
University of Crete

Department of Physics

Undergraduate Thesis

Quantum algorithms for computational finance

applications

Michail Koumpanakis

AM:4840

1.4.2020

Supervisors : Georgios P. Tsironis and Georgios Neofotistos



Acknowledgements

First of all, I would like to thank my supervisors Prof. Georgios P. Tsironis and
Georgios Neofotistos for their guidance, constructive comments and support. I would
also like to thank Dr. Georgios Barmparis for contributing to my solid computational
foundation and coding experience that was needed in order to complete this thesis.
I would also like to thank my family and friends for their support.
Special thanks to Danai for her continuing support and for being my muse all the
time.



Abstract

Recently there has been increased interest on quantum algorithms and how they
are applied to real life problems. But is this interest justified? As an example, re-
searchers have tried to apply quantum algorithms to solve linear systems of equations
faster. These algorithms are considered to be more efficient and perform better than
classical algorithms, in general. Among other fields, the field of finance presents real
life problems, such as portfolio optimization and options pricing, which may exploit
the efficiency of quantum algorithms for their solution.

The purpose of this thesis is to apply both classical and quantum algorithms in
two important financial problems namely portfolio optimization and options pric-
ing. We utilize advanced quantum algorithms such as the Variational Quantum
Eigensolver (VQE) and the Quantum Amplitude Estimation (QAE).

VQE is a hybrid classical-quantum algorithm that is applied for optimization
problems e.g. molecule simulations, and optimization problems. In this thesis I am
applying the VQE algorithm to solve linear systems of equations in the framework
of the Markowitz portfolio optimization model.

QAE is a method used in quantum computing to measure probabilities of desired
states and is a generalization of Grover’s search algorithm. I apply QAE to options
pricing and I compare it to the classical Black-Scholes Merton model for pricing
European call and put options.

I have used IBM’s Quantum Experience platform to run the software developed
and compare the performance of the aforementioned quantum and classical algo-
rithms.



Contents

1 Introduction 1

2 Theory 2
2.1 Introduction to quantum computing . . . . . . . . . . . . . . . . . . . 2

2.1.1 Bit: the basic unit of information . . . . . . . . . . . . . . . . 2
2.1.2 Notation of quantum states . . . . . . . . . . . . . . . . . . . 5
2.1.3 The Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Basic quantum gates . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Grover’s search algorithm . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Quantum Fourier Transform . . . . . . . . . . . . . . . . . . . 12
2.1.7 Quantum phase estimation . . . . . . . . . . . . . . . . . . . . 13

2.2 Variational Quantum Eigensolver . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Variational Theorem . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Preview of the algorithm . . . . . . . . . . . . . . . . . . . . . 16

2.3 Modern portfolio theory . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 The Markowitz model . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Options pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Quantum Amplitude Estimation for options pricing . . . . . . . . . . 25

3 VQE for portfolio optimization 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Classical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Preparing the data . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Applying the algorithm . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Quantum approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Applying the algorithm . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 QAE for options pricing 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Option pricing using classical models . . . . . . . . . . . . . . . . . . 37

4.2.1 Monte carlo simulation . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Option pricing using a quantum model . . . . . . . . . . . . . . . . . 39

5 Conclusions 44

4



CONTENTS

Appendices 48

A Accessing IBMQ 49

B Code for preprocessing the data 52

C Code for VQE portfolio optimization 53

D Code for classical options pricing models 57

E Code for QAE options pricing 59

5



Chapter 1

Introduction

Unlike classical computers that rely on 0 and 1 for operations (that is, a bit), quan-
tum computing takes advantage of its quantum nature and introduces a new kind of
bit, the qubit, where 0 and 1 can exist in a superposition state. Quantum algorithms
theoretically outperform classical algorithms.

In this thesis we apply certain quantum algorithms on finance applications,
specifically portfolio optimization and options pricing. The first being one of the
most important problems in finance.

The second, prices derivatives contracts that had a payoff depending on the
underlying assets price at the exercise time. Pricing derivatives contracts depend
on the solution of complex mathematical equations that are computational heavy to
solve. Scientists have suggested quantum algorithms that make the above process
faster.

The first algorithm that we will use is the Variatonal Quantum Eigensolver
(VQE), which is a method originally designed to approximate the ground energy of
a molecule faster than a classical algorithm would do. This method has applications
in the field of portfolio optimization which is the problem of selecting assets based
on the historical returns of the assets and the level of risk to be taken. The second
algorithm that we will apply is the Quantum Amplitude Estimation (QAE) that
we will also discuss here. Using this algorithm we will price call or put European
options.

These two algorithms will be implemented on IBMQ platform belonging to IBM.
Several quantum platforms are available such as Quantum Azure, #Q (Microsoft)
and QuTip. The platform of IBM (which uses qiskit as its Software Develeopment
Kit (SDK) ) was selected because of its simplicity and because it has many quan-
tum coding examples available. The programming language is python and Jupyter
notebooks have been used to run the code.

In the end, it will be discussed how these two algorithms compare to their classical
counterparts taking into account the limited capability quantum computers have
now (limited number of qubits) and how this comparison will turn out to be in the
future.

1



Chapter 2

Theory

2.1 Introduction to quantum computing

2.1.1 Bit: the basic unit of information

Quantum computing takes advantage of the nature of quantum mechanics. In clas-
sical computing each piece of information is stored and processed in binary form (0
or 1).

Combinations of these bits (binary strings) produce numbers or letters. The binary
number system is a positional notation with a radix of 2. This means using the two
characters 0 and 1 to express numbers. For example the number 9 is represented by
a 4 bit binary string and can be written as:

9 = (1× 23) + (0× 22) + (0× 21) + (1× 20) or |9〉 = |1001〉

This is how numbers are represented in classical computing. And not only numbers..
Letters, images, or sound, they can be represented in the form of binary strings.

Quantum computers use the same principle. The main difference is that they use
qubits that can be manipulated using quantum operations.

In computer science a basic way to represent calculation with bits is a circuit dia-
gram. A circuit consist of basic gates. These gates are operators that manipulate
the bits in order to have a desirable output.

Basic logic gates that apply for computing are the following:

2



CHAPTER 2. THEORY

Figure 2.1: Logic gates [1]

The OR gate acts on two bits and outputs 0 if both bits are 0, else 1. The AND
gate acts on two bits and outputs 1 if both bits are 1, else 0. The NOT gate is a
very simple gate that flips a target bit from 0 to 1 or from 1 to 0.
The CNOT gate (exclusive OR) performs a NOT operation on the target bit if the
controlled bit is 1 (basically an if statement).

Figure 2.2: A CNOT or XOR gate [2]

The Toffoli gate is basically a CCNOT gate, [see Fig.(2.3)] performing a NOT op-
eration in a target qubit if two control qubits are 1.

3



CHAPTER 2. THEORY

Figure 2.3: A CCNOT or Toffoli gate [3]

All these gates are combined into a circuit in order to construct basic algorithms.
A very simple circuit that performs the sum of two |1〉 bits is the following:

Figure 2.4: Example of a simple circuit (see [9])

Let’s look deeper into the algorithm. We want to add two |1〉 bits. The output
should be |10〉 = |2〉. The basic idea is that we have two input bits and 2 output
bits. The first step is to prepare our state. We perform the NOT gates to our
two input bits in order to prepare our |1〉 + |1〉 state. We want to manipulate our
circuit in order to produce the |0〉 bit in our q2 bit register and the |1〉 bit in our
q3 register. The first two CNOT gates target bit q2 flipping the target bit q2 to 1
and then back to 0 cancelling each other out. Finally the Toffoli gate performs a
flip to 1 for the q3 register resulting in our |10〉 state. The two controlled gates that
target q2 are used in order to connect our inputs to our outputs. In case we want
to add a different number let’s say |1〉 + |0〉 then we just remove the second NOT
gate without changing the algorithm between the input and the output.

Note that although this is a classical algorithm we can run it on a quantum computer
just to showcase the basic operations that are performed. Unlike classical computers,
in quantum computers we want to measure the qubit registers that correspond to
our result.

Running this algorithm in IBM’s Quantum Experience platform will have the fol-
lowing results:

We should expect to get |01〉 as our result with 100% certainty as in a classical
computer and indeed we do. But quantum computers behave differently. Due to
their quantum nature qubits that store our results need to be measured at the end

4



CHAPTER 2. THEORY

Figure 2.5: Results of the algorithm executed at ibmqx2 in IBMQ (IBM’s quantum
computer)

of the algorithm. Furthermore qubits have a probability to be in a specific state
unlike classical bits that will always be in either 0 or 1 state. The measurement
outputs a classical bit string (uncertainty collapses).

This measurement is executed a couple of times in a real quantum computer (usually
4000) in order to get a clear view of our result statistically. Quantum computers
though are very sensitive to noise (interaction with the enviroment). Because we
need to measure the particles encoded in a circuit, even if a small disturbance
happens then the result is altered. That’s what happens here. The algorithm is
executed with 4096 shots in the quantum computer and 2294 times (56%) we had
the correct result. That’s one of the biggest problems quantum computers face right
now and that’s why most algorithms in my thesis will be run on quantum simulators.

2.1.2 Notation of quantum states

In quantum mechanics we use statevectors to describe the state of our system. For
example, in order to define the spin of a particle we need to describe if it is up or
down. To do so we use a vector. The |0〉 state corresponds to the up spin and the
|1〉 to the down spin. This is the bra-ket notation and as you may have noticed it is
used to describe the state of a qubit.

5



CHAPTER 2. THEORY

The corresponding statevector of the |0〉 state is :

|0〉 =

(
1
0

)
and of the |1〉 state:

|1〉 =

(
0
1

)
vspace0.3cm

In other words this notation describes the probability of measuring the particle with
spin up or down. The probability is 1 if we are in the |0〉 state and 0 otherwise and
vise versa. The same accounts for qubits. Each qubit has an amplitude (complex
number) representing it’s current state. The amplitude squared is the probability
of finding the qubit in either state |0〉 or |1〉. For example, the following vector |x〉
stores the amplitudes of states |0〉 and |1〉.

|x〉 =

(
1√
2
1√
2

)

The probability of measuring the qubit in the |0〉 state is 50 % and in the |1〉 also
50%.

|x〉 = 1√
2
|0〉+ 1√

2
|1〉

p(|x〉) = |〈ψ|x〉|2

In this example the qubit is in a state of equal superposition because we have the
same probability of measuring it in the |0〉 or |1〉 state.

6



CHAPTER 2. THEORY

2.1.3 The Bloch Sphere

The representation of our qubit state can be visualized using the Bloch Sphere. The
Bloch Sphere is basically a 3-D space that represents any possible combination of
qubit states. The general state of a qubit |q〉 can be written as:

|q〉 = a|0〉+ b|1〉

with a and b being complex numbers. In order to write the above state using real
numbers we can add a relative phase between them as:

|q〉 = a|0〉+ eiφb|1〉

a, b, φ ∈ R

The qubit state can also be written using two variables φ and θ (a and b has to be
normalized) as it is easier to represent it in the 3-D space, Bloch Sphere (surface
with r=1 ) .

|q〉 = cos θ
2
|0〉+ eiφ sin θ

2
|1〉 (2.1)

A visual representation of the Bloch Sphere can be seen below:

Figure 2.6: Visual representation of various qubit states in 3-D space [4].

It’s now time to introduce more quantum gates that are essential in understanding
the structure of more complex circuits and algorithms.

7



CHAPTER 2. THEORY

2.1.4 Basic quantum gates

In section 2.2.1 some basic logic gates were covered that are most frequently used in
classical algorithms. These gates are the NOT, XOR (exclusive OR) and the XXOR
gate and theirthat equivalent quantum gates are named Pauli X , CNOT and Toffoli
respectively.These classical logic gates though are not enough to construct quantum
algorithms. The need for more complex gates that manipulate quantum states
efficiently are needed.

