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  Introduction

 1. Introduction

Chirality  is  an  intrinsic  property  of  objects  which  is  encountered  in  many
branches of science. The general description of this phenomenon is the inequality of an
object to its mirror image. A familiar example of a chiral object is the hand, where the
name of the phenomenon is derived from (greek: χείρ). When one hand is put above the
other  with  opposite  sides  facing,  the  features  of  one  hand  do  not  match  with  the
features of the other. This means that each hand is not a superimposable image of the
other. A chiral object and its mirror image are called enantiomorphs, and when referring
to molecules, enantiomers.  Sugars are other examples of chiral substances, the two
enantiomers of which have distinguishable properties from each other. For example, the
sugar that is widely used as a sweetener is D-Glucose, the right-handed enantiomer of
Glucose; L-Glucose, the left-handed correspondent, is not naturally occuring, does not
taste sweet and also, cannot be used by living organisms as a source of energy, as D-
Glucose is.

Chiral molecules display an interesting property when interacting with light: the
polarization of the wave is rotated at the direction of the molecule's handedeness. That
is,  when a  plane wave propagates  through a  medium of  right  helicity,  its  plane of
polarization is rotated to the right (considering the light frame), no matter which side it
enters the medium (fig. 1a). This is called the chiral or optical rotation of light, which is
contrary to the Faraday rotation, where the rotation, considering the light frame,

depends on the side of  the medium on which the light  enters  (fig.  1b).  These two
symmetries are explained in more details later. 

But where does this optical rotation come from? In section 2.5, a mathematical

Figure 1: Chiral rotation (a) and Faraday rotation (b) in the lab 
frame, for the corresponding positive and negative magnetic 
fields
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approach is taken, starting from Maxwell's equations,  to explain what happens when a
light wave propagates through a chiral medium. For a more qualitative explanation, the
circular birefringence and circular dichroism effects are to be taken into account. Any
linear polarized light wave can be considered as the superposition of two circularly
polarized waves, one left- and one right-circularly polarised. Circular birefringence is
an  intrinsic  property  of  chiral  media,  which  dictates  that  each  circularly  polarized
component propagates with different speed inside the medium. This means that a chiral
medium has two effective refractive indices, nR and nL, one for each wave component.
The different refractive indices result in a phase difference between the two circularly
polarized waves, which is translated into a rotation of the polarization plane (see figure
2). The strength of the chirality effect is determined by the difference of the refractive
indices, given by the chirality factor γ (γ=nR-nL).

Optical  rotation  is  the  dispersive  property  of  the  chiral  medium,  related  to  the
corresponding  absorptive  property,  circular  dichroism.  Circular  dichroism  is  the
difference in the absorbance of left (AL) and right (AR) circularly polarized light by a
chiral medium.  It only occurs at wavelengths where a chiral medium absorbs light, and
is connected to optical rotation via the Kramers-Kronig relations (figure  2). Circular
dichroism is a measurable quantity itself, and is used in studying proteins and other
biological molecules. In a circular dichroism measurement experiment,  left and right
circularly  polarized  light  is  inserted  in  a  chiral  medium,  and  the  difference  of
absorption in the output is measured. This difference is wavelength- dependent, as is
the  optical  rotation.  The  measurement  of  circular  dichroism  is  one  of  the  future

prospects of the technique presented in this work.
The  measurement  of  chirality is  of  great  importance  to  many  fields,  from

Figure 2: Circular birefringence and circular dichroism on a chiral medium. For a 
given wavelength, there are two absorbances and refractive indices, one for each 
circular polarization.
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pharmacology to chemistry and fundamental physics. Chiral sensing of weak signals is
difficult, because of the high, time-dependent backgrounds(e.g. spurious birefringence)
that suppress them and the imperfect and slow subtraction procedures used up to now.
Recently, Bougas et al.[1] proposed a new technique for measuring weak chiral signals,
using signal reversals in an EW-CRDE configuration with counter-propagating beams.
The aforementioned problems can all be solved by this technique: as we saw before,
the weak signal can be enhanced by the number of intracavity round-trips; spurious
linear birefringence is suppressed, by a Faraday rotation; and a rapid reversal procedure
is  accomplished  by  reversing  the  Faraday  rotation,  by  rotating  the  magnetic  field
direction, and then reversing the signals obtained from the counter-propagating beams.
This way, measurement of the chirality of gaseous and liquid chiral samples can be
feasible. This technique is examined in more depth in paragraph  3.5. 

The technique introduced by Bougas et al.,  and applied for  chiral  sensing by
Sofikitis et al.[2] gives a great advantage in measuring very small quantities of a chiral
sample. Only a few millibars of a gaseous chiral sample and a few milliliters of a liquid
chiral sampe are enough to measure the chirality effect strength with a precision in the
order of  10−6

.  Such a sensitive measurement can prove very useful  in fields like
pharmacology,  where  small  sample  volumes  are  better  to  be  used.  A  possible
application  could  be  the  deterrmination  of  a  medicine's  content  of  the  two  chiral
enantiomers. In most cases, the two enantiomers have different properties, e.g. one of
them is  a  beneficial  enantiomer  whilst  the  other  is  neutral,  or  even harmful.  Such
quality control is important in drug design, synthesis and production.

This technique, being based on Total Internal Reflection (TIR) at the interface
between a prism and the sample, is functional up to a certain sample refractive index; if
index matching between the prism and the sample occurs, TIR conditions are not met,
and the light is transmitted through the sample, making the measurement impossible. In
the last part of this work, the same configuration is used to propose a way to measure
samples of  even smaller  volume,  with refractive indices larger than the one of  the
prism. The sample used is a thin film, and the technique is based on the waveguiding
effect;  the light  is  trapped inside the sample,  making multiple  reflections back and
forth, thus maintaining TIR conditions between the sample and the air. The light energy
travels back to the prism and continues travelling through the cavity, with its plane of
polarization rotated owing to the chirality  effect  of  the sample.  The sample in  this
configuration  can  be  seen  as  an  optically  active  Fabry-Perot  etalon,  which  was
previously  theoretically  studied  by Lalov and Miteva[3], Lalov and Georgieva[4] and
Silvermann  and  Badoz[5].  Lastly,  a  possible  experimental  process  is  proposed  to
examine the capability of the proposed configuration to measure the chirality factor γ
of a thin chiral film. 

We  consider  the  two  experimental  processes  presented  in  this  work  to  be
complementary to each other. While the configuration introduced by Sofikitis et al. is
proposed for the measurement of samples with lower refractive indices than the one of
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the prism, the one presented in this work covers the refractive indices equal to or higher
than that of the prism. Therefore,  any liquid chiral sample can be measured by the
cofigurations proposed in this work, using only a very small volume of the substance to
be measured. The choice whether “bulk” material or a thin film is to be used, should be
made based on the refractive index of the sample.
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 2.  Propagation of light in chiral and achiral
materials

 2.1. Introduction

In  this  section,  we make a  general  discussion about  the propagation  of  light
through chiral-achiral media configurations. To analyze the light propagation in this
case, one can start from the Maxwell equations, then derive the relations that describe
light  propagation  in  the  simple  case  of  an  achiral  material.  We  will  derive  these
equations, known as Fresnel coefficients, for reflection and transmission, and use them
to  describe  the  refraction  of  light  in  an  achiral  medium.  Then,  introducing  the
correction for a chiral material in the Maxwell equations, we study the reflection from a
chiral-achiral  interface,  extracting  the  corresponding  generalized  Fresnel  equations.
Following this, we show how the light propagates in a chiral medium, after refraction
at  the interface  with an achiral  medium,  taking into  account  two cases,  that  of  an
infinite chiral medium and that of a chiral slab between two achiral media. Finally, a
discussion about the evanescent wave and Goos-Hänchen is made,  effects that  take
place in Total Internal Reflection conditions.

 2.2.Refraction of light

We  first  consider  an  isotropic,  nonconducting,  non-chiral  medium,  with  electric
permittivity  ε  and magnetic permeability μ.  The electric field E and magnetic field H
are related via the well-known Maxwell Equations,

c ∇×E=
−∂ B
∂ t

 (2.2.1)

∇×H =
∂ D
∂ t

 (2.2.2)

∇⋅H =0  (2.2.3)

∇⋅E=0  (2.2.4)
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 Figure 3: Propagation of a TEM electromagnetic field  
 

Where D=εE the electric displacement field and B=μΗ the magnetic field. The
equations used for the study of a chiral medium are similar, only with slightly different
relations for D and B 

For a plane harmonic wave, these formulae can give a simplified expression for
the magnitudes of the two fields. The solution of the basic wave equation:

∇
2 U=

1
u2

∂
2 U
∂ t2  (2.2.5)

would then be 

e i(k⋅r−ωt )
 (2.2.6)

Where  k  is  the  wavevector,  r  is  the  space  vector  √ x2
+ y2

+ z2
, ω  is  the  wave

frequency, related to  k by ω=kc/n. We now have to simplify the del operator and the
time derivative from the Maxwell equations. So, first we take the del operator 

 

∇= î ∂
∂ x

+ ĵ ∂
∂ y

+k̂ ∂
∂ z

 (2.2.7)

of the wave expression (2.2.6):

∇ ei(k⋅r−ωt )
=ikei (k⋅r−ωτ )  (2.2.8)

E


k


H


file:///C:/Users/user/Google%20Drive/Thesis_Alex/Thesis%20text&%20comments/TEM.jpg
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and then its time derivative:

∂
∂ t

e i(k⋅r−ωt )
=−iωei (k⋅r−ωτ )  (2.2.9)

to find that we could substitute those operators at (2.2.1 - 2.2.4) as such:
∂
∂ t

→−iω

∇ →i k

By substituting the expressions for D and H, we have

k×E=μω Η  (2.2.10)

k×H =−εω Ε  (2.2.11)

k⋅E=0  (2.2.12)

k⋅H =0  (2.2.13)

Taking a look to these relations, one can see that k, the vector of the wave propagation,
is perpendicular to both fields, which in turn are perpendicular to each other (Figure 3),
which  is  an  expected  result.  What  needs  to  be  extracted  is  a  convenient  relation
between the magnitudes of the two fields. This can be obtained easily from (2.2.11)

H =
εω
k

Ε  (2.2.14)

This  relation will  be useful  for  the study of  how the wave propagates through the
presence of an interface between two media of different refractive index. Consider a
plane light beam propagating through an isotropic, nonconducting medium of refractive
index n1 , towards the boundary with another medium of refractive index n2

. Part
of  the wave will  be reflected,  and another part  will  be transmitted into the second
medium, as shown in Figure 4. 
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Figure 4: Refraction of a wave. The wavefunction should be 
continuous at the interface between the two media.

