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Preface

In this thesis, we study the functions of the Bergman spaces .A”, that is, the holomorphic functions on the
unit disc that are also p-integrable with respect to the Lebesgue area measure. In particular, we explore
the properties of these spaces, such as their completeness and duals, obtaining results that are analogous
to the properties of LP spaces. We distinguish the case p = 1, for which we introduce the Bloch space as
the dual of .A'. Finally, we present a connection between the Bergman spaces and the hyperbolic metric.
More precisely, we show that each function of the Bergman space is an infinite sum that depends on
specific sequences of the hyperbolic disc.

I would like to thank my supervisor Themis Mitsis, for his guidance, advice, patience and eagerness to
help. I am also grateful to N. Frantzikinakis, V. Nestoridis and M. Papadimitrakis, for their remarks and
for conversations we had.
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Abstract

In Chapter 1, we introduce some elements of hyperbolic geometry in the unit disc, such as the hyper-
bolic length of curves, the hyperbolic metric and hyperbolic discs. A class of holomorphic functions is
widely used throughout this analysis, namely the Mobius group of the unit disc. In the last section of
this chapter, we discuss the notion of r-lattices, which are specific sequences in the unit disc, and will
play an important role later in our study.

In Chapter 2, the theory of Bergman spaces AP is presented. In particular, we show that the Bergman
spaces are Banach spaces. Next, we move on to the Bergman kernel, which gives an integral represen-
tation of the functions of AP, and is used to show that the dual of the Bergman space A” is the Bergman
space A7, where ¢ is the conjugate exponent of p > 1. After giving a characterization of the Bergman
spaces in terms of derivatives, we finally arrive at the atomic decomposition, which means that we can
write each function of AP as an infinite sum that uses r-lattices.

Chapter 3 is about the Bloch space, which is a Banach space and the dual of .A'. Lastly, we present a
connection between the Bloch space and the hyperbolic metric.

The structure of this thesis follows mainly K. Zhu’s book “Operator Theory in Function Spaces” ([15]).
Other books we used are [4], [7] and [11].
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CHAPTER 1

Hyperbolic Geometry on the Unit Disc

1.1 The Mdobius group of D

LetD = {z € C: |z| < 1} and consider the set
Aut(D) = {¢ : D — D| ¢ is 1-1, onto and holomorphic}.

The functions in Aut(ID) are called Mbius maps of the unit disc. By [14, Section X.15], the inverse of a
Mobius map of D is also in Aut(ID). Thus, Aut(D) is a group under composition and is called the Mdbius
group of D.

For the rest of this thesis, we will often use the following theorem from complex analysis (see [12,
Theorem 12.6]):

Theorem 1.1.1. ¢ € Aut(D) if and only if there exist a real number 6 and a point a € D such that

= eV, inD, where ¢po(2) = 1a _Z , for all z € D, is a special Mobius map of D.
—az

We now give some basic properties of the maps ¢, that will be used throughout the thesis.

Proposition 1.1.2. For any a € D and z € D we have:

(i) ¢a(0) = aand ¢a(a) =0,
(ii) ¢q0 (;5(1(2) =z,

1—|af?
(iii) ¢qo(z) = T an? and
: o (L—la)(1 — =)
(lv) 1- |¢a(z)‘ - ‘1—@2‘2 .
Proof. All properties are derived from straightforward calculations. O

Mébius maps of I belong, in fact, in a larger class of functions, called Mobius transformations. A
Mobius transformation 7" : C — C, where by C we denote the set C U {oo}, has the form

az+b

&= ava

where a,b,c,d € C with ad — bc # 0 (see [1, Section 2.1]). If ¢ = 0, then T(C) = C, and we set
T(c0) = oo. If ¢ # 0, then T'(C \ {—%l}) = C\ {%}, and we set T(—g) = ooand T'(o0) = %. In

1



2 CHAPTER I. HYPERBOLIC GEOMETRY ON THE UNIT DISC

any case, Mobius transformations are one-to-one functions, which are holomorphic in C or C \ {—%l if
¢ =0 or ¢ # 0, respectively.
An essential property of Mobius transformations is that they preserve the circles of C.

Definition 1.1.1. A4 circle in C is either a euclidean circle in C or the union of a euclidean line in C with

{oo}.
Theorem 1.1.3. Mdébius transformations map circles of C onto circles of C.

For more information on the above definition and theorem see, for example, [1, Sections 1.2, 2.1].

1.2 The hyperbolic metric

Definition 1.2.1. The function \(z) = z € D, is called hyperbolic density.

1— 1z’

Definition 1.2.2. If'y : [a,b] — D is a piecewise-C curve, we define the hyperbolic length of 7y to be
the real number

()]
1—y(®)P

Remark 1.2.1. The hyperbolic length of 7 is, indeed, a real number; since [a, b] is a compact set and ~y
is a curve in D, there exists a point ¢y € [a, b] such that max{|y(t)| : ¢t € [a,b]} = |y(to)] < 1, so

) byl 1
M”‘ﬁl—waﬁgﬂ1—wwwﬁ‘1wwmwlm<+w

where L(+y) denotes the euclidean length of .

b b
b = [ M)zl = [ a6) - @ld= [ d.

It follows from Theorem 1.1.1 and Proposition 1.1.2 (iii), (iv), that hyperbolic length is invariant under
the action of Mdbius maps of D, that is:

Proposition 1.2.1. Ify : [a,b] — D is a piecewise-C curve and ¢ € Aut(D), then ¢ o~ : [a,b] — D
is a piecewise-C curve and l,(¢ o v) = I, (7).

Definition 1.2.3. If z, w € D, we define the hyperbolic distance of z,w to be the number
B(z,w) = inf{l,(7) : v is a piecewise-C" curve in D starting at z and landing at w'.
Proposition 1.2.2. The hyperbolic distance is invariant under the action of Mébius maps of D, that is
B(p(z), p(w)) = B(z,w), forall z,w € D and ¢ € Aut(D).

Proof. Let z,w € Dand ¢ € Aut(D). If v is a piecewise-C'! curve in ID starting at z and landing at
w, then ¢ o «y is a piecewise-C'! curve in ID starting at ¢(z) and landing at ¢(w), so the definition of
hyperbolic distance and Proposition 1.2.1 give 8(¢p(z), p(w)) < Ip(¢p o) = In(7y); hence

B((2), p(w)) < B(z, w). (L.1)

The above inequality holds for all z,w € D and ¢ € Aut(ID), so we replace z by ¢(z), w by ¢(w), and
¢ by ¢!, to get
B(z,w) < B(¢(2), p(w)) (1.2)

The desired equality follows from (1.1) and (1.2). O

Theorem 1.2.3. The function 5 : D x D — R is a metric on D, called the hyperbolic metric of D.



1.2. THE HYPERBOLIC METRIC 3

Proof. Let z,w € D. Since I1,() > 0 for all piecewise-C'* curves ~ in I starting at z and landing at w,
we have that 3(z,w) > 0. Also, if y : [a,b] — D is a piecewise-C' curve with y(a) = z and y(b) = w,
then —y(t) :=y(a +b—1t), t € [a,b], is a piecewise-C" curve in I starting at w and landing at z, and

I (O R O L C
ni— = [ [~ h{at b0 a= | T Pysyp = 0

so B(z,w) = B(w, z).

Let z € D. Then, for the curve y(¢) = z, forall ¢t € [0, 1], we have that {,(y) = 0, hence ((z, z) = 0.
Conversely, let 3(z,w) = 0 for some z,w € D, and let € > 0. Then there exists a piecewise-C' curve
v : [a,b] — D with y(a) = z and v(b) = w, such that [;,(y) < e. If m = min{|y(¢)| : t € [a,b]} < 1,
then

b /
o) < oy < [ d =) <

Since € was arbitrary, we get [z — w| = 0; 50 2 = w.
Finally, let u,v,w € D, ande > 0. Then there exist piecewise-C! curves v : [a,b] — D and
d: [b,c] = D, with y(a) = u, y(b) = v, (b) = v and d(c) = w, such that

In(7) < B(u,v) + 5 and 1h(8) < B(v,w) + 5.

v(t), ift € [a,b]

] ", is a piecewise-C'
i(t), iftelb,(

Thus, the curve v+6 : [a,c] — D, defined by (v+6)(t) = {
curve in D starting at v and landing at w; hence

Blu,w) < n(7--8) = In(3) + n(8) < Blu,v) + Blo, w) + €.
Since € was arbitrary, we get S(u, w) < B(u,v) + B(v, w), which is the triangle inequality. O
We will now find an explicit formula for the hyperbolic distance, as follows.

Lemma 1.2.4. Let —1 < r < s < 1. We have:

()
1 L+ 18::8
6(7’, 3) = §10g ﬁ (13)
1= 1—1rs

(i) If v : [0,1] — D is a piecewise-C* curve with ¥(0) = r and (1) = s, then
(1) = B(r, 5) if and only if (1) = u(t), for allt € [0, 1],
where u : [0, 1] — R is an increasing function. In that case, we have ([0, 1]) = [r, s].

Proof. (i) Lety(t) = u(t)+iv(t), t € [a, b], be a piecewise-C* curve in D, with y(a) = 7 and y(b) = s.
Since |y(t)| > |u(t)], for all t € [a,b], and |¥/(t)| > |u/(t)] > «/(t), for all ¢ € [a,b] on which 7 is
differentiable, we have that

s—1r
b |/ b / s 1+
7' (1)] / u'(t) / 1 1 1—rs
l = ——dt > — _dt = dr = - log ———= 1.4
n(7) /a1—|fy(t)|2 = A ol = U9
1—rs
50 s—r
1 1+1—rs
B(r,s) > 510:% 1? (1.5)
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Now, consider the parametrization y(t) = r + t(s — r), t € [0, 1], of the line-segment [r, s], for which
we have that

s—r
1 s 14+ —
s—r 1 1 1—rs

l — dt: 7d :71 _— 1.6

0= = et R (16
1—rs

Thus, (1.5) and (1.6) give (1.3).
(i) Let v = u + iv : [0, 1] — D be a piecewise-C'! curve, with v(0) = r and (1) = s.

If I,(v) = B(r,s), we have equality in (1.4); so v(t) = 0, for all ¢ € [0, 1], which means that
v(t) = wu(t), for all t € [0, 1]. If there exists a point ¢y € [0, 1] such that u/(tg) < 0, then, by the
piecewise-continuity of v/, there exists an interval [t1, 2] C [0, 1] such that ty € [t1,t2] and /() < 0,
forall ¢ € [t1,t2]. Thus,

1 u/ t1 u/ to _u, 1 u,
w0 = [ = | e, e em

t1 u'(t) to u’(t) 1 u’(t) _ 1 ul(t) B
g /0 e /tl e /t2 I R /0 T M=)

which is a contradiction to our hypothesis. Therefore, u'(t) > 0, for all ¢ € [0, 1] on which w is differ-
entiable. Since u is continuous in [0, 1], we get that u is increasing in [0, 1], and

(10, 1]) = u([0, 1]) = [u(0), u(1)] = [r, s].

Conversely, let v(t) = u(t), forall t € [0, 1], where u : [0, 1] — R is an increasing function. Then
u'(t) > 0 forall ¢t € [0, 1] on which u is differentiable; so, using (1.3),

Lo/ (¢ Lo/t s 1

O
Theorem 1.2.5. If z, w € D, then
1 L+ lz—_gz
1—wz
Proof. Let z,w € D, and consider the Mobius map ¢,,({) = 1w__wi, ¢ € D. By Proposition 1.2.2,
Bz, w) = B(w, 2) = B(uw(w), Pu(z)) = B(0, Pu(2)). (1.8)
Since rotations are Mdbius maps of I, we have that
B(0,¢) = B(0,[¢]), forall ¢ € D. (1.9)
By (1.8), (1.9) and (1.3),
. zZ—w
1o 1+|gu(z)| 1 1— w2
= w =—log——= = =1
Bl w) = B0, oula)) = 5 log T2 55 = log — L=
1—wz
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The next step is to introduce the concept of hyperbolic geodesics.

Definition 1.2.4. Let z,w € D. A C' curve v : [0,1] — D is called a hyperbolic geodesic that connects
z towif:

(i) 7(0) =z, 7(1) = w,
(ii) v'(t) # 0, forallt € [0,1], and
(iii) In(y) = B(z, w).
Hyperbolic geodesics are invariant under the action of Mobius maps of D, that is:

Proposition 1.2.6. Let z,w € D and ¢ € Aut(D). If v is a hyperbolic geodesic connecting z to w, then
¢ oy is a hyperbolic geodesic connecting ¢(z) to ¢p(w).

Proof. Since 7 is C' and ¢ is holomorphic, we have that ¢ oy : [0,1] — D is a C! curve, connecting
#(z) to ¢(w). Also, by Definition 1.2.4 (ii), 7/(t) # 0, for all ¢ € [0, 1], and ¢/(z) # 0, for all z € D,
because ¢ is a conformal map (see [14, Section X.14]); so

(@o)(t) = ¢'(v(t)) - ¥'(t) # 0, forall t € [0,1].
Finally, by Propositions 1.2.1 and 1.2.2, and Definition 1.2.4 (iii),

(@ o) =n(y) = Bz, w) = B(d(2), p(w)).
O

Theorem 1.2.7. Let z,w € D, with z # w, and let y : [0,1] — D be a C'* curve connecting = to w, with
v (t) #0, forallt € [0, 1].

(i) Suppose z,w are located on a diameter of D. Then, ~y is a hyperbolic geodesic connecting z to w
if and only if v([0, 1]) = [z, w], where by |z, w] we denote the line-segment with initial point z and
ending point w.

(ii) Suppose z,w are not located on a diameter of . Then, 7 is a hyperbolic geodesic connecting
z to w if and only if ¥([0, 1]) is the arc, with initial point z and ending point w, of the circle C
which contains z and w and intersects 0D perpendicularly.

Proof. (i) Let z, w be located on a diameter of ID. Consider a rotation ¢ such that ¢(z) = r € (—1,1),
p(w)=s€(—1,1)and r < s.

Let « be a hyperbolic geodesic connecting z to w. By Proposition 1.2.6, ¢ oy is a hyperbolic geodesic
connecting ¢(z) = rtod(w) = s, s0 lp(d o) = B(r,s). It follows from Lemma 1.2.4 (ii) that

(¢ 09)([0,1]) = [r, s], sov([0,1]) = (ﬁil([r? s]) = [z, w].

Conversely, let ¥([0,1]) = [z, w]. Then (¢ 0 ¥)([0,1]) = é([z, w]) = [r,s], so (¢ 0 ¥)(t) = u(?),
for all t € [0,1], where u : [0,1] — [r,s] is a C! function. Note that u'(t) = ¢'(y(t)) - ¥/ () ;é 0,
for all t € [0, 1], because ¢'(z) # 0, for all z € D (see [14, Section X.14]), and since u(0) =

ra
u(1) = s > r,uisastrictly increasing function. It follows from Lemma 1.2.4 (ii) that [;, (¢oy) = 5(r, ),
so Propositions 1.2.1 and 1.2.2 give I;,(7) = I,(¢o7y) = B(r,s) = B(¢~1(r), ¢~ (s)) = B(z,w). Thus,
~ is a hyperbolic geodesic connecting z to w. ¢
1= ac ¢ eD.
Then ¢y, (w) = 0 and ¢,,(2) # 0, because z # w. Let ¢ be a rotation that maps ¢,,(z) to [¢y,(z)| > 0.
Then ¢ := 1) o ¢y, is a Mobius map of D, with ¢(w) = 0 and ¢(z) = |p,(2)| =: s € (0,1). It follows
from Proposition 1.2.6 and (i) that

(ii) Suppose z, w are not located on a diameter of D. Consider the Mdbius map ¢,,(¢) =

~ is a hyperbolic geodesic connecting z to w
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if and only if
¢ o~y is a hyperbolic geodesic connecting s to 0
if and only if
(¢ 0)([0,1]) = [s,0]
if and only if

(10, 1)) = ¢~ ([s, 0)).

Let C = ¢~ '(RU{0o}). Then, Theorem 1.1.3 implies that C'is a circle in C. Since ¢! is a conformal
map, by [14, Section X.14, 11.12] we have that ¢! preserves the angle between R and OI); hence C
intersects O perpendicularly. Moreover, z = ¢~ !(s) € C and w = ¢~1(0) € C are not located on a
diameter of D, so C'is a euclidean circle. Thus,

¥([0,1]) = ¢~ '([5,0])

if and only if
v([0, 1]) is the arc of C'N D connecting z to w.
O
1.3 The pseudo-hyperbolic metric and hyperbolic discs
. . zZ—w
Consider the function p(z, w) = ‘ . —|, for all z,w € D.
— ZW
Proposition 1.3.1. The function p is invariant under the action of Mobius maps of D, that is,
p(d(2), p(w)) = p(z,w), forall z,w € D and ¢ € Aut(D).
Proof. It follows from Theorem 1.1.1 and straightforward calculations. O
We will show that p is a metric on ID.
Lemma 1.3.2. p(z,w) < |2| + |w|, forall z,w € D.
Proof. By straightforward calculations, we get that for all z, w € D,
2] + [wl
z|, —|wl|) = < |z| + |w 1.10
pllzh ) = 5o < Jel + (110
" (1 o)~ )
1—127)(1 —|w
1-p? = : 1.11
p”(z,w) 1= zaf (1.11)
Note that (1.11) gives
(1 -]z — w]?)
1= p?(|z], —|w]) = (1.12)
(1+ |z[|w])?
" (1 o) )
1—1z7)(1 —|w
1—p(z,0) > : (1.13)
(1 + |z[[w])?
for all z,w € D. Thus, by (1.12), (1.13) and (1.10),
L= (2], —lw]) 1= p*(z,w) = p(z,w) < p(lz], —|w]) < [2] + |wl,
forall z,w € D. ]

Proposition 1.3.3. The function p : D x D — R is a metric on D, called the pseudo-hyperbolic metric
of D.
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Proof. Forall z,w € D, we have that p(z,w) > 0, p(z,w) = p(w, z) and
plz,w) =0 & [z—w| =0 & z=w.
As for the triangle inequality, by Proposition 1.3.1 and Lemma 1.3.2, we get that for all 2, a,w € D,

p(z,w) = p(da(2), Pa(w)) < |¢a(2)| + [Pa(w)] = p(da(2),0) + p(0, ¢a(w))
= p(¢a(2), dala)) + p(da(a), pa(w)) = p(z,a) + p(a, w).
O

Remark 1.3.1. By formula (1.7) for the hyperbolic metric and the definition of pseudo-hyperbolic met-

ric,
1+ p(z,w)

_ -1
m = tanh (p(Z,'LU)), (114)

1
5(271”) = 5 log
forall z,w € D.

We will now engage in the concept of pseudo-hyperbolic and hyperbolic discs and explore their
connection with euclidean discs.

Definition 1.3.1. Let z € D and r > 0.

(i) The set D,(z,r) :== {w € D : p(w, 2) < r} is called the pseudo-hyperbolic disc with center z
and radius r, and the set Cy(z,r) := {w € D : p(w,z) = r} is called the pseudo-hyperbolic
circle with center z and radius r.

(ii) The set Dp(z,7) := {w € D : f(w, z) < r} is called the hyperbolic disc with center z and radius
r, and the set Cp(z,7) = {w € D : B(w,z) = r} is called the hyperbolic circle with center z
and radius .

Notation. If z € C and r» > 0, we denote by D(z, ) the euclidean disc with center z and radius r, and
by C(z,r) the euclidean circle with center z and radius 7.

Lemma 1.3.4. Forany z € D and 0 < r < 1, the pseudo-hyperbolic disc D,(z,r) is a euclidean disc
1—r2 1— |22
with center C' = TJ{Z'P z and radius R = 1—7"22,2\2 7.

Proof. Letz€Dand0 < r < 1. If w € C, then
w € Dy(z,r) & weDandp(w,2) <r & weDand|z —w|* <r’l—zu0]* &
& we Dand |2)? — 2Re(zw@) + |w|? < 72(1 — 2Re(2w@) + |2|*|w|?) <

1—r? r? — |22
2 —
1 (L= PP 2P (L= r2Rp
& weDand|w]? -2 ————— - Re(zw
v and || 1—r2z2 e(z0) + (1—=7r222)2 " 1—=722]2 (1 —12|2]?)?

s weDand|w—CP?<R?® & weDandw € D(C, R),

SO
D,(z,r) =DnND(C,R). (1.15)
Note that ) )
1—r 1—r
Cl=——w—=2l< ——= <1
€] 1—r2)z2 12 1—1r2[z2 ’
and

R<1-1|C| & (1—\2\2)r<1—r2\z\2—(1—r2)\z| & r\z\Q—(T+1)]2\+1>O.

The last inequality holds because |z| < 1andr € (0,1). Thus, D(C, R) C D, and by (1.15), we get
D,(z,r) = D(C,R). O
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Proposition 1.3.5. For any z € D andr > 0, the hyperbolic disc Dy(z,r) is a euclidean disc with
1—s? ) 1—|z|?
center C' = m z and radius R = m

Proof. Letz € Dandr > 0. If w € C, then it follows from (1.14) and Lemma 1.3.4 that

s, where s = tanh(r) € (0, 1).

1 1
w € Dp(z,7) & weDand f(w,2) <r & we]D)and2log+p<z’w)<r &
p(z,w)

= p(zw)
1—pz,zg <’ & weDandIQ_p(zjw)

w € D and 2p(z, w) < (e + 1) tanh(r) - (1 — p(z,w)) &

weDand p(z,w)(e* +1) < e -1 & weDandp(z,w) <s <

w € Dy(z,8) & we D(C,R).

< -1 &

t¢ ¢ ¢

O]

Corollary 1.3.6. The euclidean metric restricted to D and the hyperbolic metric produce the same open
sets in D or, equivalently, they are topologically equivalent metrics.

Proof. Let z € Dandr > 0.

Since Dy, (z,r) C D is aeuclidean disc, it is an open set in C; hence there exists a real number 6; > 0
such than D(z,01) C Dp(z, 7).

On the other hand, if w € Dy, (z, %), then by (1.14),

|z —w| = |1 — zw| tanh(B(z,w)) < 2tanh(B(z,w)) < 26(z,w) <7,
because tanh(z) < z, for all z > 0; hence Dy, (2, 5) C D(z,7) N D. O

Remark 1.3.2. Although the euclidean and the hyperbolic metric are topologically equivalent, they are
not comparable in D. Indeed, |z — w| < 2, for all z, w € D, whereas the hyperbolic metric is unbounded
in D, as can be clearly seen from (1.14). However, the two metrics are comparable in compact subsets
of D.

Proposition 1.3.7. If'S C D is compact, then the euclidean and the hyperbolic metric are comparable
in§.

Proof. Since S is a compact subset of D, there exists a real R € (0, 1) such that S C D(0, R) C D. Let
z,w € S. Then, |(1 —t)z + tw| < R, forall t € [0, 1], because D(0, R) is a convex set. Thus,

! |z — w] | 1
Bz, w) < Ip([z, w]) :/0 T=T0 =Dz 1wl dt < ]z—w]/o ﬁdt = ]z—w|1_7R2,
so (1 - R2)8(z,w) < |2 — w].
On the other hand, (1.14) gives
|z — w| = |1 — zw|tanh(B(z,w)) < 25(z,w), forall z,w € S.
Thus, for all z,w € S,
(1-R*)B(z,w) < |z —w| < 26(z,w). (1.16)

O

Another interesting difference between the euclidean and the hyperbolic metric in ID is that the metric
space (D, | - |) is not complete, in contrast to (D, 3). Indeed, the sequence z, = 1 — n%rl, n € N,isa
Cauchy sequence in D with respect to the euclidean metric, but it converges to 1 ¢ . However, for the
hyperbolic metric we have that:
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Proposition 1.3.8. (D, 3) is a complete metric space.

