
University of Crete
Computer Science Department

Architectural Support for Instruction Set
Randomization

Laertis Loutsis
Master’s Thesis

October 2014
Heraklion, Greece

2

University of Crete

Computer Science Department

Architectural Support for Instruction Set Randomization

Thesis submitted by

Laertis Loutsis

in partial fulfillment of the requirements for the

Master’s of Science degree in Computer Science

THESIS APPROVAL

Author:

Laertis Loutsis

Committee approvals:

Evangelos P. Markatos

Professor, Thesis Supervisor

Sotiris Ioannidis

Principal Researcher

Maria Papadopouli

Associate Professor

Departmental approval:

Antonis Argyros

Professor, Director of Graduate Studies

Heraklion, October 2014

Abstract

Code injection attacks continue to pose a threat to today’s computing sys­

tems, as they exploit software vulnerabilities to inject and execute arbitrary

or malicious code. Instruction Set Randomization (ISR) is able to protect a

system against remote machine code injection attacks by randomizing the

instruction set of each process. This way, the attacker will inject invalid

code that will fail to execute on the randomized processor and thus, the

attack will fail as well. However, all the existing implementations of ISR

are based on emulators and binary instrumentation tools that (i) incur a

significant runtime performance overhead, (ii) limit the ease of deployment

of ISR, (iii) cannot protect the underlying operating system kernel, and (iv)

are vulnerable to evasion attempts trying to bypass ISR protection.

To address these issues we propose ASIST: an architecture with hard­

ware and operating system support for ISR. We present the design and

implementation of ASIST by modifying a SPARC processor, mapping it onto

an FPGA board and finally running our modified Linux kernel to support

the new features. The operating system loads the randomization key of

each running process into a newly defined register, and the modified pro­

cessor decodes the process’s instructions with this key before execution.

Moreover, ASIST protects the system against attacks that exploit kernel

vulnerabilities to run arbitrary code with elevated privileges, by using a

separate randomization key for the operating system.

iii

We show that ASIST transparently protects all applications and the op­

erating system kernel from machine code injection attacks with less than

1.5% runtime overhead, while only requiring 0.7% additional hardware.

Supervisor: Professor Evangelos Markatos

Περίληψη

Οι επιθέσεις εµβόλιµου κώδικα συνεχίζουν και αποτελούν απειλή για τα

σηµερινά υπολογιστικά συστήµατα, εϕόσον εκµεταλεύοντε αδυναµίες του λο-

γισµικού ώστε να καταϕέρουν να εισβάλουν στο αποµακρυσµένο σύστηµα και

να εκτελέσουν αµϕίβολο ή κακόβουλο κώδικα. Η τεχνική της τυχαιοποίησης

του συνόλου του εντολών του επεξεργαστή (ISR) έχει τη δυνατότητα να προ-

στατέψει ένα σύστηµα ενάντια σε αποµακρυσµένες επιθέσεις εµβόλιµου κώδικα

τυχαιοποιώντας το σύνολο των εντολών της κάθε διεργασίας. Με αυτόν τον

τρόπο, ο εµβόλιµος κώδικας του επιτιθέµενου ϑα αποτύχει να εκτελεστεί στον

τυχαιοποιηµένο επεξεργαστή του αποµακρυσµένου συστήµατος. Παρόλαυτά,

ενώ η τεχνική ISR είναι διαδεδοµένη, όλες οι υπάρχουσες υλοποιήσεις της

ϐασίζονται σε προσοµοιωτές και άλλα εργαλεία τα οποία (i) επιϕέρουν σηµαν-

τική µείωση στην απόδοση του επεξεργαστή, (ii) περιορίζουν την ευκολία

ανάπτυξης τυχαιοποιηµένου συνόλου εντολών, (iii) αδυνατούν να προστατέψουν

τον πυρήνα του λειτουργικού συστήµατος, και (iv) είναι επιρρεπή στις επιθέσεις

που προσπαθούν να παρακάµψουν την τεχνική.

Για να αντιµετωπίσουµε αυτά τα προβλήµατα προτείνουµε το ASIST: µια

αρχιτεκτονική µε υποστήριξη υλικού και λογισµικού-λειτουργικού συστήµατος

για την τυχαιοποίηση του συνόλου των εντολών του επεξεργαστή. Παραθέτουµε

το σχεδιασµό και την υλοποίηση του ASIST τροποποιώντας έναν επεξεργαστή

SPARC τον οποίο συνθέσαµε σε µία πλακέτα FPGA και τρέξαµε πάνω σε

αυτό λειτουργικό σύστηµα Linux το οποίο µε τη σειρά του τροποποιήσαµε

ώστε να υποστηρίζει τις καινούργιες µας λειτουργίες. Το λειτουργικό σύστηµα

φορτώνει ένα κλειδί, το οποίο χρησιµοποιείται για την τυχαιοποίηση των εν-

τολών της τρέχουσας διαδικασίας σε έναν νέο καταχωρητή που έχουµε ορίσει,

έπειτα ο τυχαιοποιηµένος επεξεργαστής αποκωδικοποιεί τις εντολές της δι-

αδικασίας µε αυτό το κλειδί πριν την εκτέλεση τους. Επιπλέον, το ASIST

προστατεύει το σύστηµα ενάντια σε επιθέσεις που εκµεταλεύοντε αδυναµίες

του πυρήνα του λειτουργικού συστήµατος από το να εκτελέσουν αυθαίρετο

κώδικα µε αυξηµένα προνόµια, χρησιµοποιώντας διαϕορετικό κλειδί για το

λειτουργικό σύστηµα.

Στηρίζουµε πως το ASIST προστατεύει όλες τις εϕαρµογές και τον πυρήνα

του λειτουργικού συστήµατος από επιθέσεις εµβόλιµου κώδικα µε λιγότερο

απο 1.5% µείωση στην απόδοση του τρέχοντος συστήµατος, ενώ απαιτεί µόνο

0.7% παραπάνω κυκλώµατα.