Let  k,k',k''denote  the  wavevector  of  the  incident,  reflected  and  transmitted  wave
respectively.  From  the  plane  wave  expression  (2.2.6),  we  have  the  following
expressions for the three waves:

E=exp [i(k⋅r )−ωt ]
E ' =exp[ i(k '⋅r ' )−ωt]

E ' '=exp[ i(k ' '⋅r ' ' )−ωt ]
(2.2.15)

Snell's law is in effect for all three waves simultaneously, and can be derived by the
boundary conditions, i.e. that the wave arguments should be equal at the boundary, so

n1 sinθ1=n2 sinθ 2  (2.2.16)

 2.3.Fresnel Equations

We  now  return  to  the  simplified  equations  (2.10)-(2.13).  Let  E,E',E''  denote  the

E E'

E''

θi θr

θt

ptr , 06/26/14
Check that again
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electric field amplitudes of the incident, reflected and transmitted wave respectively.
The corresponding magnetic fields will be:

H =
1

μω
k×E  (2.3.1)

H '=
1

μω
k '×E '  (2.3.2)

H ' '=
1

μω
k ' '×E ' '  (2.3.3)

From these relations, we can extract the reflection and transmission amplitudes after
the incidence at the interface between the two media. The reflection and transmission
will depend on what the polarization of the incident wave will be. Considering that, we
will obtain the corresponding amplitudes for both the case of incident s (E parallel to
the boundary) and p (E perpendicular to the boundary) polarization. 

The boundary conditions for a plane wave will lead us to the solution for the
reflection and transmission coefficients. It is required that the tangential components of
the two fields be continuous at the upper and lower side of the interface. From this, we
obtain

 E ' +E=E ' ' (2.3.4)

 −H cosθ+H ' cosθ=−H ' ' cosφ (2.3.5)

 −kΕ cosθ+k ' E ' cosθ=−k ' ' E ' ' cosφ (2.3.6)

for s polarization, and 

 H −H '=H ' ' (2.3.7)

 kΕ−k ' E '=−k ' ' E ' ' (2.3.8)

 Εcosθ+E ' cosθ=E ' ' cosφ (2.3.9)

for p-polarization, with φ being the angle of the refracted beam in the second medium. 

We now define the reflection coefficients, rs and rp,  and the transmission coefficients, ts

and  tp,  where  the  s  and  p  subscripts  denote  that  the  coefficients  are  for  s  and  p
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polarization incident respectively:

r s=[ E ' / E ] ∣s  (2.3.10)

r p=[ E ' / E ] ∣p  (2.3.11)

t s=[ E ' ' / E ] ∣s  (2.3.12)

t p=[ E ' ' / E ] ∣p  (2.3.13)

Then, by eliminating E'', we obtain an expression for the reflection amplitudes:

r s=
n1cosθ−n2 cosφ

n1cosθ+n2 cosφ
 (2.3.14)

r p=
n2 cosθ−n1 cosφ

n1cosθ+n2 cosφ

 
(2.3.15)

and by eliminating E', an expression for the transmission amplitudes:

t s=
2cosθ sinφ
sin(θ−φ)

 (2.3.16)

t p=
2cosθ sinφ

sin(θ−φ)cos (θ−φ)
 (2.3.17)

The above equations are known as the Fresnel equations. They are very useful in giving
the intensity and phase of the reflected and transmitted waves which are produced by
an incident wave at an interface between two media.

The total intensity of the reflected wave is given by the reflectance, i.e. the square of
the absolute value of the reflection coefficient:

R s=∣r s∣
2
=∣E '

E ∣
2

 (2.3.18)
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R p=∣r p∣
2
=∣E '

E ∣
2

 (2.3.19)

The reflectance is defined as the fraction of the energy of the incident wave that is
reflected. Since energy is conserved after the boundary, 

∣r s∣
2
+∣t s∣

2
=1  (2.3.20)
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Figure 5: Reflectance for incident s- (a) and p-polarization (b) 

Figure 5 shows how the reflectance varies with the angle of incidence of the wave, for

a refractive index ratio n1

n2

=1.45  . We can see that, after a certain value of the angle of

incidence, called the critical angle, the reflectance is equal to 1. This means that the
whole light beam is reflected at the interface, that is, we have Total Internal Reflection
(TIR). This critical angle is given by Snell's law, by setting θ2=90ο:

θc=arcsin
n2

n1

 (2.3.21)

For TIR conditions, the Fresnel equations become:

r s=−
cosθ− i √sin2θ−n2

cosθ+ i √sin2θ−n2
 (2.3.22)

r p=−
n2cosθ+i √sin2 θ−n2

n2cosθ+i √sin2 θ−n2
 (2.3.23)

where, using Snell's law (n1sinθ=n2sinφ), the angle φ is eliminated, by expressing it in
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terms of  θ. The TIR conditions will be discussed in more depth later.  Νote that the

value of  Rp  becomes zero at a certain, non-zero angle. For  n1

n2

=1.45 , this angle is

44.6°, marking the Brewster angle, i.e. the angle in which the p-polarization component
of the reflected wave becomes zero.

 2.4.Reflection from a chiral-achiral interface

The discussion made earlier about the Maxwell equations and their application in the
case of a plane wave incident on a boundary between two different media, is similar in
the case of chiral media. In this case, we define two refractive indices, n+

 and n−
,

each one corresponding to the respective positive or negative helicity of the incident
wave,  with  n+−n−=γ .  The difference is that,  when treating a chiral  medium, the
electric  displacement  field  and  magnetic  induction  are  corrected  by  a  factor
proportional  to  the  strength  of  the  chiral  effect,  which  is  expressed  by  γ.  These
corrections would be[6] 1:    

D=ε Ε−g
∂ H
∂ t

 (2.4.1)

B=μ Η +g
∂ Ε
∂ t

(2.4.2)

and, for a monochromatic wave, 

Β=μ Η −iγ Ε  (2.4.3)

D=ε Ε−iγ Η  (2.4.4)

where γ= ωg. 
Consider  an  s-polarized,  monochromatic  wave incident  to  the interface between an
achiral and an (infinite) chiral medium, like in figure 4 The wave is propagating inside
the medium in the zx plane, i.e. the plane of incidence, at the x direction, whilst the
boundary  lies  at  the  zy  plane.  Its  wavevector  would  then  be  k1=(K,0,q1),   and  its
electric field, given the magnitude is unity, is given by 

E s=(0,1, 0)e i (K x+q1 z )  (2.4.5)

1 Note that these expressions are not the only ones to be found in literature; The discussion about the different formulae 
given by other researches is made in [6]
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Let θ1 be the angle of incidence. The reflected wave will then be

E ' =(r spcosθ1, r ss , r sp sinθ1)expi (Kx − q1 z )  (2.4.6)

The  interesting  element  of  this  expression  is  the  presence  of  non-zero  x  and  z
components of the electric field, since the incident wave only has a y component. This
means  that  the  reflected  wave  has  its  polarization  plane  changed,  because  of  the
interaction  with  the  chiral  medium  at  the  interface.  The  rsp coefficient  gives  the
amplitude of this polarization change,  i.e.  the amplitude of the p-component of the
polarization of the reflected wave, when the incident wave is s-polarized. We will later
show that it is only present when the chiral effect is present; if γ=0, rsp=0. 
The respective expressions for the reflected part of a p-polarization incident wave is:

E ' =(r ppcosθ 1, r ps , r pp sinθ1)expi (Kx+q1 z)  (2.4.7)

and the corresponding transmission waves will be:

E ' ' s=(t sp cosθ2, t ss ,−t sp sinθ2)ei [Kx+q 2(z−d )]  (2.4.8)

E ' ' p=(t pp cosθ2, t ps ,−t sp sinθ2)e i[Kx+q2( z−d )]  (2.4.9)

for s- and p-polarized incident waves, respectively.
In  some  cases,  it  is  more  convenient  to  use  the  helicity  notation  to  express  the
reflection  and  transmission  coefficients.  That  is,  for  example,  the  negative  helicity
component of a reflected wave, when the incidence wave is of positive helicity, is r+-,
and so forth. The derivation of the helicity-notated coefficients from their s-p notated
equivalents is shown in the appendix. Here we give the reflection coefficients, as given
by Lekner[6].

Let 

c1=cosθ1 , c±=cosθ±=√1−(n1 sinθ 1/n±)
2 , m=√ εμ1

με1

 (2.4.10)

Where μ1, ε1 are the permeability and permittivity of the medium of incidence, and μ,ε
are the respective quantities for the achiral medium. All reflection coefficients share a
common denominator, 
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D=c1
2
+c1(c++c−)(m−m−1

)/2+c+c− (2.4.11)

Then the reflection coefficients for s-polarized light incident are[6]

r ss=[c1
2
+c1(c++c−)(m−m−1

)/2+c+c− ]/ D  (2.4.12)

r sp=−ic1(c+−c−)/ D  (2.4.13)

And for p-polarized light incident,

r pp=−[c1
2
+c1(c++c−)(m−m−1

)/2−c+c−]/ D  (2.4.14)

r ps=−ic1(c+−c−)/ D  (2.4.15)

Note that rsp=rps, and that these quantities are always zero for c+=c-  => γ=0. Since the
meaning  of  the  rsp coefficient  is  the  quantity  of  the  the  amplitude  alteration  of  s-
polarization incident to p-polarization, one could conclude that, when rsp=0=rps, there is
no alteration in the polarization plane whatsoever, and the incident polarization is the
same with the reflected. To show that this is not exactly the case here, an alternative
notation can be used for the reflection amplitudes.

As  is  known,  a  plane  polarization  can  be  expressed  in  terms  of  circular
polarization or helicity. Any wave of a plane polarization can be viewed as the coherent
superposition of two waves of opposite helicities (+ and -) and equal amplitudes. Thus,
the reflection amplitudes can be expressed in terms of the helicity too, instead of the
planes  of  the  polarization.  For  incident  circularly  polarized  light,  the  reflection
amplitudes r++,  r+-,  r-+,  r--  are defined. For example, the r+- amplitude is the complex
ampltude of the light reflected with negative helicity, when light with positive helicity
is incident. 
The reflection amplitudes using the helicity notation can be expressed in terms of the
corresponding plane polarization amplitudes[6]:

r++=
1
2
(r ss−r pp)−

1
2

i(r sp+r ps)  (2.4.16)

r+−=−
1
2
(r ss+r pp)−

1
2

i(r sp−r ps)  (2.4.17)

r−+=−
1
2
(r ss+r pp)+

1
2

i(rsp−r ps)  (2.4.18)
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r−−=
1
2
(r ss−r pp)+

1
2

i (r sp+r ps)  (2.4.19)

Figure 4 shows  the reflectance of each helicity change, for  n1=1.45332 and  n=1 ,
when γ=0.6∗10−6 .  r++ and r−− have a first peak exactly at the critical angle, but
then a small slope occurs, until the reflectance goes back to 1 at grazing incidence. This
slope is owing to the rise of r+− and r−+ after the critical angle. This would mean
that, when in TIR conditions, there is a change in the helicity of the light after the
reflection, even if there is no chiral effect to change the polarization plane. The change
in the helicity, though, is not a change in the polarization plane per se, but a change in
the phase between the s and p polarization amplitudes. Even for angles smaller than the
critical angle, there is a non-zero value for  r−+ and  r+− .  This non-zero value is
attributed to the property of the light to change its helicity from positive to negative
after the reflection at the surface. It is shown that the r+− is 3%,  and r++  is 0% up
to 40°, so all the reflected light has its helicity completely changed.

The  explanation  of  the  non-zero  values  after  the  critical  angle  is  somewhat
different. The light polarization in TIR undergoes a phase shift between the s and p
polarizations, when it is reflected at the surface, whether the medium it reflects from is
chiral or achiral. There is thus an inheritent ellipsometric phase shift occuring at the
interface.  This is attributed to the Goos-Hänchen effect[7], which shows that the light
travels at the interface between the two media for a very short length while totally
reflected, and while travelling there it undergoes a phase shift. This effect is discussed
in more details in paragraph 4.3. 