One of the most important gate that operates qubits states is the Hadamard gate
H. Its role is to create a superposition. If the gate acts on a |0〉 state then the state
transforms to :

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

else for the |1〉 state it transforms to :

|−〉 = 1√
2
|0〉 − 1√

2
|1〉

As we will see later its role is to expose the quantum nature of qubits and allow
a quantum speed up for certain algorithms. The matrix representation of the gate
can be seen below:

H = 1√
2

[
1 1
1 −1

]

The next two gates that are used frequently in quantum algorithms are the Pauli-Y
and Pauli-Z gates. Like the Pauli-X gate they perform a φ = π rotation in the y and
z axis of the Bloch sphere likewise. The Pauli Z gate has the property of flipping
the |+〉 to the |−〉 state, and vice versa.

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

Next is the Rφ gate. The Rφ gate performs a rotation of φ around the Z-axis.

Rφ =

[
1 0
0 eiφ

]

Finally we have U3 the most general quantum gate with parameters θ , λ and φ. All
the quantum gates can be built from this gate given the right parameters.

U3 =

[
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ cos(θ/2)

]

8



CHAPTER 2. THEORY

2.1.5 Grover’s search algorithm

On this subsection an elegant quantum algorithm will be explained, Grover’s search
algorithm[17]. It is one of the first quantum algorithms that introduces a quantum
speed to its classical counterpart and is very effective for searching databases.

Suppose there is a function f(x) which is 0 for all x except for x=u. The goal is to
find u.

f(x) =

{
0 if x 6= u

1 if x = u
(2.2)

For example, let’s say we have a phonebook and we want to find a certain number
u. A classical algorithm would need at most O(n) steps, equal to the number of
cellphone numbers we are searching in order to find u. Grover’s algorithm can find
the desired phone number in at most O(

√
n) steps.

1) First of all, we start by creating a uniform superposition over all qubits. To do
that we apply a Hadamard gate to each qubit register of our circuit.

|ψ〉 = H⊗n|0〉n =
1√
2n

2n−1∑
x=0

|x〉 (2.3)

The reason behind this, is that we want to create all possible combinations of num-
bers in our phonebook/list with equal probability when a measurement happens.
For simplicity, let’s say we have 7 numbers in our phonebook. The numbers are :
[0,1,2,3,4,5,6,7] or [000,001,010,011,100,101,110,111] in bit format. The probability
of finding any number in the phonebook is p= 1

8
. Here each qubit register will have

an amplitude of a = 1√
8
.

Now, in order to find a specific number let’s say |3〉 = |011〉 we have to apply
Grover’s search algorithm second step .

2) Apply an oracle function Uf in our state |ψ〉 that maps the number we are
searching for with a negative amplitude. The oracle function is a black box which
distinguishes the number we are searching from other numbers.

Figure 2.7: Visualization of the oracle function [18]

9



CHAPTER 2. THEORY

Below you can see the oracle function that is applied in our state |ψ〉 after the
Hadamard transformation. Each number from 0 to 7 has a different oracle function.
Here the simplest version is implemented which is for the number|7〉 = |111〉. As
you can see a Toffoli gate is acted on qubit register q[2] with two controlled qubits
(register q[0] and q[1]) resulting in a flip of qubit q[2] in case the 2 first two qubits
happen to be in the |1〉 state. Basically after the Hadamard transformation the
Toffoli gate entangles the first two qubits with the third. The result is a change of
amplitude on the third qubit. When a Hadamard gate is applied on a qubit and
then it is acted again the superposition collapses and the qubit becomes a normal
bit again but if a CNOT or Toffoli gate acts in-between then the states get entangled
(control-target qubit) and it’s impossible to get the initial state again thus changing
the amplitude.

Figure 2.8: Implementation of Hadamard and Oracle transformation [IBMQ]

3) Apply the Grover operator :

G = 2|ψ〉(〈ψ| − I)O

The Grover operator is responsible for boosting the amplitude of our desired quan-
tum state and decreasing the amplitude of the rest. As you can see in figure 2.7
after the Grover operator is applied the average amplitude 1

2
√
2

= 0.35 drops to
0.265. Then the Grover operator is applied and it basically flips the amplitudes
around the average. So the previously positive quantum states that were above the
average in figure 2.7 will decrease and the only negative amplitude will increase.

Figure 2.9: Visualization of the Grover operator [18]

10



CHAPTER 2. THEORY

The part of the circuit that implements the Grover operator can be seen below :

Figure 2.10: Implementation of the Grover operator on a quantum circuit [IBMQ]

As you can see the oracle function is again implemented but now there are Pauli-X
and Hadamard gates that act on the qubits too.

Finally the complete 1-iteration algorithm can be seen below. The dashed lines
are called barriers and they play the role of separating the different parts of the
algorithm.

Figure 2.11: Complete circuit for Grover’s algorithm[IBMQ]

4) Repeat
√
n times where n are the number of qubits and N = 2n are the total

number of combinations. In order to finally find the item or number we are searching
in a list we have to repeat Grover’s algorithm

√
n times. For our example, with 3

qubits and 8 possible combinations of numbers the main body of the algorithm has
to be repeated 2 times.
To sum up, the most important things about the algorithm are the manipulation
of superpositions, the Oracle function and the Grover operator. With only 3 qubits
registers we can create 8 different numbers while we would normally need more
bits for a classical algorithm. But that is not enough because the Oracle function
and the Grover operator manipulate our quantum state efficiently and manage to
differentiate the desired quantum state from the rest.

Figure 2.12: Amplitude visualization on statevector simulator[IBMQ].

11



CHAPTER 2. THEORY

2.1.6 Quantum Fourier Transform

The quantum Fourier transform (QFT) is the quantum implementation of the dis-
crete Fourier transform over the amplitudes of a wavefunction.

The Discrete Fourier Transform takes a basis xn = [x1, x2, ..., xn] and transforms it
into a different base yn = [y1, y2, ..., yn] using the formula below :

yn =
1√
N

N−1∑
j=0

xjω
jn
N (2.4)

where ωjnN = e2πi
jn
N .

It is very useful when dealing with periodic data because we are able to extract the
most important features from our data e.g. time-frequency.
Likewise the QFT is the quantum version of the DFT. The only thing that changes
is that the bases xn, yn are quantum with :

|x〉 7→ 1√
N

N−1∑
y=0

ωxyN |y〉

or:

N−1∑
i=0

xi|i〉 7→
N−1∑
i=0

yi|i〉

Like all quantum algorithms the above formula is implemented on a circuit by ap-
plying controlled rotations on multiple qubits.
The transforming basis yn is stored in the qubit registers as following: The leftmost
qubit in our circuit has the lowest frequency (least rotations) and the rightmost the
highest frequency (most rotations around the Z-axis). Furthermore as you can see
below each qubit is targeted by the above qubits (n−j, ..., n−2, n−1) with rotations
( π
2n−1 ,

π
2n−2 , ..,

π
2n−j

) accordingly .

Figure 2.13: Circuit for the QFT for 4 qubits[IBMQ]

12



CHAPTER 2. THEORY

2.1.7 Quantum phase estimation

Quantum phase estimation is a quantum method used in many quantum algorithms
to calculate the phase θ of a unitary matrix U or it’s eigenvalue e2πiθ. The corre-
sponding transformation is :

U |ψ〉 = e2πiθ|ψ〉 (2.5)

The unitary matrix U is the phase shift gate Rφ we saw in chapter (2.1.4) with
an angle of φ = 2πθ. Note that U has a norm of 1 due to its unitary nature. The
quantum subroutine can be seen below. Each step of it will be discussed analytically.

Figure 2.14: Visualization of the quantum phase estimation circuit [9]

First of all, we have to prepare a state |ψ〉 =
∑n

k=1 |ψk〉 where n is the number of
register counting qubits. Then we have to apply n Hadamard gates to these qubits
transforming the state into :

|ψ〉 =
1√
2n

(|0〉+ |1〉)⊗n |ψ〉 (2.6)

Then for 0 ≤ i ≤ n apply Cn−i−1U gates(controlled U gates), U gates are ap-
plied only if its corresponding control bit is |1〉 to an ancilla qubit q (register qubits
m) where our initial state |ψθ〉 is stored . The state |ψθ〉 corresponds to the trans-
formation :

|ψ〉 =
1√
2n

(
|0〉+ e2πiθ2

n−1|1〉
)
⊗ · · · ⊗

(
|0〉+ e2πiθ2

1 |1〉
)
⊗
(
|0〉+ e2πiθ2

0|1〉
)
⊗ |ψ〉

13



CHAPTER 2. THEORY

=
1√
2n

2n−1∑
k=0

e2πiθk|k〉 ⊗ |ψ〉 (2.7)

Now we are half-way there. All we need to do is apply an Inverse Quantum Fourier
Transform(IQFT), inverse of QFT we saw in the previous section [2.1.6]. The cor-
respondig state is :

|ψ〉 =
1√
2n

2n−1∑
k=0

e2πiθk|k〉 ⊗ |ψ〉 QFT
−1
n−−−−→ 1

2n

2n−1∑
x=0

2n−1∑
k=0

e−
2πik
2n

(x−2nθ)|x〉 ⊗ |ψ〉 (2.8)

Now the final step is to measure our state |ψ〉 that corresponds to the register
counting qubits (not the ancilla ones). Generally more counting register qubits
correspond to better accuracy. The measurement measures state:

|ψ〉 = |2nθ〉 ⊗ |ψ〉 (2.9)

The final angle θ that we wanted to find is θ = measurement
2n

with n the number
of register qubits. The measurement can be any integer or float e.g. for |001〉 = 1,
θ = 1/8 for n = 3 .

14



CHAPTER 2. THEORY

2.2 Variational Quantum Eigensolver

As we will see later in section 2.3 the main goal of optimization algorithms is to find
the minimum of a function L in order to determine it’s optimal state.
In physics, for example, the goal is to find the lowest eigenvalue of a Hermitian
matrix H describing an atom, also known as the Hamiltonian, in order to determine
the ground state of the atom. The lowest eigenvalue corresponds to the minimum
energy that atom can have. For simple atoms this problem is solvable in a classical
computer but for more complex ones or even molecules the optimization problem
scales exponentially due to a huge number of parameters. Quantum computers
solve that problem by utilizing a hybrid classical-quantum model by the name of
Variational Quantum Eigensolver (VQE)[10], [12]. The basic idea is to take the
advantages of both quantum and classical computers by allocating classically easy
tasks to classical computers and other more complex tasks to quantum computers.

2.2.1 Variational Theorem

Before exploring the algorithm we have to understand it’s mathematical background.
The Variational Theorm [VT] is used in quantum mechanics to determine the ground
state of an atom. Given a Hermitian matrix H that represents the Hamiltonian and
a wavefunction |ψ〉 we know that :

H |ψ〉 = λ |ψ〉 (2.10)

where λ are the eigenvalues of the Hermitian matrix H. Furthermore, the expectation
value of the observable H (i.e. energy) on a quantum state |ψ〉 is given by :

〈H〉ψ ≡ 〈ψ|H|ψ〉 (2.11)

The variational theorm states that :

〈H〉ψ ≥ λmin

Eigenvalue λmin corresponds to the lowest energy of the system Eo.
Equation (2.11) can also be written as a linear combination of states |ψi〉 with
eigenvalues λi as:

Eo ≤ 〈H〉ψ = 〈ψ|H|ψ〉 =
N∑
i=1

λi|〈ψi|ψ〉|2 (2.12)

15



CHAPTER 2. THEORY

2.2.2 Preview of the algorithm

The basics steps that VQE will use in order to find the global minimum of an opti-
mization problem are the following:

1) Prepare a variational state |ψ(θi)〉 with parameters θi by generating trial wave
functions (ansatz) using a parametrized quantum circuit U(θi) such as |ψ(θi)〉 =
U(θi) |0〉 .

2) Calculate the expectation value of the Hamiltonian E = 〈ψ|H|ψ〉
〈ψ|ψ〉 .

3) Use a classical optimizer that suits the problem to find new optimal θi in or-
der to reach the global minimum.

4) Iterate the above until convergence.