Επόπτης Καθηγητής : Ευάγγελος Μαρκατος

Acknowledgments

I am deeply grateful to my supervisor, Professor Evangelos Markatos, for his

valuable advice and guidance during all my studies as well as Dr. Sotiris

Ioannidis, Principal Reseascher, who has been the initiator and leading

person who coordinated this work.

I am also grateful to Antonis Papadogiannakis for his constanct sup­

port, contribution and excellant cooperation. Many thanks to Vassilis Pa­

paefstathiou for his valuable assistance, sharing his expertise on the deep

hardware­ level abyss. It is truly a unique experience to work with these

people.

My best thanks to my friends and colleagues George Borbudakis, George

Vassiliadis, Elias Athanasopoulos, Iasonas Polakis, Christos Papachristos,

Michalis Polychronakis, Spiros Antonatos, past and current members of

the Distributed Computing Systems Laboratory in ICS/FORTH and many

others who I do not mention their name, for their inspiration, support and

advice, and for sharing with me these years of my life.

Finally, I would like to thank my parents, for their support, patience

and encouragement during all these years.

vii

viii

to my parents for their selfless love and support.

This work appeared on the proceedings of the 20th ACM conference on

Computer & Communications Security (CCS13), November 2013 [40]

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Thesis Outline . 6

2 Instruction Set Randomization 7

2.1 Threat Model . 7

2.1.1 Remote and Local Machine Code Injection Attacks. . . 7

2.1.2 Kernel vulnerabilities 8

2.1.3 Return­to­libc and ROP attacks. 9

2.1.4 Key Guessing Attacks. 9

2.2 Defense with ISR . 9

2.3 Limitations of Existing Implementations 10

2.3.1 Existing Implementations 10

2.3.2 Limitations . 11

3 ASIST Architecture 15

3.1 Architecture Overview . 15

3.2 Encryption . 17

3.2.1 Static Binary Encryption 18

3.2.2 Dynamic Code Encryption 20

3.2.3 Shared Libraries . 22

xiii

3.2.4 Self­modifying Code 22

3.2.5 Encryption Algorithms and Key Size 23

3.2.6 Tolerance to Key Guessing Attacks 23

3.3 Hardware Support . 24

3.3.1 Placement of the Decryption Unit 26

3.3.2 Decryption Algorithms and Key Size 27

3.3.3 Return Address Encryption 28

3.4 Operating System Support 32

3.4.1 Kernel Modifications 32

3.4.2 Kernel Encryption . 33

4 ASIST Prototype Implementation 35

4.1 Hardware Implementation . 35

4.2 Additional Hardware . 36

4.3 Kernel and Software Modifications 37

4.4 Portability to Other Systems 37

5 Experimental Evaluation 39

5.1 Security Evaluation . 40

5.2 Performance Evaluation . 42

5.2.1 Benchmarks . 42

5.2.2 Real­world Applications 47

5.3 Memory Overhead . 48

5.3.1 External Fragmentation 49

6 Related Work 51

6.1 Instruction Set Randomization 51

6.2 Other Defenses against Code Injection Attacks 52

6.3 Defenses against Buffer Overflow Attacks. 53

6.4 Other Randomization­based Defenses. 53

6.5 Hardware Support for Security 54

7 Conclusion 55

List of Figures

3.1 ASIST architecture . 16

3.2 ELF format . 18

3.3 Hardware module for runtime decryption 24

3.4 Decryption before and after the instruction cache 29

3.5 Decryption using XOR 128­bit key 31

3.6 Decryption using transposition 160­bit key 31

5.1 Runtime overhead on SPEC 43

5.2 lighttpd slowdown . 46

5.3 sqlite3 slowdown . 46

xvii

List of Tables

2.1 Comparison with existing ISR implementation 8

4.1 Addition hardware used by ASIST 36

5.1 Code injection attacks tested with ASIST 41

5.2 Data and text page faults per second in SPEC 44

5.3 sqlite3 slowdown . 44

5.4 Text page faults in all 3 ASIST implementations 48

xix

1
Introduction

Remote code injection attacks exploit software vulnerabilities to inject and

execute arbitrary malicious code, allowing the attacker to obtain full access

to the vulnerable system. There are several ways to achieve arbitrary code

execution through the exploitation of a software vulnerability. The vast ma­

jority of code injection attacks exploit vulnerabilities that allow the diversion

of normal control flow to the injected malicious code. Arbitrary code execu­

tion is also possible through the modification of non­control­data [18]. The

most commonly exploited vulnerabilities for code injection attacks are buffer

overflows [1]. Despite considerable research efforts [21,22,24,27,54], buffer

overflow vulnerabilities remain a major security threat [19]. Other software

1

2 CHAPTER 1. INTRODUCTION

vulnerabilities that allow the corruption of critical data are format­string

errors [20] and integer overflows [26,55].

Remotely exploitable vulnerabilities are continuously being discovered

in popular network applications [9, 10] and operating system kernels [5,

6, 8, 17]. Thus, code injection attacks remain one of the most common

security threats [4], exposing significant challenges to current security sys­

tems. For instance, the massive outbreak of the Conficker worm in 2009

infected more than 10 million machines worldwide [43]. Like most of the

Internet worms, Conficker was based on a typical code injection attack

that exploited a vulnerability in Windows RPC [7]. Along with the con­

tinuous discovery of new remotely exploitable vulnerabilities and zero­day

attacks, the increasing complexity and sophisticated evasive methods of

attack techniques [2, 25, 39] has significantly reduced the effectiveness of

attack detection systems.

Instruction Set Randomization (ISR) [11,12,14,31,33,44] has been pro­

posed to defend against any type of code injection attack. ISR randomizes

the instruction set of a processor so that an attacker is not able to know

the processor’s ‘‘language’’ to inject meaningful code. Therefore, any in­

jected code will fail to accomplish the desirable malicious behavior, prob­

ably resulting in invalid instructions. To prevent successful machine code

injections, ISR techniques encrypt the instructions of a program that may

contain vulnerable software with a program­specific key. This key actually

defines the valid instruction set for this specific program. The processor de­

crypts at runtime every instruction of the respective process with the same

key. Only the correctly encrypted instructions will lead to the intended code

execution after decryption. Any injected code that is not encrypted with the

correct key will result in irrelevant or invalid instructions.