 

Figure 6: Reflectances vs angle of incidence, using the helicity notation. The sums   r+++r+- and  
r--+r-+ are equal to unity, at TIR conditions. 



   Propagation of light in chiral and achiral materials

Figure  7  shows  the  variation  of  the  reflected  wave  energy  vs  the  angle  of
incidence  of  the  wave  incident  to  the  chiral-achiral  boundary.  The  reflection
coefficients are derived using the continuity of the tangential vector of the electric and
magnetic fields at the boundary, as shown in the appendix. We can see that, for a strong
chiral effect  (γ ~ 10-3), the change in the plane of rotation is observable around the
critical angle. This change is not observable using a more realistic  number for γ, in the
order of 10-6. Looking at the Rss and Rpp plots of figure 7, one can see that the transition
to unity magnitude is less steep than when the second medium is non-chiral. This is
attributed  to a non-zero  Rsp coefficient exactly at the critical angle, which then drops
exponentially to zero. This is in accordance with many studies, which have shown an
enhancement of chirality effects in the vicinity of the critical angle. As we will see, our
work will focus in that area, because the experimental configuration we use strongly
favors searching at that vicinity.  
 

Figure 7: Reflection amplitudes from a chiral-achiral interface, where , for (a) incident s, reflected 
s polarization (b) incident s-, reflected p-polarization. Note that this amplitude is non-zero only in 
the vicinity of the critical angle (c) incident p-, reflected p-polarization (d) same as (c), but with a 
closer look at the angles in the vicinity of the Brewster angle (~43.8°)

 2.5.Propagation in a chiral medium

Here we discuss the propagation of the light beam inside the chiral medium. Consider a
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homogeneous  chiral  medium,  with  ε,μ  and  γ  constant.  Using  the  aforementioned
expressions for D and B   (2.2.1 - 2.2.4) 
and the variation of Maxwell equations, considering a time dependence of e-iωt,

∇×E=iω B  (2.5.1)

∇×Η=−iω D  (2.5.2)

After some calculations (see appendix), we obtain three differential equations for the
three E directional components 

[(εμ−γ2
)

ω2

c2 −q2
]E x−2i

ω
c

γqE y+qKE z=0  (2.5.3)

2i
ω
c

γqE x+[(εμ−γ2
)
ω2

c2 −K 2
−q2

]E y−2i
ω
c

γKE z=0  (2.5.4)

KqE x−2i
ω
c

γKE y+[(εμ−γ2
)

ω2

c2 −K 2
]E z=0  (2.5.5)

Since the three components are linearly independent, the determinant of their respective
coefficients should be zero, i.e. 

 (
k γ

2
−q2

−2iωγ /c Kq

2iqωγ /c k γ
2
−K2

−q2 2iKωγ /c

Kq 2i Kωγ /c k 2
−K2 )  (2.5.6)

where

k γ
2
=(εμ−γ2

)
ω2

c2  (2.5.7)

and K is the x component of the wavevector. Note that K is the constant of motion, due
to translational invariance in the x direction2.
From there, we see that q has 4 possible solutions; two for positive K (=propagation in
the +z direction) and two for negative K  (=propagation in the -z direction). Each one

2
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of the two distinct eigenvalues of q for each K are corresponding to each one of the
refractive indices of the chiral medium. A picture of this is given  in figure 8.

Thus the wavevector is given by

k±=√K 2
+q±

2
=n±

ω
c
=√εμ±γ

ω
c

 (2.5.8)

with √εμ±γ being the two effective refractive indices of the medium. 

As such, there will be two electric fields propagating inside the chiral medium:

Ε+∝(q+, ik+,−K )  (2.5.9)

Ε−∝(q−,−ik−,−K )  (2.5.10)

Figure 8: Refraction in a chiral medium

   

Practically, this means that, a plane polarized light beam is split in two beams, with
different angles of refraction, when it enters a chiral medium, one with left and another
with right circular polarization. This is an expected result, predicted by Fresnel in the
1820's,  and experimentally  demonstrated by Ghosh and Fisher[8] only in  2006. The
physical explanation for this splitting lies into the existence of two refractive indices in

E E'

E''q
E'' q

θi θr
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the  chiral  medium.  As  known,  the  refraction  in  a  medium is  a  result  of  Fermat's
theorem, which states that when light travels through two points, it will always travel in
the path that will take the least time. The velocity of the light depends on the refractive
index of  the  medium inside  which it  propagates,  so  when the  light  enters  a  chiral
medium, it can travel under the effect of any of the refractive indices. As noted before,
a plane polarized wave can be viewed as the coherent superposition of two circular
polarized waves of  equal  amplitude ratio  between them. So,  when a beam of such
polarization  enters  a  chiral  medium,  the  (+)-polarized  portion  of  the  wave  will  be
refracted with a refractive index n+ and the (-)-polarized portion will be refracted with
n-.  Thus  each  wave  acquires  a  different  phase  as  it  propagates  through  the  chiral
medium. 

 2.6.Propagation of light inside a chiral slab

Figure 9: Propagation of a beam inside a chiral slab, assuming n2<n<n1

Consider a chiral layer of thickness d and infinite width3, between two achiral 
media of refractive indices n1=√εμ1 and n2=√εμ2 respectively. We will henceforth 
name the medium n1, medium of incidence, and the medium n2 will be the substrate. 
The chiral medium has two refractive indices, n±=√ εμ±γ , as noted before, each 

3 We can make this approximation if we consider the wavelength of the light propagating through the chiral slab to be 
small, compared to the slab thickness.
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applying to each circular polarization, and it lays between z=0 and z=d. When not in 
TIR conditions, the light propagates inside the medium at the forward z direction, split 
in two beams, as we saw in chapter 2.2. When the two beams encounter the slab-
substrate interface, the snell's law is in effect again, and there will be another reflected-
transmitted pair from this interface. Each reflected beam will again split in two 
reflected beams upon reflection, each one of pure right or left circular polarization. The
angle of incidence of each beam at the z=d interface is the angle θ±, applying for the 
respective polarization of each beam. This will also be the angle of every incident-
reflected pair inside the chiral slab for any more reflections occuring.  So Snell's law 
gives

n2 Sinθ2=n± Sinθ±=n±

n1 Sinθ1

n±

=n1 Sinθ1  (2.6.1)

where θ2 is the angle of refraction in the substrate.

The reflections inside the layer can continue until the energy of the light beam depletes.
There are thus four kinds of eigenmodes of propagation inside the chiral slab, two in 
the positive z-direction (one for each refractive index of the chiral medium) and two on
the negative z-direction, which are given by:

  Ε+

f , b
=(±cosθ+ , i ,−sinθ+)e i( Kx±q+ z)

 (2.6.2)

  Ε−

f , b
=(±cosθ− , i ,−sinθ−)e i( Kx±q− z)

 (2.6.3)

where f and b superscripts denote forward and backward propagation inside the slab, 
and +,- signs denote the two different refractive indices. To find the total reflection and 
transmission amplitudes, one should apply the continuity of the electric field with the 
incident wave, at the z=0 interface, and the transmitted wave, at the z=d interface.

The incident and reflected waves at the first interface are given by 2.6.2-2.6.3. The total
electric field inside the slab is[6]:

E= f + E+
f
+ f − E−

f
+b+ E+

b
+b− E−

b  (2.6.4)

and the corresponding magnetic field will be

H =−i(√ ε
μ
)( f + E+

f − f − E−
f +b+ E+

b −b− E−
b )  (2.6.5)

A more detailed discussion about the propagation of light inside a chiral slab is made in
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paragraph 5.4, along with the description of an optically active etalon, which is the 
same configuration as the one discussed here,for the case where n>n1>n2 .

 2.7.Mode and phase matrices

The transmitted fields are given by:

E2s =(t sp cosθ 2, tss ,−t sp sinθ 2)ei [Kx+q2 (z−d )]

 (2.7.1)

H 2s=
n2

μ2

(−t ss cosθ2, t sp ,t ss sinθ 2)ei[Kx+q2( z−d )]

 (2.7.2)

E2p =(t ppcosθ 2, tps ,−t pp sinθ 2)e
i [Kx+q2 (z−d )]

 (2.7.3)

H 2s=
n2

μ2

(−t ps cosθ2, t pp , t ps sinθ 2)e i[Kx+q2( z−d )]

 
(2.7.4)

Now one has to consider the continuity of the tangential component of E x , E y , H x , H y

for s and p polarization incident separately. For s polarization, at z=0 we have:

r sp c1= f +c++ f −c−−b+c+−b− c−  (2.7.5)

1+rss=i ( f +− f −)+i(b+−b−)  (2.7.6)

−√ ε 1

μ1

r sp=√ ε
μ
( f + c+− f − c−−b+c++b− c−) (2.7.7)

−√ ε 1

μ1

(1−r ss)=√ ε
μ
( f ++ f −+b++b−)

 
(2.7.8)

And at z=d, 

t sp c2= f '+c++ f '− c−−b '+ c+−b '− c−  (2.7.9)

t ss=i( f '+− f '−)+i(b '+−b '−)  (2.7.10)
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−√ ε 2

μ2

t ss c2=−i √ ε
μ
( f '+ c+− f '−c−−b'+c++b '−c−)  (2.7.11)

√ ε1

μ1

(t sp)=√ ε
μ
( f '++ f '−+b '++b '−)  (2.7.12)

with 

f '±= f ±e iq± d  (2.7.13)

b '±=b± e−iq± d  (2.7.14)

The fields inside the chiral slab for p polarization incident are of the same form, only 
with different f± and b± Thus both cases can be solved with the same matrices. These 
matrices were defined by Lekner as a mode matrix M and a phase matrix P, which are 
the following[6]:

 (2.7.15)

Lekner also defined the vectors[6]: 

a=(
f +

f −

b+

b−

)  r s=(
c1 r sp

−i(1+r ss)

−i (1−r ss)/m
−r sp /m

) r p=(
c1(1+r pp)

−ir ps

ic1 r ps /m
(1−r pp)/m

) (2.7.16)

t s=(
c2 t sp

−it ss

−ic 2t ss / m'
t sp /m'

)  t p=(
c2 t pp

−it ps

−ic2t ps

t pp /m
) (2.7.17)

P=(
e

iq
+

d
0 0 0

0 e iq− d 0 0
0 0 e−iq+ d 0
0 0 0 e−iq−d)M =(

c+ c− −c+ −c−

1 1 1 1
c+ c− −c+ −c−

1 1 1 1
)
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where a contains the forward and backward propagation amplitudes, and rs,rp,ts,tp 
vectors contain the total reflection and transmission amplitudes.  Since the light beam 
travels back and forth inside the layer many times, these amplitudes are interpreted as 
the sum of the proportions of the light energy transmitted from the chiral layer to the 
substrate (transmission amplitudes) and to the medium of incidence (reflection 
amplitudes). 