Proof. Let {2z} C D be a Cauchy sequence with respect to the hyperbolic metric, and let € > 0. Then
there exists a number ng € N such that

B(zn, zm) < €, forall n,m > ny. (1.17)
Letn > ng. By (1.17),
5(27170) S 5(2717'277,0) +/6(Zn070) < 6+/6(ZTL070)5

0 zp, € Dp(0,7¢), for all n > ng, where r. := € + B(zn,,0) > 0. If sc := tanh(r.) € (0,1), then
Proposition 1.3.5 yields that Dy, (0,7¢) = D(0, s¢); so

zn € D(0, s¢), forall n > ny, (1.18)

and D(0, s.) is a compact subset of D.
Now, by (1.16) and (1.17),

|2n — 2m| < 28(2n, 2m) < €, forall n,m > no,

hence {z} is a Cauchy sequence with respect to the euclidean metric. Thus, there exists a point z € C
such that z;, — z, as k — +o00, and (1.18) gives that z € D(0, s¢) C D. Finally, by (1.16),

(1 — s2)B(u,v) < |u—wv|, forallu,v € D(0,s.),

hence

Bzn,z) < |zn — 2| = 0, asn — 400,

— 2
that is, {zx } converges to z € D with respect to the hyperbolic metric. O

Lemma 1.3.9. Let z,a € D and r > 0. Then ¢o(Dp(z,7)) = Dp(da(2),1).

Proof. If w € Dy(z,7), then S(¢q(2), pa(w)) = (2, w) < r, because of the Mobius invariance of the
hyperbolic metric; so ¢o(w) € Dp(¢q(z),r). For the reverse enclosure, if w € Dp(¢q(2),r), then by

Propositions 1.2.2 and 1.1.2 (ii), 8(¢q(w), 2) = B(w, pa(2)) < 7,50 W = Ga(Pe(w)) € ¢da(Dp(z,7)).
O

Let p5 denote the restriction to I of the Lebesgue measure of C. Then, by A we denote the normal-
ized area measure of D, that is A = % 1a. This way,

A(]D)):/DdA(z):/Ol/O%;der:L

Also, for all @ € R, define the measure
Au(D) = / dAn(z) = / ca(l— [2[2)% dA(2),
D D

a+1, ifa>-1,

for all Borel-measurable sets D C D, where ¢, = ) .
1, ifa < -1

Remark 1.3.3. If o > —1, the measure A,, is finite. Indeed,

/D dAy(z) = /Dca(l — |2]))*dA(z) = /01 /OZW(a + 1) (1 — %) %d@dr =1< +4o0.
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Lemma 1.3.10. Suppose z € D and r > 0. Then

_12]2)242
W ADL) = ([ e

L 1 1 — s]2|

(ii) mf{|1—zw| TwE Dh(z,r)} =1 ek and

1 1+ s|z|

(iii) sup {H—'Zw Tw € Dh(z,r)} =71= =
where s = tanh(r) € (0,1).

. . 1-s? 1—|z|?
PVOOf (1) By PropOSItlon 135, Dh(Z,'I”) = D(C, R), where C' = m zand R = ?2‘2’2
hence 2
"p 2 _ (12
A(Dy(z,r :/ / / dfdp = R
Oz = [ - Qo

(ii) Using Lemma 1.3.9,

inf{’l_lz_‘ wEthr}:mf{’l_zw| w € ¢, (Dp(0, r))}

_mf{ll—z@ wEDh<O,7’)}

zw| 1 — s|z|

mf{1_| 7 cw € Dy(0, r)} T

where the last equality holds because Dy, (0,r) = D(0, s) by Proposition 1.3.5, so for all w € Dy (0,7),

|1 — zw| > 1 — |z||w| > 1 — |z]s, and for the sequence w, = (1 — f)se““gz € D(0,s), n € N, we
have that |1 — 2w,| = [1 — [2]s(1 — L)| = 1 — |2, as n — 4oc.

(iii) It can be proved in exactly the same way as (ii). O

Proposition 1.3.11. Letr > 0 and o € R. Then
(i) |1 —z2w| ~1— |22 ~1—|w? forall z,w € Dwith B(z,w) < r, and
(ii) Aa(Dp(z,7)) ~ (1 — |22+, forall z € D.

Proof. Let s = tanh(r) € (0, 1).
(i) By Lemma 1.3.10 (ii), (iii), we get that for all z,w € D with 5(z,w) <,

1 1—s|z] 1— |22 1 9
1— (1=
w21 ep = P20 s i s 1= kD
e 4 B
1 1+ sz _ 1—|z 1 9
1-— > (1 —
oo S1opp = Pz 21 R

respectively. Thus, |1 — zw| ~ 1 — |z|2. The relation |1 — zw| ~ 1 — |w|? can be proved in exactly the
same way.
(i1) By (i) and Lemma 1.3.10 (i), we have that for all z € D,

Aa(Dp(z,1)) = / dA,(w) = / ca(l— |w|2)a dA(w) ~
Dy (z,r) Dy (z,r)
1— ‘Z|2)282
~ 1—22adAw:1—z2a-(7~
/DM< ) dAw) = (1= B - =
~ (1 —z)*re,

52 52

2
because s < i \21232)2 < i- 32)2' O
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1.4 r-lattices in the hyperbolic metric

Lemma 1.4.1. There exists a constant C > 0 with the following property: If 0 < r < 1, then every
hyperbolic disc Dy (a, 1) can be covered by at most T% hyperbolic discs Dy(z,r).

Proof. Case I (special case). a = 0. Then, by Proposition 1.3.5, D, (0,1) = D(0, tanh(1)).
We symmetrically place points on C'(0, tanh(1)) so that the hyperbolic length of the arc between any two
adjacent points be less than or equal to 7. Since

| tanh(1)ie®| 27 tanh(1)

2m
I,(C(0,tanh(1))) :/0 1— [tanh(1)ei®2 “ ~ 1—tanh2(1)

Cq

the number of points we place is equal to +1= [] +1, where the constant C'; > 0 is independent
r

-
4
of r.

Next, we place points on the interval [0, tanh(1)] so that the hyperbolic distance between any two adjacent
points be less than or equal to 7. Since

tanh(1) 1 1 1+ tanh(l)
r([0, tanh(1)]) /0 12 =508 tanh(1) ’

the number of points we place is equal to +1=

1 C ..
- [2] +1, where the constant Cy > 0 is independent
1 T

of r.

anh(1)

Figure 1.1: The division of the disc Dy(0, 1) into 7% pieces

Now, connect the points on C'(0, tanh(1)) to the origin and draw circles centered at 0 through the points
on [0, tanh(1)]. This way, the hyperbolic disc D (0, 1) is divided into

C C C C . C 1
<1 +1>< =2 +1>§(1+1)(2+1>= 2 (G O) + 1

T T T T T T

CiCy 1 1 C

S 7‘2 +7“72(Cl+02)+r72:r72

pieces, where C' > 0 is independent of r (see Figure 1.1). Because of its construction, any such piece can
be covered by a hyperbolic disc with radius r. Thus, Dy (0, 1) can be covered by at most r% hyperbolic
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discs with radius 7.

Case 2 (general case). Let a € D. Then Lemma 1.3.9 gives ¢,(Dy(0,1)) = Dp(a, 1), and, by Case 1,
there exists a constant C' > 0, independent of , such that D, (0,1) C U?:l Dy,(zj,7), for some z; € D,
where n < T% Thus,

Dp(a,1) C gba( U z],r)> = U Ga(Dp(25,7) U n(¢a(zj),

J=1

Definition 1.4.1. Let r > 0. 4 sequence {ay} in D is called an r-lattice in the hyperbolic metric if:
(i) B(Givaj) > %7 Jorall'i 7& J, and
(i) D = U2 Da(ag,r).

Definition 1.4.2. 4 sequence {ay} in D is said to be separated in the hyperbolic metric if there exists a
real § > 0 such that 5(a;,a;) > 9, forall i # j.

Remark 1.4.1. Every r-lattice in the hyperbolic metric is a separated sequence in the hyperbolic metric.

Proposition 1.4.2. There exists a constant C > 0 with the following property: If 0 < r < 1 and {ay} is
an r-lattice in the hyperbolic metric, then every point z € D belongs to at most 7% of the sets Dy (ag, 1).

Proof. Let z € D. Then, there exists a number n € N such that z € Dy (ap,r) C Dp(an,1), by the
definition of the r-lattice. Suppose z € Dy(ag,,1) fori =1,..., N, where N > 1; hence

ag, € Dp(z,1), foralli € {1,...,N}. (1.19)

By Lemma 1.4.1, there exists a constant C' > 0, independent of 7, and Ay, ..., Ax € D such that

K
,
- nul D, ()\n, Z)’ (1.20)

where K < 5 C If N > K, then it follows from (1.19) and (1.20) that there exist 4, j € {1,...,N},i#j,
such that akl, ak]. € Dyp(Am, 1), forsome m € {1,..., K}. But

T T T
5(aki7akj)Sﬂ(akia)\m)+/8()\M7akj)<Z+Z 57
<

which is a contradiction to the definition of the r-lattice. Thus, N < K % O

Theorem 1.4.3. For any r > 0, there exists an r-lattice {ay} in the hyperbolic metric.

Proof. Let DN (Q +iQ) = {A1, Aa, ... }. By the density of Q +iQin C, D = J, > Dp(An, 5). We
construct a sequence {ay} in D as follows:

Set a; = A;. If we have chosen a point ay, of the sequence {\, }, then we choose aj1 to be the first
point after ay, in the sequence {\,,} for which the hyperbolic distance from aq, . . ., ax is greater than or
equal to 5. Inductively, we construct a sequence {ay} in D which is a subsequence of {),,} and fulfills
(1) of Definition 1.4.1.

Let z € D. Then z € Dy,(\p, §), for some n € N. If A, = ay, for some m € N, then

z € Dy, (am, g) C Dp(am,T).

If A\, is not in {a;}, then n # 1 and we let a; be the point of {a;} before A, with the largest index.
Thus, a;11 appears after \,,. We check the following two possibilities:
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(i) B(aj, \n) < 5. Then B(z,a;) < B(z, ) + B(An,aj) < § + 5 =7r,50 2 € Dp(aj,r).

(i) B(aj, An) > 5. Then, by the choice of a; and the fact that \,, does not belong in {ay}, there exists
an index kg € {1,...,7 — 1} such that 3(\,, ax,) < 5. Thus,

T T
Bz ax,) < Bz, An) + B(An, agy) < 5+ 5 =
0 z € Dy(ak,,r).

In all cases, z € Dy(ag, ) for some k € N. Thus, {ay} fulfills (ii) of Definition 1.4.1 and hence, it is
an r-lattice in the hyperbolic metric. O

We will now construct a specific type of r-lattice, called regular -lattice. First, we need the following
two lemmas.

Lemma 1.4.4. Let s € (0,1) and a,b,c € C(0, s) such that c = e'a, where 6 € (0,7] U (—,0), and
0,0), if6e(0,mx],

0,0), if6 e (~m,0) Then 3(a,c) > B(a,b).

b= ea, where 0 e {
Proof. Let a = se®” where 0 € [0,2m), and consider the Mdbius maps ¢1(z) = e ™z, z € D, and
¢ = ¢so¢y inD. Then, ¢1 maps C(0, s) onto itselfand ¢ maps [—1, 1] onto itself. By Theorem 1.1.3, ¢,
maps C'(0, s) onto a circle in D, which is perpendicular to R, since Mobius maps of D are conformal, and
so they preserve the angles between curves (see [ 14, Sections X.14, I1.12]). Also, ¢ maps a to 0,0 to s,
and if we apply ¢ on C(0, s), the order of the points a, b, ¢ is preserved, by the preservation of angles
(see Figure 1.2). Thus, by Proposition 1.2.2 and Theorem 1.2.7 (i),

Bla,c) = B(¢(a), ¢(c)) = B(0, ¢(c)) = In([0, ¢(c)]) = In([0, ¢(b)]) = (0, (b)) = B(a, b).

Figure 1.2: The transformation of the circle C'(0, s) through the Mébius map ¢

]
Lemma 1.4.5. Let 0 < 51 < s9 < 1, a = 51" € C(0,s1), where 6 € [0,27), b = s2¢% € C(0, s2),
and ¢ € C(0, s2). Then ((a,c) > B(a,b).

Proof. Consider the Mobius maps ¢;(2) = e ¥z, 2 € D, and ¢ = ¢, o ¢ inD. Then, ¢; maps
C(0,s1) and C(0, s2) onto themselves and ¢, maps [—1, 1] onto itself. By Theorem 1.1.3, ¢5, maps
C(0, s1) and C(0, s2) onto circles in I, which are perpendicular to R, since Mobius maps of D are

conformal, and so they preserve the angles between curves (see [ 14, Sections X.14, 11.12]). Also, ¢ maps
ato0, 0to sy, and bto ¢(b) = 1817 < 0 (see Figure 1.3). Let d € (¢(C(0,s2)) NR) \ {¢(b)}.
S

Then, by Proposition 1.2.2 and Theore%n 1.2.7 (i),
B(#(b),0) = B(b,a) = ly([a, b]) = tanh™' (s3) — tanh ™" (s1)

< tanh™(s2) = 50,6~} (d)) = B(s1,d) < B(s1,d) + 5(0, 51)
= In([s1,d]) + In ([0, 81]) In([0,d]) = B(0,d),
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SO

Figure 1.3: The transformation of the circles C'(0, s1) and C(0, s2) through the Mdbius map ¢

O]

Letr > 0. We construct a sequence in D as follows: Seta{ = 0. Forany k € NU{0}, let.S}, = C}, (O, %) .
Proposition 1.3.5 yields that, for all k € NU {0}, Sy = C(0, tanh(%)). For each k > 1, symmetrically
place ny, points {al, cey nk} on S such that the hyperbolic distance between any two adjacent points

is greater than or equal to 7, but less than 31

Proposition 1.4.6. The sequence {0} U {ai,...,al YU---U{d},..., nk} U... constructed above is
an r-lattice in the hyperbolic metric.

Proof Letk >1landi, j € {1 J Nk}, 1 F ]

If al, ; k are adjacent, then S(a” a;, ;“) > 5, by the construction of the sequence.
If this is not the case, then a;“ = e 6’a , where § € (0,7] U (—m,0), and there exists an index

M€ {L,...,ng}, A # i, A # j, such that a¥, a¥ are adjacent and af = e’ea , where

5 e {(0,9), %f@e(o,w], |
(0,0), iff e (—m,0)

By Lemma 1.4.4, 3(a¥, J) > B(ak,ak) > 5
Letk,l > 1withl >k, i€ {1,...,n}, 5 €{1,...,n}. Ifa? tanh(%) , where 0 € [0,27),
then by Lemma 1.4.5,

lr - Ilr kr _r
B(af,a}) > B(af, tanh (5) ) = 5 > >
Thus, for all k,0 € NU {0} and alli € {1,...,n.}, j € {1,...,n}, we have that 3(a¥, ]) > 5,
so the sequence fulfills (i) of Definition 1.4.1.
Let z € D. We have one of the following situations:
(i) z € SoU Dp(0,5). Then z € Dy (0,7).
(ii) z € Sk, for some k£ € N. Then there exist indexes i,j € {1,...,n}, i # j, such that al,a;C are
adjacent, aJ = ¢a¥ where § € (0, 7], and z = e?a¥, where 6 € [0, 6]. It follows from Lemma 1.4.4

that 3(a¥, z) < B(a¥, J)< 3 soz € Dp(al,r).
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(iif) zeDh(O EEDTY \ Dy (0, A1),
If 5(0 z) < 2 + %, then there exist indexes 4, j € {1,...,n}, i # j, such that af a are adjacent,

= tanh(%)e and aj eid ak, where 6 € [0,27), 6 € (0 7], and z = |z|e?, where@ € 10,0+ 0).
Then it follows from Lemma 1.4.4 that

k T 3r

B(z,af) < B(z,tanh (%) -¢') + B(tanh (%) e ak) < 2—%5( roah) < - it T=r
so z € Dy(ak,r).
We work for the case 5(0, z) > k—; + 7 in exactly the same way.

In any case, z € Dy(a¥,r), for some k € NU {0} and i € {1,...,n4}, so the sequence fulfills (ii) of
Definition 1.4.1 and, hence, it is an r-lattice. ]

Proposition 1.4.7. Let r > 0 and {ay} be a regular r-lattice in the hyperbolic metric. For all R > 0,
there exists a separation of {ay} into finitely many subsequences {ay1,...,0kn,...}, 1 < k < N
(N € N depends on r and R), such that

B(aki,arj) > R, foralli # jand k € {1,...,N}. (1.21)

Proof. Case 1. § > R. Then, the whole sequence {ay} fulfills (1.21), because it is an 7-lattice.

Case 2. 5 < R. Then there exists a number p € N such that p5 > R. From the circles Sy, with & small,
in which there might not belong many points of the sequence, we choose every point of {ay} to be a
subsequence on its own. When we reach a circle S;, where there are enough points, we choose them in
groups and then move on to the first circle S; whose hyperbolic distance from Sy, is greater than or equal
to pg. O

Proposition 1.4.8. Suppose 0 < r < 1 and let {ay} be an r-lattice in the hyperbolic metric. Then, for
each k € N there exists a Borel-measurable set Dy, C D with the following properties:

(i) Dy(ay, ) C Dy C Dy(ax,r), forall k € N,
(ii) D;ND; =0,if i # j, and
(iii) D = ;25 D
Proof. Let

+o00
D1:Dh(a1,r)\UDh<aj,2>. (122)

j=2

If {Di,..., Dy} have been constructed, we let

Dis1 = Dp(agsr, v [(UD) U (jq2ph(aj,z>>], (1.23)

hence, by induction, we arrive at a sequence { Dy} of Borel-measurable subsets of . Then, we get
immediately by (1.22) and (1.23) that Dy, C Dy(ay, r), forall k € N, and that D; N D; = 0, if i # 7,
because if z € D; for some j > 1, then z ¢ D;, foralli € {1,...,5 —1}.

Let z € Dy(a1, 7). If 2 ¢ Dy, then by (1.22), z € Dy(ay, ), for some A > 2; hence

B(ala aA) < ﬁ(ab Z) + ﬁ(zv CL)\)

r
27

%\ﬁ

<4

4
which is a contradiction to the definition of the 7-lattice. Thus, Dy (a1, ) C Di.
Let k € N. Fori € {1,...,k}, we have D; N Dp,(ap41, ) = Q) Indeed, D1 N Dp(ap41,%) =0
by (1.22), and if Dyy1 N Dy(ags1,5) # 0 for some A € {1,...,k — 1}, then there exists a point
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2 € Dyy1 N Dp(ag41, 7),soby (1.23), z ¢ Dy(aj, 5), forall j > X+ 2, and z € Dy(ar41, 5), which
is a contradiction, since k + 1 > A\ 4 2. Thus,

k
Dy, <ak+1, Z) N ( U DZ-) — 0. (1.24)
=1

On the other hand, if there exists a point z € Dy(axrt1,7) N Dp(ay, 7), for some A > k + 2, then
B(art1,ax) < Blagy1,2) + B(z,ax) < § + § = 5, which is a contradiction to the definition of the

r-lattice. Thus,
r T r
Dy <ak+1, 4) M < U b (aj, 4>> =0. (1.25)
j=k+2

By (1.23), (1.24) and (1.25), Dy(ak41, 7) C Dyy1, forall k € N.

Finally, let z € D. By (ii) of Definition 1.4.1, z € Dp(ay,r), for some A € N. If A = 1, then, by
(1.22), either z € Dy or z € Dy(a;, ) C Dy, for some j > 2. If A = k + 1, for some k& € N, then,
by (1.23), either z € Dy, orz € Dy, forsome i € {1,...,k}, or z € Dy(ay;,5) C Dj, for some
j > k+2.Inany case, z € U} Dy. O



CHAPTER 2

Bergman Spaces

Definition 2.0.1. For p > 0 and o > —1, we define AP(dA,) = H(D) N LP(D,dA,). These spaces
are called Bergman spaces with standard weights.

Remark 2.0.1. The Bergman spaces are vector spaces over C, as H (D) and LP(ID, dA,) are vector
spaces over C.

Remark 2.0.2. If p > 1, then the normed space (L”(D, dA,), ||-||p,a), where

p 1/p p
£l = ([ 177 d42) ™", foralt £ € L2(D. dAa)

is a Banach space.
If 0 < p < 1, then the metric space (LP(ID, dA,), dp ), where

dpo(f,9) = / |f —g|PdA,, forall f,g € LP(D,dA,),
D

is complete.

1/
Notation. We will denote by || f||, o the number ( / |fIP dAa) p, evenifO <p < 1.
D

2.1 Completeness and other properties
Proposition 2.1.1. Supposep > 0and 0 < r < 1. Then

1

2
FOP < / F(re®) P db, forall f € H(D). @
2 Jo

Proof. If f = 0, then (2.1) obviously holds. Thus, we assume that f #Z 0. Then, by the Identity Theorem
(see Sarason [14, Sections VII.13, VII.14]), the set f~1({0}) is at most countable.

Fix r € (0, 1) and suppose that f has no zero on |z| = r. We also assume that f(0) # 0 (otherwise
(2.1) holds obviously). We consider the function

g: D(O, %) — C, with g(2) = f(rz), forall z € D(O, }),

r

17
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which is holomorphic in D(0, 1) > D and nonvanishing on |z| = 1. Let {a1,az, ..., a,} be the zeros
of g in D, repeated according to multiplicity. Then, by [14, Section VII.13],

g(z)=(z—a1) ... (z —an) G(z), forall z € D(O, %), (2.2)

where G : D(0,1) — C is holomorphic and G(z) # 0, for all z € D. Since f(0) # 0, we have that
ar # 0, forall k € {1,...,n}, so we can define the Blaschke product

H forall|z\<m1n{‘—‘ E=1,. }::p6(1,+oo).
Note that
[B(O)] = lax] - ... - |an| € (0, 1) (2.3)
and
a
H ’|1 ’i W| = |¢pa, (2)] - .. - |¢a, (2)] = 1, forall z € ID. (2.4)

Now, set R :=min {2, p} > 1, and consider the function i : D(0, R) — C, with

h(z) = : H (1 — ayz), forall z € D(0, R).