Existing ISR implementations use binary transformation tools, such as

objcopy, to encrypt the programs. For runtime decryption they use em­

3

ulators [14, 33], like Bochs [35], and Valgrind [38], software dynamic

translation tools [31], like Strata [45], or dynamic binary instrumenta­

tion tools [11, 12, 31, 44]. like Valgrind [38] and PIN [36]. However,

the existing ISR implementations have several limitations: (i) They incur a

significant runtime performance overhead due to the software emulator or

instrumentation tool used for decryption. This overhead is prohibitive for a

wide adoption of such techniques. (ii) Deployment is limited by the neces­

sity of several tools, like emulators, and manual encryption of the programs

that are protected with ISR. (iii) Existing implementations are vulnerable

to code injection attacks into the underlying emulator or instrumentation

tools. More importantly, they do not protect systems against attacks tar­

geting remotely exploitable kernel vulnerabilities [5,6,8,17], which are be­

coming an increasingly attractive target for attackers. Exploiting a kernel

vulnerability may also allow for running user­level code with elevated ker­

nel privileges [34]. (iv) Most ISR implementations are vulnerable to evasion

attacks aiming to guess the encryption key and bypass ISR protection [51].

To address these issues we propose ASIST: a hardware/software scheme

to support ISR on top of an unmodified ISA. Researchers have proposed

hardware extensions to enhance security in the past [24,30,47,54] includ­

ing ISR [47], in the past. We advocate that hardware support for ISR is

essential to guard against code injection attacks, at both user­ and kernel­

level, without incurring significant performance penalty at runtime.

ASIST uses distinct per­process keys and another key for the operat­

ing system kernel’s code. To support runtime decryption at the CPU, we

propose the use of two new registers in the ASIST­enabled processor: the

usrkey and oskey registers, which contain the user­ and kernel­level key

of the running process. These registers are memory mapped and they are

only accessible by the operating system via the privileged instructions sta

and lda that store/load word to/from alternate space; our implementation

4 CHAPTER 1. INTRODUCTION

for the SPARC architecture maps these registers into a new Address Space

Identifier (ASI). The operating system is responsible for reading or generat­

ing the key of each program at load time, and associate it with the respective

process. It is also responsible to store at the usrkey register the key of the

next process scheduled for execution at a context switch. Whenever a trap

to kernel is called, the CPU enters supervisor mode and the value of the

oskey register is used to decrypt instructions. When the CPU is not in

supervisor mode, it decrypts each instruction using the usrkey register.

We explore two possible choices for implementing the decryption unit at

the instruction fetch pipeline of the modified processor. We also implement

two different encryption algorithms, (i) XOR and (ii) Transposition, and

use different key sizes. Additionally, we compare two alternative techniques

for encrypting the executable code: (i) statically, by adding a new section in

ELF that contains the key and encrypting all code sections with this key us­

ing a binary transformation tool, and (ii) dynamically, by generating a ran­

dom key at load time and encrypting with this key all the memory mapped

pages that contain code at the page fault handler. The dynamic encryption

approach can support dynamically linked shared libraries, whereas static

encryption requires statically linked binaries. We discuss and evaluate the

advantages of each approach in terms of security and performance. Our

modified processor can also encrypt the return address at each function

call and decrypt it before returning to caller. In this way, ASIST protects

the system from any stack­based attack targeting the return address.

To demonstrate the feasibility of our approach we present the prototype

implementation of ASIST by modifying the Leon3 SPARC V8 processor [3], a

32­bit open­source synthesizable processor [28]. We mapped the modified

processor to a Xilinx XUPV5 ML509 FPGA board [58]. We also modified

the Linux kernel 3.8 to support the implemented hardware features for ISR

and evaluate our prototype. Our experimental evaluation results show that

1.1. CONTRIBUTIONS 5

ASIST is able to prevent code injection attacks and buffer overflow exploits,

which succeed on the vanilla system, practically without any performance

overhead, while adding less than 1% of additional hardware to support

ISR with our design. Our results also indicate that the proposed dynamic

code encryption at the page fault handler does not impose any significant

overhead, due to the low page fault rate for pages with executable code.

This outcome makes our dynamic encryption approach very appealing, as

it is able to transparently encrypt any executable program, it generates a

different random key at each execution, and it supports shared libraries

with negligible overhead.

1.1 Contributions

The main contributions of this work are:

• We propose ASIST: the first hardware­based support for ISR to pre­

vent machine code injections without any performance overhead. We

demonstrate the feasibility of hardware­based support for ISR by pre­

senting the design, implementation, and experimental evaluation of

ASIST.

• We introduce a dynamic code encryption technique that transparently

encrypts pages with executable code at the page fault handler, using

a randomly generated key for each execution. We show that this

technique supports shared libraries and does not impose significant

overhead to the system.

• We explore different choices for the decryption unit in hardware, we

compare static and dynamic encryption, as well as different encryption

algorithms and key sizes in order to improve the resistance of ISR

against evasion attempts.

6 CHAPTER 1. INTRODUCTION

• We show that a hardware­based ISR implementation, like ASIST, is

able to protect the system against attacks that exploit OS kernel vul­

nerabilities.

• We evaluated our prototype implementation with hardware­enabled

ISR and show that it is able to prevent code injection attacks with

negligible overhead.

1.2 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 explains our threat

model, gives some background information about ISR, and discusses the

limitations of current ISR implementations. In Chapter 3 we present the

design of our proposed architecture: a modified processor with ISR sup­

port, a modified operating system to support the new hardware features,

static and dynamic encryption of user­level applications, and encryption of

kernel’s code. We also discuss the different design choices for our system.

Chapter 4 gives some details of our prototype implementation and synthesis

of the new processor onto an FPGA. In Chapter 5 we experimentally evaluate

the security and performance of the prototype implementation of our pro­

posed architecture. Finally, Chapter 6 reviews prior work, and Chapter 7

concludes the thesis.