We can now express the equations derived at 2.7.5-2.7.12 by the mode and phase
matrices. For s polarization incident,

r s=M a  (2.7.18)

t s=MP a (2.7.19)

The reflection and transmission amplitudes are linked as 

t s=MPM −1 rs  (2.7.20)

and as such the matrix L can be defined as

L=MPM −1  (2.7.21)

 2.8.Evanescent wave and Goos-Hänchen effect

A discussion about the nature of the evanescent wave should be made, for better
understanding of the chiral sensing experiment, which will be presented in section  4.
The evanescent wave is a wave which is formed at the interface between two media,
when the  TIR conditions  are  satisfied.  In  order  for  the boundary  conditions  at  the
interface to be satisfied, i.e. the tangential component of the incident and the reflected
wave to be continuous, the incident wave is not directly reflected at the exact point
where it met the second medium. The solution of the Maxwell equation dictates that,

even when θ1>θc=sin−1(n2

n1
)  and as such the light is totally internally reflected, the

wave first propagates through the second medium as a traveling wave in the direction
along the interface,  before  passing back to  the  first  medium,  and propagate  as  the
reflected wave. The evanescent wave has a penetration depth from some nanometers, at
grazing incidence, up to about half a wavelength in the vicinity of the critical angle,
and a very short decay time, i.e. time before the wave returns to the first medium. As
such,  there is a transmitted field,  in the form of an evanescent wave which decays
exponentially to zero, and so it does not carry energy away from the interface. Thus the
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entire process occurs without any intrinsic energy losses, apart from the absorption by
the chiral medium, which as the observable quantity of the experiment. 

Consider a wave propagating at the zx direction, through a medium of refractive
index  n1,  towards  the  interface,  which  lies  at  the  z=0  plane,  with  a  medium  of
refractive index n2. The evanescent wave can be expressed as a transmitted wave using
the plane wave equation:

E t=E ' ' ei (k ' '⋅r−ω t)

Then the continuity at z=0 gives:

k ' '⋅r=k ' ' x sinθ2−k ' ' y cosθ2=k ' ' x sinθ 2−i k ' ' z √ n1
2

n2
2 sin2θ1−1

Where we used the Snell's Law and the TIR condition sinθ1>(n2

n1
)  to derive 

cosθ 2=√1−sin2θ2=√1−
n1

2

n2
2 sin2 θ1=i √ n1

2

n2
2 sin2 θ1−1

So the transmission wave equation becomes

E t=E ' ' e−a∣z∣ei (k1 ' '⋅x−ωt )

where

α=k ' ' √ n2
2

n1
2 sin2 θ1−1  and k 1=k ' ' sinθ 1

n2

n1

The  form  of  the  transmission  wave  equation  obtained  gives  the  picture  of  the
evanescent  wave.  The  first  term,  e−a∣z∣ shows  that  the  wave  amplitude  drops  off
exponentially  as  it  propagates  away  from  the  interface,  into  the  optically  sparser
medium. The second term shows that the evanescent wave can be described in terms of

many constant phase wave surfaces moving parallel to the interface with a speed ω
k 1

.

Thus the mathematical approach of the evanescent wave confirms the picture described
earlier,  that  of  a travelling wave with a  small  penetration depth,  that  exponentially
decays upon its transmission to the other side of the interface. 

The complex value of  θ2 ,  which is produced at  TIR conditions,  leads to a
complex value of the respective Fresnel coefficients for angles beyond the critical angle
of incidence. The coefficients become, for TIR,
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r s=−
cosθ1−i √sin2 θ1−n2

cosθ1+i √sin2 θ1−n2
 (2.8.1)

r p=−
n2cosθ 1+i √sin2θ1−n2

n2cosθ 1+i √sin2θ1−n2
 (2.8.2)

The  squares  of  the  absolute  values  of  rs,  rp are  equal  to  1,  so  the  light  is  totally
internally reflected, but the actual values are not real.  This implies a change in the
phase  of  the  coefficients,  and  that,  since  the  imaginary  part  contains  the  angle  of
incidence, this change of phase is a function of the angle. To calculate this change, we
first  state that since |rs|2=|rp|2=1, we can express the coefficients and their respective
numerators and denominators as amplitude·e-i·phase:

r s=1⋅e
−iδ s=

ae−iα

ae+iα
 (2.8.3)

r p=−1⋅e
−iδ p=−

βe−iβ

βe+iβ
 (2.8.4)

 
which give us δs=2a and δp=2β. By comparing each numerator and denominator of eqs
2.8.3-2.8.4 with the corresponding terms in eqs 2.8.1-2.8.2, we obtain

a eia=cosθ1+i √sin2 θ1−(n2

n1
)

2

 (2.8.5)

be ib=(n2

n1
)

2

cosθ1+i √sin 2θ1−(n2

n1
)

2

 (2.8.6)

Another way of expressing the process of  the TIR at  an interface is  by the Goos-
Hänchen effect. This effect was discovered experimentally in 1949 by Hermann Fritz
Gustav Goos and Hilda Hänchen, and describes how a linearly polarized light wave
undergoes a small lateral shift when totally internally reflected. This comes in conflict
with the geometric optics picture of TIR, where the wave is reflected at the exact same
point of space where it reached the interface, and which was adopted as the description
of reflection by classical optics before the discovery of Goos-Hänchen shift. 
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Figure 10: a) View from above of the light wave travel through a chiral medium 
in terms of geometrical optics. The wave propagates through the prism and is 
totally internally reflected after incidence with the prism-chiral medium 
interface. The TIR gives rise to an evanescent wave at the vicinity of the 
reflection b) View from side of  the prism-chiral medium interface. The light 
wave incident to the interface forms an evanescent wave, emerging at the point 
where it meets the interface. The wave formed is a standing wave, which decays 
exponentially, and undergoes a lateral displacement, which is the Goos-
Hanchen shift.

An explanation of the Goos-Hänchen lateral shift starts by considering a wave incident
at an interface as a superposition of infinitely extended plane waves. Since this wave
has spatial dimensions, there is a certain spatial distribution of the beam energy, and not
all plane waves have the same angle of incidence. But, each plane wave undergoes a
different phase shift upon the reflection at the interface, which is dependent on its angle
of incidence. The cumulative phase shift of all these plane waves leads to a change to
the transverse shape of the beam, since this depends on the amplitude and the phase of
the superimposition of the plane waves.  This way, a transverse displacement in the
beam occurs upon the interface. This displacement is very small at normal incidence,
and becomes larger with a larger angle of incidence. At the critical angle, the Goos-
Hänchen shift is infinite, as described by the classical picture of reflection. 

A picture of the Goos-Hänchen shift, in terms of wave propagation, is given in figure
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10b. The lateral shift  at the beam path is shown, as is the evanescent wave formed
beyond the interface. The lateral shift can be interpreted as the length of propagation 

of the evanescent wave parallel to the interface, and for this it is used as a more precise
interpretation for the probing of the beam at the second medium. The evanescent wave
interpretation is not sufficient for explaining the ability to measure a chiral signal; since
the wave propagates back and forth in the z direction, the perpendicular to the interface,
the optical rotation induced while propagating forward will cancel out with the one
induced at backward propagation. Thus the physical quantity needed to explain chiral
optical rotation is the goos-Hänchen length. 

Consider a wave of both s and p polarization components. Each component will 

undergo a different phase shift, namely[9]

φRs=−2tan− 1(√sin 2θ i − n2

cosθi
)  (2.8.7)

φRp=−2tan− 1(√sin2θ i − n2

n2 cosθ i
)  (2.8.8)

the lateral displacement s will be 

s=−
∂ φ
∂ k1y

 (2.8.9)

where k 1y is the parallel component of the wavevector, so 

s=−
∂φ
∂ k 1y

=−
1

k 1 cosθ i

dφ
dθ  (2.8.10)

and the GHS for each polarization will be the corresponding component of the lateral
displacement

D s=ss cosθ i=
λ1

π

sinθ i

√sin2 θ i −n2  (2.8.11)

D p=ss sinθi=
n2

sin 2θ i(1+n2
)− n2 D s  (2.8.12)

This  result  confirms  the  existence  of  an  ellipsometric  phase  shift  upon  the
reflection of an interface. The two polarization components undergo different lateral
shift, and as a result a phase shift is acquired by the reflected beam.
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 3. Optical Cavity Ring-Down Techniques

 3.1. Introduction

Optical cavities are used for the enhancement of absorption signal measurements,
as  a  means  to  improve  the  sensitivity  and  time  resolution.  It  was  O'Keefe  and
Deacon[10] who first used an optical cavity for absorption spectroscopy measurements
using a pulsed laser, introducing Cavity Ring-Down Spectroscopy (CRDS). Since then,
numerous  measurements  in  gaseous  and  liquid  samples  were  made  using  cavity-
enhanced methods.  

The great advantage of cavity-enhanced experiments is that they are table-top
configurations, which can multiply the optical path by orders of magnitude. This results
in many passes of the laser beam, which is used to probe the absorbing medium, and as
such an absorption signal enhanced by as many times as are the passes through the
medium. For weak signals to be measurable, a high-finesse cavity is needed. High-

Figure 11: Forming of the evanescent wave at 
the prism-sample interface
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finesse cavities are constructed using mirrors with high reflectance ( >0.99 ), which
keep more energy inside the cavity after every reflection, thus allowing more passes
back and forth into the cavity before the pulse energy escapes.  

In this section, we describe the various techniques which use Cavity Ring-Down
methods, giving basic theory and examples of data for each one. Cavity Ring-Down
Spectroscopy  (CRDS)  is  mentioned  first,  followed  by  Cavity  Ring-Down
Ellipsometry(CRDE). Then EW-CRDE is analyzed, an ellipsometric technique where
the  evanescent  wave  is  used  as  a  probe  of  the  liquid  sample.  The  theory  of  this
configuration is discussed in more depth, as it  explains a big portion of the theory
related to the experiments which will be presented later in this thesis. Finally, a novel
method  for  measuring  chiral  samples  is  presented,  based  on  EW-CRDS,  able  to
measure weak chiral signals in environments with high noise, with the use of signal
reversals.

 3.2.Cavity Ring-Down Spectroscopy (CRDS)

CRDS is a highly sensitive absorption spectroscopy technique, used to measure

Figure 12: CRDS traces for various gases with different decay times
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optical extinction of light-absorbing samples. In this technique, a laser pulse is trapped
inside  a  resonant  cavity  consisting  of  two  highly  reflecting  mirrors[10],as  in  fig.1.
Because a mirror cannot reflect 100% of the light incident to it, the pulse energy will
decrease during each round-trip into the cavity by a fixed percentage, owing to these
reflectivity losses and scattering. The intensity of the energy will then be

I =I oe−t / τ  (3.2.1)

where  I o is the initial intensity and  τ  is the decay constant or ring-down time. The
decay time is defined as the time taken for the intensity to fall to 1/e of the initial value.
Depending on how much light is absorbed by any sample introduced inside the cavity,
this  ring-down time  will  be  different.  A strongly  absorbing  medium would  give  a
smaller τ, because the light intensity will be drained much faster. Figures 12(a-d) show
different ring-down traces for different ring-down times.
The measurable quantity of CRDS is the decadic absorbance.  This is a factor of how
much  light  energy  can  the  gas  in  the  cavity  absorb.  It  is  measured  through  the
observation of the difference in the decay time of the trace. The decay time of the laser
beam in an empty cavity is given by

τ 0=
n
c

l
1−R+X  (3.2.2

Where n is the index of refraction, c is the speed of light, l is the cavity length, R is the
mirror reflectivity, and X describes other miscellaneous optical losses.
Assuming now a cavity filled with the gaseous sample, the decay time is

τ 0=
n
c

l
1−R+X +al  (3.2.3)

 Where a is the absorption coefficient of the sample. The decadic absorbance will then
be given by 