Then h € H(D(0, R)) and h(z) # 0, for all z € D, hence there exists a real number R’ € (1, R) such
that h(z) # 0, for all z € D(0, R'). Since D(0, R’) is a simply connected domain, by [14, Section X.5]
there exists a branch of log k in D(0, R'), so we can define a holomorphic function ~? in D(0, R'). Then,
the Mean Value Property ([14, Section VIL.6]), (2.3) and (2.4) give

27 27
W(0) = — / ) do = [RO)P < - / ()P do =

2 Jo = o
g _ 1 [ |g(e”)P

< ———df =
[BO)|P ~ 21 Jo  [B(e?)P

1 2 . 1 2w )
> 11OF < g ABOP [ e < 5 [Tiseetpan

Suppose now that there exists a point z € C(0,7) such that f(z9) = 0. Since f~1({0}) is at most
countable, we can find a sequence {r,} such that lim, ;o 7, = 7, and, foralln € N, r,, € (r,1),
Tnt1 < Tn, and f do not vanish on C(0, r,,). Thus, by the previous case,

1 2 )
|F(0)P < 277/ | f(rne™)|P df, forall n € N. (2.5)

If £, : [0,27] — R, with f,,(0) = | f(rne??)|P, forall @ € [0,27] and n € N, then

lim f,(0) = |f(re®)|P, forall 6 € [0,2x],

n—-+00
and
1£n(0)] = | f(rne®) P < (max{|f(z)| : z € D(0,71)})?, forall § € [0,27] and n € N,

since f is continuous on the compact set D (0, r1). Applying [6, 2.24 The Dominated Convergence The-
orem] to (2.5), we take (2.1). O
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Corollary 2.1.2. Let p > 0. If f is holomorphic in an open set Q) C C and a € ), then

2 )
P < 5= [ Iftat ey,

for all r > 0, provided that D(a,r) C Q.

Proof. Since D(a,r) C € is compact and €2 is open, there exists a real number R > r such that
D(a,r) C D(a,R) C Q. Let ¢(2) = a + Rz, forall z € C. Then ¢(D) = D(a, R) and ¢ € H(D), so

Proposition 2.1.1 implies that
1 2w ) 1 21 )
P =1r6o0P < 5 [ [#(o( e ))[ 0= o [ istat ey an

2

Corollary 2.1.3. Letp > 0 and o > —1. Then

0P < [ 7)1 dAa(2), forail £ € H(D).

Proof. Using polar coordinates and Proposition 2.1.1,

[15@Parae = [ 1100 et =1 aae) = [ eatt=r2- L [ ir6ep asin
1

1
> /0 ca(l=12) 20| f(O)P dr = \f(0)|p/0 (a+1)(1—r%)* - 2rdr = |f(0)".

O
Theorem 2.1.4. Letp > 0, a > —1, and f € AP(dA,). Then

| fllp.a
1f(2)] < 1= |2’ Sorall z € D.

Proof. Let z € . Then the function

(1= s erere

F(w) = (f o ¢:)(w) - (1 — wz)2@ta)/p’

forallw € D,

is holomorphic in I, and

_ 22 2+a
/ |F () P dA (a0 / Fosuw)p T (1~ ) dAw)

| wz|2(2+a)

— |22t : :
AL |1- oy el [6:@)P)" 6 ) dAw)
/,f o e (e o el

ST

= [ 1)l dAa(w) = 171 <+,

where we used the Change of Variables Theorem ([6, Theorem 2.47a]) for the second equality, and
Proposition 1.1.2 (iii), (iv) for the third equality. Therefore, ' € AP(dA,), with |[F|l, 0 = [/ flp.a-
Using Corollary 2.1.3,

@)1= [2)EHP = |F0)] < ||Fllpa = I f

and the desired inequality follows. g

P,
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Corollary 2.1.5. Letp > 1, « > —1 and z € D. The function T, : AP(dA,) — C, with T, (f) = f(2),
Sforall f € AP(dA,), is a bounded linear functional on AP(dA,,).

Proof. The linearity of 7', can be proved easily. Regarding the boundedness, if f € AP(dA, ), then by

Theorem 2.1.4, )
IT-(f) = [f(2)] < (1- ’2‘2)(2+a)/pr

‘p@"
O

Corollary 2.1.6. Letp > 0, « > —1land S C D be a compact set. Then there exists a real constant
C =C(p,a,S) > 0such that

sup{|f(2)| : f € AP(dAq), || fllpa <1, 2€ 8} <C < 4o0. (2.6)

Proof. Since S is a compact subset of D, there exists a real R € (0, 1) such that S C D(0, R) C D. By
Theorem 2.1.4,

| (z)\ < Hf”p,oc < 1 < 1
- (1- ‘Z|2)(2+Oé)/p - (1- ‘Z|2)(2+04)/p -~ (1- RQ)(Q-*‘@)/:D’

forall f € AP(dA,) with || f|lp,a <1, and z € S. Setting C' = > 0, we get (2.6). [

1
(1 _ R2)(2+a)/p
Theorem 2.1.7. For any p > 0 and o > —1, the Bergman space AP(dA,) is closed in LP(D, dA,).

Proof. Suppose { fi.} is a sequence in AP(dA,) which converges in LP(ID, dA,) to g € LP(D,dA,); so
{fr} is a Cauchy sequence in LP(D, dA,).

Let .S be a compact set in D. By Corollary 2.1.6, there exists a positive constant C' (which depends
on p, v and S) such that |f(2)| < C, forall f € AP(dA,) with ||f||po < 1, and z € S. Lete > 0.

Since { f} is a Cauchy sequence, there exists a number kg € N such that

C

1/p € C
( |fn—fm\pdAa) <X foralln,m>ky = ||=fu— Zfmll <1, foralln,m > ko,
D C € €

p?a

hence Corollary 2.1.6 gives that, for all n,m > kg and z € 5,

%fn(z) — gfm(z) < C, or equivalently, | f,(2) — fm(2)] < e.

Thus, { f} converges uniformly on S to a function f. Since S was an arbitrary compact subset of I, by
the Weierstrass Convergence Theorem ([12, Theorem 10.28]), f € H(D).

Since f; — g, as k — 400, in LP(D, dA,,), there exists a subsequence { fx, } such that fr, — g, as
n — 400, almost everywhere in D. Thus, f = g almost everywhere in D, and hence f € AP(dA,). O

Corollary 2.1.8. For any p > 0and o > —1, the space (AP(dA.), |||lp.a) or (AP(dAq),dpo) is a
complete metric space.

Proof. By Remark 2.0.2, the spaces (LP(D, dA,), ||-||p,a) or (LP(D,dAs), dp.) are complete metric
spaces, so Theorem 2.1.7 gives that Bergman spaces are complete with respect to the corresponding
metrics. O

Proposition 2.1.9. Suppose 0 < p < 1and o > —1. Then
1 1/
[ irelaae < 2 ([ 1rer i) orat s € araa,)

wherevzﬂTa—2>—1.
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Proof. Let f € AP(dA,). Then, Theorem 2.1.4 gives that for all z € D,

1-p
FOI=FEP P < P (= D)

22
SO
1-p
t/v ) dA, (2 g/v ( Ekémw> a4, (2)
_ +1)(1 — |2/
wW{/v A iy AG)
— (v +1)- /u JP(L— [2?)® dA(2)
o+l
= e

O]

Remark 2.1.1. The above Proposition means that if 0 < p <1, > —land v = p — 2> —1, then
AP(dA,) C Al(dAy).
Proposition 2.1.10. Letp > 0, a € Rand r > 0. Then there exists a constant C = C(a,r) > 0 such

that
C

P < Gy /D P ),
forall f € H(D) and z € D.

Proof. Proposition 1.3.5 gives that D, (0,7) = D(0, s), where s = tanh(r) € (0, 1), so, using Proposi-
tion 2.1.1, we get that for all f € H(D),

/ ()P dAg(w) = / F@)P - ca(l — |w[?)® dA(w)
Dy, (0,7) D(0,s)

s 27
o 1Y 1
:/ ca(l— p?) / |f(pe”)|P dbdp
0 ™ Jo

= / Ceall— P 20 FO)P dp
0
= |f(0)|pAa(Dh(Ovr))a

hence

» 1
PO < 35,0

Let z € D and replace f by f o ¢, in (2.7) to get

/ |f(w)|P dAq(w), forall f € H(D). (2.7)
Dy (0,r)

[f ()P = |f 0 6=(0)7 |f 0 ¢=(w)[" dAa(w), forall f € HD).  (2.8)

ond)
[ —
~ Aa(Dr(0,7)) Jp, (0.
By the Change of Variables Theorem ([6, Theorem 2.47a]), Lemma 1.3.9 and Proposition 1.1.2 (iii), (iv),

/ ’fo(bz(w)‘pdAa(w) = / \foqbz(w)\p-ca(l — |w‘2)a dA(w)
Dh(O,T‘) Dh(O,T)
= [ )l = 6 )P) - o) dAGw)
Dy, (z,r)

(1—|z|?)*te
_ p (1= [2]?)>t
B /Dh(z,r) ’f(w)’ ’1 _ Ew[2(2+a) dAa(w).
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Thus, (2.8) becomes

1 1— 22 24
[ s S
AOC(Dh(O’T)) Dy (z,r) ’1*ZU]| (2+a)
forall f € H(D) and z € D.

Let f € H(D)andz € D. If w € Dp(z,7), then, by Proposition 1.3.11 (i), |1 — zw| ~ 1 — |2|2.
Therefore, there exists a constant C' = C(c, ) > 0 such that for all w € Dy, (z,7),

[f(2)F < dAa(w), 2.9

(1 _ |Z|2)2+a CN'

= ZwP@a = (1= 2R (2.10)
By (2.9) and (2.10),

pe 1 o C
P S B oy O s 4@
C
- G, )

where C' = C'(a, 1) := SN > 0. O

Aa(Dn(0,7))

Remark 2.1.2. The denominator (1—|z|?)2+® in the above Proposition can be replaced by A, (Dy,(z,7))
because of Proposition 1.3.11 (ii).

Proposition 2.1.11. Let p > 0, o > —1and {ar} C D be a separated sequence in the hyperbolic
metric. Then there exists a constant C' > 0 such that

+oo

Sl P @) < C [ [P ). forall f € A, @D

k=1

Proof. Since {ay} is separated in the hyperbolic metric, there exists a real number 6 > 0 such that
B(ai,a;) > 6, foralli # j. Letr = g > 0 and note that Dj,(a;,r) N Dy(aj,r) = 0, foralli # j,
because of the definition of the separated sequence. Thus, if f € AP(dA,), then

Z/ P dAy(2) = / F(2) P dAu /yf [P dAy(2), forall n € N,
Dy, (ak,r Ur=1 Dn(ag,r)
SO

+oo
D / [ WA < [ 1P @12

Also, by Proposition 2.1.10, there exists a constant C' = C'(a, 9) > 0 such that

c
fla pg/ f(2)|P dAa(2), forall k € N,
H@l < T [, WP dAa)

hence .
S (1= Jar)e fla) P < CZ/ 2P dAa(2). (2.13)
=1 Dp(ag,r

By (2.12) and (2.13), we get (2.11). O

Finally, we discuss a few things about H®°, which is the space of all bounded analytic functions in
. Note that H*° is a linear subspace of B(D) = {f : D — C| f is bounded in D}. It is known from
elementary Functional Analysis that B(ID), when equipped with the norm || f || = sup{|f(2)| : z € D},
becomes a Banach space (see [10, Section 1.10.1]).
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Proposition 2.1.12. (H*,|[|-||o) is @ Banach space.

Proof. Since (B(D), ||-||) is a Banach space, it suffices to show that H is a closed subspace of B(DD).
Thus, suppose { fx} is a sequence in H that converges in B(D) to a function f € B(D). Then

Jim sup{Ifi() = £(2)] 2 € D} = lim_|lfi = fllc = 0,

hence fr — f uniformly in D, as k& — 400. By the Weierstrass Convergence Theorem ([12, Theorem
10.28]), f € H(D), so f € H*. This means that H> is closed in B(ID). O

Proposition 2.1.13. H® is a Banach algebra.

Proof. For the definition of a Banach algebra see, for example, [2, Chapter VII, Definition 1.1].
Now, let f,g € H*. Then, f < || f||c and g < ||¢]|cc in D, so

[(F9)(2)] = [f(2)9(2)] < [ flloollglloo, forall z € D,

which implies that fg € H* and || fglco < ||f1ool| 9| co- O

2.2 The reproducing kernel for A2(dA,,)

It is known from Functional Analysis that the Banach space L?(ID, dA, ), where o > —1, can be supplied
with the inner product

(f,0)2.0 = /Df(w)g(w)dAa(w), forall f,g € L*(D,dA,),

and that ||-||2,4 is induced by this inner product. This fact makes (L*(D, dA,), (-, -)2.) a Hilbert space,
s0 (A%(dAy), {-,)2.a) is also a Hilbert space.

Let z € D. By Corollary 2.1.5, T, € (A%(dA,))*, so by the Riesz representation theorem ([6, Theorem
5.25]), there exists a unique function h, ., € A%(dA,) such that for all f € A%(dA,),

T.(f) = (f hoa)oa < f(2 /f oo (@) d Ao (w).

Let Ko : D x D — Cwith K,(z,w) = h, o(w), forall z,w € D. Then K, is called the reproducing
kernel of A%(dA,), because of the formula

/f (z,w) dAq(w), forall z € Dand f € A%(dA,). (2.14)

When o = 0, we write K instead of Ky and we call K the Bergman kernel of D.
Remark 2.2.1. Recall that every Hilbert space has an orthonormal basis ([6, Proposition 5.28]).

Theorem 2.2.1. Suppose {e,,} is an orthonormal basis of A*(dA,). Then
Zen en forall z,w € D, (2.15)

and the series (2.15) converges uniformly on compact subsets of D x D.

Proof. We will prove the theorem in steps.
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Step 1.
o0
> len(2)[? < +o0, forall z € D. (2.16)

Let z € D. Using Parseval’s Identity ([6, Theorem 5.27b]) and (2.14),

Ihea)3a = IKalz )30 = Z| Jren)2al? —Zlem NED)E

_z\/ (zw) dAq (w)| Z|en ,

and (2.16) follows.

Step 2. The series (2.15) converges absolutely for all z,w € D.
Indeed, by the Cauchy-Schwarz inequality and (2.16),

—+00 +00 1/2 +0o0 1/2
D len(z)en(w)] < (Z en(z)|2> . <Z |en(w)|2> < 400, forall z,w € D.
n=1 n=1 n=1

Step 3. Let S be a compact subset of ID. Then
sup{(2|en(2)l2> :zGS}:sup{‘Zanen(z)‘ :ZGSaZ‘GnP:l}. 2.17)
n=1 o —

Letz € Sandsett := (31 \en(z)\2)1/2 € [0, +00), because of (2.16). Ift = 0, then e,,(z) = 0,

1, ifn=1
foralln € N,sot =Yt anen(2)|, where a, = * " "LIft > 0, then
0, ifn>2
1R =1 ™=
~ 7 Z len(2)|? = Z 7 en(2)en(2) = 7 en(z)en(2)
n=1 n=1 n=1
and .
00 +oo
1 —2 1
>[5 el = g Y lenle)P =1
n=1 n=1
Thus,

{<§|€n(z)|2>1/2;265}C{‘Zanen )|:z€5, Zan|2—1} (2.18)

Let z € S and {a,} C C such that 3>"* |a,|? = 1. Then, by the Cauchy-Schwarz inequality,

2| < (i:fu)/ (gen(zn?)m - (§|en<z>|2) T e

(2.18) and (2.19) give (2.17).

Step 4. Let f € A%(dA,). Then

+o0

f(z) = Z(f, en)2,a€n(z), forall z € D. (2.20)

n=1
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By [6, Theorem 5.27¢],

— 0, as N — +o0. (2.21)

N
/= Zfengaenmfl dA.) Zfengaen—f

n=1 2.«
Also, by Theorem 2.1.4, we have that forall z € Dand N € N,
N Hzn 1 f7€n>2aen f”
S enlaaents) ~ 162)| < e,
= (1 — [2]?)EFe)/
so, using (2.21),
N

lim ‘ > (fren)zaen(z) = f(2)

N—+o0
n=1

=0, forall z € D,

and (2.20) follows.

Step 5. Let S be a compact subset of D. Then

sup{‘Zanen | zes, Z|an|2—1}—sup{\f(z)y;

20 =1} (2.22)

Let f € A%*(dA,) with || f||2.o = 1, and 2z € S. Then |f(2 | = ‘ S f en)2.aen(2 )}, because of
(2.20), and Parseval’s Identity ([6, Theorem 5.27b]) gives >+ |(f, en)o, Q\Q 11130 = 1; hence

(f(2)|: 2 €8, \fHZa:l}C{’Zanen ‘ 2eS, Z\anp_l} (2.23)

Letz € S and {an} C Cwith 327 |an|? = 1 < +oc. By the Riesz-Fischer Theorem ([ 10, Section
2.10]), the series 3" aye,, converges in A%(dA,) to a function f € A%(dA,), (f,en)2.a = an, for
alln € N, and || f[|3,, = +2¢ |an|? = 1. Thus, it follows from (2.20) that | f(2)| = | 25 anen(2)),

and so
{\Zanen )|:zes. Zlanl2—1}c{|f( Ik

(2.23) and (2.24) give (2.22).

(2.24)

Step 6. 1f S, T are compact sets in D, then there exist constants C; = C1(«, S), Co = Co(a, T) > 0
such that

Z len(2)en(w)] < C1Cy, forall z € Sandw € T. (2.25)

By Corollary 2.1.6, there exist constants C; = C1(a, S), Co = Cay(a, T') > 0 such that

sup{[f(2)] : 2 € 5, [fllz.a = 1} < C1 and sup{[f(w)[:w € T, [|fll2a = 1} < Ch,

s0 (2.17) and (2.22) give that

+00 1/2 +oo 1/2
(Z \en(z)|2> < Cy, forall z € S, and <Z |en(w)|2> <Oy, forallw e T.  (2.26)
n=1 n=1

Thus, (2.25) follows from the Cauchy-Schwarz inequality and (2.26).
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Step 7. The series (2.15) converges uniformly if z, w stay in compact sets of D.

Let fn(u,v) = 1 ex(u)er(v), forall u,v € Dand n € N. By Step 2,

lim  fn(u,v) Zek =: f(u,v), forallu,v € D. (2.27)

n—-+00

Let gn(u,v) = fu(u,0) = S3_; ex(u)ex(v), forallu,v € Dandn € N. Then g, (u, ), gn(-,v) are
holomorphic in D, for all n € N and u, v € D (see [14, Exercise 11.8.2]).

Let S, T be compact subsets of D, and z € S, w € T. Then, there exists a real » € (0, 1) such that
S,T C D(0,r). By Cauchy’s formula for a circle ([14, Section VIL5]),

1 1 1 1
gn(z,w) = / Mdu = / S / 79"(%1}) dvdu
2m Jjy=r u— 2 2 Jjy=r U — 2 270 Jiy=p V—W

27 2T gn 7‘6 zt) 19 zt
dtdo,
47r (rei? — 2) re” — w)

for all n € N. Thus, if n,m € N,

2T 2 0 it
|gn (2, W) — gm(z,w)| <= / / lgn (e ‘T’ e) — gm(re,re )‘dtde

629 — z||re’t — w|

SC/ / |gn (1€, re™) — g (re®?  ret®)| dtdo,
o Jo

r? 1

(2.28)

where C' = C(r, S, T) := > 0.

42 dist(C(0,7), S) - dist(C(0,7),T)
Note that by Step 6, there exists a constant C' = C'(«, C(0,7)) > 0 such that
+o0
D ler(u)er(v)] < C?, forallu,v € C(0,r),
k=1

SO
|gn(7‘€w, ,rez't) . gm(reiﬁ’ T,eit)| < |gn(T6i0, ,r_eit)| + |gm(rei9, Teit)’

<Y leslre)es(re )] + 3 lex(re)ex(re )]

k=1 k=1
+w . ——— ~
< QZ e (re?)er (re=it)| < 202,
k=1

foralln,m € Nand 6,t¢ € [0, 27]. Also, by (2.27),
lim g (re? re) = lim  fu(re?,re=®) = f(re?,re=%), forall 0,t € [0, 27].

m—-+00 m—-+00

Thus, by applying ([6, 2.24 The Dominated Convergence Theorem]) to (2.28), we get
2w 2 ) ) . )
lgn(z,w) — f(z,w)] < C/ / |gn (e rett) — f(re® re=™)| dtds, foralln € N,
o Jo
hence

2w 2m
sup |gn(z,w) — f(z,w)] < C/ / \gn (e, ety — f(re? re=™)| dtdf, foralln € N.
z€S,weT 0 0
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It follows from [6, 2.24 The Dominated Convergence Theorem] again that

2 2
lim C / |gn (r€®  7e) — f(re?, re=)| dtdd = 0,
n——+o0o 0 0
SO

lim  sup |ga(zw) — f(z,@)| =0, (2.29)

n—=+00 28 weT

which means that g,, — ¢ uniformly on S x T, where g(u,v) := f(u,v), for all u,v € D.
Now, let U := {w : w € T'}. Since (2.29) was proven for arbitrary compact sets in D, it holds also for
S, U. Therefore,

lim sup | fn(z,w) — f(z,w)| = lim sup |gn(z,w) — g(z, )|
n—=+00 e85 weT " n—=+00 8 weT "

= lim sup |gn(z,a)—g(z,a)] =0,
"—>+°°zesan’ n(za) (z:a)]

which means that f,, — f uniformly on S x T.
Step 8. By (2.16) and the F.Riesz-Fischer Theorem ([10, Section 2.10]) we have that, for all z € DD, the

series "> e,,(2)e,, converges in A?(dA,) to a function g, o, € A*(dA,), and (g: o, €n)2.0 = en(2),
foralln € N. Let f € A?(dA,). Then (2.20) and [2, Chapter 1, Theorem 4.13] give that for all z € D,

+oo +00
f(z) = Z(fv en)2,a6n(2) = Z<fa en)2,a(9z,a; en>2,a
n=1 n=1

+o0
— (1 ge0)r0 = /D )3 en(#)en(w) dA(w).
n=1

By (2.14) and the uniqueness of the Riesz representation theorem ([6, Theorem 5.25]), we get (2.15).
O

The above Theorem will be used to find an explicit formula for the reproducing kernel. First, we need
to find an appropriate orthonormal basis for A?(dA,). We use ideas in [7, Proposition 1.4].

F'n+a+2)
n!T(a + 2)
forms an orthonormal basis for A%(dAy).

Lemma 2.2.2. Lete,(z) = 2", forall z € D andn € NU{0}. Then {e,,} C H(D)

Proof. We will prove this lemma in steps.

Step 1. {e,} is an orthonormal subset of A2(dA,,).
Indeed, note that

2
/ren )P dda(z) = LT F2) /H?"dA

n'F (a —l— 2)
~s 0 [ [y Lani
= (a+ 1)1“727!1;{@04:2?) /0 207" (1 = p?)* dp
= (a+ 1)W/01w<1 1) dr
- (a+1)w ‘B(n+1a+1)
_ (a+1)F(n+a+2) . Fn+1)I'(a+1) _q,

n!l(a + 2) Fn+a+2)
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foralln € NU {0}, so e, € A%(dA,) and ||en|j2,0 = 1, forall n € NU {0}. Also, if n > m > 0, then

(en,em)2,0 = \/F(n rat?) \/F(m ra+t?) /(a +1)2"2™(1 — |2]3)* dA(2)
D

n!l(a + 2) m!l(a + 2)

1 2w )
= C(n,m, 04)/ / prAmein=m)(p _ p2)a. T dodr = 0,
0 Jo Q

2 9 o
because/ el(n—m)e do = { ™ uUn m, .
0

0, ifn#m
Step 2. Let f € A%(dA,). Then f(2) = Y72 a2 = Y% anbyaen(z), for all z € D, where
(n) T 2
ap = 1(0) and b, o, = M, for alln € NU {0}. We will show that
n! ’ IF'n+a+2)
+oo
= |an|?b3 ,. (2.30)
n=0

Let Sy(z) = Zg:() anz",forall z € Dand N € NU{0},and p € (0,1). Then, forall N € NU{0},

/;mWJSW(zMQdAa@Q——/;mW)S (2)Sv(2) dAa( > O(mIE:c%{/?sznindAa@J)

N N p 2 ) r

= Z <an Z am (o + 1)/ / r"+me’("7m)9(1 — ). - d9dr>

-0 0o Jo ™
N

p
Z lan|*(a + 1 / 2r2" (1 — ) dr.

