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Preface

In this thesis, we study the functions of the Bergman spacesAp, that is, the holomorphic functions on the
unit disc that are also p-integrable with respect to the Lebesgue area measure. In particular, we explore
the properties of these spaces, such as their completeness and duals, obtaining results that are analogous
to the properties of Lp spaces. We distinguish the case p = 1, for which we introduce the Bloch space as
the dual ofA1. Finally, we present a connection between the Bergman spaces and the hyperbolic metric.
More precisely, we show that each function of the Bergman space is an infinite sum that depends on
specific sequences of the hyperbolic disc.

I would like to thank my supervisor Themis Mitsis, for his guidance, advice, patience and eagerness to
help. I am also grateful to N. Frantzikinakis, V. Nestoridis and M. Papadimitrakis, for their remarks and
for conversations we had.
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Abstract

In Chapter 1, we introduce some elements of hyperbolic geometry in the unit disc, such as the hyper-
bolic length of curves, the hyperbolic metric and hyperbolic discs. A class of holomorphic functions is
widely used throughout this analysis, namely the Möbius group of the unit disc. In the last section of
this chapter, we discuss the notion of r-lattices, which are specific sequences in the unit disc, and will
play an important role later in our study.

In Chapter 2, the theory of Bergman spaces Ap is presented. In particular, we show that the Bergman
spaces are Banach spaces. Next, we move on to the Bergman kernel, which gives an integral represen-
tation of the functions ofAp, and is used to show that the dual of the Bergman spaceAp is the Bergman
space Aq, where q is the conjugate exponent of p > 1. After giving a characterization of the Bergman
spaces in terms of derivatives, we finally arrive at the atomic decomposition, which means that we can
write each function of Ap as an infinite sum that uses r-lattices.

Chapter 3 is about the Bloch space, which is a Banach space and the dual of A1. Lastly, we present a
connection between the Bloch space and the hyperbolic metric.

The structure of this thesis follows mainly K. Zhu’s book “Operator Theory in Function Spaces” ([15]).
Other books we used are [4], [7] and [11].
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CHAPTER1

Hyperbolic Geometry on the Unit Disc

1.1 The Möbius group of D

Let D = {z ∈ C : |z| < 1} and consider the set

Aut(D) = {ϕ : D → D |ϕ is 1-1, onto and holomorphic}.

The functions in Aut(D) are called Möbius maps of the unit disc. By [14, Section X.15], the inverse of a
Möbius map of D is also in Aut(D). Thus, Aut(D) is a group under composition and is called the Möbius
group of D.

For the rest of this thesis, we will often use the following theorem from complex analysis (see [12,
Theorem 12.6]):

Theorem 1.1.1. ϕ ∈ Aut(D) if and only if there exist a real number θ and a point a ∈ D such that
ϕ = eiθϕa in D, where ϕa(z) =

a− z

1− āz
, for all z ∈ D, is a special Möbius map of D.

We now give some basic properties of the maps ϕa that will be used throughout the thesis.

Proposition 1.1.2. For any a ∈ D and z ∈ D we have:

(i) ϕa(0) = a and ϕa(a) = 0,

(ii) ϕa ◦ ϕa(z) = z,

(iii) ϕ′a(z) = − 1− |a|2

(1− āz)2
, and

(iv) 1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2
.

Proof. All properties are derived from straightforward calculations.

Möbius maps of D belong, in fact, in a larger class of functions, called Möbius transformations. A
Möbius transformation T : C̄ → C̄, where by C̄ we denote the set C ∪ {∞}, has the form

T (z) =
az + b

cz + d
,

where a, b, c, d ∈ C with ad − bc ̸= 0 (see [1, Section 2.1]). If c = 0, then T (C) = C, and we set
T (∞) = ∞. If c ̸= 0, then T

(
C \ {−d

c}
)
= C \ {a

c}, and we set T (−d
c ) = ∞ and T (∞) = a

c . In

1



2 CHAPTER 1. HYPERBOLIC GEOMETRY ON THE UNIT DISC

any case, Möbius transformations are one-to-one functions, which are holomorphic in C or C \ {−d
c} if

c = 0 or c ̸= 0, respectively.
An essential property of Möbius transformations is that they preserve the circles of C̄.

Definition 1.1.1. A circle in C̄ is either a euclidean circle in C or the union of a euclidean line in C with
{∞}.

Theorem 1.1.3. Möbius transformations map circles of C̄ onto circles of C̄.

For more information on the above definition and theorem see, for example, [1, Sections 1.2, 2.1].

1.2 The hyperbolic metric

Definition 1.2.1. The function λ(z) = 1

1− |z|2
, z ∈ D, is called hyperbolic density.

Definition 1.2.2. If γ : [a, b] → D is a piecewise-C1 curve, we define the hyperbolic length of γ to be
the real number

lh(γ) =

∫
γ
λ(z) |dz| =

∫ b

a
λ(γ(t)) · |γ′(t)| dt =

∫ b

a

|γ′(t)|
1− |γ(t)|2

dt.

Remark 1.2.1. The hyperbolic length of γ is, indeed, a real number; since [a, b] is a compact set and γ
is a curve in D, there exists a point t0 ∈ [a, b] such that max{|γ(t)| : t ∈ [a, b]} = |γ(t0)| < 1, so

lh(γ) =

∫ b

a

|γ′(t)|
1− |γ(t)|2

dt ≤
∫ b

a

|γ′(t)|
1− |γ(t0)|2

dt =
1

1− |γ(t0)|2
· L(γ) < +∞,

where L(γ) denotes the euclidean length of γ.

It follows from Theorem 1.1.1 and Proposition 1.1.2 (iii), (iv), that hyperbolic length is invariant under
the action of Möbius maps of D, that is:

Proposition 1.2.1. If γ : [a, b] → D is a piecewise-C1 curve and ϕ ∈ Aut(D), then ϕ ◦ γ : [a, b] → D
is a piecewise-C1 curve and lh(ϕ ◦ γ) = lh(γ).

Definition 1.2.3. If z, w ∈ D, we define the hyperbolic distance of z, w to be the number

β(z, w) = inf{lh(γ) : γ is a piecewise-C1 curve in D starting at z and landing at w}.

Proposition 1.2.2. The hyperbolic distance is invariant under the action of Möbius maps of D, that is

β(ϕ(z), ϕ(w)) = β(z, w), for all z, w ∈ D and ϕ ∈ Aut(D).

Proof. Let z, w ∈ D and ϕ ∈ Aut(D). If γ is a piecewise-C1 curve in D starting at z and landing at
w, then ϕ ◦ γ is a piecewise-C1 curve in D starting at ϕ(z) and landing at ϕ(w), so the definition of
hyperbolic distance and Proposition 1.2.1 give β(ϕ(z), ϕ(w)) ≤ lh(ϕ ◦ γ) = lh(γ); hence

β(ϕ(z), ϕ(w)) ≤ β(z, w). (1.1)

The above inequality holds for all z, w ∈ D and ϕ ∈ Aut(D), so we replace z by ϕ(z), w by ϕ(w), and
ϕ by ϕ−1, to get

β(z, w) ≤ β(ϕ(z), ϕ(w)) (1.2)

The desired equality follows from (1.1) and (1.2).

Theorem 1.2.3. The function β : D× D → R is a metric on D, called the hyperbolic metric of D.
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Proof. Let z, w ∈ D. Since lh(γ) ≥ 0 for all piecewise-C1 curves γ in D starting at z and landing at w,
we have that β(z, w) ≥ 0. Also, if γ : [a, b] → D is a piecewise-C1 curve with γ(a) = z and γ(b) = w,
then −γ(t) := γ(a+ b− t), t ∈ [a, b], is a piecewise-C1 curve in D starting at w and landing at z, and

lh(−γ) =
∫ b

a

|γ′(a+ b− t)|
1− |γ(a+ b− t)|2

dt =

∫ b

a

|γ′(s)|
1− |γ(s)|2

ds = lh(γ),

so β(z, w) = β(w, z).
Let z ∈ D. Then, for the curve γ(t) = z, for all t ∈ [0, 1],we have that lh(γ) = 0, hence β(z, z) = 0.

Conversely, let β(z, w) = 0 for some z, w ∈ D, and let ϵ > 0. Then there exists a piecewise-C1 curve
γ : [a, b] → D with γ(a) = z and γ(b) = w, such that lh(γ) < ϵ. If m = min{|γ(t)| : t ∈ [a, b]} < 1,
then

|z − w| ≤ L(γ) ≤ L(γ)

1−m2
≤
∫ b

a

|γ′(t)|
1− |γ(t)|2

dt = lh(γ) < ϵ.

Since ϵ was arbitrary, we get |z − w| = 0; so z = w.
Finally, let u, v, w ∈ D, and ϵ > 0. Then there exist piecewise-C1 curves γ : [a, b] → D and

δ : [b, c] → D, with γ(a) = u, γ(b) = v, δ(b) = v and δ(c) = w, such that

lh(γ) < β(u, v) +
ϵ

2
and lh(δ) < β(v, w) +

ϵ

2
.

Thus, the curve γ+̇δ : [a, c] → D, defined by (γ+̇δ)(t) =

{
γ(t), if t ∈ [a, b],

δ(t), if t ∈ [b, c]
, is a piecewise-C1

curve in D starting at u and landing at w; hence

β(u,w) ≤ lh(γ+̇δ) = lh(γ) + lh(δ) < β(u, v) + β(v, w) + ϵ.

Since ϵ was arbitrary, we get β(u,w) ≤ β(u, v) + β(v, w), which is the triangle inequality.

We will now find an explicit formula for the hyperbolic distance, as follows.

Lemma 1.2.4. Let −1 < r ≤ s < 1. We have:

(i)

β(r, s) =
1

2
log

1 +
s− r

1− rs

1− s− r

1− rs

. (1.3)

(ii) If γ : [0, 1] → D is a piecewise-C1 curve with γ(0) = r and γ(1) = s, then

lh(γ) = β(r, s) if and only if γ(t) = u(t), for all t ∈ [0, 1],

where u : [0, 1] → R is an increasing function. In that case, we have γ([0, 1]) = [r, s].

Proof. (i) Let γ(t) = u(t)+iv(t), t ∈ [a, b], be a piecewise-C1 curve inD,with γ(a) = r and γ(b) = s.
Since |γ(t)| ≥ |u(t)|, for all t ∈ [a, b], and |γ′(t)| ≥ |u′(t)| ≥ u′(t), for all t ∈ [a, b] on which γ is
differentiable, we have that

lh(γ) =

∫ b

a

|γ′(t)|
1− |γ(t)|2

dt ≥
∫ b

a

u′(t)

1− u2(t)
dt =

∫ s

r

1

1− x2
dx =

1

2
log

1 +
s− r

1− rs

1− s− r

1− rs

, (1.4)

so

β(r, s) ≥ 1

2
log

1 +
s− r

1− rs

1− s− r

1− rs

. (1.5)
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Now, consider the parametrization γ(t) = r + t(s − r), t ∈ [0, 1], of the line-segment [r, s], for which
we have that

lh(γ) =

∫ 1

0

s− r

1− |r + t(s− r)|2
dt =

∫ s

r

1

1− x2
dx =

1

2
log

1 +
s− r

1− rs

1− s− r

1− rs

. (1.6)

Thus, (1.5) and (1.6) give (1.3).
(ii) Let γ = u+ iv : [0, 1] → D be a piecewise-C1 curve, with γ(0) = r and γ(1) = s.

If lh(γ) = β(r, s), we have equality in (1.4); so v(t) = 0, for all t ∈ [0, 1], which means that
γ(t) = u(t), for all t ∈ [0, 1]. If there exists a point t0 ∈ [0, 1] such that u′(t0) < 0, then, by the
piecewise-continuity of u′, there exists an interval [t1, t2] ⊂ [0, 1] such that t0 ∈ [t1, t2] and u′(t) < 0,
for all t ∈ [t1, t2]. Thus,

lh(γ) =

∫ 1

0

|u′(t)|
1− u2(t)

dt ≥
∫ t1

0

u′(t)

1− u2(t)
dt+

∫ t2

t1

−u′(t)
1− u2(t)

dt+

∫ 1

t2

u′(t)

1− u2(t)
dt

>

∫ t1

0

u′(t)

1− u2(t)
dt+

∫ t2

t1

u′(t)

1− u2(t)
dt+

∫ 1

t2

u′(t)

1− u2(t)
dt =

∫ 1

0

u′(t)

1− u2(t)
dt = β(r, s),

which is a contradiction to our hypothesis. Therefore, u′(t) ≥ 0, for all t ∈ [0, 1] on which u is differ-
entiable. Since u is continuous in [0, 1], we get that u is increasing in [0, 1], and

γ([0, 1]) = u([0, 1]) = [u(0), u(1)] = [r, s].

Conversely, let γ(t) = u(t), for all t ∈ [0, 1], where u : [0, 1] → R is an increasing function. Then
u′(t) ≥ 0 for all t ∈ [0, 1] on which u is differentiable; so, using (1.3),

lh(γ) =

∫ 1

0

|u′(t)|
1− u2(t)

dt =

∫ 1

0

u′(t)

1− u2(t)
dt =

∫ s

r

1

1− x2
dx = β(r, s).

Theorem 1.2.5. If z, w ∈ D, then

β(z, w) =
1

2
log

1 +
∣∣∣ z − w

1− w̄z

∣∣∣
1−

∣∣∣ z − w

1− w̄z

∣∣∣ . (1.7)

Proof. Let z, w ∈ D, and consider the Möbius map ϕw(ζ) =
w − ζ

1− w̄ζ
, ζ ∈ D. By Proposition 1.2.2,

β(z, w) = β(w, z) = β(ϕw(w), ϕw(z)) = β(0, ϕw(z)). (1.8)

Since rotations are Möbius maps of D, we have that

β(0, ζ) = β(0, |ζ|), for all ζ ∈ D. (1.9)

By (1.8), (1.9) and (1.3),

β(z, w) = β(0, |ϕw(z)|) =
1

2
log

1 + |ϕw(z)|
1− |ϕw(z)|

=
1

2
log

1 +
∣∣∣ z − w

1− w̄z

∣∣∣
1−

∣∣∣ z − w

1− w̄z

∣∣∣ .
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The next step is to introduce the concept of hyperbolic geodesics.

Definition 1.2.4. Let z, w ∈ D. A C1 curve γ : [0, 1] → D is called a hyperbolic geodesic that connects
z to w if:

(i) γ(0) = z, γ(1) = w,

(ii) γ′(t) ̸= 0, for all t ∈ [0, 1], and

(iii) lh(γ) = β(z, w).

Hyperbolic geodesics are invariant under the action of Möbius maps of D, that is:

Proposition 1.2.6. Let z, w ∈ D and ϕ ∈ Aut(D). If γ is a hyperbolic geodesic connecting z to w, then
ϕ ◦ γ is a hyperbolic geodesic connecting ϕ(z) to ϕ(w).

Proof. Since γ is C1 and ϕ is holomorphic, we have that ϕ ◦ γ : [0, 1] → D is a C1 curve, connecting
ϕ(z) to ϕ(w). Also, by Definition 1.2.4 (ii), γ′(t) ̸= 0, for all t ∈ [0, 1], and ϕ′(z) ̸= 0, for all z ∈ D,
because ϕ is a conformal map (see [14, Section X.14]); so

(ϕ ◦ γ)′(t) = ϕ′(γ(t)) · γ′(t) ̸= 0, for all t ∈ [0, 1].

Finally, by Propositions 1.2.1 and 1.2.2, and Definition 1.2.4 (iii),

lh(ϕ ◦ γ) = lh(γ) = β(z, w) = β(ϕ(z), ϕ(w)).

Theorem 1.2.7. Let z, w ∈ D, with z ̸= w, and let γ : [0, 1] → D be a C1 curve connecting z to w, with
γ′(t) ̸= 0, for all t ∈ [0, 1].

(i) Suppose z, w are located on a diameter of D. Then, γ is a hyperbolic geodesic connecting z to w
if and only if γ([0, 1]) = [z, w], where by [z, w] we denote the line-segment with initial point z and
ending point w.

(ii) Suppose z, w are not located on a diameter of D. Then, γ is a hyperbolic geodesic connecting
z to w if and only if γ([0, 1]) is the arc, with initial point z and ending point w, of the circle C
which contains z and w and intersects ∂D perpendicularly.

Proof. (i) Let z, w be located on a diameter of D. Consider a rotation ϕ such that ϕ(z) = r ∈ (−1, 1),
ϕ(w) = s ∈ (−1, 1) and r < s.

Let γ be a hyperbolic geodesic connecting z to w.By Proposition 1.2.6, ϕ◦γ is a hyperbolic geodesic
connecting ϕ(z) = r to ϕ(w) = s, so lh(ϕ ◦ γ) = β(r, s). It follows from Lemma 1.2.4 (ii) that
(ϕ ◦ γ)([0, 1]) = [r, s], so γ([0, 1]) = ϕ−1([r, s]) = [z, w].

Conversely, let γ([0, 1]) = [z, w]. Then (ϕ ◦ γ)([0, 1]) = ϕ([z, w]) = [r, s], so (ϕ ◦ γ)(t) = u(t),
for all t ∈ [0, 1], where u : [0, 1] → [r, s] is a C1 function. Note that u′(t) = ϕ′(γ(t)) · γ′(t) ̸= 0,
for all t ∈ [0, 1], because ϕ′(z) ̸= 0, for all z ∈ D (see [14, Section X.14]), and since u(0) = r and
u(1) = s > r, u is a strictly increasing function. It follows fromLemma 1.2.4 (ii) that lh(ϕ◦γ) = β(r, s),
so Propositions 1.2.1 and 1.2.2 give lh(γ) = lh(ϕ◦γ) = β(r, s) = β(ϕ−1(r), ϕ−1(s)) = β(z, w). Thus,
γ is a hyperbolic geodesic connecting z to w.
(ii) Suppose z, w are not located on a diameter ofD.Consider theMöbius map ϕw(ζ) =

w − ζ

1− w̄ζ
, ζ ∈ D.

Then ϕw(w) = 0 and ϕw(z) ̸= 0, because z ̸= w. Let ψ be a rotation that maps ϕw(z) to |ϕw(z)| > 0.
Then ϕ := ψ ◦ ϕw is a Möbius map of D, with ϕ(w) = 0 and ϕ(z) = |ϕw(z)| =: s ∈ (0, 1). It follows
from Proposition 1.2.6 and (i) that

γ is a hyperbolic geodesic connecting z to w
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if and only if
ϕ ◦ γ is a hyperbolic geodesic connecting s to 0

if and only if
(ϕ ◦ γ)([0, 1]) = [s, 0]

if and only if
γ([0, 1]) = ϕ−1([s, 0]).

Let C = ϕ−1(R ∪ {∞}). Then, Theorem 1.1.3 implies that C is a circle in C̄. Since ϕ−1 is a conformal
map, by [14, Section X.14, II.12] we have that ϕ−1 preserves the angle between R and ∂D; hence C
intersects ∂D perpendicularly. Moreover, z = ϕ−1(s) ∈ C and w = ϕ−1(0) ∈ C are not located on a
diameter of D, so C is a euclidean circle. Thus,

γ([0, 1]) = ϕ−1([s, 0])

if and only if
γ([0, 1]) is the arc of C ∩ D connecting z to w.

1.3 The pseudo-hyperbolic metric and hyperbolic discs

Consider the function ρ(z, w) =
∣∣∣ z − w

1− zw̄

∣∣∣, for all z, w ∈ D.

Proposition 1.3.1. The function ρ is invariant under the action of Möbius maps of D, that is,

ρ(ϕ(z), ϕ(w)) = ρ(z, w), for all z, w ∈ D and ϕ ∈ Aut(D).

Proof. It follows from Theorem 1.1.1 and straightforward calculations.

We will show that ρ is a metric on D.

Lemma 1.3.2. ρ(z, w) ≤ |z|+ |w|, for all z, w ∈ D.

Proof. By straightforward calculations, we get that for all z, w ∈ D,

ρ(|z|,−|w|) = |z|+ |w|
1 + |z||w|

≤ |z|+ |w| (1.10)

and
1− ρ2(z, w) =

(1− |z|2)(1− |w|2)
|1− zw̄|2

. (1.11)

Note that (1.11) gives

1− ρ2(|z|,−|w|) = (1− |z|2)(1− |w|2)
(1 + |z||w|)2

(1.12)

and
1− ρ2(z, w) ≥ (1− |z|2)(1− |w|2)

(1 + |z||w|)2
, (1.13)

for all z, w ∈ D. Thus, by (1.12), (1.13) and (1.10),

1− ρ2(|z|,−|w|) ≤ 1− ρ2(z, w) ⇒ ρ(z, w) ≤ ρ(|z|,−|w|) ≤ |z|+ |w|,

for all z, w ∈ D.

Proposition 1.3.3. The function ρ : D× D → R is a metric on D, called the pseudo-hyperbolic metric
of D.
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Proof. For all z, w ∈ D, we have that ρ(z, w) ≥ 0, ρ(z, w) = ρ(w, z) and

ρ(z, w) = 0 ⇔ |z − w| = 0 ⇔ z = w.

As for the triangle inequality, by Proposition 1.3.1 and Lemma 1.3.2, we get that for all z, a, w ∈ D,

ρ(z, w) = ρ(ϕa(z), ϕa(w)) ≤ |ϕa(z)|+ |ϕa(w)| = ρ(ϕa(z), 0) + ρ(0, ϕa(w))

= ρ(ϕa(z), ϕa(a)) + ρ(ϕa(a), ϕa(w)) = ρ(z, a) + ρ(a,w).

Remark 1.3.1. By formula (1.7) for the hyperbolic metric and the definition of pseudo-hyperbolic met-
ric,

β(z, w) =
1

2
log

1 + ρ(z, w)

1− ρ(z, w)
= tanh−1(ρ(z, w)), (1.14)

for all z, w ∈ D.

We will now engage in the concept of pseudo-hyperbolic and hyperbolic discs and explore their
connection with euclidean discs.

Definition 1.3.1. Let z ∈ D and r > 0.

(i) The set Dρ(z, r) := {w ∈ D : ρ(w, z) < r} is called the pseudo-hyperbolic disc with center z
and radius r, and the set Cρ(z, r) := {w ∈ D : ρ(w, z) = r} is called the pseudo-hyperbolic
circle with center z and radius r.

(ii) The setDh(z, r) := {w ∈ D : β(w, z) < r} is called the hyperbolic disc with center z and radius
r, and the set Ch(z, r) := {w ∈ D : β(w, z) = r} is called the hyperbolic circle with center z
and radius r.

Notation. If z ∈ C and r > 0, we denote by D(z, r) the euclidean disc with center z and radius r, and
by C(z, r) the euclidean circle with center z and radius r.

Lemma 1.3.4. For any z ∈ D and 0 < r < 1, the pseudo-hyperbolic disc Dρ(z, r) is a euclidean disc

with center C =
1− r2

1− r2|z|2
z and radius R =

1− |z|2

1− r2|z|2
r.

Proof. Let z ∈ D and 0 < r < 1. If w ∈ C, then

w ∈ Dρ(z, r) ⇔ w ∈ D and ρ(w, z) < r ⇔ w ∈ D and |z − w|2 < r2|1− zw̄|2 ⇔
⇔ w ∈ D and |z|2 − 2Re(zw̄) + |w|2 < r2(1− 2Re(zw̄) + |z|2|w|2) ⇔

⇔ w ∈ D and |w|2 − 2 · 1− r2

1− r2|z|2
· Re(zw̄) < r2 − |z|2

1− r2|z|2
⇔

⇔ w ∈ D and |w|2 − 2 · 1− r2

1− r2|z|2
· Re(zw̄) + (1− r2)2|z|2

(1− r2|z|2)2
<

r2 − |z|2

1− r2|z|2
+

(1− r2)2|z|2

(1− r2|z|2)2
⇔

⇔ w ∈ D and |w − C|2 < R2 ⇔ w ∈ D and w ∈ D(C,R),

so
Dρ(z, r) = D ∩D(C,R). (1.15)

Note that
|C| = 1− r2

1− r2|z|2
|z| < 1− r2

1− r2|z|2
< 1,

and

R < 1− |C| ⇔ (1− |z|2)r < 1− r2|z|2 − (1− r2)|z| ⇔ r|z|2 − (r + 1)|z|+ 1 > 0.

The last inequality holds because |z| < 1 and r ∈ (0, 1). Thus, D(C,R) ⊂ D, and by (1.15), we get
Dρ(z, r) = D(C,R).
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Proposition 1.3.5. For any z ∈ D and r > 0, the hyperbolic disc Dh(z, r) is a euclidean disc with

center C =
1− s2

1− s2|z|2
z and radius R =

1− |z|2

1− s2|z|2
s, where s = tanh(r) ∈ (0, 1).

Proof. Let z ∈ D and r > 0. If w ∈ C, then it follows from (1.14) and Lemma 1.3.4 that

w ∈ Dh(z, r) ⇔ w ∈ D and β(w, z) < r ⇔ w ∈ D and
1

2
log

1 + ρ(z, w)

1− ρ(z, w)
< r ⇔

⇔ w ∈ D and
1 + ρ(z, w)

1− ρ(z, w)
< e2r ⇔ w ∈ D and

2ρ(z, w)

1− ρ(z, w)
< e2r − 1 ⇔

⇔ w ∈ D and 2ρ(z, w) < (e2r + 1) tanh(r) · (1− ρ(z, w)) ⇔
⇔ w ∈ D and ρ(z, w)(e2r + 1) < e2r − 1 ⇔ w ∈ D and ρ(z, w) < s ⇔
⇔ w ∈ Dρ(z, s) ⇔ w ∈ D(C,R).

Corollary 1.3.6. The euclidean metric restricted to D and the hyperbolic metric produce the same open
sets in D or, equivalently, they are topologically equivalent metrics.

Proof. Let z ∈ D and r > 0.
SinceDh(z, r) ⊂ D is a euclidean disc, it is an open set inC; hence there exists a real number δ1 > 0

such than D(z, δ1) ⊂ Dh(z, r).
On the other hand, if w ∈ Dh

(
z, r2
)
, then by (1.14),

|z − w| = |1− zw̄| tanh(β(z, w)) ≤ 2 tanh(β(z, w)) ≤ 2β(z, w) < r,

because tanh(x) ≤ x, for all x ≥ 0; hence Dh

(
z, r2
)
⊂ D(z, r) ∩ D.

Remark 1.3.2. Although the euclidean and the hyperbolic metric are topologically equivalent, they are
not comparable in D. Indeed, |z−w| ≤ 2, for all z, w ∈ D, whereas the hyperbolic metric is unbounded
in D, as can be clearly seen from (1.14). However, the two metrics are comparable in compact subsets
of D.

Proposition 1.3.7. If S ⊂ D is compact, then the euclidean and the hyperbolic metric are comparable
in S.

Proof. Since S is a compact subset of D, there exists a real R ∈ (0, 1) such that S ⊂ D(0, R) ⊂ D. Let
z, w ∈ S. Then, |(1− t)z + tw| ≤ R, for all t ∈ [0, 1], because D(0, R) is a convex set. Thus,

β(z, w) ≤ lh([z, w]) =

∫ 1

0

|z − w|
1− |(1− t)z + tw|2

dt ≤ |z − w|
∫ 1

0

1

1−R2
dt = |z − w| 1

1−R2
,

so (1−R2)β(z, w) ≤ |z − w|.
On the other hand, (1.14) gives

|z − w| = |1− zw̄| tanh(β(z, w)) ≤ 2β(z, w), for all z, w ∈ S.

Thus, for all z, w ∈ S,

(1−R2)β(z, w) ≤ |z − w| ≤ 2β(z, w). (1.16)

Another interesting difference between the euclidean and the hyperbolic metric in D is that the metric
space (D, | · |) is not complete, in contrast to (D, β). Indeed, the sequence zn = 1 − 1

n+1 , n ∈ N, is a
Cauchy sequence in D with respect to the euclidean metric, but it converges to 1 /∈ D. However, for the
hyperbolic metric we have that:
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Proposition 1.3.8. (D, β) is a complete metric space.

Proof. Let {zk} ⊂ D be a Cauchy sequence with respect to the hyperbolic metric, and let ϵ > 0. Then
there exists a number n0 ∈ N such that

β(zn, zm) < ϵ, for all n,m ≥ n0. (1.17)

Let n ≥ n0. By (1.17),

β(zn, 0) ≤ β(zn, zn0) + β(zn0 , 0) < ϵ+ β(zn0 , 0),

so zn ∈ Dh(0, rϵ), for all n ≥ n0, where rϵ := ϵ + β(zn0 , 0) > 0. If sϵ := tanh(rϵ) ∈ (0, 1), then
Proposition 1.3.5 yields that Dh(0, rϵ) = D(0, sϵ); so

zn ∈ D(0, sϵ), for all n ≥ n0, (1.18)

and D(0, sϵ) is a compact subset of D.
Now, by (1.16) and (1.17),

|zn − zm| ≤ 2β(zn, zm) < ϵ, for all n,m ≥ n0,

hence {zk} is a Cauchy sequence with respect to the euclidean metric. Thus, there exists a point z ∈ C
such that zk → z, as k → +∞, and (1.18) gives that z ∈ D(0, sϵ) ⊂ D. Finally, by (1.16),

(1− s2ϵ )β(u, v) ≤ |u− v|, for all u, v ∈ D(0, sϵ),

hence
β(zn, z) ≤

1

1− s2ϵ
|zn − z| → 0, as n→ +∞,

that is, {zk} converges to z ∈ D with respect to the hyperbolic metric.

Lemma 1.3.9. Let z, a ∈ D and r > 0. Then ϕa(Dh(z, r)) = Dh(ϕa(z), r).

Proof. If w ∈ Dh(z, r), then β(ϕa(z), ϕa(w)) = β(z, w) < r, because of the Möbius invariance of the
hyperbolic metric; so ϕa(w) ∈ Dh(ϕa(z), r). For the reverse enclosure, if w ∈ Dh(ϕa(z), r), then by
Propositions 1.2.2 and 1.1.2 (ii), β(ϕa(w), z) = β(w, ϕa(z)) < r, so w = ϕa(ϕa(w)) ∈ ϕa(Dh(z, r)).

Let µ2 denote the restriction to D of the Lebesgue measure of C. Then, by A we denote the normal-
ized area measure of D, that is A = 1

πµ2. This way,

A(D) =
∫
D
dA(z) =

∫ 1

0

∫ 2π

0

r

π
dθdr = 1.

Also, for all α ∈ R, define the measure

Aα(D) =

∫
D
dAα(z) =

∫
D
cα(1− |z|2)α dA(z),

for all Borel-measurable sets D ⊂ D, where cα =

{
α+ 1, if α > −1,

1, if α ≤ −1
.