2
Instruction Set Randomization

In this section we describe our threat model, give some background on ISR,

and discuss the main limitations of existing implementations that empha­

size the need for hardware support.

2.1 Threat Model

2.1.1 Remote and Local Machine Code Injection Attacks.

The threat model we address in this work is the remote or local exploita­

tion of any software vulnerability that allows the diversion of the control

flow to execute arbitrary, malicious code. We address vulnerabilities in the

stack, heap, or BSS, e.g., any buffer overflow that overwrites the return

address, a function pointer, or any control data. We focus on protecting

7

8 CHAPTER 2. INSTRUCTION SET RANDOMIZATION

ISR Implementa­

tion

Runtime

Over­

head

Shared

Libraries

Self­

modifying

Code

Hardware

Support
Encryption

Dynamic

Encryp­

tion

Kernel

Protec­

tion

ROP

Prevention

Bochs emulator [33] High No No No XOR with 32­bit key No No No

Valgrind tool [11,12] High Yes API No XOR with random key Yes No No

Strata SDT [31] Medium No No No AES with 128­bit key No No No
EMUrand emula­

tor [14]
Medium No No No XOR with 32­bit key No No No

Pin tool [44] Medium Yes Partially No XOR with 16­bit key No No No

ASIST Zero Yes API Yes

XOR with 32­bit–128­

bit key, Transposition

with 160­bit key

Yes Yes Yes

Table 2.1: Comparison of ASIST with existing ISR implementations. ASIST

provides a hardware­based implementation of ISR without runtime over­

head, it supports the necessary features of current systems and protects

against kernel vulnerabilities.

the potentially vulnerable systems against any type of machine code injec­

tion attacks. In a typical binary code injection attack, the attacker sends

a malicious input that exploits a memory corruption vulnerability on the

victim’s computer, which permits remote execution of arbitrary code and

even complete takeover of the system. This code is usually supplied by the

attacker as a part of malicious input, and the control flow is driven at this

input.

2.1.2 Kernel vulnerabilities

Remotely exploitable vulnerabilities on the operating system kernel [5,6,8,

17] are becoming an increasingly attractive target for attackers. Our threat

model includes code injection attacks based on kernel vulnerabilities. We

propose an architecture that is capable of protecting the operating system

kernel as well. We also address attacks that use a kernel vulnerability to run

user­level codei, return­to­user attacks, with elevated kernel privileges [34].

2.2. DEFENSE WITH ISR 9

2.1.3 Return­to­libc and ROP attacks.

Instead of injecting new code into a vulnerable program, an attacker can

execute existing code upon changing the control flow of a vulnerable system:

re­direct the execution to existing library functions, attacks typically known

as return­to­libc attacks [37], or use existing instruction sequences ending

with a ret instruction (called gadgets) to implement the attack, a technique

known as return­oriented programming (ROP) [15,48]. Although ISR protects

a system against any type of code injection attacks, its threat model does

not address return­to­libc and ROP attacks that use existing code to harm

or takeover a system. Existing implementations of ISR follow this threat

model so they do not aim to protect the system from return­to­libc attacks.

However, due to the rise of such attacks, we aim to protect systems from

return­to­libc attacks using the same hardware.

2.1.4 Key Guessing Attacks.

Existing ISR implementations are vulnerable to key guessing or key stealing

attacks [51, 57]. This way, sophisticated attackers may be able to bypass

the ISR protection mechanism, by guessing the key and then injecting and

executing code that is correctly encoded with this key. In this work, we

aim to design and implement ISR in a way that it will be very difficult for

attackers to guess or infer the code randomization key.

2.2 Defense with ISR

ISR protects a system against any native code injection attacks. To accom­

plish this, ISR uses per­process randomized instruction sets. This way, the

attacker cannot inject any meaningful code into the memory of the vulner­

able program. The injected code will not perform the intended malicious

behavior and will probably crash after just a few instructions [11]. To apply

the ISR idea, existing implementations first encrypt the binary code of each

program with the program’s secret key before it is loaded for execution.

10 CHAPTER 2. INSTRUCTION SET RANDOMIZATION

The program’s key defines the mapping of the encrypted instructions to the

real instructions supported by the CPU. Then, at runtime, the randomized

processor decrypts every instruction with the proper program’s key before

execution. Any injected instruction sequences that have not been correctly

encrypted will result in irrelevant or invalid instructions after the obligatory

decryption. On the other hand, correctly encrypted code will be decrypted

and executed normally.

2.3 Limitations of Existing Implementations

2.3.1 Existing Implementations

Existing ISR Implementations [11, 12, 14, 31, 33, 44] use binary transfor­

mation tools, such as objcopy, to encrypt the code of user­level programs

that will be protected. For runtime decryption they use emulators [35] or

dynamic binary instrumentation tools [36,38,45]. In Table 2.1 we list and

compare all the existing ISR implementations.

Kc et al. [33] implemented ISR by modifying the Bochs emulator [35]

to decrypt at runtime the code of statically encrypted programs, using XOR

with a 32­bit key in their prototype. The use of an emulator results in

significant slowdown, up to 290 times slower execution on CPU intensive

applications while this system does not support shared libraries and self­

modifying code. Barrantes et al. [11, 12] use Valgrind [38] to decrypt

applications’ code, which is encrypted with XOR and a random key equal

to the program’s length when applications are loaded into Valgrind. This

prototype supports shared libraries by copying each randomized library per

process, and offers an API for self­modifying code. However, the perfor­

mance overhead with Valgrind is also very high, up to 2.9 times slower

than native execution. Hu et al. [31] implemented ISR with a software dy­

namic translation tool [45] using AES encryption with 128­bit key size to

prevent attacks trying to guess the encryption key [51]. Dynamic transla­

2.3. LIMITATIONS OF EXISTING IMPLEMENTATIONS 11

tion results in lower but still significant performance overhead, that is close

to 17% on average and as high as 250%. To reduce runtime overhead, Boyd

et al. [14] proposed a selective ISR that limits the emulated and randomized

execution only to code sections that are more likely to contain a vulnerabil­

ity. Portokalidis and Keromytis [44] implemented ISR with shared libraries

support using Pin binary instrumentation tool [36]. The runtime overhead

ranges from 10% to 75% for popular applications, while it has four­times

slower execution when memory protection is applied to Pin’s code.