Now let’s look each step more closely. Firstly, the simplified (without parameters
θi, λi) parametrized quantum circuit U(θi) is described as :

U(θi) =

(
cos( θi

2
) −sin( θi

2
)

sin( θi
2

) cos( θi
2

)

)
(2.13)

Also known as the rotation matrix. This matrix will act on the qubits of our problem
and prepare a trial wave function with random initial angles θi. Then controlled
Pauli-Z gates will act on the qubits in order to entangle them and then again the
rotation matrix will act on the qubits and will create an initial ”guess” (ansatz)
concerning the lowest eigenvalue of our problem by calculating the expectation value
〈ψ(θi)|H|ψ(θi)〉.
In order to implement the above theorem in a quantum computer one has to prepare
the Hamiltonian in a way that quantum operations can be acted upon it. That is
done by splitting our Hamiltonian as a sum of Pauli-Z matrices that are acted as
gates in our quantum circuit.
The circuit that implements this procedure is shown below:

Figure 2.15: VQE variatonal form for n=3 qubits and p=2 depth with random
selected θi(circuit designed in IBMQ)

16



CHAPTER 2. THEORY

The above circuit is an example of implementing the algorithm in a 3 qubit system.
The circuit’s depth p describes the number of times the basic circuit (3 controlled-Z
and 3 Ry gates here) will be repeated. For a complex optimization problem p needs
to be adjusted accordingly in order for the algorithm to converge.

The result of the algorithm (without classical optimization yet) is shown below using
a statevector simulator in IBMQ.

Figure 2.16: Results of VQE algorithm for a random problem

Now the classical optimizer will find new values of θi that will be used again for step
1) in order to further decrease our expectation value and find the global minimum.
The number of times this process needs to be repeated is unclear.Each problem re-
quires different number of iterations in order to converge. The classical optimizer
that is used for most problems is the Constrained Optimization by Linear Approxi-
mation optimizer (COBYLA).

A complete description of the algorithm is described by the figure below:

Figure 2.17: Summary of VQE Ref.[15] .

17



CHAPTER 2. THEORY

2.3 Modern portfolio theory

Modern portfolio theory[8] is a mathematical framework that is used for the opti-
mization of a given portfolio with n financial assets. A portfolio is a list of stocks
an investor holds. The goal is to find the best possible portfolio out of all possible
combinations of the n assets by maximizing the expected return of the portfolio
given a risk level q that depends on the investor. The idea behind modern portfolio
theory is ”the spreading of risk”, the idea that holding different kinds of financial
assets is less risky, often called diversification.

2.3.1 The Markowitz model

The mathematical model that solves this optimization problem is called the Markowitz
model[20], named after the economist that proposed it who also got a Nobel for it.

There are two important parameters for this model, the mean and the variance of
the of the portfolio return. The model uses the mean expected returns of the assets:

~R = E[~r] (2.14)

where ~r = [r1, r2, .., ri] is the vector of daily returns for the n stocks. The expected
return of the portfolio is then

µ = RTw (2.15)

where w is the weight vector which denotes how much money will be invested in
each selected stock e.g. [0.3,0.2,0.5].
The co-variance matrix is defined as :

~Σ = V [(~r − ~R)(~r − ~R)T ] =

∑N
i=1(~r − ~R)(~r − ~R)T

N − 1
(2.16)

with N being the total number of trading days that are used to calculate the mean
daily returns for the portfolio. Each value of the covariance matrix has the covari-
ance between stock i and j. In other words, the model minimizes the risk given the
correlations between the n stocks (if they are ”moving together” or not). .

18



CHAPTER 2. THEORY

The variance is calculated by calculating the covariance of the portfolio through the
covariance matrix and multiplying it by the weights of each stock selected.
The variance of portfolio return is defined as:

v = wTΣw (2.17)

The following term must be minimized to acquire the optimal portfolio :

min(wTΣw − qRTw) (2.18)

where q ≥ 0 is the ”risk level” factor, where 0 results in a risk-neutral investor and
the optimal solution would only maximize the expected return or minimize the the
portfolio variance, independent of the risk and as q increases the solution gets more
and more risk-averse resulting in the portfolio variance to be penalized more.

In other words the variance of the portfolio is the risk that has to be minimized
(different from the risk level factor q) and the expected return is the value that will
be maximized if we choose to denote the problem as a maximization one instead of a
minimization one. Different risk level factors q give us different portfolio selections.
All these portfolios lie in a 2-D space with the standard deviation as the x-axis and
the expected return of the assets as the y-axis. In this 2-D space there is a parabolic
line which is called the efficient frontier. A portfolio lying on the efficient frontier
represents the combination offering the best possible expected return for given risk
level. There is also one more constraint subject to the problem and that is :

1Tw = b or
n∑
i=1

(wi) = b (2.19)

If the investor wishes to be able to choose any possible combination instead of a
defined budget b, even those portfolios with 1 or n stocks, then the above term may
equal 1.
To sum up the optimization problem that needs to be solved is :

min(wTΣw)

subject to
qRTw = µ &

1Tw = b

It will be solved using Lagrangian mechanics.
The linear system to be solved[21] is defined as:0 0 RTw

0 0 1T

R 1 Σ

λz
w

 =

µb
0

 (2.20)

or

Ax = B

19



CHAPTER 2. THEORY

A more analytical interpretation where the Lagrangian becomes more obvious is the
following:
Equation (2.17) can be also written as : σ2 =

∑n
i,j=1wiwjσij with the Lagrangian

defined as:

Λ =
n∑

i,j=1

wiwjσij − λ(
n∑
i=1

wi − b)− z(
n∑
i=1

wiri − µ) (2.21)

and the minimization of the following terms will give us the optimal portfolio w =
[w1, w2, ..., wn] :

∂Λ

∂wi
= 0 i = 1, 2, ..n &

∂Λ

∂λ
= 0 &

∂Λ

∂z
= 0 (2.22)

Linear system (2.20) can be solved by inversing matrix A(by any method available)
:

x = A−1B

with
x = (λ, z, w)

The optimal portfolio vector w is the final solution. As we will see next the hybrid
quantum-classical model [VQE] that runs on a quantum computer will follow the
same process as here to compute w.

20



CHAPTER 2. THEORY

2.4 Options

2.4.1 Definition

Options are financial contracts that are based on the value of underlying securities
such as stocks, bonds [7]. These type of contracts like future contracts fall in the
category of derivatives. There are two basic kinds of options contracts : the call
option and the put option.

A call option gives the buyer the right, but not the obligation, to buy an un-
derlying asset at an agreed price (the strike price) at some time in the future (the
maturity).

A put option gives the buyer the right, but not the obligation, to sell an un-
derlying asset at an agreed price (the strike price) at some time in the future (the
maturity).

For example, let’s say Danai has 100$ as savings and she wants to invest them in
a global airline company. She heard that the airline company made a new deal with
a large number of hotels around the world for this summer season. She believes that
the company’s underlying stock will thrive in the summer and she is most probably
right. Let’s say the company’s stock trades at 10$ at April. Danai would be able
to purchase 10 stocks and most probably wait until the end of summer to sell them
for a profit.

But Danai has a strange feeling. She senses that this summer an unexpected
disease may occur that will make the price of the stock fall, a risk Danai doesn’t
want to take. Her friend Mike tells her that there is a special contract on the stock
market that allows her to buy these 10 stocks at a specific date (maturity date) in
the future at the same price (strike price) she would buy them back at April, just by
paying a premium or, in other words, a payment in advance. The key thing here is
that Danai is not obligated to buy these stocks at all if the price falls in the future
because then she would make no profit, she would just pay a small fee or premium.
But if she bought the stocks themselves she would lose a lot of money if the price
fell. In the positive scenario where the price increased then Danai would exercise
the contract at the specific date and make a profit with the cost of paying just a
small fee (call option).

That’s the basic idea behind a call option. The put option is similar. If Danai
wanted to sell her stocks at the end of summer but wasn’t sure if the price could go
any higher before falling in the next months then she would purchase a put option
contract that would give her the right, but not the obligation, to sell the stock back
at summer. If the stock price did indeed drop the next months then Danai would
exercise the contract and make a profit by selling the stocks at summer’s price just
by paying a small fee. But if the price actually increased in the next months, then
Danai would not exercise the contract.She would still have the stocks on her portfolio
and she would have the chance to make even more profit by selling them now and
not back in the summer.

21



CHAPTER 2. THEORY

2.4.2 Options pricing

Pricing these option contracts [13] is a matter that concerned exchanges for a very
long time. In order to do so various methods have been used specifically for options.
Here we will see the simplest kind of option, a European call or put option, which is
priced very simply via the following methods. The first method we will talk about
is the Monte Carlo pricing method and the second one is the Black-Scholes-Merton
method.

The first method is a simulation process (Wiener process) where we generate
random paths for the price of the desired asset in a specific time frame in the
future. By keeping the last value from every random price path we calculate the
pay-off (profit) relevant to the initial Strike price. Finally we price the option by
calculating the mean pay-off. If the previous sound confusing, think of how you and
your friends try to predict the weather 10 days in advance. Each one of you makes a
prediction and every day you are allowed to update your prediction. In a sense you
are creating a random path for the temperature value because weather prediction
depends on randomness (for the non-scientists). After 10 days each one of you has
predicted a temperature which you compare with the actual temperature. One of
you almost got it right! You suddenly realise that the best approach would be to
take the average over all these possible predictions and compare it with the actual
temperature. That is the basic idea behind the Monte Carlo method.

The second method relies on calculating the cumulative standard normal proba-
bility distribution function of a stock and using it along with other parameters that
we will see in a while to price the option.

2.4.2.1 Monte Carlo model

Stocks are often assumed to follow a random walk, like particles that collide with
each other. This type of motion is called Brownian motion[19] and is derived from
the random motion of particles suspended in a fluid resulting from their collision
with the fast-moving molecules in the fluid. It is thus possible to model this random
walk using this technique, by simulating the stochastic process of the stock price.

The price of the underlying stock S(t) is assumed to follow the following stochas-
tic differential equation :

dS(t) = µS(t)dt+ σS(t)dW (2.23)

where µ and σ are the drift and the volatility of the specific stock and and dW
is a Wiener process [11]. Volatility is the standard deviation of returns and the drift
µ is the mean of returns.

22



CHAPTER 2. THEORY

We want to keep only prices greater or equal to zero and thus take the logarithmic
term with :

dlogS(t) = (µ− σ2

2
)dt+ σdW =⇒ logS(t) = logS(0) + (µ− σ2

2
)t+ σ

∫ t

0

dW

The final stock price at maturity time T (the time we exercise the option contract)
is :

S(T ) = S(0)× exp

[(
r − 1

2
σ2

)
T + σ

√
TN(0, 1)

]
. (2.24)

where r is the risk-free interested rate that replaces the drift µ for simplicity (risk
neutral investor). The interval of the Wiener process dW from time 0 to t is s a
normally distributed random variable with mean zero and a variance of 1 multiplied
by the square root of time.

In a Monte Carlo simulation the goal is to create a large number of stock price
estimations using the above expression. These generated stock prices are then used
to estimate the option price. We calculate the option price by taking the mean of a
pay-off function f and then discounting by the increase in value due to the risk-free
interest rate r.

The pay-off function f is a very simple mathematical expression, depending only
on the stock price at maturity and the strike price K that was set by the investor
when buying the contract.

Call option:

fc = max(S(t)−K, 0) (2.25)

Put option:

fp = max(K − S(t), 0) (2.26)

The final option price p is :

p = e−rTE [f(S(t), K)] (2.27)

The above agree with the definition of options in section 2.2.1. An option is only
exercised if the underlying price S(t) is greater than the strike price K for a call
option or less than the strike price K for a put option.

As we will see later the price of the option for a stock depends mainly on the
underlying volatility of the stock and the day to maturity for the option. The greater
the uncertainty both in time and in price the greater the option costs and vice versa.