Remark 1.3.3. If α > −1, the measure Aα is finite. Indeed,∫
D
dAα(z) =

∫
D
cα(1− |z|2)α dA(z) =

∫ 1

0

∫ 2π

0
(α+ 1)(1− r2)α · r

π
dθdr = 1 < +∞.
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Lemma 1.3.10. Suppose z ∈ D and r > 0. Then

(i) A(Dh(z, r)) =
(1− |z|2)2s2

(1− |z|2s2)2
,

(ii) inf
{

1

|1− zw̄|
: w ∈ Dh(z, r)

}
=

1− s|z|
1− |z|2

, and

(iii) sup
{

1

|1− zw̄|
: w ∈ Dh(z, r)

}
=

1 + s|z|
1− |z|2

,

where s = tanh(r) ∈ (0, 1).

Proof. (i) By Proposition 1.3.5, Dh(z, r) = D(C,R), where C =
1− s2

1− s2|z|2
z and R =

1− |z|2

1− s2|z|2
s,

hence
A(Dh(z, r)) =

∫
Dh(z,r)

dA(z) =

∫ R

0

∫ 2π

0

ρ

π
dθdρ = R2 =

(1− |z|2)2s2

(1− |z|2s2)2
.

(ii) Using Lemma 1.3.9,

inf
{

1

|1− zw̄|
: w ∈ Dh(z, r)

}
= inf

{
1

|1− zw̄|
: w ∈ ϕz(Dh(0, r))

}
= inf

{
1

|1− zϕz(w)|
: w ∈ Dh(0, r)

}
= inf

{
|1− zw̄|
1− |z|2

: w ∈ Dh(0, r)

}
=

1− s|z|
1− |z|2

,

where the last equality holds becauseDh(0, r) = D(0, s) by Proposition 1.3.5, so for all w ∈ Dh(0, r),
|1 − zw̄| ≥ 1 − |z||w| ≥ 1 − |z|s, and for the sequence wn =

(
1 − 1

n

)
seiArgz ∈ D(0, s), n ∈ N, we

have that |1− zw̄n| = |1− |z|s
(
1− 1

n

)
| → 1− s|z|, as n→ +∞.

(iii) It can be proved in exactly the same way as (ii).

Proposition 1.3.11. Let r > 0 and α ∈ R. Then
(i) |1− zw̄| ∼ 1− |z|2 ∼ 1− |w|2, for all z, w ∈ D with β(z, w) < r, and

(ii) Aα(Dh(z, r)) ∼ (1− |z|2)2+α, for all z ∈ D.
Proof. Let s = tanh(r) ∈ (0, 1).
(i) By Lemma 1.3.10 (ii), (iii), we get that for all z, w ∈ D with β(z, w) < r,

1

|1− zw̄|
≥ 1− s|z|

1− |z|2
⇒ |1− zw̄| ≤ 1− |z|2

1− s|z|
≤ 1

1− s
· (1− |z|2),

and
1

|1− zw̄|
≤ 1 + s|z|

1− |z|2
⇒ |1− zw̄| ≥ 1− |z|2

1 + s|z|
≥ 1

1 + s
· (1− |z|2),

respectively. Thus, |1− zw̄| ∼ 1− |z|2. The relation |1− zw̄| ∼ 1− |w|2 can be proved in exactly the
same way.
(ii) By (i) and Lemma 1.3.10 (i), we have that for all z ∈ D,

Aα(Dh(z, r)) =

∫
Dh(z,r)

dAα(w) =

∫
Dh(z,r)

cα(1− |w|2)α dA(w) ∼

∼
∫
Dh(z,r)

(1− |z|2)α dA(w) = (1− |z|2)α · (1− |z|2)2s2

(1− |z|2s2)2
∼

∼ (1− |z|2)2+α,

because s2 ≤ s2

(1− |z|2s2)2
≤ s2

(1− s2)2
.
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1.4 r-lattices in the hyperbolic metric

Lemma 1.4.1. There exists a constant C > 0 with the following property: If 0 < r < 1, then every
hyperbolic disc Dh(a, 1) can be covered by at most C

r2
hyperbolic discs Dh(z, r).

Proof. Case 1 (special case). a = 0. Then, by Proposition 1.3.5, Dh(0, 1) = D(0, tanh(1)).
We symmetrically place points onC(0, tanh(1)) so that the hyperbolic length of the arc between any two
adjacent points be less than or equal to r

4 . Since

lh(C(0, tanh(1))) =
∫ 2π

0

| tanh(1)ieiθ|
1− | tanh(1)eiθ|2

dθ =
2π tanh(1)
1− tanh2(1)

=: t,

the number of points we place is equal to

[
t
r
4

]
+1 =

[
C1

r

]
+1,where the constantC1 > 0 is independent

of r.
Next, we place points on the interval [0, tanh(1)] so that the hyperbolic distance between any two adjacent
points be less than or equal to r

4 . Since

lh([0, tanh(1)]) =
∫ tanh(1)

0

1

1− x2
dx =

1

2
log

1 + tanh(1)
1− tanh(1)

= 1,

the number of points we place is equal to

[
1
r
4

]
+1 =

[
C2

r

]
+1,where the constantC2 > 0 is independent

of r.

Figure 1.1: The division of the disc Dh(0, 1) into C
r2

pieces

Now, connect the points on C(0, tanh(1)) to the origin and draw circles centered at 0 through the points
on [0, tanh(1)]. This way, the hyperbolic disc Dh(0, 1) is divided into([

C1

r

]
+ 1

)([
C2

r

]
+ 1

)
≤
(C1

r
+ 1
)(C2

r
+ 1
)
=
C1C2

r2
+

1

r
(C1 + C2) + 1

≤ C1C2

r2
+

1

r2
(C1 + C2) +

1

r2
=
C

r2

pieces, whereC > 0 is independent of r (see Figure 1.1). Because of its construction, any such piece can
be covered by a hyperbolic disc with radius r. Thus, Dh(0, 1) can be covered by at most C

r2
hyperbolic
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discs with radius r.
Case 2 (general case). Let a ∈ D. Then Lemma 1.3.9 gives ϕa(Dh(0, 1)) = Dh(a, 1), and, by Case 1,
there exists a constant C > 0, independent of r, such thatDh(0, 1) ⊂

⋃n
j=1Dh(zj , r), for some zj ∈ D,

where n ≤ C
r2
. Thus,

Dh(a, 1) ⊂ ϕa

(
n⋃

j=1

Dh(zj , r)

)
=

n⋃
j=1

ϕa(Dh(zj , r)) =

n⋃
j=1

Dh(ϕa(zj), r).

Definition 1.4.1. Let r > 0. A sequence {ak} in D is called an r-lattice in the hyperbolic metric if:

(i) β(ai, aj) ≥ r
2 , for all i ̸= j, and

(ii) D =
⋃+∞

k=1Dh(ak, r).

Definition 1.4.2. A sequence {ak} in D is said to be separated in the hyperbolic metric if there exists a
real δ > 0 such that β(ai, aj) ≥ δ, for all i ̸= j.

Remark 1.4.1. Every r-lattice in the hyperbolic metric is a separated sequence in the hyperbolic metric.

Proposition 1.4.2. There exists a constant C > 0 with the following property: If 0 < r < 1 and {ak} is
an r-lattice in the hyperbolic metric, then every point z ∈ D belongs to at most C

r2
of the setsDh(ak, 1).

Proof. Let z ∈ D. Then, there exists a number n ∈ N such that z ∈ Dh(an, r) ⊂ Dh(an, 1), by the
definition of the r-lattice. Suppose z ∈ Dh(aki , 1) for i = 1, . . . , N, where N ≥ 1; hence

aki ∈ Dh(z, 1), for all i ∈ {1, . . . , N}. (1.19)

By Lemma 1.4.1, there exists a constant C > 0, independent of r, and λ1, . . . , λK ∈ D such that

Dh(z, 1) ⊂
K⋃

n=1

Dh

(
λn,

r

4

)
, (1.20)

whereK ≤ C
r2
. IfN > K, then it follows from (1.19) and (1.20) that there exist i, j ∈ {1, . . . , N}, i ̸= j,

such that aki , akj ∈ Dh(λm,
r
4), for somem ∈ {1, . . . ,K}. But

β(aki , akj ) ≤ β(aki , λm) + β(λm, akj ) <
r

4
+
r

4
=
r

2
,

which is a contradiction to the definition of the r-lattice. Thus, N ≤ K ≤ C
r2
.

Theorem 1.4.3. For any r > 0, there exists an r-lattice {ak} in the hyperbolic metric.

Proof. Let D ∩ (Q + iQ) = {λ1, λ2, . . . }. By the density of Q + iQ in C, D =
⋃+∞

n=1Dh(λn,
r
2).We

construct a sequence {ak} in D as follows:
Set a1 = λ1. If we have chosen a point ak of the sequence {λn}, then we choose ak+1 to be the first
point after ak in the sequence {λn} for which the hyperbolic distance from a1, . . . , ak is greater than or
equal to r

2 . Inductively, we construct a sequence {ak} in D which is a subsequence of {λn} and fulfills
(i) of Definition 1.4.1.
Let z ∈ D. Then z ∈ Dh(λn,

r
2), for some n ∈ N. If λn = am for somem ∈ N, then

z ∈ Dh

(
am,

r

2

)
⊂ Dh(am, r).

If λn is not in {ak}, then n ̸= 1 and we let aj be the point of {ak} before λn with the largest index.
Thus, aj+1 appears after λn.We check the following two possibilities:
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(i) β(aj , λn) < r
2 . Then β(z, aj) ≤ β(z, λn) + β(λn, aj) <

r
2 + r

2 = r, so z ∈ Dh(aj , r).

(ii) β(aj , λn) ≥ r
2 . Then, by the choice of aj and the fact that λn does not belong in {ak}, there exists

an index k0 ∈ {1, . . . , j − 1} such that β(λn, ak0) < r
2 . Thus,

β(z, ak0) ≤ β(z, λn) + β(λn, ak0) <
r

2
+
r

2
= r,

so z ∈ Dh(ak0 , r).

In all cases, z ∈ Dh(ak, r) for some k ∈ N. Thus, {ak} fulfills (ii) of Definition 1.4.1 and hence, it is
an r-lattice in the hyperbolic metric.

Wewill now construct a specific type of r-lattice, called regular r-lattice. First, we need the following
two lemmas.

Lemma 1.4.4. Let s ∈ (0, 1) and a, b, c ∈ C(0, s) such that c = eiθa, where θ ∈ (0, π] ∪ (−π, 0), and

b = eiθ̃a, where θ̃ ∈

{
(0, θ), if θ ∈ (0, π],

(θ, 0), if θ ∈ (−π, 0)
. Then β(a, c) ≥ β(a, b).

Proof. Let a = seiθ̂, where θ̂ ∈ [0, 2π), and consider the Möbius maps ϕ1(z) = e−iθ̂z, z ∈ D, and
ϕ = ϕs◦ϕ1 in D.Then, ϕ1 mapsC(0, s) onto itself andϕs maps [−1, 1] onto itself. By Theorem 1.1.3, ϕs
mapsC(0, s) onto a circle inD,which is perpendicular toR, since Möbius maps ofD are conformal, and
so they preserve the angles between curves (see [14, Sections X.14, II.12]). Also, ϕ maps a to 0, 0 to s,
and if we apply ϕ on C(0, s), the order of the points a, b, c is preserved, by the preservation of angles
(see Figure 1.2). Thus, by Proposition 1.2.2 and Theorem 1.2.7 (i),

β(a, c) = β(ϕ(a), ϕ(c)) = β(0, ϕ(c)) = lh([0, ϕ(c)]) ≥ lh([0, ϕ(b)]) = β(0, ϕ(b)) = β(a, b).

Figure 1.2: The transformation of the circle C(0, s) through the Möbius map ϕ

Lemma 1.4.5. Let 0 < s1 < s2 < 1, a = s1e
iθ ∈ C(0, s1), where θ ∈ [0, 2π), b = s2e

iθ ∈ C(0, s2),
and c ∈ C(0, s2). Then β(a, c) ≥ β(a, b).

Proof. Consider the Möbius maps ϕ1(z) = e−iθz, z ∈ D, and ϕ = ϕs1 ◦ ϕ1 in D. Then, ϕ1 maps
C(0, s1) and C(0, s2) onto themselves and ϕs1 maps [−1, 1] onto itself. By Theorem 1.1.3, ϕs1 maps
C(0, s1) and C(0, s2) onto circles in D, which are perpendicular to R, since Möbius maps of D are
conformal, and so they preserve the angles between curves (see [14, Sections X.14, II.12]). Also, ϕmaps
a to 0, 0 to s1, and b to ϕ(b) =

s1 − s2
1− s1s2

< 0 (see Figure 1.3). Let d ∈ (ϕ(C(0, s2)) ∩ R) \ {ϕ(b)}.
Then, by Proposition 1.2.2 and Theorem 1.2.7 (i),

β(ϕ(b), 0) = β(b, a) = lh([a, b]) = tanh−1(s2)− tanh−1(s1)

≤ tanh−1(s2) = β(0, ϕ−1(d)) = β(s1, d) ≤ β(s1, d) + β(0, s1)

= lh([s1, d]) + lh([0, s1]) = lh([0, d]) = β(0, d),
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so
β(a, c) = β(ϕ(a), ϕ(c)) = β(0, ϕ(c)) ≥ β(0, ϕ(b)) = β(a, b).

Figure 1.3: The transformation of the circles C(0, s1) and C(0, s2) through the Möbius map ϕ

Let r > 0.Weconstruct a sequence inD as follows: Set a01 = 0. For any k ∈ N∪{0}, letSk = Ch

(
0, kr2

)
.

Proposition 1.3.5 yields that, for all k ∈ N ∪ {0}, Sk = C(0, tanh(kr2 )). For each k ≥ 1, symmetrically
place nk points {ak1, . . . , aknk

} on Sk such that the hyperbolic distance between any two adjacent points
is greater than or equal to r

2 , but less than
3r
4 .

Proposition 1.4.6. The sequence {0} ∪ {a11, . . . , a1n1
} ∪ · · · ∪ {ak1, . . . , aknk

} ∪ . . . constructed above is
an r-lattice in the hyperbolic metric.

Proof. Let k ≥ 1 and i, j ∈ {1, . . . , nk}, i ̸= j.
If aki , akj are adjacent, then β(aki , akj ) ≥ r

2 , by the construction of the sequence.
If this is not the case, then akj = eiθaki , where θ ∈ (0, π] ∪ (−π, 0), and there exists an index
λ ∈ {1, . . . , nk}, λ ̸= i, λ ̸= j, such that aki , akλ are adjacent and akλ = eiθ̃aki , where

θ̃ ∈

{
(0, θ), if θ ∈ (0, π],

(θ, 0), if θ ∈ (−π, 0)
.

By Lemma 1.4.4, β(aki , akj ) ≥ β(aki , a
k
λ) ≥

r
2 .

Let k, l ≥ 1 with l > k, i ∈ {1, . . . , nk}, j ∈ {1, . . . , nl}. If aki = tanh(kr2 )e
iθ, where θ ∈ [0, 2π),

then by Lemma 1.4.5,

β(aki , a
l
j) ≥ β(aki , tanh

( lr
2

)
· eiθ) = lr

2
− kr

2
≥ r

2
.

Thus, for all k, l ∈ N ∪ {0} and all i ∈ {1, . . . , nk}, j ∈ {1, . . . , nl}, we have that β(aki , alj) ≥ r
2 ,

so the sequence fulfills (i) of Definition 1.4.1.
Let z ∈ D.We have one of the following situations:

(i) z ∈ S0 ∪Dh(0,
r
2). Then z ∈ Dh(0, r).

(ii) z ∈ Sk, for some k ∈ N. Then there exist indexes i, j ∈ {1, . . . , nk}, i ̸= j, such that aki , akj are
adjacent, akj = eiθ̂aki , where θ̂ ∈ (0, π], and z = eiθaki , where θ ∈ [0, θ̂]. It follows from Lemma 1.4.4
that β(aki , z) ≤ β(aki , a

k
j ) <

3r
4 , so z ∈ Dh(a

k
i , r).
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(iii) z ∈ Dh

(
0, (k+1)r

2

)
\Dh

(
0, kr2

)
.

If β(0, z) < kr
2 + r

4 , then there exist indexes i, j ∈ {1, . . . , nk}, i ̸= j, such that aki , akj are adjacent,
aki = tanh(kr2 )e

iθ̃ and akj = eiθ̂aki , where θ̃ ∈ [0, 2π), θ̂ ∈ (0, π], and z = |z|eiθ, where θ ∈ [θ̃, θ̃ + θ̂].
Then it follows from Lemma 1.4.4 that

β(z, aki ) ≤ β
(
z, tanh

(kr
2

)
· eiθ

)
+ β

(
tanh

(kr
2

)
· eiθ, aki

)
≤ r

4
+ β(aki , a

k
j ) <

r

4
+

3r

4
= r,

so z ∈ Dh(a
k
i , r).

We work for the case β(0, z) ≥ kr
2 + r

4 in exactly the same way.

In any case, z ∈ Dh(a
k
i , r), for some k ∈ N ∪ {0} and i ∈ {1, . . . , nk}, so the sequence fulfills (ii) of

Definition 1.4.1 and, hence, it is an r-lattice.

Proposition 1.4.7. Let r > 0 and {ak} be a regular r-lattice in the hyperbolic metric. For all R > 0,
there exists a separation of {ak} into finitely many subsequences {ak1, . . . , akn, . . . }, 1 ≤ k ≤ N
(N ∈ N depends on r and R), such that

β(aki, akj) ≥ R, for all i ̸= j and k ∈ {1, . . . , N}. (1.21)

Proof. Case 1. r
2 ≥ R. Then, the whole sequence {ak} fulfills (1.21), because it is an r-lattice.

Case 2. r
2 < R. Then there exists a number p ∈ N such that p r

2 ≥ R. From the circles Sk with k small,
in which there might not belong many points of the sequence, we choose every point of {ak} to be a
subsequence on its own. When we reach a circle Sk where there are enough points, we choose them in
groups and then move on to the first circle Sl whose hyperbolic distance from Sk is greater than or equal
to p r

2 .

Proposition 1.4.8. Suppose 0 < r ≤ 1 and let {ak} be an r-lattice in the hyperbolic metric. Then, for
each k ∈ N there exists a Borel-measurable set Dk ⊂ D with the following properties:

(i) Dh(ak,
r
4) ⊂ Dk ⊂ Dh(ak, r), for all k ∈ N,

(ii) Di ∩Dj = ∅, if i ̸= j, and

(iii) D =
⋃+∞

k=1Dk.

Proof. Let

D1 = Dh(a1, r) \
+∞⋃
j=2

Dh

(
aj ,

r

4

)
. (1.22)

If {D1, . . . , Dk} have been constructed, we let

Dk+1 = Dh(ak+1, r) \

[(
k⋃

i=1

Di

)⋃(
+∞⋃

j=k+2

Dh

(
aj ,

r

4

))]
, (1.23)

hence, by induction, we arrive at a sequence {Dk} of Borel-measurable subsets of D. Then, we get
immediately by (1.22) and (1.23) that Dk ⊂ Dh(ak, r), for all k ∈ N, and that Di ∩Dj = ∅, if i ̸= j,
because if z ∈ Dj for some j > 1, then z /∈ Di, for all i ∈ {1, . . . , j − 1}.

Let z ∈ Dh(a1,
r
4). If z /∈ D1, then by (1.22), z ∈ Dh(aλ,

r
4), for some λ ≥ 2; hence

β(a1, aλ) ≤ β(a1, z) + β(z, aλ) <
r

4
+
r

4
=
r

2
,

which is a contradiction to the definition of the r-lattice. Thus, Dh(a1,
r
4) ⊂ D1.

Let k ∈ N. For i ∈ {1, . . . , k}, we have Di ∩ Dh(ak+1,
r
4) = ∅. Indeed, D1 ∩ Dh(ak+1,

r
4) = ∅

by (1.22), and if Dλ+1 ∩ Dh(ak+1,
r
4) ̸= ∅ for some λ ∈ {1, . . . , k − 1}, then there exists a point
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z ∈ Dλ+1 ∩Dh(ak+1,
r
4), so by (1.23), z /∈ Dh(aj ,

r
4), for all j ≥ λ+ 2, and z ∈ Dh(ak+1,

r
4), which

is a contradiction, since k + 1 ≥ λ+ 2. Thus,

Dh

(
ak+1,

r

4

)⋂(
k⋃

i=1

Di

)
= ∅. (1.24)

On the other hand, if there exists a point z ∈ Dh(ak+1,
r
4) ∩ Dh(aλ,

r
4), for some λ ≥ k + 2, then

β(ak+1, aλ) ≤ β(ak+1, z) + β(z, aλ) <
r
4 + r

4 = r
2 , which is a contradiction to the definition of the

r-lattice. Thus,

Dh

(
ak+1,

r

4

)⋂(
+∞⋃

j=k+2

Dh

(
aj ,

r

4

))
= ∅. (1.25)

By (1.23), (1.24) and (1.25), Dh(ak+1,
r
4) ⊂ Dk+1, for all k ∈ N.

Finally, let z ∈ D. By (ii) of Definition 1.4.1, z ∈ Dh(aλ, r), for some λ ∈ N. If λ = 1, then, by
(1.22), either z ∈ D1 or z ∈ Dh(aj ,

r
4) ⊂ Dj , for some j ≥ 2. If λ = k + 1, for some k ∈ N, then,

by (1.23), either z ∈ Dk+1, or z ∈ Di, for some i ∈ {1, . . . , k}, or z ∈ Dh(aj ,
r
4) ⊂ Dj , for some

j ≥ k + 2. In any case, z ∈
⋃+∞

k=1Dk.
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Bergman Spaces

Definition 2.0.1. For p > 0 and α > −1, we define Ap(dAα) = H(D) ∩ Lp(D, dAα). These spaces
are called Bergman spaces with standard weights.

Remark 2.0.1. The Bergman spaces are vector spaces over C, as H(D) and Lp(D, dAα) are vector
spaces over C.

Remark 2.0.2. If p ≥ 1, then the normed space (Lp(D, dAα), ∥·∥p,α), where

∥f∥p,α =
(∫

D
|f |p dAα

)1/p
, for all f ∈ Lp(D, dAα),

is a Banach space.
If 0 < p < 1, then the metric space (Lp(D, dAα), dp,α), where

dp,α(f, g) =

∫
D
|f − g|p dAα, for all f, g ∈ Lp(D, dAα),

is complete.

Notation. We will denote by ∥f∥p,α the number
(∫

D
|f |p dAα

)1/p
, even if 0 < p < 1.

2.1 Completeness and other properties

Proposition 2.1.1. Suppose p > 0 and 0 < r < 1. Then

|f(0)|p ≤ 1

2π

∫ 2π

0
|f(reiθ)|p dθ, for all f ∈ H(D). (2.1)

Proof. If f ≡ 0, then (2.1) obviously holds. Thus, we assume that f ̸≡ 0. Then, by the Identity Theorem
(see Sarason [14, Sections VII.13, VII.14]), the set f−1({0}) is at most countable.

Fix r ∈ (0, 1) and suppose that f has no zero on |z| = r.We also assume that f(0) ̸= 0 (otherwise
(2.1) holds obviously). We consider the function

g : D
(
0,

1

r

)
→ C, with g(z) = f(rz), for all z ∈ D

(
0,

1

r

)
,

17
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which is holomorphic in D
(
0, 1r
)
⊃ D and nonvanishing on |z| = 1. Let {a1, a2, . . . , an} be the zeros

of g in D, repeated according to multiplicity. Then, by [14, Section VII.13],

g(z) = (z − a1) · ... · (z − an)G(z), for all z ∈ D
(
0,

1

r

)
, (2.2)

where G : D
(
0, 1r
)
→ C is holomorphic and G(z) ̸= 0, for all z ∈ D. Since f(0) ̸= 0, we have that

ak ̸= 0, for all k ∈ {1, . . . , n}, so we can define the Blaschke product

B(z) =
n∏

k=1

|ak|
ak

· ak − z

1− ākz
, for all |z| < min

{∣∣∣ 1
āk

∣∣∣ : k = 1, . . . , n
}
=: ρ ∈ (1,+∞).

Note that
|B(0)| = |a1| · ... · |an| ∈ (0, 1) (2.3)

and

|B(z)| =
n∏

k=1

|ak − z|
|1− ākz|

= |ϕa1(z)| · ... · |ϕan(z)| = 1, for all z ∈ ∂D. (2.4)

Now, set R := min
{
1
r , ρ
}
> 1, and consider the function h : D(0, R) → C, with

h(z) =
g(z)

B(z)

(2.2)
= (−1)nG(z)

n∏
k=1

ak
|ak|

(1− ākz), for all z ∈ D(0, R).

Then h ∈ H(D(0, R)) and h(z) ̸= 0, for all z ∈ D, hence there exists a real number R′ ∈ (1, R) such
that h(z) ̸= 0, for all z ∈ D(0, R′). Since D(0, R′) is a simply connected domain, by [14, Section X.5]
there exists a branch of logh inD(0, R′), so we can define a holomorphic function hp inD(0, R′). Then,
the Mean Value Property ([14, Section VII.6]), (2.3) and (2.4) give

hp(0) =
1

2π

∫ 2π

0
hp(eiθ) dθ ⇒ |h(0)|p ≤ 1

2π

∫ 2π

0
|h(eiθ)|p dθ ⇒

⇒ |g(0)|p

|B(0)|p
≤ 1

2π

∫ 2π

0

|g(eiθ)|p

|B(eiθ)|p
dθ ⇒

⇒ |f(0)|p ≤ 1

2π
|B(0)|p

∫ 2π

0
|f(reiθ)|p dθ ≤ 1

2π

∫ 2π

0
|f(reiθ)|p dθ.

Suppose now that there exists a point z ∈ C(0, r) such that f(z0) = 0. Since f−1({0}) is at most
countable, we can find a sequence {rn} such that limn→+∞ rn = r, and, for all n ∈ N, rn ∈ (r, 1),
rn+1 < rn, and f do not vanish on C(0, rn). Thus, by the previous case,

|f(0)|p ≤ 1

2π

∫ 2π

0
|f(rneiθ)|p dθ, for all n ∈ N. (2.5)

If fn : [0, 2π] → R, with fn(θ) = |f(rneiθ)|p, for all θ ∈ [0, 2π] and n ∈ N, then

lim
n→+∞

fn(θ) = |f(reiθ)|p, for all θ ∈ [0, 2π],

and

|fn(θ)| = |f(rneiθ)|p ≤ (max{|f(z)| : z ∈ D(0, r1)})p, for all θ ∈ [0, 2π] and n ∈ N,

since f is continuous on the compact setD(0, r1). Applying [6, 2.24 The Dominated Convergence The-
orem] to (2.5), we take (2.1).
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Corollary 2.1.2. Let p > 0. If f is holomorphic in an open set Ω ⊂ C and a ∈ Ω, then

|f(a)|p ≤ 1

2π

∫ 2π

0
|f(a+ reiθ)|p dθ,

for all r > 0, provided that D(a, r) ⊂ Ω.

Proof. Since D(a, r) ⊂ Ω is compact and Ω is open, there exists a real number R > r such that
D(a, r) ⊂ D(a,R) ⊂ Ω. Let ϕ(z) = a+ Rz, for all z ∈ C. Then ϕ(D) = D(a,R) and ϕ ∈ H(D), so
Proposition 2.1.1 implies that

|f(a)|p = |f(ϕ(0))|p ≤ 1

2π

∫ 2π

0

∣∣∣f(ϕ( r
R
eiθ
))∣∣∣p dθ = 1

2π

∫ 2π

0
|f(a+ reiθ)|p dθ.

Corollary 2.1.3. Let p > 0 and α > −1. Then

|f(0)|p ≤
∫
D
|f(z)|p dAα(z), for all f ∈ H(D).

Proof. Using polar coordinates and Proposition 2.1.1,∫
D
|f(z)|p dAα(z) =

∫
D
|f(z)|p · cα(1− |z|2)α dA(z) =

∫ 1

0
cα(1− r2)α · r

π

∫ 2π

0
|f(reiθ)|p dθdr

≥
∫ 1

0
cα(1− r2)α · 2r|f(0)|p dr = |f(0)|p

∫ 1

0
(α+ 1)(1− r2)α · 2r dr = |f(0)|p.

Theorem 2.1.4. Let p > 0, α > −1, and f ∈ Ap(dAα). Then

|f(z)| ≤ ∥f∥p,α
(1− |z|2)(2+α)/p

, for all z ∈ D.

Proof. Let z ∈ D. Then the function

F (w) = (f ◦ ϕz)(w) ·
(1− |z|2)(2+α)/p

(1− wz̄)2(2+α)/p
, for all w ∈ D,

is holomorphic in D, and∫
D
|F (w)|p dAα(w) =

∫
D
|f ◦ ϕz(w)|p ·

(1− |z|2)2+α

|1− wz̄|2(2+α)
· cα(1− |w|2)α dA(w)

=

∫
D
|f(w)|p · (1− |z|2)2+α

|1− ϕz(w)z̄|2(2+α)
· cα(1− |ϕz(w)|2)α · |ϕ′z(w)|2 dA(w)

=

∫
D
|f(w)|p · (1− |z|2)2+α

|1− ϕz(w)z̄|2(2+α)
· (1− |z|2)2+α

|1− z̄w|2(2+α)
dAα(w)

=

∫
D
|f(w)|p dAα(w) = ∥f∥pp,α < +∞,

where we used the Change of Variables Theorem ([6, Theorem 2.47a]) for the second equality, and
Proposition 1.1.2 (iii), (iv) for the third equality. Therefore, F ∈ Ap(dAα), with ∥F∥p,α = ∥f∥p,α.
Using Corollary 2.1.3,

|f(z)|(1− |z|2)(2+α)/p = |F (0)| ≤ ∥F∥p,α = ∥f∥p,α,

and the desired inequality follows.
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Corollary 2.1.5. Let p ≥ 1, α > −1 and z ∈ D. The function Tz : Ap(dAα) → C, with Tz(f) = f(z),
for all f ∈ Ap(dAα), is a bounded linear functional on Ap(dAα).

Proof. The linearity of Tz can be proved easily. Regarding the boundedness, if f ∈ Ap(dAα), then by
Theorem 2.1.4,

|Tz(f)| = |f(z)| ≤ 1

(1− |z|2)(2+α)/p
∥f∥p,α.