2.3.2 Limitations

The main limitations of the existing ISR implementations are:

1. High runtime performance overhead. All the existing implementations

of ISR have a considerable runtime overhead, which becomes sig­

nificantly higher for CPU­intensive applications. This is because all

the proposed systems use extra software to emulate or translate the

instructions before they are executed, which results to more instruc­

tions and increased execution times. We argue that the most efficient

approach is a hardware­based implementation of ISR.

2. Deployment difficulties. The need for several tools, such as emula­

tors and binary instrumentation tools, as well as the need for manual

encryption of all programs that will be protected, and the partial sup­

port for shared libraries limit the ease of deployment of ISR. On the

other hand, we aim to build a system that will be able to transparently

protect any program running on it without any modifications.

3. Cannot protect kernel vulnerabilities. None of the existing ISR proto­

type implementations is able to defend against attacks exploiting ker­

nel vulnerabilities [5,6,8,17,34]. Such attacks are getting increasingly

popular and allow attackers to run code with kernel privileges so we

would like to protect the operating system kernel as well. Moreover,

12 CHAPTER 2. INSTRUCTION SET RANDOMIZATION

the underlying emulators or instrumentation tools may be vulnera­

ble to buffer overflow and code injection attacks. Although Pin has

been extended with PinOS to instrument kernel’s code as well [16], it

has not been used to implement ISR support for the kernel. Even in

this case, the code of PinOS would not be protected, while the use of

a virtual machine in PinOS would impose a significant performance

overhead.

4. Cannot prevent ROP attacks. ISR cannot protect a vulnerable random­

ized program against ROP attacks [15,48], which use existing code to

harm the system. This is because ISR was proposed to prevent code

injection attacks, not code­reuse attacks that using existing code.

Thus, the existing implementations follow the same threat model.

However, due to the rise of such attacks recently, we would like to

be able to easily extend an ISR system in order to provide defenses

against ROP attacks as well.

5. Evasion attacks by guessing the encryption key. Many of the pro­

posed ISR implementations are vulnerable to evasion attacks that try

to guess the encryption key and inject valid code into the vulnerable

system [51,57]. as they use a constant key for each program among

multiple executions. Sovarel et al. [51] demonstrate the feasibility of

an incremental attack that uses partial key guessing to reduce the

number of tries needed to find the key. Also, attackers may be able to

steal or infer the encryption key when memory secrecy breaks [53,57].

To put our work into context, we compare ASIST with other ISR im­

plementations in Table 2.1. ASIST is the only ISR implementation with

hardware support, resulting in negligible runtime overhead for any type of

applications. ASIST also supports a new dynamic code encryption approach

that allows the transparent encryption of any application with shared li­

braries. To defend against attempts to guess or steal the encryption key,

2.3. LIMITATIONS OF EXISTING IMPLEMENTATIONS 13

ASIST (i) stores the encryption key in a hardware register accessible only

by the kernel through privileged instructions, and avoids storing the key in

process’s memory, (ii) generates a new random key at each execution of the

same program when dynamic encryption is used, (iii) supports large key

sizes up to 128­bit, and (iv) besides XOR and transposition (already imple­

mented), it supports more secure encryption algorithms in case of memory

disclosure. Moreover, ASIST prevents the execution of injected code at the

kernel, e.g.due to a kernel vulnerability, by using separate keys for user­

level programs and kernel’s code. Finally, ASIST is able to prevent ROP

attacks targeting the return address by encrypting the return address in

the modified processor.

14 CHAPTER 2. INSTRUCTION SET RANDOMIZATION

3
ASIST Architecture

We now describe the design of the ASIST architecture in hardware and

operating system, as well as the approach we use on code encryption.

3.1 Architecture Overview

Our architecture spans hardware, operating system and user space (see

Figure 3.1), to support hardware­assisted ISR. ASIST supports two alter­

native ways of code encryption: static and dynamic. In static encryption,

the key is pre­defined and exists within the executable file, while all code

sections are already encrypted with this key. In case of dynamic encryption,

the executable file is unmodified and the key is decided randomly by the re­

spective loader of the operating system at the beginning of each execution.

The code sections are encrypted dynamically at runtime whenever a code

15

16 CHAPTER 3. ASIST ARCHITECTURE

Figure 3.1: ASIST architecture. The operating system reads the key from the

ELF binary (static encryption) or randomly generates a new key (dynamic

encryption), saves the key in the process table, and stores the key of the

running process in the usrkey register. using the sta instruction. The

processor decrypts each instruction with usrkey or oskey register, according

to the supervisor bit. The decryption fits into the pipeline before instructions

are fetched and stored in the instruction cache, without spending an extra

cycle.

3.2. ENCRYPTION 17

page is requested from file system and before this page gets mapped to the

process’s virtual address space.

The processor has been extended with two new registers: usrkey and

oskey, which store the keys of the running user­level process and operating

system kernel’s code respectively. The operating system keeps the key of

each process in a respective field in the process table, and stores the key of

the next process that is scheduled for execution in the usrkey register using

the sta privileged SPARC instruction. Moreover, the processor is modified

to decrypt each instruction before the instruction fetch cycle, using one of

the above two registers as a key, according to the supervisor bit. In the

following of this section we describe this design in more detail.

3.2 Encryption

We first describe the approaches we follow for the encryption of an exe­

cutable program. We support two possible options for encrypting an exe­

cutable program: static and dynamic encryption. In static encryption, the

program is encrypted before each execution with a pre­defined key. using

a modified objcopy binary transformation tool. In dynamic encryption,

a key is randomly generated at the binary loader, and all code pages are

encrypted with this key at the page fault handler before they are mapped to

the process’s address space.