23



CHAPTER 2. THEORY

2.4.2.2 Black-Scholes-Merton Model

The Black-Scholes model is used in finance to price European call or put options.
It’s based on a partial differential equation which models the price evolution of the
asset. Just like the Monte Carlo method it takes into account various parameters
such as the volatility, risk-free interest, strike price and time to maturity of the
asset. It is notable that professors Merton and Scholes won the Nobel prize ( Bank
of Sweden Prize in Economic Sciences in Memory of Alfred Nobel) back in 1997 for
”a new method to determine the value of derivatives”.

The partial differential equation derived from a geometric Brownian motion is:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.28)

The Black-Scholes model as said before makes certain assumptions (that simplify
the problem to be solved) :

First of all the option is European and can only be exercised at expiration.
American options can be exercised at any time and are thus harder to model. Sec-
ondly, no dividends are paid out during the life of the option. Thirdly, there are no
transaction costs in buying the option (no platform fees). Furthermore, the risk-free
return and volatility of the underlying asset are known and are constant (something
not entirely true in the stock market). Finally, the returns of the underlying asset
are normally distributed.

The final solution that gives us the price of the option (premium) can be seen below:

C = StN(d1)−Ke−rtN(d2) with (2.29)

d1 =
ln(St

K
) + (r + σ2

2
)t

σ
√
t

(2.30)

d2 = d1 − σ
√
t (2.31)

where C is the call option price, S is the current stock price, K is the strike price,
σ is the volatility, t the time to maturity, r the risk-free interest rate and N the
standard normal cumulative probability distribution function.

As we will see later using this method is much faster than method 1 and less com-
putationally expensive which is something we should always consider.

24



CHAPTER 2. THEORY

2.5 Quantum Amplitude Estimation for options

pricing

In this section we will briefly see how to use Quantum Amplitude Estimation (QAE)
[14], a quantum algorithm that is implemented on a quantum computer to price
European call or put options[22],[23]. The algorithm is a generalization of Grover’s
search algorithm and is very similar to Quantum Phase Estimation (QPE) we saw
in section [2.1.7].

Assume a unitary operator U acting on (m+1) qubits that applies the transforma-
tion:

U |0〉n+1 =
√

1− a|ψo〉n|0〉+
√
a|ψ1〉n|1〉 (2.32)

The quantum states |ψ〉n are normalized and a, the amplitude, is unknown with
a value of a ∈ [0, 1]. The goal is to estimate the value of a that is the probability
of measuring qubit |1〉 in the last qubit. Furthermore, we need n additional sam-
pling/counting qubits to store the result, a total of M = 2m applications of U in the
Quantum Phase Estimation subroutine to compute the eigenvalues of U. Like in sec-
tion (2.1.7) we first initialize the register counting qubits m on an equal superposition
by using Hadamard gates. Then we use these sampling qubits to control different
powers of U on our ancilla register qubits n. Then we apply an Inverse Quantum
Fourier Transform(IQFT) and measure the counting register qubits m as integers
e.g. x ∈ [000, 001, ...111]. These numbers have different probabilities as expected
and the value x with the highest probability is our final amplitude a = sin2(xπ

M
) .

In order to use this algorithm for options pricing we need a linear function f
that will be our payoff function (subject to a random variable X) that stores var-
ious payoffs/profits from different time paths of the asset just like in Monte Carlo
method(2.4.2.1). The amplitude a is then calculated by computing the mean of
these various payoffs (expectation value ) such as a = E [f(X)] by using the Quan-
tum Amplitude Estimation algorithm.

The payoff function f can be written as : f(i) = f1i+f0 where i is an index referring
to each n qubit i.e. [0, ..., 2n−1]. We perform linearly controlled Y-rotations on the
target ancilla qubits using different powers of the operator U. The U operator can
be seen below:

U =

(
cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

)
(2.33)

25



CHAPTER 2. THEORY

The quantum state |ψ〉 now becomes:

|ψ〉 = Ui|0〉 = (cos(f(i))|0〉+ sin(f(i))|1〉)|i〉 (2.34)

We now need a way to obtain the expectation value E [f(X)]. This will be done by
transforming our register qubits n into ( 2.34) and also by transforming our function
f(i). Our initial state is of the form :

|ψ〉 =
2n−1∑
i=0

√
pi|i〉n|0〉 (2.35)

and becomes the following after the transformation:

2n−1∑
i=0

√
pi|i〉n[cos(cf̃(i) +

pi

4
)|0〉+ sin(cf̃(i) +

pi

4
)|1〉] (2.36)

with :

f̃(i) = 2
f(i)− fmin
fmax − fmin

− 1 (2.37)

The function f̃(i) just rescales the function f(i) into the interval [-1,1] with c ∈ [0, 1]
just being a scaling factor. The fmin and fmax are just the lowest and largest num-
bers that store the corresponding payoffs in our distribution e.g. [ |000〉 and |111〉 ]
for n=3 qubits.

Finally, as we said earlier we need to measure only the |1〉 qubit that stores our
options payoffs. The measurement has probability:

P1 =
2n−1∑
i=0

pisin
2(cf̃(i) +

pi

4
)

that is approximated for small c into :

P1 =
2n−1∑
i=0

pi(cf̃(i) +
1

2
) = c

2E [f(X)]− fmin
fmax − fmin

− c− 1

2
(2.38)

26



CHAPTER 2. THEORY

All we need to do is solve for E [f(X)] to find the option’s premium. Something
worth noting here is that the operator-gates U which are control gates distinguish
the price paths that make profit (strike price K ≥ spot price S for a call option ) by
flipping the target qubit to |1〉 from |0〉 and thus encoding the price paths into the
payoff function f . The payoff function f is simply equation (2.25) for a call option
where S(t) is denoted by i in the circuit.

27



Chapter 3

VQE for portfolio optimization

3.1 Introduction

In this chapter the basic programming steps for optimizing a portfolio on a classical
computer will be introduced (using python and the IBMQ [5] platform).
The same procedure will be followed using the quantum optimization model VQE
[16], [12].
The VQE model takes the classical parameters µ (2.14), b (2.19) , Σ (2.16) and uses
equation (2.21) to map them in a Hamiltonian whose ground state corresponds to
the optimal solution.

The procedure is slightly different from the classical Markowitz model. The VQE
model encompasses simplifications of the Markowitz model in order to work effi-
ciently. In the Markowitz model the vector ~w contains the weights of each stock
after optimization in the following manner:

~w = [w1, w2, .., wi]

with each wi having a different value in the [0,1] interval and the sum of all weights
must equal 1. The full budget b (2.19) has to be spent which means the model has
to select exactly b assets out of n.

Furthermore all stocks selected will have the same weights wi which makes the
problem much easier to solve. For example if the model selects wx = [0, 1, 0, 1, 1, 1]
as the optimal portfolio with binary selection of 1=’ selected’ and 0=’not selected’
then all 4 stocks selected will have a weight of wi = 0.25 which means that if we
invest 100 $ in this portfolio, 25$ will be invested in each stock.

28



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

3.2 Classical approach

3.2.1 Preparing the data

In this section it will be shown how to calculate the mean return µ and covariance
matrix Σ of a given portfolio P with 6 assets by means of a simple program (pro-
grammed in python). These two parameters (along with the budget b) are used to
calculate the optimal selection wi (3.1,2.1) using a classical optimization model
[2.20]. Coding samples are available in Appendix C. Here I will introduce the most
important parts of the algorithm.

Firstly, it’s essential to find stock market data in order to create a portfolio. The
dataset includes closing stock prices from 2010 to 2017 for 12 stocks. The dataset was
downloaded (as csv) and imported in Jupyter Notebook using a Pandas DataFrame.
Six assets were selected, Apple, Microsoft, Intel, Amazon, S&P500 , Gold.
The reason for the selection of a 6-stock portfolio and not of a 12-one is simple.
If we increase the number of assets we also increase the computational complexity
both for the classical and the quantum algorithm, the main concern being the time
it takes to run the portfolio optimization problem and the time it needs to converge
(e.g. 12× 12 covariance matrix).

1258 trading days were used to calculate daily returns for each asset and their mean
daily returns. The daily return is just the percentage difference (or the log-difference)
between the closing price of day n to day n-1. By calculating the mean return of
each asset for these 1258 trading days we get the mean daily return vector ~µ.

For the covariance matrix we generate a matrix of (1258,6) that contains the daily
returns of each asset and then subtract from each asset its mean daily return, cre-
ating the excess return matrix Re. Then by calculating the dot product Re ·RT

e we
get the covariance matrix Σ (6,6).

Now that we have our parameters estimated it’s time to use them in the classical
optimization model. Relevant code is available in Appendix B.

29



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

3.2.2 Applying the algorithm

While the previous code was executed on a regular notebook in my local Jupyter
Notebok host, the following will be executed on IBMQ. The reason is the availability
of packages that are necessary to run the models.

First of all, we have to encode the 3 values µ, Σ, b along with the risk level factor
q and a penalty term n (parameter to scale the budget penalty term, equals to
the number of assets) in a portfolio function that will be later used to create the
quantum circuit (it can also be used for the classical part). That is done by calling
the method get operator (mu, sigma, q, budget, penalty) on the portfolio module
(all necessary packages and modules are imported at the top of the notebook) .

Relevant code (snippet):

1 mu = [ µ1, µ2, ..., µi ]

2 sigma = Σ
3 q = 0.5

4 budget = 3

5 penalty = 6

6 qubitOp = portfolio.get_operator(mu , sigma , q, budget , penalty)

The risk level factor q is a hyperparameter of our problem.Like in section (2.1)
different values of q give different value of optimal portfolio selections. It will be set
as q = 0.5 for the most part of this chapter.

Next we need to call the ExactEigensolver classical model in order to optimize our
portfolio classically by inversing matrix ( 2.20) of section [2.1]. Full code is presented
in Appendix C.

1 exact_eigensolver = ExactEigensolver(qubitOp , k=1)

2 result = exact_eigensolver.run()

3 print_result(result)

3.2.3 Results

The classical optimization algorithm returns the vector : [0. ,1., 0., 1,. 1., 0.] as the
optimal selection [Microsft, Amazon, S&P 500]. The computation takes (0.1secs),
something to be expected due to a low number of parameters.

If we run the classical algorithm for a different budget e.g. b=2 or 4, we get the
following results :

b=4 wi = [ 1 , 1 , 0 , 1 , 1 , 0 ]

b=2 wi = [ 0 , 1 , 0 , 1 , 0 , 0 ].

30



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

3.3 Quantum approach

3.3.1 Applying the algorithm

It is now time to apply the quantum model to our data. First of all we have to
select a backend. A backend is the device the quantum circuit will run. We select
a backend from available providers (quantum computers or simulators available at
that time).

4

5 from qiskit import IBMQ

6 provider = IBMQ.load_account ()

7 provider = IBMQ.get_provider(group=’open ’)

8 provider.backends () #shows available providers

9 provider = provider.get_backend(’ibmq_16_melbourne ’)

10 #selects a 16-qubit quantum computer to run the circuit

We will select the ’ statevector simulator ’ as a backend because it is the simplest
backend to run on. It is a simulator that runs the quantum algorithm with no noise
and without decoherence.

Furthermore, we have to set up the classical optimizer that will update the θi pa-
rameters (weights) at each iteration. For the statevector simulator, IBMQ suggests
the Constrained optimization by linear approximation (COBYLA) optimizer. Each
portfolio optimization problem (different q, number of assets ) needs different num-
ber of iterations in order to converge (find the global minimum-lowest eigenvalue).
For example, a 4-stock portfolio will need less iterations to converge than a 6-stock
portfolio due to the different number of qubits that are used in the quantum circuit.

1 """

2 backend = BasicAer.get_backend(’statevector_simulator ’)

3 from qiskit.aqua import aqua_globals

4 seed = 50 #random_seed

5 aqua_globals.random_seed = seed

6 cobyla = COBYLA ()#optimizer

7 cobyla.set_options(maxiter =3500, disp=True) #we set the classical

iterations of the optimizer

8 """

After the classical optimizer setup we construct the quantum circuit and set the
depth parameter which will determine how many times the basic quantum algo-
rithm will be iterated in the circuit. Like COBYLA iterations, the depth parameter
needs to be adjusted accordingly. We know the threshhold of these two parameters
when the solution of the optimization problem doesn’t change each time we run it
(optimal portfolio selection stays the same even if we re-run the code).