0

Since Sn(z) = f(2),as N — +oo, forall z € D(0, p), and

|Sn(2)] < Z!an|\z|" < Z|an|p < 400, forall z € D(0,p) and N € NU {0}
n=0 n=0

(see [12, 10.5 Power Series)), it follows from [6, 2.24 The Dominated Convergence Theorem] that

/ If(2)?dAn(z) = lim 1SN (2)|? dAq (2 Z|an| a+1) / 202 (1 — ) g
D(0,p)

N=+00/D(0,p)

Let {px} C (0,1), with px < pgs1, forall & € N, and limg_, o, pr = 1. For all k € N, consider
the functions fi(z) = [f(2)|*Xp(0,p)(2), for all z € D, and gi(r) = 2r2" (1 — 1%)*x (o ) (r), for
all 7 € (0,1), where n € N U {0} is fixed. Then, by applying [6, 2.24 The Dominated Convergence
Theorem] to the sequences { f} and {gx}, we have that

li 2dA,(2) = [ i )2 dAa( 3 o
m o R / im il / ()] — 13

k——+o0 k——+o0

and

Pk 1 1
lim [* )i = [ tim ) dr = [t ),
k—+o0 0 0 k——+oo 0
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SO
= lim £ (2)P dAa(2) = hm Z’an| a+1)/ 2r2" (1 — )2 qr
poL” D(O:P)
= sup Z|an| a+1)/ 2r2n (1 — r2) > qr

= sup  sup Z]anl a+1)/ 2r2n (1 — r2) > gy
p€(0,1) NeNU{0} ,,—

N

o
= sup sup Z |an|*(a +1) / 2r2" (1 — ) > qr
NeNU{0} pe(o, 1)n : 0

= sup lim Z lan*(a + 1)/ 2r2n (1 — p2) > qr
NeNu{o} P17~

N

1
= sup Z |an|? (o + 1)/ 2r2" (1 — ) > qr
NeNU{0} 1 = 0

“+o0
_ Zyan\2(a+1)/ 2r2L(1 _ )2 gy — Zyan\ B
n=0

Step 3. Foralln € NU {0},
<f7 en>2,a = anbn,a' (231)

Letr € (0 1) and n € NU {0}. Then, the series ;25 apr*e’"=m0 converges absolutely, because
the series Z 0 a2 converges absolutely in D, and

+oo
k_i(k—n)0 Z akrkez(kfn)H
k=0

Since ;%1 ak|r® — 0, as N — +o0, we get that ch\[ agrkelk=mf _y S0 gy rheilk—n)o
uniformly in [0, 27, as N — +o0. Thus,

“+o0o
< ) Jaglr®, forall 6 € [0,27] and N € NU{0}.

k=N+1

(f.en)na /f m(a+1><1—|z\>dA<>

1 2m ) )
Gl / fre?)yrme=mf(1 — p2)e . L dodr
b 0 ™

n 1 a Z TL 0
= —n o T ( —T ) — E apr € d dr

bn,a

1 1
_ (Oé“‘ )/ T’n+1(1 71_2)04 . Z/ akrkez(k n) deT‘
0

Step 4. By (2.30) and (2.31),

+oo
1£13.0 =D I(f,en)2al?, forall f € A*(dAy),

n=0

hence it follows from [2, Chapter I, Theorem 4.13] that {e,, } is a basis for A?(dA,). O
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Proposition 2.2.3. The reproducing kernel of A%(dA,,) is given by

1

Ky(z,w) = A0y

, forall z,w € D.

Proof. Let {e,} be the orthonormal basis of .A?(dA,,) that was defined in Lemma 2.2.2. By Theorem
2.2.1 and a generalization of the Binomial Theorem ([ 13, Exercise 5.2.4]),

—+00 “+oo

B B F'n+a+2) J
Kale, ) = 3_en(elent) = 32 St
:1+(oz+2)zw—|—(a+2)2(!a+3)(zw)2+...
=14 (—a—2)(—2zw) + (o= 2)(;!0[ —2- 1)(—7;117)2 +...
=(1+ (—zw)) 2= (1_2171})6%2,
forall z,w € D. O

An interesting property of the Bergman kernel is its Mobius invariance.

Proposition 2.2.4. If ¢ € Aut(D), then
K(z,w) = ¢'(2) K(8(2), p(w))¢' (w), for all z,w € D,
or equivalently,
1 dE)¢(w
=207 - qf)(z)m)Q’for all z,w € D.

Proof. Let {e,} be an orthonormal basis of A?(dA), and set 0,,(2) = e,(¢(2))¢'(2), for all z € D and
n € N. Then:

(i) Using the Change of Variables Theorem ([6, Theorem 2.47a]),

/]an )|? dA(z) /|en NI2|P' (2)|* dA(z) /|en )|?dA(2) < +oo, foralln € N,

s0 0, € A%(dA) and ||o, |2 = |len]]2 = 1, forall n € N.

(i) Letn > m > 1. By the Cauchy-Schwarz inequality, e, &,, € L*(ID, dA), so using again [6, Theorem
2.47a],

(Ons Om)2 = /Dan(Z)Um(Z) dA(z) = /Den(¢>(2))¢'(z)€m(¢(z)) - ¢'(2) dA(z)
= /Den(z)em(z) dA(z) = (en,em)2 = 0.

(iii) Let f € A?(dA). Then qf, q; 11 € H(D), and by [6, Theorem 2.47a],
(f0¢_1)2 2dA 2dA
LGS 3] aae = [ ok oy @Paae = [ 116)Pdae) <+,
) ;;Z(Z 11 € A?(dA). Thus, [6, Theorem 5.27c] yields that
foo™h N
oo > ane, in A%(dA), (2.32)

n=1
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fog™!

Wherean:<¢/ = Is€

> for all n € N. Note that forall N € N,

1
O
= zanen

N
Z/D\f(qﬁ‘l(z))(qb‘l)’(z)Zanen(z)PdA(z)
N 2
= /D F(2) - (0 ((2)) — Zanen(qs(z))‘ (6 (2) 2 dA(2)
n=1
N
-/ ;C((ﬁ = mnen(6(2)| 19 dAG)

n=1

N 9 N 2
= [176) = X anen(@(2)¢ ()] dAE) = |1 = X anen
n=1 n=1

where we used [6, Theorem 2.47a] for the second equality. Therefore,

1
O
= zanen

)

7

Ngr-r&}oo Hf Zanan

because of (2.32).
Thus, {o,,} forms an orthonormal basis for A%(dA). By Theorem 2.2.1, for all z,w € D,

N—)—i—oo ‘

2.3 The reproducing kernel for A”(dA,), wherep > 1

Our next goal is to show that (2.14) holds for all f € AP(dA,) and z € D, where p > 1. For this, we
need the following results.

Proposition 2.3.1. Let o > —1. Then

/f )dAn(z), forall f € H*. (2.33)

Proof. Let f € H* and {r,} C (0,1), with r,, < 7,41, foralln € N, and lim,,_, ;o 7, = 1. Using
the Mean Value Property ([14, Section VIL.6]), we have that for all n € N,
2

/ F(2) dAa(z) = / T )@ - L[ ppe?) dodp
D(0,rn) 0 ™ Jo

= /0’""(04 +1)(1—p*)* - 2pf(0) dp = F(O)(1 — (1 —rp)*H1),
SO

lim £(2)dAqa(2) = £(0). (2.34)

=00 S D(0,rn)

On the other hand, | f(2)Xxp(o,r)(2)| < [f(2)] < [|f]loo, forall z € Dand n € N, hence, by [6, 2.24
The Dominated Convergence Theorem],

lim f(z) dAa(z):/Df(z) dAa(z). (2.35)

n—-+4oo D(O,T‘n)

(2.34) and (2.35) give (2.33). O
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Corollary 2.3.2. Leta > —1.If f € H*® and a € D, then

fla)=(1- ’a’2)2+a/H)H_J;(§|)2W1dAa(Z)' (2.36)

Proof. Indeed, if g = f o ¢, inD, then g € H*, hence by the Change of Variables Theorem ([6,
Theorem 2.47a]) and Proposition 1.1.2 (iii), (iv),

f(a) = g(0) %Y / 0(2) dAn(z) = /D (f 0 6)(2) - (a+ 1)(1 - rzP)adA(z)

a+2
= [ 1) @+ D=0 6 dAG) = [ 52 'CfZ"QLH dAa()
O
Corollary 2.3.3. Let o > —1. Then
flz) = /D (l—fs:fj)))?“‘ dA(w), forall f € H* and z € D. (2.37)

Proof. Let f € H® and z € D. By [14, Section X.5], the function g(w) = f(w)(1 — zw)**2, w € D,
is well-defined and holomorphic in D. Moreover, g € H°°, because

lg(w)] = | f(w)||1 = 2w|**? < || f[|o - 207, forall w € D.
Thus, by (2.36),

o2 = =Py [ Y aan)

b |1 = zw[2a+s
w)(1 — Zw)*t2
= JE [ = - e [ IO

= f(z):/(f(“_’)dAa(w)-

D 1— Zw)a+2

dAqs(w) =

O

27
f € HD)andr € [0,1). Then, M(-, f) is increasing, for all f € H(D).

Proof. Let f € H(D)and 0 < Ry < R2 < 1. By Poisson’s Theorem ([3, Chapter X, Corollary 2.10]),
there exists a function v : D(0, R2) — R, which is harmonic in D(0, R3), continuous in D(0, Ry) and
u(z) = |f(2)|P, for all z € 0D(0, Rz). Since u is harmonic in D(0, R2), it satisfies the Mean Value
Property ([3, Chapter X, 1.4 Mean Value Theorem]), so

1 2w )
Lemma 2.3.4. Letp > 0, a > —1, and consider the function M (r, f) = — / |f(re?) [P db, for all
0

1 21 )
/ u(re’) do, forall r e [0, Ra),
0

u(0) = 2m

and by the continuity of u in D(0, Rs), the above equality holds also for r = Rj.
Note that | f|P is a subharmonic function in D, due to Corollary 2.1.2, so it follows from [3, Chapter
X, Corollary 3.5] that | f(2)|P < u(z), forall z € D(0, Rz). Thus,

I 1 [ .
M(Ry, f) = 27T/O |f(Rye)Pdf < 27T/O u(R1e®) df = u(0)
1 271' . 1

27
-1 u(RgeZG)dﬁz%/o | (Rac®)[P d6 = M (R, f).
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The proof of the following Proposition is based on [4, §2.3, Theorem 3].

Proposition 2.3.5. Letp > 0and a > —1. If e, (2) = 2", forall z € D and n € N U {0}, then the set
span{e, : n € NU{0}} (which is the set of all polynomials in C) is dense in AP(dA,).

Proof. Let f € AP(dA,)and {r,} C (0,1), with 7, < 741, foralln € N, and lim, 4007, = 1.
Consider the functions f,(z) = f(rnz), forall z € D(0, %) and n € N, and denote by S the Taylor
polynomial of degree N of the function f,; that is, S%(z) = S_p_o axrkz¥, forall z € D(0, ) and

N € NU{0}, where ay, = £20@ forall k € NU{0}. By [12, 10.5 Power Series], S% — f,, uniformly
onD, as N — +o0, for all n € N. Since

N +o0
|fa(2) = SR ()] < [fu(2)] + D larlri] 2 < mé%!fn(Z)l + ) laglr) < +oo,
k=0 € k=0

forall z € Dand N € NU{0}, it follows from the Bounded Convergence Theorem ([9, Exercise 3.1.10])
that

1o — STIE = /D f(2) — S (2)PdAg(z) —> 0, foralln € N. (2.38)

N—+o0

Now, let S be a compact subset of D. Then there exists areal R € (0,1) suchthatS C D(0,R) C D.
Let € > 0. Since f is uniformly continuous in D(0, R), there exists a real number § > 0 such that
if z,w € D(0,R)and |z — w| < 0, then |f(z) — f(w)| < e. Also, by the convergence of {r,},
there exists a number ng € N such that 1 — r,, < 6, foralln > ng. Let z € Sandn > ng. Then
|rnz| <|z| < Rand |r,z — z| = |2|(1 — rp,) < 0, hence

|fu(2) = f(2)] = |f(rnz) — f(2)| < e

Thus, we have proved that f,, — f uniformly on compact sets of D, as n — +o0. By [6, 2.24 The
Dominated Convergence Theorem],

n—+o00 n—-+oo 27

27
lim _M(p. fu— £) = Tim_o- [ 1fu(pe) = Flpe)P 8 =0, forallp € [0.1), @239)
0

where M is the function defined in Lemma 2.3.4. Moreover,

1 2m ) )
M(p, fn—f) < — 2P(| £, (pe?) P OYPYd = 2P (M (p, fn) + M

(0ufu= 1)< 5o [ 2R + o)) a0 = 2Ot f) + M0 1)

= 2°(M(rup, f) + M(p, f)) < 2°*'M(p, f), forall p € [0,1) and n € N,

where we used Lemma 2.3.4 for the last inequality, and note that
2 Lot i0 2 P

Mip. )+l D= pdp = [ [T 18P (0 k10 ) - L dbdy

0,1) 0 Jo T (2.41)

1 p
:2/D|f(z)| dAy(2) < +oo.

(2.39), (2.40), (2.41) and [6, 2.24 The Dominated Convergence Theorem] give
I = I = [ 1a2) = FRI dAa(2)
D
1 2 ) ) p
= [ [ 150" = s (D= Lasdp @)
o Jo T

n—-+oo

1
=2 [ M=) (ot A= pdp > 0
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Let € > 0. By (2.42), there exists a number ng € N such that

€
1 = Frollpa < 5 (243)
By (2.38), there exists a number Ny € N such that
€
fno = SR Ip.a < - (2.44)
(2.43) and (2.44) give
1f = Sillpa < AIf = Frollpar + [1fro = Spg lp.a <6,
which means that polynomials are dense in AP (dA,,). O

In the proof of the following Theorem we use an idea of [11, Theorem 8.2.1].

Theorem 2.3.6. Letp > 1 and o > —1. Then
f(z) = / f(w)Kq(z,w) dAy(w), forall z € Dand f € AP(dA,).
D
Proof. Let z € D. Since

lg(w) 1 / 1
/]D)’1 — apTe dAq(w) < A= J, lg(w)| dAq(w) < 400, forall g € A (dA,),

the functional A, given by

_ g9(w) 1
Az(g) = /]D) m dAa('UJ), for allg € .A (dAa),
is well-defined, linear and bounded on A'(dA,). Consider, also, the functional T, € (A'(dA,))*,
defined in Corollary 2.1.5. By [2, Chapter I1I, Proposition 2.1], A, and 7T, are continuous with respect
to H I1,a-

Now, let f € AP(dA,). Since A, is a finite measure (see Remark 1.3.3), it follows from [9, Exercise
7.3.3] that f € A'(dA,). By Proposition 2.3.5, there exists a sequence of polynomials {p,,} such that

lim |[pn = fll1,a = 0.

n—-+4o0o

Since p, € H*® foralln € N,

f) =T() =T lim pa) = lim T(pa) = lim pa(z)

n—4oo n—-+o0o n—-+oo
Q@37 .. Pr(w) L
2 i, e 4ot = i, A

= tim p) =20 = [ T daw)

1— zw)?-i—oc

2.4 Projections and the dual of AP(dA,,)

Since A?(d A, ) is a closed subspace of the Hilbert space L?(ID, dA,,), there exists a bounded linear oper-
ator P, from L?(DD, dA,) onto .A?(dA,), called the orthogonal projection of L2(DD, dA,) onto A?(dA,)
(see [10, Sections 2.8, 2.11] for the definition and properties of the orthogonal projection). If « = 0, we
write P instead of Py and we call P the Bergman projection on ID.
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Proposition 2.4.1. Let o > —1 and f € L*(D,dA,). Then

/f (z,w) dAq(w), forall z € D.

Proof. Let z € D. Using the functional T, defined in Corollary 2.1.5, and (2.14),

Pozf(z) = Tz(Paf) = <Pafa Ka(za ')>2,a = <fv Pa(Koz(Zv '))>2,o¢ = <f7 Ka(za ')>2,a’

where the third equality holds because of [10, Proposition 2.15 (iv)], and the last equality holds because
P.g = g, forall g € A%(dA,). O

Our next goal is to find projections from LP(D,dA,) onto AP(dA,), for p > 1. First we need the
following results.

Lemma 2.4.2. Letr € (0,1) and b € R. Then there exists a constant C = C(r,b) > 0 such that
(1—2)°— (1 —w)’ <Clz—w|, forall zyw € D(0,r).

Proof. Let z,w € W By a generalization of the Binomial Theorem ([13, Exercise 5.2.4]),
b b I k b & 400
a9 === [ S0t (R) e = S0 (D] < 3| ()1t -t
k=0 k=0
+o0 b
— Z ‘ (k)‘ B B PR Ce S T
k=1
<§:®‘ b ‘ |z = w] -kt = yz c=k+1)] 4,
>~ k z w r —w 1) .

b—k
’Z o 'UJ’ Z ( )‘ . Tk,

Kb —1) - (b—k)|
and the seriesz I -r" converges (we can easily verify this by doing a ratio test).

k=0 ’

b(b—1 b—k

Thus, forC’>Z‘ ( ) k;' a )’-rk20,wehavethat](l—z)b—(l—w)b|§C|z—w]. O

k=0 ’

Proposition 2.4.3. Let o > —1 and F : D — C be a Borel-measurable function on D such that
/ |F(w)Kq(z,w)|dAq(w) < +00, forall z € D. (2.45)
Then, the function G : D — C given by
/F a(z,w) dAg(w), forall z € D,
is holomorphic in D, with

/F w) dAq(w), forall z € D.
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Proof. Let z € D. Then there exists a real R > 0 such that D(z, R) C . Since

0K, 24+ a)w
W(z,w) = W, forallw € D,
we get that for every sequence {h,,} in D(0, R) \ {0} with lim,,_, o by, = 0,

. Ka(Z—th,w)—Ka(Z,U)) (2+(X)U_)
lim = - )
n—+00 hn, (1 — zw)3+e

for all w € D. (2.46)

Setr := |z| + R € (0,1). Then (z + hy,)w, zw € D(0,r), forall n € Nand w € D, hence by Lemma
2.4.2, there exists a constant C; = C(r, «) > 0 such that

(1 = 20)*T — (1 = (2 + hp)w)*™| < C1|2w — (2 + hp)w| = Cy|hpwl|, foralln € Nand w € D.
Thus, foralln € Nand w € D,

1 1
(1— (z+ hp)w)2te (1 — zw)2te
1 |(1—zw)* —(1 (z+ hy)w)* |
T kel L= (2 + hy) w21 — zw|2te
C’1|w| 01
= L= (2 + hp)w2He|l — zw2te = (1 — 7)2CF)

Ko(z + hp,w) — Ka(z,w)‘ 1
hy N

=:C.

It follows that

F(w)”Ka(z + hnz;:: — Ku(z,w) ‘

< C|F(w)|, forallw € Dandn € N, (2.47)

and note that

/D’F(w)’ dAq(w) = 92+a A ‘1;2(—’— w)| dAq(w) < 22+a/D|1|_F;(/Z’)2‘_~_adAa(w) < 400, (2.48)

because of (2.45). By (2.46), (2.47), (2.48) and [6, 2.24 The Dominated Convergence Theorem],

. G(Z+hn) —G(Z) Y Ka(z+hn7w) _Koz(z;w)
T h i T h Al
-/ F(w)% (),
¥ / . G(z+ h
¢/(2) = lim /F % (2 w) dAg (w).

O
Proposition 2.4.4. Letp > 1, a > —1 and v > —1 such that p(y + 1) > o+ 1. The operator P,, given
by
(1 — |wp)
f (z,w) dAy(w) = (v + 1) (7_f(w) dA(w), (2.49)

p (1 —zw)*ty
is a bounded projection from LP(D,dA,) onto AP(dA,).

Proof. By Theorem A.0.2, the operator P, is bounded on LP(ID, dA,) and

1 wlliwldaw = 6+ [ - W= OPYY ) )] duw) < +oo,
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forall z € Dand f € LP(D,dA,). Then, Lemma 2.4.3 yields that P, f is holomorphic in I, for all
feLP(D,dA,), so Py(LP(D,dA,)) C AP(dAy).
It remains to show that P, is onto A”(dA,). Let z € D and consider the functional

A (f) = Py f(2) = T.(Py f),
forall f € LP(D,dA,), where T, is the bounded linear functional defined in Corollary 2.1.5. Then
(AN = NPy O < TPy fllpa < NTE([P[[[f]lpa, forall f e LP(D, dAq).

Thus, A, is a bounded linear functional, for all z € .
Now, let f € AP(dA,). By Proposition 2.3.5, there exists a sequence {p,, } of polynomials such that

lim ||p, — f|lpa = 0.

n—-+o0o

Let z € D. Since p,, € H*® forall n € N,

f(Z) = Tz(f) = Tz( lim pn) = lim Tz(pn) = lim pn(z)

n—-+o00 n—-+o00 n—-+o0o

237) .. L
2 tim /D pn(0) K (2, 0) dAy (w) = Tim A (pn)
= A lim_pa) = AL(F) = P (2),
hence f = P, f in . O

Theorem 2.4.5. Let 1 < p < +o0, %D + % = land o > —1. Then (AP(dA,))* is isomorphic to
A1(dA,), and the two spaces have equivalent norms.

Proof. Consider the operator J : A%(dA,) — (AP(dA,))*, given by Jh = 1, forall h € A%(dA,),
where

In(f) = / f(2)h(z) dAy(z), forall f € AP(dAy) and h € AY(dA,).
D
(1) J is well-defined. Indeed, [6, 6.2 Holder’s Inequality] gives
/ |f(2)||h(2)] dAa(z) < || flipallhllga < 400, forall f € AP(dA,) and h € AY(dA,),
D

so Jh € (AP(dA,))* with
TR < |[hllga; (2.50)

forall h € A%(dA,).
(i) J(hy + ha) = Jh1 + Jhs and J(Ah) = NJh, for all hy, ha, h € A%(dA,) and A € C.

(iii) Letl € (AP(dA,))*. By the Hahn-Banach Theorem ([8, Theorem 3.2]), there exists a bounded lin-
ear functional A : LP(D, dA,) — C, suchthat A(f) = I(f), forall f € AP(dA,), and ||A]| = ||I||. The
classical duality between LP spaces ([9, Theorem 7.15]) yields that there exists a unique g € L4(D, dA,,)
such that A = A, in LP(ID, dA,), where

Ay(f) = /Df(z)g(z)dAa(z), forall f € LP(D, dA,).

Also, Theorem A.0.2 implies that the operator

Laf(z) = /D )| Koz w0)| dAa (),
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is well-defined and bounded on LP(ID, dA, ), hence, if f € AP(dA,), then [6, 6.2 Holder’s Inequality]
implies that

//\f )1 (2 0)1g(2)] dAa(w)dAn( /rg Lo f () dAa(2)

< lgllga - 1 Lafllpa < +oo.
By Proposition 2.4.4 and [6, 2.37 The Fubini-Tonelli Theorem], we have that for all f € AP(dA,),

() = Ag(f) = / F(2)9(2) dAa(z) = /P £(2)3(2) dAa(2)

= [ [ s daw)aa (2
= [ [ )R a2 )

/ fw / Ko(w, 2) dAg(2) dAq(w)
— /D F () Pag(w) dAa(w) = Ipo(f) = [T (Pag)l(f).

so J is onto (AP(dA,))*.
(iv) Suppose that Jhy = Jhe =1 € (AP(dA,))*, for some hy, hy € A%(dA,). Then

Zakz and hg(z Zbk?«“ forall z € D,
k=0

®) 0 %) o
1k' ) and by, = 2k'( ), for all k € NU {0}.