The main advantage of static code encryption is that it has no runtime

overhead for code encryption. However, this approach has several draw­

backs. First, the same key is used for each execution, which makes it

susceptible to brute force attacks trying to guess this key. Second, it needs

to manually run the encryption program once per each executable file be­

fore running. Third, static encryption does not support shared libraries; all

programs must be statically linked with all necessary libraries. In contrast,

dynamic encryption has a number of advantages: it generates a random key

18 CHAPTER 3. ASIST ARCHITECTURE

Figure 3.2: The ELF format of a statically encrypted executable file. The key

is stored in a new note section inside the ELF file, and all the code sections

are encrypted with this key.

at each execution so it cannot be easily guessed, it encrypts all executables

transparently without the need to run an encryption program, and it is able

to support shared libraries. The drawback of dynamic encryption is a po­

tential runtime overhead to encrypt a code page when it is loaded from the

file system to memory at a code page fault. In Chapter 5 we experimentally

evaluate this overhead and show that due to the low number of code page

faults, dynamic encryption is very efficient.

3.2.1 Static Binary Encryption

To statically encrypt an ELF executable we extended objcopy with a new

flag (---encrypt-code). The encryption key can be provided by the user,

else it is randomly chosen by the tool. Figure 3.2 shows the modifications

of a statically encrypted ELF executable file. We add a new note section

(.note.asist) inside the encrypted ELF file that contains the program’s

3.2. ENCRYPTION 19

encryption key. We also changed the ELF binary loader in the Linux kernel

to read the note section from the ELF, get the key, and store it in a new

field (key) of the current process i.e., the process that called the execve()

system call to load this binary file. The existence of the .note.asist

section indicates that the file has been statically encrypted with the given

key. In this mode of operation we set a new field per process (asist_mode)

to static. The key is stored in the process table and is used by the kernel

to update the usrkey hardware register each time this process is sched­

uled for execution, so that the modified processor will properly decrypt its

instructions.

Our static encryption tool also finds and encrypts all the code sections in

ELF. Therefore, all needed libraries must be statically linked, to be properly

encrypted. Moreover, it is important to completely separate code from data

into different sections during the creation of the original ELF by the linker.

This is because the encryption of any data, which are not decrypted by the

modified processor, will probably disrupt the program execution. Fortu­

nately, many linkers are configured this way. Similarly, compiler optimiza­

tions like jump tables, which are used to perform faster switch statements

with indirect jumps, should be also moved to a separate, non­code section.

To address the issue of using the same key at all executions, with static

encryption, which may facilitate a key guessing attack, one approach could

be to re­encrypt the binary after a process crash. Another approach could

be to encrypt the original binary at the user­level part of execve(), by

randomly generating a new key and copying the binary into an encrypted

one using the same approach we described above, meaning adding a note

section with the new key and encrypting the code sections with this key

in the new binary. This approach will also work only with statically linked

libraries. However, we do not recommend this approach due to the extra

time needed to copy and encrypt the entire binary at load time, especially for

20 CHAPTER 3. ASIST ARCHITECTURE

large binaries that are also statically linked with large libraries. Encrypting

the entire binary is probably an unnecessary overhead, as many parts of

the code that will be encrypted are unlikely to be actually executed. Note

that for this reason the binary loaders do not read the entire binary from

disk to load into memory; they usually memory map the binary file to the

process’s virtual address space and read code pages from disk as needed.

3.2.2 Dynamic Code Encryption

We now introduce a new technique to dynamically encrypt a program’s code

before it is loaded into the process’s memory. This approach is based on

the fact that every page with executable code will be loaded from disk (or

buffer cache) to the process’s address space the first time it is accessed by

the program through a page fault. Thus, we decided to perform the code

encryption at this point. This way, ASIST encrypts only the code pages that

are actually used by the program at each execution.

First, the ELF binary loader is modified to randomly generate a new key,

which is stored into the process table as a record of the current process. It

also sets the asist_mode field of the current process to dynamic in order to

distinguish processes running a statically encrypted binary from processes

using dynamic encryption. The code encryption is performed by the page

fault handler at a text page fault, i.e., on a page containing executable code,

if the process that is responsible for the page fault uses dynamic encryption

according to asist_mode. Then, a new anonymous page is allocated, and

the code page fetched from disk (or buffer cache) is encrypted and copied

on this page using the process’s encryption key. The new page is finally

mapped to the process’s address space. so the encrypted code is found at

the address requested by the program.

We allocate an anonymous page, i.e., a page that is not backed by a file,

and copy the encrypted code on this page, so that the changes due to the

code encryption will not be stored at the original binary file. This technique,

3.2. ENCRYPTION 21

encryption aside, is similar to copy­on­write technique. Although processes

running the same code could share the respective code pages in physical

memory, we have a separate copy of each page with executable code for

each process, as they have different keys and so different representations

of the same code in memory. This may result in a small memory overhead,

but it is necessary in order to use a different key per process and achieve

better isolation. This memory overhead could be avoided if all processes

running the same code use the same key, which enables an effective shar­

ing of encrypted code pages, in expense though of weaker security against

key guessing and other attacks that may compromise the key. In our imple­

mentation, we choose to use a different key per process and a small memory

overhead.

In practice, the memory allocated for code accounts only for a small

fraction of the total memory used by the process. Note that we can still

benefit from buffer cache, to avoid unnecessary disk accesses, as we copy

the cached page.

In order to use a different key per each process that use the dynamic

encryption mode, we also modified the fork() system call to randomly

generate a new key for the child process. When the modified fork() copies

the parent process’s page table, it omits copying its last layer so that the

child’s code pages will not be mapped with pages encrypted with the parent’s

key. Thus, a page fault will occur at the first code access and the code pages

will be encrypted with the child’s key.

To operate correctly, the dynamic encryption approach requires a sep­

aration of code and data per each page. For this, we modify the linker to

align the ELF headers, data, and code sections to a new page, by adding

the proper padding. In this way we can easily separate code from data and

headers at different pages.