 (3.2.4)A=
n
c

l
2.303

(
1
τ
−

1
τ0

)
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 3.3.Cavity Ring-Down Ellipsometry (CRDE)

Figure 13: Simple ellipsometric configuration

Ellipsometry is a well-established technique for probing the dielectric properties of thin
films. It is used for the measurement of quantities such as the thickness, composition
and doping  concentration  of  the  measured  surface  among others.  Ellipsometry  can
generally  measure  any  physical  property  of  a  material  that  alters  in  any  way  the
polarization of  light.  For  this  reason,  it  is  a  very versatile  technique used in  many
fields, from semiconductor physics and optics, to pharmacology and biology.
The measurables in ellipsometry are two independent quantities: Ψ, the amplitude ratio
between the two polarization components,  r s and r p , and Δ,  the phase difference
between these two components, connected by the formula

r p

r s

=tan (Ψ )eiΔ  (3.3.1

Although  ellipsometry  is  a  technique  that  has  evolved  through  its  many  years  of
existence,  research for improving it  in terms of speed and sensitivity is continuing.
Current  state-of-the-art  ellipsometers  require  data  acquisition  times  in  the  order  of
milliseconds, which can be even higher when ultra-high resolution is required. 
Karaiskou et al.[11] used a CRD configuration to make fast and sensitive ellipsometric
measurements. They were able to simultaneously measure the ellipsometric parameters
Ψ and  Δ of  a  gaseous  fenchone  sample  adsorbing to  high-reflectivity  mirrors  of  a
cavity, with a phase sensitivity of 10−2  degrees and a time sensitivity of 1 μs. They
achieved that by using a pulsed laser of 30 ns pulse width and 10 Hz pulse repetition
rate to probe the sample, tracking the time evolution of the pulse(see fig.  15a). When
the pulse passed through the sample, a phase shift was introduced in the s and p vectors
of the polarization leading to an alteration to the overall polarization, from linear to
elliptical and back. This change was tracked using a balanced polarimeter configuration
at the exit, and the result was an exponential decay with an oscillation imprinted on
it(see fig.  15b). This oscillation was identified as the trademark of the phase shift, so
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measuring its frequency, the phase shift value could be extracted. 

The time resolution was only limited  by the laser  repetition rate  and the detection
electronics used. 

 3.4.Evanescent wave Cavity Ring-Down Ellipsometry(EW-CRDE)

The technique was modified by Everest et al.[12] to be used for the measurement 
of liquid samples, with the use of the evanescent wave which is formed beyond the 
interface between two media with different refractive indices, when the wave is totally 
internally reflected. When an optical probe (e.g. a light beam) is incident to a liquid-
solid or gas-solid interface, at an angle bigger than the critical angle of incidence 
[θc=arcsin(nl/ns)], and thus TIR conditions are in effect, an evanescent wave is formed 

Figure 15: Raw (black) and fitted (colored) CRDE data for Fenchone. 
Note the change in the oscillation frequency between the vacuum and 
the fenchone traces. This frequency difference is proprtional to the 
phase shift that fenchone introduces in the light polarizations. 

Figure 14: CRDE configuration [11]

file:///C:/Users/user/Google%20Drive/Thesis_Alex/Thesis%20text&%20comments/Figures/CRDE.png
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at the liquid side of the interface(see figure 11). Propagation through the liquid, as in 
gas CRDE, introduces a phase shift between the s and p polarization of incidence.  A 
prism is introduced into the cavity to serve as the medium of incidence in the liquid-
solid interface. If the TIR conditions are matched, the pulse exits from the opposite side
of the prism, and continues travelling back and forth inside the cavity, until its energy 
fades out. The phase shift of each pass is again added to the total, so the measured 
phase shift is enhanced by the number of passes (~100 for mirror reflectivities of 0.99). 
The detection method is also the same as gas CRDE.

 

 

Τheoretical analysis of EW-CRDE was done by Stamataki et al. [13].  Consider a laser
pulse entering into a cavity of length d, made by two mirrors of reflectivity Rm≃0.99

put opposite to one another. As we saw earlier, the pulse time evolution will be given
by I =I oe−t / τ .The decay time τ is given by 

τ=
d /c

1−Rm  
(3.4.1)

In general, the mirrors have different reflectivities for s and p polarizations. For that
reason,  we  shall  derive  the  time  evolution  of   the  pulse  in  an  ellipsometric
configuration, by treating separately the electric field amplitudes of each polarization,
then take ∣E s( t)+E p(t)∣

2 . 
The laser  pulse  makes N round-trips inside the cavity.  The electric  field that

passes through the detector outside of the cavity, will then be  E s(0)E s(N )  , where
E s(0) is  the amplitude of the electric field that  passes through the mirror without

making  any  round-trips  (~0.01%  of  the  initial  pulse  energy),  and  E s(N ) is  the
respective amplitude for N round-trips. 
For the directly passing component, 

Figure 16: EW-CRDE experimental configuration
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E s(0)=E0
(1−Rm)(√R s)cosθ i cosθ0 e iφs  (3.4.2)

And for Es(N)

E s(N )=E s
0
(√ Rm)

2N
(√ Rs)

2N
e2iNφs  (3.4.3)

Eq. (4) can be simplified, by expressing the number of round-trips N in terms of time

elapsed,  N=
ct
2d .  The terms  (Rm R s)

N  can also be approximated by  e−t /(2τs) .  By

substituting these two expressions in (3), we get

E s( t)=E s
0 e−t /(2τs)e ictφs /d  (3.4.4)

with 

τ s=
d /c

1−Rm Rs
 (3.4.5)

The respective expressions for the p-polarization will be

E p( N )=E p
0
(√ Rm)

2N
(√R p)

2N
e2iNφ p  (3.4.6)

E p(0)=E0
(1−Rm)(√R p)cos θi cos θ0e iφ p  (3.4.7)

E p( t)=E p
0 e−t /(2τ p)e ictφ p/d  (3.4.8)

τ p=
d /c

1−Rm R p
 (3.4.9)

The full expression of the light intensity will then be obtained by finding the squared
sum  of the amplitudes of the two polarization components, i.e. |Es(t) +Ep(t)|2 :

I ( t)=∣E s(t)+E p(t )∣
2
=I o(1−Rm)

2
(R s cos2θ i cos2θo e−t / τs+Rp sin 2θ i sin2 θo e−t / τ p)

+(2√R s Rp sinθi cosθ i sinθ o cosθo e−(1 / τs+1/ τ p) t /2 cos(ωt+Δ))
 (3.4.10)

where 

ω=cΔ /d  (3.4.11)
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and Δ is the phase difference between the two polarizations,  φp-φs. By approximating
Rs~Rp~1, which is the case for the TIR surface reflection i.e. the prism/liquid interface,
and setting θ i=θo=45o °, eq(3.4.10) becomes

I =AI oe−t / τ cos2
(

ωt+Δ
2

) (3.4.12)

where  A  is  a  normalization  constant.  For  use  at  an  experimental  fit,  the  more
convenient expression

I =I oet / τ cos2
(ωt /2+φ)+Β  (3.4.13)

is used, where φ is the phase of the polarization beating with respect to the phase of the
laser  pulse  (ideally Δ/2)  and B is a constant  added to compensate for  experimental
imperfections due to low modulation depth of the beating. Note that the constant B is
not a product of the calculation, but an experimental constant introduced for a more
realistic fit of the data. In ideal experimental conditions, this constant would be equal to
0. 
Theoretical traces of EW-CRDE experiments are shown in figure 17.

 
These traces show how the measured signal from the detector varies with τ,ω, φ and B.
When  the  beating  frequency  is  very  low,  the  data  resemble  to  those  of  a  CRDS
measurement. The beating is not easily distinguished, and there seems to be only an
exponential decay in the data. In this case, the polarization changes very slowly, slower
than the time window used (here 1 μs), and so it is not detected in the trace. The next

Figure 17:EW-CRDE traces for various values of τ, ω, φ and B
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two  traces  are  for  experimental  data  with  the  same  ring-down  time  (200  ns)  but
different beating frequencies (5 and 20 MHZ respectively. One can see that the decay
envelope fades out at the same point of time, but with more oscillations for higher
frequency. In the next figure, there is a trace with 500 ns ring-down time, which fades
out completely in more than 1 μs. The fifth trace is displaced by  φ=π/4 with respect to
the one above of it, which is at the same conditions other than the phase difference. In
the last plot, one can see the effect of B, a small raise in the modulation depth of the
first.

 3.5.Chiral CRD

The nature of chirality dictates an alteration in the application of the technique 
used in EW-CRDE, which consists of a linear cavity with one beam propagating 
forward and backwards. Unlike optical rotation induced by non-chiral materials, chiral 
optical rotation is canceled out when the beam propagates in a round-trip. The 
symmetry of the effect is opposite than the symmetry of non-chiral(Faraday) optical 
rotation. This means that, once a beam passes through a chiral sample, tus rotating its 
plane f polarization at a certain direction, passing backwards from the same spot would 
induce the opposite optical rotation, which results in total optical rotation equal to zero.
This way, chirality effects cannot be measured in a plain linear cavity.

Α way of evading the cancellation of the chirality signal even in linear cavities 
was proposed by Evtuhov and Siegman[14] and Kastler[15]. They proposed introducing 
two intracavity quarter waveplates in zero angle, one in each side of the cavity. Vaccaro
et al.[16][17] then proposed a way to suppress the spurious linear birefringence. They 
offset the optical axes of the quarter waveplates by an angle α(~5°), thus introducing a 
circular birefringence of 2α per round-trip of light inside the cavity. 

Although the configuration described above could give a solution to the first two 
problems, the weakness of the chiral signal and the spurious linear birefringences  , 
there remains a last limitation in the process. The required removal of the sample, or 
else the inability of the configuration to produce absolute chirality measurements, 
without the use of an offset sample. 

To surpass this limitation, Bougas et al.[1] proposed  a bowtie ring cavity. The main 
advantage of such a cavity is that it can support two counter-propagating laser beams 
which could be used as one more signal reversal, by subtracting the measurements of 
one by the other. To break the symmetry between the two counter-propagating beams, a
magneto-optical window is used, in the effect of a longitudinal magnetic field B, which
induces a Faraday rotation θF.  Because the chiral effect φc and the Faraday rotation 
have different symmetries (see fig 1) the optical rotations measured for each beam can 
be distincted. Considering the laboratory frame, θF has the same sign for both beams, 
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since it is only determined by B, while  φc  is determined by the propagation direction, 
and has different signal for each beam. Therefore, the measured single-pass optical 
rotation of each beam is:

ΘCW=θ F+φc  (3.5.1)

ΘCCW =θF−φc  (3.5.2)

Traversing through the cavity, the light polarization rotates with angular frequencies

ωCW (±B)=(±θ F+φc)c / L  (3.5.3)

ωCCW (±B)=(±θF−φc)c / L  (3.5.4)

L being the round-trip cavity length. Taking the difference of the frequencies of the two
beams, we have

Δω(±B)=∣ωCW (±B)∣−∣ωCCW (±B)∣=±2φc (c / L)  (3.5.5)

Thus inverting the B sign, we can invert the chirality sign. Doing so, we obtain the final
result

Δω(B)−Δω(−B)=4φc (c / L)  (3.5.6)

The chiral signal becomes 4 times larger for two signal reversals, since it is odd 
under both direction and magnetic field reversal. The background, on the other hand, 
cancels.