Corollary 2.1.6. Let p > 0, α > −1 and S ⊂ D be a compact set. Then there exists a real constant
C = C(p, α, S) > 0 such that

sup{|f(z)| : f ∈ Ap(dAα), ∥f∥p,α ≤ 1, z ∈ S} ≤ C < +∞. (2.6)

Proof. Since S is a compact subset of D, there exists a real R ∈ (0, 1) such that S ⊂ D(0, R) ⊂ D. By
Theorem 2.1.4,

|f(z)| ≤ ∥f∥p,α
(1− |z|2)(2+α)/p

≤ 1

(1− |z|2)(2+α)/p
≤ 1

(1−R2)(2+α)/p
,

for all f ∈ Ap(dAα) with ∥f∥p,α ≤ 1, and z ∈ S. SettingC =
1

(1−R2)(2+α)/p
> 0,we get (2.6).

Theorem 2.1.7. For any p > 0 and α > −1, the Bergman space Ap(dAα) is closed in Lp(D, dAα).

Proof. Suppose {fk} is a sequence inAp(dAα) which converges in Lp(D, dAα) to g ∈ Lp(D, dAα); so
{fk} is a Cauchy sequence in Lp(D, dAα).

Let S be a compact set in D. By Corollary 2.1.6, there exists a positive constant C (which depends
on p, α and S) such that |f(z)| ≤ C, for all f ∈ Ap(dAα) with ∥f∥p,α ≤ 1, and z ∈ S. Let ϵ > 0.
Since {fk} is a Cauchy sequence, there exists a number k0 ∈ N such that(∫

D
|fn − fm|p dAα

)1/p
<

ϵ

C
, for all n,m ≥ k0 ⇒

∥∥∥∥Cϵ fn − C

ϵ
fm

∥∥∥∥
p,α

< 1, for all n,m ≥ k0,

hence Corollary 2.1.6 gives that, for all n,m ≥ k0 and z ∈ S,∣∣∣∣Cϵ fn(z)− C

ϵ
fm(z)

∣∣∣∣ ≤ C, or equivalently, |fn(z)− fm(z)| ≤ ϵ.

Thus, {fk} converges uniformly on S to a function f. Since S was an arbitrary compact subset of D, by
the Weierstrass Convergence Theorem ([12, Theorem 10.28]), f ∈ H(D).

Since fk → g, as k → +∞, in Lp(D, dAα), there exists a subsequence {fkn} such that fkn → g, as
n→ +∞, almost everywhere inD. Thus, f = g almost everywhere inD, and hence f ∈ Ap(dAα).

Corollary 2.1.8. For any p > 0 and α > −1, the space (Ap(dAα), ∥·∥p,α) or (Ap(dAα), dp,α) is a
complete metric space.

Proof. By Remark 2.0.2, the spaces (Lp(D, dAα), ∥·∥p,α) or (Lp(D, dAα), dp,α) are complete metric
spaces, so Theorem 2.1.7 gives that Bergman spaces are complete with respect to the corresponding
metrics.

Proposition 2.1.9. Suppose 0 < p ≤ 1 and α > −1. Then∫
D
|f(z)| dAγ(z) ≤

γ + 1

α+ 1

(∫
D
|f(z)|p dAα(z)

)1/p
, for all f ∈ Ap(dAα),

where γ = 2+α
p − 2 > −1.
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Proof. Let f ∈ Ap(dAα). Then, Theorem 2.1.4 gives that for all z ∈ D,

|f(z)| = |f(z)|p · |f(z)|1−p ≤ |f(z)|p ·
(

∥f∥p,α
(1− |z|2)(2+α)/p

)1−p

,

so ∫
D
|f(z)| dAγ(z) ≤

∫
D
|f(z)|p ·

(
∥f∥p,α

(1− |z|2)(2+α)/p

)1−p

dAγ(z)

= ∥f∥1−p
p,α

∫
D
|f(z)|p · (γ + 1)(1− |z|2)γ

(1− |z|2)(2+α)(1−p)/p
dA(z)

= (γ + 1) · ∥f∥1−p
p,α

∫
D
|f(z)|p(1− |z|2)α dA(z)

=
γ + 1

α+ 1
· ∥f∥p,α.

Remark 2.1.1. The above Proposition means that if 0 < p ≤ 1, α > −1 and γ = 2+α
p − 2 > −1, then

Ap(dAα) ⊂ A1(dAγ).

Proposition 2.1.10. Let p > 0, α ∈ R and r > 0. Then there exists a constant C = C(α, r) > 0 such
that

|f(z)|p ≤ C

(1− |z|2)2+α

∫
Dh(z,r)

|f(w)|p dAα(w),

for all f ∈ H(D) and z ∈ D.

Proof. Proposition 1.3.5 gives that Dh(0, r) = D(0, s), where s = tanh(r) ∈ (0, 1), so, using Proposi-
tion 2.1.1, we get that for all f ∈ H(D),∫

Dh(0,r)
|f(w)|p dAα(w) =

∫
D(0,s)

|f(w)|p · cα(1− |w|2)α dA(w)

=

∫ s

0
cα(1− ρ2)α · ρ

π

∫ 2π

0
|f(ρeiθ)|p dθdρ

≥
∫ s

0
cα(1− ρ2)α · 2ρ|f(0)|p dρ

= |f(0)|pAα(Dh(0, r)),

hence
|f(0)|p ≤ 1

Aα(Dh(0, r))

∫
Dh(0,r)

|f(w)|p dAα(w), for all f ∈ H(D). (2.7)

Let z ∈ D and replace f by f ◦ ϕz in (2.7) to get

|f(z)|p = |f ◦ ϕz(0)|p ≤
1

Aα(Dh(0, r))

∫
Dh(0,r)

|f ◦ ϕz(w)|p dAα(w), for all f ∈ H(D). (2.8)

By the Change of Variables Theorem ([6, Theorem 2.47a]), Lemma 1.3.9 and Proposition 1.1.2 (iii), (iv),∫
Dh(0,r)

|f ◦ ϕz(w)|p dAα(w) =

∫
Dh(0,r)

|f ◦ ϕz(w)|p · cα(1− |w|2)α dA(w)

=

∫
Dh(z,r)

|f(w)|p · cα(1− |ϕz(w)|2)α · |ϕ′z(w)|2 dA(w)

=

∫
Dh(z,r)

|f(w)|p · (1− |z|2)2+α

|1− z̄w|2(2+α)
dAα(w).
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Thus, (2.8) becomes

|f(z)|p ≤ 1

Aα(Dh(0, r))

∫
Dh(z,r)

|f(w)|p · (1− |z|2)2+α

|1− z̄w|2(2+α)
dAα(w), (2.9)

for all f ∈ H(D) and z ∈ D.
Let f ∈ H(D) and z ∈ D. If w ∈ Dh(z, r), then, by Proposition 1.3.11 (i), |1 − zw̄| ∼ 1 − |z|2.
Therefore, there exists a constant C̃ = C̃(α, r) > 0 such that for all w ∈ Dh(z, r),

(1− |z|2)2+α

|1− z̄w|2(2+α)
≤ C̃

(1− |z|2)2+α
. (2.10)

By (2.9) and (2.10),

|f(z)|p ≤ 1

Aα(Dh(0, r))

∫
Dh(z,r)

|f(w)|p · C̃

(1− |z|2)2+α
dAα(w)

=
C

(1− |z|2)2+α

∫
Dh(z,r)

|f(w)|p dAα(w),

where C = C(α, r) :=
C̃

Aα(Dh(0, r))
> 0.

Remark 2.1.2. The denominator (1−|z|2)2+α in the above Proposition can be replaced byAα(Dh(z, r))
because of Proposition 1.3.11 (ii).

Proposition 2.1.11. Let p > 0, α > −1 and {ak} ⊂ D be a separated sequence in the hyperbolic
metric. Then there exists a constant C > 0 such that

+∞∑
k=1

(1− |ak|2)2+α|f(ak)|p ≤ C

∫
D
|f(z)|p dAα(z), for all f ∈ Ap(dAα). (2.11)

Proof. Since {ak} is separated in the hyperbolic metric, there exists a real number δ > 0 such that
β(ai, aj) ≥ δ, for all i ̸= j. Let r = δ

2 > 0 and note that Dh(ai, r) ∩ Dh(aj , r) = ∅, for all i ̸= j,
because of the definition of the separated sequence. Thus, if f ∈ Ap(dAα), then

n∑
k=1

∫
Dh(ak,r)

|f(z)|p dAα(z) =

∫
∪n

k=1 Dh(ak,r)
|f(z)|p dAα(z) ≤

∫
D
|f(z)|p dAα(z), for all n ∈ N,

so
+∞∑
k=1

∫
Dh(ak,r)

|f(z)|p dAα(z) ≤
∫
D
|f(z)|p dAα(z). (2.12)

Also, by Proposition 2.1.10, there exists a constant C = C(α, δ) > 0 such that

|f(ak)|p ≤
C

(1− |ak|2)2+α

∫
Dh(ak,r)

|f(z)|p dAα(z), for all k ∈ N,

hence
+∞∑
k=1

(1− |ak|2)2+α|f(ak)|p ≤ C
+∞∑
k=1

∫
Dh(ak,r)

|f(z)|p dAα(z). (2.13)

By (2.12) and (2.13), we get (2.11).

Finally, we discuss a few things about H∞, which is the space of all bounded analytic functions in
D. Note that H∞ is a linear subspace of B(D) = {f : D → C | f is bounded in D}. It is known from
elementary Functional Analysis thatB(D),when equipped with the norm ∥f∥∞ = sup{|f(z)| : z ∈ D},
becomes a Banach space (see [10, Section 1.10.1]).
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Proposition 2.1.12. (H∞, ∥·∥∞) is a Banach space.

Proof. Since (B(D), ∥·∥∞) is a Banach space, it suffices to show thatH∞ is a closed subspace ofB(D).
Thus, suppose {fk} is a sequence inH∞ that converges in B(D) to a function f ∈ B(D). Then

lim
k→+∞

sup{|fk(z)− f(z)| : z ∈ D} = lim
k→+∞

∥fk − f∥∞ = 0,

hence fk → f uniformly in D, as k → +∞. By the Weierstrass Convergence Theorem ([12, Theorem
10.28]), f ∈ H(D), so f ∈ H∞. This means thatH∞ is closed in B(D).

Proposition 2.1.13. H∞ is a Banach algebra.

Proof. For the definition of a Banach algebra see, for example, [2, Chapter VII, Definition 1.1].
Now, let f, g ∈ H∞. Then, f ≤ ∥f∥∞ and g ≤ ∥g∥∞ in D, so

|(fg)(z)| = |f(z)g(z)| ≤ ∥f∥∞∥g∥∞, for all z ∈ D,

which implies that fg ∈ H∞ and ∥fg∥∞ ≤ ∥f∥∞∥g∥∞.

2.2 The reproducing kernel forA2(dAα)

It is known from Functional Analysis that the Banach spaceL2(D, dAα),whereα > −1, can be supplied
with the inner product

⟨f, g⟩2,α =

∫
D
f(w)g(w) dAα(w), for all f, g ∈ L2(D, dAα),

and that ∥·∥2,α is induced by this inner product. This fact makes (L2(D, dAα), ⟨·, ·⟩2,α) a Hilbert space,
so (A2(dAα), ⟨·, ·⟩2,α) is also a Hilbert space.
Let z ∈ D. By Corollary 2.1.5, Tz ∈ (A2(dAα))

∗, so by the Riesz representation theorem ([6, Theorem
5.25]), there exists a unique function hz,α ∈ A2(dAα) such that for all f ∈ A2(dAα),

Tz(f) = ⟨f, hz,α⟩2,α ⇔ f(z) =

∫
D
f(w)hz,α(w) dAα(w).

Let Kα : D × D → C withKα(z, w) = hz,α(w), for all z, w ∈ D. Then Kα is called the reproducing
kernel of A2(dAα), because of the formula

f(z) =

∫
D
f(w)Kα(z, w) dAα(w), for all z ∈ D and f ∈ A2(dAα). (2.14)

When α = 0, we writeK instead ofK0 and we callK the Bergman kernel of D.

Remark 2.2.1. Recall that every Hilbert space has an orthonormal basis ([6, Proposition 5.28]).

Theorem 2.2.1. Suppose {en} is an orthonormal basis of A2(dAα). Then

Kα(z, w) =
+∞∑
n=1

en(z)en(w), for all z, w ∈ D, (2.15)

and the series (2.15) converges uniformly on compact subsets of D× D.

Proof. We will prove the theorem in steps.
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Step 1.
+∞∑
n=1

|en(z)|2 < +∞, for all z ∈ D. (2.16)

Let z ∈ D. Using Parseval’s Identity ([6, Theorem 5.27b]) and (2.14),

∥hz,α(·)∥22,α = ∥Kα(z, ·)∥22,α =
+∞∑
n=1

|⟨Kα(z, ·), en⟩2,α|2 =
+∞∑
n=1

|⟨en,Kα(z, ·)⟩2,α|2

=

+∞∑
n=1

∣∣∣ ∫
D
en(w)Kα(z, w) dAα(w)

∣∣∣2 = +∞∑
n=1

|en(z)|2,

and (2.16) follows.

Step 2. The series (2.15) converges absolutely for all z, w ∈ D.
Indeed, by the Cauchy-Schwarz inequality and (2.16),

+∞∑
n=1

|en(z)en(w)| ≤
( +∞∑

n=1

|en(z)|2
)1/2

·
( +∞∑

n=1

|en(w)|2
)1/2

< +∞, for all z, w ∈ D.

Step 3. Let S be a compact subset of D. Then

sup
{( +∞∑

n=1

|en(z)|2
)1/2

: z ∈ S

}
= sup

{∣∣∣ +∞∑
n=1

anen(z)
∣∣∣ : z ∈ S,

+∞∑
n=1

|an|2 = 1

}
. (2.17)

Let z ∈ S and set t :=
(∑+∞

n=1 |en(z)|2
)1/2 ∈ [0,+∞), because of (2.16). If t = 0, then en(z) = 0,

for all n ∈ N, so t = |
∑+∞

n=1 anen(z)|, where an =

{
1, if n = 1,

0, if n ≥ 2
. If t > 0, then

t =
1

t

+∞∑
n=1

|en(z)|2 =
+∞∑
n=1

1

t
· en(z)en(z) =

∣∣∣∣ +∞∑
n=1

1

t
· en(z)en(z)

∣∣∣∣
and

+∞∑
n=1

∣∣∣1
t
· en(z)

∣∣∣2 = 1

t2

+∞∑
n=1

|en(z)|2 = 1.

Thus, {( +∞∑
n=1

|en(z)|2
)1/2

: z ∈ S

}
⊂
{∣∣∣ +∞∑

n=1

anen(z)
∣∣∣ : z ∈ S,

+∞∑
n=1

|an|2 = 1

}
. (2.18)

Let z ∈ S and {an} ⊂ C such that
∑+∞

n=1 |an|2 = 1. Then, by the Cauchy-Schwarz inequality,∣∣∣∣ +∞∑
n=1

anen(z)

∣∣∣∣ ≤ ( +∞∑
n=1

|an|2
)1/2

·
( +∞∑

n=1

|en(z)|2
)1/2

=

( +∞∑
n=1

|en(z)|2
)1/2

. (2.19)

(2.18) and (2.19) give (2.17).

Step 4. Let f ∈ A2(dAα). Then

f(z) =

+∞∑
n=1

⟨f, en⟩2,αen(z), for all z ∈ D. (2.20)
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By [6, Theorem 5.27c],

f =

+∞∑
n=1

⟨f, en⟩2,αen in A2(dAα) ⇔
∥∥∥∥ N∑
n=1

⟨f, en⟩2,αen − f

∥∥∥∥
2,α

−→ 0, as N → +∞. (2.21)

Also, by Theorem 2.1.4, we have that for all z ∈ D and N ∈ N,∣∣∣∣ N∑
n=1

⟨f, en⟩2,αen(z)− f(z)

∣∣∣∣ ≤
∥∥∑N

n=1⟨f, en⟩2,αen − f
∥∥
2,α

(1− |z|2)(2+α)/2
,

so, using (2.21),

lim
N→+∞

∣∣∣∣ N∑
n=1

⟨f, en⟩2,αen(z)− f(z)

∣∣∣∣ = 0, for all z ∈ D,

and (2.20) follows.

Step 5. Let S be a compact subset of D. Then

sup
{∣∣∣ +∞∑

n=1

anen(z)
∣∣∣ : z ∈ S,

+∞∑
n=1

|an|2 = 1

}
= sup{|f(z)| : z ∈ S, ∥f∥2,α = 1}. (2.22)

Let f ∈ A2(dAα) with ∥f∥2,α = 1, and z ∈ S. Then |f(z)| =
∣∣∑+∞

n=1⟨f, en⟩2,αen(z)
∣∣, because of

(2.20), and Parseval’s Identity ([6, Theorem 5.27b]) gives
∑+∞

n=1 |⟨f, en⟩2,α|2 = ∥f∥22,α = 1; hence

{|f(z)| : z ∈ S, ∥f∥2,α = 1} ⊂
{∣∣∣ +∞∑

n=1

anen(z)
∣∣∣ : z ∈ S,

+∞∑
n=1

|an|2 = 1

}
. (2.23)

Let z ∈ S and {an} ⊂ C with
∑+∞

n=1 |an|2 = 1 < +∞.By theRiesz-Fischer Theorem ([10, Section
2.10]), the series

∑+∞
n=1 anen converges in A2(dAα) to a function f ∈ A2(dAα), ⟨f, en⟩2,α = an, for

all n ∈ N, and ∥f∥22,α =
∑+∞

n=1 |an|2 = 1. Thus, it follows from (2.20) that |f(z)| = |
∑+∞

n=1 anen(z)|,
and so {∣∣∣ +∞∑

n=1

anen(z)
∣∣∣ : z ∈ S,

+∞∑
n=1

|an|2 = 1

}
⊂ {|f(z)| : z ∈ S, ∥f∥2,α = 1}. (2.24)

(2.23) and (2.24) give (2.22).

Step 6. If S, T are compact sets in D, then there exist constants C1 = C1(α, S), C2 = C2(α, T ) > 0
such that

+∞∑
n=1

|en(z)en(w)| ≤ C1C2, for all z ∈ S and w ∈ T. (2.25)

By Corollary 2.1.6, there exist constants C1 = C1(α, S), C2 = C2(α, T ) > 0 such that

sup{|f(z)| : z ∈ S, ∥f∥2,α = 1} ≤ C1 and sup{|f(w)| : w ∈ T, ∥f∥2,α = 1} ≤ C2,

so (2.17) and (2.22) give that( +∞∑
n=1

|en(z)|2
)1/2

≤ C1, for all z ∈ S, and
( +∞∑

n=1

|en(w)|2
)1/2

≤ C2, for all w ∈ T. (2.26)

Thus, (2.25) follows from the Cauchy-Schwarz inequality and (2.26).
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Step 7. The series (2.15) converges uniformly if z, w stay in compact sets of D.
Let fn(u, v) =

∑n
k=1 ek(u)ek(v), for all u, v ∈ D and n ∈ N. By Step 2,

lim
n→+∞

fn(u, v) =
+∞∑
k=1

ek(u)ek(v) =: f(u, v), for all u, v ∈ D. (2.27)

Let gn(u, v) = fn(u, v̄) =
∑n

k=1 ek(u)ek(v̄), for all u, v ∈ D and n ∈ N. Then gn(u, ·), gn(·, v) are
holomorphic in D, for all n ∈ N and u, v ∈ D (see [14, Exercise II.8.2]).
Let S, T be compact subsets of D, and z ∈ S, w ∈ T. Then, there exists a real r ∈ (0, 1) such that
S, T ⊂ D(0, r). By Cauchy’s formula for a circle ([14, Section VII.5]),

gn(z, w) =
1

2πi

∫
|u|=r

gn(u,w)

u− z
du =

1

2πi

∫
|u|=r

1

u− z
· 1

2πi

∫
|v|=r

gn(u, v)

v − w
dvdu

=
1

4π2

∫ 2π

0

∫ 2π

0

gn(re
iθ, reit)

(reiθ − z)(reit − w)
r2eiθeit dtdθ,

for all n ∈ N. Thus, if n,m ∈ N,

|gn(z, w)− gm(z, w)| ≤ r2

4π2

∫ 2π

0

∫ 2π

0

|gn(reiθ, reit)− gm(reiθ, reit)|
|reiθ − z||reit − w|

dtdθ

≤ C

∫ 2π

0

∫ 2π

0
|gn(reiθ, reit)− gm(reiθ, reit)| dtdθ,

(2.28)

where C = C(r, S, T ) :=
r2

4π2
· 1

dist(C(0, r), S) · dist(C(0, r), T )
> 0.

Note that by Step 6, there exists a constant C̃ = C̃(α,C(0, r)) > 0 such that

+∞∑
k=1

|ek(u)ek(v)| ≤ C̃2, for all u, v ∈ C(0, r),

so

|gn(reiθ, reit)− gm(reiθ, reit)| ≤ |gn(reiθ, reit)|+ |gm(reiθ, reit)|

≤
n∑

k=1

|ek(reiθ)ek(re−it)|+
m∑
k=1

|ek(reiθ)ek(re−it)|

≤ 2

+∞∑
k=1

|ek(reiθ)ek(re−it)| ≤ 2C̃2,

for all n,m ∈ N and θ, t ∈ [0, 2π]. Also, by (2.27),

lim
m→+∞

gm(reiθ, reit) = lim
m→+∞

fm(reiθ, re−it) = f(reiθ, re−it), for all θ, t ∈ [0, 2π].

Thus, by applying ([6, 2.24 The Dominated Convergence Theorem]) to (2.28), we get

|gn(z, w)− f(z, w̄)| ≤ C

∫ 2π

0

∫ 2π

0
|gn(reiθ, reit)− f(reiθ, re−it)| dtdθ, for all n ∈ N,

hence

sup
z∈S,w∈T

|gn(z, w)− f(z, w̄)| ≤ C

∫ 2π

0

∫ 2π

0
|gn(reiθ, reit)− f(reiθ, re−it)| dtdθ, for all n ∈ N.
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It follows from [6, 2.24 The Dominated Convergence Theorem] again that

lim
n→+∞

C

∫ 2π

0

∫ 2π

0
|gn(reiθ, reit)− f(reiθ, re−it)| dtdθ = 0,

so
lim

n→+∞
sup

z∈S,w∈T
|gn(z, w)− f(z, w̄)| = 0, (2.29)

which means that gn → g uniformly on S × T, where g(u, v) := f(u, v̄), for all u, v ∈ D.
Now, let U := {w̄ : w ∈ T}. Since (2.29) was proven for arbitrary compact sets in D, it holds also for
S,U. Therefore,

lim
n→+∞

sup
z∈S,w∈T

|fn(z, w)− f(z, w)| = lim
n→+∞

sup
z∈S,w∈T

|gn(z, w̄)− g(z, w̄)|

= lim
n→+∞

sup
z∈S, a∈U

|gn(z, a)− g(z, a)| = 0,

which means that fn → f uniformly on S × T.

Step 8. By (2.16) and the F.Riesz-Fischer Theorem ([10, Section 2.10]) we have that, for all z ∈ D, the
series

∑+∞
n=1 en(z)en converges in A2(dAα) to a function gz,α ∈ A2(dAα), and ⟨gz,α, en⟩2,α = en(z),

for all n ∈ N. Let f ∈ A2(dAα). Then (2.20) and [2, Chapter 1, Theorem 4.13] give that for all z ∈ D,

f(z) =
+∞∑
n=1

⟨f, en⟩2,αen(z) =
+∞∑
n=1

⟨f, en⟩2,α⟨gz,α, en⟩2,α

= ⟨f, gz,α⟩2,α =

∫
D
f(w)

+∞∑
n=1

en(z)en(w) dAα(w).

By (2.14) and the uniqueness of the Riesz representation theorem ([6, Theorem 5.25]), we get (2.15).

The above Theorem will be used to find an explicit formula for the reproducing kernel. First, we need
to find an appropriate orthonormal basis for A2(dAα).We use ideas in [7, Proposition 1.4].

Lemma 2.2.2. Let en(z) =

√
Γ(n+ α+ 2)

n!Γ(α+ 2)
· zn, for all z ∈ D and n ∈ N ∪ {0}. Then {en} ⊂ H(D)

forms an orthonormal basis for A2(dAα).

Proof. We will prove this lemma in steps.

Step 1. {en} is an orthonormal subset of A2(dAα).

Indeed, note that∫
D
|en(z)|2 dAα(z) =

Γ(n+ α+ 2)

n!Γ(α+ 2)

∫
D
|z|2n dAα(z)

= (α+ 1)
Γ(n+ α+ 2)

n!Γ(α+ 2)

∫ 1

0

∫ 2π

0
ρ2n(1− ρ2)α · ρ

π
dθdρ

= (α+ 1)
Γ(n+ α+ 2)

n!Γ(α+ 2)

∫ 1

0
2ρ2n+1(1− ρ2)α dρ

= (α+ 1)
Γ(n+ α+ 2)

n!Γ(α+ 2)

∫ 1

0
rn(1− r)α dr

= (α+ 1)
Γ(n+ α+ 2)

n!Γ(α+ 2)
·B(n+ 1, α+ 1)

= (α+ 1)
Γ(n+ α+ 2)

n!Γ(α+ 2)
· Γ(n+ 1)Γ(α+ 1)

Γ(n+ α+ 2)
= 1,
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for all n ∈ N ∪ {0}, so en ∈ A2(dAα) and ∥en∥2,α = 1, for all n ∈ N ∪ {0}. Also, if n > m ≥ 0, then

⟨en, em⟩2,α =

√
Γ(n+ α+ 2)

n!Γ(α+ 2)

√
Γ(m+ α+ 2)

m!Γ(α+ 2)

∫
D
(α+ 1)znz̄m(1− |z|2)α dA(z)

= C(n,m, α)

∫ 1

0

∫ 2π

0
rn+mei(n−m)θ(1− r2)α · r

π
dθdr = 0,

because
∫ 2π

0
ei(n−m)θ dθ =

{
2π, if n = m,

0, if n ̸= m
.

Step 2. Let f ∈ A2(dAα). Then f(z) =
∑+∞

n=0 anz
n =

∑+∞
n=0 anbn,αen(z), for all z ∈ D, where

an =
f (n)(0)

n!
and bn,α =

√
n!Γ(α+ 2)

Γ(n+ α+ 2)
, for all n ∈ N ∪ {0}.We will show that

∥f∥22,α =

+∞∑
n=0

|an|2b2n,α. (2.30)

Let SN (z) =
∑N

n=0 anz
n, for all z ∈ D and N ∈ N∪{0}, and ρ ∈ (0, 1). Then, for allN ∈ N∪{0},

∫
D(0,ρ)

|SN (z)|2 dAα(z) =

∫
D(0,ρ)

SN (z)SN (z) dAα(z) =
N∑

n=0

(
an

N∑
m=0

ām

∫
D(0,ρ)

znz̄m dAα(z)

)

=
N∑

n=0

(
an

N∑
m=0

ām(α+ 1)

∫ ρ

0

∫ 2π

0
rn+mei(n−m)θ(1− r2)α · r

π
dθdr

)

=

N∑
n=0

|an|2(α+ 1)

∫ ρ

0
2r2n+1(1− r2)α dr.

Since SN (z) → f(z), as N → +∞, for all z ∈ D(0, ρ), and

|SN (z)| ≤
N∑

n=0

|an||z|n ≤
+∞∑
n=0

|an|ρn < +∞, for all z ∈ D(0, ρ) and N ∈ N ∪ {0}

(see [12, 10.5 Power Series]), it follows from [6, 2.24 The Dominated Convergence Theorem] that

∫
D(0,ρ)

|f(z)|2 dAα(z) = lim
N→+∞

∫
D(0,ρ)

|SN (z)|2 dAα(z) =
+∞∑
n=0

|an|2(α+1)

∫ ρ

0
2r2n+1(1− r2)α dr.

Let {ρk} ⊂ (0, 1), with ρk ≤ ρk+1, for all k ∈ N, and limk→+∞ ρk = 1. For all k ∈ N, consider
the functions fk(z) = |f(z)|2χD(0,ρk)(z), for all z ∈ D, and gk(r) = 2r2n+1(1 − r2)αχ(0,ρk)(r), for
all r ∈ (0, 1), where n ∈ N ∪ {0} is fixed. Then, by applying [6, 2.24 The Dominated Convergence
Theorem] to the sequences {fk} and {gk}, we have that

lim
k→+∞

∫
D(0,ρk)

|f(z)|2 dAα(z) =

∫
D

lim
k→+∞

fk(z) dAα(z) =

∫
D
|f(z)|2 dAα(z) = ∥f∥22,α,

and

lim
k→+∞

∫ ρk

0
2r2n+1(1− r2)α dr =

∫ 1

0
lim

k→+∞
gk(r) dr =

∫ 1

0
2r2n+1(1− r2)α dr,
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so

∥f∥22,α = lim
ρ→1−

∫
D(0,ρ)

|f(z)|2 dAα(z) = lim
ρ→1−

+∞∑
n=0

|an|2(α+ 1)

∫ ρ

0
2r2n+1(1− r2)α dr

= sup
ρ∈(0,1)

+∞∑
n=0

|an|2(α+ 1)

∫ ρ

0
2r2n+1(1− r2)α dr

= sup
ρ∈(0,1)

sup
N∈N∪{0}

N∑
n=0

|an|2(α+ 1)

∫ ρ

0
2r2n+1(1− r2)α dr

= sup
N∈N∪{0}

sup
ρ∈(0,1)

N∑
n=0

|an|2(α+ 1)

∫ ρ

0
2r2n+1(1− r2)α dr

= sup
N∈N∪{0}

lim
ρ→1−

N∑
n=0

|an|2(α+ 1)

∫ ρ

0
2r2n+1(1− r2)α dr

= sup
N∈N∪{0}

N∑
n=0

|an|2(α+ 1)

∫ 1

0
2r2n+1(1− r2)α dr

=
+∞∑
n=0

|an|2(α+ 1)

∫ 1

0
2r2n+1(1− r2)α dr =

+∞∑
n=0

|an|2b2n,α.

Step 3. For all n ∈ N ∪ {0},
⟨f, en⟩2,α = anbn,α. (2.31)

Let r ∈ (0, 1) and n ∈ N ∪ {0}. Then, the series
∑+∞

k=0 akr
kei(k−n)θ converges absolutely, because

the series
∑+∞

k=0 akz
k converges absolutely in D, and∣∣∣∣ N∑

k=0

akr
kei(k−n)θ −

+∞∑
k=0

akr
kei(k−n)θ

∣∣∣∣ ≤ +∞∑
k=N+1

|ak|rk, for all θ ∈ [0, 2π] and N ∈ N ∪ {0}.