Let n € N U {0} and set e,(2) = 2", for all z € D. Note that the series > ;-5 a,2"2* converges
absolutely in D, so for a fixed r € (0,1), the series Y ;20 arr" %=k converges uniformly on
[0, 27]. Also, consider a sequence {r,,,} C (0,1) with lim,, 4007, = landr,, < 7p41, for all
m € N. Then [6, 2.24 The Dominated Convergence Theorem] yields that

where aj, =

lim i (E) dAn(z) = (/XWh1@>dAa@o 2.51)
m—=100 JD(0,rm) D
and
Tm 1
lim an (o + 1)r?" (1 — 3 - 2rdr = / an(a+ 1) (1 —r2)* . 2r dr. (2.52)
m——+00 0 0
Thus,

oo
@51) .  nk
=7 lim / arz"zZ" dAq(z
D(OT‘W)Z )

m—-+00
k=0

m@@_éwm@mu@

Tm 21 +00 ]
= lim (a+1)(1 —r*)>. T/ Z apr" TR R gody

m—+o00 [
— iim [T na-e io ok /27r k) dgd (2.53)
_m—1>r£oo0 a r Wﬁakr ; e r
Tm r
= mgr}rloo (a+1)(1 —r?)~. ;dnr% <2 dr
0

1
@/ an(a+ 1)r#"(1—r?)* - 2rdr = an(a +1)B(n+ La+1).
0
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Similarly,
Jha(en) = bp(a+1)B(n+1,a +1). (2.54)

Since Jhi(e,) = Jha(ey), foralln € NU {0}, (2.53) and (2.54) give
an(a+1)B(n+1,a+1)=b,(a+1)B(n+1,a+ 1), foralln € NU {0},
that is, a,, = by, for alln € NU {0}, and hence, h1 = hy in D. This means that J is one-to-one.

(v) Let [ € (AP(dA,))*. Using the notation in (iii), there exists a function g € L?(D,dA,) such
that J(P,g) = [. Since J is one-to-one, J !l = P,g, and by Proposition 2.4.4 and the fact that
LY(D,dA,) and (LP(D, dA,))* are isometrically isomorphic ([9, Theorem 7.15]),

Tt

g0 = [Fagllga < [[Falllg

ga = | PallllAgll = [[PalllIZ]]- (2.55)

By (i), (ii), (iii), (iv) and (v), J is an isomorphism, and it follows from (2.50) and (2.55) that (AP (dA,))*
and A?(d A, ) have equivalent norms. O

Proposition 2.4.6. Letp > 1, « > —1land~y > —1 such that p(y + 1) > « + 1. Then the spaces
AP(dAy) and LP(D, dA,)/KerP, are isomorphic.

Proof. Since P, is onto, the above result is known from elementary functional analysis (see [8, Section
3.4)). O

2.5 A characterization of AP(dA,,) in terms of derivatives

Lemma 2.5.1. Letp > 0, « > —1 and n € N. Then, there exists a constant C = C(p,a,n) > 0 such
that

[ 1P ddu) <€ [ 4GP dAu(z), forail § € H(D).
D D
Proof. Let f € H(D) and z € D(0, ). By Corollary 2.1.3,
FEP =1f o d:(0) < / 1 0 6 (w)|P dAq (w)
D
— [ eswlPdtaw)+ [ Ifes. )P ddaw)
lw|<3

1

(2.56)

Set I := [, <1 |f 0 d=(w)|? dAa(w). Since f o ¢. € H(D(0,1)) N C(D(0, 1)), by the Maximum
Modulus Principle ([ 14, Section VII.16]) there exists a real §y € [0, 27) such that

7o 0-(w)l < |foo.(2e)| forailw e D(0,2),

I, S/ fo¢z<§ei90>
jwl<1 4

where By = Bi(a) = [, |1 dAa(w) > 0. Also, by Proposition 2.1.10 and the fact that we can find

|lwl<5
a hyperbolic disc inside any euclidean disc (Corollary 1.3.6), there exists a constant Bo = Ba(«a) > 0
B
"< 2/ |f 0 ¢ (w) P dAa(w). (2.58)
b(3e.1)

such that -
‘fo@(zew“) (- (%)2)2+a

It follows from (2.57) and (2.58) that

SO
p

" dAu(w) = Bl‘f o QSZ(%eZHO) , (2.57)

IzSB o Q, pdAa SB o @, pdAa ,
Jofgan IR SB[ 7ol o
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s

2

(-
lf(z)]P < Cy /1 |fod.(w)PdAy(w), (2.59)
5<|w|<1

where B = B(«a) = By - > 0, hence by (2.56),

where C1 = C1(a) = B+1 > 0.
Set . = ¢! ({weD: 3 <|w <1}) = {we]D) -
Theorem ([6, Theorem 2.47a]) and Proposition 1.1.2 (111) (1V)

—w

‘ < 1} By the Change of Variables

ﬁ< Kl‘fod)z( w) [P dAq( / |f(w)|P(a+1)(1 — |- (w)] )a‘(blz(w)|2dA(UJ)

|Z’ )2+a A
[ P e dAa).
s0 (2.59) becomes
p 1 — ‘Z‘ )2+a
P <G \f T zepe dAq(w). (2.60)
Note that if w € €2, then
1 z—w |z + |w]
2 l—zwl = 1—1z] "’
o)
| > | > 1 31 1
e R L T IR
Also,
1—|z|?)2te 1 1
( =) < < for all w € D,

— zp|2(24a) _ 2(2+a) — 1\2(2+a)’
12w RE) 1-1
hence (2.60) becomes

FEP < /  rdta) 2.61)

Cy

224«
(1 5

where Cy = Cy(a) = > 0. Set C3 = C3(p,a,n) = 8™ - Cy > 0. Then (2.61) gives

C3

P < o2

F(w)P dAa(w) < C / ]| (w)]P dAe(10)

1<lwl<1 1<lwl<1

(2.62)
< Cg/D|w”f(w)|pdAa(w).

Since (2.62) holds for an arbitrary z € D(O, %),

2)|PdAL(z) < C w" f(w)|P dAg(w)dAq(z
[ rer s e [ [ damin) .

el / ™ f ()P dAa (1),

where Cy = Cy(p,a,n) = Cg/ dAqs(z) > 0. On the other hand,
l2l<1

/1 PP dAa(z) < 4™ / 2P ()P dAa(z)
2<]zl<1 1<lzl<1 (2.64)

< 4””/@ 12" f(2)|P dAn(2).
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Set C' = C(p, a,n) = max{Cy, 4"} > 0. Then (2.63) and (2.64) imply that

/D FEP dAalz) = /ZI<i FEP dAa(z) + / P dAa(2)

i<|z\<1

<20 [ P dAu2) = € [ )7 dA(o)
where C' = C'(p,a,n) = 2C > 0. O

Proposition 2.5.2. Leta > —1, n € Nand f € H(D) such that

F(0) = f(0) = ... = f"D(0) = 0. (2.65)
Then, for all z € D,
- 1 (1 = Jw[?)" ) (w)
flz) = (a+1)-...-(a+n) /D W (1 — zw)2+e dAq(w), (2.66)

provided that the integral in the right side of (2.66) converges.

Proof. Assume that the integral in the right side of (2.66) converges for all z € D, which means that

/ (1= |w)" [ £ (w)|
D

[o|"[1 — zw[2+e dA,(w) < 400, forall z € D.

By Proposition 2.4.3, the function g given by

_ 1 (1~ w2y ) w) y
9(2) = @t D) (atn) /D T(1 = z0)2%0 dA,(w), forall z € D,

is holomorphic in D and, working as in the proof of Proposition 2.4.3, we can differentiate under the
integral sign. Thus, if 0 < k <n —1,

1 (1 — )" f) (w)
®)(z) = dAq(w), forall z € D
S e s PR R B Py /D T R(1 = sp)ariiz MAa(w), forallz €D,
while
_ 2\n £(n)
(n) :a+”+1/ (1= |w*)" "™ (w)
9" (2) atl Jy (1= zaw)eini dAq(w), forall z € D. (2.67)
By the Taylor series expansion of f in D,
100 £(m) 0
flw) = z:g / m'( )wm, forallw € D,

so [12, Theorem 10.6] gives

I (m) IX p(mtn)
0 (w) = Z mm—1)-...-(m—n+ 1)f ml(o)wm_" = Z fm'(O)wm, for all w € D,
m=n ’ m=0 ’
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and the series converges absolutely in . Thus, if we fix 0 < k < n — land r € [0, 1), then the series

Sk wrmei(m”b_k)e converges uniformly in [0, 27], so

1 (1= Jw?)" f) (w)
) () — |
I (0) (04+1>(04+]€+2) 04—|—n / wnh—k d Oé(w)
27r . n )(Te 9) ,
= 1— 2o 1
(Oé+k+2 a+n / / rn— k‘e z(n k;) ( r ) ﬂ_dadr
1 n+a 27 9O c(m4n) .
= / nrik)l / Z fil(o)rmez(m-kn—k)& dOdr
(a+k+2) (a—i—n) o T r o = m)
1 1 1 (1 o ,r2)n+Oé +o00 f(m-l—n) (O) " 2 H(mAn_k)p
(a +k+2) .- (a+n) /0 T pn—k—1 Z " /0 e dbdr

m=0

=0,
because m +n — k > 0 for all m € NU {0}. Therefore, by (2.65),
F®0) =0=g™(0), forallk € {0,...,n —1}. (2.68)
Note, also, that

/H)’f(n)(w)\dAa+n(w) - O‘;“Z;“l/mu o)L 0) | dA ()

atn+l [ (1—[w) " (w)

= Tari /D ER ddalw)

<Platnty [ (-,
D

a+1 |@|?|1 — zw|?Te

a(w) < 400
by our hypothesis, hence f( € A!'(dAq.,). Then, Theorem 2.3.6 gives that for all z € I,

™) (w
£ (2) :/D(l—fmz)g?JBWLdAaJrn(w)

+n+1 ) (w) (1 — |w|?)™(1 — |w[?)* )
=i fer s e a2 g,

so f(*1(z) = g1 (2) 4 ¢, forall z € D, where ¢ is a constant. In particular, by (2.68), ¢ = 0, hence
f=D = g(»=1) in . Using (2.68) repeatedly, we get that f = g in ID. g

For the following Theorem we used [7, Section 2.3].

Theorem 2.5.3. Letp > 0,n € N, a > —land f € H(D). Then, f € AP(dA,) if and only if the
function g(z) = (1 — |2|2)" f™)(2), z € D, is in LP(D, dA,,).

Proof. First assume that f € AP(dA,). Ify > HTQ > (), then using Theorem 2.1.4 and Remark 1.3.3,

[irelaae < [ ol ia e = 11

_ 0+ Dl llpa
v e

(7 +1) / (1 2225 dA()

< 400,

hence f € A'(dA,), and so Theorem 2.3.6 yields that

— |w|?
f(z)=(y+1) /D ((ll—zu‘)|)21;f(w) dA(w), forall z € D. (2.69)
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Working as in the proof of Proposition 2.4.3, we can integrate under the integral sign in (2.69) to get

w™(1 — |w|?
f(")(z):(~y+1)-__..(,y+n+1)/ (1—|w[)”

D Wf(w) dA(w), forall z € D,

SO

_ 2
g(z) = O (1 —|z»)" /D %w"ﬂw) dA(w), forall z € D, (2.70)

where C; = Ci(y,n) = (y+1)-...- (y+n+ 1) > 0. We now distinguish two different cases with
respect to the values of p.

Case 1. p > 1. Since
[l dauw) < [ 17 ddafw) < +o0

and —pn < a + 1 < p(y + 1) by the choice of y, Theorem A.0.2 for a = n and b =  implies that

g € LP(D,dA,).

Case 2. 0 <p < 1.Set A = p(y+ 2) — 2 and note that A > o > —1 by the choice of 7. Also, for any
f(w)

m, w € D. Then, forall z € D, F, € H(D) and

[P s = | TP 3 1)1~ ) dAw)
D D

|]_ _ Zw|p(n+2+’y)

z € D, consider the function F,(w) =

= /D (1— ||J;|()Z;<)£2+V) A+ 1)1 = [w]*)* dA(w)

1 A+1
(1— |2[)P(r+247) o + 1 / [f(w)P dAa(w) < oo,

hence F, € AP(dA)). By (2.70) and Proposition 2.1.9, we have that for all z € D,

w —n
9(a) < 0y [ Sl A
<SP [ IR da w
¢ n 1 1
< Sha-ppr P ( [IRwrasm)

SO
|f (w)[?

T swpnizr) (1 —|w|*)* dA(w), forall z € D,

l9(2)|P < Cy(1 - \2\2)@/@

where Cy = Co(n,p,y) = CY (A + 1)17P > 0. Using [6, 2.37a The Fubini-Tonelli Theorem],
w p
[lsraac <. [ [o-prr Lo - P dawia)

2w|p(n+2+7

:02(a+1)//(1—|z12)”p+a [Fw)? (1~ [w]?) dA(w)dA(:)

‘1 _ Zw|p(n+2+7

et ) [ 1rwra - [ T AR dAw).

1— zw|p TL+2+’Y)

(1 — [
|1 — Zw|p(n+2+7)
t=np+a>—-landc = p(2+79) —a—2 = A — «a > 0 implies that there exists a constant
C3 = Cs(p,, a,n) > 0 such that

Let w € D and set [(w) = / dA(z). Ifw € D\ D(0, %), then Lemma A.0.1 for
D

1

=G G uppa

2.71)
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Ifw € D(0, 1), then

; (1 — |z|?)wte op(n+2+7) op(n+2+7) 1 57
= < . . .
(w) < / D (1-4)° p(n+2+7) () np+a+1l " np+a+l (1-—|w2)r @72)
hus, if Cy = C C ) h h
Thus, if Cy = Cy(p,y,a,n) = max{ 3, m} > 0, we have that
[ laP ddu) < Catat ) [ 17GPG =l 1(w) dAGw)
< CaCifa+1) [ f@)P (- [uf)? dA(w)
D
= CQC4/ | f(w)|P dAq(w) < +o0,
D
hence g € LP(D, dA,).
Conversely, assume that g € LP(ID, dA,). We distinguish two cases for f :
Case 1 (special case). We assume that
F(0) = f'(0) = ... = @ (0) = 0. (2.73)
Then by the Taylor series expansion of f in D we have that
+oo (k)
f(w) = Z ! kfo)wk, for all w € D,

k=0

so [12, Theorem 10.6] and (2.73) give

4o (k) =W
) = S kk = 1) (kb 1) k!<0)wkn -y (Z _g!wkn
— k=2n

T2 f(k) (k+2n) (
/ (O) ka+ w”, forall w € D.
n)

k=2n

0, ifw=0
areal M > 0 such that |G(w)| < M, forall w € D(0, 3). Consider the function

AN
This means that the function G(w) = { wr o ifw e DA{0} , is holomorphic in D, so there exists

h(w) = (1= ‘w|2)nf(n)<w)7 forallw € D\ {0}.

u—]n
Let us consider the case where p > 1. First note that if w € D(0, 3) \ {0}, then
[h(w)| = (1 — |w]*)"|G(w)| < M, (2.74)

andlwa]D\D( 1), then

< 2"|g(w)|. (2.75)
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Thus, (2.74), (2.75) and our hypothesis that g € LP(ID, dA,,) give
[ w)p da(w) = |
D D(0

[h(w)P dAq (w) + / [h(w) P dAq (w)
5) D\D(0,3)

g/ MpdAa(w)+2”p/ lg(w)|P dAs(w) < +o0,
D(0,3) D\D(0,3)

hence h € LP(D,dA,) C L' (D,dA,). If v > a > —1, then
h(w 7—1—1
Lt daw) < 2 s [l - ol dagw

p |1 — z0[**7

7+l «
~ (a+1)(1—]z]) 2+w/|h [(r+ 1)(1 = w]*)* dA(w)

v+1
- (a+1)(1 — |2])2 |h]|1,0 < 400, forall z € D,

so Proposition 2.5.2 yields that

_ 1 (L= [wl) S dACw). for all »
f(z) = (’y+2)-...-(’y+n)/D(l—zw)2+7h( ) dA(w), forall z € D.

By the choice of 7y and the fact that h € LP(D,dA, ), Theorem A.0.2 gives that f € LP(D,dA,), and
so f € AP(dA,).
Let 0 < p < 1. Suppose that v > —1 such that p(y 4+ 2) > a+ 2. Also,set A\ =p(n+~vy+2) —2 >
1— 2\«
pn+ «, and J(w) = / ( — 121°) dA(z), for all w € D. Using Lemma A.0.1 and the fact that .J
D ’1 — Zw‘p('YJFQ)
is bounded on D (0, %), we derive that there exists a constant C5 = C5(p, «,y) > 0 such that

1
<Cs- A wpp-m—a’ for all w € D. (2.76)

By [6, 2.37a The Fubini-Tonelli Theorem] and (2.76),

(n )IP(1 — (n )P —
J | e awana = [ IS i)

= [+ DI )P~ [0k () dAGw)

J(w)

2.77)
<Cs [ 11O @)P(1 = Py daa(w)
D
= Cs [ lg) dAafw) < +o0,
D
which means that
f ) (w)[P(1 = |w]*)*
/ |1 — L apEt) dA(w) < +oo, for almost every z € D. (2.78)

Using the same arguments as in the proof of (A.15), we get that (2.78) holds for all z € D. By Lemma
2.5.1, there exists a constant Cs = Cg(y,n) > 0 such that, for all z € D,

|h(w)] _ /
/]D) 11— zw|>+Y Ay (w) = 7+n+ 1 ‘ 1 — zw) 2+v‘dAV+" w)

G
< Cﬁ/IDJ ‘wn ‘ 1_7‘ dAy1n(w) (2.79)

(1—zw)?+Y

zcﬁé’m’mwn(w),




46 CHAPTER 2. BERGMAN SPACES

and Proposition 2.1.9 and (2.78) give that, for all z € D,

y+n+1 yf(n)(w)‘p 1/p
/ ‘ 1— zw) 2+'y dA’y—i—n(U)) < P </D ‘1 — Z’Lf)|p(2+'7) dA,\(w) < 4o00. (2.80)

Thus, (2.79), (2.80) and Proposition 2.5.2 imply that

1 1
(7+1)'--~-(7+n)/D(l—w‘))“”

By (2.79), (2.80) and (2.81),

flz) = h(w) dA(w), forall z € D. (2.81)

)P(1 —
\p<c/|f 7 w)l |p2+‘2”)|) dA(w), forall z € D, (2.82)
— ZW

CP(y+n+1)P(A+ 1)1
(Y17 (v + )P

[ rrdaae) < c; //'f PO =0 s w)dda(z) < 4o,

1 — zaw[P(+)

where C;7 = Cr(p,~,n) = > 0. By (2.82) and (2.77),

which means that f € LP(D,dA,), and so f € AP(dA,).

Case 2 (general case). In this case we assume only that f € H (D). Then, by the Taylor series expansion
of finD,

+o0 (k)
= Z / k;'(O) 2F forall z € D.
k=0 ’

Consider the polynomial py,(z) = zio ! UZ!(O) 2* and the function F(z) = f(z) — pan(2), for all
z € D. Note that for all 0 < m < 2n,

2n (k)
FU(z) = fM(z) - ’;mZ’“—m, forall z € D, (2.83)
SO
F(0) = F'(0) = ... = F@Y(0) = 0.

Also, consider the function

2n

(k)
G(z)=(1- |Z|2)nF(")(z) 29 g(z) — (1 — |z])" Z (“Z _S?ilzk", forall z € D.
k=n '

Then
2n 2n
F0) gl atl F PO\
fa=reer S g aner < R [ (R ) et <o

so G € LP(D,dA,). By the special case, F' € AP(dA,), and since pa, € H* C AP(dA, ), we finally
get that f € AP(dA,).
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2.6 Preparation for the Atomic Decomposition
Letp>1andb > %. For each a € D, consider the function

(1 — |a|?)wb=2)/p
(1—az)b

fa(z) = , forall z € D, (2.84)

which is well-defined in D (see [14, Section X.5]), and holomorphic in . Note, also, that for all a € D,

— |q|2)pb—2 — |a|2)Pb—2
/yf )P dA(2) /D(l o) dA(z)g/D(l(l_Ha’))mdA(z)<+oo,

|1 — az|pb
so fq € AP(dA).
Proposition 2.6.1. There exist constants ¢ = ¢(p,b), C = C(p,b) > 0 such that
c<|fallp < C, foralla € D.

Proof. Leta € D.
Case 1. a € D\ D(O, %) Since pb — 2 > 0, by Lemma A.0.1 there exist constants ¢ = ¢&(p, b),

C = C(p,b) > 0 such that

c 1 C
- < - < -
= JaP2 < /D = azp 4G < T

hence .
P < | fall, < CVP. (2.85)

Case 2. a € D(0, 3). Then

1
11 —az| <1+ |allz| §1—|—§, forall z € D,

$0
1 — |a|?)Pb—2 2 pb b—2
[ fallp = / %M(Z) > <§)p (Z)p : (2.86)
o ()
and )
1 —az|>1—|allz| >1— 2 forall z € D,
S0

2\pb—2
Il < [ S ) < o @87)
o (3)
In any case, if ¢ = ¢(p, b) := min {61/17, (%)b(%)b } > 0and C = C(p,b) := max {C’l/p, Zb} > 0,
then (2.85), (2.86) and (2.87) give
c< | fallp < C.

O]
Lemma 2.6.2. Suppose R > 0 and b € R. Then there exists a constant C = C (R, b) > 0 such that
(1— zu)b .
m — 1| < CB(u,v), forall z,u,v € D, with 5(u,v) < R. (2.88)
In particular, there exists a constant C' = C (R,b) > 0 such that
1 1—zuf
Tg’_iz“’«j for all z,u,v € D, with B(u,v) < R. (2.89)
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Proof. Setr := tanh(R) € (0,1), and let z,u,v € D with 5(u,v) < R. Then there exist w, A\ € D
such that v = ¢, (w) and z = ¢, (\). By (1.14) and Proposition 1.2.2,

tanh71(|w‘) - /8(07w) = B(¢u(0)a¢u(w)) = 5(“’7 U) < R,

so |w| < r, and hence |uw| < rand |Aw| < r. Lemma 2.4.2 now gives that there exists a constant
C1 = Cy(r,b) > 0 such that

(1 — uw)® — (1 — Md)?| < Cy|uw — M| < 2C |w). (2.90)

Also, it follows from a straightforward calculation that

=z (=N (—ww)— (1 a)

(1-20)" (1= ¢uNou(w)® (1=
and, since 1 —r <1 — |A|Jw| < |1 — Aw| < 2,

(1 — zu)® |(1 —uw)? — (1 — A@)?| @9 2C|w|
(1—2z0)b 1= =Y < = xaff < Coluw|, (2.91)

where Cy = C2(R,b) > 0. Finally, (1.16) yields that |w| < 28(0,w) = 25(u,v), so we get (2.88) for
C =C(R,b) =2C, > 0.
Regarding (2.89), note that

(1—zu)® (1—za)° (2.88)
’(1—m;)‘7’_1§’(1—w)b_1 < CB(u,v) < CR,
hence )
1—zu ~
||1 - zz_)||b <é (2.92)

where C = C(R,b) = CR 4 1 > 0. Since (2.92) holds for all u,v € D that satisfy S(u,v) < R, we
can replace u by v, and v by u to get
ﬂ <C (2.93)
11— zulb — )

(2.89) follows from (2.92) and (2.93). O

Lemma 2.6.3. Let p > 1. Then there exists a constant C = C(p) > 0 such that

/
[ @ -sonae <ol ([ repaae)” 294
Dh(oar) Dh(ovl)

and y

p
[ enaam ser( [ repiae)” 2.95)

Dh(ovr) Dh(ovl)
Jorallr € (0,1) and f € H(D).