Figure 18: Chiral CRD experimental setup.
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 3.6.Other types of running cavities

At this point, we have to make a discussion about why a bowtie cavity was used, 
instead of any other kind of running cavity, such as a triangular or orthogonal cavity.

 
CW CCW

 Figure 19: Possible configurations for running cavities with counter-propagating beams

This is because either of these configurations introduce a large angle of reflection at the
mirror, which in turn introduces an ellipsometric phase shift in the s-p components of 
the beam field. In order for this shift to be totally suppressed, it should be much smaller
than the Faraday rotation introduced in the cavity(Δf»δε).This is managed by setting the 
reflection angle to as much smaller as it can, because the amplitude of the phase shift is
directly proportional to the reflection angle. A bowtie cavity with a small distance 
between the two adjacent mirrors M2 and M3 (see figure 20) has  a small reflection 
angle for all four mirrors, so the phase shift introduced is lower than with any other 
configuration.

CW CCW
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d

CW CCW

Figure 20: Running bowtie cavity

 4.  Evanescent-wave chiral  sensing via  signal
reversing cavity-enhanced polarimetry

 4.1.  Introduction

The discussions made earlier about the forming of an evanescent wave in TIR
conditions, the induced optical rotation and the way this rotation can be measured for a
chiral  medium using  a  CRD technique  were  applied  in  Sofikitis  et  al.[2].  Here  we
present the results of the evanescent-wave chiral sensing. 

 4.1.1. Experimental setup

As noted before, a bow-tie ring-down cavity is used for enhancing the chiral
signal.   An anti-reflection coated Dove prism is  inserted on one arm of the cavity,
which serves as  the medium of incidence of  the chiral  slab configuration that  was
examined earlier. The liquid chiral sample to be measured is deposited on the prism,
forming a thick (compared to the laser wavelength) layer upon it. A laser pulse of  800
nm wavelength and 35 fs pulse widthis inserted in the cavity into both CW and CCW
directions. The Dove prism has a sharp angle of 70 degrees (figure 21), which leads to
a 84 degree angle of incidence at the prism-layer interface, when light enters the prism
horizontally. Its dimensions are 80x25x25 mm.
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TIR conditions are maintained through all passes from the cavity. The time-dependent
intensity of the output light decays exponentially as e-t/to e−t /t 0

, where the photon lifetime is

 0=L /[c(1−R4
)] 1 s  (4.1.1)

. A 0.3 T magnetic field is applied to a 3 mm thick terbium gallium garnet (TGG)
crystal,  to  introduce  a  Faraday  rotation  θF=2.5-4o,which  breaks  the  phase  shift
symmetry between CW and CCW beam, as noted earlier. 

A  polarizer  is  used  at  the  output,  which  alters  the  pulse  signal,  inserting
oscillations  with  frequency ωCW , ωCCW ωCW,  ωCCW at  the  CW  and  CCW  beams
respectively:

I CW =I o e−t / τo cos2
[ωCW t /2]  (4.1.2)

I CCW =I o e−t / τo cos2
[ωCCW t /2]  (4.1.3)

where Io is the output intensity at t=0.
All intracavity optics are anti-reflection coated for 800 nm. 

The samples measured here are solutions of maltodextrin (  γ=4.2·10-6  cM)  and
fructose( γ=-2.28·10-6 cM). cF and cM are the respective concentrations of chiral material
in its solution with water, and it should be known to define its chirality factor. 

 
Figure 21: Light propagation inside the prism
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 4.1.2.  Derivation of the optical rotation measurement formula

The  experimental  values  which  are  obtained  with  the  method  previously
analysed are to be compared with a theoretical formula derived from Silverman[5]

 

φEW=
Δn
n

N 2

1−N 2

cosθ1

√sin2 θ1−Ν 2
 (4.1.4)

Here we show how the theory of the chiral layer, which we discussed earlier, gives this
formula. 

The solution that is injected into the flow cell forms a layer of thickness ~200 μm
upon the prism, and of some centimeters of width. These dimensions are considered
much larger than the wavelength of light. Thus, we can consider the layer formed not as
a chiral slab, but as an infinite chiral medium over the prism. Doing so, and considering
TIR conditions, the reflection amplitudes r++ and r-- are given by [6]:

r++=(c1−c+)(c1+c−)/ D  (4.1.5)

r−−=(c1+c+)(c1−c−)/ D  (4.1.6)

The observable here is the optical rotation that is introduced at the evanescent wave
from the chiral layer. This is given by 

Figure 22: Experimental setup of chiral CRD measurements
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φEW=Αrg [
1
2

r++

r−−

]=Arg [
(cosθ1−√1−(n

sinθ1

n+dn/2)
2

)(cosθ1+√1−(n
sinθ 1

n−dn/2)
2

)
(cosθ1+√1−(n

sinθ 1

n−dn/2)
2

)(cosθ1−√1−(n
sinθ1

n+dn/2)
2

)
]  (4.1.7)

ςhere dn=2γ ,  the difference between the two refractive indices of the chiral material.

The factor ½ is there because the argument of 
r++

r−−

gives double the actual phase shift.

Expanding the argument around dn=0 we get 

r++

r−−

=1+
2cosθ1 n1

2 sinθ1
2 Δn

n3√ n2
−n1

2 sinθ 1
2

n2 (−cosθ1+√ n2
−n1

2sin2θ1

n2 )(cosθ1+√ n2
−n1

2sin2 θ1

n−dn /2 )
=1+

2cosθ1 n1
2 sinθ 1

2 Δn

n3 √1−
n1

2 sinθ 1
2

n2 (1−
n1

2

n2)sin2 θ1

 
(4.1.8)

we name N=
n
n1

and take into consideration that, under TIR conditions, 
n1

2 sinθ1
2

n2 >1 ,

which makes the argument of the square root negative. From there we proceed as:

r++

r−−

=1−i
2cosθ1 n1

2 sinθ1
2 Δn

n3
(1−

1
N 2 )sinθ 1

2 √ sin2θ1

N 2 −1

=1−i
2cosθ1 n1

2 Δn

n N 2
(1−N 2

)
1

N 2

1
N

√sin2θ1−N 2

=1−i
2 N cosθ1 Δn

n√sin2 θ1−N 2
(1−N 2

)
=1−2 i

Δn
n

N
(1−N 2

)

cosθ1

√sin2 θ1−N 2
 (4.1.9)

Here we make the following approximation: 

Arg [e ik
]=Arg [cosk+i sink ]  

Let k=2i
Δn
n

N
(1−N 2

)

cosθ 1

√sin2 θ1−N 2
 , which is a small imaginary quantity, so cosk=0

and  sink=k ,   which  leads  to  Arg [e ik
]=ik =Arg [ik ] .   This  way,  the  argument  is

eliminated, so we get:
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φΕW=
Δn
n

N
(1−N 2

)

cosθ1

√sin 2θ1−N 2
 (4.1.10)

 4.1.3. Experimental process-Results

The maltodextrin and fructose samples were alternately injected in the flow cell
and a  trace  was  obtained for  each  direction  of  the  magnetic  field  and light  beam,
respectively. The data traces are fit with the ICW and ICCW functions noted earlier, and the
oscillation  frequency  is  obtained.  Each  data  point  shown  in  fig.1  represents  4000
averaged laser shots. The magnetic  field was reversed between each data point. After
five consecutive data points were taken, the sample was cleaned by injecting plenty of
water  in the flow cell  and substituted with the next  sample in row. This way, it  is
ensured that  the prism remains stable,  and no jumps in  the  data  are  introduced.  A
sample  of  Glycerol,  a  non-chiral  liquid  material,  is  measured  to  serve  as  the
background  measurement.  The  background  introduced  using  this  method  are  very
small,  but  it  is  comparable  to  the  weak  chirality  signals  of  the  samples.  This  is
attributed mainly to the use of a multi-mode pulse laser: since there is no way to excite
only one transverse mode inside the cavity, which would result in a perfectly defined
spatial distribution of the laser energy, even a very small misalignment of the cavity
optics can introduce a spurious effect, which would lead to a background comparable to
the sensitivity of the instrument. Instead we used a multi-mode laser, where higher-
order modes have very low energy, but many modes other than the lowest-order one are
contributing, and hence the spatial distribution of the light beam inside the cavity is not
well-defined. 

The results of each channel are given in fig.  23 .  The signal reversing process is
shown in this figure. In Fig.  23a, the data points obtained for each magnetic field and
light beam direction , while measuring a maltodextrin sample are explicitly shown. The
data points represent the oscillation frequency extracted via fitting the trace, as noted
before, and are taken every 2 minutes. The refractive index for these data points is
1.442. After applying the subtractions method discussed in paragraph   3.5.,  a  δω  is
obtained for  each data point,  as  in  fig   23b.   Doing so,  the experimental  data  and
comparison with theory are shown in fig 1.c. The data points in fig  23c are the average
of 5 data points after the signal reversals, as in figure 23b. 



   Evanescent-wave chiral sensing via signal reversing cavity-enhanced polarimetry

Figure 23: (a) The four oscillation frequencies, ωCW+, ωCW-, ωCW-, 
ωCCW- are shown for successive measurements of maltodextrin, 
glycerol and Fructose. (b) After the subtractions, the optical rotation 
of each solution is shown. (c) Measurements and theoretical 
predictions for n from 1.418 to 1.442. The error bars are 2σ 
confidence intervals. (d) Εvanescent wave forming inside the chiral 
medium.
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 4.1.4. Discussion of the results

The data agree well with the theoretical predictions, as seen in fig.23c.  The data,
as well as the theory, show a sharp increase as N approaches to unity, so the effect is
larger near index matching.  This happens because,   as  the refractive indices of the
chiral  sample and the prism become closer,  the angle of  incidence is  closer  to  the
critical,  so  the  Goos-Hänchen  shift  is  larger,  and  the  optical  rotation  induced  is
correspondingly larger. This is the case up to a certain refractive index though; near
perfect index matching, the evanescent wave becomes becomes larger than the chiral
layer, and jumps on the other side of it, so the laser energy is partially transmitted, and
the TIR conditions are no longer matched.  The case of partial  transmission can be
explained in terms of the chiral slab configuration discussed earlier. The critical angle
of  incidence  is  larger  than  the  angle  of  light  incidence,  so  part  of  the  beam  is
transmitted thto the slab. Since the slab has a smaller refractive index than the substrate
(the air, n~1), part of the beam is reflected at the slab-substrate interface and propagate
back to the prism and part of it propagates to the substrate. As we move closer to index
matching,  the  critical  angle  of  incidence  becomes  larger,  and  therefore  the  TIR
conditions are no longer matched, first at the prism-slab interface and then the slab-air
interface.  Eventually,  when  there  is  perfect  index  matching,  the  light  is  fully
transmitted to the air. 

 5. Chirality measurement in thin films

 5.1. Introduction

In this section, a possible configuration for the enhancement of the chiral signal of thin
films is discussed. We are looking into the possibility of finding a way to enhance the
chirality signal of a very thin layer of a material. First, we calculate the signal intensity
for layers with thickness smaller than or equal to the light beam wavelength, in search
for any amplification of the signal. Finally, a novel experimental setup, using a chiral
etalon inside an optical  cavity, is  proposed and analysed,  which is able to measure
sensitively intensified chiral signals.