31



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

1 """

2 ry = RY(qubitOp.num_qubits , depth=11, entanglement=’full ’)#circui#

depth = how many times it will loop the basic circuit

3 vqe = VQE(qubitOp , ry , cobyla) #completed model

4 vqe.random_seed = seed

5 quantum_instance = QuantumInstance(backend=backend ,seed_simulator=

seed)

6 result = vqe.run(quantum_instance)#runs the algorithm

7 """

Finally we concatenate the classical optimizer COBYLA, the quantum circuit RY
and the encoded portfolio’s parameters qubitOp together by using function VQE .
We set the quantum instance, which is the device the algorithm will be executed
(backend) along with its random seed and run the final model.

3.3.2 Results

The quantum optimization algorithm returns vector [ 1., 0., 0., 1., 1., 0.] as the
optimal selection [Apple, Amazon, S&P 500] with a probability of 22.75%.It seems
to be pretty unsure about the selection but we will keep that for now and compare
with the classical algorithm. The computation takes around 5 minutes to run on
the simulator.

If we run the quantum algorithm for a different budget(2,4) we get the following
results:

b=4 wi = [ 1, 1, 0, 0, 1, 1 ] p = 39.39%
b=2 wi = [ 1, 0, 0, 0, 0, 1 ] p = 34.32%

In order to see the impact of these portfolio selections it is necessary to see the daily
portfolio value some months in the future for both methods and compare the results
for three different budgets.

As mentioned in section [3.2.1] 1258 trading days were used to calculate the optimal
portfolio selection. We will thus see how the portfolio performs 210 days after the
selection.

32



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

Figure 3.1: Daily value of quantum and classical portfolios with 3 assets

As we can see the quantum algorithm seems to have done a better selection of our
portfolio here. Assuming an investor invests 1200 $ in 3 stocks (400$ to each one)
at day 1, in 210 days their portfolio value will have increased to 1605.69$ with a
total profit of 405.69$.

Figure 3.2: Daily value of quantum and classical portfolios with 4 assets

33



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

For the second scenario were 4 assets are selected the classical algorithm prevails.
Here if the investor invests in 4 stocks with the same capital they will make 399.6$
in 210 days, slightly less than the first scenario.

Figure 3.3: Daily value of quantum and classical portfolios with 2 assets

For the third scenario were 2 assets are selected out of 6 possible ones the quantum
and classical algorithm seem to be very closely in terms of price movement. Both
algorithms selected two different portfolios that follow a close relationship.

Finally the question arises, what if we were risky investors and wanted to pick only
one asset out of these 6? Well in that case the profit for each stock after 210 days
would be :

Asset Profit($) Return(%)

Apple 546.43 45.53
Microsoft 395.01 32.91

Intel 291.47 24.28
Amazon 559.83 46.65
S&P 500 168.71 14.05

Gold 116.37 9.69

Table 3.1: Profit and return per asset for a 1-stock portfolio

34



CHAPTER 3. VQE FOR PORTFOLIO OPTIMIZATION

As we can see we would have made more profit than scenario 1 and 2 if we have
invested all of our capital in Apple and Amazon, a total of 2 out of 6 cases. We
should keep in mind that this portfolio contains top companies/assets that perform
well in the stock market. For a random portfolio things would be different. That’s
why it is important to spread the risk and invest in multiple assets based on the
VQE and the classical model that were analysed above.

35



Chapter 4

QAE for options pricing

4.1 Introduction

In this chapter we will see how a quantum model comes up against a classical Monte
Carlo method for pricing a call option. The asset that we will investigate is the stock
of Apple. The dataset will be the same as the one in chapter 3 [24]. The parameters
we need for both models are the initial spot price S0, the volatility of the asset σ,
the time to maturity t, the risk-free return and finally the strike price K.

The initial spot price S0 of the asset as well as the strike price K were S0 =
115.82 $ and K = 113 $ . Apple was trading at that price in 30-12-2016. The
risk-free return r, also called risk-free interest rate was r = 0.025 at that time.
It was derived from the interest rates of US Treasure Bonds at the end of 2016
(who are subject to minimal risk). The volatility of Apple was initially calculated
by computing the standard deviation of its returns on a 4-year period from 2012,
something that proved to be very conservative because Apple was much more volatile
during the 2015-2016 period. That’s why an implied volatility was chosen . Implied
volatility is the volatility based on recent prices (adding a stronger weight on recent
prices) and was set to be σ = 0.1474 which was much more representative for the
short term period we were looking for . The time to maturity was 2 months and it
is used in the model by dividing this value with 12 months.

First of all, we will use a classical Monte Carlo method to price the option and
then a classical Black-Scholes method. Then we will use a quantum model that
uses Quantum Amplitude Estimation (QAE) to price the option. The quantum
model can be considered as a sparse censor Black-Scholes model with few ground
truths. Finally, we will compare the classical and quantum models based on their
convergence rate (number of bits or qubits needed to reach a solution). Just like in
Chapter 3 all code will be executed in Jupyter Notebook and the quantum models
will run on IBMQ using qiskit.

36



CHAPTER 4. QAE FOR OPTIONS PRICING

4.2 Option pricing using classical models

4.2.1 Monte carlo simulation

In section (2.4.2) we saw how we could use the concept of Brownian motion to model
stock prices. The basic idea was to run a number of simulations on the asset, each
one of them following a different random path (random walk) that depends on the
asset’s underlying volatility and time to maturity. The code for this and the next
section is available at Appendix D. Here a short number of simulations will be run
in order to be able to compare with the quantum algorithm (that has limitations on
qubits).

Figure 4.1: Monte carlo simulation for 100 time steps and 220 simulations

We want to keep the last price of each simulation and then use equation (2.25)
or (2.26) depending on the type of option. After computing the payoff (if there is
any) for the last price of each simulation we compute the mean payoff which is the
option’s price.

The price of the option after running 220 simulations is :

call = 4.545 $

put = 1.493 $

The total time spent to run this simulation was 0.35 secs and the amount of register
bits needed for the simulation were at least 220 due to the 220 different numbers
needed to be stored in a classical computer.

37



CHAPTER 4. QAE FOR OPTIONS PRICING

4.2.2 Black-Scholes model

Now we will use the Black-Scholes model to calculate the option’s value. Here the
computation is much more simple. There is no need for multiple simulations in order
to price the option. We use equations (2.30) and (2.31) along with equation (2.29)
to price the contract. The option’s price according to the Black-Scholes model is :

call = 4.669 $

put = 1.387 $

The model needs only 0.0039 secs to run. If we increase the number of simulations
in the Monte Carlo method e.g. 106 then the prices of the options will converge to
the Black-Scholes prices. It will be though more computationally expensive i.e. at
least 2 minutes to run the simulations.

Apple Option Monte Carlo method Black-Scholes Percentage Π(%)

Call option price($) 4.545 4.669 2.66

Put option price($) 1.493 1.387 7.64

Table 4.1: Option’s price per method

38



CHAPTER 4. QAE FOR OPTIONS PRICING

4.3 Option pricing using a quantum model

In this section we will show how to use a quantum method to price options. We
will be using IBMQ as always. The model will run on a quantum simulator just like
in Chapter 3 . Here though we will be using a different simulator which does have
some noise, called qasm simulator. All relevant code can be found at Appendix E.

First of all, we have to create a log-normal random distribution based on the Black-
Scholes model and load the different numbers of this distribution in our circuit.
In order for our model to run smoothly we will be using a small number of reg-
ister qubits, only 3. These 3 qubits encode 23 = 8 different numbers. A visual
representation of the distribution can be seen bellow:

Figure 4.2: Price distribution of Apple at maturity based on its volatility and other
parameters loaded in a three-qubit register. The price 95.4 $ is loaded in the |000〉
qubit and 137.16 $ in the last qubit |111〉.

As you can see the prices follows a log-normal random distribution with limits
[−3σ, 3σ] where σ is the standard deviation of returns or volatility. The analytical
equation that models this distribution is :

P (ST ) =
1

STσ
√

2πT
e−

(ln(ST )−µ)2

2σ2T (4.1)

39



CHAPTER 4. QAE FOR OPTIONS PRICING

After we have loaded the distribution to the circuit it’s now time to build our payoff
function f using equations (2.25), (2.26) depending on the type of option contract.

Figure 4.3

Figure 4.4

Figure 4.5: Payoff function of our call and put option

Next we are going to compute the classical option price based on these 8 different
prices by computing a dot product of the corresponding state probability (Figure
4.2) and its payoff (for positive payoffs only). We will be calling this method ”Black-
Scholes weighted average”.

40



CHAPTER 4. QAE FOR OPTIONS PRICING

The Black-Scholes weighted average method is a sparse censor Black-Scholes with
few ground truths. By simulating only a few prices (samples) at maturity we can
approximate the value of the option. It is the classical equivalent of the quantum
model and is used to compare the two methods for convergence. We will call the
quantum model ”Quantum Black-Scholes weighted average (w.a.)”.

The corresponding classical values with this method are:

call = 4.5353 $

put = 1.2684 $

Now it’s time to run the quantum algorithm. We will be using m = 7 evaluating
qubits for the call option and m= 9 for the put option. In total, 10 qubits for the
call and 12 for the put option model.

Figure 4.6: Amplitude value ”a” for a call option(see equation(2.32))

Figure 4.7: Amplitude value ”a” for a put option

41



CHAPTER 4. QAE FOR OPTIONS PRICING

As you can see the call option agrees with the classical result with 100 % certainty
while the put option doesn’t, even with 9 evaluation qubits. The more evaluation
qubits we use the better the accuracy of the model. For example, if we used less
than 7 evaluation qubits on the first model, the call option one, then the output
value would have many probabilistic values just like the put option one. The red
dashed line is the classical value we talked about earlier (weighted average) while the
blue ones are the values the quantum algorithm computes with their corresponding
probability.

Figure 4.8: Call option price

Figure 4.9: Put option price

The results for both options are:

call = 4.5342 $

put = 1.9263 $ (48% probability)

42



CHAPTER 4. QAE FOR OPTIONS PRICING

Finally, comparisons of results obtained by the different methods are presented in
the following table

Option’s method Call option price ($ ) Put option price ($ ) Runtime (secs)

Monte Carlo 4.545 1.493 0.34

Black-Scholes 4.669 1.387 0.0039

Black-Scholes weighted avg. 4.5353 1.2684 0.00255

Quantum Black-Scholes w.a. 4.5342 1.9263 2.5

Table 4.2: Option’s pricing results using different methods

43



Chapter 5

Conclusions

The purpose of this thesis is to apply certain quantum algorithms on computational
applications in finance. In chapter 2, we presented how quantum algorithms work
and how it is theoretically possible to achieve speed-up over classical algorithms.
We also described the two quantum algorithms (VQE , QAE) that we applied to
financial applications.

In chapter 3, we applied the VQE algorithm to the portfolio optimization problem
and in chapter 4 we applied the QAE algorithm in the options pricing problem. Due
to limited resources offered by the IMBQ platform (up to 16 qubits) we restricted
the size of our problems to a portfolio consisting of maximum 6 assets.It should
be noted that the quantum algorithm is in no way faster than the classical one.
Quantum computers usually solve problems faster than classical computers when
the problem’s underlying nature is quantum e.g. for molecule energy spectrum.
Here the underlying nature of the problem is solving a complex linear system with
a Hamiltonian that is computed based on stock market indicators (mean return,
covariance matrix) .

Even though the quantum algorithm doesn’t manage to surpass the classical in
speed it manages to surpass it in the selection of the optimal portfolio.

We investigated how it’s possible to use VQE for portfolio optimization. We
concluded that it’s possible to use a hybrid quantum-classical algorithm for opti-
mization problems. Even though the computation is longer and the algorithm needs
more time to find the optimal selection, the number of qubits used are far less than
those classical computers use.

