE ROOT') + '\\Android\\json serializei\lib',
-getenv('FAMINE ROOT') + '\\Android\\rttrii\lib',
~getenv (' FAMINE ROOT') + '\\Androidi\taoi\lib']

®

}

dependencies |

compile fileTree (include:

['*.jJar'], dir: 'libs')

androidTestCompile {'com.android.support.test.espresso:espresso-core:2.2.2', |
exclude group: 'com.android.support', module: 'support-annotations'

H

Figure 10: Build.Gradle configuration

59| Page

B.3.4. Configure CMakelLists.txt

The update of the CMakeLists.txt file, which is located under the <project path>/app/src directory is
required (see Figure 11). The CMakelists.txt, located in the FAmiNE4Android installation folder should
be included in the CMakelists.txt of the Android project. This CMakelists.txt is responsible for the
specification of the necessary header files and shared libraries that are required in order to develop
distributed Android mobile applications. In addition, the configuration of the folder that includes the
service’s generated skeleton or stub files is required as depicted at the end of the marked area (see
Figure 11).

cmake_minimum required (VERSION 3.4.1)

file (TO_CMAKE PATH $ENV{FAMINE ROOT} FAMINE_ROOT)
include ($[FAMINE ROOT]}/Android/CMakelists.txt)

include_directories(src/main/cpp/ChacaService/include)

Creates and names a library, sets it as either STIATIC

or SHRRFED, and provides the relative paths toc its source code.
You can define multiple likraries, and CMake builds it for you.
Gradle automatically packages shared libraries with vour AFK.

W cH ke

add library{ # 5Sets the name of the library.
native-lib

Sets the library a3 a shared librarvy.
SHRRED

Figure 11: CMakefile configuration

B.3.5. Configuration AndroidManifest.xml

Regarding the AndroidManifest.xml, which is located under the <project path>/app/src/main/
directory, the internet permission should be enabled, as illustrated in Figure 12.

manifest || uses-permission

<?ml wversion="1.0" encoding="utf-8"2>
<manifest mmlns:android="http://schemas.android.con/apk/res/android”
package="com.example .amidemo . test">

<uses-permizsion android:name=“android.permission.INTERNEﬂ" f>

<application

android:allowBackup="true"
android:icon="Emipmap/ic launcher"
android:label="Test"
android: supportsRt1="trus"
android: theme="gstyle/AppTheme" >
<activity andreoid:name=" . Maintctivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<factivity>
</application>

</manifest>

Figure 12: AndroidManifest configuration

60| Page

B.3.6. Configuration of assets folder in the Android project

The creation of a specific folder, named assets, is required in order to define the network locations
(e.g., endpoints) of the Implementation Repository Server and the Naming Service. Java developer is
responsible to create that folder and add two text files, the zones.txt and the options.txt (see Figure 13
top-left).

B.3.7. Import FAmINE4Android Controller

The developer has to import Famine4AndroidController AAR package in order to employ the
middleware functionality provided by the Famine4Android library. To this end, the Java developer has
to select from the Android project the “New” option and then the “Import Module” option. Afterwards,
the Java developer selects from the FAmiNE4Android installation folder where the ARR package as
illustrated in Figure 13 (top-right). The next step is the update of the current (e.g., app) module’s
dependencies in order to add the Famined4AndroidController. In detail, the Java developer select the
tab Dependencies from the Project Structure menu and picks the imported Famine4AndroidController
as depicted in Figure 13 (bottom).

= Test C\Users\amidemo'\Desktop'\ Test »
3 .gradle
: Select jar or aar package to import as a new module
Jidea
T Em AR RX O @

i app (s L] X O ;
externalMativeBuild NFORTH\FAmMINE\Android\libs\Famine4AndroidController-debug.aar |
build 1 Program Files (x86)

. 3 Adobe
libs
Application Verifier
sre 3 cMmaK
androidTest =1 Common Files
main CJ FORTH
[FAmINE
% assets ~
. . 1 Android
=| options.txt 1 famine
= zonesbdt [famine_proxy
cpp] json_senialize
. libs
ChaosService . ,
i FaminedAndroidController-debug.aar
include [] FaminedAndroidController-release.aar
i chaosC.h £ rapidjson-1.1.0
=| chaosC.inl £ rtte
src
e chaosC.cpp
m Cancel Help

e native-lib.cpp

6l|Page

® Droject Structure

x
+ - Properties | Signing | Flavors | Build Types = Dependencies
SDK Location
Project {include=[*jar], dir=libs}

Compile

Developer Services androidTestCompile('com.android.support test.espressoiespresso-core:2.2.2, { exclude group

Ads

1M com.android suppertappeompat-v7:25.1.0 Compile - f
Authentication M junitjunit4.12 Test compile . ¥
Notifications
Modules ® Choose Modules X
= FaminedndroidController-debug Select the modules the current module should depend on:

:FaminedAndroidController-debug

Lo NIRRT, Ry

Figure 13: Assets folder configuration (left), Import AAR package (right), Import Module Dependency (bottom)
B.3.8. Import Gson 2.8.0 library

Java developer has to import the Gson 2.8.0 or newer Java library (required for the conversion of Java
Objects into their JSON representations and vice-versa) in the Android Studio project. In detail, Java
developer navigates to the project structure window, selects the tab Dependencies and then select
Library dependency. In the window opened, Java developer searches for the

“com.google.code.gson:gson:2.8.0” library, picks the corresponding result and then clicks “OK” (see
Figure 14).

62| Page

® Project Structure

X
+ - Propertie;| Signing| Flavors| Build Types Dependencies
SDK Location Scope +
Project {include=[*.jar], dir=libs} Compile _
Developer Services androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', { exclude groug
Ads M com.android.support:appcompat-v7:23.1.0 Compile > u
Authentication M junitjunit4.12 Test compile .| ¥
Motificati
ottieations [:FaminedAndroidController-debug Compile -
Modules
[FaminedAndroidController-debug
® Choose Library Dependency *

| com.google.code.gson:gson:2.8.0 |

Enter terms for Maven Central search, or fully-qualified coordinates (e.q. comgooglecodegsongson2.2.4)

com.google.code.gson:gson (com.google.code.gson:gson:2.8.0)
com.solidfire.code.gson:gson (com.solidfire.code.gsonigson:2.6.2)
com.google.code.gsonigson-parent (com.google.code.gson:igsen-parent:2.8.0)
com.solidfire.code.gson:gson-parent (com.solidfire.code.gsonigson-parent:2.6.2)
org.immutables:gsen (org.immutables:gson:2.4.3)

io.gsonfire:gson-fire (io.gsonfireigson-fire:1.8.0)

com.fatboyindustrial.gson-jodatime-serialisers:gson-jedatime-serialisers (com.fatboyindustrial.gson-jedatim...
com.fatboyindustrial.gson-javatime-serialisers:gson-javatime-serialisers (com.fatboyindustrial.gsen-javatime...

Figure 14: Import Library Dependency
B.4. Service implementation

This section presents the service implementation procedure. The Chaos service interface is illustrated
in CodeBlock 35 and is used as an example. The Chaos IDL file is compiled with the tao_idl4Android
compiler in order to generate corresponding stub and skeleton files. These generated files are: a)
chaosC.h, b) chaosC.cpp, c) chaosC.h, d) chaosS.cpp, €) chaosl.h, f) chaosl.cpp and g) chaosC.inl. These
files are imported into the Android Studio project by the Java developer as depicted in Figure 15.

#include <ami.idl>

module demo {
interface chaos {

enum Priority {PR INFO, PR WARNING, PR _ERROR};

struct A {
Priority pr;
string a msg;
long number;
}i

typedef sequence<A> ASeq;

63|Page

struct B {
A msg;
string b msg;
float humidity;
long temperature;
boolean pressed;
}i

typedef sequence BSeq;

struct C {

string c_msg;

BSeq bs;

ami: :LongSeq numbers;
bi

typedef sequence<C> CSeq;

struct D {
string d msg;

C clag

//method
D method chaos all (in D d);
//events

void Event earthquake (in D d);

CodeBlock 35: Service Interface “Chaos”

64|Page

main
& assets
cpp
ChaosService
include
i chaosC.h
=| chaosC.inl
i chaosl.h
i chaos5.h
src
e chaosC.cpp
&= chaosl.cpp
&+ chaos5.cpp
& native-lib.cpp
java
H res

& AndroidManifest.aoml

Figure 15: Chaos generated files Imported to Android Studio project

Afterwards, the configuration of the class service’s type file is required. The declaration of the service
type in ServiceTypes, based on the Chaos service example, is illustrated in Figure 16.

"ServiceTypes.h"
"FamineManager.h"
"ChaosC.h"
"ChaosI.h"

SéfviceT?peﬂ {
FamineManager::getInstance () ->RegisterToMapTypelnfo<demo: :chacs> ("demo: : chacs") ;

FamineManager::getInstance () ->RegisterToMapServantPair (& (FamineManager::createlnstance<demc_chaca_i»), "demo::chaos"):

Figure 16: Service type declaration for Chaos service

In addition, the corresponding service configuration in the CMakelList.txt is needed. CMakelList.txt is
located under the <project path>/app directory of the Android Studio project (see Figure 17).

add_library(ChaosService-lib
SHRRED
arc/main/cpp/ChaosService/src/ChaosC.cpp
arc/main/cpp/ChacsService/src/ChaosI.cpp
src/main/cpp/ChacsService/src/Chaoss. cpp)

target_link libraries(ChacsService-lib ${famine-libs})

target_link libraries(# 3pecifies the target library.
native-lib

Links the target library to the log library
included in the NDE.