Since
∑+∞

k=N+1 |ak|rk → 0, as N → +∞, we get that
∑N

k=0 akr
kei(k−n)θ →

∑+∞
k=0 akr

kei(k−n)θ

uniformly in [0, 2π], as N → +∞. Thus,

⟨f, en⟩2,α =

∫
D
f(z)

z̄n

bn,α
(α+ 1)(1− |z|2)α dA(z)

=
(α+ 1)

bn,α

∫ 1

0

∫ 2π

0
f(reiθ)rne−inθ(1− r2)α · r

π
dθdr

=
(α+ 1)

bn,α

∫ 1

0
rn+1(1− r2)α · 1

π

∫ 2π

0

+∞∑
k=0

akr
kei(k−n)θ dθdr

=
(α+ 1)

bn,α

∫ 1

0
rn+1(1− r2)α · 1

π

+∞∑
k=0

∫ 2π

0
akr

kei(k−n)θ dθdr

=
an
bn,α

(α+ 1)

∫ 1

0
2r2n+1(1− r2)α dr = anbn,α.

Step 4. By (2.30) and (2.31),

∥f∥22,α =
+∞∑
n=0

|⟨f, en⟩2,α|2, for all f ∈ A2(dAα),

hence it follows from [2, Chapter I, Theorem 4.13] that {en} is a basis for A2(dAα).
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Proposition 2.2.3. The reproducing kernel of A2(dAα) is given by

Kα(z, w) =
1

(1− zw̄)2+α
, for all z, w ∈ D.

Proof. Let {en} be the orthonormal basis of A2(dAα) that was defined in Lemma 2.2.2. By Theorem
2.2.1 and a generalization of the Binomial Theorem ([13, Exercise 5.2.4]),

Kα(z, w) =

+∞∑
n=0

en(z)en(w) =

+∞∑
n=0

Γ(n+ α+ 2)

n!Γ(α+ 2)
(zw̄)n

= 1 + (α+ 2)zw̄ +
(α+ 2)(α+ 3)

2!
(zw̄)2 + . . .

= 1 + (−α− 2)(−zw̄) + (−α− 2)(−α− 2− 1)

2!
(−zw̄)2 + . . .

= (1 + (−zw̄))−α−2 =
1

(1− zw̄)α+2
,

for all z, w ∈ D.

An interesting property of the Bergman kernel is its Möbius invariance.

Proposition 2.2.4. If ϕ ∈ Aut(D), then

K(z, w) = ϕ′(z)K(ϕ(z), ϕ(w))ϕ′(w), for all z, w ∈ D,

or equivalently,
1

(1− zw̄)2
=

ϕ′(z)ϕ′(w)

(1− ϕ(z)ϕ(w))2
, for all z, w ∈ D.

Proof. Let {en} be an orthonormal basis of A2(dA), and set σn(z) = en(ϕ(z))ϕ
′(z), for all z ∈ D and

n ∈ N. Then:

(i) Using the Change of Variables Theorem ([6, Theorem 2.47a]),∫
D
|σn(z)|2 dA(z) =

∫
D
|en(ϕ(z))|2|ϕ′(z)|2 dA(z) =

∫
D
|en(z)|2 dA(z) < +∞, for all n ∈ N,

so σn ∈ A2(dA) and ∥σn∥2 = ∥en∥2 = 1, for all n ∈ N.

(ii) Let n > m ≥ 1.By the Cauchy-Schwarz inequality, enēm ∈ L1(D, dA), so using again [6, Theorem
2.47a],

⟨σn, σm⟩2 =
∫
D
σn(z)σm(z) dA(z) =

∫
D
en(ϕ(z))ϕ

′(z)em(ϕ(z)) · ϕ′(z) dA(z)

=

∫
D
en(z)em(z) dA(z) = ⟨en, em⟩2 = 0.

(iii) Let f ∈ A2(dA). Then
f ◦ ϕ−1

ϕ′ ◦ ϕ−1
∈ H(D), and by [6, Theorem 2.47a],

∫
D

∣∣∣∣ (f ◦ ϕ−1)(z)

(ϕ′ ◦ ϕ−1)(z)

∣∣∣∣2 dA(z) = ∫
D
|f(ϕ−1(z))|2 · |(ϕ−1)′(z)|2 dA(z) =

∫
D
|f(z)|2 dA(z) < +∞,

so
f ◦ ϕ−1

ϕ′ ◦ ϕ−1
∈ A2(dA). Thus, [6, Theorem 5.27c] yields that

f ◦ ϕ−1

ϕ′ ◦ ϕ−1
=

+∞∑
n=1

anen in A2(dA), (2.32)
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where an =

〈
f ◦ ϕ−1

ϕ′ ◦ ϕ−1
, en

〉
2

, for all n ∈ N. Note that for all N ∈ N,

∥∥∥∥ f ◦ ϕ−1

ϕ′ ◦ ϕ−1
−

N∑
n=1

anen

∥∥∥∥2
2

=

∫
D

∣∣f(ϕ−1(z))(ϕ−1)′(z)−
N∑

n=1

anen(z)
∣∣2 dA(z)

=

∫
D

∣∣∣f(z) · (ϕ−1)′(ϕ(z))−
N∑

n=1

anen(ϕ(z))
∣∣∣2 · |ϕ′(z)|2 dA(z)

=

∫
D

∣∣∣ f(z)
ϕ′(z)

−
N∑

n=1

anen(ϕ(z))
∣∣∣2 · |ϕ′(z)|2 dA(z)

=

∫
D

∣∣∣f(z)− N∑
n=1

anen(ϕ(z))ϕ
′(z)
∣∣∣2 dA(z) = ∥∥∥f −

N∑
n=1

anσn

∥∥∥2
2
,

where we used [6, Theorem 2.47a] for the second equality. Therefore,

lim
N→+∞

∥∥∥f −
N∑

n=1

anσn

∥∥∥
2
= lim

N→+∞

∥∥∥∥ f ◦ ϕ−1

ϕ′ ◦ ϕ−1
−

N∑
n=1

anen

∥∥∥∥
2

= 0,

because of (2.32).

Thus, {σn} forms an orthonormal basis for A2(dA). By Theorem 2.2.1, for all z, w ∈ D,

K(z, w) =
+∞∑
n=1

σn(z)σn(w) =
+∞∑
n=1

en(ϕ(z))ϕ
′(z)en(ϕ(w)) · ϕ′(w)

= ϕ′(z)K(ϕ(z), ϕ(w))ϕ′(w).

2.3 The reproducing kernel forAp(dAα), where p ≥ 1

Our next goal is to show that (2.14) holds for all f ∈ Ap(dAα) and z ∈ D, where p ≥ 1. For this, we
need the following results.

Proposition 2.3.1. Let α > −1. Then

f(0) =

∫
D
f(z) dAα(z), for all f ∈ H∞. (2.33)

Proof. Let f ∈ H∞ and {rn} ⊂ (0, 1), with rn ≤ rn+1, for all n ∈ N, and limn→+∞ rn = 1. Using
the Mean Value Property ([14, Section VII.6]), we have that for all n ∈ N,∫

D(0,rn)
f(z) dAα(z) =

∫ rn

0
(α+ 1)(1− ρ2)α · ρ

π

∫ 2π

0
f(ρeiθ) dθdρ

=

∫ rn

0
(α+ 1)(1− ρ2)α · 2ρf(0) dρ = f(0)(1− (1− r2n)

α+1),

so
lim

n→+∞

∫
D(0,rn)

f(z) dAα(z) = f(0). (2.34)

On the other hand, |f(z)χD(0,rn)(z)| ≤ |f(z)| ≤ ∥f∥∞, for all z ∈ D and n ∈ N, hence, by [6, 2.24
The Dominated Convergence Theorem],

lim
n→+∞

∫
D(0,rn)

f(z) dAα(z) =

∫
D
f(z) dAα(z). (2.35)

(2.34) and (2.35) give (2.33).
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Corollary 2.3.2. Let α > −1. If f ∈ H∞ and a ∈ D, then

f(a) = (1− |a|2)2+α

∫
D

f(z)

|1− āz|2α+4
dAα(z). (2.36)

Proof. Indeed, if g = f ◦ ϕa in D, then g ∈ H∞, hence by the Change of Variables Theorem ([6,
Theorem 2.47a]) and Proposition 1.1.2 (iii), (iv),

f(a) = g(0)
(2.33)
=

∫
D
g(z) dAα(z) =

∫
D
(f ◦ ϕa)(z) · (α+ 1)(1− |z|2)α dA(z)

=

∫
D
f(z) · (α+ 1)(1− |ϕa(z)|2)α · |ϕ′a(z)|2 dA(z) =

∫
D
f(z) · (1− |a|2)α+2

|1− āz|2α+4
dAα(z).

Corollary 2.3.3. Let α > −1. Then

f(z) =

∫
D

f(w)

(1− zw̄)2+α
dAα(w), for all f ∈ H∞ and z ∈ D. (2.37)

Proof. Let f ∈ H∞ and z ∈ D. By [14, Section X.5], the function g(w) = f(w)(1− z̄w)α+2, w ∈ D,
is well-defined and holomorphic in D.Moreover, g ∈ H∞, because

|g(w)| = |f(w)||1− z̄w|α+2 ≤ ∥f∥∞ · 2α+2, for all w ∈ D.

Thus, by (2.36),

g(z) = (1− |z|2)2+α

∫
D

g(w)

|1− z̄w|2α+4
dAα(w) ⇒

⇒ f(z)(1− |z|2)2+α = (1− |z|2)2+α

∫
D

f(w)(1− z̄w)α+2

(1− z̄w)α+2(1− zw̄)α+2
dAα(w) ⇒

⇒ f(z) =

∫
D

f(w)

(1− zw̄)α+2
dAα(w).

Lemma 2.3.4. Let p > 0, α > −1, and consider the functionM(r, f) =
1

2π

∫ 2π

0
|f(reiθ)|p dθ, for all

f ∈ H(D) and r ∈ [0, 1). Then,M(·, f) is increasing, for all f ∈ H(D).

Proof. Let f ∈ H(D) and 0 ≤ R1 < R2 < 1. By Poisson’s Theorem ([3, Chapter X, Corollary 2.10]),
there exists a function u : D(0, R2) → R, which is harmonic in D(0, R2), continuous in D(0, R2) and
u(z) = |f(z)|p, for all z ∈ ∂D(0, R2). Since u is harmonic in D(0, R2), it satisfies the Mean Value
Property ([3, Chapter X, 1.4 Mean Value Theorem]), so

u(0) =
1

2π

∫ 2π

0
u(reiθ) dθ, for all r ∈ [0, R2),

and by the continuity of u in D(0, R2), the above equality holds also for r = R2.
Note that |f |p is a subharmonic function in D, due to Corollary 2.1.2, so it follows from [3, Chapter

X, Corollary 3.5] that |f(z)|p ≤ u(z), for all z ∈ D(0, R2). Thus,

M(R1, f) =
1

2π

∫ 2π

0
|f(R1e

iθ)|p dθ ≤ 1

2π

∫ 2π

0
u(R1e

iθ) dθ = u(0)

=
1

2π

∫ 2π

0
u(R2e

iθ) dθ =
1

2π

∫ 2π

0
|f(R2e

iθ)|p dθ =M(R2, f).
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The proof of the following Proposition is based on [4, §2.3, Theorem 3].

Proposition 2.3.5. Let p > 0 and α > −1. If en(z) = zn, for all z ∈ D and n ∈ N ∪ {0}, then the set
span{en : n ∈ N ∪ {0}} (which is the set of all polynomials in C) is dense in Ap(dAα).

Proof. Let f ∈ Ap(dAα) and {rn} ⊂ (0, 1), with rn < rn+1, for all n ∈ N, and limn→+∞ rn = 1.
Consider the functions fn(z) = f(rnz), for all z ∈ D

(
0, 1

rn

)
and n ∈ N, and denote by Sn

N the Taylor
polynomial of degree N of the function fn; that is, Sn

N (z) =
∑N

k=0 akr
k
nz

k, for all z ∈ D
(
0, 1

rn

)
and

N ∈ N∪{0}, where ak = f (k)(0)
k! , for all k ∈ N∪{0}. By [12, 10.5 Power Series], Sn

N → fn uniformly
on D, as N → +∞, for all n ∈ N. Since

|fn(z)− Sn
N (z)| ≤ |fn(z)|+

N∑
k=0

|ak|rkn|z|k ≤ max
z∈D

|fn(z)|+
+∞∑
k=0

|ak|rkn < +∞,

for all z ∈ D and N ∈ N∪{0}, it follows from the Bounded Convergence Theorem ([9, Exercise 3.1.10])
that

∥fn − Sn
N∥pp,α =

∫
D
|fn(z)− Sn

N (z)|p dAα(z) −→
N→+∞

0, for all n ∈ N. (2.38)

Now, let S be a compact subset ofD. Then there exists a realR ∈ (0, 1) such that S ⊂ D(0, R) ⊂ D.
Let ϵ > 0. Since f is uniformly continuous in D(0, R), there exists a real number δ > 0 such that
if z, w ∈ D(0, R) and |z − w| < δ, then |f(z) − f(w)| < ϵ. Also, by the convergence of {rn},
there exists a number n0 ∈ N such that 1 − rn < δ, for all n ≥ n0. Let z ∈ S and n ≥ n0. Then
|rnz| ≤ |z| ≤ R and |rnz − z| = |z|(1− rn) < δ, hence

|fn(z)− f(z)| = |f(rnz)− f(z)| < ϵ.

Thus, we have proved that fn → f uniformly on compact sets of D, as n → +∞. By [6, 2.24 The
Dominated Convergence Theorem],

lim
n→+∞

M(ρ, fn − f) = lim
n→+∞

1

2π

∫ 2π

0
|fn(ρeiθ)− f(ρeiθ)|p dθ = 0, for all ρ ∈ [0, 1), (2.39)

whereM is the function defined in Lemma 2.3.4. Moreover,

M(ρ, fn − f) ≤ 1

2π

∫ 2π

0
2p(|fn(ρeiθ)|p + |f(ρeiθ)|p) dθ = 2p(M(ρ, fn) +M(ρ, f))

= 2p(M(rnρ, f) +M(ρ, f)) ≤ 2p+1M(ρ, f), for all ρ ∈ [0, 1) and n ∈ N,
(2.40)

where we used Lemma 2.3.4 for the last inequality, and note that∫
[0,1)

M(ρ, f) · (α+ 1)(1− ρ2)αρ dρ =
1

2

∫ 1

0

∫ 2π

0
|f(ρeiθ)|p · (α+ 1)(1− ρ2)α · ρ

π
dθdρ

=
1

2

∫
D
|f(z)|p dAα(z) < +∞.

(2.41)

(2.39), (2.40), (2.41) and [6, 2.24 The Dominated Convergence Theorem] give

∥fn − f∥pp,α =

∫
D
|fn(z)− f(z)|p dAα(z)

=

∫ 1

0

∫ 2π

0
|fn(ρeiθ)− f(ρeiθ)|p · (α+ 1)(1− ρ2)α · ρ

π
dθdρ

= 2

∫ 1

0
M(ρ, fn − f) · (α+ 1)(1− ρ2)αρ dρ −→

n→+∞
0.

(2.42)
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Let ϵ > 0. By (2.42), there exists a number n0 ∈ N such that

∥f − fn0∥p,α <
ϵ

2
. (2.43)

By (2.38), there exists a number N0 ∈ N such that

∥fn0 − Sn0
N0

∥p,α <
ϵ

2
. (2.44)

(2.43) and (2.44) give

∥f − Sn0
N0

∥p,α ≤ ∥f − fn0∥p,α + ∥fn0 − Sn0
N0

∥p,α < ϵ,

which means that polynomials are dense in Ap(dAα).

In the proof of the following Theorem we use an idea of [11, Theorem 8.2.1].

Theorem 2.3.6. Let p ≥ 1 and α > −1. Then

f(z) =

∫
D
f(w)Kα(z, w) dAα(w), for all z ∈ D and f ∈ Ap(dAα).

Proof. Let z ∈ D. Since∫
D

|g(w)|
|1− zw̄|2+α

dAα(w) ≤
1

(1− |z|)2+α

∫
D
|g(w)| dAα(w) < +∞, for all g ∈ A1(dAα),

the functional Λz given by

Λz(g) =

∫
D

g(w)

(1− zw̄)2+α
dAα(w), for all g ∈ A1(dAα),

is well-defined, linear and bounded on A1(dAα). Consider, also, the functional Tz ∈ (A1(dAα))
∗,

defined in Corollary 2.1.5. By [2, Chapter III, Proposition 2.1], Λz and Tz are continuous with respect
to ∥·∥1,α.

Now, let f ∈ Ap(dAα). SinceAα is a finite measure (see Remark 1.3.3), it follows from [9, Exercise
7.3.3] that f ∈ A1(dAα). By Proposition 2.3.5, there exists a sequence of polynomials {pn} such that

lim
n→+∞

∥pn − f∥1,α = 0.

Since pn ∈ H∞ for all n ∈ N,

f(z) = Tz(f) = Tz

(
lim

n→+∞
pn

)
= lim

n→+∞
Tz(pn) = lim

n→+∞
pn(z)

(2.37)
= lim

n→+∞

∫
D

pn(w)

(1− zw̄)2+α
dAα(w) = lim

n→+∞
Λz(pn)

= Λz

(
lim

n→+∞
pn

)
= Λz(f) =

∫
D

f(w)

(1− zw̄)2+α
dAα(w).

2.4 Projections and the dual ofAp(dAα)

SinceA2(dAα) is a closed subspace of the Hilbert spaceL2(D, dAα), there exists a bounded linear oper-
ator Pα fromL2(D, dAα) ontoA2(dAα), called the orthogonal projection ofL2(D, dAα) ontoA2(dAα)
(see [10, Sections 2.8, 2.11] for the definition and properties of the orthogonal projection). If α = 0, we
write P instead of P0 and we call P the Bergman projection on D.



2.4. PROJECTIONS AND THE DUAL OFAp(dAα) 35

Proposition 2.4.1. Let α > −1 and f ∈ L2(D, dAα). Then

Pαf(z) =

∫
D
f(w)Kα(z, w) dAα(w), for all z ∈ D.

Proof. Let z ∈ D. Using the functional Tz defined in Corollary 2.1.5, and (2.14),

Pαf(z) = Tz(Pαf) = ⟨Pαf,Kα(z, ·)⟩2,α = ⟨f, Pα(Kα(z, ·))⟩2,α = ⟨f,Kα(z, ·)⟩2,α,

where the third equality holds because of [10, Proposition 2.15 (iv)], and the last equality holds because
Pαg = g, for all g ∈ A2(dAα).

Our next goal is to find projections from Lp(D, dAα) onto Ap(dAα), for p ≥ 1. First we need the
following results.

Lemma 2.4.2. Let r ∈ (0, 1) and b ∈ R. Then there exists a constant C = C(r, b) > 0 such that

|(1− z)b − (1− w)b| ≤ C|z − w|, for all z, w ∈ D(0, r).

Proof. Let z, w ∈ D(0, r). By a generalization of the Binomial Theorem ([13, Exercise 5.2.4]),

|(1− z)b − (1− w)b| =
∣∣∣ +∞∑
k=0

(−1)k
(
b

k

)
zk −

+∞∑
k=0

(−1)k
(
b

k

)
wk
∣∣∣ ≤ +∞∑

k=0

∣∣∣(b
k

)∣∣∣|zk − wk|

=
+∞∑
k=1

∣∣∣(b
k

)∣∣∣ · |z − w| · |zk−1 + zk−2w + ...+ zwk−2 + wk−1|

≤
+∞∑
k=1

∣∣∣(b
k

)∣∣∣ · |z − w| · krk−1 = |z − w|
+∞∑
k=1

|b(b− 1) · ... · (b− k + 1)|
(k − 1)!

· rk−1

= |z − w|
+∞∑
k=0

|b(b− 1) · ... · (b− k)|
k!

· rk,

and the series
+∞∑
k=0

|b(b− 1) · ... · (b− k)|
k!

· rk converges (we can easily verify this by doing a ratio test).

Thus, for C >
+∞∑
k=0

|b(b− 1) · ... · (b− k)|
k!

· rk ≥ 0, we have that |(1− z)b− (1−w)b| ≤ C|z−w|.

Proposition 2.4.3. Let α > −1 and F : D → C be a Borel-measurable function on D such that∫
D
|F (w)Kα(z, w)| dAα(w) < +∞, for all z ∈ D. (2.45)

Then, the function G : D → C given by

G(z) =

∫
D
F (w)Kα(z, w) dAα(w), for all z ∈ D,

is holomorphic in D, with

G′(z) =

∫
D
F (w) · ∂Kα

∂z
(z, w) dAα(w), for all z ∈ D.
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Proof. Let z ∈ D. Then there exists a real R > 0 such that D(z,R) ⊂ D. Since

∂Kα

∂z
(z, w) =

(2 + α)w̄

(1− zw̄)3+α
, for all w ∈ D,

we get that for every sequence {hn} in D(0, R) \ {0} with limn→+∞ hn = 0,

lim
n→+∞

Kα(z + hn, w)−Kα(z, w)

hn
=

(2 + α)w̄

(1− zw̄)3+α
, for all w ∈ D. (2.46)

Set r := |z|+ R ∈ (0, 1). Then (z + hn)w̄, zw̄ ∈ D(0, r), for all n ∈ N and w ∈ D, hence by Lemma
2.4.2, there exists a constant C1 = C1(r, α) > 0 such that

|(1− zw̄)2+α − (1− (z + hn)w̄)
2+α| ≤ C1|zw̄ − (z + hn)w̄| = C1|hnw|, for all n ∈ N and w ∈ D.

Thus, for all n ∈ N and w ∈ D,∣∣∣∣Kα(z + hn, w)−Kα(z, w)

hn

∣∣∣∣ = 1

|hn|

∣∣∣∣ 1

(1− (z + hn)w̄)2+α
− 1

(1− zw̄)2+α

∣∣∣∣
=

1

|hn|
|(1− zw̄)2+α − (1− (z + hn)w̄)

2+α|
|1− (z + hn)w̄|2+α|1− zw̄|2+α

≤ C1|w|
|1− (z + hn)w̄|2+α|1− zw̄|2+α

≤ C1

(1− r)2(2+α)
=: C.

It follows that

|F (w)|
∣∣∣∣Kα(z + hn, w)−Kα(z, w)

hn

∣∣∣∣ ≤ C|F (w)|, for all w ∈ D and n ∈ N, (2.47)

and note that∫
D
|F (w)| dAα(w) = 22+α

∫
D

|F (w)|
22+α

dAα(w) ≤ 22+α

∫
D

|F (w)|
|1− zw̄|2+α

dAα(w) < +∞, (2.48)

because of (2.45). By (2.46), (2.47), (2.48) and [6, 2.24 The Dominated Convergence Theorem],

lim
n→+∞

G(z + hn)−G(z)

hn
= lim

n→+∞

∫
D
F (w)

Kα(z + hn, w)−Kα(z, w)

hn
dAα(w)

=

∫
D
F (w)

(2 + α)w̄

(1− zw̄)3+α
dAα(w),

so
G′(z) = lim

h→0

G(z + h)−G(z)

h
=

∫
D
F (w) · ∂Kα

∂z
(z, w) dAα(w).

Proposition 2.4.4. Let p ≥ 1, α > −1 and γ > −1 such that p(γ+1) > α+1. The operator Pγ given
by

Pγf(z) =

∫
D
f(w)Kγ(z, w) dAγ(w) = (γ + 1)

∫
D

(1− |w|2)γ

(1− zw̄)2+γ
f(w) dA(w), (2.49)

is a bounded projection from Lp(D, dAα) onto Ap(dAα).

Proof. By Theorem A.0.2, the operator Pγ is bounded on Lp(D, dAα) and∫
D
|Kγ(z, w)||f(w)| dAγ(w) = (γ + 1)

∫
D

(1− |w|2)γ

|1− zw̄|2+γ
|f(w)| dA(w) < +∞,
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for all z ∈ D and f ∈ Lp(D, dAα). Then, Lemma 2.4.3 yields that Pγf is holomorphic in D, for all
f ∈ Lp(D, dAα), so Pγ(L

p(D, dAα)) ⊂ Ap(dAα).
It remains to show that Pγ is onto Ap(dAα). Let z ∈ D and consider the functional

Λz(f) = Pγf(z) = Tz(Pγf),

for all f ∈ Lp(D, dAα), where Tz is the bounded linear functional defined in Corollary 2.1.5. Then

|Λz(f)| = |Tz(Pγf)| ≤ ∥Tz∥∥Pγf∥p,α ≤ ∥Tz∥∥Pγ∥∥f∥p,α, for all f ∈ Lp(D, dAα).

Thus, Λz is a bounded linear functional, for all z ∈ D.
Now, let f ∈ Ap(dAα). By Proposition 2.3.5, there exists a sequence {pn} of polynomials such that

lim
n→+∞

∥pn − f∥p,α = 0.

Let z ∈ D. Since pn ∈ H∞ for all n ∈ N,

f(z) = Tz(f) = Tz

(
lim

n→+∞
pn

)
= lim

n→+∞
Tz(pn) = lim

n→+∞
pn(z)

(2.37)
= lim

n→+∞

∫
D
pn(w)Kγ(z, w) dAγ(w) = lim

n→+∞
Λz(pn)

= Λz

(
lim

n→+∞
pn

)
= Λz(f) = Pγf(z),

hence f = Pγf in D.

Theorem 2.4.5. Let 1 < p < +∞, 1
p + 1

q = 1 and α > −1. Then (Ap(dAα))
∗ is isomorphic to

Aq(dAα), and the two spaces have equivalent norms.

Proof. Consider the operator J : Aq(dAα) → (Ap(dAα))
∗, given by Jh = lh, for all h ∈ Aq(dAα),

where
lh(f) =

∫
D
f(z)h(z) dAα(z), for all f ∈ Ap(dAα) and h ∈ Aq(dAα).

(i) J is well-defined. Indeed, [6, 6.2 Hölder’s Inequality] gives∫
D
|f(z)||h(z)| dAα(z) ≤ ∥f∥p,α∥h∥q,α < +∞, for all f ∈ Ap(dAα) and h ∈ Aq(dAα),

so Jh ∈ (Ap(dAα))
∗ with

∥Jh∥ ≤ ∥h∥q,α, (2.50)

for all h ∈ Aq(dAα).

(ii) J(h1 + h2) = Jh1 + Jh2 and J(λh) = λJh, for all h1, h2, h ∈ Aq(dAα) and λ ∈ C.

(iii) Let l ∈ (Ap(dAα))
∗. By the Hahn-Banach Theorem ([8, Theorem 3.2]), there exists a bounded lin-

ear functionalΛ : Lp(D, dAα) → C, such thatΛ(f) = l(f), for all f ∈ Ap(dAα), and ∥Λ∥ = ∥l∥. The
classical duality betweenLp spaces ([9, Theorem 7.15]) yields that there exists a unique g ∈ Lq(D, dAα)
such that Λ = Λg in Lp(D, dAα), where

Λg(f) =

∫
D
f(z)g(z) dAα(z), for all f ∈ Lp(D, dAα).

Also, Theorem A.0.2 implies that the operator

Lαf(z) =

∫
D
|f(w)||Kα(z, w)| dAα(w),
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is well-defined and bounded on Lp(D, dAα), hence, if f ∈ Ap(dAα), then [6, 6.2 Hölder’s Inequality]
implies that ∫

D

∫
D
|f(w)||Kα(z, w)||g(z)| dAα(w)dAα(z) =

∫
D
|g(z)|Lαf(z) dAα(z)

≤ ∥g∥q,α · ∥Lαf∥p,α < +∞.

By Proposition 2.4.4 and [6, 2.37 The Fubini-Tonelli Theorem], we have that for all f ∈ Ap(dAα),

l(f) = Λg(f) =

∫
D
f(z)g(z) dAα(z) =

∫
D
Pαf(z)g(z) dAα(z)

=

∫
D

∫
D
f(w)Kα(z, w)g(z) dAα(w)dAα(z)

=

∫
D

∫
D
f(w)Kα(z, w)g(z) dAα(z)dAα(w)

=

∫
D
f(w)

∫
D
g(z)Kα(w, z) dAα(z) dAα(w)

=

∫
D
f(w)Pαg(w) dAα(w) = lPαg(f) = [J(Pαg)](f),

so J is onto (Ap(dAα))
∗.

(iv) Suppose that Jh1 = Jh2 = l ∈ (Ap(dAα))
∗, for some h1, h2 ∈ Aq(dAα). Then

h1(z) =
+∞∑
k=0

akz
k and h2(z) =

+∞∑
k=0

bkz
k, for all z ∈ D,

where ak =
h
(k)
1 (0)

k!
and bk =

h
(k)
2 (0)

k!
, for all k ∈ N ∪ {0}.

Let n ∈ N ∪ {0} and set en(z) = zn, for all z ∈ D. Note that the series
∑+∞

k=0 ākz
nz̄k converges

absolutely in D, so for a fixed r ∈ (0, 1), the series
∑+∞

k=0 ākr
n+kei(n−k)θ converges uniformly on

[0, 2π]. Also, consider a sequence {rm} ⊂ (0, 1) with limm→+∞ rm = 1 and rm < rm+1, for all
m ∈ N. Then [6, 2.24 The Dominated Convergence Theorem] yields that

lim
m→+∞

∫
D(0,rm)

znh1(z) dAα(z) =

∫
D
znh1(z) dAα(z) (2.51)

and

lim
m→+∞

∫ rm

0
ān(α+ 1)r2n(1− r2)α · 2r dr =

∫ 1

0
ān(α+ 1)r2n(1− r2)α · 2r dr. (2.52)

Thus,

Jh1(en) =

∫
D
znh1(z) dAα(z)

(2.51)
= lim

m→+∞

∫
D(0,rm)

+∞∑
k=0

ākz
nz̄k dAα(z)

= lim
m→+∞

∫ rm

0
(α+ 1)(1− r2)α · r

π

∫ 2π

0

+∞∑
k=0

ākr
n+kei(n−k)θ dθdr

= lim
m→+∞

∫ rm

0
(α+ 1)(1− r2)α · r

π

+∞∑
k=0

ākr
n+k

∫ 2π

0
ei(n−k)θ dθdr

= lim
m→+∞

∫ rm

0
(α+ 1)(1− r2)α · r

π
ānr

2n · 2π dr

(2.52)
=

∫ 1

0
ān(α+ 1)r2n(1− r2)α · 2r dr = ān(α+ 1)B(n+ 1, α+ 1).