In chapter 4, we found that the quantum algorithm for options pricing is capable
of converging with the classical one with only a few number of qubits. Specifically
10 qubits were needed for the call option and 12+ for the put option. So the
main conclusion we can draw here is that quantum algorithms do indeed need a
lot less number of bits in order to converge. In section [4.2] we found that at least
220 bits were needed in order to register the different values of the Monte Carlo
simulation and the result is almost identical to the quantum algorithm. The speed-
up in qubits/bits is large.

But what about the runtime? For the problems we investigated (which were of
limited size), the classical algorithm takes less time to run. The difference is not a

44



CHAPTER 5. CONCLUSIONS

large one. The main obstacle is the large number of gates the quantum algorithm
utilizes.

If we increase the number of register qubits n for the quantum algorithm (QAE)
it is possible to further converge with the classical Black-Scholes (2nd method) but
it would take more time. A case with 6 register qubits was tested instead of 3 with
9 evaluation qubits. The call and put option price was the same as the one with 3
register qubits and the runtime was 3 minutes and 56 secs. Still, that’s possible to
happen even in a classical algorithm. Just like in Monte Carlo if we slightly increase
the number of simulations then the result may not differ at all. Furthermore, the
increase in the number of qubits was not possible due to hardware limitations.

The quantum algorithm converged more efficiently in terms of the number of
qubits used than the classical ones. Even though the computation time is a bit
longer, the quantum algorithm converges with the Monte Carlo algorithm for a few
number of simulations and theoretically even for many simulations if appropriate
quantum hardware is available in the future. Comparisons of results obtained by
the different methods are presented in the following table :

Option’s method Call option price ($ ) Put option price ($ ) Runtime (secs)

Monte Carlo 4.545 1.493 0.34

Black-Scholes 4.669 1.387 0.0039

Black-Scholes weighted avg. 4.5353 1.2684 0.00255

Quantum Black-Scholes w.a. 4.5342 1.9263 2.5

Table 5.1: Option’s pricing results using different methods

45



Bibliography

[1] Figure (2.1). URL: https://images.app.goo.gl/KDsHTfQYe7xfSzBy7.

[2] Figure (2.2). URL: https://images.app.goo.gl/fTrYa1uCJgwUdh6t5.

[3] Figure (2.3). URL: https://cs.stackexchange.com/questions/69725/

understanding-implemetation-of-the-toffoli-gate-using-other-gates/

69775.

[4] Figure (2.6). URL: https://www.researchgate.net/publication/

284259345\_Quantum\_optics\_with\_artificial\_atoms/figures?lo=1.

[5] Ibmq. URL: https://quantum-computing.ibm.com/.

[6] Ibmq definition. URL: https://en.wikipedia.org/wiki/IBM_Q_Experience.

[7] . Investopedia(finance), . URL: https://www.investopedia.com.

[8] Modern portfolio theory. URL: https://en.wikipedia.org/wiki/Modern_

portfolio_theory.

[9] Yael Ben-Haim Sergey Bravyi Lauren Capelluto Almudena Carrera Vazquez
Jack Ceroni Richard Chen Abraham Asfaw, Luciano Bello. Quantumtextbook,
2018. URL: https://qiskit.org/textbook.

[10] Yael Ben-Haim Sergey Bravyi Lauren Capelluto Almudena Carrera Vazquez
Jack Ceroni Richard Chen Abraham Asfaw, Luciano Bello. Simulat-
ing molecules using vqe, 2018. URL: https://qiskit.org/textbook/

ch-applications/vqe-molecules.html#groundstate.

[11] Dipesh Amin. Monte carlo options pricing, 2016. URL:
https://pawsdevelopment.wordpress.com/2016/11/22/

monte-carlo-european-vanilla-option-pricing-with-python/.

[12] Panagiotis Kl Barkoutsos, Giacomo Nannicini, Anton Robert, Ivano Tavernelli,
and Stefan Woerner. Improving variational quantum optimization using cvar.
arXiv preprint arXiv:1907.04769, 2019.

[13] Fischer Black and Myron Scholes. The pricing of options and corporate lia-
bilities. The Journal of Political Economy, Vol. 81, No. 3 (May - Jun.), pp.
637-654, 1973.

[14] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum am-
plitude amplification and estimation. Contemporary Mathematics, 305:53–74,
2002.

46



BIBLIOGRAPHY

[15] Patrick J Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John
Ambrosiano, Petr Anisimov, William Casper, Gopinath Chennupati, Carleton
Coffrin, Hristo Djidjev, et al. Quantum algorithm implementations for begin-
ners. arXiv preprint arXiv:1804.03719, 2018.

[16] Harper R Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J May-
hall. An adaptive variational algorithm for exact molecular simulations on a
quantum computer. Nature communications, 10(1):1–9, 2019.

[17] Lov K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting, pages 212–219, 1996.

[18] Jonathan Hui. Grover’s algorithm, 2018. URL: https://medium.com/

@jonathan_hui/qc-grovers-algorithm-cd81e61cf248.

[19] John C. Hull. Options, Futures, and Other Derivatives (9th Edition). Pearson,
2017.

[20] Harry Markowitz. Portfolio selection. The Journal of Finance, Vol. 7, No. 1. ,
pp. 77-91., 1952.

[21] Patrick Rebentrost and Seth Lloyd. Quantum computational finance: quantum
algorithm for portfolio optimization. arXiv preprint arXiv:1811.03975, 2018.

[22] Nikitas Stamatopoulos, Daniel J Egger, Yue Sun, Christa Zoufal, Raban Iten,
Ning Shen, and Stefan Woerner. Option pricing using quantum computers.
arXiv preprint arXiv:1905.02666, 2019.

[23] Stefan Woerner and Daniel J Egger. Quantum risk analysis. npj Quantum
Information, 5(1):1–8, 2019.

[24] Yuxing Yan. Python for Finance Second Edition. Packt Publishing Ltd., 2017.

47



Appendices

48



Appendix A

Accessing IBMQ

The IBM Q Experience [6] is an online platform that gives users in the general
public access to a set of IBM’s prototype quantum processors via the Cloud, an
online internet forum for discussing quantum computing relevant topics, a set of
tutorials on how to program the IBM Q devices, and other educational material
about quantum computing. It is an The IBM Q Experience is an online platform
that gives users in the general public access to a set of IBM’s prototype quantum
processors via the Cloud, an online internet forum for discussing quantum computing
relevant topics, a set of tutorials on how to program the IBM Q devices, and other
educational material about quantum computing. It is an example of cloud based
quantum computing.

The steps to access IBMQ are the following :

Step 1: Press the following link and make an account : https://quantum-computing.ibm.com/login.

Step 2 :

This is the central page of IBMQ. By clicking the left bar where the Jupyter Note-
book symbol lies you can find all available code IBMQ offers such as quantum
turorials, projects etc. By clicking the circuit symbol in the same bar (above JN)
you can find the circuit designer where quantum or classical circuits can be drawn.
Above the circuit symbol you can find the “results” symbols where all the results
of your algorithms will be stored. In the right you can see different public quantum
computers available that you can use.

49



APPENDIX A. ACCESSING IBMQ

Figure A.1: Central page[IBMQ]

Step 3: Here you can import an existing Notebook to run it on IBMQ or create a
new one. You can also open IBMQ’s notebooks available in the upper right part of
the page.

Step 4: Here you can create your own circuit just like we saw in chapter 2 were some
circuits were shown depending on the algorithm we were using.

50



APPENDIX A. ACCESSING IBMQ

Figure A.2: Code page [IBMQ]

Figure A.3: Circuit page[IBMQ]

51



Appendix B

Code for preprocessing the data

Code for chapter 3.2.1:

1 #import necessary libraries

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as pl

5 from pylab import plt

6 plt.style.use(’seaborn ’)

7 import matplotlib as mpl

8 mpl.rcParams[’font.family ’] = ’serif’

9 #import data

10 data = pd.read_csv(’tr_eikon_eod_data -Copy1.csv’,index_col=0,

parse_dates=True)

11 #choose data for the model and data to check the results

12 datatrain = data.loc["2012 -01 -01":"2016 -12 -31"]

13 datatest = data.loc["2017 -01 -01":]

14 stocksnames = [’Apple Stock ’, ’Microsoft Stock ’, ’Intel Stock ’, ’

Amazon Stock’, ’S&P 500 Index’,’Gold Price’]

15 retcol =[’AAPL.Oret’,’MSFT.Oret’,’INTC.Oret’,’AMZN.Oret’,’SPXret ’,’

Gold.Nret’]

16 #calculate_returns_function

17 def calculate_returns(stocks ,columns ,Returns):

18 for i in range(0,len(columns)):

19 stocks[Returns[i]] = np.log(stocks[columns[i]]/ stocks[

columns[i]]. shift (1))

20 calculate_returns(datatrain6 ,datatrain6.columns ,retcol)

21 #select columns that have the returns of each asset

22 ret6 = datatrain6.iloc [1: ,6:]

23 returns6 = np.array(ret6)

24 meanreturns6 = np.array(ret6.mean()).reshape (-1,1)

25 print(meanreturns6) #mu (3.2.1)

26

27 def make_covariance_matrix(numberofstocks ,stocksreturns ,meanreturn)

:

28 meanreturns2 = np.zeros((len(stocksreturns),numberofstocks))

29 for i in range(0,numberofstocks -1):

30 for j in range(0,len(stocksreturns) -1):

31 meanreturns2[j,i] = meanreturn[i]

32 npexcessreturns = stocksreturns - meanreturns2

33 covarm=np.dot(npexcessreturns.T,npexcessreturns)/(len(

stocksreturns) -1)

34 return covarm

35 covariancematrix6 = make_covariance_matrix (6,returns6 ,meanreturns6)

52



Appendix C

Code for VQE portfolio
optimization

Code for chapter 3.2.2:

1

2 from qiskit import BasicAer

3 from qiskit.aqua import QuantumInstance

4 from qiskit.finance.ising import portfolio

5 from qiskit.optimization.ising.common import sample_most_likely

6 from qiskit.finance.data_providers import RandomDataProvider

7 from qiskit.aqua.algorithms import VQE , QAOA , ExactEigensolver

8 from qiskit.aqua.components.optimizers import COBYLA

9 from qiskit.aqua.components.optimizers import SPSA

10 from qiskit.aqua.components.variational_forms import RY

11 import numpy as np

12 import datetime

13

14 from qiskit import IBMQ

15 provider = IBMQ.load_account ()

16 IBMQ.providers ()

17 provider = IBMQ.get_provider(group=’open’)

18 provider.backends ()

19

20 num_assets = 6 #how many assets will be optimized

21 All = [’Apple Stock’, ’Microsoft Stock’, ’Intel Stock’, ’Amazon

Stock ’, ’S&P 500 Index ’,’Gold Price ’]

22 mu = np.array ([ 0.00054001 , 0.00067008 , 0.00031081 , 0.0011395 ,

0.00044661 , -0.00026355])

23 #mu= mean returns

24 print(All)

25 print(mu)

26 #sigma = covariance matrix

27 sigma = np.array ([ [ 2.71695895e-04, 7.73333928e-05 , 7.34944318e

-05 , 7.54258143e-05,

28 6.63245938e-05 , 2.32045549e-06],

29 [ 7.73333928e-05 , 2.16089133e-04, 1.06985085e-04 , 9.88414797e

-05,

30 7.27489419e-05, -2.95452437e-06],

31 [ 7.34944318e-05 , 1.06985085e-04 , 1.98037274e-04 , 7.05554838e

-05,

32 6.96549409e-05, -2.44650650e-06],

53



APPENDIX C. CODE FOR VQE PORTFOLIO OPTIMIZATION

33 [ 7.54258143e-05 , 9.88414797e-05 , 7.05554838e-05, 3.74851607e

-04,

34 7.78604746e-05, -7.42632050e-06],

35 [ 6.63245938e-05 , 7.27489419e-05 , 6.96549409e-05, 7.78604746e

-05,

36 6.54419127e-05, -1.96820530e-06],

37 [ 2.32045549e-06 , -2.95452437e-06, -2.44650650e-06, -7.42632050e

-06,

38 -1.96820530e-06 , 1.08235308e -04]])