Proof. Let f € H(D) and suppose first that 0 < r < . By Proposition 1.3.5, Dy, (0,r) = D(0, tanh(r))
and Dy (0,1) = D(0,tanh(1)). If we set ¢ = tanh(3) € (tanh (3 ), tanh(1)), then Cauchy’s formula for
a circle ([14, Section VIL.5]) implies that for all z € D, (0, ),

B 1 f(() B 1 27 f(tew)
0= g [ EL = 5

2 0 2 ;
ot / 1f@e™)] < Cl/ |f(te’)| o,
0 0

= or |te? — 2|

- tie" dp

(2.96)
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t
here C) = 0.
e L S dist(C(0, tanh (1)), C(0, )

Now, consider the function F'(z) = f(tanh(1)z), for all z € D. Then F' € H (D) and by the Change of
Variables Theorem ([6, Theorem 2.47a)),

[ PP e / a2 dAC) = [P i A

P
< / < max ]f\) dA(z) < 400,
tanh? ( ) JDy(0,1) \Dn(0,1)

1 1/p
so [' € AP(dA) and || F|, = (tanh(l))Q/p(/Dh(oJ) |f(z)P dA(z)) . By Theorem 2.1.4,
1 , p 1

By setting z = 1n (2.97), where ¢ € C(0,t), we get

tanh
1/p
\f(C)!SCz< / !f(w)!pdA(w)> forall ¢ € C(0, 1), (2.98)
Dy (0,1)

2/
where Cy = Cy(p) = (%) "'~ 0. Using (2.98), (2.96) becomes

1/
lf(2)] < 27rCng</D o | f(w)P dA(w)> p, forall z € Dy(0,r), (2.99)

and by integrating each side of (2.99), we have

/D o |f(2)]dA(2) < 27rC102< /D hm)l (w)P dA(w ))1/p /D y OT) dA(2)

1/p tanh(r 27 ,0
:27r0102< / |f(w)|? dA(w ) / / dfdp
Dy (0,1)

U (2.100)
= 271010y tanh2(r)< / | f (w)|P dA(w))
Dy (0,1)
1/p
< 27['01027’2</ |f(w)[P dA(w)> ,
Dp(0,1)
because tanh(z) < x, forall x > 0. ) )
Working similarly, we can derive that there exists a constant C; = C(p) > 0 such that
- 1/p
/ F(2) = F(O)] dA(z) < Cur® < / Faw)P dA<w>> . (2.101)
Dh(O,T) Dh(O,l)

Suppose now that % < r < 1. Then, if ¢ is the conjugate exponent of p, there exists a constant
C3 = C3(q) > 0 such that

03@)2 > (tanh(1))/% > (tanh(r))2/".
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Thus, by [9, Holder’s Inequalities, p. 213],

/Dh(O,r) If(2)|dA(z) < </Dh(o,r) IF(2)P dA(z)> 1/p</Dh(O’r) dA(z))l/q

= </Dh(0,1) |f(2)|P dA(z))l/p(tanh(r))wq

a5 ([ .. If(Z)I”dA(Z)>1/p

1/p
< 037«2( / If(Z)IpdA(z)>
Dp(0,1)

Finally, there exists a constant éQ > 0 such that

~ 3
CQ<1> Z 1 2 T27

(2.102)

hence, using (2.95) and (2.97),

/ F(2) = FO)] dA(z) < / () A=) + / F(0)] dA(2)
Dy (0,r) Dy (0,r) Dy (0,r)

< Cr2( /D o |f(2)[P dA(Z)>l/p+ | £(0)| tanh? ()
)@ ( [ o)

(tanh
(¢4 i ) ( [ P aae) "
< 4+ — r / z z > .
(tanh(1))27 )"\ /b, 0
Thus, (2.100) and (2.102) give (2.95), and (2.101) and (2.103) give (2.94). O

< (c+

Corollary 2.6.4. Let p > 1. Then there exists a constant C = C(p) > 0 such that

[ @ -r@laae scta-aD ([ jrepae)” o
Dyp(a,r) Dy (a,1)
and 1y
[ enaae sera-1at D ([ jrerdae) (2.105)
Dy(a,r) Dp(a,1)

foralla e D, re (0,1)and f € H(D).
Proof. Leta € D, r € (0,1) and f € H(D). Replace f by f o ¢, in (2.94) to get

1/p
/ If(%(Z))—f(eba(O))\dA(Z)SCT3< / \f<¢>a<z>>|PdA<z>), (2.106)
Dy (0,r) D (

071)

for some constant C' = C'(p) > 0. Using the Change of Variables Theorem ([6, Theorem 2.47a]), Lemma
1.3.9 and Proposition 1.1.2 (iii),

/ F(Ba(2)) — F(6a(0))] dA(:) = / 1(2) = F(@)] - |6,(=) P dA(2)
Dy (0,r)

Dy (a,r)
(1—a?)?

(2.107)
= [ e @] A
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and

/ F(al2)P dAGz) = / FEP - 18,(2) 2 dA(2)
Dy (0,1) Dy (a,1)
(1 |ap)?

- p. IO A,
[ o HOr g aac)

By Proposition 1.3.11 (i), |1 — az| ~ 1 — |a|?, for all z € Dy(a, 1), so there exist constants C;, Cy > 0,
independent of a, z, 7, f, p, such that

(2.108)

11232

U (aPE < oat =P

5, forall z € Dp(a,1). (2.109)

By (2.106), (2.107), (2.108) and (2.109),

£ (2) = f(a)] / (1—lal*)?
C == dA(z) < f(z)— fla)| - ———5dA(z
utary —faPp A S f VO O G 446

1— |a‘2)2 1/p

gcr3</ fz”~(7_dAz
Dh(a,1)| (2)] 1= a (2)
p 1/p
< COrd <0 MdA 2 ) ,

* Jouan @ a2 4

and (2.104) follows.
Working similarly, we can derive (2.105). U

For any r € (0, 1], fix an r-lattice {a,,} C D in the hyperbolic metric, and a disjoint decomposition
{D,,} of D satisfying the conditions of Proposition 1.4.8. For any parameter b > 1, we define an operator
S : Al(dAy_5) — H(D) given by

+oo
Sf(z) = z_:l Abe(DZC_)LZ)(;Ln), forall z € Dand f € A'(dAy_»). (2.110)

Proposition 2.6.5. The operator S defined in (2.110) is well-defined.

Proof. Let z € Dand f € A'(dA,_5). By Proposition 1.4.8, D,, C Dy(an,7) C Dp(an,1), for
alln € N, so Ay_2(Dy,) < Ap_2(Dp(an, 1)), for all n € N. Now, Proposition 1.3.11 (ii) implies that
Ap_2(Dp(an, 1)) ~ (1—|ay,|?)b, foralln € N, which means that there exists a constant C; = C4(b) > 0
such that

Ap—a(Dy) < Ay_o(Dp(an, 1)) < C1(1 = |an|*)", foralln € N. (2.111)
Also, Proposition 2.1.11 yields that there exists a constant Co = Cy(b, ) > 0 such that

—+00

S (1 [anf?)? - |f(an)] < Cs /D ()| dAy(w) < +00. (2.112)

n=1

By (2.111) and (2.112),

+oo
Ap_o(Dy)| f(an)] C1Cs
LT Sy

[ 15 dau s < oo
D

n=1

Thus, the series in (2.110) converges for all z € D.
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Ab—2(Dn)f(an)

(1 — zay)®
in D, and let K be a compact subset of . Then there exists a real R € (0, 1) such that K C D(0, R),
hence

Consider the functions g, (z) = , forall z € D and n € N, which are holomorphic

Ap—2(Dn)|f(an)| < Ap—2(Dp)| f(an)| (2-1<11) o))

Tl = 0-Rp = gyt el

lgn (2)] =

for all z € K and n € N. Since

+0oo '
Z(l_CIR)b(l ~an?)® - [£(an)] <21§12) (IC_lCRg)b/DU(w)MAb_Z(w) < o0,

by the Weierstrass criterion for the uniform convergence of series, Z ~19n converges uniformly on K.
Thus, Weierstrass Convergence Theorem ([ 12, Theorem 10.28]) implies that Zn 19n € H(D). O

n=1

Lemma 2.6.6. Letp > 1. Forany r € (0,1) and b > 1 consider the operator S given in (2.110). Then
there exists a constant C = C(p,b) > 0 such that

38~ (1= Jau ) p“W( » )””
7() ~Sf() < Cr Z e, ) ey

forall z € Dand f € AL (dAy_»).
Proof. Letz € Dand f € A'(dAy_3). By Theorem 2.3.6,

_ /D F(w) Koz, w) dAy_o(w) = /D %dAH(w),

and since { Dy} is a partition of D,

+oo
10-si0= [ T ) - ZAb(‘f(f)ﬁifff 2
k=1

_Z/p 1—21)5) dAp—a(w Z/D 1_2% dAp—2(w)
+ZOO/ ( 1 —ZI)D b (1Ji(6;1;)k)b> dAp_o(w).

S fw)  fw) | [ fw) = flar) (2.114)
S,H/Dk <'(1—zw>b (1— zay) ’(1-zak)b )dAb— (w
=1(z)+ J(2),
where
+oo a b
1= ; 1 —iakb /D ((11 = mf))b B 1’ I (w)[dAp-2(w) (2.115)
and
+o0
T =X =g o M0 = Tl e.116)



2.6. PREPARATION FOR THE ATOMIC DECOMPOSITION 53

Ik:/
Dy,

Ji = /D Fw) — F(ar)| dApa(uw).

Foreach k € N, let
(1 — zay)"
(1 — 2w)b

1| )] ds-a(0)

and

By Proposition 1.4.8,

(1—z&k)b b
e G -1 e v - A @i
and
s [ i) = fale - D [P dAw) @.119)
Dy, (ag,r)

Now, ifw € Dy(ag,r), thenw € Dp(ag, 1), so Proposition 1.3.11 (i) implies that there exists a constant
Cy = C1(b) > 0, independent of w, ay, r, such that

(1—|w)P2 <011 — |ag)b2, (2.119)

for all w € Dy(ag, 1) and k € N. Also, by Lemma 2.6.2, there exists a constant Cy = Co(b) > 0 such
that
(1 — Z(Zk)b
(1 — zw)?

Thus, by (2.119) and (2.120), (2.117) and (2.118) become

- 1‘ < CyB(ag,w), forall w € Dy(ay,1) and k € N. (2.120)

< [ Caplanw)lf@lo - DG~ o) dAGw)
Dp(ag,r)

2.121)
< CLCor(b— 1)(1 — |ay[?)>2 / [ (w)] dA(w)
Dy, (ag,r)
and
Ji < Ci(b— 1)(1— agl?)>2 / Fw) — flar)| dA(w), (2.122)
Dy (ag,r)

respectively, for all £ € N. By Corollary 2.6.4, there exists a constant C's = C5(p) > 0 such that

L 1/p
[ irwlaaw) < ey - a0 ( / If(w)lpdA(w)> 2.123)
Dh(ak,r) Dh(

akvl)

and

1 1/p
/ rf<w>—f<ak>|dA<w>gcgr3<1—\ak\2>2<lp)( / !f(w)\pdA(w)> L @124)
Dy, (ak,r) D

n(ak,1)
for all £ € N. Therefore, for all k£ € N,

(2.121)
L U2 (b — 1)(1 — Jax[2)P2 / |F(w)| dA(w)
Dh(akar)

(2.123) 5 b2 1/p
et - -l ([ ifwpdaw) (2.125)
Dh(akvl)

~ 2 1/p
G — Py ( [ iswp dA<w>) ,
Dy (ax,1)
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where C' = C(p,b) = C1C2C3(b — 1) > 0, and, similarly, (2.122) and (2.124) give

. 1/p
s el-laP ([ jrwpdaw) (2.126)
Dh(akvl)
where C' = C(p,b) = C1C3(b — 1) > 0. Using (2.125) and (2.126), (2.115) and (2.116) become
21 1gu[2)@-2)/p 1/p
= 3 (L= a5 < /
I(z) < Cr® — fw)|P dA(w (2.127)
( k; 1= 2a," Dh(%l)! (w)[P dA(w)
and . )
. 3 (1 — |ag|?)P=2)/p </ 1/p
J(z) < Cr® _ |f(w)|P dA(w) ) . (2.128)
; 11— zayl® Dy (ag1)
If C = C(p,b) :=2max{C,C} > 0, then (2.113) follows from (2.114), (2.127) and (2.128). O

2.7 Atomic Decomposition on Bergman Spaces

Theorem 2.7.1. Letp > landb > 2> 1+ z%' Then there exists a constant o = o(p,b) > 0 such that
Sfor any r-lattice {ay} in the hyperbolic metric, where 0 < r < o, the space AP(dA) consists exactly of
functions of the form

NS, (L fag)e-2re

f2)=) e (1= zan)

k=1
where {ci} € [P, and the series (2.129) converges in norm in AP(dA).

, forall z € D, (2.129)

Proof. We will prove the Theorem in steps.
Step 1. The series in (2.129) converges for all z € I and defines a function f € AP(dA). Also, the
series in (2.129) converges in norm to f in AP(dA).

Indeed, let {c;} € [P and {ay} be any r-lattice in the hyperbolic metric, where 0 < r < 1. Also,
consider the functions

(- |ag|?)Po—2)/p
T = —a "o

The functions f}, are of the form (2.84), so fi, € AP(dA), for all k € N, and Proposition 2.6.1 yields that
there exists a constant C' = C'(p, b) > 0 such that

, forall z € Dand k € N.

1 fillp = /D fu(2)[P dA(2) < C, forall k € N, (2.130)

Now, choose a decomposition { D} of D according to Proposition 1.4.8 and let x be the characteristic
function of Dy. If z € D, then there exists a unique m € N such that z € D,,, so

+oo
3 ekl ADY) TP x0(2) = lem| A(Dim) VP < 4oc.
k=1

Thus, we can define a function ' : D — [0, +00) by F(2) = Y21 |er| A(Dg) ~Y/Px1(2), forall z € D.

Then
[Perae - [ [P A f / 2 dA(2)

= Z/ lcx|PA(Dy) ™" dA(z) = Z lex|P < oo,
Dy k=1
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so F € LP(D,dA) and ||F||5 = 322 |ex|P. Next, note that the choice of b implies that p(b — 1) > 1,
so Theorem A.0.2 yields that the integral operator 7" : LP(DD,dA) — LP(ID, dA) defined by

(1~ Jw?)?
Th(z)= | ——————h(w)dA(w), forall z € Dand h € LP(D,dA),
D

|1 — zwl|b

is bounded on LP(DD, dA). Using [6, Theorem 2.15], we have that for all z € D,

w22 =
TF(z) = /D ChalL 0y D el A(DR) TP x(w) dA(w)
k=1

11 — zwl|b
e (2.131)
1 (1 — [w]*)"?
= JeADy)VP | L dA(w).
= Dy |1 — zw0|
Let k € Nand z € D. By Proposition 1.4.8, Dy C Dy(ag, 1), so, using Lemma 1.3.10 (i),
tanh?(r)
A(Dy) < A(Dp(ag,r)) = = yathanh2(r))2(1 —lax[?)? < Ci(1 = Jax[*)?,
tanh?(r
where C; = Ci(r) = an—(2) > (. Thus,
(1 — tanh®(r))?
A(DR) ™Y > e VP (1~ |an?) P, (2.132)

Also, Dy C Dy(ag,r) C Dp(ag,1), hence Proposition 1.3.11 (i) yields that there exists a constant
Cy = C3(b) > 0 such that

(1—|w*)’2 > Cy(1 — |ag|?)P72, forall w € Dy, (2.133)
and by Lemma 2.6.2, there exists a constant C'3 = C3(b) > 0 such that

1 s
|1—zw]b |1 — za|P’

forallw € Dy,. (2.134)

On the other hand, Proposition 1.4.8 yields that Dy, (a, %) C Dy, so using Lemma 1.3.10 (i),

tanh? (%)
(1 — ]ak]2tanh2 (%))

A(D) = A(Dn(ar, 7)) = S (L= lap?)? > Ca(1 — |ax?)?,  (2.135)

where Cy = Cy(r) = tanh? (1) > 0. It follows from (2.133), (2.134) and (2.135) that

r
4

~ v vz > ~ vtz
/k T ap dA(w) > CyCs b 1 AT dA(w)

b—
(A= |ax" 4 ) 2.136)

= (CC
T RRZ AL

> 020304(

By (2.131), (2.132) and (2.136),

(1 — |ay|?)@o=2)/p

|1 — za|?

+oo
TF(z) > Y lelCy P CaC5Cy
k=1

—5Z\ck|\fk )|, forall z € D,
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where § = §(p,b,r) = C;l/pCQC?)CAL > (. Thus,
= 1
Z lek|| fre(2)] < STF(Z) < 400, forall z € D, (2.137)

because of (A.15), so we can define the functions f(2) = >/ e fir(2) and g(2) = 3725 |kl fe(2)],
for all z € D. By (2.137) and the fact that 7" is bounded,

[ir@raae < [ (Dcmfk 1) 4@ < [ @reyaae)

= SITFIE < SITIPIFIE < +oo,

(2.138)

so f € LP(D,dA). Similarly, we derive that g € LP(DD, dA). It remains to show that the series in (2.129)
converges to f in AP(dA). Note that

N P
Jim |- 16 <o
and
N p N P
Safi() - 1) <2(LlallAG)) + PP < 2E6) + 2P
k=1 k=1

forall z € Dand N € N. Since f,g € LP(D,dA), by [6, 2.24 The Dominated Convergence Theorem],

N

p
_ —
chfk f Hp yhm

k=1

N

S i)~ ()| da(z) =

k=1

lim
N—+4o00

D

which means that f = >/ ¢t fi, in LP(D, dA). By the fact that f;, € AP(dA), for all k € N, and
Theorem 2.1.7, f € AP(dA).

We have now completed Step I of the proof. Note that, so far, the proof worked for any r-lattice in
the hyperbolic metric, with 0 < r < 1.

Step 2. Every function in .AP(dA) admits a representation (2.129).

Indeed, let f € AP(dA) and fix an r-lattice {a} in the hyperbolic metric, where r is sufficiently
small and to be specified later. Since b > 2,

[P at s = [111re-n0 - B2 aae < -1 [ 17EPdAe) <+,

hence f € AP(dA,_5). By Lemma 2.6.6, there exists a constant C; = C(p, b) > 0 such that

+o0
1f(z) = SF(2) < Crr® > [ fr(2)]

1/
| f(w)|P dA(w)> p, forall z € D. (2.139)

h(akvl)

1/p
Set ¢, := w)|? dA(w , for all k& € N. By Proposition 1.4.2, there exists a constant
y Frop
Dp(ax,1)

Co
Cy > 0, independent of r, such that every point z € ID belongs to at most 5 of the sets Dp(ag,1); so

—+00 —+00

+oo
[exl” = w)|” dA(w |[F (@) "X Dy (a1 (w) dA(w)
; k Z/ - / XDy, (ax,1)

/|f |prDhak,1) ) dA(w /\f P dA(w) < +oo.

(2.140)
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that is, {cx} € IP. By Step 1, S22 ||| fx(2)| < +o0, for all z € D, and (2.138) implies that
+o0

+00 p
[ (X ledlssca) ade) < GUTPIFIE = GITP S el < 4oc. 141
k=1

By (2.139) (2.140) and (2.141),

[176) = s aace) < /(Zrckufk ) A(2)

—+00

- 1
< Cpr? (TPHTHPZ‘CHP
k=1

< Clr 2. SITPPC [ (7w daw) R
D
~p = & _
= CYOITIY g™ [ 7P dAw

1 3ptanh2 / F(w)[P dA(w
(1 —tanh2(r))2  r2( tanh (%))

Qx

where C' = C(p, b) = ST g, Thus, I — S is a bounded linear operator on .A”(dA), and so S is

C3C5
a bounded linear operator on A”(dA). Since
1 3P tanh?

lim : ~_rPtan (r) o,

r—0+ (1 — tanh®(r))2  r2(tanh (%))
there exists areal 0 = o(p,b) € (0, 1) such that

. 1 3P tanh?
rranh(r) g forallr e (0,0), (2.143)

(1= tanh®(r))2 72 (tanh (%))

By (2.142) and (2.143), || — S|| < 1, so Proposition A.0.3 yields that S is invertible, that is there exists
a bounded linear operator S~ on AP(dA) such that SS=! = I = S71S. Set g = S~1f € AP(dA).
Then

_ = Ay _2(Di)g Ay o(Dr)glar) (1= |ag)®—2/r
flz) = 5glz) = ;u—k e pb SR (G
Ap—2(Dy)g(ar)

forall z € D. Setdy, = for all £ € N, and note that, by Proposition 1.3.11 (ii), there

(1 = ag[*)®0=2)/p’
exists a constant Cs = C5(b) > 0 such that
Ap_o(Dy) < Ay_o(Dp(ag, 1)) < Cs(1 — |ag)?)?, forall k € N. (2.145)
Using (2.145),
+oo
Ap—2(D p
Z |de|P = Z (Ap—2(Dx))lg(ar)|

(1 — |ag|?)Po—2

+oo
< OF Y (1~ lal*)?lg(ar)” (2.146)
k=1

<%%/M@%M@<+w
D

where Cg = Cg(r) > 0 is the constant appearing in Proposition 2.1.11. It follows from (2.146) and
(2.144) that f can be written in the form (2.129).

O]






CHAPTER 3

The Bloch Space

Let f € H(D) and set || f||z = sup{(1 — |2|?)|f"(2)| : z € D}. We define the Bloch space B of D to be
the space of all analytic functions f on I such that || f||z < +o0.

Remark 3.0.1. The Bloch space is a vector space over C.

Proof. Let f,g € Band A € C. Then
L= 2P +9) () < (1= I )+ Q= [2P)Ig ()] < [Iflls + llglls < +oo,
forall z € D, hence f + g € B, with || f + gl < || fllz + |lg]|5- Also,
sup{(1 — [z[*)[Af'(2)] : 2 € D} = [A|sup{(1 — |2*)| f'(2)] : z € D} < +o0,

hence Af € B, with [ Af]ls = [Alfs. =

3.1 Completeness

Our goal is to show that the Bloch space, equipped with a specific norm, can become a Banach space.
The completeness is achieved due to the completeness of the semi-norm ||-|| 5.

Lemma 3.1.1. ||-||5 is a complete semi-norm on B.