(2.53)
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Similarly,
Jh2(en) = b̄n(α+ 1)B(n+ 1, α+ 1). (2.54)

Since Jh1(en) = Jh2(en), for all n ∈ N ∪ {0}, (2.53) and (2.54) give

ān(α+ 1)B(n+ 1, α+ 1) = b̄n(α+ 1)B(n+ 1, α+ 1), for all n ∈ N ∪ {0},

that is, an = bn, for all n ∈ N ∪ {0}, and hence, h1 = h2 in D. This means that J is one-to-one.

(v) Let l ∈ (Ap(dAα))
∗. Using the notation in (iii), there exists a function g ∈ Lq(D, dAα) such

that J(Pαg) = l. Since J is one-to-one, J−1l = Pαg, and by Proposition 2.4.4 and the fact that
Lq(D, dAα) and (Lp(D, dAα))

∗ are isometrically isomorphic ([9, Theorem 7.15]),

∥J−1l∥q,α = ∥Pαg∥q,α ≤ ∥Pα∥∥g∥q,α = ∥Pα∥∥Λg∥ = ∥Pα∥∥l∥. (2.55)

By (i), (ii), (iii), (iv) and (v), J is an isomorphism, and it follows from (2.50) and (2.55) that (Ap(dAα))
∗

and Aq(dAα) have equivalent norms.

Proposition 2.4.6. Let p ≥ 1, α > −1 and γ > −1 such that p(γ + 1) > α + 1. Then the spaces
Ap(dAα) and Lp(D, dAα)/KerPγ are isomorphic.

Proof. Since Pγ is onto, the above result is known from elementary functional analysis (see [8, Section
3.4]).

2.5 A characterization ofAp(dAα) in terms of derivatives

Lemma 2.5.1. Let p > 0, α > −1 and n ∈ N. Then, there exists a constant C = C(p, α, n) > 0 such
that ∫

D
|f(z)|p dAα(z) ≤ C

∫
D
|znf(z)|p dAα(z), for all f ∈ H(D).

Proof. Let f ∈ H(D) and z ∈ D
(
0, 14
)
. By Corollary 2.1.3,

|f(z)|p = |f ◦ ϕz(0)|p ≤
∫
D
|f ◦ ϕz(w)|p dAα(w)

=

∫
|w|< 1

2

|f ◦ ϕz(w)|p dAα(w) +

∫
1
2
<|w|<1

|f ◦ ϕz(w)|p dAα(w).
(2.56)

Set Iz :=
∫
|w|< 1

2
|f ◦ ϕz(w)|p dAα(w). Since f ◦ ϕz ∈ H

(
D
(
0, 34
))

∩ C
(
D
(
0, 34
))
, by the Maximum

Modulus Principle ([14, Section VII.16]) there exists a real θ0 ∈ [0, 2π) such that

|f ◦ ϕz(w)| ≤
∣∣∣f ◦ ϕz

(3
4
eiθ0
)∣∣∣, for all w ∈ D

(
0,

3

4

)
,

so
Iz ≤

∫
|w|< 1

2

∣∣∣f ◦ ϕz
(3
4
eiθ0
)∣∣∣p dAα(w) = B1

∣∣∣f ◦ ϕz
(3
4
eiθ0
)∣∣∣p, (2.57)

where B1 = B1(α) =
∫
|w|< 1

2
dAα(w) > 0. Also, by Proposition 2.1.10 and the fact that we can find

a hyperbolic disc inside any euclidean disc (Corollary 1.3.6), there exists a constant B2 = B2(α) > 0
such that ∣∣∣f ◦ ϕz

(3
4
eiθ0
)∣∣∣p ≤ B2(

1−
(
3
4

)2)2+α

∫
D
(

3
4
eiθ0 , 1

8

) |f ◦ ϕz(w)|p dAα(w). (2.58)

It follows from (2.57) and (2.58) that

Iz ≤ B

∫
D
(

3
4
eiθ0 , 1

8

) |f ◦ ϕz(w)|p dAα(w) ≤ B

∫
1
2
<|w|<1

|f ◦ ϕz(w)|p dAα(w),
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where B = B(α) = B1 ·
B2(

1−
(
3
4

)2)2+α > 0, hence by (2.56),

|f(z)|p ≤ C1

∫
1
2
<|w|<1

|f ◦ ϕz(w)|p dAα(w), (2.59)

where C1 = C1(α) = B + 1 > 0.

SetΩz = ϕ−1
z

({
w ∈ D : 1

2 < |w| < 1
})

=
{
w ∈ D :

1

2
<
∣∣∣ z − w

1− z̄w

∣∣∣ < 1
}
. By the Change of Variables

Theorem ([6, Theorem 2.47a]) and Proposition 1.1.2 (iii), (iv),∫
1
2
<|w|<1

|f ◦ ϕz(w)|p dAα(w) =

∫
Ωz

|f(w)|p(α+ 1)(1− |ϕz(w)|2)α|ϕ′z(w)|2 dA(w)

=

∫
Ωz

|f(w)|p · (1− |z|2)2+α

|1− z̄w|2(2+α)
dAα(w),

so (2.59) becomes

|f(z)|p ≤ C1

∫
Ωz

|f(w)|p · (1− |z|2)2+α

|1− z̄w|2(2+α)
dAα(w). (2.60)

Note that if w ∈ Ωz, then
1

2
<
∣∣∣ z − w

1− z̄w

∣∣∣ ≤ |z|+ |w|
1− |z|

,

so
|w| ≥ 1

2
− 3

2
|z| > 1

2
− 3

2
· 1
4
=

1

8
.

Also,
(1− |z|2)2+α

|1− z̄w|2(2+α)
≤ 1

(1− |z|)2(2+α)
≤ 1(

1− 1
4

)2(2+α)
, for all w ∈ D,

hence (2.60) becomes
|f(z)|p ≤ C2

∫
1
8
<|w|<1

|f(w)|p dAα(w), (2.61)

where C2 = C2(α) =
C1(

1− 1
4

)2(2+α)
> 0. Set C3 = C3(p, α, n) = 8np · C2 > 0. Then (2.61) gives

|f(z)|p ≤ C3

8np

∫
1
8
<|w|<1

|f(w)|p dAα(w) ≤ C3

∫
1
8
<|w|<1

|w|np|f(w)|p dAα(w)

≤ C3

∫
D
|wnf(w)|p dAα(w).

(2.62)

Since (2.62) holds for an arbitrary z ∈ D
(
0, 14
)
,∫

|z|< 1
4

|f(z)|p dAα(z) ≤ C3

∫
|z|< 1

4

∫
D
|wnf(w)|p dAα(w)dAα(z)

= C4

∫
D
|wnf(w)|p dAα(w),

(2.63)

where C4 = C4(p, α, n) = C3

∫
|z|< 1

4

dAα(z) > 0. On the other hand,

∫
1
4
<|z|<1

|f(z)|p dAα(z) ≤ 4np
∫

1
4
<|z|<1

|z|np|f(z)|p dAα(z)

≤ 4np
∫
D
|znf(z)|p dAα(z).

(2.64)
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Set C̃ = C̃(p, α, n) = max{C4, 4
np} > 0. Then (2.63) and (2.64) imply that∫

D
|f(z)|p dAα(z) =

∫
|z|< 1

4

|f(z)|p dAα(z) +

∫
1
4
<|z|<1

|f(z)|p dAα(z)

≤ 2C̃

∫
D
|znf(z)|p dAα(z) = C

∫
D
|znf(z)|p dAα(z),

where C = C(p, α, n) = 2C̃ > 0.

Proposition 2.5.2. Let α > −1, n ∈ N and f ∈ H(D) such that

f(0) = f ′(0) = ... = f (n−1)(0) = 0. (2.65)

Then, for all z ∈ D,

f(z) =
1

(α+ 1) · ... · (α+ n)

∫
D

(1− |w|2)nf (n)(w)
w̄n(1− zw̄)2+α

dAα(w), (2.66)

provided that the integral in the right side of (2.66) converges.

Proof. Assume that the integral in the right side of (2.66) converges for all z ∈ D, which means that

∫
D

(1− |w|2)n|f (n)(w)|
|w̄|n|1− zw̄|2+α

dAα(w) < +∞, for all z ∈ D.

By Proposition 2.4.3, the function g given by

g(z) =
1

(α+ 1) · ... · (α+ n)

∫
D

(1− |w|2)nf (n)(w)
w̄n(1− zw̄)2+α

dAα(w), for all z ∈ D,

is holomorphic in D and, working as in the proof of Proposition 2.4.3, we can differentiate under the
integral sign. Thus, if 0 ≤ k ≤ n− 1,

g(k)(z) =
1

(α+ 1)(α+ k + 2) · ... · (α+ n)

∫
D

(1− |w|2)nf (n)(w)
w̄n−k(1− zw̄)α+k+2

dAα(w), for all z ∈ D,

while

g(n)(z) =
α+ n+ 1

α+ 1

∫
D

(1− |w|2)nf (n)(w)
(1− zw̄)α+n+2

dAα(w), for all z ∈ D. (2.67)

By the Taylor series expansion of f in D,

f(w) =
+∞∑
m=0

f (m)(0)

m!
wm, for all w ∈ D,

so [12, Theorem 10.6] gives

f (n)(w) =

+∞∑
m=n

m(m− 1) · ... · (m− n+ 1)
f (m)(0)

m!
wm−n =

+∞∑
m=0

f (m+n)(0)

m!
wm, for all w ∈ D,
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and the series converges absolutely in D. Thus, if we fix 0 ≤ k ≤ n − 1 and r ∈ [0, 1), then the series∑+∞
m=0

f (m+n)(0)
m! rmei(m+n−k)θ converges uniformly in [0, 2π], so

g(k)(0) =
1

(α+ 1)(α+ k + 2) · ... · (α+ n)

∫
D

(1− |w|2)nf (n)(w)
w̄n−k

dAα(w)

=
1

(α+ k + 2) · ... · (α+ n)

∫ 1

0

∫ 2π

0

(1− r2)nf (n)(reiθ)

rn−ke−i(n−k)θ
(1− r2)α · r

π
dθdr

=
1

(α+ k + 2) · ... · (α+ n)

∫ 1

0

1

π
· (1− r2)n+α

rn−k−1

∫ 2π

0

+∞∑
m=0

f (m+n)(0)

m!
rmei(m+n−k)θ dθdr

=
1

(α+ k + 2) · ... · (α+ n)

∫ 1

0

1

π
· (1− r2)n+α

rn−k−1

+∞∑
m=0

f (m+n)(0)

m!
rm
∫ 2π

0
ei(m+n−k)θ dθdr

= 0,

becausem+ n− k > 0 for allm ∈ N ∪ {0}. Therefore, by (2.65),

f (k)(0) = 0 = g(k)(0), for all k ∈ {0, . . . , n− 1}. (2.68)

Note, also, that∫
D
|f (n)(w)| dAα+n(w) =

α+ n+ 1

α+ 1

∫
D
(1− |w|2)n|f (n)(w)| dAα(w)

≤ α+ n+ 1

α+ 1

∫
D

(1− |w|2)n|f (n)(w)|
|w̄|n

dAα(w)

≤ 22+α(α+ n+ 1)

α+ 1

∫
D

(1− |w|2)n|f (n)(w)|
|w̄|n|1− zw̄|2+α

dAα(w) < +∞

by our hypothesis, hence f (n) ∈ A1(dAα+n). Then, Theorem 2.3.6 gives that for all z ∈ D,

f (n)(z) =

∫
D

f (n)(w)

(1− zw̄)2+α+n
dAα+n(w)

=
α+ n+ 1

α+ 1

∫
D
(α+ 1)

f (n)(w)(1− |w|2)n(1− |w|2)α

(1− zw̄)2+α+n
dA(w)

(2.67)
= g(n)(z),

so f (n−1)(z) = g(n−1)(z)+ c, for all z ∈ D, where c is a constant. In particular, by (2.68), c = 0, hence
f (n−1) = g(n−1) in D. Using (2.68) repeatedly, we get that f = g in D.

For the following Theorem we used [7, Section 2.3].

Theorem 2.5.3. Let p > 0, n ∈ N, α > −1 and f ∈ H(D). Then, f ∈ Ap(dAα) if and only if the
function g(z) = (1− |z|2)nf (n)(z), z ∈ D, is in Lp(D, dAα).

Proof. First assume that f ∈ Ap(dAα). If γ > 2+α
p > 0, then using Theorem 2.1.4 and Remark 1.3.3,∫

D
|f(z)| dAγ(z) ≤

∫
D

∥f∥p,α
(1− |z|2)(2+α)/p

dAγ(z) = ∥f∥p,α(γ + 1)

∫
D
(1− |z|2)γ−

2+α
p dA(z)

=
(γ + 1)∥f∥p,α
γ − 2+α

p + 1
< +∞,

hence f ∈ A1(dAγ), and so Theorem 2.3.6 yields that

f(z) = (γ + 1)

∫
D

(1− |w|2)γ

(1− zw̄)2+γ
f(w) dA(w), for all z ∈ D. (2.69)
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Working as in the proof of Proposition 2.4.3, we can integrate under the integral sign in (2.69) to get

f (n)(z) = (γ + 1) · ... · (γ + n+ 1)

∫
D

w̄n(1− |w|2)γ

(1− zw̄)n+2+γ
f(w) dA(w), for all z ∈ D,

so
g(z) = C1(1− |z|2)n

∫
D

(1− |w|2)γ

(1− zw̄)n+2+γ
w̄nf(w) dA(w), for all z ∈ D, (2.70)

where C1 = C1(γ, n) = (γ + 1) · ... · (γ + n + 1) > 0.We now distinguish two different cases with
respect to the values of p.

Case 1. p ≥ 1. Since ∫
D
|w̄nf(w)|p dAα(w) ≤

∫
D
|f(w)|p dAα(w) < +∞

and −pn < α + 1 < p(γ + 1) by the choice of γ, Theorem A.0.2 for a = n and b = γ implies that
g ∈ Lp(D, dAα).

Case 2. 0 < p < 1. Set λ = p(γ + 2)− 2 and note that λ > α > −1 by the choice of γ. Also, for any

z ∈ D, consider the function Fz(w) =
f(w)

(1− z̄w)n+2+γ
, w ∈ D. Then, for all z ∈ D, Fz ∈ H(D) and∫

D
|Fz(w)|p dAλ(w) =

∫
D

|f(w)|p

|1− z̄w|p(n+2+γ)
(λ+ 1)(1− |w|2)λ dA(w)

≤
∫
D

|f(w)|p

(1− |z|)p(n+2+γ)
(λ+ 1)(1− |w|2)α dA(w)

=
1

(1− |z|)p(n+2+γ)

λ+ 1

α+ 1

∫
D
|f(w)|p dAα(w) < +∞,

hence Fz ∈ Ap(dAλ). By (2.70) and Proposition 2.1.9, we have that for all z ∈ D,

|g(z)| ≤ C1(1− |z|2)n
∫
D

(1− |w|2)γ

|1− zw̄|n+2+γ
|w̄|n|f(w)| dA(w)

≤ C1

γ + 1
(1− |z|2)n

∫
D
|Fz(w)| dAγ(w)

≤ C1

γ + 1
(1− |z|2)n · γ + 1

λ+ 1

(∫
D
|Fz(w)|p dAλ(w)

)1/p

,

so
|g(z)|p ≤ C2(1− |z|2)np

∫
D

|f(w)|p

|1− z̄w|p(n+2+γ)
(1− |w|2)λ dA(w), for all z ∈ D,

where C2 = C2(n, p, γ) = Cp
1 (λ+ 1)1−p > 0. Using [6, 2.37a The Fubini-Tonelli Theorem],∫

D
|g(z)|p dAα(z) ≤ C2

∫
D

∫
D
(1− |z|2)np |f(w)|p

|1− z̄w|p(n+2+γ)
(1− |w|2)λ dA(w)dAα(z)

= C2(α+ 1)

∫
D

∫
D
(1− |z|2)np+α |f(w)|p

|1− z̄w|p(n+2+γ)
(1− |w|2)λ dA(w)dA(z)

= C2(α+ 1)

∫
D
|f(w)|p(1− |w|2)λ

∫
D

(1− |z|2)np+α

|1− z̄w|p(n+2+γ)
dA(z)dA(w).

Let w ∈ D and set I(w) =

∫
D

(1− |z|2)np+α

|1− z̄w|p(n+2+γ)
dA(z). If w ∈ D \ D(0, 12), then Lemma A.0.1 for

t = np + α > −1 and c = p(2 + γ) − α − 2 = λ − α > 0 implies that there exists a constant
C3 = C3(p, γ, α, n) > 0 such that

I(w) ≤ C3 ·
1

(1− |w|2)λ−α
. (2.71)
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If w ∈ D(0, 12), then

I(w) ≤
∫
D

(1− |z|2)np+α(
1− 1

2

)p(n+2+γ)
dA(z) =

2p(n+2+γ)

np+ α+ 1
≤ 2p(n+2+γ)

np+ α+ 1
· 1

(1− |w|2)λ−α
. (2.72)

Thus, if C4 = C4(p, γ, α, n) = max
{
C3,

2p(n+2+γ)

np+ α+ 1

}
> 0, we have that

∫
D
|g(z)|p dAα(z) ≤ C2(α+ 1)

∫
D
|f(w)|p(1− |w|2)λI(w) dA(w)

≤ C2C4(α+ 1)

∫
D
|f(w)|p(1− |w|2)α dA(w)

= C2C4

∫
D
|f(w)|p dAα(w) < +∞,

hence g ∈ Lp(D, dAα).

Conversely, assume that g ∈ Lp(D, dAα).We distinguish two cases for f :

Case 1 (special case). We assume that

f(0) = f ′(0) = ... = f (2n)(0) = 0. (2.73)

Then by the Taylor series expansion of f in D we have that

f(w) =
+∞∑
k=0

f (k)(0)

k!
wk, for all w ∈ D,

so [12, Theorem 10.6] and (2.73) give

f (n)(w) =
+∞∑
k=n

k(k − 1) · ... · (k − n+ 1)
f (k)(0)

k!
wk−n =

+∞∑
k=2n

f (k)(0)

(k − n)!
wk−n

= wn
+∞∑
k=2n

f (k)(0)

(k − n)!
wk−2n = wn

+∞∑
k=0

f (k+2n)(0)

(k + n)!
wk, for all w ∈ D.

This means that the function G(w) =

{
f (n)(w)

wn , if w ∈ D \ {0}
0, if w = 0

, is holomorphic in D, so there exists

a realM > 0 such that |G(w)| ≤M, for all w ∈ D(0, 12). Consider the function

h(w) =
(1− |w|2)nf (n)(w)

w̄n
, for all w ∈ D \ {0}.

Let us consider the case where p ≥ 1. First note that if w ∈ D(0, 12) \ {0}, then

|h(w)| = (1− |w|2)n|G(w)| ≤M, (2.74)

and if w ∈ D \D(0, 12), then

|h(w)| = (1− |w|2)n|f (n)(w)|
|w|n

≤ 2n|g(w)|. (2.75)



2.5. A CHARACTERIZATION OFAp(dAα) IN TERMS OF DERIVATIVES 45

Thus, (2.74), (2.75) and our hypothesis that g ∈ Lp(D, dAα) give∫
D
|h(w)|p dAα(w) =

∫
D(0, 1

2
)
|h(w)|p dAα(w) +

∫
D\D(0, 1

2
)
|h(w)|p dAα(w)

≤
∫
D(0, 1

2
)
Mp dAα(w) + 2np

∫
D\D(0, 1

2
)
|g(w)|p dAα(w) < +∞,

hence h ∈ Lp(D, dAα) ⊂ L1(D, dAα). If γ > α > −1, then∫
D

|h(w)|
|1− zw̄|2+γ

dAγ(w) ≤
γ + 1

(1− |z|)2+γ

∫
D
|h(w)|(1− |w|2)γ dA(w)

≤ γ + 1

(α+ 1)(1− |z|)2+γ

∫
D
|h(w)|(α+ 1)(1− |w|2)α dA(w)

=
γ + 1

(α+ 1)(1− |z|)2+γ
∥h∥1,α < +∞, for all z ∈ D,

so Proposition 2.5.2 yields that

f(z) =
1

(γ + 2) · ... · (γ + n)

∫
D

(1− |w|2)γ

(1− zw̄)2+γ
h(w) dA(w), for all z ∈ D.

By the choice of γ and the fact that h ∈ Lp(D, dAα), Theorem A.0.2 gives that f ∈ Lp(D, dAα), and
so f ∈ Ap(dAα).

Let 0 < p < 1. Suppose that γ > −1 such that p(γ+2) > α+2. Also, set λ = p(n+ γ+2)− 2 >

pn+ α, and J(w) =
∫
D

(1− |z|2)α

|1− z̄w|p(γ+2)
dA(z), for all w ∈ D. Using Lemma A.0.1 and the fact that J

is bounded on D
(
0, 12
)
, we derive that there exists a constant C5 = C5(p, α, γ) > 0 such that

J(w) ≤ C5 ·
1

(1− |w|2)λ−pn−α
, for all w ∈ D. (2.76)

By [6, 2.37a The Fubini-Tonelli Theorem] and (2.76),∫
D

∫
D

|f (n)(w)|p(1− |w|2)λ

|1− zw̄|p(2+γ)
dA(w)dAα(z) =

∫
D

∫
D

|f (n)(w)|p(1− |w|2)λ

|1− zw̄|p(2+γ)
dAα(z)dA(w)

=

∫
D
(α+ 1)|f (n)(w)|p(1− |w|2)λJ(w) dA(w)

≤ C5

∫
D
|f (n)(w)|p(1− |w|2)pn dAα(w)

= C5

∫
D
|g(w)|p dAα(w) < +∞,

(2.77)

which means that ∫
D

|f (n)(w)|p(1− |w|2)λ

|1− zw̄|p(2+γ)
dA(w) < +∞, for almost every z ∈ D. (2.78)

Using the same arguments as in the proof of (A.15), we get that (2.78) holds for all z ∈ D. By Lemma
2.5.1, there exists a constant C6 = C6(γ, n) > 0 such that, for all z ∈ D,∫

D

|h(w)|
|1− zw̄|2+γ

dAγ(w) =
1

γ + n+ 1

∫
D

∣∣∣ G(w)

(1− z̄w)2+γ

∣∣∣ dAγ+n(w)

≤ C6

∫
D

∣∣∣wn · G(w)

(1− z̄w)2+γ

∣∣∣ dAγ+n(w)

= C6

∫
D

∣∣∣ f (n)(w)

(1− z̄w)2+γ

∣∣∣ dAγ+n(w),

(2.79)
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and Proposition 2.1.9 and (2.78) give that, for all z ∈ D,

∫
D

∣∣∣ f (n)(w)

(1− z̄w)2+γ

∣∣∣ dAγ+n(w) ≤
γ + n+ 1

λ+ 1

(∫
D

|f (n)(w)|p

|1− zw̄|p(2+γ)
dAλ(w)

)1/p

< +∞. (2.80)

Thus, (2.79), (2.80) and Proposition 2.5.2 imply that

f(z) =
1

(γ + 1) · ... · (γ + n)

∫
D

1

(1− zw̄)2+γ
h(w) dAγ(w), for all z ∈ D. (2.81)

By (2.79), (2.80) and (2.81),

|f(z)|p ≤ C7

∫
D

|f (n)(w)|p(1− |w|2)λ

|1− zw̄|p(2+γ)
dA(w), for all z ∈ D, (2.82)

where C7 = C7(p, γ, n) =
Cp
6 (γ + n+ 1)p(λ+ 1)1−p

(γ + 1)p · ... · (γ + n)p
> 0. By (2.82) and (2.77),

∫
D
|f(z)|p dAα(z) ≤ C7

∫
D

∫
D

|f (n)(w)|p(1− |w|2)λ

|1− zw̄|p(2+γ)
dA(w)dAα(z) < +∞,

which means that f ∈ Lp(D, dAα), and so f ∈ Ap(dAα).

Case 2 (general case). In this case we assume only that f ∈ H(D). Then, by the Taylor series expansion
of f in D,

f(z) =
+∞∑
k=0

f (k)(0)

k!
zk, for all z ∈ D.

Consider the polynomial p2n(z) =
∑2n

k=0
f (k)(0)

k! zk and the function F (z) = f(z) − p2n(z), for all
z ∈ D. Note that for all 0 ≤ m ≤ 2n,

F (m)(z) = f (m)(z)−
2n∑

k=m

f (k)(0)

(k −m)!
zk−m, for all z ∈ D, (2.83)

so
F (0) = F ′(0) = ... = F (2n)(0) = 0.

Also, consider the function

G(z) = (1− |z|2)nF (n)(z)
(2.83)
= g(z)− (1− |z|2)n

2n∑
k=n

f (k)(0)

(k − n)!
zk−n, for all z ∈ D.

Then∫
D
(1− |z|2)np

∣∣∣∣ 2n∑
k=n

f (k)(0)

(k − n)!
zk−n

∣∣∣∣p dAα(z) ≤
α+ 1

α+ np+ 1

∫
D

( 2n∑
k=n

|f (k)(0)|
(k − n)!

)p

dAα+np(z) < +∞,

so G ∈ Lp(D, dAα). By the special case, F ∈ Ap(dAα), and since p2n ∈ H∞ ⊂ Ap(dAα), we finally
get that f ∈ Ap(dAα).
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2.6 Preparation for the Atomic Decomposition

Let p ≥ 1 and b > 2
p . For each a ∈ D, consider the function

fa(z) =
(1− |a|2)(pb−2)/p

(1− āz)b
, for all z ∈ D, (2.84)

which is well-defined in D (see [14, Section X.5]), and holomorphic in D. Note, also, that for all a ∈ D,∫
D
|fa(z)|p dA(z) =

∫
D

(1− |a|2)pb−2

|1− āz|pb
dA(z) ≤

∫
D

(1− |a|2)pb−2

(1− |a|)pb
dA(z) < +∞,

so fa ∈ Ap(dA).

Proposition 2.6.1. There exist constants c = c(p, b), C = C(p, b) > 0 such that

c ≤ ∥fa∥p ≤ C, for all a ∈ D.

Proof. Let a ∈ D.
Case 1. a ∈ D \ D

(
0, 12
)
. Since pb − 2 > 0, by Lemma A.0.1 there exist constants c̃ = c̃(p, b),

C̃ = C̃(p, b) > 0 such that

c̃

(1− |a|2)pb−2
≤
∫
D

1

|1− āz|pb
dA(z) ≤ C̃

(1− |a|2)pb−2
,

hence
c̃1/p ≤ ∥fa∥p ≤ C̃1/p. (2.85)

Case 2. a ∈ D
(
0, 12
)
. Then

|1− āz| ≤ 1 + |a||z| ≤ 1 +
1

2
, for all z ∈ D,

so
∥fa∥pp ≥

∫
D

(1− |a|2)pb−2(
3
2

)pb dA(z) ≥
(2
3

)pb(3
4

)pb−2
, (2.86)

and
|1− āz| ≥ 1− |a||z| ≥ 1− 1

2
, for all z ∈ D,

so
∥fa∥pp ≤

∫
D

(1− |a|2)pb−2(
1
2

)pb dA(z) ≤ 2pb. (2.87)

In any case, if c = c(p, b) := min
{
c̃1/p,

(
2
3

)b(3
4

)b− 2
p

}
> 0 and C = C(p, b) := max

{
C̃1/p, 2b

}
> 0,

then (2.85), (2.86) and (2.87) give
c ≤ ∥fa∥p ≤ C.

Lemma 2.6.2. Suppose R > 0 and b ∈ R. Then there exists a constant C = C(R, b) > 0 such that∣∣∣(1− zū)b

(1− zv̄)b
− 1
∣∣∣ ≤ Cβ(u, v), for all z, u, v ∈ D, with β(u, v) ≤ R. (2.88)

In particular, there exists a constant C̃ = C̃(R, b) > 0 such that

1

C̃
≤ |1− zū|b

|1− zv̄|b
≤ C̃, for all z, u, v ∈ D, with β(u, v) ≤ R. (2.89)
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Proof. Set r := tanh(R) ∈ (0, 1), and let z, u, v ∈ D with β(u, v) ≤ R. Then there exist w, λ ∈ D
such that v = ϕu(w) and z = ϕu(λ). By (1.14) and Proposition 1.2.2,

tanh−1(|w|) = β(0, w) = β(ϕu(0), ϕu(w)) = β(u, v) ≤ R,

so |w| ≤ r, and hence |uw̄| ≤ r and |λw̄| ≤ r. Lemma 2.4.2 now gives that there exists a constant
C1 = C1(r, b) > 0 such that

|(1− uw̄)b − (1− λw̄)b| ≤ C1|uw̄ − λw̄| ≤ 2C1|w|. (2.90)

Also, it follows from a straightforward calculation that

(1− zū)b

(1− zv̄)b
− 1 =

(1− ϕu(λ)ū)
b

(1− ϕu(λ)ϕu(w))b
− 1 =

(1− uw̄)b − (1− λw̄)b

(1− λw̄)b
,

and, since 1− r ≤ 1− |λ||w| ≤ |1− λw̄| ≤ 2,∣∣∣(1− zū)b

(1− zv̄)b
− 1
∣∣∣ = |(1− uw̄)b − (1− λw̄)b|

|1− λw̄|b
(2.90)
≤ 2C1|w|

|1− λw̄|b
≤ C2|w|, (2.91)

where C2 = C2(R, b) > 0. Finally, (1.16) yields that |w| ≤ 2β(0, w) = 2β(u, v), so we get (2.88) for
C = C(R, b) = 2C2 > 0.

Regarding (2.89), note that∣∣∣(1− zū)b

(1− zv̄)b

∣∣∣− 1 ≤
∣∣∣(1− zū)b

(1− zv̄)b
− 1
∣∣∣ (2.88)≤ Cβ(u, v) ≤ CR,

hence
|1− zū|b

|1− zv̄|b
≤ C̃, (2.92)

where C̃ = C̃(R, b) = CR + 1 > 0. Since (2.92) holds for all u, v ∈ D that satisfy β(u, v) ≤ R, we
can replace u by v, and v by u to get

|1− zv̄|b

|1− zū|b
≤ C̃. (2.93)

(2.89) follows from (2.92) and (2.93).

Lemma 2.6.3. Let p ≥ 1. Then there exists a constant C = C(p) > 0 such that∫
Dh(0,r)

|f(z)− f(0)| dA(z) ≤ Cr3
(∫

Dh(0,1)
|f(z)|p dA(z)

)1/p
(2.94)

and ∫
Dh(0,r)

|f(z)| dA(z) ≤ Cr2
(∫

Dh(0,1)
|f(z)|p dA(z)

)1/p
, (2.95)

for all r ∈ (0, 1) and f ∈ H(D).