39 print(sigma)

40

41

42 def index_to_selection(i, num_assets):

43 s = "{0:b}".format(i).rjust(num_assets)

44 x = np.array ([1 if s[i]==’1’ else 0 for i in reversed(range(

num_assets))])

45 return x

46 def print_result(result):

47 selection = sample_most_likely(result[’eigvecs ’][0])

48 value = portfolio.portfolio_value(selection , mu, sigma , q,

budget , penalty)

49 print(’Optimal: selection {}, value {:.4f}’.format(selection ,

value))

50

51 probabilities = np.abs(result[’eigvecs ’][0]) **2

52 i_sorted = reversed(np.argsort(probabilities))

53 print(’\n----------------- Full result ---------------------’)

54 print(’selection\tvalue\t\tprobability ’)

55 print(’---------------------------------------------------’)

56 for i in i_sorted:

57 x = index_to_selection(i, num_assets)

58 value = portfolio.portfolio_value(x, mu, sigma , q, budget ,

penalty)

59 probability = probabilities[i]

60 print(’%10s\t%.4f\t\t%.4f’ %(x, value , probability))

61

62

63 budget = 3

64 penalty = num_assets

65

66 q = 0.5

67 qubitOp , offset = portfolio.get_operator(mu , sigma , q, budget ,

penalty)

68 print("Number of qubits are :",qubitOp.num_qubits)

69

70 exact_eigensolver = ExactEigensolver(qubitOp , k=1)

71 result = exact_eigensolver.run()

72 print_result(result)

73

74 #quantum

75 backend = BasicAer.get_backend(’statevector_simulator ’)#simulator

76 seed = 50 #random_seed

77 cobyla = COBYLA ()#optimizer

78 cobyla.set_options(maxiter =4500, disp=True) #we need as much

iterations as possible to reach the minimum ,3k optimall

79 from qiskit.aqua import aqua_globals

80 aqua_globals.random_seed = seed

81

54



APPENDIX C. CODE FOR VQE PORTFOLIO OPTIMIZATION

82 ry = RY(qubitOp.num_qubits , depth=11, entanglement=’full’)#circuit#

optimal depth = 7 # depth = how many times it will loop the

basic circuit

83 vqe = VQE(qubitOp , ry , cobyla)

84 vqe.random_seed = seed

85

86 quantum_instance = QuantumInstance(backend=backend , seed_simulator=

seed , seed_transpiler=seed)

87

88 result = vqe.run(quantum_instance)

89

90 print_result(result)

91

92 import qiskit.tools.jupyter

93 get_ipython ().run_line_magic(’qiskit_version_table ’, ’’)

94 get_ipython ().run_line_magic(’qiskit_copyright ’, ’’)

95

96

97 budget = 4#try2 ,3

98 q = 0.5

99 qubitOp , offset = portfolio.get_operator(mu , sigma , q, budget ,

penalty)

100 print("Number of qubits are :",qubitOp.num_qubits)

101

102 exact_eigensolver = ExactEigensolver(qubitOp , k=1)

103 result = exact_eigensolver.run()

104 print_result(result)

105

106 backend = BasicAer.get_backend(’statevector_simulator ’)# running on

a q simulator

107 #if we change backends we can set the device to a quantum computer

108 seed = 50 #random_seed

109 cobyla = COBYLA ()#optimizer

110 cobyla.set_options(maxiter =5000, disp=True)

111 from qiskit.aqua import aqua_globals

112

113 aqua_globals.random_seed = seed

114 ry = RY(qubitOp.num_qubits , depth=11, entanglement=’full’)#circuit#

optimal depth = 7 # depth = how many times it will loop the

basic circuit

115 vqe = VQE(qubitOp , ry , cobyla) #oloklirwmeno montelo

116 vqe.random_seed = seed

117 quantum_instance = QuantumInstance(backend=backend , seed_simulator=

seed , seed_transpiler=seed)

118 result = vqe.run(quantum_instance)

119 print_result(result

120

121 budget = 2

122 q = 0.5

123 qubitOp , offset = portfolio.get_operator(mu , sigma , q, budget ,

penalty)

124 print("Number of qubits are :",qubitOp.num_qubits)

125

126

127 # In[16]:

128

129

130 exact_eigensolver = ExactEigensolver(qubitOp , k=1)

55



APPENDIX C. CODE FOR VQE PORTFOLIO OPTIMIZATION

131 result = exact_eigensolver.run()

132 print_result(result)

133

134

135 backend = BasicAer.get_backend(’statevector_simulator ’)

136 seed = 50 #random_seed

137 cobyla = COBYLA ()#optimizer

138 cobyla.set_options(maxiter =3500, disp=True)

139 from qiskit.aqua import aqua_globals

140

141 aqua_globals.random_seed = seed

142

143 ry = RY(qubitOp.num_qubits , depth=13, entanglement=’full’)#circuit#

optimal depth = 7 # depth = how many times

144 #it will loop the basic circuit

145 vqe = VQE(qubitOp , ry , cobyla) #oloklirwmeno montelo

146 vqe.random_seed = seed

147

148 quantum_instance = QuantumInstance(backend=backend , seed_simulator=

seed , seed_transpiler=seed)

149 result = vqe.run(quantum_instance)#[0,1,0,1,0,0] = classical

150 #quantum [1,1,0,0,0,0]

151 print_result(result)

152

153 from qiskit import IBMQ

154 provider = IBMQ.load_account ()

155 IBMQ.providers ()

156

157 #run on real quantum hardware

158 qprovider = provider.get_backend(’ibmq_16_melbourne ’)#here we use a

16-qbit quantum computer

159

160 budget = 3#try2 ,4

161 q = 0.5

162 qubitOp , offset = portfolio.get_operator(mu , sigma , q, budget ,

penalty)

163 print("Number of qubits are :",qubitOp.num_qubits)

164

165 from qiskit.aqua.components.optimizers import SPSA , SLSQP

166 from qiskit.aqua.operators import Z2Symmetries

167 from qiskit import Aer

168 from qiskit.aqua.components.variational_forms import RYRZ

169 from qiskit.aqua import aqua_globals

170 seed = 50

171 aqua_globals.random_seed = seed

172 backend = qprovider

173 optimizer = SPSA(max_trials =500)

174 quantum_instance2 = QuantumInstance(backend=backend , seed_simulator

=seed , seed_transpiler=seed ,skip_qobj_validation=False ,shots

=2000)

175

176 var_form = RYRZ(qubitOp.num_qubits , depth=7, entanglement="full") #

or linear

177 vqe2 = VQE(qubitOp , var_form , optimizer=optimizer)

178 result2 = vqe2.run(quantum_instance2)

179 print_result(result2)

56



Appendix D

Code for classical options pricing
models

Code for chapter 4.2.1,4.2.2:

1 #Monte Carlo method

2 import scipy as sp

3 import matplotlib.pyplot as plt

4 import numpy as np

5 # input area

6 stock_price_today = 115.82 # stock price at time zero

7 T =0.164 # maturity date (in years)

8 n_steps =100 # number of steps

9 #mu =0.15 # expected annual return

10 sigma = 0.1474 # annualized volatility

11 sp.random.seed (12345) # fixed our seed

12 n_simulation = 220# 2^10 so 10 bits needed # number of simulations

13 X = 113 # strike price

14 dt =T/n_steps

15 r = 0.025

16

17 import time

18 sp.random.seed (12345)

19 call = sp.zeros([ n_simulation], dtype=float)

20 put = sp.zeros([ n_simulation], dtype=float)

21 #call = []

22 t0 = time.time()

23 x = range(0, int(n_steps), 1)

24 for j in range(0, n_simulation):

25 sT=S0

26 for i in x[:-1]:

27 e=sp.random.normal ()

28 sT*=sp.exp((r -0.5* sigma*sigma)*dt+sigma*e*np.sqrt(dt))

29 call[j]=max(sT-X,0)

30 put[j] = max(X-sT ,0)

31 #print(max(sT-X,0))

32 #call.append(max(sT-x,0))

33

34 #

35

36 call_price=sp.mean(call)*sp.exp(-r*T)

37 put_price = sp.mean(put)*sp.exp(-r*T)

57



APPENDIX D. CODE FOR CLASSICAL OPTIONS PRICING
MODELS

38 print(’call price = ’, round(call_price ,3))

39 print(’put price = ’, round(put_price ,3))

40 t1 = time.time()

41 print(’Time Taken: ’ + str(t1-t0) + ’s’)

42 #visual representation

43 I = 220

44 M = 100

45 dt = T / M

46 S = np.zeros((M + 1, I))

47 S[0] = S0

48 for t in range(1, M + 1):

49 S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt

50 + sigma * np.sqrt(dt) * np.random.standard_normal(I))

51 plt.figure(figsize =(10 ,5))

52 plt.plot(S[:,:], lw =1.5)

53 #plt.title(" Monte carlo simulation for 100 time steps and 220

simulations ")

54 plt.xlabel(’time’)

55 plt.ylabel(’index price’)

56 plt.grid(True)

57 plt.savefig(’local path’)

58 plt.show()

59

60 #Black -Scholes method

61

62 import numpy as np

63 import scipy.stats as si

64 import sympy as sy

65 from sympy.stats import Normal , cdf

66 def euro_vanilla_call(S, K, T, r, sigma):

67

68 #S: spot price

69 #K: strike price

70 #T: time to maturity

71 #r: interest rate

72 #sigma: volatility of underlying asset

73

74 d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np

.sqrt(T))

75 d2 = (np.log(S / K) + (r - 0.5 * sigma ** 2) * T) / (sigma * np

.sqrt(T))

76

77 call = (S * si.norm.cdf(d1 , 0.0, 1.0) - K * np.exp(-r * T) * si

.norm.cdf(d2, 0.0, 1.0))

78 put = (-S * si.norm.cdf(-d1 , 0.0, 1.0) + K * np.exp(-r * T) *

si.norm.cdf(-d2 , 0.0, 1.0))

79 return call ,put

80 import time

81 t0 = time.time()

82 call = euro_vanilla_call (115.82 ,113 ,0.164 ,0.025 ,0.1474) [0]

83 put = euro_vanilla_call (115.82 ,113 ,0.164 ,0.025 ,0.1474) [1]

84 t1 = time.time()

85 print("Time taken:",t1-t0,"secs")

86 print("Option price:",call ,"$")

87 print("Option price:",put ,"$")

58



Appendix E

Code for QAE options pricing

Code for chapter 4.2.3:

1 import matplotlib.pyplot as plt

2 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)

3 import numpy as np

4

5 from qiskit import BasicAer

6 from qiskit.aqua.algorithms import AmplitudeEstimation

7 from qiskit.aqua.components.uncertainty_models import

LogNormalDistribution

8 from qiskit.aqua.components.uncertainty_problems import

UnivariateProblem

9 from qiskit.aqua.components.uncertainty_problems import

UnivariatePiecewiseLinearObjective as PwlObjective

10

11

12 num_uncertainty_qubits = 3#was 3

13

14 # parameters for considered random distribution

15 Sapple = 115.82 # initial spot price (30 -12 -16)

16 volapple = 0.1474 # volatility (daily of 1-year) #historical

volatility is preservative(only 0.014)(so we use implied

volatility)

17 rapple = 0.025 # annual interest rate of 2.5%

18 Tapple = 60 / 365 # 60 days to maturity #peripou 50 trading days

19 T = 90

20 # resulting parameters for log -normal distribution

21 muapple = (( rapple - 0.5 * volapple **2) * Tapple + np.log(Sapple))

# black -scholes distribution model

22 sigmaapple = volapple * np.sqrt(Tapple) #volatility per 60 days

23 meanapple = np.exp(muapple + sigmaapple **2/2)

24 varianceapple = (np.exp(sigmaapple **2) - 1) * np.exp(2* muapple +

sigmaapple **2)

25 stddevapple = np.sqrt(varianceapple)

26

27 # lowest and highest value considered for the spot price; in

between , an equidistant discretization is considered.