Proof. 1t follows from Remark 3.0.1 that ||-||z is a semi-norm on B. To show the completeness, let
{fx} C B be a Cauchy sequence with respect to the semi-norm, and let ¢ > 0. Then there exists a
number ng € N such that

| fr — fmllg < €, forall n,m > ny,

S0
(1= 12|, (2) = f1.(2)| <€, forall z € D and n,m > ng, 3.1

hence {f;.(2)} is a Cauchy sequence for all z € ID. Thus, there exists a function g : D — C such that
g(2) = limy_, 4 f1.(2), forall z € D.

Let S be a compact subset of D. Then there exists a real R € (0,1) such that S C D(0, R) C D.
Let € > 0. Since { fx} is Cauchy with respect to the semi-norm, there exists a number n; € N (which
depends on € and R) such that

1— R?
Ifh(2) = fr.(2)] < 6((1_’2’2; <, forall z € Sand n,m > ny,

59
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so { f;.} converges to g uniformly on S. By the Weierstrass Convergence Theorem ([12, Theorem 10.28]),
g € HD).

Since D is a simply connected domain, there exists a function f € H (D) such that f' = g in D ([14,
Section X.4]). Letting n — +o0 in (3.1), we have

(1—12))1f (2) = f1.(2)] <¢, forall z € D and m > ny, (3.2)
which means that f — f,,, € B. Since f,, € B, it follows that f € B, and (3.2) gives
lf — fmllB < €, forallm > ng,

so ||f — frlls = 0, as k — 4o0. O

Remark 3.1.1. In the above proof we can choose f such that f(0) = ag for some given ay € C. Indeed,
if h is a primitive of g, then we consider the function f(z) = h(z) + ag — h(0), which is also a primitive
of g, with f(0) = ao.

We now introduce the norm || f|| = | f(0)| + || f||z in B.
Proposition 3.1.2. (B, ||-||) is @ Banach space.

Proof. Let {frx} C B be a Cauchy sequence with respect to |||, and let € > 0. Then there exists a
number ng € N such that
| fn — fmll <, forall n,m > nyg,

SO
|fn(0) — fm(0)] < e and || fr, — fmllB < €, foralln,m > nyg.

This means that { f3.(0)} is a Cauchy sequence, so let ay = limy_,~ fx(0) € C, and { fx} is a Cauchy
sequence with respect to the semi-norm. By Lemma 3.1.1 and Remark 3.1.1, there exists a function
f € Bsuchthat ||f — fx|]ls — 0, as k — 400, and f(0) = ag. Thus,

1f = fell = [£(0) = fi(O)| + ||f — frlls = 0, as k — +o0.

3.2 The dual of A'(dA)

Proposition 3.2.1. H>* C Band ||f||g < |||, forall f € H™.

Proof. Let f € H*. Then f € H(D) and || f||oc = sup{|f(2)] : z € D} < +oc.

Case 1. || flloo < 1. Then |f(z)| <1, forall z € D. If there exists a point zp € I such that | f(zo)| = 1,
then by the Maximum Modulus Principle ([14, Section VII.16]), f will be constant, so |f'(0)] = 0 < 1.
If|f(2)| < 1, forall 2 € D, then |f/(0)] < 1—|f(0)|* < 1, by the Schwarz-Pick Lemma ([ 14, Exercise
VII.17.3]). Thus, in any case we have that | f/(0)| < 1.

Case 2 (general case). If || f|loo = 0, then f = 0inD, so |f'(0)] =0 < || floo- If || f|loo # O, then the

function g = W is holomorphic and bounded. In particular,
o0
lg(2)| = f(2)] <1, forall z € D,
1/ lloo
80 ||glloo < 1.By Case 1, |¢'(0)| <1, so |f'(0)| < ||f]lco- Thus, in any case we have that
/()] < [1flloo- (3.3)

Now, let f € H* and z € D. Then f o ¢, € H*®, with || f 0 ¢.]|cc = || f]|c0, SO

[F (I = [2%) = | (8:2(0))] - [62(0)] = [(f © 92) (O)] < [If © D2lloe = [Iflloc < +00,

where the first equality holds because of Proposition 1.1.2 (iii), and the inequality holds because of (3.3).
Thus, f € Band || f||g < || f|loco- O
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Remark 3.2.1. The containment H° C B is proper. Indeed, since I is a simply connected domain and
g(z) = 1 — z is a nowhere vanishing holomorphic function in D, there exists a branch of log g in D ([14,
Section X.5]). Let f be such a branch. Then f € H (D) and

/
1
f'(z) = i](f)) =-1—> forall z € D,
SO ,
1- 1-— 1
(1= 2P (2)| = i _’Zz|| <! |1ZQ(|Z|+ 2D <9, forall 2 € D.

Thus, f € B. However, f is not bounded, because

lim Ref(z) = lim log|l — z| = —o0.
z—1 z—1
|z]<1 lz|<1

Proposition 3.2.2. The operator P given by

Pd)(z):/D(lqi(Z)U)sz(w), (3.4)

is a bounded linear operator from L>°(D, dA) onto B.

Proof. Since L*°(D,dA) C LP(D,dA), forall p € (1,+00), (A.15) implies that the integral in (3.4) is
defined for all ¢ € L>°(D,dA) and z € D, and P¢ € LP(D,dA), forall ¢ € L>*(D,dA) and p > 1.
Let ¢ € L*°(D, dA) and set f = P¢, hence

¢
flz) = /D uj%dA(w), forall z € D. (3.5)
By Proposition 2.4.3, f € H(D) and
F(z) = /D ¢(w)(1_2‘:u_))3 dA(w), forall € D,
” @]l ¢(w)
(1= P (2)] <201 - |2P) /D [ oap A <26l = PG, GO

1
for all z € D, where I(z) = / TP dA(w). By Lemma A.0.1 and the fact that I is bounded on
D — ZwWw

D(0, 1), there exists a constant C; > 0 such that

I(z) < Cy- T forall z € D. (3.7
It follows from (3.6) and (3.7) that
(1= |2)|f (2)] < Callpllee < +00, forall z € D, (3.8)
where Cy = 2Cy > 0, which means that f € 5 and
1Polls = [ flls < C2ll¢lloo- (3.9)
Also, by (3.5),
£O)1 < [ 1ow)]dA(w) < 9] (3.10

$0 (3.9) and (3.10) imply that

1Pl = [F(O) + [[flls < (14 Co)[[4]]co,
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that is, P is a bounded linear operator from L>°(DD, dA) into .
It remains to show that P is onto. Let f € B. By the Taylor series expansion of f in D, we can write

f(z) = f(0)+ f'(0)z + fi(z), forall z € D, (3.11)
where f1(z) = 32125 i ). " forall z € D. Then
f'(z) = f'(0) + fi(2), forall z € D, (3.12)

SO

(1= A = (1= P)If () = FO0)] < (1 = [=P)f ()] + |(0)]

3.13
< |If 15+ 1£(0)] < +oo, 313

for all z € D, which means that f; € B. Also, (3.11) and (3.12) yield that f;(0) = f;(0) = 0. Consider
the function

#(z) = f(0) + f(0)z + (1—]z|;)f{(z), forall z € D\ {0}.

Since

H@)| _ i [£E) = 1(0)

z ‘ z—0

. Y
lim - 110l
there exists a real § € (0, 1) such that ’@} <1+ |f"(0)|, forall z € D(0,0) \ {0}, hence

(1= [zP)If1(2)]

o1 <10+ 17Ol + SEAEE < o ool e
forall z € D(0,6) \ {0}.If z € D\ D(0,9), then
61 < £+ 1701+ EEEELL 0y 4o 4 LT o5

Thus, (3.14) and (3.15) imply that ¢ € L°°(D, dA). Finally, by Theorem 2.3.6,

/ (f(O)Q dA(w) = £(0) and / SO 4wy = £(0)2, forall 2 € D,

D 1—ZU1> ]D)(l—Z’LU)

and by Proposition 2.5.2,

fi(z) = /D u —(lw_\ zil)( w) dA(w), forall z € D,

SO

(G.1D)

Po) = | WdA(a» = £(0)+ 0z + fi(2) 2 f(2), forall z € D.

p (1 — 2w)?

Proposition 3.2.3. The spaces B and L>°(D, dA)/KerP are isomorphic.

Proof. Since P is onto, the above result is known from elementary functional analysis (see [8, Section
3.4)). O

The following are based on [4, §2.6, Lemma 7, Theorem 8§].
Consider the function V' : H(D) — H (D), defined by

QIO if 2 e D {0}

£(0), ifz=0 , forall f € H(D).
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Proposition 3.2.4. Let f,g € H(D) and t € (0,1). Then

/ f(2)g(z) dA(z) =/ VI(z) - g'(2)(8 = |2]?) dA(2) + £ £(0)g(0). (3.16)
D(0,t) D(0,t)

Proof. By the Taylor series expansion of f and g in D, we have that, for all z € D,

+oo +o0
:Zanz", (VHz) :Zan+1z Zb 2" and ¢'(z an+1 n+1)z
n=0 n=0

where a,, = £ e )( ) and br, — )( g0 , forall n € NU {0}. We make the following observations:
(a) Fix r € (0, t) and let

Sn(f) Z anre™ | Sn(yg Z bure™
n=0
N .
) = Z an1r™e™ and Sy (g')(0) = Z b1 (n+ 1)rte™,
n=0

for all @ € [0,27] and N € N U {0}. Since the series Y ¢ a,2" converges absolutely in D, we
get that Sy (f) is uniformly bounded in [0, 27| and converges uniformly in [0, 27]. The same goes for
Sn(9),Sn(V f)and Sy(g'); so Sn(f)Sn(g) and Sy (V f) - Sn(g’) converge uniformly in [0, 27].

(b) Forall r € [0,#?] and n € N U {0},

\angn\r" < ]angn\tQ” and |an410n4+1(n+ )" < |ant1||bns1](n + 1)t2".

Since
lim sup( ¥/ |an|[b,[t27) < t* limsup( /| ay|) limsup( ¥/ |b,]) < % < 1
and

lim sup( ¥/ |ans1|[bnr1|(n + 1)t27) < 2 limsup( ¥/ |ang1]) limsup( 3/ |bps1|(n +1)) < 2 < 1,

we get that >720 |ay, |6, [t2" < +oo and Y728 ant1|bn1|(n+1)¢2" < +o0, hence the Weierstrass
criterion for the umform convergence of series ylelds that the series

—+00 “+o0
Z anb,r™ and Z ap+1bpt1(n+ )"

converge uniformly in [0, ¢?].
Using (a) and (b), we have

27
/ 1) g ?) / / f( re' 7'619) *d@dr
D(0,t)
2T -
/o 7T/ NLHEOO (£)(0) - Sn(g)(0)) dbdr
- — n—+m 2 i(n—m)f
/0 WNETOOZZ%Z’ r / ¢ ddr a1

=0m=0

t2
=1 2r 1 byr?™ dr = li byr™ d
[z ytm o= [ S
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and, similarly,

") goar

s

- 21 -
/D(Ot)(Vf)(z).g/(z)( — 2% / / NETOO (Sx(VF)(0) - Sn(g)(0))

/027”( —r?) NEI—E Zan+1bn+1(n—|— )7’2"dr

t2
:/ (t* —7) lim Zan+1bn+1(n+1)r dr
0

N—+o00
+oo +2
= Zan+1bn+1(n + 1)/ r(t2 —r)dr
n=0 0

(2(n+2)

= Zan—l—lbn—i-l T2

that is,
£2(n+1)

+oo
V) (2) g = |22 dA(z) = anbn,
o VD T = ) 84(2) = S

(3.16) follows from (3.17) and (3.18). O

(3.18)

Proposition 3.2.5. V is a bounded linear operator on A'(dA).

Proof. First we will show that V. f € A'(dA), for all f € A'(dA). Let f € A'(dA). Since V f is
continuous in D), there exists a constant M > 0 such that |V f(z)| < M, forall z € D(0, 1). Thus,

& O,
[Wrelaae - [ (Oﬁ)w 2)|dA(z) + /D\D@,;) o dA)

<[ o) MO+ L oy 7~ O A

<M+2 /D (o) N84G)+2 / (o) @184
< M+ 2| flls +217(0)] < +oo,

hence V f € Al(dA).
It remains to show that V' is a bounded operator. Let f,, f,g € A!(dA), for all n € N, such that
limy, 4 oo || fr — fll1 = 0 and lim,,, 4 ||V f, — g]|1 = 0. By Theorem 2.1.4,

Ifn = £l IV fn =gl
[fn(2) = f(2)] < (L—|zP)2 and [V fn(z) — g(2)] < [SEDEE
forall z e Dand n € N, so
imfu(2) = f(2), (3.19)
Jim Vfa(2) = g(2), (3.20)

forall z € D. By (3.19),

lim Vf,(z)= lim fn(2) = f(0) = 1(z) = 1(0) =Vf(z), ifze D)\ {0},

n—-+oo n——+00 4 z
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s0 (3.20) implies that V' f(z2) = g(z), forall z € D\ {0}. Since V' f, g are continuous in D, we also have

that
VF(0) = lim V /(=) = lim () = g(0).

Thus, Vf = g in D, so the Closed Graph Theorem ([8, Theorem 3.21]) yields that V' is a bounded

operator on A*(dA).
Corollary 3.2.6. Let f € A'(dA) and g € B. Then

lim F(2)9(2) dA(z) = /D V() g1 - |#[2) dA(2) + £(0)g(0).

t—1— D(0,t)

Proof. Let {t,} C (0,1), with lim,,_, 4 o ¢, = 1 and ¢,, < t,,11, for all n € N. Then

lim Vf(z) g'(2)(t2 — 12" )Xpos)(2) = V() ¢ (z)(1 = |2%), forall z € D,

n—-+00

and

Vf(2) - g )t = 2P X060 (2 S IV F()] 19 () (L= [27) < [V F(2)]]lglls,
for all z € D and n € N. By Proposition 3.2.5, V f € A'(dA), so

/D V£ lllglls dA(2) < +o0.

Using (3.22) (3.23), (3.24) and [6, 2.24 The Dominated Convergence Theorem],

lim Vf(2)- g (2)(t — |21*) dA(2) = /Vf( ) g'(2)(1 — [2*) dA(2) € C.

n—-+oo D(O,tn)

Since (3.25) holds for an arbitrary sequence {¢,}, we get that

lim Vi) dEE / Vi(2)- g )1 — |22) dA(2).

t—1— D(0,t)
(3.26) and Proposition 3.2.4 give (3.21).
Theorem 3.2.7. (A'(dA))* is isomorphic to B, and the two spaces have equivalent norms.

Proof. Consider the operator J : B — (Al(dA))*, given by Jg = l,, for all g € B, where

l,(f) = lim f(2)g(2) dA(z), forall f € A'(dA)and g € B.
t—1— D(0,t)

(1) J is well-defined. Indeed, by Corollary 3.2.6,

1(f) = /Dvm 7)1 = [22) dA(2) + (0)g(0), forall f € A'(dA) and g € B,

and, using Corollary 2.1.3,

g

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

!</|Vf ()1 = [2*) dA(2) + £ 0)llg(0) < IV fllxllglls + |£(0)]lg(0)]

<[V lglls + 11119 O)] < Clif L lglls + 19(O)]) = Clighli 11

forall f € A'(dA)and g € B, where C = max{||V||,1} > 0. Thus, I, € (A}(dA))*, forall g € B,

and
[Jgll = [llgll < Cllgl|, forall g € B.

(3.27)
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(i) J(g1 + g2) = Jg1 + Jgo and J(N\g) = M\Jg, forall g1, 92,9 € Band X € C.

(iii) Let I € (A'(dA))*. By the Hahn-Banach Theorem ([8, Theorem 3.2]), there exists a bounded
linear functional A : L' (D, dA) — C, such that A(f) = I(f), forall f € A'(dA), and ||A|| = ||{||. The
classical duality between LP spaces ([9, Theorem 7.15]) yields that there exists a unique ¢ € L (D, dA)
such that A = A, in L' (D, dA), where

= / f(2)¢(z) dA(z), forall f € L*(D,dA).
D
By Proposition 3.2.2, g = P¢ € B. Also, Theorem A.0.2 implies that the operator
= [ @K w)] dAGw).

is well-defined and bounded on LP(ID, dA), for all p > 1.
Let @) be a polynomial. Then

//|@ 1K (2, 0) |6(2)| dA(w)dA(2 /|¢ JILQ(2) dA(2) < ||l - Q1 < +oo.

By Theorem 2.3.6, [6, 2.37 The Fubini-Tonelli Theorem] and Proposition 3.2.2,

Q) = A4(Q) = / Q)é(2) d / / Q(w)K (2, w)(2) dA(w)dA(=)
//Q )é(2) dA(2) /Q /¢ (w,z) dA(z) dA(w)  (3.28)
/ Q(w)Pdw) dA(w / Q(w)g(w) dA(w),

which means that Jg is integrable. By [6, 2.24 The Dominated Convergence Theorem] and (3.28),

L@ =1m [ Q)9()dA(z) = /D Q(=)9(2) dA(2) = Q). (3.29)

t—1— D(0,t)

Now, let f € A!(dA). Since the polynomials are dense in A*(dA) (Proposition 2.3.5), there exists a
sequence {p, } of polynomials such that lim,,_, 4 ||pn, — f|[1 = 0. Thus, (3.29) gives

1) =1( lim pa) = tim Upa) = tim 1yea) =l( lim_pn) = 1)) = (J9)());

n—-400 n—-400 n—-4o00 n—-400
so J is onto (A (dA))*.
(iv) Suppose that Jg; = Jgo =1 € (A'(dA))*, for some g1, g2 € B. Then

+o0

Zakz and go(z Zbkz for all z € D,
k=0

(k) (k)

0 0
where a), = 91 i ) and b, = g2k'()’ forall kK € NU {0}.
Let n € NU {0} and set e,(2) = 2", for all z € D. Note that the series >, a,2"z* converges
absolutely in I, so for a fixed r € (0, 1), the series 320 a,r"t*e(»=k)? converges uniformly on
[0, 27]. Also, consider a sequence {r,,,} C (0,1) with limy, oo 7, = landr,, < rpyy1, for all
m € N. Then [6, 2.24 The Dominated Convergence Theorem] yields that

Tm

1
lim anr?™ - 2r dr = / anr2™ - 2r dr. (3.30)
0

m——+00 0
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Thus,
+oo
Jgi(ep) = lim 2"q1(z)dA(z) = lim anz"z" dA(2)
m—-+00 D(0,7m) m——+oo D(O,rm) ;}
Tm r 21 +00 +k ( k)
= Jm / Z Qxr dbdr
(3.31)
EH mr n+k z(nfk)e
- mgr-li’-loo Z agr / dodr
Tm 1 _
= lim szvﬂ“% omdr O / anr®" - 2r dr = n_,
m—+00 Jq T 0 n+1
Similarly, )
bn
Jga(en) = : (3.32)

n+1
Since Jg1(en) = Jg2(ey), foralln € NU {0}, (3.31) and (3.32) give a,, = by, foralln € NU {0},
and hence, g1 = g2 in D. This means that .J is one-to-one.

(v) Letl € (A'(dA))*. Using the notation in (iii), there exists a function ¢ € L>°(DD), dA) such that
J(P¢) = I. Since .J is one-to-one, J 'l = P¢, and by Proposition 3.2.2 and the fact that L>°(ID, dA)
and (L'(D,dA))* are isometrically isomorphic ([9, Theorem 7.15]),

177 = 11Pl < IPIllléll = IPIIAGN = P (3.33)

By (i), (ii), (iii), (iv) and (v), J is an isomorphism, and it follows from (3.27) and (3.33) that (A!(dA))*
and B have equivalent norms. O]

[ @@l dAe)

is not always finite for f € A'(dA) and g € B.

Indeed, let g € B\ H> and suppose that fg € A'(dA), for all f € A'(dA). Consider the linear
operator Ty, : A'(dA) — A'(dA), givenby T, f = fg, forall f € A(dA), and let f,, f, h € A(dA),
for all n € N, such that lim,,, 4 oo || fn — f]}1 = 0 and lim,, 4o ||Ty fr — h||1= 0. By Theorem 2.1.4,

Remark 3.2.2. The integral

22) = £ < (A and [1,0,0) = ) < et
forall z € Dand n € N, so
Jim_fu(2) = G2), 634
i Ty ful2) = h(2), (3.35)

for all z € D. By (3.34),

lim Tyfu(z) = lim_fu(2)g(2) = £(2)g(2) = T, f(2), forall = € D,

n—-+0o n—-+0o

so (3.35) implies that T, f(2) = h(z), for all z € D. Thus, the Closed Graph Theorem ([8, Theorem
3.21]) yields that T} is a bounded operator on A'(dA).

Let z € D. We will use the functional T, € (A!(dA))*, which was introduced in Corollary 2.1.5. For
all f € A'(dA), with || f||; = 1, we have that

9T = 19(2)f (2)] = [T=(Fo)| = | T=(Te )] < TN To flln < NI (3.36)
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Taking the supremum for all f € A(dA), with ||f||; = 1, in (3.36), we get |g(2)|[|T:|| < | T2 ||| Tyl
and so
l9(2)] < I Tgll- (3.37)

Since (3.37) holds for an arbitrary z € D, we conclude that ¢ € H°, which is a contradiction.

3.3 The Bloch space and the hyperbolic metric

A useful property of |||/ is its Mobius invariance.
Proposition 3.3.1. Forall f € Band ¢ € Aut(D), fop € Band ||f o ¢|lz = ||fl5-

Proof. Let f € Band ¢ € Aut(D). Then, by Theorem 1.1.1, ¢ = €@, in D, for some real number
# and some point ¢ € . By Proposition 1.1.2 (iii), (iv), and the fact that

(1= 1[6(2)[*) - |F'(¢(2))| < || f||s, forall z € D,
we have

(1= 121 - I(fod)(2)] = (1 = [*) - [f'(@(2)] - ¢/ (2)]

< (- 1) T 1) = s < o,
forall z € D, so
fo¢eBand |[fodls<|fls (3.38)
Since (3.38) holds for all f € Band ¢ € Aut(DD), we replace f by f o ¢, and ¢ by ¢! in (3.38) to get
1fl8 < 1If ¢l (3.39)
(3.38) and (3.39) give the desired equality. O

The following results show that there exists a relation between the Bloch space and the hyperbolic
metric. First, we need to calculate a specific limit.
Lemma 3.3.2. Let z € D. Then | |
w—z
lim =1-|2%
w=z B(z,w) 4

Proof. Let w € D. Then, using (1.14) and (1.11),

B(z,w) = tanh 1 (p(z,w)) = p(z,w)=tanh(B(z,w)) =
= sinh(5(z,w)) = p(z,w) cosh(B(z,w)) =
= sinh?(8(z,w)) = p*(z,w)(1 + sinh*(B(z,w))) =
= (1 - p(z,w))sinh?(B(z,w)) = p(z,w) =
= (1 — |Z|2)(1 - |U}‘2) sinhQ(/B(z,w)) — |Z - w‘?

|1 — zw|?

= /(1|21 — [w]?) sinh(B(2, w)) = |2 — w].

|1 — zw|?