£{log-1lib}

s{famine-libks}

ChaosService-1lib)

Figure 17: Configuration of the CMakelList.txt file for the Chaos service

65| Page

In order to register a service, a Java class has to be created in order to provide the actual
implementation (e.g., functionality) of the methods defined in the service interface. The example
service Chaos declares one method called method_chaos_all, which takes as argument a complex type
D and returns a complex type D as well. The Chaosimplementation class provides the implementation
of the given method method _chaos_all, as illustrated in Figure 18.

public class ChaosImplementation {

~ public D me a11] o 4)

f

Log.d("",""+d.d_msg);

for{int i =0; i< d.ch.bs.length; i++) |
Log.d{"", "c_msg: " + d.ch.c_msg);
Log.d("", "numbers: " + d.ch.numbers[i]);

1

for{int i =0; i< d.ch.bs.length; i++) |
Log.d("","B pressed:" + d.ch.bs[i].pressed+" B temperature:"+d.ch.bs[i].temperature+" B humidity:"+d.ch.bs[i].humidity+" B b msg:"+d.ch.bs[i].b msqg);
Log.d{""," A a msg:"+d.ch.bs[i].msg.a msg+" A number:"+d.ch.bs[i].msg.number+" A pr:"+d.ch.bs[i].msg.pr);

1

L _a =new ()7

_&.pr = Priority.FR ERROR;
_a.number = 23;

_=.a_msg = "Hello";

B _b = new B():

_b.msg = _a;

_b.b msg = "World";
_b.humidity = (fleat) 23;
_b.pressed = true;
_b.temperature = 12;

C _c =new C();
_c.bs = new B[1];

int arr [] = {3,4};
_c.bs[0] = _b;
_C.numbers = arr;
_c.c_msg = "1";

D _d=new D{);
_d.ch = _¢;

_d.d msg = "See you!";

return _d;

Figure 18: Implementation of ChaosImplementation Java class

Finally, the native RegisterService method is called taking the following arguments (see Figure 19):
e anarray which contains the event names that will be exposed to the registered clients
e the service identifier id
e the context name of the current execution environment

e aninstance of a Java class which implements the methods provided from the service interface

public class MainActivity extends Applompatictivity |
static |
ami.Famine.loadlibrarices():
System. loadLibrary({ "native-1ib");

G0verride
protected woid onCreate (Bundle savedInstanceState) |
super.cnCreate (savedInstanceState) ;

getContentView (R.lavout.activity main);
ami.Famine.getInstance().Initialize (this);
String [] ewventsChacs = |

"earthquake"

}:

ami.Famine.ge:Instance{?.RegisterServicﬂ(eventsChacs,"demc::chacs","thacs“,new ChaosImplementation ())|s

Figure 19: Register service Chaos in Java

66| Page

B.5. Using a service

This section describes the procedure of resolving a service. Taking as example the previous service
interface Chaos, only the generated files chaosC.h, chaosC.cpp, chaosC.h, and chaosC.inl are required.
Accordingly, the generated files must be imported to the Android Studio project under the <project
path>/app/main/cpp directory as illustrated in Figure 20. The corresponding service type declaration
within the ServiceTypes scope is illustrated in Figure 21.

main
& assets
cpp
ChaosService
include
i chaosC.h
=| chaosC.inl
3
e chaosC.opp
e native-lib.cpp
java

= res

2l AndroidManifestsoml

Figure 20: Chaos generated files Imported to Android Studio project (resolve)

"ServiceTypes.h"
"FamineManager.h"
"ChaosC.h"

Fewice'l‘gp-es {

}

FamineManager::getInstance () -»RegisterToMapTIvpeInfo<demo:

:chaca» ("demo: :chaos") ;

Figure 21: Service type declaration for Chaos service (resolve)

In addition, the corresponding service configuration in the CMakelist.txt is needed. CMakelList.txt is
located under the <project path>/app directory of the Android Studio project (see Figure 22)

add_library(ChacsService-lib
SHARED
arc/main/cpp/ChacsService,/src/ChacsC.cpp

target_link libraries(ChaosService-1ib ${famine-libs})

target_link libraries(# Specifies the target library.

native-lib

Links the target library to the log library

included in the NLKE.
#{log-lib}
¢{famine-1liks}
ChaosService-lib)

Figure 22: Configuration of Chaos service in the CMakelist.txt file

Finally, the native Resolve method is called taking the following arguments (see Figure 23):