Why thin chiral films?  Thin films are widely used in many applications in physics,
chemistry, pharmacology and a number of other scientific fields. A practical advantage
over bulk materials is that a thin film uses less substance for a measurement, which is
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very helpful for a number of industrial sectors. One of the targets thus is reducing the
substance needed to take a simple measurement of the chirality signal. The properties
of a film with thickness comparable to a wavelength are also very different than the
ones of a bulk material. Effects that take place in a thin layer when probed by a light
beam such as resonance and interference can potentially enhance the measured signal
or aid in other ways to obtain a measure of a weak effect which otherwise would not be
possible to measure.   

Here we discuss  the possibility  of  the existence  of  any intensification  of  the
chiral signal in a thin layer. The discussion made earlier about the evanescent wave
forming and how it probes the chiral layer under measurement, pointed out that the
optical rotation measured is induced at the evanescent wave. A larger evanescent wave
results in a larger Goos-Hänchen shift, and a larger chirality signal measured. Thus, a
layer thicker than the evanescent wave penetration depth is not introducing any larger
rotation, provided that there are no effects such as waveguiding inside the layer.  The
penetration depth of the evanescent wave is in the order of half a wavelength up to a
few wavelengths, when index matching occurs between the medium of incidence and
the layer. Given that, it is expected that there will be a saturation value of the measured
chiral signal after a certain layer thickness. What is to be confirmed is that the signal is
linearly proportional to the layer thickness up to the saturation point, and there is no
enhancement before that point. To do that, the optical rotation formula is used

φEW=
1
2

Arg [
r++

r−−

]  (5.1.1)

where r++, r-- are the previously noted reflection coefficients, using the helicity notation.

There  are  two  general  cases  of  a  chiral  slab  configuration:  one  that  induces
waveguiding and one that does not. If the refractive index of the chiral slab is larger
than the ones of the medium of incidence and substrate, the wave inserting the slab will
reflect many times inside it as it propagates through it. Many reflections inside the slab
result in a larger propagation length in the chiral medium, and thus a larger optical
rotation.  This  configuration  is  characterised  as  an  optically  active  Fabry-Perot
interferometer,  and was first  proposed by Silvermann and Badoz[5] in 1994. On the
other hand, if the refractive index of the chiral slab is lower than the one of the medium
of incidence or the substrate, there will be either one or zero internal reflections inside
the slab,  and the configuration resembles to the one discussed in chapter 4. In this
work, both cases are examined; the results are shown in section   5.3.,  after a brief
discussion of the theory of the chiral Fabry-Perot interferometer.
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 5.2.Optically active Fabry-Perot interferometer

The  discussion  made  in  paragraph 2.6. pointed  out  that  a  light  beam propagating
through a chiral slab for which  n2≤n  and n1≤n   can be trapped inside this chiral
slab and internally reflect many times, after split in two beams, one of each circular
polarization.  This  configuration  is  the  optically  active  Fabry-Perot  interferometer,
which  was  introduced  by  Silvermann  and  Badoz  [5],  and  analysed  by  Lalov  and
Miteva[3].  Here  we  examine  this  interferometer,  which  will  be  used  in  the  next
paragraph as the configuration for the search of any high chiral signals. 

 Figure 24: Multibeam interference from a chiral Fabry-Perot etalon

Consider  an  achiral  Fabry-Perot  interferometer.  Figure  24 shows  waveguiding,  i.e.
beam  trapping  in  such  an  interferometer,  and  the  corresponding  reflected  and
transmitted beams. Multiple reflections of light inside the interferometer can be in or
out of phase. The in-phase reflections create constructive interference, and the out-of-
phase  reflections  create  destructive  interference.  The  phase  difference  between  two
successive reflected or transmitted beams is given by 

δ=(
2π
λ

)2 n l cosθ  (5.2.1)

The interference occuring at each point creates an interferometric spectrum(fig), with
high peaks at the points where constructive interference occurs, and low valleys where
destructive interference occurs.  The distance between the high interferometric peaks is
the Free Spectral Range (FSR) of the interferometer and is given by

Δλ=
λ0

2

2 n λ cosθ
 (5.2.2)



  Chirality measurement in thin films

Or, in the frequency domain,

Δf =
c

2 n l cosθ  (5.2.3)

If the slab between the two media is optically active, there are some differences, owing
to its double refractive index. Consider a p-polarized wave incident on the first chiral-
achiral interface (see figure 24). Since the refractive index of the slab is higher than the
one of the achiral medium, there will be a reflected-transmitted pair emerging from the
reflection.  Upon  reflection  at  a  chiral  medium,  the  optical  rotation  induced  at  the
evanescent wave formed alters the plane of the wave polarization. Thus the reflection
gives  rise  to  a  perpendicular  polarization  component  at  the  reflected  beam,  and

E r
(0)

=(E rp
(0) , E rs

(0 )
) , where

E rp
(0)

=Rp E p  (5.2.4)

E rs
(0)

=−R ps E p      (5.2.5)

 with  R p  and  R ps  being the Fresnel coefficients for the transmitted p-polarized
component  and  the  reflected  s-polarized  component(see  appendix),  respectively.
Because of the ellipsometric phase shift introduced, the reflected wave polarization is
elliptical.  Inside  the  chiral  slab,  two  waves  of  opposite  circular  polarizations  are
created, propagating towards the second chiral-achiral interface, labelled as b. Their
electric field components are [3]

E+ ,−
p , E+ ,−

s
=∓i sgn[γ ] E+ ,−

p  (5.2.6)

where

E+ ,−
p

=
1
2
(T p∓i sgn (γ )R ps) E p  (5.2.7)

and  T p  is again the Fresnel coefficient for the transmitted p-polarized component.
These two waves reach the b interface with different phases, namely

Δ±=
2π
λ0

d n±cosθ±=
1
2
(Δ±ξ )  (5.2.8)

Where Δ is the wave phase in the absence of chirality, given by 5.2.1 and ξ is the phase
difference introduced because of the wave splitting
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ξ=
2π
λ0

∣γ∣d
cosθ  (5.2.9)

So  the  phase  difference  between  the  two  waves  is  given  by  Δ+-Δ-=ξ.  This  phase
difference is produced after every reflection at a chiral-achiral boundary.

Upon reflection of a circularly polarized wave at oblique incidence, part of the light
polarization is  transformed to the opposite  helicity.  If  reflection takes part  inside a
chiral  medium, the effective refractive index of  the two waves is  different,  so two
reflected waves are created. Thus, for two waves reflected upon the interface b, four
reflected waves are generated, propagating back towards the interface a. This internal
reflection continues, up until the total wave energy is depleted, each time creating two
reflected waves of opposite helicities for each incident wave. Part of the incident waves
are  transmitted  over  or  under  the  slab,  inducing  constructive  and  destructive
interference  between  them,  as  not  all  the  waves  are  in-phase.  After  each  internal
reflection at the interface b, 22n waves are transmitted over the slab, and 22n+1 waves are
reflected back under the slab. The total reflection and transmission coefficients [6] are
given in appendix, and will be simulated in the next section for the case of the optically
active etalon.  

 5.3.Simulations

The first question one has to answer when thin films are to be used is “how thin?”. As
noted before, when the evanescent wave is used as a probe, the film should be in the
order  of  the  wavelength,  or,  more  precisely,  in  the  order  of  the  evanescent  wave
penetration  depth.  This  is  expected  to  be  shown by  simulating  the  optical  rotation
induced at TIR conditions versus the slab thickness; for a thickness much bigger than
the evanescent wave height, the optical rotation should not be significantly higher than
its value when the slab is of thickness comparable to that height.  But, even considering
an optically active etalon configuration, the slab should not be much thicker than the
wavelength. The reason for that, as will be discussed later on, is that a ratio of d/λ>>1
would introduce a large amount of losses too, which could result in a weak chiral signal
measurement.

 The first step in searching for any enhancement of the chiral asymmetries will be to
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simulate, using 5.1.1, the chirality signal versus the layer thickness.

A prism made of fused silica (n1=1.45332) is to be used as the medium of incidence. Of
course, other options exist, but for the simulations the same medium is used, to serve as
a means of direct comparison of the theory and the measurements presented in the last
chapter. 

 We first consider the exact refractive indices of the slab(maltodextrin, 1.43<n<1.445)
and substrate (air, n2=1) which were used in the configuration shown at chapter 4. The
slab is considered to be non-absorptive f or the first simulations; this is not realistic,
but  is  sufficient  as  a  first  approximation.  Corrections  in  the  simulations,  which
represent the absorption or any other losses (e.g. scattering because of non-parallel slab
surfaces), will be introduced at a later stage. 

Figure  25 shows the theoretical chiral signal  versus the layer thickness, for various
refractive indices of the slab up to 1.446. We saw that for n>1.445, index matching
conditions occur,  the evanescent  wave becomes very large and part  of  the wave is
transmitted. This is why we set n>1.445 as a different case. This figure shows that for
n<1.445,  the  chiral  signal  is  linearly  proportional  to  the  layer  thickness  up until  a
certain thickness, depending on the refractive index, and then it becomes saturated at a
certain value, after which it is the same, no matter how thick the layer becomes. This is
the expected result,  and the reflection coefficients given here confirm it.  The result
shows that no enhancement is introduced in the chiral signal fir very thin layers.  For
n=1.446, a positive second derivative appears, which needs to be examined. To do so,
figure  26 shows the case of n1>n>1.445. It shows that the positive second derivative
observed in the previous figure does not go to infinity, but instead is the start of an
interferometric spectrum. This spectrum displays much higher peaks than the measured
signal  from Sofikitis  et  al..  This  result  can  be  interpreted  using  the  discussion  of
paragraph 5.2. For n>1.445, the critical angle is larger than the angle of incidence, so a
part of the wave is reflected into the slab. From there, for certain layer thicknesses, one
or more internal reflections at the prism/slab interface will occur. This can indeed lead
to waveguiding and an enhancement of the chiral signal. Thus the peaks observed in
this plot are at the resonant layer thicknesses, i.e. the ones that, given a certain angle of
incidence, can lead to as more reflections inside the chiral slab as possible. These peaks
can be exploited for the measurement of a much intensified chiral rotation. To do so, an
impractical way would be to try to control the slab thickness, until a peak in the  optical
rotation is crossed, and measure the signal there. But this is not experimentally feasible,
as controlling the layer thickness with a sensitivity of some nanometers is technically
impossible.
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Figure 25: Optical rotation versus slab thickness , for λ=780 nm and θ1<θc

 

Figure 26: Optical rotation versus slab thickness , for λ=780 nm and θ1>θc and n<n1
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Before  proposing  a  way  to  solve  this  problem,  the  case  where  n>n1 should  be
discussed. It is confirmed that, after a certain refractive index, there are peaks in the
optical rotation vs layer thickness simulations, which are attributed to resonance. It is
shown that, the higher the refractive index, the closer these peaks are to each other.
This is the trademark of the Fabry-Perot interferometer; the peaks show constructive

interference,  and  the  distance  between  them should  be  an  FSR=
c

2n l .  From this

conclusion, we are motivated to alter the way of searching for enhancement: rather than
simulating optical  rotation in terms of  layer thickness,  we could do so in terms of
wavelength. 

Since waveguiding is a resonant phenomenon, the layer thickness where the peaks are
displayed should be proportional to the wavelength. Considering this, a transformation
from  slab  thickness  to  wavelength  should  be  self-consistent;  and  controlling  the
wavelength is equivalent to controlling the thickness. It is much easier too, as scanning
the  laser  wavelengths  is  easily  feasible  using  a  dye  laser.  The  way  this  becomes
possible will be shown in the next paragraph.  