Proof. Let f ∈ H(D) and suppose first that 0 < r < 1
3 . By Proposition 1.3.5,Dh(0, r) = D(0, tanh(r))

and Dh(0, 1) = D(0, tanh(1)). If we set t = tanh(12) ∈ (tanh
(
1
3

)
, tanh(1)), then Cauchy’s formula for

a circle ([14, Section VII.5]) implies that for all z ∈ Dh(0, r),

|f(z)| =
∣∣∣∣ 1

2πi

∫
|ζ|=t

f(ζ)

ζ − z
dζ

∣∣∣∣ = 1

2π

∣∣∣∣ ∫ 2π

0

f(teiθ)

teiθ − z
· tieiθ dθ

∣∣∣∣
≤ t

2π

∫ 2π

0

|f(teiθ)|
|teiθ − z|

dθ ≤ C1

∫ 2π

0
|f(teiθ)| dθ,

(2.96)
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where C1 =
t

2π · dist
(
C(0, tanh

(
1
3

)
), C(0, t)

) > 0.

Now, consider the function F (z) = f(tanh(1)z), for all z ∈ D. Then F ∈ H(D) and by the Change of
Variables Theorem ([6, Theorem 2.47a]),∫

D
|F (z)|p dA(z) =

∫
D
|f(tanh(1)z)|p dA(z) =

∫
D(0,tanh(1))

|f(z)|p · 1

| tanh(1)|2
dA(z)

≤ 1

tanh2(1)

∫
Dh(0,1)

(
max

Dh(0,1)
|f |
)p

dA(z) < +∞,

so F ∈ Ap(dA) and ∥F∥p =
1

(tanh(1))2/p
(∫

Dh(0,1)
|f(z)|p dA(z)

)1/p
. By Theorem 2.1.4,

|f(tanh(1)z)| ≤ 1

(tanh(1))2/p

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p 1

(1− |z|2)2/p
, for all z ∈ D. (2.97)

By setting z = ζ
tanh(1) in (2.97), where ζ ∈ C(0, t), we get

|f(ζ)| ≤ C2

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p

, for all ζ ∈ C(0, t), (2.98)

where C2 = C2(p) =
(

tanh(1)
tanh2(1)−t2

)2/p
> 0. Using (2.98), (2.96) becomes

|f(z)| ≤ 2πC1C2

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p

, for all z ∈ Dh(0, r), (2.99)

and by integrating each side of (2.99), we have

∫
Dh(0,r)

|f(z)| dA(z) ≤ 2πC1C2

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p ∫

Dh(0,r)
dA(z)

= 2πC1C2

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p ∫ tanh(r)

0

∫ 2π

0

ρ

π
dθdρ

= 2πC1C2 tanh2(r)
(∫

Dh(0,1)
|f(w)|p dA(w)

)1/p

≤ 2πC1C2r
2

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p

,

(2.100)

because tanh(x) ≤ x, for all x ≥ 0.
Working similarly, we can derive that there exists a constant C̃1 = C̃1(p) > 0 such that

∫
Dh(0,r)

|f(z)− f(0)| dA(z) ≤ C̃1r
3

(∫
Dh(0,1)

|f(w)|p dA(w)
)1/p

. (2.101)

Suppose now that 1
3 ≤ r < 1. Then, if q is the conjugate exponent of p, there exists a constant

C3 = C3(q) > 0 such that

C3

(1
3

)2
≥ (tanh(1))2/q ≥ (tanh(r))2/q.
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Thus, by [9, Hölder’s Inequalities, p. 213],∫
Dh(0,r)

|f(z)| dA(z) ≤
(∫

Dh(0,r)
|f(z)|p dA(z)

)1/p(∫
Dh(0,r)

dA(z)

)1/q

≤
(∫

Dh(0,1)
|f(z)|p dA(z)

)1/p

(tanh(r))2/q

≤ C3

(1
3

)2(∫
Dh(0,1)

|f(z)|p dA(z)
)1/p

≤ C3r
2

(∫
Dh(0,1)

|f(z)|p dA(z)
)1/p

.

(2.102)

Finally, there exists a constant C̃2 > 0 such that

C̃2

(1
3

)3
≥ 1 ≥ r2,

hence, using (2.95) and (2.97),∫
Dh(0,r)

|f(z)− f(0)| dA(z) ≤
∫
Dh(0,r)

|f(z)| dA(z) +
∫
Dh(0,r)

|f(0)| dA(z)

≤ Cr2
(∫

Dh(0,1)
|f(z)|p dA(z)

)1/p

+ |f(0)| tanh2(r)

≤
(
C +

1

(tanh(1))2/p

)
r2
(∫

Dh(0,1)
|f(z)|p dA(z)

)1/p

≤
(
C +

1

(tanh(1))2/p

)
C̃2

(1
3

)3(∫
Dh(0,1)

|f(z)|p dA(z)
)1/p

≤
(
C +

1

(tanh(1))2/p

)
C̃2r

3

(∫
Dh(0,1)

|f(z)|p dA(z)
)1/p

.

(2.103)

Thus, (2.100) and (2.102) give (2.95), and (2.101) and (2.103) give (2.94).

Corollary 2.6.4. Let p ≥ 1. Then there exists a constant C = C(p) > 0 such that∫
Dh(a,r)

|f(z)− f(a)| dA(z) ≤ Cr3(1− |a|2)2
(
1− 1

p

)( ∫
Dh(a,1)

|f(z)|p dA(z)
)1/p

(2.104)

and ∫
Dh(a,r)

|f(z)| dA(z) ≤ Cr2(1− |a|2)2
(
1− 1

p

)( ∫
Dh(a,1)

|f(z)|p dA(z)
)1/p

, (2.105)

for all a ∈ D, r ∈ (0, 1) and f ∈ H(D).

Proof. Let a ∈ D, r ∈ (0, 1) and f ∈ H(D). Replace f by f ◦ ϕa in (2.94) to get∫
Dh(0,r)

|f(ϕa(z))− f(ϕa(0))| dA(z) ≤ Cr3
(∫

Dh(0,1)
|f(ϕa(z))|p dA(z)

)1/p

, (2.106)

for some constantC = C(p) > 0.Using the Change of Variables Theorem ([6, Theorem 2.47a]), Lemma
1.3.9 and Proposition 1.1.2 (iii),∫

Dh(0,r)
|f(ϕa(z))− f(ϕa(0))| dA(z) =

∫
Dh(a,r)

|f(z)− f(a)| · |ϕ′a(z)|2 dA(z)

=

∫
Dh(a,r)

|f(z)− f(a)| · (1− |a|2)2

|1− āz|4
dA(z)

(2.107)
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and ∫
Dh(0,1)

|f(ϕa(z))|p dA(z) =
∫
Dh(a,1)

|f(z)|p · |ϕ′a(z)|2 dA(z)

=

∫
Dh(a,1)

|f(z)|p · (1− |a|2)2

|1− āz|4
dA(z).

(2.108)

By Proposition 1.3.11 (i), |1− āz| ∼ 1− |a|2, for all z ∈ Dh(a, 1), so there exist constants C1, C2 > 0,
independent of a, z, r, f, p, such that

C1
1

(1− |a|2)2
≤ (1− |a|2)2

|1− āz|4
≤ C2

1

(1− |a|2)2
, for all z ∈ Dh(a, 1). (2.109)

By (2.106), (2.107), (2.108) and (2.109),

C1

∫
Dh(a,r)

|f(z)− f(a)|
(1− |a|2)2

dA(z) ≤
∫
Dh(a,r)

|f(z)− f(a)| · (1− |a|2)2

|1− āz|4
dA(z)

≤ Cr3
(∫

Dh(a,1)
|f(z)|p · (1− |a|2)2

|1− āz|4
dA(z)

)1/p

≤ Cr3
(
C2

∫
Dh(a,1)

|f(z)|p

(1− |a|2)2
dA(z)

)1/p

,

and (2.104) follows.
Working similarly, we can derive (2.105).

For any r ∈ (0, 1], fix an r-lattice {an} ⊂ D in the hyperbolic metric, and a disjoint decomposition
{Dn} of D satisfying the conditions of Proposition 1.4.8. For any parameter b > 1,we define an operator
S : A1(dAb−2) → H(D) given by

Sf(z) =
+∞∑
n=1

Ab−2(Dn)f(an)

(1− zān)b
, for all z ∈ D and f ∈ A1(dAb−2). (2.110)

Proposition 2.6.5. The operator S defined in (2.110) is well-defined.

Proof. Let z ∈ D and f ∈ A1(dAb−2). By Proposition 1.4.8, Dn ⊂ Dh(an, r) ⊂ Dh(an, 1), for
all n ∈ N, so Ab−2(Dn) ≤ Ab−2(Dh(an, 1)), for all n ∈ N. Now, Proposition 1.3.11 (ii) implies that
Ab−2(Dh(an, 1)) ∼ (1−|an|2)b, for all n ∈ N,whichmeans that there exists a constantC1 = C1(b) > 0
such that

Ab−2(Dn) ≤ Ab−2(Dh(an, 1)) ≤ C1(1− |an|2)b, for all n ∈ N. (2.111)

Also, Proposition 2.1.11 yields that there exists a constant C2 = C2(b, r) > 0 such that

+∞∑
n=1

(1− |an|2)b · |f(an)| ≤ C2

∫
D
|f(w)| dAb−2(w) < +∞. (2.112)

By (2.111) and (2.112),

+∞∑
n=1

Ab−2(Dn)|f(an)|
|1− zān|b

≤ C1C2

(1− |z|)b

∫
D
|f(w)| dAb−2(w) < +∞.

Thus, the series in (2.110) converges for all z ∈ D.
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Consider the functions gn(z) =
Ab−2(Dn)f(an)

(1− zān)b
, for all z ∈ D and n ∈ N, which are holomorphic

in D, and let K be a compact subset of D. Then there exists a real R ∈ (0, 1) such that K ⊂ D(0, R),
hence

|gn(z)| =
Ab−2(Dn)|f(an)|

|1− zān|b
≤ Ab−2(Dn)|f(an)|

(1−R)b

(2.111)
≤ C1

(1−R)b
(1− |an|2)b · |f(an)|,

for all z ∈ K and n ∈ N. Since
+∞∑
n=1

C1

(1−R)b
(1− |an|2)b · |f(an)|

(2.112)
≤ C1C2

(1−R)b

∫
D
|f(w)| dAb−2(w) < +∞,

by the Weierstrass criterion for the uniform convergence of series,
∑+∞

n=1 gn converges uniformly onK.
Thus, Weierstrass Convergence Theorem ([12, Theorem 10.28]) implies that

∑+∞
n=1 gn ∈ H(D).

Lemma 2.6.6. Let p ≥ 1. For any r ∈ (0, 1) and b > 1 consider the operator S given in (2.110). Then
there exists a constant C = C(p, b) > 0 such that

|f(z)− Sf(z)| ≤ Cr3
+∞∑
k=1

(1− |ak|2)(pb−2)/p

|1− ākz|b

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

, (2.113)

for all z ∈ D and f ∈ A1(dAb−2).

Proof. Let z ∈ D and f ∈ A1(dAb−2). By Theorem 2.3.6,

f(z) =

∫
D
f(w)Kb−2(z, w) dAb−2(w) =

∫
D

f(w)

(1− zw̄)b
dAb−2(w),

and since {Dk} is a partition of D,

f(z)− Sf(z) =

∫
∪+∞

k=1 Dk

f(w)

(1− zw̄)b
dAb−2(w)−

+∞∑
k=1

Ab−2(Dk)f(ak)

(1− zāk)b

=
+∞∑
k=1

∫
Dk

f(w)

(1− zw̄)b
dAb−2(w)−

+∞∑
k=1

∫
Dk

f(ak)

(1− zāk)b
dAb−2(w)

=

+∞∑
k=1

∫
Dk

(
f(w)

(1− zw̄)b
− f(ak)

(1− zāk)b

)
dAb−2(w).

Thus,

|f(z)− Sf(z)| ≤
+∞∑
k=1

∫
Dk

∣∣∣∣ f(w)

(1− zw̄)b
− f(ak)

(1− zāk)b

∣∣∣∣ dAb−2(w)

≤
+∞∑
k=1

∫
Dk

(∣∣∣∣ f(w)

(1− zw̄)b
− f(w)

(1− zāk)b

∣∣∣∣+ ∣∣∣∣f(w)− f(ak)

(1− zāk)b

∣∣∣∣) dAb−2(w)

= I(z) + J(z),

(2.114)

where

I(z) =

+∞∑
k=1

1

|1− zāk|b

∫
Dk

∣∣∣∣(1− zāk)
b

(1− zw̄)b
− 1

∣∣∣∣ · |f(w)| dAb−2(w) (2.115)

and

J(z) =
+∞∑
k=1

1

|1− zāk|b

∫
Dk

|f(w)− f(ak)| dAb−2(w). (2.116)
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For each k ∈ N, let

Ik =

∫
Dk

∣∣∣∣(1− zāk)
b

(1− zw̄)b
− 1

∣∣∣∣ · |f(w)| dAb−2(w)

and
Jk =

∫
Dk

|f(w)− f(ak)| dAb−2(w).

By Proposition 1.4.8,

Ik ≤
∫
Dh(ak,r)

∣∣∣∣(1− zāk)
b

(1− zw̄)b
− 1

∣∣∣∣ · |f(w)|(b− 1)(1− |w|2)b−2 dA(w) (2.117)

and
Jk ≤

∫
Dh(ak,r)

|f(w)− f(ak)|(b− 1)(1− |w|2)b−2 dA(w). (2.118)

Now, ifw ∈ Dh(ak, r), thenw ∈ Dh(ak, 1), so Proposition 1.3.11 (i) implies that there exists a constant
C1 = C1(b) > 0, independent of w, ak, r, such that

(1− |w|2)b−2 ≤ C1(1− |ak|2)b−2, (2.119)

for all w ∈ Dh(ak, 1) and k ∈ N. Also, by Lemma 2.6.2, there exists a constant C2 = C2(b) > 0 such
that ∣∣∣∣(1− zāk)

b

(1− zw̄)b
− 1

∣∣∣∣ ≤ C2β(ak, w), for all w ∈ Dh(ak, 1) and k ∈ N. (2.120)

Thus, by (2.119) and (2.120), (2.117) and (2.118) become

Ik ≤
∫
Dh(ak,r)

C2β(ak, w)|f(w)|(b− 1)C1(1− |ak|2)b−2 dA(w)

≤ C1C2r(b− 1)(1− |ak|2)b−2

∫
Dh(ak,r)

|f(w)| dA(w)
(2.121)

and
Jk ≤ C1(b− 1)(1− |ak|2)b−2

∫
Dh(ak,r)

|f(w)− f(ak)| dA(w), (2.122)

respectively, for all k ∈ N. By Corollary 2.6.4, there exists a constant C3 = C3(p) > 0 such that∫
Dh(ak,r)

|f(w)| dA(w) ≤ C3r
2(1− |ak|2)2

(
1− 1

p

)(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

(2.123)

and∫
Dh(ak,r)

|f(w)− f(ak)| dA(w) ≤ C3r
3(1− |ak|2)2

(
1− 1

p

)(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

, (2.124)

for all k ∈ N. Therefore, for all k ∈ N,

Ik
(2.121)
≤ C1C2r(b− 1)(1− |ak|2)b−2

∫
Dh(ak,r)

|f(w)| dA(w)

(2.123)
≤ C1C2C3r

3(b− 1)(1− |ak|2)b−
2
p

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

= C̃r3(1− |ak|2)b−
2
p

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

,

(2.125)
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where C̃ = C̃(p, b) = C1C2C3(b− 1) > 0, and, similarly, (2.122) and (2.124) give

Jk ≤ Ĉr3(1− |ak|2)b−
2
p

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

, (2.126)

where Ĉ = Ĉ(p, b) = C1C3(b− 1) > 0. Using (2.125) and (2.126), (2.115) and (2.116) become

I(z) ≤ C̃r3
+∞∑
k=1

(1− |ak|2)(pb−2)/p

|1− zāk|b

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

(2.127)

and

J(z) ≤ Ĉr3
+∞∑
k=1

(1− |ak|2)(pb−2)/p

|1− zāk|b

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

. (2.128)

If C = C(p, b) := 2max{C̃, Ĉ} > 0, then (2.113) follows from (2.114), (2.127) and (2.128).

2.7 Atomic Decomposition on Bergman Spaces

Theorem 2.7.1. Let p ≥ 1 and b > 2 ≥ 1 + 1
p . Then there exists a constant σ = σ(p, b) > 0 such that

for any r-lattice {ak} in the hyperbolic metric, where 0 < r < σ, the space Ap(dA) consists exactly of
functions of the form

f(z) =

+∞∑
k=1

ck
(1− |ak|2)(pb−2)/p

(1− zāk)b
, for all z ∈ D, (2.129)

where {ck} ∈ lp, and the series (2.129) converges in norm in Ap(dA).

Proof. We will prove the Theorem in steps.

Step 1. The series in (2.129) converges for all z ∈ D and defines a function f ∈ Ap(dA). Also, the
series in (2.129) converges in norm to f in Ap(dA).

Indeed, let {ck} ∈ lp and {ak} be any r-lattice in the hyperbolic metric, where 0 < r < 1. Also,
consider the functions

fk(z) =
(1− |ak|2)(pb−2)/p

(1− zāk)b
, for all z ∈ D and k ∈ N.

The functions fk are of the form (2.84), so fk ∈ Ap(dA), for all k ∈ N, and Proposition 2.6.1 yields that
there exists a constant C = C(p, b) > 0 such that

∥fk∥pp =
∫
D
|fk(z)|p dA(z) ≤ C, for all k ∈ N. (2.130)

Now, choose a decomposition {Dk} of D according to Proposition 1.4.8 and let χk be the characteristic
function of Dk. If z ∈ D, then there exists a uniquem ∈ N such that z ∈ Dm, so

+∞∑
k=1

|ck|A(Dk)
−1/pχk(z) = |cm|A(Dm)−1/p < +∞.

Thus, we can define a function F : D → [0,+∞) by F (z) =
∑+∞

k=1 |ck|A(Dk)
−1/pχk(z), for all z ∈ D.

Then ∫
D
|F (z)|p dA(z) =

∫
∪+∞

k=1 Dk

|F (z)|p dA(z) =
+∞∑
k=1

∫
Dk

|F (z)|p dA(z)

=
+∞∑
k=1

∫
Dk

|ck|pA(Dk)
−1 dA(z) =

+∞∑
k=1

|ck|p < +∞,
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so F ∈ Lp(D, dA) and ∥F∥pp =
∑+∞

k=1 |ck|p. Next, note that the choice of b implies that p(b − 1) > 1,
so Theorem A.0.2 yields that the integral operator T : Lp(D, dA) → Lp(D, dA) defined by

Th(z) =

∫
D

(1− |w|2)b−2

|1− zw̄|b
h(w) dA(w), for all z ∈ D and h ∈ Lp(D, dA),

is bounded on Lp(D, dA). Using [6, Theorem 2.15], we have that for all z ∈ D,

TF (z) =

∫
D

(1− |w|2)b−2

|1− zw̄|b
·
+∞∑
k=1

|ck|A(Dk)
−1/pχk(w) dA(w)

=

+∞∑
k=1

|ck|A(Dk)
−1/p

∫
Dk

(1− |w|2)b−2

|1− zw̄|b
dA(w).

(2.131)

Let k ∈ N and z ∈ D. By Proposition 1.4.8, Dk ⊂ Dh(ak, r), so, using Lemma 1.3.10 (i),

A(Dk) ≤ A(Dh(ak, r)) =
tanh2(r)

(1− |ak|2 tanh2(r))2
(1− |ak|2)2 ≤ C1(1− |ak|2)2,

where C1 = C1(r) =
tanh2(r)

(1− tanh2(r))2
> 0. Thus,

A(Dk)
−1/p ≥ C

−1/p
1 (1− |ak|2)−2/p. (2.132)

Also, Dk ⊂ Dh(ak, r) ⊂ Dh(ak, 1), hence Proposition 1.3.11 (i) yields that there exists a constant
C2 = C2(b) > 0 such that

(1− |w|2)b−2 ≥ C2(1− |ak|2)b−2, for all w ∈ Dk, (2.133)

and by Lemma 2.6.2, there exists a constant C3 = C3(b) > 0 such that

1

|1− zw̄|b
≥ C3

|1− zāk|b
, for all w ∈ Dk. (2.134)

On the other hand, Proposition 1.4.8 yields that Dh

(
ak,

r
4

)
⊂ Dk, so using Lemma 1.3.10 (i),

A(Dk) ≥ A
(
Dh

(
ak,

r

4

))
=

tanh2
(
r
4

)(
1− |ak|2 tanh2

(
r
4

))2 (1− |ak|2)2 ≥ C4(1− |ak|2)2, (2.135)

where C4 = C4(r) = tanh2
(
r
4

)
> 0. It follows from (2.133), (2.134) and (2.135) that∫

Dk

(1− |w|2)b−2

|1− zw̄|b
dA(w) ≥ C2C3

∫
Dk

(1− |ak|2)b−2

|1− zāk|b
dA(w)

= C2C3
(1− |ak|2)b−2

|1− zāk|b
A(Dk)

≥ C2C3C4
(1− |ak|2)b

|1− zāk|b
.

(2.136)

By (2.131), (2.132) and (2.136),

TF (z) ≥
+∞∑
k=1

|ck|C
−1/p
1 C2C3C4

(1− |ak|2)(pb−2)/p

|1− zāk|b
= δ

+∞∑
k=1

|ck||fk(z)|, for all z ∈ D,
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where δ = δ(p, b, r) = C
−1/p
1 C2C3C4 > 0. Thus,
+∞∑
k=1

|ck||fk(z)| ≤
1

δ
TF (z) < +∞, for all z ∈ D, (2.137)

because of (A.15), so we can define the functions f(z) =
∑+∞

k=1 ckfk(z) and g(z) =
∑+∞

k=1 |ck||fk(z)|,
for all z ∈ D. By (2.137) and the fact that T is bounded,∫

D
|f(z)|p dA(z) ≤

∫
D

( +∞∑
k=1

|ck||fk(z)|
)p

dA(z) ≤
∫
D

1

δp
(TF (z))p dA(z)

=
1

δp
∥TF∥pp ≤

1

δp
∥T∥p∥F∥pp < +∞,

(2.138)

so f ∈ Lp(D, dA). Similarly, we derive that g ∈ Lp(D, dA). It remains to show that the series in (2.129)
converges to f in Ap(dA). Note that

lim
N→+∞

∣∣∣∣ N∑
k=1

ckfk(z)− f(z)

∣∣∣∣p = 0,

and ∣∣∣∣ N∑
k=1

ckfk(z)− f(z)

∣∣∣∣p ≤ 2p
( N∑

k=1

|ck||fk(z)|
)p

+ 2p|f(z)|p ≤ 2pgp(z) + 2p|f(z)|p,

for all z ∈ D and N ∈ N. Since f, g ∈ Lp(D, dA), by [6, 2.24 The Dominated Convergence Theorem],

lim
N→+∞

∥∥∥∥ N∑
k=1

ckfk − f

∥∥∥∥p
p

= lim
N→+∞

∫
D

∣∣∣∣ N∑
k=1

ckfk(z)− f(z)

∣∣∣∣p dA(z) = 0,

which means that f =
∑+∞

k=1 ckfk in Lp(D, dA). By the fact that fk ∈ Ap(dA), for all k ∈ N, and
Theorem 2.1.7, f ∈ Ap(dA).

We have now completed Step 1 of the proof. Note that, so far, the proof worked for any r-lattice in
the hyperbolic metric, with 0 < r < 1.

Step 2. Every function in Ap(dA) admits a representation (2.129).
Indeed, let f ∈ Ap(dA) and fix an r-lattice {ak} in the hyperbolic metric, where r is sufficiently

small and to be specified later. Since b > 2,∫
D
|f(z)|p dAb−2(z) =

∫
D
|f(z)|p(b− 1)(1− |z|2)b−2 dA(z) ≤ (b− 1)

∫
D
|f(z)|p dA(z) < +∞,

hence f ∈ Ap(dAb−2). By Lemma 2.6.6, there exists a constant C̃1 = C̃1(p, b) > 0 such that

|f(z)− Sf(z)| ≤ C̃1r
3
+∞∑
k=1

|fk(z)|
(∫

Dh(ak,1)
|f(w)|p dA(w)

)1/p

, for all z ∈ D. (2.139)

Set ck :=

(∫
Dh(ak,1)

|f(w)|p dA(w)
)1/p

, for all k ∈ N. By Proposition 1.4.2, there exists a constant

C̃2 > 0, independent of r, such that every point z ∈ D belongs to at most
C̃2

r2
of the sets Dh(ak, 1); so

+∞∑
k=1

|ck|p =
+∞∑
k=1

∫
Dh(ak,1)

|f(w)|p dA(w) =
+∞∑
k=1

∫
D
|f(w)|pχDh(ak,1)(w) dA(w)

=

∫
D
|f(w)|p

+∞∑
k=1

χDh(ak,1)(w) dA(w) ≤
C̃2

r2

∫
D
|f(w)|p dA(w) < +∞,

(2.140)
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that is, {ck} ∈ lp. By Step 1,
∑+∞

k=1 |ck||fk(z)| < +∞, for all z ∈ D, and (2.138) implies that∫
D

( +∞∑
k=1

|ck||fk(z)|
)p

dA(z) ≤ 1

δp
∥T∥p∥F∥pp =

1

δp
∥T∥p

+∞∑
k=1

|ck|p < +∞. (2.141)

By (2.139) (2.140) and (2.141),∫
D
|f(z)− Sf(z)|p dA(z) ≤ C̃p

1r
3p

∫
D

( +∞∑
k=1

|ck||fk(z)|
)p

dA(z)

≤ C̃p
1r

3p · 1

δp
∥T∥p

+∞∑
k=1

|ck|p

≤ C̃p
1r

3p−2 · 1

δp
∥T∥pC̃2

∫
D
|f(w)|p dA(w)

= C̃p
1 C̃2∥T∥p

C1

Cp
2C

p
3C

p
4

r3p−2

∫
D
|f(w)|p dA(w)

= C̃ · 1

(1− tanh2(r))2
· r3p tanh2(r)
r2(tanh

(
r
4

)
)2p

∫
D
|f(w)|p dA(w),

(2.142)

where C̃ = C̃(p, b) =
C̃p

1 C̃2∥T∥p
Cp

2C
p
3

> 0. Thus, I − S is a bounded linear operator on Ap(dA), and so S is
a bounded linear operator on Ap(dA). Since

lim
r→0+

1

(1− tanh2(r))2
· r3p tanh2(r)
r2(tanh

(
r
4

)
)2p

= 0,

there exists a real σ = σ(p, b) ∈ (0, 1) such that

C̃ · 1

(1− tanh2(r))2
· r3p tanh2(r)
r2(tanh

(
r
4

)
)2p

< 1, for all r ∈ (0, σ). (2.143)

By (2.142) and (2.143), ∥I −S∥ < 1, so Proposition A.0.3 yields that S is invertible, that is there exists
a bounded linear operator S−1 on Ap(dA) such that SS−1 = I = S−1S. Set g = S−1f ∈ Ap(dA).
Then

f(z) = Sg(z) =
+∞∑
k=1

Ab−2(Dk)g(ak)

(1− zāk)b
=

+∞∑
k=1

Ab−2(Dk)g(ak)

(1− |ak|2)(pb−2)/p
· (1− |ak|2)(pb−2)/p

(1− zāk)b
, (2.144)

for all z ∈ D. Set dk =
Ab−2(Dk)g(ak)

(1− |ak|2)(pb−2)/p
, for all k ∈ N, and note that, by Proposition 1.3.11 (ii), there

exists a constant C5 = C5(b) > 0 such that

Ab−2(Dk) ≤ Ab−2(Dh(ak, 1)) ≤ C5(1− |ak|2)b, for all k ∈ N. (2.145)

Using (2.145),
+∞∑
k=1

|dk|p =
+∞∑
k=1

(Ab−2(Dk))
p|g(ak)|p

(1− |ak|2)pb−2

≤ Cp
5

+∞∑
k=1

(1− |ak|2)2|g(ak)|p

≤ Cp
5C6

∫
D
|g(z)|p dA(z) < +∞,

(2.146)

where C6 = C6(r) > 0 is the constant appearing in Proposition 2.1.11. It follows from (2.146) and
(2.144) that f can be written in the form (2.129).
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The Bloch Space

Let f ∈ H(D) and set ∥f∥B = sup{(1− |z|2)|f ′(z)| : z ∈ D}.We define the Bloch space B of D to be
the space of all analytic functions f on D such that ∥f∥B < +∞.

Remark 3.0.1. The Bloch space is a vector space over C.

Proof. Let f, g ∈ B and λ ∈ C. Then

(1− |z|2)|(f + g)′(z)| ≤ (1− |z|2)|f ′(z)|+ (1− |z|2)|g′(z)| ≤ ∥f∥B + ∥g∥B < +∞,

for all z ∈ D, hence f + g ∈ B, with ∥f + g∥B ≤ ∥f∥B + ∥g∥B. Also,

sup{(1− |z|2)|λf ′(z)| : z ∈ D} = |λ| sup{(1− |z|2)|f ′(z)| : z ∈ D} < +∞,

hence λf ∈ B, with ∥λf∥B = |λ|∥f∥B.

3.1 Completeness

Our goal is to show that the Bloch space, equipped with a specific norm, can become a Banach space.
The completeness is achieved due to the completeness of the semi-norm ∥·∥B.

Lemma 3.1.1. ∥·∥B is a complete semi-norm on B.

Proof. It follows from Remark 3.0.1 that ∥·∥B is a semi-norm on B. To show the completeness, let
{fk} ⊂ B be a Cauchy sequence with respect to the semi-norm, and let ϵ > 0. Then there exists a
number n0 ∈ N such that

∥fn − fm∥B < ϵ, for all n,m ≥ n0,

so
(1− |z|2)|f ′n(z)− f ′m(z)| < ϵ, for all z ∈ D and n,m ≥ n0, (3.1)

hence {f ′k(z)} is a Cauchy sequence for all z ∈ D. Thus, there exists a function g : D → C such that
g(z) = limk→+∞ f ′k(z), for all z ∈ D.