Thus,

V(1 = [2[%) (1 — [w]?) sinh(B(z, w))

li = li
W Blzw) | wo Bz, w)
= (1—|2?) - lim sinh(B(z,w)) _ (1—|2%) - lim sinhz
w—z [z, w) =0t T
h
= (1= 2% lim COSAT 122
z—0
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|f(2) = f(w)]
Bz, w)

Proof. Suppose f € Band a € D\ {0}. Then (1 — |at|*)|f'(at)| < || f]|5, forall t € [0,1], so

Theorem 3.3.3. If f € B, then ||f||5p = Sup{ cz,w€eD, 2 # w}.

fa-soi=| [ rou]=|[ oty aat| < ol [ 1@l
U ifls I
gra\-/ =l Ils- [ o s
— i lstog 2 11 a0

Since the above inequality holds also for a = 0, we have
|f(a) = f(0)] <||flls - B(a,0), forall a € D. (3.40)

Let z,w € Dand f € B. By Proposition 3.3.1, the Mdbius invariance of the hyperbolic metric and
(3.40),

[f(w) = F(2)] = |(f 0 02)(¢=(w)) = (f 0 §2)(0)] <[ f © @zl - B(d=(w), 0) = || fll5 - B(2,w),

SO

M= sup{w:z,wED,z#w}§\|f\|3<+oo. (3.41)

For the reverse inequality, Lemma 3.3.2 gives

i )=S0 w2 1) = FE) ey v forall £ € D,

W Blw)  wskBmw) Jw—2)

so (1 —|z%)|f'(2)| < M, forall z € D, and hence
1flls < M. (3.42)

Inequalities (3.41) and (3.42) give the desired equality. O

Corollary 3.3.4. If f € H(D), then f € B if and only if there exists a constant C > 0 such that
If(2) — f(w)| < CB(z,w), forall z,w € D. (3.43)

Proof. Let f € B. Then (3.43) holds for C' > || f||z > 0, because of Theorem 3.3.3.
Conversely, let [f(z) — f(w)| < CB(z,w), for all z,w € D, for some constant C' > 0. Then, by
Lemma 3.3.2,

2 |f(z) = fw)]
= = lim = ———= <
(L= [z (2)] = lim 3 w) < C < +o0, forall z € D,
so f € B. O
Remark 3.3.1. Let f € B. For w = 0, the above corollary gives

1)~ FO < - 8(z.0) =  log H} }

for some constant C' > 0. This means that a Bloch function can grow at most as fast as — log(1 — |z|).
Note that by Remark 3.2.1, the function f(z) = log(1 — z), z € D, is in the Bloch space, and as far as
radial growth is concerned, f is the worst function in 5.

C
< —1 0g2— — log(l —|z]), forall z € D,
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Theorem 3.3.5. We have $(z,w) = sup{|f(z) — f(w)|: f € B, || fllg < 1}, forall z,w € D.

Proof. Let z € D. By Theorem 3.3.3,

[f(2) = FO] < [Ifll5 - B(2,0) < B(z,0), forall f € B, with || fl|lz <1,

SO
sup{[f(z) = f(O) : f € B, |Ifllz <1} < B(z,0).
If z € D\ {0}, then z = |z|e™*, for some # € R. Consider the function

1 4 we'?
h(’u}) = 1_711267;9, for all w € D,
which is holomorphic and nonvanishing in D. Since D is a simply connected domain, there exists a
branch of logh in D ([14, Section X.5]). We choose [ to be a branch of log & in D such that [(0) = 0.

Then, for the function g = %l we have:
1R (w) et

. . 1
() ge H(]D))a with g/(w) = 5 ’ l,(w) = 5 h(w) = 1 — e2i0 . 42’ forall w € D,

1— 2
(i) (1—|w|?)|¢'(w)| < I—WM =1, forallw €D, so g € Bwith ||g||g <1, and
1 1. 14|z

() [9(2) = 9(0)] = [ -162) = 5 -10)] = Floa 1

= 5(z,0).

Thus,
sup{[f(z) — f(0)| : f € B, [|flls < 1} = B(%,0), (3.44)

and note that (3.44) holds also for z = 0.
Now, let z,w € D. By Theorem 3.3.3,

1f(2) = fw)| < [[fll5 - B(z,w) < B(z,w), forall f € B, with || flls <1,

SO
sup{|f(2) = f(w)|: f € B, [[fllz < 1} < B(z,w). (3.45)

Moreover, by Proposition 3.3.1, the Mobius invariance of the hyperbolic metric and (3.44),

B(z,w) = B(dw(2),0) = sup{[f(¢uw(2)) — F(O)] : f € B, || fllz < 1}

= sup{[(f © duw)(2) = (f o du)(w)| : f € B, ||f 0 pulls < 1} (3.46)
< supf{[f(2) — f(w)|: f € B, |[fls <1}
The desired equality follows from (3.45) and (3.46). O

Theorem 3.3.6. Suppose f € H(D) and s,t € (0,+00) with s+t = 1. Then f € B if and only if there
exists a constant C' > 0 such that

(1—12[*)*(1 — |w|?)" - ) = flw)] < C, forall z,w € D, with z # w. (3.47)

|2 = wl

Proof. First assume that (3.47) holds for some positive constant C, and let z € D. By letting w — z in
(3.47), we get (1 — |2]?)|f'(2)| < C < +o0, so f € B.
Conversely, assume that f € B. Then, by Theorem 3.3.3,

£ (z) = f(w)]

< ||fllB, forall z,w € D, with z # w. (3.48)
Bz, w)
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Now consider the function F(z,w) = (1 — |2]?)%(1 — |w|?)* - M, for all z,w € D, with z # w.
z—w
If there exists a constant M > 0O such that
F(z,w) < M, forall z,w € D, with z # w, (3.49)

then, by multiplying (3.48) and (3.49) by parts, we get (3.47) for C = || f|[gM +1 > 0. Thus, it suffices
to show that F' is bounded.

Since s, t are positive numbers with s+t = 1, we may assume without loss of generality that 0 < ¢ < %
Let z,w € D, with z # w. Then there exists a point w € D \ {0} such that w = ¢,(u), so, using the
Mobius invariance of the hyperbolic metric and Proposition 1.1.2 (iv),

Few) = (1= s o)) - e

(1= uf»)"  B0,u)l - zu|

— (1= 121%). .
A T P s py popp
o (1T —u?) 1+ |u e
-1 = 1-2t . ( 1 -1 = 1-2t . h
1=zl Sl oy = 11—zl (),

1 —z?)t 1
where h(x) = (1—27) log + x, forall z € (0, 1). We have:
2z 1—2
(i) 1 1 1+ 1 1 2
x -z
lim A(x) == lim —-1 =— 1l . =1
Jim h(z) =g tim =logg— =5 lim o g T b

so there exists some 0 € (0, %) such that h(x) < 2, forall x € (0,0),

(i)

i h(e) = 5 lim (1+2)'(1 - 2)"(log(1 + ) — log(1 -~ 2))

2
=—" lim (1 —2)"log(1 — )

z—1-
=271 lim y'logy =0,
y—07F
s0 there exists some 6 € (2,1) such that h(z) < 1, forall z € (6,1), and
(iii) h is continuous in [0, 8], so there exists a constant L > 0 such that h(z) < L, for all z € [4, d].
Thus, for L = max{2,1, L} > 0 we have that
h(z) < L, forall z € (0,1). (3.50)
Moreover, since 1 — 2¢ > 0, we have
11— zu|' 720 < (1 + |2||ul) 720 < 21720 (3.51)
By (3.50) and (3.51),
F(z,w) = |1 — zul*"2 - h(lu]) <2172 . L= M,

and M is independent of z, w, hence F' is bounded. This completes the proof of the theorem. O






APPENDIX A

Some functional analytic results

Lemma A.0.1. Letz €D, ce R, t > —1 and

w2t
Loi(z) = /D |(1|’)dA(w). A1)

1 — zwf2tite
(i) If ¢ <0, then I, is bounded as a function of z.
(ii) If c=0and |z| > 3, then there exist constants C1 = C1(t), Cy = Ca(t) > 0 such that

1

1

1—[z[?

(iii) Ifc > 0 and |z| > &, then there exist constants Cy = C1(c,t), Ca = Ca(c,t) > 0 such that

Ch

Cy
< Z
(1 |Z|2)c — Cvt(

IS T pe

Proof. First, note that the integral in (A.1) is defined for all z € . Indeed, let z € D and distinguish the
following cases:
Case l. 24+ t+ c> 0. Then

(1= Jwl?) (1 - Jw?)! 1 1
/DH_ZWdA(w) =< /D(l—|zy)2+t+CdA(w) = 2D T+1 < +4o00. (A2

Case 2. 2+ t+ c < 0. Then

(1= Jw]?)! (1—|w?)! 1 1
/D [T — zw2rite dA(w) < | oatie dAW) = Syris 357 < oo (A.3)

Next, set A = 2(2+t+¢). If ¢ > 0,then A > 1, s0if A = 0 or A = —n for some n € N, then
¢ < 0, and (A.2) and (A.3) imply that I..; is bounded in D.

If A\ # 0and A # —n forall n € N, then I'(A) and I'(n + \) are defined for all n € N. Let z € D.
Then for all w € D, a generalization of the Binomial Theorem ([13, Exercise 5.2.4]) yields that

o TN, N S N (R
(1 —zw) /\Zz:onlf()\)z w" and (1 — zZw) )\ZE:On!F(/\)Z w",

73
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hence

1 1 1
= = = 1 "o zZmw™, (A4
L= 2a2e — [T zaP® ~ (1= z0)M1 — 5u) Ni“ﬁoo;;“”“mz W, (A4
L(k+A)
EIT(N) 7
Now, consider a sequence {7} C (0,1) such that limy_, o rx = 1 and 7, < 741, forall £ € N. We
make the following observations in order to interchange the integral and sum signs:

where aj, = for all k € NU {0}.

(a) By [6, 2.24 The Dominated Convergence Theorem],

1— 2\t 1— 2\t
/(WdA(w): lim / A=) 4 w),
p |1 — zw|?A k=+00 Jp(o,ry) |1 — 20]?
(b) Letr € (0, 1) and consider the functions

N
sn(0) = Z anz"r"e™ | forall @ € [0,27] and N € NU {0}.
n=0

Since the power series Zn 0 anZ"w"™ converges absolutely in D, we get that s is uniformly bounded
in [0, 27] and converges uniformly in [0, 27, hence sy 5y converges uniformly in [0, 27].

(¢) Let R € (0,1). Then the series >,/ °% a2|z|>"r" converges uniformly in [0, R]. Indeed,

a2|z* " < a2 |z|*"R*, forall r € [0, R] and n € NU {0},

and we can verify that the series ZJFE% a2|z|*" R?" converges by doing a root test. The desired result

follows by the Weierstrass criterion for the uniform convergence of series.
(d) Since

! ! I(n+ DIt +1)
1 —r2)tp2n2 :/ 1—r)r"dr =B 1L,t+1) =
/0( r) " 2r dr 0( r)r"™ dr (n+1,t+1) NCEe) < +o0,

by [6, 2.24 The Dominated Convergence Theorem] we get
Tk 1

lim (1 —r®)r?"2r dr = / (1 —r3)ir2m2r dr.
0

k—-+oco 0

Using (A.4), (a), (b), (c) and (d),

N N
Lea(2) = lim o (1 — |w]®)! Nnggn;)anamz"w"zmwm dA(w)

= lim / /%1—7« lim (5x(0)sy(0)) dodr

k—4o00 T N—+o0
’I“ on N N
= lim (1 —r)t. lim E E Uy 2" 27T =0 G
k—+4o0 T N—+o0 Jg
n=0m=0
Tk r N N 2
= lim (1—rHt. = lim E E A Gy 2V 2T M= g dy
k—+o00 Jo T N—+oo 0
n=0m=0
Tr
= lim (1—1r2 lim E a2 |z*"r dr
k—+oco Jo N—>+

Tk
= lim lim a2|z]2"/ (1 — )22 dr
k—4o00 N—4o00 e 0
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k
=sup sup Zan]z\%/ (1 —r3)ir2m2r dr

keEN NeNUu{0} . 0

= sup supz n|z\2”/ (1 — 322 dr

NeNu{0} keN

400 1
= lim lim Z a? |z|2”/ — )b dr = Z a%|z|2”/ (1 — )t 2r dr
N—+o00 k—)—i—oo —0 0

B Z % I2(n + >\ (n+ 1Tt + 1)\z|2" CD(t+1) io I2(n+ ) 2P
(n))2I2(\) T(n+t+2) - I Zall(n+t+2)

SO
1 T+ T2n+A) |
I = " A5
et =gt T2()) Z::l nIT(n +t+2) 12 (A-5)
At this point, we use a version of Stirling’s formula, namely that for any A > 0,
T
lim sup i -1 =0 (A.6)
z—+00 g<q<a| Iz + a)
(see [5, Lemma 7.61]). By (A.6) we derive that
: I'(n+ )
1 =1
oo ['(n+ 2\ —c)nc=A
and
r
lim LN
n—+oo nl - A1
from which it follows that
I%(n+\)
lim =
n—+oo nIl'(n + t 4+ 2)n¢
Thus, there exists a number ng € N such that
I2(n+ M) 1
—1] < 2, foralln >
nIl'(n +t+ 2)nc1 g ToranT =10,
or )
1 c—1 I (n + )‘) 3 c—1
= << = for all n > ny.
2" Wl(n+it2) ~2t lorain=no
Consequently, we can find constants Cy = C’l(c, t), Cy = C’Q(c, t) > 0 such that
I2(n+ ) ~
C < < Con“ foralln € N A7
TN ) orann (A7)
By (A.5) and (A.7),
T(t+1) 5 = o1 o 1 T(t+1) Lo
SIBY 0121 n el S L) < g+ ey GQZnC 2" (A8)

If ¢ < 0, then (A.8) gives

1 T(t+1) - 1 Dt+1) 5 X 1
Iy(2) < C etz C:
«t(2) S 57+ ey 22” < T oy 22 i < Heo

n=1
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that is, I.; is bounded in D.
Ifc=0and |z| > 1, then

+oo 1
> 0P =log—— (A.9)
n=1 1- ’Z‘
and there exists a constant C' = C/(£) > 0 such that
A 1 1
1 A.l
Clog _(1)2—t+1 (A10)
2
By (A.8),
CE+1D) 5 X 1o 1
a2) 2 a5y Cr 2 n A = Calog 1
T'(t+1
where Cy = Cy(t) = 122;;))01 > 0, and by (A.8), (A.9) and (A.10),
1 It+1) 12 1 it+1) ~ 1
I n<C1 log ——
Ot( )_t+1+ F2()\) CQZTL ’Z| Cogl—(%)2+ 1‘\2(}\) CQ 0g1—‘Z|2
A 1 F(t+ 1) 1
< C'log + 021 —— =Y log ,
T—]z2 = T2()) 1—z? — |2
A T(t+1) ~
where Cy = Cz(t) =C+ FQ(/\) 02
Finally, if ¢ > 0 and |2| > £, then (A.6) gives that
im L0 g
n—+oo n! - pe—l
so we can find constants C3 = C3(c, t), Cy = Cy4(c, t) > 0 such that
- T -
Cg(nnl—i_c) <t <Y e, (A.11)
Also, note that
+oo
F'n+c), o 1
Z —= e = s (A.12)
— nll(¢) (1= ]z[?)
and there exists a constant C' = C ( ,t) > 0 such that
1 1
— > (A.13)
(1-()7)"  t*!
By (A.8), (A.11) and (A.12),
T(t41) 5 <= o1 on . DE+DDC) 4 = <=T(n+c), o 1
I > C ¢ "> ——0C — " = ———
)= Ty O 2= ey OO 2 S = A

I'(t + 1)T'(c)

o0y C1Cs > 0, and by (A.8), (A.11), (A.12) and (A.13),

where C; = C(c,t) =

1 T(+1) Lo
Icﬂg(Z) < P 1 F2 CQZnC ’z‘ n

1 Dt +1)T(e) 5 ~ ~=T(n+c) o9,
RN TR TS Oy 02 S 1

1 Lt + 10 ~ ~ 1 1

SOt T ey YTy T
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W@Cz > 0. O

Theorem A.0.2. Letp > 1, a > —1 and a,b € R such that

where CQ = CQ(C, t) =C +

—pa<a+1l<pb+1). (A.14)

Then

_ 2\b
/ %\f(w)\ dA(w) < +oo, forall z € D and f € LP(D, dA,), (A.15)
=

and the operators L, S, T : LP(D,dA,) — LP(D,dA,) given by

L@ = -1 [ )l daw),

— wl2)
Sf(z) = (1—|zP)" / (llu’u)gﬁﬂw) dA(w),

(1 —|w|?)®
Tf (1-— A
f) = (1-|P) / [ e ) dAGw)
are well-defined and bounded on LP(D,dA,,)

Proof. We distinguish two cases for p :

Case 1. p > 1. Let g € (1, +00) be the conjugate exponent of p, that is, % + % = 1. By (A.14) we can

derive that

b+1 a a+a+1 b—«
——— < —and — <
q q p p

because —pa < p(b+ 1), as well as

a 1 1 1 « b—«o b+1
p(b+1)>a+1<:>b+1>*+*<:>b<* 7>——>—f<:> + ,
b p b q p q b q
and
1 1 a+1 a a+a+1
—pa<a+l & a(7+7>>—
P q p q p

Thus, we can choose a real o such that

UG(—T,Z>H<—G+Q+17b_a)#@.

Now, consider the functions

L€ e 0 el L
a+1 |1 _ Zw|2+a+b

h(z) = (1— |z|2)”, forall z € D, and H(z,w) = , forall z,w € D.

We have

(1= w)oe+?

[ A do) = =Ry [ T

If |z| > %, then Lemma A.0.1 (iii) gives that there exists a constant C; = C'(q, a, b, o) > 0 such that

(1 — |w|?)7atb 1 hi(z)
A < -_— 0y — A.l
/D |1 — zw|?Faotb dA(w) < Gy (1 —|z[?)a—0q ¢ (1—1z|2)e’ (A-17)

dA(w), forall z € D. (A.16)



78 APPENDIX A. SOME FUNCTIONAL ANALYTIC RESULTS

so (A.16) and (A.17) give

A H(z,w)h?(w) dAs(w) < C1h1(2). (A.18)

If 2] < %,then2+a+b:2+aq+b+a—aq> 1, by the choice of o, hence

/ w dA(w) < 22+a+b/(1 — |w’2)oq+b dA(w) = Lﬁb (A.19)
p |1 — zw|?tatb - D oq+b+1’ '
so (A.16) and (A.19) give
22+a+b 1— 2\a 22+a+b 1— 2\oq 22+a+b
[ G g < T UZEDE < 2 S BT BI(2). (A20)
D oq+b+1 oq+b+1 oq+b+1
92+a+b
Thus, if we set C' = C(q, a, b, o) = max {Cl, 7} > 0, then (A.18) and (A.20) give
oq+b+1
/ H(z,w)h?(w)dAs(w) < Chi(z), forall z € D. (A.21)
D
Working similarly, we can derive that there exists a constant C' = C(p, a, a, b, o) > 0 such that
/ H(z,w)hP(z) dAs(z) < ChP(w), forall w € D. (A.22)
D

By (A.21), (A.22) and the proof of Schur’s Theorem ([15, Theorem 3.6]), Lf € LP(D,dA,), for all
f e LP(D,dA,), and the operator L is bounded on LP(D, dA,).

Case 2. p=1.Let f € L*(D,dA,). Then, by [6, 2.37a The Fubini-Tonelli Theorem],
(1=~ [w)’
/ ILf(2)| dAa( // 1o Zw|2+a+b |f(w)] dA(w)dAq(2)
_ 2\b
/D(l—\w! )7 1/ - Zw’m% dAq(2)dA(w) (A.23)

1 —|z]?)ete
= [y liwie+y [ SEEE e,

If [w| > 1, then Lemma A.0.1 (iii) gives that there exists a constant C; = C1 (v, a,b) > 0 such that

/ — ) dA(z) < Cpo— 1 (A.24)
[ (R O |
If[w] < &, thenb— o > 0and 2+ a + b > 1, because of (A.14), hence
(1 [y oo | gt 1
T dA(2) < 22T [ (1 — 2B T dA(z) < : A25
| g () < 25 [ (- aa) € S e (429
92+a+b
Thus, if we set C' = C(«, a,b) = max {Cl, 7} > 0, then (A.24) and (A.25) give that
a+a+1
(1 — Jz[*)*re 1
/D WW’ dA(Z) S C- W’ for all w e D. (A26)
By (A.23) and (A.26),

1

(= fwpye A0

/ ILF()| dAa(z) < / (1~ JwP) - | f(w)|(a+ 1)C -
D D
e /D ()] dAa(w) < +o0,

so Lf € LY(D,dA,), and ||Lf||1.a < C| f|l1.a, thatis, L is bounded on L*(D, dA,).
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In any case, we have proved that L is a well-defined bounded operator on LP (D, dA,, ). Then, it easy
to see that S, T" are well-defined bounded operators on LP(D, dA,).

It remains to show (A.15). Let f € LP(D, dA,). Since Lf € LP(D,dA,), there exists aset Fy C D
such that A, (F¢) = 0 and

1 —
/ 1= Z@‘Ul";'wyf(w) dA(w) < +oo, forall z € D\ Ey. (A.27)

Let z € Ey. Since A, (E) = 0, there exists a sequence {2,} C D\ Ey with lim,,_, ;o 2, = 2. Thus,
there exists areal R € (0, 1) such that |z,| < R, for all n € N. Note that

(1- |w!2)b (1 — |w?)°
and -
1—|w w
H(—,Z“’lml'i')a""l)’f(w) <~ ((‘>2L-a+b’f( )‘ for all w c D and n c N. (A29)

Also, since |1 — zyw| < 2, for all w € D, there exists a constant C > 0 such that

1 ~ 1 ~ 1
W_C S3rath <C- 1= o aers for all w € D, (A.30)
and by (A.27),
(1~ |w?"
C T saprers /(@) dA(w) < +oo. (A31)

By (A.28), (A.29), (A.30) and (A.3 1), [6, 2.24 The Dominated Convergence Theorem] yields that

1 — |wl2)?
/Dl(_u‘l—,mzmﬁf(w)l dA(w) < +00.
Thus, we have shown that the integral in (A.27) is finite for all z € D. B

Let (X, ||-||x) be a Banach space. By L(X) we denote the space of all bounded linear operators
T : X — X, and by ||T|| the norm of T Then, it is known from functional analysis that (L(X), ||| is
a Banach space. Also, if 71,75 € L(X), then 175 := T} o T € L(X) and | 1175 < ||T1]||/T%||. For
more information on these topics see, for example, [6, Section 5.1].

Proposition A.0.3. Let (X, ||-||x) be a Banach space and S € L(X).If ||[I — S| < 1, where I is the
identity operator, then S is invertible, that is, there exists an operator T € L(X) such that

ST =1=TS.

Proof. Since |I — S| < 1,

I-9)k < I-SfF=— "~ < 4.
ZH dl ZH [ III SH

Thus, 370 (I — S)* converges in L(X), because L(X) is a Banach space, and
lim (I —S5)*=0in L(X), (A.32)

k——+o0

where O is the null operator. Let 7' = Y"7°0(I — S)* and T;, = S_p_,(I — S)¥, forall n € NU {0}.
Then

n n n+1

STh=(I-(I-9)> I-8)F=> T-5F-> (T-SF=I-(T-95"", (A33)

k=0 k=0 k=1
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and
|1ST,, — ST = ||1S(Tn, — T)|| < ||S|I|Tn — T|, foralln € NU{0}. (A.34)

Since limy, 100 T, = T in L(X), (A.34) implies that lim,,_,  » ST,, = ST in L(X). Thus, by taking
limits as n — 400 in (A.33) and using (A.32), we get that ST" = I. By analogous arguments, T'S = I;
hence S is invertible. O]
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