67| Page

e anarray with the event names of interest
e the service identifier id
e the context name in which the resolved service executes

e aninstance of aJava class in which the Java developer has implemented the corresponding event
handlers

package com.example.amidemo.test;

import android.support.v?.app.ipplompatActivity;
import android.os.Bundle;

import com.example.amidemo.test.demc.ChaosEventHandler;
public class MainfActivity extends Applompatictivity |

static |
ami.Famine.loadlibraries();
System. loadlibrary("native-1ik");

i0verride
protected weid cnCreate (Bundle savedInstanceState) |
super.onlreate (savedInstanceState) ;

setContentView (R.layout.activity main);
ami.Famine.getInstance().Initialize (this);
Cbject [] eventaChacs = |

"earthquake"

br

ami.Famine.getInstﬁnce().ResnlveServicd(eventsChacs,"demc::chacs“,"chacs“, new ChaosEventHandler {}]:

Figure 23: Example of service usage/resolve

B.6. Sending events

This section presents the procedure of sending events facilitated by the SendEvent method. The
SendEvent method take the following arguments:

e the service identifier id

e the context name

e the name of the event that is going to be sent

e an array type of Object which contains the event arguments

For example, the Chaos service interface provides the earthquake event, which takes as argument a
struct type of D. Hence, the appropriate usage of the SentEvent is illustrated in Figure 24.

68| Page

@0werride

protected void onCreate (Bundle savedInstanceState) |
super.onCreate (savedInstanceState);
setContentView (R.layout.activity mainm):

ami.Famine.getInstance().Initialize (this);

String [] eventsChacs = |
"earthquake"

ami.Famine.getInstance() .RegisterService (eventaChaos, "demo: :chaos", "Chaos" ,new ChacsEventHandler());

B _a =nmnew A();

_&.pr = Priority.FPR ERROR;
_a.number = 23;

_8.a m=2g = "Good";

B b =new B():

_b.m=g = _a;

_b.b m=g = "Morning";
_b.humidity = (float) 30;
_b.pressed = true:;
_b.temperature = 17;

C _c =mnew C();
_c.bs = new B[1]:

int arr [] = {32,1,7,344};
_c.hs[0] = _b:

_c.numbers = arr;

_C.c m2g = "I";

D _d=mnewD();
_d.ch = _c»
_d.d m=g = "Bye!";

ami.Famine.getInstance() .SendEvent ("demo: :chaos", "Chaos", "earthquake", new Object[]{_d}):

Figure 24: Send Event

B.7. Receiving events

This section presents the procedure of receiving events. For this purpose, a Java class is needed in order
to handle the received event. For example, the Chaos service interface provides the earthquake event.
The declaration of the corresponding event handler is illustrated in Figure 25.

public class ChacsEventHandler
{a
public woid ea::':lq;lr:kel[{:-bject [1 arr) {
Log.d{"", Mhkkkkkdkkkkkkkkkdkkkkk ko kkkkkkkkk ok kkkaarthouakekskidkkkkkikkkkikkdkikkkkkikkkkikkkkE) -
D d = ami.Famine.getInstance() .gson.fromdson{arr[0].teString(),D.class);
Log.d("","d.msg: "+d.d msg+" d.ch.c msg: "+d.ch.c msg):
}
}

Figure 25: earthquake event handler

69| Page

B.8. Call Function

Regarding the process of remote procedure call, the CallFunction method is required. The CallFunction
method takes the following arguments:

e the service identifier id

e the context name in which the resolved service executes
e the name of the function that is going to be invoked

e alava Object array, which contains the parameter list

Concerning the Chaos service interface, the earthquake method is providing. An example CallFunction
method invocation is illustrated in Figure 26.

ami.Famine.getInstance() .ResolveService (eventaChaos, "demo: :chaos", "Chaos", new Chacalmplementation()):

L & =new L();

_&.pr = Priority.PR ERROR;
_a.number = 237

_&.a msg = "Good";

E _b = new B{);

_b.msg = _a;

_b.b msg = "Morning";
_b.humidity = (float) 20;
_b.pressed = true;
_b.temperature = 17;

C _c=mnew C();
_c.bs = new B[1];

int arr [] = {32,1,7,344};
_c.bs[0] = _b;

_c.numbers = arry

_C.c msg = .

D _d=mnewD{);
_d.ch = _c;
_d.d msg = "Bye!";

Object returned value = ami.Famine.getInstance().CallFunction("demo::chaos", "Chaos", "earthquake", new Cbject[]{_d}):
D ocb] = ami.Famine.getInstance().gson.Ifromdson(returned wvalue.toString(),D.class);
Log.e("","d m2g = "+cbj.d m=g + " c msg = " + obj.ch.c m=g + " arr.length = " + cbj.ch.bs.length);

Figure 26: Invocation example of the earthquake method

70| Page