22 CHAPTER 3. ASIST ARCHITECTURE

3.2.3 Shared Libraries

Our dynamic code encryption technique supports the use of shared libraries

without extra effort. The code of a shared library is encrypted with each

process’s key on the respective page fault when loading a page to process’s

address space, as we explained above. In this way we have a separate copy

of each shared library’s page for each process. This is necessary in order to

use a different key per process, which offers better protection and isolation.

3.2.4 Self­modifying Code

The design we presented does not support randomized programs with self­

modifying code or runtime code generation, i.e., programs that modify their

code or generate and execute new code (or change existing code). A random­

ized program that generates unencrypted code and then tries to execute it

will result in invalid instructions executing, as the unencrypted code will

be decrypted by the ASIST processor with the program’s key. Thus, the un­

encrypted code cannot be executed. To support such programs, we added

a new system call in Linux kernel: asist_encrypt(char *buf, int

size). This system call encrypts the code that exists in the memory region

starting from buf with size bytes length, using the current process’s key

that is stored in process table as a record of the current process. However,

the buf buffer may be vulnerable to a code injection attack, e.g., due to a

buffer overflow vulnerability in the program that may lead to the injection

of malicious code into buf. Then, this code will be correctly encrypted us­

ing asist_encrypt() and will be successfully executed. Like previous

work supporting ISR with self­modifying code [11], we believe that programs

should carefully use the asist_encrypt() system call to avoid malicious

code injection in buf.

3.2. ENCRYPTION 23

3.2.5 Encryption Algorithms and Key Size

We now discuss the encryption algorithms and key size we can use in ASIST.

The simplest, and probably the fastest, encryption algorithm is to XOR each

bit of the code with the respective bit of the key. Since code is much larger

than a typical key, the bits of the key are reused. To accelerate encryption

we XOR code and key as 32­bit words, instead of bits. The same algorithm

is used for decryption with the same key. However, XOR was found to

be susceptible to key guessing and key extraction attacks [51,57]. In our

prototype we implemented XOR encryption with key size that can range

from 32­bit to 128­bit, to reduce the probability of a successful guess. The

key size should be a multiple of 32­bit i.e., 32­bit, 64­bit, 96­bit, or 128­bit,

to support XOR between 32­bit words.

We also implemented transposition, which is a stronger encryption algo­

rithm than XOR. In transposition we shuffle the bits of a 32­bit word using

an 160­bit key (also called as transposition table). For each bit of the en­

crypted word we choose one of the 32 bits of the original word based on the

respective bits of the key which are used to choose one of 32 bits at each

position. The same key is used for decryption. We use the asist_mode

flag to define the encryption algorithm, key size, and encryption method

(static or dynamic). This flag exists in the process table records, and may

also exist in the .note.asist ELF section of a statically encrypted binary.

3.2.6 Tolerance to Key Guessing Attacks

To evade ISR protection, an attacker can try to guess the encryption key and

inject code encrypted with this key. The probability of a successful guess

with XOR encryption is 1/2key size, e.g., 1/232 for 32­bit key and 1/2128 for

128­bit key. In case of transposition, the probability of a successful guess

is 1/32!, which is much lower than the respective probability with XOR.

24 CHAPTER 3. ASIST ARCHITECTURE

Figure 3.3: ASIST hardware support for runtime instruction decryption. We

see the modified ASIST processor that decrypts every instruction with XOR

and 32­bit key before the instruction cache. The key of the user­level run­

ning process is stored in usrkey register, and operating system’s key is

stored in oskey register using the sta privileged SPARC instruction. The

supervisor bit defines which of these two keys will be used.

In case of a single guess, all the above probabilities seem good enough

to protect a system. However, if the same key is used consistently, e.g., in

case of static encryption, without re­encryption, a brute force attack can

be used to eventually guess the correct key. Sovarel et al. [51] present

an incremental attack that reduces the number of tries needed to find the

encryption key by observing system’s behavior. ASIST can address such

attacks with dynamic encryption, as a new key is generated before each ex­

ecution. Barrantes et al. [11] show that code injections in systems protected

with ISR result in the execution of at most five instructions before causing

an exception. Therefore, as dynamic encryption changes the key at each

program execution, a brute force or incremental attack cannot succeed and

the probability of success of a brute force or incremental attack remains

1/2key size with XOR or 1/32! with transposition.

3.3 Hardware Support

We now discuss in more detail the hardware support provided by ASIST

for runtime instruction decryption. Figure 3.3 outlines ASIST’s hardware

3.3. HARDWARE SUPPORT 25

architecture for ISR support when using XOR with a 32­bit key. We added

two new registers to store the encryption keys: usrkey for the key of the

user­level running process, and oskey for the operating system’s key. These

registers are memory mapped using a new Address Space Identifier (ASI),

and are accessible only by the operating system through two privileged

SPARC instructions: sta (store word to alternate space) and lda (load word

from alternate space). We reserved a free ASI for these registers, that should

be given in these instructions. The value of the key that will be stored with

sta is first placed into a register, which is given in this instruction. Another

register given to sta contains the address, that is 0 for usrkey and 32 for

oskey.

The operating system sets the usrkey register using sta with the key of

the user­level process that is scheduled for execution before each context

switch. In case of a 32­bit key, a single sta instruction can store the entire

key. For larger keys, more than one sta instructions may be needed.

The ASIST processor chooses between usrkey and oskey for decrypting

instructions based on the value of the Supervisor bit. The Supervisor bit

is 0 when the processor executes user­level code, so the usrkey is used for

decryption, and it is 1 when the processor executes kernel’s code (super­

visor mode), so the oskey is selected. When a trap instruction is executed

(ta instruction in SPARC), control is transferred from user to kernel and

the Supervisor bit changes from 0 to 1; interrupts are treated similarly.

Thus, the next instructions will be decrypted with oskey. Control is trans­

ferred back to user from kernel with the return from trap instruction (rett in

SPARC). Then the Supervisor bit becomes 0 and the usrkey is used. The

context switch is performed when the operating system runs, and oskey

is used for decryption. Then the proper key of the process that will run

immediately after rett is stored at usrkey. When rett is called, and control

26 CHAPTER 3. ASIST ARCHITECTURE

returns back to user­level, the proper key of the running process is already

at the usrkey register.