Let S be a compact subset of D. Then there exists a real R ∈ (0, 1) such that S ⊂ D(0, R) ⊂ D.
Let ϵ > 0. Since {fk} is Cauchy with respect to the semi-norm, there exists a number n1 ∈ N (which
depends on ϵ and R) such that

|f ′n(z)− f ′m(z)| < ϵ(1−R2)

(1− |z|2)
≤ ϵ, for all z ∈ S and n,m ≥ n1,

59
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so {f ′k} converges to g uniformly onS. By theWeierstrass Convergence Theorem ([12, Theorem 10.28]),
g ∈ H(D).

Since D is a simply connected domain, there exists a function f ∈ H(D) such that f ′ = g in D ([14,
Section X.4]). Letting n→ +∞ in (3.1), we have

(1− |z|2)|f ′(z)− f ′m(z)| ≤ ϵ, for all z ∈ D andm ≥ n0, (3.2)

which means that f − fn0 ∈ B. Since fn0 ∈ B, it follows that f ∈ B, and (3.2) gives

∥f − fm∥B ≤ ϵ, for allm ≥ n0,

so ∥f − fk∥B → 0, as k → +∞.

Remark 3.1.1. In the above proof we can choose f such that f(0) = a0 for some given a0 ∈ C. Indeed,
if h is a primitive of g, then we consider the function f(z) = h(z)+a0−h(0), which is also a primitive
of g, with f(0) = a0.

We now introduce the norm ∥f∥ = |f(0)|+ ∥f∥B in B.

Proposition 3.1.2. (B, ∥·∥) is a Banach space.

Proof. Let {fk} ⊂ B be a Cauchy sequence with respect to ∥·∥, and let ϵ > 0. Then there exists a
number n0 ∈ N such that

∥fn − fm∥ < ϵ, for all n,m ≥ n0,

so
|fn(0)− fm(0)| < ϵ and ∥fn − fm∥B < ϵ, for all n,m ≥ n0.

This means that {fk(0)} is a Cauchy sequence, so let a0 = limk→+∞ fk(0) ∈ C, and {fk} is a Cauchy
sequence with respect to the semi-norm. By Lemma 3.1.1 and Remark 3.1.1, there exists a function
f ∈ B such that ∥f − fk∥B → 0, as k → +∞, and f(0) = a0. Thus,

∥f − fk∥ = |f(0)− fk(0)|+ ∥f − fk∥B → 0, as k → +∞.

3.2 The dual ofA1(dA)

Proposition 3.2.1. H∞ ⊂ B and ∥f∥B ≤ ∥f∥∞, for all f ∈ H∞.

Proof. Let f ∈ H∞. Then f ∈ H(D) and ∥f∥∞ = sup{|f(z)| : z ∈ D} < +∞.
Case 1. ∥f∥∞ ≤ 1. Then |f(z)| ≤ 1, for all z ∈ D. If there exists a point z0 ∈ D such that |f(z0)| = 1,
then by the Maximum Modulus Principle ([14, Section VII.16]), f will be constant, so |f ′(0)| = 0 ≤ 1.
If |f(z)| < 1, for all z ∈ D, then |f ′(0)| ≤ 1− |f(0)|2 ≤ 1, by the Schwarz-Pick Lemma ([14, Exercise
VII.17.3]). Thus, in any case we have that |f ′(0)| ≤ 1.
Case 2 (general case). If ∥f∥∞ = 0, then f = 0 in D, so |f ′(0)| = 0 ≤ ∥f∥∞. If ∥f∥∞ ̸= 0, then the

function g =
f

∥f∥∞
is holomorphic and bounded. In particular,

|g(z)| = |f(z)|
∥f∥∞

≤ 1, for all z ∈ D,

so ∥g∥∞ ≤ 1. By Case 1, |g′(0)| ≤ 1, so |f ′(0)| ≤ ∥f∥∞. Thus, in any case we have that

|f ′(0)| ≤ ∥f∥∞. (3.3)

Now, let f ∈ H∞ and z ∈ D. Then f ◦ ϕz ∈ H∞, with ∥f ◦ ϕz∥∞ = ∥f∥∞, so

|f ′(z)|(1− |z|2) = |f ′(ϕz(0))| · |ϕ′z(0)| = |(f ◦ ϕz)′(0)| ≤ ∥f ◦ ϕz∥∞ = ∥f∥∞ < +∞,

where the first equality holds because of Proposition 1.1.2 (iii), and the inequality holds because of (3.3).
Thus, f ∈ B and ∥f∥B ≤ ∥f∥∞.
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Remark 3.2.1. The containmentH∞ ⊂ B is proper. Indeed, since D is a simply connected domain and
g(z) = 1−z is a nowhere vanishing holomorphic function inD, there exists a branch of log g in D ([14,
Section X.5]). Let f be such a branch. Then f ∈ H(D) and

f ′(z) =
g′(z)

g(z)
= − 1

1− z
, for all z ∈ D,

so
(1− |z|2)|f ′(z)| = 1− |z|2

|1− z|
≤ (1− |z|)(1 + |z|)

1− |z|
< 2, for all z ∈ D.

Thus, f ∈ B. However, f is not bounded, because

lim
z→1
|z|<1

Ref(z) = lim
z→1
|z|<1

log |1− z| = −∞.

Proposition 3.2.2. The operator P given by

Pϕ(z) =

∫
D

ϕ(w)

(1− zw̄)2
dA(w), (3.4)

is a bounded linear operator from L∞(D, dA) onto B.

Proof. Since L∞(D, dA) ⊂ Lp(D, dA), for all p ∈ (1,+∞), (A.15) implies that the integral in (3.4) is
defined for all ϕ ∈ L∞(D, dA) and z ∈ D, and Pϕ ∈ Lp(D, dA), for all ϕ ∈ L∞(D, dA) and p > 1.

Let ϕ ∈ L∞(D, dA) and set f = Pϕ, hence

f(z) =

∫
D

ϕ(w)

(1− zw̄)2
dA(w), for all z ∈ D. (3.5)

By Proposition 2.4.3, f ∈ H(D) and

f ′(z) =

∫
D
ϕ(w)

2w̄

(1− zw̄)3
dA(w), for all z ∈ D,

so
(1− |z|2)|f ′(z)| ≤ 2(1− |z|2)

∫
D

|w̄||ϕ(w)|
|1− zw̄|3

dA(w) ≤ 2∥ϕ∥∞(1− |z|2)I(z), (3.6)

for all z ∈ D, where I(z) =
∫
D

1

|1− zw̄|3
dA(w). By Lemma A.0.1 and the fact that I is bounded on

D
(
0, 12
)
, there exists a constant C1 > 0 such that

I(z) ≤ C1 ·
1

1− |z|2
, for all z ∈ D. (3.7)

It follows from (3.6) and (3.7) that

(1− |z|2)|f ′(z)| ≤ C2∥ϕ∥∞ < +∞, for all z ∈ D, (3.8)

where C2 = 2C1 > 0, which means that f ∈ B and

∥Pϕ∥B = ∥f∥B ≤ C2∥ϕ∥∞. (3.9)

Also, by (3.5),
|f(0)| ≤

∫
D
|ϕ(w)| dA(w) ≤ ∥ϕ∥∞, (3.10)

so (3.9) and (3.10) imply that

∥Pϕ∥ = |f(0)|+ ∥f∥B ≤ (1 + C2)∥ϕ∥∞,
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that is, P is a bounded linear operator from L∞(D, dA) into B.
It remains to show that P is onto. Let f ∈ B. By the Taylor series expansion of f in D, we can write

f(z) = f(0) + f ′(0)z + f1(z), for all z ∈ D, (3.11)

where f1(z) =
∑+∞

n=2
f (n)(0)

n! zn, for all z ∈ D. Then

f ′(z) = f ′(0) + f ′1(z), for all z ∈ D, (3.12)

so

(1− |z|2)|f ′1(z)| = (1− |z|2)|f ′(z)− f ′(0)| ≤ (1− |z|2)|f ′(z)|+ |f ′(0)|
≤ ∥f∥B + |f ′(0)| < +∞,

(3.13)

for all z ∈ D, which means that f1 ∈ B. Also, (3.11) and (3.12) yield that f1(0) = f ′1(0) = 0. Consider
the function

ϕ(z) = f(0) + f ′(0)z +
(1− |z|2)f ′1(z)

z̄
, for all z ∈ D \ {0}.

Since
lim
z→0

∣∣∣f ′1(z)
z̄

∣∣∣ = lim
z→0

∣∣∣f ′(z)− f ′(0)

z

∣∣∣ = |f ′′(0)|,

there exists a real δ ∈ (0, 1) such that
∣∣f ′

1(z)
z̄

∣∣ < 1 + |f ′′(0)|, for all z ∈ D(0, δ) \ {0}, hence

|ϕ(z)| ≤ |f(0)|+ |f ′(0)||z|+ (1− |z|2)|f ′1(z)|
|z̄|

≤ |f(0)|+ |f ′(0)|+ 1 + |f ′′(0)|, (3.14)

for all z ∈ D(0, δ) \ {0}. If z ∈ D \D(0, δ), then

|ϕ(z)| ≤ |f(0)|+ |f ′(0)||z|+ (1− |z|2)|f ′1(z)|
|z̄|

(3.13)
≤ |f(0)|+ |f ′(0)|+ ∥f∥B + |f ′(0)|

δ
. (3.15)

Thus, (3.14) and (3.15) imply that ϕ ∈ L∞(D, dA). Finally, by Theorem 2.3.6,∫
D

f(0)

(1− zw̄)2
dA(w) = f(0) and

∫
D

f ′(0)w

(1− zw̄)2
dA(w) = f ′(0)z, for all z ∈ D,

and by Proposition 2.5.2,

f1(z) =

∫
D

(1− |w|2)f ′1(w)
w̄(1− zw̄)2

dA(w), for all z ∈ D,

so
Pϕ(z) =

∫
D

ϕ(w)

(1− zw̄)2
dA(w) = f(0) + f ′(0)z + f1(z)

(3.11)
= f(z), for all z ∈ D.

Proposition 3.2.3. The spaces B and L∞(D, dA)/KerP are isomorphic.

Proof. Since P is onto, the above result is known from elementary functional analysis (see [8, Section
3.4]).

The following are based on [4, §2.6, Lemma 7, Theorem 8].
Consider the function V : H(D) → H(D), defined by

V f(z) =

{
f(z)−f(0)

z , if z ∈ D \ {0}
f ′(0), if z = 0

, for all f ∈ H(D).
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Proposition 3.2.4. Let f, g ∈ H(D) and t ∈ (0, 1). Then∫
D(0,t)

f(z)g(z) dA(z) =

∫
D(0,t)

V f(z) · g′(z)(t2 − |z|2) dA(z) + t2f(0)g(0). (3.16)

Proof. By the Taylor series expansion of f and g in D, we have that, for all z ∈ D,

f(z) =

+∞∑
n=0

anz
n, (V f)(z) =

+∞∑
n=0

an+1z
n, g(z) =

+∞∑
n=0

bnz
n and g′(z) =

+∞∑
n=0

bn+1(n+ 1)zn,

where an = f (n)(0)
n! and bn = g(n)(0)

n! , for all n ∈ N ∪ {0}.We make the following observations:
(a) Fix r ∈ (0, t) and let

SN (f)(θ) =
N∑

n=0

anr
neinθ, SN (g)(θ) =

N∑
n=0

bnr
neinθ,

SN (V f)(θ) =

N∑
n=0

an+1r
neinθ and SN (g′)(θ) =

N∑
n=0

bn+1(n+ 1)rneinθ,

for all θ ∈ [0, 2π] and N ∈ N ∪ {0}. Since the series
∑+∞

n=0 anz
n converges absolutely in D, we

get that SN (f) is uniformly bounded in [0, 2π] and converges uniformly in [0, 2π]. The same goes for
SN (g), SN (V f) and SN (g′); so SN (f)SN (g) and SN (V f) · SN (g′) converge uniformly in [0, 2π].
(b) For all r ∈ [0, t2] and n ∈ N ∪ {0},

|anb̄n|rn ≤ |an||bn|t2n and |an+1bn+1(n+ 1)|rn ≤ |an+1||bn+1|(n+ 1)t2n.

Since
lim sup( n

√
|an||bn|t2n) ≤ t2 lim sup( n

√
|an|) lim sup( n

√
|bn|) ≤ t2 < 1

and

lim sup( n
√

|an+1||bn+1|(n+ 1)t2n) ≤ t2 lim sup( n
√
|an+1|) lim sup( n

√
|bn+1|(n+ 1)) ≤ t2 < 1,

we get that
∑+∞

n=0 |an||bn|t2n < +∞ and
∑+∞

n=0 |an+1||bn+1|(n+1)t2n < +∞, hence the Weierstrass
criterion for the uniform convergence of series yields that the series

+∞∑
n=0

anb̄nr
n and

+∞∑
n=0

an+1bn+1(n+ 1)rn

converge uniformly in [0, t2].
Using (a) and (b), we have∫

D(0,t)
f(z)g(z) dA(z) =

∫ t

0

∫ 2π

0
f(reiθ)g(reiθ) · r

π
dθdr

=

∫ t

0

r

π

∫ 2π

0
lim

N→+∞
(SN (f)(θ) · SN (g)(θ)) dθdr

=

∫ t

0

r

π
lim

N→+∞

N∑
n=0

N∑
m=0

anb̄mr
n+m

∫ 2π

0
ei(n−m)θ dθdr

=

∫ t

0
2r lim

N→+∞

N∑
n=0

anb̄nr
2n dr =

∫ t2

0
lim

N→+∞

N∑
n=0

anb̄nr
n dr

=

+∞∑
n=0

anb̄n

∫ t2

0
rn dr = t2f(0)g(0) +

+∞∑
n=1

anb̄n
t2(n+1)

n+ 1

(3.17)
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and, similarly,∫
D(0,t)

(V f)(z) · g′(z)(t2 − |z|2) dA(z) =
∫ t

0

∫ 2π

0
lim

N→+∞
(SN (V f)(θ) · SN (g′)(θ))

r(t2 − r2)

π
dθdr

=

∫ t

0
2r(t2 − r2) lim

N→+∞

N∑
n=0

an+1bn+1(n+ 1)r2n dr

=

∫ t2

0
(t2 − r) lim

N→+∞

N∑
n=0

an+1bn+1(n+ 1)rn dr

=

+∞∑
n=0

an+1bn+1(n+ 1)

∫ t2

0
rn(t2 − r) dr

=

+∞∑
n=0

an+1bn+1
t2(n+2)

n+ 2
,

that is, ∫
D(0,t)

(V f)(z) · g′(z)(t2 − |z|2) dA(z) =
+∞∑
n=1

anb̄n
t2(n+1)

n+ 1
. (3.18)

(3.16) follows from (3.17) and (3.18).

Proposition 3.2.5. V is a bounded linear operator on A1(dA).

Proof. First we will show that V f ∈ A1(dA), for all f ∈ A1(dA). Let f ∈ A1(dA). Since V f is
continuous in D, there exists a constantM > 0 such that |V f(z)| ≤M, for all z ∈ D(0, 12). Thus,∫

D
|V f(z)| dA(z) =

∫
D
(
0, 1

2

) |V f(z)| dA(z) + ∫
D\D
(
0, 1

2

) |f(z)− f(0)|
|z|

dA(z)

≤M

∫
D
(
0, 1

2

) dA(z) + 2

∫
D\D
(
0, 1

2

) |f(z)− f(0)| dA(z)

≤M + 2

∫
D\D
(
0, 1

2

) |f(z)| dA(z) + 2

∫
D\D
(
0, 1

2

) |f(0)| dA(z)
≤M + 2∥f∥1 + 2|f(0)| < +∞,

hence V f ∈ A1(dA).

It remains to show that V is a bounded operator. Let fn, f, g ∈ A1(dA), for all n ∈ N, such that
limn→+∞∥fn − f∥1 = 0 and limn→+∞∥V fn − g∥1 = 0. By Theorem 2.1.4,

|fn(z)− f(z)| ≤ ∥fn − f∥1
(1− |z|2)2

and |V fn(z)− g(z)| ≤ ∥V fn − g∥1
(1− |z|2)2

,

for all z ∈ D and n ∈ N, so

lim
n→+∞

fn(z) = f(z), (3.19)

lim
n→+∞

V fn(z) = g(z), (3.20)

for all z ∈ D. By (3.19),

lim
n→+∞

V fn(z) = lim
n→+∞

fn(z)− fn(0)

z
=
f(z)− f(0)

z
= V f(z), if z ∈ D \ {0},
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so (3.20) implies that V f(z) = g(z), for all z ∈ D \ {0}. Since V f, g are continuous in D, we also have
that

V f(0) = lim
z→0

V f(z) = lim
z→0

g(z) = g(0).

Thus, V f = g in D, so the Closed Graph Theorem ([8, Theorem 3.21]) yields that V is a bounded
operator on A1(dA).

Corollary 3.2.6. Let f ∈ A1(dA) and g ∈ B. Then

lim
t→1−

∫
D(0,t)

f(z)g(z) dA(z) =

∫
D
V f(z) · g′(z)(1− |z|2) dA(z) + f(0)g(0). (3.21)

Proof. Let {tn} ⊂ (0, 1), with limn→+∞ tn = 1 and tn < tn+1, for all n ∈ N. Then

lim
n→+∞

V f(z) · g′(z)(t2n − |z|2)χD(0,tn)(z) = V f(z) · g′(z)(1− |z|2), for all z ∈ D, (3.22)

and

|V f(z) · g′(z)(t2n − |z|2)||χD(0,tn)(z)| ≤ |V f(z)| · |g′(z)|(1− |z|2) ≤ |V f(z)|∥g∥B, (3.23)

for all z ∈ D and n ∈ N. By Proposition 3.2.5, V f ∈ A1(dA), so∫
D
|V f(z)|∥g∥B dA(z) < +∞. (3.24)

Using (3.22) (3.23), (3.24) and [6, 2.24 The Dominated Convergence Theorem],

lim
n→+∞

∫
D(0,tn)

V f(z) · g′(z)(t2n − |z|2) dA(z) =
∫
D
V f(z) · g′(z)(1− |z|2) dA(z) ∈ C. (3.25)

Since (3.25) holds for an arbitrary sequence {tn}, we get that

lim
t→1−

∫
D(0,t)

V f(z) · g′(z)(t2 − |z|2) dA(z) =
∫
D
V f(z) · g′(z)(1− |z|2) dA(z). (3.26)

(3.26) and Proposition 3.2.4 give (3.21).

Theorem 3.2.7. (A1(dA))∗ is isomorphic to B, and the two spaces have equivalent norms.

Proof. Consider the operator J : B → (A1(dA))∗, given by Jg = lg, for all g ∈ B, where

lg(f) = lim
t→1−

∫
D(0,t)

f(z)g(z) dA(z), for all f ∈ A1(dA) and g ∈ B.

(i) J is well-defined. Indeed, by Corollary 3.2.6,

lg(f) =

∫
D
V f(z) · g′(z)(1− |z|2) dA(z) + f(0)g(0), for all f ∈ A1(dA) and g ∈ B,

and, using Corollary 2.1.3,

|lg(f)| ≤
∫
D
|V f(z)| · |g′(z)|(1− |z|2) dA(z) + |f(0)||g(0)| ≤ ∥V f∥1∥g∥B + |f(0)||g(0)|

≤ ∥V ∥∥f∥1∥g∥B + ∥f∥1|g(0)| ≤ C∥f∥1(∥g∥B + |g(0)|) = C∥g∥∥f∥1,

for all f ∈ A1(dA) and g ∈ B, where C = max{∥V ∥, 1} > 0. Thus, lg ∈ (A1(dA))∗, for all g ∈ B,
and

∥Jg∥ = ∥lg∥ ≤ C∥g∥, for all g ∈ B. (3.27)
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(ii) J(g1 + g2) = Jg1 + Jg2 and J(λg) = λ̄Jg, for all g1, g2, g ∈ B and λ ∈ C.

(iii) Let l ∈ (A1(dA))∗. By the Hahn-Banach Theorem ([8, Theorem 3.2]), there exists a bounded
linear functional Λ : L1(D, dA) → C, such that Λ(f) = l(f), for all f ∈ A1(dA), and ∥Λ∥ = ∥l∥. The
classical duality betweenLp spaces ([9, Theorem 7.15]) yields that there exists a unique ϕ ∈ L∞(D, dA)
such that Λ = Λϕ in L1(D, dA), where

Λϕ(f) =

∫
D
f(z)ϕ(z) dA(z), for all f ∈ L1(D, dA).

By Proposition 3.2.2, g = Pϕ ∈ B. Also, Theorem A.0.2 implies that the operator

Lf(z) =

∫
D
|f(w)||K(z, w)| dA(w),

is well-defined and bounded on Lp(D, dA), for all p > 1.
Let Q be a polynomial. Then∫

D

∫
D
|Q(w)||K(z, w)||ϕ(z)| dA(w)dA(z) =

∫
D
|ϕ(z)|LQ(z) dA(z) ≤ ∥ϕ∥∞ · ∥LQ∥1 < +∞.

By Theorem 2.3.6, [6, 2.37 The Fubini-Tonelli Theorem] and Proposition 3.2.2,

l(Q) = Λϕ(Q) =

∫
D
Q(z)ϕ(z) dA(z) =

∫
D

∫
D
Q(w)K(z, w)ϕ(z) dA(w)dA(z)

=

∫
D

∫
D
Q(w)K(z, w)ϕ(z) dA(z)dA(w) =

∫
D
Q(w)

∫
D
ϕ(z)K(w, z) dA(z) dA(w)

=

∫
D
Q(w)Pϕ(w) dA(w) =

∫
D
Q(w)g(w) dA(w),

(3.28)

which means that Qḡ is integrable. By [6, 2.24 The Dominated Convergence Theorem] and (3.28),

lg(Q) = lim
t→1−

∫
D(0,t)

Q(z)g(z) dA(z) =

∫
D
Q(z)g(z) dA(z) = l(Q). (3.29)

Now, let f ∈ A1(dA). Since the polynomials are dense in A1(dA) (Proposition 2.3.5), there exists a
sequence {pn} of polynomials such that limn→+∞∥pn − f∥1 = 0. Thus, (3.29) gives

l(f) = l
(

lim
n→+∞

pn

)
= lim

n→+∞
l(pn) = lim

n→+∞
lg(pn) = lg

(
lim

n→+∞
pn

)
= lg(f) = (Jg)(f),

so J is onto (A1(dA))∗.

(iv) Suppose that Jg1 = Jg2 = l ∈ (A1(dA))∗, for some g1, g2 ∈ B. Then

g1(z) =
+∞∑
k=0

akz
k and g2(z) =

+∞∑
k=0

bkz
k, for all z ∈ D,

where ak =
g
(k)
1 (0)

k!
and bk =

g
(k)
2 (0)

k!
, for all k ∈ N ∪ {0}.

Let n ∈ N ∪ {0} and set en(z) = zn, for all z ∈ D. Note that the series
∑+∞

k=0 ākz
nz̄k converges

absolutely in D, so for a fixed r ∈ (0, 1), the series
∑+∞

k=0 ākr
n+kei(n−k)θ converges uniformly on

[0, 2π]. Also, consider a sequence {rm} ⊂ (0, 1) with limm→+∞ rm = 1 and rm < rm+1, for all
m ∈ N. Then [6, 2.24 The Dominated Convergence Theorem] yields that

lim
m→+∞

∫ rm

0
ānr

2n · 2r dr =
∫ 1

0
ānr

2n · 2r dr. (3.30)
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Thus,

Jg1(en) = lim
m→+∞

∫
D(0,rm)

zng1(z) dA(z) = lim
m→+∞

∫
D(0,rm)

+∞∑
k=0

ākz
nz̄k dA(z)

= lim
m→+∞

∫ rm

0

r

π

∫ 2π

0

+∞∑
k=0

ākr
n+kei(n−k)θ dθdr

= lim
m→+∞

∫ rm

0

r

π

+∞∑
k=0

ākr
n+k

∫ 2π

0
ei(n−k)θ dθdr

= lim
m→+∞

∫ rm

0

r

π
ānr

2n · 2π dr (3.30)
=

∫ 1

0
ānr

2n · 2r dr = ān
n+ 1

.

(3.31)

Similarly,

Jg2(en) =
b̄n

n+ 1
. (3.32)

Since Jg1(en) = Jg2(en), for all n ∈ N ∪ {0}, (3.31) and (3.32) give an = bn, for all n ∈ N ∪ {0},
and hence, g1 = g2 in D. This means that J is one-to-one.

(v) Let l ∈ (A1(dA))∗. Using the notation in (iii), there exists a function ϕ ∈ L∞(D, dA) such that
J(Pϕ) = l. Since J is one-to-one, J−1l = Pϕ, and by Proposition 3.2.2 and the fact that L∞(D, dA)
and (L1(D, dA))∗ are isometrically isomorphic ([9, Theorem 7.15]),

∥J−1l∥ = ∥Pϕ∥ ≤ ∥P∥∥ϕ∥∞ = ∥P∥∥Λϕ∥ = ∥P∥∥l∥. (3.33)

By (i), (ii), (iii), (iv) and (v), J is an isomorphism, and it follows from (3.27) and (3.33) that (A1(dA))∗

and B have equivalent norms.

Remark 3.2.2. The integral ∫
D
|f(z)g(z)| dA(z)

is not always finite for f ∈ A1(dA) and g ∈ B.
Indeed, let g ∈ B \ H∞ and suppose that fg ∈ A1(dA), for all f ∈ A1(dA). Consider the linear

operator Tg : A1(dA) → A1(dA), given by Tgf = fg, for all f ∈ A1(dA), and let fn, f, h ∈ A1(dA),
for all n ∈ N, such that limn→+∞∥fn − f∥1 = 0 and limn→+∞∥Tgfn − h∥1= 0. By Theorem 2.1.4,

|fn(z)− f(z)| ≤ ∥fn − f∥1
(1− |z|2)2

and |Tgfn(z)− h(z)| ≤ ∥Tgfn − h∥1
(1− |z|2)2

,

for all z ∈ D and n ∈ N, so

lim
n→+∞

fn(z) = f(z), (3.34)

lim
n→+∞

Tgfn(z) = h(z), (3.35)

for all z ∈ D. By (3.34),

lim
n→+∞

Tgfn(z) = lim
n→+∞

fn(z)g(z) = f(z)g(z) = Tgf(z), for all z ∈ D,

so (3.35) implies that Tgf(z) = h(z), for all z ∈ D. Thus, the Closed Graph Theorem ([8, Theorem
3.21]) yields that Tg is a bounded operator on A1(dA).
Let z ∈ D.We will use the functional Tz ∈ (A1(dA))∗, which was introduced in Corollary 2.1.5. For
all f ∈ A1(dA), with ∥f∥1 = 1, we have that

|g(z)||Tz(f)| = |g(z)f(z)| = |Tz(fg)| = |Tz(Tgf)| ≤ ∥Tz∥∥Tgf∥1 ≤ ∥Tz∥∥Tg∥. (3.36)
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Taking the supremum for all f ∈ A1(dA), with ∥f∥1 = 1, in (3.36), we get |g(z)|∥Tz∥ ≤ ∥Tz∥∥Tg∥,
and so

|g(z)| ≤ ∥Tg∥. (3.37)
Since (3.37) holds for an arbitrary z ∈ D, we conclude that g ∈ H∞, which is a contradiction.

3.3 The Bloch space and the hyperbolic metric

A useful property of ∥·∥B is its Möbius invariance.

Proposition 3.3.1. For all f ∈ B and ϕ ∈ Aut(D), f ◦ ϕ ∈ B and ∥f ◦ ϕ∥B = ∥f∥B.

Proof. Let f ∈ B and ϕ ∈ Aut(D). Then, by Theorem 1.1.1, ϕ = eiθϕa in D, for some real number
θ and some point a ∈ D. By Proposition 1.1.2 (iii), (iv), and the fact that

(1− |ϕ(z)|2) · |f ′(ϕ(z))| ≤ ∥f∥B, for all z ∈ D,

we have
(1− |z|2) · |(f ◦ ϕ)′(z)| = (1− |z|2) · |f ′(ϕ(z))| · |ϕ′(z)|

≤ (1− |z|2) · ∥f∥B
1− |ϕ(z)|2

· |ϕ′a(z)| = ∥f∥B < +∞,

for all z ∈ D, so
f ◦ ϕ ∈ B and ∥f ◦ ϕ∥B ≤ ∥f∥B. (3.38)

Since (3.38) holds for all f ∈ B and ϕ ∈ Aut(D), we replace f by f ◦ ϕ, and ϕ by ϕ−1 in (3.38) to get

∥f∥B ≤ ∥f ◦ ϕ∥B. (3.39)

(3.38) and (3.39) give the desired equality.

The following results show that there exists a relation between the Bloch space and the hyperbolic
metric. First, we need to calculate a specific limit.

Lemma 3.3.2. Let z ∈ D. Then
lim
w→z

|w − z|
β(z, w)

= 1− |z|2.

Proof. Let w ∈ D. Then, using (1.14) and (1.11),

β(z, w) = tanh−1(ρ(z, w)) ⇒ ρ(z, w) = tanh(β(z, w)) ⇒
⇒ sinh(β(z, w)) = ρ(z, w) cosh(β(z, w)) ⇒
⇒ sinh2(β(z, w)) = ρ2(z, w)(1 + sinh2(β(z, w))) ⇒
⇒ (1− ρ2(z, w)) sinh2(β(z, w)) = ρ2(z, w) ⇒

⇒ (1− |z|2)(1− |w|2)
|1− zw̄|2

sinh2(β(z, w)) =
|z − w|2

|1− zw̄|2
⇒

⇒
√
(1− |z|2)(1− |w|2) sinh(β(z, w)) = |z − w|.

Thus,

lim
w→z

|z − w|
β(z, w)

= lim
w→z

√
(1− |z|2)(1− |w|2) sinh(β(z, w))

β(z, w)

= (1− |z|2) · lim
w→z

sinh(β(z, w))
β(z, w)

= (1− |z|2) · lim
x→0+

sinhx
x

= (1− |z|2) · lim
x→0+

coshx
1

= 1− |z|2.
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Theorem 3.3.3. If f ∈ B, then ∥f∥B = sup
{ |f(z)− f(w)|

β(z, w)
: z, w ∈ D, z ̸= w

}
.

Proof. Suppose f ∈ B and a ∈ D \ {0}. Then (1− |at|2)|f ′(at)| ≤ ∥f∥B, for all t ∈ [0, 1], so

|f(a)− f(0)| =
∣∣∣ ∫

[0,a]
f ′(ζ) dζ

∣∣∣ = ∣∣∣ ∫ 1

0
f ′(at) · a dt

∣∣∣ ≤ |a| ·
∫ 1

0
|f ′(at)| dt

≤ |a| ·
∫ 1

0

∥f∥B
1− |at|2

dt = |a| · ∥f∥B ·
∫ |a|

0

1

1− s2
· 1

|a|
ds

=
1

2
∥f∥B log

1 + |a|
1− |a|

(1.7)
= ∥f∥B · β(a, 0).