28 lowA = np.maximum(0, meanapple - 3* stddevapple)#normalize se

kanoniki katanomi

29 highA = meanapple + 3* stddevapple

30

59



APPENDIX E. CODE FOR QAE OPTIONS PRICING

31 # construct circuit factory for uncertainty model

32 uncertainty_modelA = LogNormalDistribution(num_uncertainty_qubits ,

mu=muapple , sigma=sigmaapple , low=lowA , high=highA)

33

34

35 x1 = uncertainty_modelA.values

36 y1 = uncertainty_modelA.probabilities

37 plt.bar(x1 , y1 , width =2)

38 plt.xticks(x1 , size=15, rotation =90)

39 plt.yticks(size =15)

40 plt.grid()

41 plt.xlabel(’Spot Price at Maturity $S_T$ (\$)’, size =15)

42 plt.ylabel(’Probability ($\%$)’, size =15)

43 plt.savefig(’local path’)

44 plt.show()

45

46

47 # set the strike price (should be within the low and the high value

of the uncertainty)

48 strike_price = 113

49

50 # set the approximation scaling for the payoff function

51 c_approx = 0.05#0.25

52 breakpoints = [uncertainty_modelA.low , strike_price]

53 slopes = [0, 1]

54 offsets = [0, 0]

55 f_min = 0

56 f_max = uncertainty_modelA.high - strike_price

57 european_call_objective = PwlObjective(

58 uncertainty_modelA.num_target_qubits ,

59 uncertainty_modelA.low ,

60 uncertainty_modelA.high ,

61 breakpoints ,

62 slopes ,

63 offsets ,

64 f_min ,

65 f_max ,

66 c_approx

67 )

68 # construct circuit factory for payoff function

69 european_call = UnivariateProblem(

70 uncertainty_modelA ,

71 european_call_objective

72 )

73

74

75 x2 = uncertainty_modelA.values

76 y2 = np.maximum(0, x2 - strike_price)

77 plt.plot(x2 , y2 , ’ro -’)

78 plt.grid()

79 plt.title(’Payoff Function ’, size =15)

80 plt.xlabel(’Spot Price’, size =15)

81 plt.ylabel(’Payoff ’, size =15)

82 plt.xticks(x2 , size=15, rotation =90)

83 plt.yticks(size =15)

84 plt.savefig(’local path’)

85 plt.show()

86

60



APPENDIX E. CODE FOR QAE OPTIONS PRICING

87

88

89 exact_value_montecarlo = np.exp(-rapple*Tapple)*np.dot(

uncertainty_modelA.probabilities , y2)

90 exact_delta_montecarlo = sum(uncertainty_modelA.probabilities[x2 >=

strike_price ])

91 print(’exact expected value by monte carlo for premium :\t%.4f’ %

exact_value_montecarlo ,’$’)

92 print(’exact delta value by monte carlo: \t%.4f’ %

exact_delta_montecarlo)#delta is the percent change of the

option price

93 #if the stock price increases

94 #4.57 is value with 1024 values

95 #4.6242 with 6 register qubits

96

97

98

99 # set number of evaluation qubits (=log(samples))#mallon sqrt(

samples)

100 m = 7 #7 optimal alla pairnei poli xrono

101 # construct amplitude estimation

102 ae = AmplitudeEstimation(m, european_call)

103

104

105

106

107 from qiskit import IBMQ

108 provider = IBMQ.load_account ()

109 IBMQ.providers ()

110 provider = IBMQ.get_provider(group=’open’)

111 provider.backends ()

112 qprovider = provider.get_backend(’ibmq_qasm_simulator ’)#qprovider =

provider.get_backend(’ibmq_16_melbourne ’), if we used a 16qbit

qcomputer.

113

114

115

116

117 import time

118 t0 = time.time()

119 result = ae.run(quantum_instance=BasicAer.get_backend(’

statevector_simulator ’))

120 t1 = time.time()

121 print(’Time Taken: ’ + str(t1-t0) + ’s’)

122 #ae.set_backend(qprovider)

123

124

125

126 from qiskit.aqua import QuantumInstance

127 seed = 42

128 quantum_instance = QuantumInstance(backend=qprovider ,

seed_simulator=seed , seed_transpiler=seed ,skip_qobj_validation=

False)

129 t0 = time.time()

130 result = ae.run(quantum_instance=quantum_instance)

131 t1 = time.time()

132 print(’Time Taken: ’ + str(t1-t0) + ’s’)

133 #2.6 seconds to run on qasm simulator ,the rest time is for

61



APPENDIX E. CODE FOR QAE OPTIONS PRICING

validation in IBMQ for 3 register qubits.

134 #3 minutes 56 secs with 6 register qubits and 7 evaluation ,4.5342

same value! for 6 register qubits.

135

136

137

138

139 print(’Exact value: \t%.4f’ % exact_value_montecarlo)

140 print(’Estimated value :\t%.4f’ % result[’estimation ’])

141 print(’Probability: \t%.4f’ % result[’max_probability ’])

142 #4.6242 for 6 register qubits exact value

143 #4.5353 for 3 register qubits

144

145

146

147

148 #quantum beats classical for few samples(in number of bits/qubits)

!!

149

150

151

152

153 plt.bar(result[’values ’], result[’probabilities ’], width =0.05/ len(

result[’probabilities ’]))

154 plt.xticks ([0, 0.25, 0.5, 0.75, 1], size =15)

155 plt.yticks ([0, 0.25, 0.5, 0.75, 1], size =15)

156 plt.title(’"a" Value’, size =15)

157 plt.ylabel(’Probability ’, size =15)

158 plt.ylim ((0,1))

159 #plt.xlim ((0.3 ,0.6))

160 #plt.xlim ((2,3))

161 plt.grid()

162 plt.savefig(’local path’)

163 plt.show()

164 print(result[’values ’])

165 # plot estimated values for option price (after re-scaling and

reversing the c_approx -transformation)

166 plt.bar(result[’mapped_values ’], result[’probabilities ’], width

=0.3)

167 plt.plot([ exact_value_montecarlo , exact_value_montecarlo], [0,1], ’

r--’, linewidth =2)

168 plt.xticks(size =15)

169 plt.yticks ([0, 0.25, 0.5, 0.75, 1], size =15)

170 plt.title(’Estimated Option Price’, size =15)

171 plt.ylabel(’Probability ’, size =15)

172 plt.ylim ((0,1))

173 plt.xlim ((3,7))

174 plt.grid()

175 plt.savefig(’local path’)

176 plt.show()

177

178

179

180

181 #estimation of put option:

182 strike_price = 113

183

184 # set the approximation scaling for the payoff function

62



APPENDIX E. CODE FOR QAE OPTIONS PRICING

185 c_approx = 0.05

186

187 # setup piecewise linear objective fcuntion

188 breakpoints = [uncertainty_modelA.low , strike_price]

189 slopes = [-1, 0]

190 offsets = [strike_price - uncertainty_modelA.low , 0]

191 f_min = 0

192 f_max = strike_price - uncertainty_modelA.low

193 european_put_objective = PwlObjective(

194 uncertainty_modelA.num_target_qubits ,

195 uncertainty_modelA.low ,

196 uncertainty_modelA.high ,

197 breakpoints ,

198 slopes ,

199 offsets ,

200 f_min ,

201 f_max ,

202 c_approx

203 )

204

205 # construct circuit factory for payoff function

206 european_put = UnivariateProblem(

207 uncertainty_modelA ,

208 european_put_objective)

209

210

211

212

213 x = uncertainty_modelA.values

214 y = np.maximum(0, strike_price - x)

215 plt.plot(x, y, ’ro -’)

216 plt.grid()

217 plt.title(’Payoff Function ’, size =15)

218 plt.xlabel(’Spot Price’, size =15)

219 plt.ylabel(’Payoff ’, size =15)

220 plt.xticks(x, size=15, rotation =90)

221 plt.yticks(size =15)

222 plt.savefig(’local path’)

223 plt.show()

224

225

226

227

228 exact_value_montecarlo = np.exp(-rapple*Tapple)*np.dot(

uncertainty_modelA.probabilities , y)#trekse kai monte carlo

allou na sigrineis to "exact" value

229 exact_delta_montecarlo = sum(uncertainty_modelA.probabilities[x <=

strike_price ])

230 print(’exact expected value by monte carlo for premium :\t%.4f’ %

exact_value_montecarlo ,’$’)

231 print(’exact delta value by monte carlo: \t%.4f’ %

exact_delta_montecarlo)

232

233

234

235

236 m = 9

237

63



APPENDIX E. CODE FOR QAE OPTIONS PRICING

238 # construct amplitude estimation

239 ae = AmplitudeEstimation(m, european_put)

240

241

242

243

244 import time

245 t0 = time.time()

246 result = ae.run(quantum_instance=BasicAer.get_backend(’

statevector_simulator ’))

247 t1 = time.time()

248 print(’Time Taken: ’ + str(t1-t0) + ’s’)

249

250

251

252

253 #qasm simulator

254 t0 = time.time()

255 result = ae.run(quantum_instance=quantum_instance)

256 t1 = time.time()

257 print(’Time Taken: ’ + str(t1-t0) + ’s’)

258

259

260

261

262 print(’Exact value: \t%.4f’ % exact_value_montecarlo)

263 print(’Estimated value :\t%.4f’ % result[’estimation ’])

264 print(’Probability: \t%.4f’ % result[’max_probability ’])

265 #3.2970 with statevector

266 #1.2684 classical

267 # 3.2970 with qasm ,2.9 secs to run

268

269

270

271

272 plt.bar(result[’values ’], result[’probabilities ’], width =0.05/ len(

result[’probabilities ’]))

273 #plt.xticks ([0, 0.25, 0.5, 0.75, 1], size =15)

274 #plt.yticks ([0, 0.25, 0.5, 0.75, 1], size =15)

275 plt.title(’"a" Value’, size =15)

276 plt.ylabel(’Probability ’, size =15)

277 plt.ylim ((0,1))

278 plt.xlim ((0.2 ,0.6))

279 plt.xlim ((0.45 ,0.5))

280 plt.savefig(’local path’)

281 plt.grid()

282 plt.show()

283

284 # plot estimated values for option price (after re-scaling and

reversing the c_approx -transformation)

285 plt.bar(result[’mapped_values ’], result[’probabilities ’], width

=0.2)

286 plt.plot([ exact_value_montecarlo , exact_value_montecarlo], [0,1], ’

r--’, linewidth =2)

287 plt.xticks(size =15)

288 plt.yticks ([0, 0.25, 0.5, 0.75, 1], size =15)

289 plt.title(’Estimated Option Price’, size =15)

290 plt.ylabel(’Probability ’, size =15)

64



APPENDIX E. CODE FOR QAE OPTIONS PRICING

291 plt.ylim ((0 ,1))

292 plt.xlim ((0 ,7))

293 plt.grid()

294 plt.savefig(’local path’)

295 plt.show()

296

297 #run on actual quantum device

298

299

300 from qiskit import IBMQ

301 provider = IBMQ.load_account ()

302 IBMQ.providers ()

303 provider = IBMQ.get_provider(group=’open’)

304 provider.backends ()

305

306

307

308 #result2 = ae.run(quantum_instance=provider.get_backend(’

ibmq_16_melbourne ’))

309

310 m = 3

311

312 # construct amplitude estimation

313 ae = AmplitudeEstimation(m, european_call)

314 ae.construct_circuit(measurement=True)

315 #run on real quantum hardware.Takes too long for even 3 evaluation

qubits ..

316 #backend2 = provider.get_backend(’ibmq_16_melbourne ’)

317 #quantuminstance = quantum_instance(backend2 , shots =4096 ,

skip_qobj_validation=False)

318 #result2 = ae.run(backend2)

319 #or

320 #result2 = ae.run(quantum_instance=backend2)

65