Figure 27: Optical rotation versus slab thickness , for λ=780 nm and and n>n1
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 Figure 28: Optical rotation versus wavelength, for a slab with d=1 μm and θ i>θc

 

Figure 29: Optical rotation versus wavelength, for various slab thicknesses and n=1.449
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 Figure 30 Optical Rotation versus wavelength, for d=1 μm and n>n1

 
Figure 31: As above, but with the wavelength varying up to 10 μm, so d/λ<<1. Νotice that no 
interferometric peaks appear beyond λ~d 

The previous figures show a great optical rotation signal for matching prism and
slab refractive indices. The only problem is, this enhancement occurs for  d/λ>>1 μm.



  Chirality measurement in thin films

The reason why this should be avoided will  be shown later.  In figures 25-26  ,  this
difference  is  pointed  out.  Both  these  figures  demonstrate  optical  rotation  versus
wavelength, for d=1 μm. While in  figure 28 no interference peaks appear, except for
low wavelengths, figure   29 shows that a great optical rotation (up to 3 degrees) can be
achieved if  the layer thickness is greater than 5  μm.  As expected,  the FSR of the
interferometric spectrum is proportional to the layer thickness, which leads to more
peaks for thicker layers.

For better understanding of the simulations, the etalon can be interpreted as a
resonant  cavity,  where resonant  modes are  excited at  certain given conditions.  The
peaks obtained at the simulations for certain wavelengths represent resonant modes of
the light propagation inside the etalon. When such a mode is excited, the beam makes
many passes back and forth through the etalon, thus undergoing a larger rotation of its
polarization plane. Considering the ideal case of a non-absorptive etalon, a larger light
path under any circumstances would induce larger optical rotation, thus giving a larger
measurement signal. However, in the more realistic case of a non-ideal medium, where
absorption and scattering would produce losses, larger optical path does not necessarily
mean a better measurement.  

The  simulations  shown before  work well  under  two assumptions:  a)  that  the
etalon  is  non-absorptive,  as  discussed  earlier  and  b)  that  the  two  interfaces  are
completely parallel, and the resulting reflected beams which interfere under the slab are
completely parallel, and thus produce a perfect interferometric spectrum. Both these
assumptions  are  of  course  unrealistic.  If  a  more  realistic  picture  is  to  be  given,
approximations should be introduced that represent these effects. 

The case of an absorptive chiral etalon was examined by Lalov and Georgieva[4]. 
In this work,  a term i⋅n ' ' is introduced as a first-order correction to the refractive 
index n of the chiral slab, to simulate the losses due to absorption. A realistic value for 
n'' would be ~ 10−5 , which would represent all intrinsic losses due to the nature of the 
chiral slab. Lalov and Georgieva report large changes in the optical rotation, but their 

work considers very thick slabs (
d
λ
≈2000 ), which is not the case for this work, where

thin films are to be used. Figure 32 shows that there is no real change in the 

interference spectrum of an absorptive and a non-absorptive medium, up to a 
d
λ  ratio

of 60, if n'' is at a realistic value (10-5). Thus absorption itself does not affect the optical 
rotation of light. However, in the next paragraph it will become clear that this is not the 
only parameter to be taken into account.
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Figure 32:  Interferometric spectrums of absorptive vs non-absorptive etalons of n=1.5. 

The simulations shown before show the optical rotation of the reflected part of a 
beam of light propagating inside a chiral etalon. Apart from how large the optical 
rotation is, another important parameter of the experiment is the intensity of the 
reflected beam intensity, which is not examined by the simulations already presented.

The chiral etalon, as noted before, can be seen as a resonant cavity, with reflectivities 
which depend on the refractive indices of the non-chiral materials. A high-finesse chiral
etalon would produce more intracavity reflections at resonance, resulting in a larger 
effective pathlength, hence a larger optical rotation signal. If, though, the cavity is low-
finesse, high losses will occur with every reflection at the slab-substrate interface. 
Since the technique intended to be used in this work is cavity-enhanced, the quality of 
the measurement depends strongly on a high number of passes through the mirror 
cavity. High losses owing to transmission from the slab to the substrate would then 
undermine the ability of the configuration to produce an accurate and sensitive 
measurement. To avoid this, the losses because of transmission on the other side of the 
slab should be mapped, as in figure 33. In this figure, the net reflectance ratio of the 
light beam is examined, for high and low slab thickness to wavelength ratios, with and 
without taking into consideration the absorption inside the slab. The refractive index 
used is moderately high, but realistic for a liquid(1.6), the angle of incidence is 84° and 

n''=10-5. For the 
d
λ ratios at which resonance occurs, the large amount of passes 

inside the etalon give rise to a higher amount of losses because of transmission to the 
substrate. This is depicted by the reflectance valleys at certain points of the graph. For 
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low 
d
λ ratios, the reflectance is very high, with only 0.6% losses for a slab 2.5 times 

the wavelength. This is a losses level that can be afforded by a mirror cavity, assuming 

a mirror reflectivity ~0.99. If, though, the simulation is expanded up to  
d
λ ratios 

much bigger than unity, the losses at the resonant modes escalate up to a few percent. 
Note that the losses shown are the net losses after the waveguiding, not the losses per 
pass inside the etalon. That high losses can result in the loss of the whole light energy 
after 20-30 passes inside the chiral etalon, which is too small a number for a high-
sensitivity experiment. An acceptable level of transmission losses would be around the 
respective cavity mirror losses; any more than that would restrict the number of passes 
to much less than ~100, which are needed for the desired measurement sensitivity to be
achieved.

 

 Figure 33: Reflectances for s(a,b) and p(c,d) polarization incident, for a ratio 
d
λ

 up to 3 and 

20. 

To calculate the passes that can be achieved through the cavity, the mirror and etalon 
reflectivities should be known. Then the number of passes is derived by the following 
calculations:
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(Ret∗(Rm)4)N =0.01⇒ N=logRet∗Rm
(0.01)  (5.3.1)

Where Ret is the etalon reflectivity, Rm is the mirror reflectivity, exponentiated to 4,
as it is assumed that the cavity will be designed in the same way as in Bougas et al.[1] 
and N is the number of passes. The term 0.01 is introduced as a measure of the point in 
which the laser pulse will have almost totally escaped the cavity. Using this formula for

the conditions examined in figure 33, and assuming  
d
λ
≈2.5 , which corresponds to  

Ret=0.994, and Rm=0.995, N~175. This is an acceptable number of passes, which can 
provide a sensitive measurement of the chirality factor γ. 

 5.4.  Experiment proposal

The discussion made earlier provides the necessary knowledge for the design of 
a configuration that can sensitively measure the chiral factor γ of a chiral slab. In this 
paragraph, a number of possible configurations for this experiment are proposed.

For the measurement of chirality signal, a running cavity configuration is needed,
as noted in paragraph 3.4. There are certain advantages and disadvantages in the use of 
either a triangular or bow-tie cavity. While a bowtie cavity is easier to construct, a 
triangular cavity, with a prism serving as a reflecting surface, serves in that it allows the
measurement of much lower refractive index. This is because the angle of incidence at 
the etalon is lower, hence the light is transmitted to the etalon for lower etalon 
refractive indices, while the TIR conditions of the medium of incidence-slab-substrate 
configuration are retained. Apart from the higher variety on samples that can be 
measured, the use of lower refractive index samples aids in that these samples are much
easier to be created. A waveplate compensator should be used inside the cavity, to 
compensate for the phase shifts induced by the reflections at the mirrors and other 
spurious birefrigences that exist, and are not cleared by the signal reversals.

In section 4.4, the experimental process, as well as the data acquiring and data 
fitting processes are discussed. The final experimental data showed the measured 
optical rotation versus the refractive index, for different refractive indices of the same 
sample. Here, this process shall be different. The measurements of optical rotation will 
be with respect to the laser wavelength. Since the laser wavelength is to be very 
precisely determined, a tunable dye laser can be used to control the wavelength of the 
laser, which will probe the chiral etalon. These lasers have extremely narrow 
bandwidth, at the order of a few parts in a thousand wavenumbers, and can be tuned in 
a wide range of very precisely determined wavelengths. The measurements of the 
induced optical rotation will be obtained in the same way as in Sofikitis et al., only for 



  Chirality measurement in thin films

different wavelength values. These values are to be compared with the theoretical 
values of the optical rotation versus the wavelength, using a mathematical model. The 
confirmation of the theoretical values for known slab thickness,refractive indices and  
wavelength should provide a proof of principle for the ability of this configuration to 
measure the chiral effect γ of a thin chiral film. 

In the previous paragraph, a discussion was made about the optimal number of 
passes through the cavity, for larger amplification of the chiral signal measured. As 

shown before, a high number of passes could be produced by setting the 
d
λ ratio 

close to unity, hence avoiding high losses per pass through the etalon due to absorption.

A low
d
λ ratio can result in about a hundred passes through the cavity, whereas a ratio 

of around 10 allows a few tens of passes. In the latter case, though, since the effective 
pathlength is higher, the optical rotation induced is much larger. If such a ratio is to be 
chosen, the lower number of passes would theoretically be compensated by the large 
optical rotation per pass. That given, both cases should be examined, since any spurious
experimental effects could give an advantage in one or the other method.   
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 7. Appendix-Reflection coefficients

The general formulae for reflection amplitudes, which characterize the optical 
properties of a chiral layer with two refractive indices, n±, are given by Lekner[6]. 
Medium 1 is the medium of incidence and medium 2 is the substrate.

Drss = G1
-F2

++8c1c2c+c-(m2+1)(m’2-1)Z+Z--g1
+f2

-Z+
2-g1

-f2
+Z-

2+G1
+F2

-Z+
2Z-

2

Drpp = -(G1
+F2

- +8c1c2c+c-(m2+1)(m’2-1)Z+Z--g1-f2+Z+
2-g1

+f2
-Z-

2+G1
-F2

+Z+
2Z-

2)

Drsp=Drps =-2imc1{(c+-c-) [F2
+-F2

-Z+
2Z-

2]+ (c++c-) [f2
-Z+

2-f2
+Z-

2]} 

where

m=n/n1,

m’=n/n2, 

c+= cosθ+, 
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c-=cosθ-

D is a common denominator, given by

 D=F1
+F2

+-8c1c2c+c-(m2-1)(m’2-1)Z+Z—f1
-f2

-Z+
2-f1

+f2
+Z-

2+F1
-F2

-Z+
2Z-

2 ,

Z±=eiq±d, which gives the phase increments in a single transit of the slab for the two 
helicities, 

and

F1
±=2m(c1

2+c+c-) ±(m2+1) (c++c-)c1

F2
±=2m’(c2

2+c+c-) ±(m’2+1) (c++c-)c2

G1
±=2m(c1

2-c+c-) ±(m2-1) (c++c-)c1

G2±=2m’ (c22-c+c-) ±(m’2-1) (c++c-)c2

f1
±=2m (c1

2-c+c-) ±(m2+1) (c+-c-)c1

f2
±=2m’ (c2

2-c+c-) ±(m’2-1) (c+-c-)c2

g1
±=2m (c1

2+c+c-) ±(m2+1) (c +- c-)c1

g2
±=2m’ (c2

2+c+c-) ±(m’2-1) (c +- c-)c2
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