Since the above inequality holds also for a = 0, we have

|f(a)− f(0)| ≤ ∥f∥B · β(a, 0), for all a ∈ D. (3.40)

Let z, w ∈ D and f ∈ B. By Proposition 3.3.1, the Möbius invariance of the hyperbolic metric and
(3.40),

|f(w)− f(z)| = |(f ◦ ϕz)(ϕz(w))− (f ◦ ϕz)(0)| ≤ ∥f ◦ ϕz∥B · β(ϕz(w), 0) = ∥f∥B · β(z, w),

so
M := sup

{ |f(z)− f(w)|
β(z, w)

: z, w ∈ D, z ̸= w
}
≤ ∥f∥B < +∞. (3.41)

For the reverse inequality, Lemma 3.3.2 gives

lim
w→z

|f(z)− f(w)|
β(z, w)

= lim
w→z

|w − z|
β(z, w)

· |f(w)− f(z)|
|w − z|

= (1− |z|2)|f ′(z)|, for all z ∈ D,

so (1− |z|2)|f ′(z)| ≤M, for all z ∈ D, and hence

∥f∥B ≤M. (3.42)

Inequalities (3.41) and (3.42) give the desired equality.

Corollary 3.3.4. If f ∈ H(D), then f ∈ B if and only if there exists a constant C > 0 such that

|f(z)− f(w)| ≤ Cβ(z, w), for all z, w ∈ D. (3.43)

Proof. Let f ∈ B. Then (3.43) holds for C > ∥f∥B ≥ 0, because of Theorem 3.3.3.
Conversely, let |f(z) − f(w)| ≤ Cβ(z, w), for all z, w ∈ D, for some constant C > 0. Then, by

Lemma 3.3.2,

(1− |z|2)|f ′(z)| = lim
w→z

|f(z)− f(w)|
β(z, w)

≤ C < +∞, for all z ∈ D,

so f ∈ B.

Remark 3.3.1. Let f ∈ B. For w = 0, the above corollary gives

|f(z)− f(0)| ≤ C · β(z, 0) = C

2
log

1 + |z|
1− |z|

≤ C

2
log 2− C

2
log(1− |z|), for all z ∈ D,

for some constant C > 0. This means that a Bloch function can grow at most as fast as − log(1 − |z|).
Note that by Remark 3.2.1, the function f(z) = log(1 − z), z ∈ D, is in the Bloch space, and as far as
radial growth is concerned, f is the worst function in B.
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Theorem 3.3.5. We have β(z, w) = sup{|f(z)− f(w)| : f ∈ B, ∥f∥B ≤ 1}, for all z, w ∈ D.

Proof. Let z ∈ D. By Theorem 3.3.3,

|f(z)− f(0)| ≤ ∥f∥B · β(z, 0) ≤ β(z, 0), for all f ∈ B, with ∥f∥B ≤ 1,

so
sup{|f(z)− f(0)| : f ∈ B, ∥f∥B ≤ 1} ≤ β(z, 0).

If z ∈ D \ {0}, then z = |z|e−iθ, for some θ ∈ R. Consider the function

h(w) =
1 + weiθ

1− weiθ
, for all w ∈ D,

which is holomorphic and nonvanishing in D. Since D is a simply connected domain, there exists a
branch of logh in D ([14, Section X.5]). We choose l to be a branch of logh in D such that l(0) = 0.
Then, for the function g = 1

2 l we have:

(i) g ∈ H(D), with g′(w) =
1

2
· l′(w) = 1

2

h′(w)

h(w)
=

eiθ

1− e2iθ · w2
, for all w ∈ D,

(ii) (1− |w|2)|g′(w)| ≤ 1− |w|2

1− |e2iθ| · |w|2
= 1, for all w ∈ D, so g ∈ B with ∥g∥B ≤ 1, and

(iii) |g(z)− g(0)| =
∣∣∣1
2
· l(z)− 1

2
· l(0)

∣∣∣ = 1

2
log

1 + |z|
1− |z|

= β(z, 0).

Thus,
sup{|f(z)− f(0)| : f ∈ B, ∥f∥B ≤ 1} = β(z, 0), (3.44)

and note that (3.44) holds also for z = 0.
Now, let z, w ∈ D. By Theorem 3.3.3,

|f(z)− f(w)| ≤ ∥f∥B · β(z, w) ≤ β(z, w), for all f ∈ B, with ∥f∥B ≤ 1,

so
sup{|f(z)− f(w)| : f ∈ B, ∥f∥B ≤ 1} ≤ β(z, w). (3.45)

Moreover, by Proposition 3.3.1, the Möbius invariance of the hyperbolic metric and (3.44),

β(z, w) = β(ϕw(z), 0) = sup{|f(ϕw(z))− f(0)| : f ∈ B, ∥f∥B ≤ 1}
= sup{|(f ◦ ϕw)(z)− (f ◦ ϕw)(w)| : f ∈ B, ∥f ◦ ϕw∥B ≤ 1}
≤ sup{|f(z)− f(w)| : f ∈ B, ∥f∥B ≤ 1}.

(3.46)

The desired equality follows from (3.45) and (3.46).

Theorem 3.3.6. Suppose f ∈ H(D) and s, t ∈ (0,+∞) with s+ t = 1. Then f ∈ B if and only if there
exists a constant C > 0 such that

(1− |z|2)s(1− |w|2)t · |f(z)− f(w)|
|z − w|

≤ C, for all z, w ∈ D, with z ̸= w. (3.47)

Proof. First assume that (3.47) holds for some positive constant C, and let z ∈ D. By letting w → z in
(3.47), we get (1− |z|2)|f ′(z)| ≤ C < +∞, so f ∈ B.

Conversely, assume that f ∈ B. Then, by Theorem 3.3.3,

|f(z)− f(w)|
β(z, w)

≤ ∥f∥B, for all z, w ∈ D, with z ̸= w. (3.48)
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Now consider the function F (z, w) = (1 − |z|2)s(1 − |w|2)t · β(z, w)
|z − w|

, for all z, w ∈ D, with z ̸= w.

If there exists a constantM > 0 such that

F (z, w) ≤M, for all z, w ∈ D, with z ̸= w, (3.49)

then, by multiplying (3.48) and (3.49) by parts, we get (3.47) for C = ∥f∥BM +1 > 0. Thus, it suffices
to show that F is bounded.
Since s, t are positive numbers with s+ t = 1,we may assume without loss of generality that 0 < t ≤ 1

2 .
Let z, w ∈ D, with z ̸= w. Then there exists a point u ∈ D \ {0} such that w = ϕz(u), so, using the
Möbius invariance of the hyperbolic metric and Proposition 1.1.2 (iv),

F (z, w) = (1− |z|2)s(1− |ϕz(u)|2)t ·
β(z, ϕz(u))

|z − ϕz(u)|

= (1− |z|2) · (1− |u|2)t

|1− z̄u|2t
· β(0, u)|1− z̄u|
|z(1− z̄u)− (z − u)|

= |1− z̄u|1−2t · (1− |u|2)t

2|u|
· log 1 + |u|

1− |u|
= |1− z̄u|1−2t · h(|u|),

where h(x) =
(1− x2)t

2x
· log 1 + x

1− x
, for all x ∈ (0, 1).We have:

(i)
lim

x→0+
h(x) =

1

2
lim

x→0+

1

x
· log 1 + x

1− x
=

1

2
lim

x→0+

1− x

1 + x
· 2

(1− x)2
= 1,

so there exists some δ ∈ (0, 13) such that h(x) < 2, for all x ∈ (0, δ),

(ii)

lim
x→1−

h(x) =
1

2
lim

x→1−
(1 + x)t(1− x)t(log(1 + x)− log(1− x))

= −2t

2
lim

x→1−
(1− x)t log(1− x)

= −2t−1 · lim
y→0+

yt log y = 0,

so there exists some δ̃ ∈ (23 , 1) such that h(x) < 1, for all x ∈ (δ̃, 1), and

(iii) h is continuous in [δ, δ̃], so there exists a constant L > 0 such that h(x) ≤ L, for all x ∈ [δ, δ̃].

Thus, for L̃ = max{2, 1, L} > 0 we have that

h(x) ≤ L̃, for all x ∈ (0, 1). (3.50)

Moreover, since 1− 2t ≥ 0, we have

|1− z̄u|1−2t ≤ (1 + |z̄||u|)1−2t ≤ 21−2t. (3.51)

By (3.50) and (3.51),

F (z, w) = |1− z̄u|1−2t · h(|u|) ≤ 21−2t · L̃ =:M,

andM is independent of z, w, hence F is bounded. This completes the proof of the theorem.





APPENDIXA

Some functional analytic results

Lemma A.0.1. Let z ∈ D, c ∈ R, t > −1 and

Ic,t(z) =

∫
D

(1− |w|2)t

|1− zw̄|2+t+c
dA(w). (A.1)

(i) If c < 0, then Ic,t is bounded as a function of z.

(ii) If c = 0 and |z| ≥ 1
2 , then there exist constants C1 = C1(t), C2 = C2(t) > 0 such that

C1 log
1

1− |z|2
≤ I0,t(z) ≤ C2 log

1

1− |z|2
.

(iii) If c > 0 and |z| ≥ 1
2 , then there exist constants C1 = C1(c, t), C2 = C2(c, t) > 0 such that

C1

(1− |z|2)c
≤ Ic,t(z) ≤

C2

(1− |z|2)c
.

Proof. First, note that the integral in (A.1) is defined for all z ∈ D. Indeed, let z ∈ D and distinguish the
following cases:
Case 1. 2 + t+ c ≥ 0. Then∫

D

(1− |w|2)t

|1− zw̄|2+t+c
dA(w) ≤

∫
D

(1− |w|2)t

(1− |z|)2+t+c
dA(w) =

1

(1− |z|)2+t+c
· 1

t+ 1
< +∞. (A.2)

Case 2. 2 + t+ c < 0. Then∫
D

(1− |w|2)t

|1− zw̄|2+t+c
dA(w) ≤

∫
D

(1− |w|2)t

22+t+c
dA(w) =

1

22+t+c
· 1

t+ 1
< +∞. (A.3)

Next, set λ = 1
2(2 + t + c). If c ≥ 0, then λ > 1

2 , so if λ = 0 or λ = −n for some n ∈ N, then
c < 0, and (A.2) and (A.3) imply that Ic,t is bounded in D.

If λ ̸= 0 and λ ̸= −n for all n ∈ N, then Γ(λ) and Γ(n + λ) are defined for all n ∈ N. Let z ∈ D.
Then for all w ∈ D, a generalization of the Binomial Theorem ([13, Exercise 5.2.4]) yields that

(1− zw̄)−λ =

+∞∑
n=0

Γ(n+ λ)

n!Γ(λ)
znw̄n and (1− z̄w)−λ =

+∞∑
n=0

Γ(n+ λ)

n!Γ(λ)
z̄nwn,
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hence

1

|1− zw̄|2+t+c
=

1

|1− zw̄|2λ
=

1

(1− zw̄)λ(1− z̄w)λ
= lim

N→+∞

N∑
n=0

N∑
m=0

anamz
nw̄nz̄mwm, (A.4)

where ak =
Γ(k + λ)

k!Γ(λ)
, for all k ∈ N ∪ {0}.

Now, consider a sequence {rk} ⊂ (0, 1) such that limk→+∞ rk = 1 and rk < rk+1, for all k ∈ N.We
make the following observations in order to interchange the integral and sum signs:

(a) By [6, 2.24 The Dominated Convergence Theorem],∫
D

(1− |w|2)t

|1− zw̄|2λ
dA(w) = lim

k→+∞

∫
D(0,rk)

(1− |w|2)t

|1− zw̄|2λ
dA(w).

(b) Let r ∈ (0, 1) and consider the functions

sN (θ) =
N∑

n=0

anz̄
nrneinθ, for all θ ∈ [0, 2π] and N ∈ N ∪ {0}.

Since the power series
∑+∞

n=0 anz̄
nwn converges absolutely in D, we get that sN is uniformly bounded

in [0, 2π] and converges uniformly in [0, 2π], hence sN s̄N converges uniformly in [0, 2π].

(c) Let R ∈ (0, 1). Then the series
∑+∞

n=0 a
2
n|z|2nr2n converges uniformly in [0, R]. Indeed,

a2n|z|2nr2n ≤ a2n|z|2nR2n, for all r ∈ [0, R] and n ∈ N ∪ {0},

and we can verify that the series
∑+∞

n=0 a
2
n|z|2nR2n converges by doing a root test. The desired result

follows by the Weierstrass criterion for the uniform convergence of series.

(d) Since∫ 1

0
(1− r2)tr2n2r dr =

∫ 1

0
(1− r)trn dr = B(n+ 1, t+ 1) =

Γ(n+ 1)Γ(t+ 1)

Γ(n+ t+ 2)
< +∞,

by [6, 2.24 The Dominated Convergence Theorem] we get

lim
k→+∞

∫ rk

0
(1− r2)tr2n2r dr =

∫ 1

0
(1− r2)tr2n2r dr.

Using (A.4), (a), (b), (c) and (d),

Ic,t(z) = lim
k→+∞

∫
D(0,rk)

(1− |w|2)t lim
N→+∞

N∑
n=0

N∑
m=0

anamz
nw̄nz̄mwm dA(w)

= lim
k→+∞

∫ rk

0

∫ 2π

0
(1− r2)t · r

π
lim

N→+∞
(s̄N (θ)sN (θ)) dθdr

= lim
k→+∞

∫ rk

0
(1− r2)t · r

π
lim

N→+∞

∫ 2π

0

N∑
n=0

N∑
m=0

anamz
nz̄mrn+mei(m−n)θ dθdr

= lim
k→+∞

∫ rk

0
(1− r2)t · r

π
lim

N→+∞

N∑
n=0

N∑
m=0

anamz
nz̄mrn+m

∫ 2π

0
ei(m−n)θ dθdr

= lim
k→+∞

∫ rk

0
(1− r2)t · 2r lim

N→+∞

N∑
n=0

a2n|z|2nr2n dr

= lim
k→+∞

lim
N→+∞

N∑
n=0

a2n|z|2n
∫ rk

0
(1− r2)tr2n2r dr
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= sup
k∈N

sup
N∈N∪{0}

N∑
n=0

a2n|z|2n
∫ rk

0
(1− r2)tr2n2r dr

= sup
N∈N∪{0}

sup
k∈N

N∑
n=0

a2n|z|2n
∫ rk

0
(1− r2)tr2n2r dr

= lim
N→+∞

lim
k→+∞

N∑
n=0

a2n|z|2n
∫ rk

0
(1− r2)tr2n2r dr =

+∞∑
n=0

a2n|z|2n
∫ 1

0
(1− r2)tr2n2r dr

=

+∞∑
n=0

Γ2(n+ λ)

(n!)2Γ2(λ)

Γ(n+ 1)Γ(t+ 1)

Γ(n+ t+ 2)
|z|2n =

Γ(t+ 1)

Γ2(λ)

+∞∑
n=0

Γ2(n+ λ)

n!Γ(n+ t+ 2)
|z|2n,

so

Ic,t(z) =
1

t+ 1
+

Γ(t+ 1)

Γ2(λ)

+∞∑
n=1

Γ2(n+ λ)

n!Γ(n+ t+ 2)
|z|2n. (A.5)

At this point, we use a version of Stirling’s formula, namely that for any A > 0,

lim
x→+∞

sup
0≤a≤A

∣∣∣∣ xaΓ(x)Γ(x+ a)
− 1

∣∣∣∣ = 0 (A.6)

(see [5, Lemma 7.61]). By (A.6) we derive that

lim
n→+∞

Γ(n+ λ)

Γ(n+ 2λ− c)nc−λ
= 1

and
lim

n→+∞

Γ(n+ λ)

n! · nλ−1
= 1,

from which it follows that
lim

n→+∞

Γ2(n+ λ)

n!Γ(n+ t+ 2)nc−1
= 1.

Thus, there exists a number n0 ∈ N such that∣∣∣∣ Γ2(n+ λ)

n!Γ(n+ t+ 2)nc−1
− 1

∣∣∣∣ < 1

2
, for all n ≥ n0,

or
1

2
nc−1 <

Γ2(n+ λ)

n!Γ(n+ t+ 2)
<

3

2
nc−1, for all n ≥ n0.

Consequently, we can find constants C̃1 = C̃1(c, t), C̃2 = C̃2(c, t) > 0 such that

C̃1n
c−1 ≤ Γ2(n+ λ)

n!Γ(n+ t+ 2)
≤ C̃2n

c−1, for all n ∈ N. (A.7)

By (A.5) and (A.7),

Γ(t+ 1)

Γ2(λ)
C̃1

+∞∑
n=1

nc−1|z|2n ≤ Ic,t(z) ≤
1

t+ 1
+

Γ(t+ 1)

Γ2(λ)
C̃2

+∞∑
n=1

nc−1|z|2n. (A.8)

If c < 0, then (A.8) gives

Ic,t(z) ≤
1

t+ 1
+

Γ(t+ 1)

Γ2(λ)
C̃2

+∞∑
n=1

nc−1|z|2n ≤ 1

t+ 1
+

Γ(t+ 1)

Γ2(λ)
C̃2

+∞∑
n=1

1

n1−c
< +∞,
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that is, Ic,t is bounded in D.
If c = 0 and |z| ≥ 1

2 , then
+∞∑
n=1

n−1|z|2n = log
1

1− |z|2
(A.9)

and there exists a constant Ĉ = Ĉ(t) > 0 such that

Ĉ log
1

1−
(
1
2

)2 ≥ 1

t+ 1
. (A.10)

By (A.8),

I0,t(z) ≥
Γ(t+ 1)

Γ2(λ)
C̃1

+∞∑
n=1

n−1|z|2n = C1 log
1

1− |z|2
,

where C1 = C1(t) =
Γ(t+ 1)

Γ2(λ)
C̃1 > 0, and by (A.8), (A.9) and (A.10),

I0,t(z) ≤
1

t+ 1
+

Γ(t+ 1)

Γ2(λ)
C̃2

+∞∑
n=1

n−1|z|2n ≤ Ĉ log
1

1−
(
1
2

)2 +
Γ(t+ 1)

Γ2(λ)
C̃2 log

1

1− |z|2

≤ Ĉ log
1

1− |z|2
+

Γ(t+ 1)

Γ2(λ)
C̃2 log

1

1− |z|2
= C2 log

1

1− |z|2
,

where C2 = C2(t) = Ĉ +
Γ(t+ 1)

Γ2(λ)
C̃2 > 0.

Finally, if c > 0 and |z| ≥ 1
2 , then (A.6) gives that

lim
n→+∞

Γ(n+ c)

n! · nc−1
= 1,

so we can find constants C̃3 = C̃3(c, t), C̃4 = C̃4(c, t) > 0 such that

C̃3
Γ(n+ c)

n!
≤ nc−1 ≤ C̃4

Γ(n+ c)

n!
, for all n ∈ N. (A.11)

Also, note that
+∞∑
n=1

Γ(n+ c)

n!Γ(c)
|z|2n =

1

(1− |z|2)c
, (A.12)

and there exists a constant C = C(c, t) > 0 such that

C · 1(
1−

(
1
2

)2)c ≥ 1

t+ 1
. (A.13)

By (A.8), (A.11) and (A.12),

Ic,t(z) ≥
Γ(t+ 1)

Γ2(λ)
C̃1

+∞∑
n=1

nc−1|z|2n ≥ Γ(t+ 1)Γ(c)

Γ2(λ)
C̃1C̃3

+∞∑
n=1

Γ(n+ c)

n!Γ(c)
|z|2n = C1

1

(1− |z|2)c
,

where C1 = C1(c, t) =
Γ(t+ 1)Γ(c)

Γ2(λ)
C̃1C̃3 > 0, and by (A.8), (A.11), (A.12) and (A.13),

Ic,t(z) ≤
1

t+ 1
+

Γ(t+ 1)

Γ2(λ)
C̃2

+∞∑
n=1

nc−1|z|2n

≤ C · 1(
1−

(
1
2

)2)c + Γ(t+ 1)Γ(c)

Γ2(λ)
C̃2C̃4

+∞∑
n=1

Γ(n+ c)

n!Γ(c)
|z|2n

≤ C · 1

(1− |z|2)c
+

Γ(t+ 1)Γ(c)

Γ2(λ)
C̃2C̃4

1

(1− |z|2)c
= C2

1

(1− |z|2)c
,
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where C2 = C2(c, t) = C +
Γ(t+ 1)Γ(c)

Γ2(λ)
C̃2C̃4 > 0.

Theorem A.0.2. Let p ≥ 1, α > −1 and a, b ∈ R such that

−pa < α+ 1 < p(b+ 1). (A.14)

Then ∫
D

(1− |w|2)b

|1− zw̄|2+a+b
|f(w)| dA(w) < +∞, for all z ∈ D and f ∈ Lp(D, dAα), (A.15)

and the operators L, S, T : Lp(D, dAα) → Lp(D, dAα) given by

Lf(z) = (1− |z|2)a
∫
D

(1− |w|2)b

|1− zw̄|2+a+b
|f(w)| dA(w),

Sf(z) = (1− |z|2)a
∫
D

(1− |w|2)b

(1− zw̄)2+a+b
f(w) dA(w),

T f(z) = (1− |z|2)a
∫
D

(1− |w|2)b

|1− zw̄|2+a+b
f(w) dA(w),

are well-defined and bounded on Lp(D, dAα).

Proof. We distinguish two cases for p :

Case 1. p > 1. Let q ∈ (1,+∞) be the conjugate exponent of p, that is, 1
p + 1

q = 1. By (A.14) we can
derive that

−b+ 1

q
<
a

q
and − a+ α+ 1

p
<
b− α

p
,

because −pa < p(b+ 1), as well as

p(b+ 1) > α+ 1 ⇔ b+ 1 >
α

p
+

1

p
⇔ b

(1
p
+

1

q

)
− α

p
> −1

q
⇔ b− α

p
> −b+ 1

q
,

and
−pa < α+ 1 ⇔ a

(1
p
+

1

q

)
> −α+ 1

p
⇔ a

q
> −a+ α+ 1

p
.

Thus, we can choose a real σ such that

σ ∈
(
− b+ 1

q
,
a

q

)⋂(
− a+ α+ 1

p
,
b− α

p

)
̸= ∅.

Now, consider the functions

h(z) = (1− |z|2)σ, for all z ∈ D, and H(z, w) =
1

α+ 1
· (1− |z|2)a(1− |w|2)b−α

|1− zw̄|2+a+b
, for all z, w ∈ D.

We have∫
D
H(z, w)hq(w) dAα(w) = (1− |z|2)a

∫
D

(1− |w|2)σq+b

|1− zw̄|2+a+b
dA(w), for all z ∈ D. (A.16)

If |z| ≥ 1
2 , then Lemma A.0.1 (iii) gives that there exists a constant C1 = C1(q, a, b, σ) > 0 such that∫

D

(1− |w|2)σq+b

|1− zw̄|2+a+b
dA(w) ≤ C1 ·

1

(1− |z|2)a−σq
= C1 ·

hq(z)

(1− |z|2)a
, (A.17)
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so (A.16) and (A.17) give ∫
D
H(z, w)hq(w) dAα(w) ≤ C1h

q(z). (A.18)

If |z| < 1
2 , then 2 + a+ b = 2 + σq + b+ a− σq > 1, by the choice of σ, hence∫

D

(1− |w|2)σq+b

|1− zw̄|2+a+b
dA(w) ≤ 22+a+b

∫
D
(1− |w|2)σq+b dA(w) =

22+a+b

σq + b+ 1
, (A.19)

so (A.16) and (A.19) give∫
D
H(z, w)hq(w) dAα(w) ≤

22+a+b(1− |z|2)a

σq + b+ 1
≤ 22+a+b(1− |z|2)σq

σq + b+ 1
=

22+a+b

σq + b+ 1
hq(z). (A.20)

Thus, if we set C = C(q, a, b, σ) = max
{
C1,

22+a+b

σq + b+ 1

}
> 0, then (A.18) and (A.20) give∫

D
H(z, w)hq(w) dAα(w) ≤ Chq(z), for all z ∈ D. (A.21)

Working similarly, we can derive that there exists a constant C̃ = C̃(p, α, a, b, σ) > 0 such that∫
D
H(z, w)hp(z) dAα(z) ≤ C̃hp(w), for all w ∈ D. (A.22)

By (A.21), (A.22) and the proof of Schur’s Theorem ([15, Theorem 3.6]), Lf ∈ Lp(D, dAα), for all
f ∈ Lp(D, dAα), and the operator L is bounded on Lp(D, dAα).

Case 2. p = 1. Let f ∈ L1(D, dAα). Then, by [6, 2.37a The Fubini-Tonelli Theorem],∫
D
|Lf(z)| dAα(z) =

∫
D

∫
D

(1− |z|2)a(1− |w|2)b

|1− zw̄|2+a+b
|f(w)| dA(w)dAα(z)

=

∫
D
(1− |w|2)b · |f(w)|

∫
D

(1− |z|2)a

|1− zw̄|2+a+b
dAα(z)dA(w)

=

∫
D
(1− |w|2)b · |f(w)|(α+ 1)

∫
D

(1− |z|2)a+α

|1− z̄w|2+a+b
dA(z)dA(w).

(A.23)

If |w| ≥ 1
2 , then Lemma A.0.1 (iii) gives that there exists a constant C1 = C1(α, a, b) > 0 such that∫

D

(1− |z|2)a+α

|1− z̄w|2+a+b
dA(z) ≤ C1 ·

1

(1− |w|2)b−α
. (A.24)

If |w| < 1
2 , then b− α > 0 and 2 + a+ b > 1, because of (A.14), hence∫

D

(1− |z|2)a+α

|1− z̄w|2+a+b
dA(z) ≤ 22+a+b

∫
D
(1− |z|2)a+α dA(z) ≤ 22+a+b

a+ α+ 1
· 1

(1− |w|2)b−α
. (A.25)

Thus, if we set C = C(α, a, b) = max
{
C1,

22+a+b

a+ α+ 1

}
> 0, then (A.24) and (A.25) give that∫

D

(1− |z|2)a+α

|1− z̄w|2+a+b
dA(z) ≤ C · 1

(1− |w|2)b−α
, for all w ∈ D. (A.26)

By (A.23) and (A.26),∫
D
|Lf(z)| dAα(z) ≤

∫
D
(1− |w|2)b · |f(w)|(α+ 1)C · 1

(1− |w|2)b−α
dA(w)

= C

∫
D
|f(w)| dAα(w) < +∞,

so Lf ∈ L1(D, dAα), and ∥Lf∥1,α ≤ C∥f∥1,α, that is, L is bounded on L1(D, dAα).



79

In any case, we have proved that L is a well-defined bounded operator on Lp(D, dAα). Then, it easy
to see that S, T are well-defined bounded operators on Lp(D, dAα).

It remains to show (A.15). Let f ∈ Lp(D, dAα). Since Lf ∈ Lp(D, dAα), there exists a setEf ⊂ D
such that Aα(Ef ) = 0 and∫

D

(1− |w|2)b

|1− zw̄|2+a+b
|f(w)| dA(w) < +∞, for all z ∈ D \ Ef . (A.27)

Let z ∈ Ef . Since Aα(Ef ) = 0, there exists a sequence {zn} ⊂ D \ Ef with limn→+∞ zn = z. Thus,
there exists a real R ∈ (0, 1) such that |zn| ≤ R, for all n ∈ N. Note that

lim
n→+∞

(1− |w|2)b

|1− znw̄|2+a+b
|f(w)| = (1− |w|2)b

|1− zw̄|2+a+b
|f(w)|, for all w ∈ D, (A.28)

and
(1− |w|2)b

|1− znw̄|2+a+b
|f(w)| ≤ (1− |w|2)b

(1−R)2+a+b
|f(w)|, for all w ∈ D and n ∈ N. (A.29)

Also, since |1− z1w̄| ≤ 2, for all w ∈ D, there exists a constant C̃ > 0 such that

1

(1−R)2+a+b
≤ C̃ · 1

22+a+b
≤ C̃ · 1

|1− z1w̄|2+a+b
, for all w ∈ D, (A.30)

and by (A.27), ∫
D
C̃ · (1− |w|2)b

|1− z1w̄|2+a+b
|f(w)| dA(w) < +∞. (A.31)

By (A.28), (A.29), (A.30) and (A.31), [6, 2.24 The Dominated Convergence Theorem] yields that∫
D

(1− |w|2)b

|1− zw̄|2+a+b
|f(w)| dA(w) < +∞.

Thus, we have shown that the integral in (A.27) is finite for all z ∈ D.

Let (X, ∥·∥X) be a Banach space. By L(X) we denote the space of all bounded linear operators
T : X → X, and by ∥T∥ the norm of T. Then, it is known from functional analysis that (L(X), ∥·∥) is
a Banach space. Also, if T1, T2 ∈ L(X), then T1T2 := T1 ◦ T2 ∈ L(X) and ∥T1T2∥ ≤ ∥T1∥∥T2∥. For
more information on these topics see, for example, [6, Section 5.1].

Proposition A.0.3. Let (X, ∥·∥X) be a Banach space and S ∈ L(X). If ∥I − S∥ < 1, where I is the
identity operator, then S is invertible, that is, there exists an operator T ∈ L(X) such that

ST = I = TS.

Proof. Since ∥I − S∥ < 1,

+∞∑
k=0

∥(I − S)k∥ ≤
+∞∑
k=0

∥I − S∥k =
1

1− ∥I − S∥
< +∞.

Thus,
∑+∞

k=0(I − S)k converges in L(X), because L(X) is a Banach space, and

lim
k→+∞

(I − S)k = O in L(X), (A.32)

where O is the null operator. Let T =
∑+∞

k=0(I − S)k and Tn =
∑n

k=0(I − S)k, for all n ∈ N ∪ {0}.
Then

STn = (I − (I − S))
n∑

k=0

(I − S)k =
n∑

k=0

(I − S)k −
n+1∑
k=1

(I − S)k = I − (I − S)n+1, (A.33)
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and
∥STn − ST∥ = ∥S(Tn − T )∥ ≤ ∥S∥∥Tn − T∥, for all n ∈ N ∪ {0}. (A.34)

Since limn→+∞ Tn = T in L(X), (A.34) implies that limn→+∞ STn = ST in L(X). Thus, by taking
limits as n→ +∞ in (A.33) and using (A.32), we get that ST = I. By analogous arguments, TS = I;
hence S is invertible.
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