The decryption unit is placed before the instruction fetch cycle, when

instructions are moved from memory to the instruction cache. We should

note that decryption fits in the processor’s pipeline and no extra cycle is

spent on it. Therefore, we expect no runtime overhead from the hardware

decryption part. We expect a slight increase on the cost and on the power

consumption due to the extra hardware we used. Also, ASIST’s hardware

architecture is backwards compatible with programs and operating system

kernels that are not encrypted. We set the default value of the key registers

to zero, which has no effect on the decryption (the default decryption algo­

rithm is XOR). Any unencrypted program with an unmodified kernel will

be normally executed on the ASIST processor, but without ISR protection.

In the rest of this section we discuss alternative choices for the placement

of the decryption unit, and support for different decryption algorithms and

key sizes.

3.3.1 Placement of the Decryption Unit

We decided to place the decryption unit as early as possible in the modi­

fied processor to avoid adding any performance overhead or spend an extra

cycle, and to avoid breaking any runtime optimizations, like branch pre­

diction, made by the processor. There are two possible choices for placing

the decryption unit: before and after the instruction cache. Figure 3.4

presents the two options. We implemented both cases and both use the

same amount of extra hardware, while none of them add any runtime over­

head. When the decryption unit is after the instruction cache, the instruc­

tions are stored encrypted in cache and the decryption takes place at each

fetch cycle. Therefore, it is on the critical path of the processor and al­

though it may not add any observable delay for simple decryption schemes,

it may add a delay for more complex decryption algorithms. Also, as the

3.3. HARDWARE SUPPORT 27

decryption circuit is utilized at each fetch cycle, it may result in increased

power consumption. However, this approach protects the system from a

possible code injection in the instruction cache. as the instructions remain

encrypted in the cache and they are always decrypted in the path from the

instruction cache to the fetch and execution.

On the other hand, when the decryption unit is located before the in­

struction cache, it is accessed only on instruction cache misses. Thus,

the decryption circuit is used significantly fewer times than in the previous

case. This leads to reduced power consumption for decryption, as the in­

structions that are executed many times, e.g., in loops, are found decrypted

in the instruction cache. Also, an increased delay for more complex encryp­

tion at this point will not have significant impact to the overall performance

of the processor as in the previous case. In this case, instructions are stored

unencrypted into the instruction cache, which could be vulnerable to code

injections in the instruction cache. However, to the best of our knowledge,

it is not possible to inject code in the instruction cache without passing from

the path we have modified to decrypt each instruction. For this reason, we

selected to place the decryption unit before the instruction cache.

3.3.2 Decryption Algorithms and Key Size

As we explained in Section 3.2.5, we implemented two different encryption

algorithms: XOR and transposition and consequently two respective de­

cryption algorithms in hardware. The XOR decryption with a 32­bit key

is simple to implement, as we illustrate in Figure 3.3. We also support

different key sizes for XOR, from 32 to 128 bits.

Figure 3.5 shows the implementation of XOR decryption with 128­bit

key. Since each encrypted instruction in our architecture (SPARC V8) is

a 32­bit word, we need to select the proper 32­bit part of the 128­bit key,

the same part that was used in the encryption of this instruction. Thus,

we use the two last bits of the instruction’s address (word offset) to select

28 CHAPTER 3. ASIST ARCHITECTURE

the correct 32­bit part of the 128­bit key using a multiplexer, and finally

decrypt the instruction. The same approach is used for XOR decryption

with other key sizes, multiple of 32 bits.

The implementation of decryption with transposition, as shown in Fig­

ure 3.6, requires significantly more hardware. This is because it needs 32

multiplexers, one per bit of the decrypted instruction. Each multiplexer has

32 input lines with all the 32 bits of the encrypted instruction, to choose the

proper bit that corresponds to the bit of the original (decrypted) instruction.

It also has 5 select lines that define the selection of the input bit at each

position. The 5 select lines of each multiplexer are a 5­bit part of the 160­bit

key. that is used with transposition. Besides the additional hardware, the

runtime operation of transposition is equally fast with XOR, as it does not

spend an extra cycle and does not impose any delay to the processor.

To dynamically select the decryption algorithm and key size, we have

added another memory mapped register: asist_mode. This register can be

set by the operating system to define the decryption algorithm and key size

that will be used in the hardware.

3.3.3 Return Address Encryption

The design we have presented so far is able to efficiently protect the system

against any type of binary code injection attacks, using ISR. To transpar­

ently protect a system against return­to­libc and ROP attacks [15,48], we

extended our hardware design to provide protection of the return address

integrity without any runtime overhead. To this end, we slightly modified

the ASIST processor to encrypt the return address in each function call us­

ing the process’s key, and decrypt it just before returning to the caller. This

is similar to the XOR random canary defense [22], which uses mprotect()

to hide the canary table from attackers. On the other hand, we take ad­

vantage of the two hardware key registers, which are not accessible by an

3.3. HARDWARE SUPPORT 29

(a) Decryption before the instruction cache

(b) Decryption after the instruction cache

Figure 3.4: Alternative choices for the placement of the decryption unit in the

ASIST­enabled processor.

attacker, to hide the encryption key. Also, our hardware implementation

does not impose any performance overhead.

In the SPARC V8 architecture, function calls are performed with the call

synthetic instruction, which is equal to jmpl func_addr,%o7. Hence, call

writes the contents of the program counter (PC), i.e., the return address,

into the o7 register, and then transfers the control to the function’s address

func_addr. To return from a function, the ret synthetic instruction is used,

which is equal to jmpl %i7+8,%g0 when returning from a normal subroutine

(i7 register in the callee is the same with o7 register in the caller) and jmpl

%o7+8,%g0 when returning from a leaf subroutine.

To encrypt the return address on each function call in the modified

processor, we just XOR the value of the PC with the usrkey register when

a call or jmpl instruction is executed and the value of the PC is stored into

the o7 register. The return address, i.e., the i7 register in the callee, is

decrypted with usrkey when a jmpl instruction uses the i7 register (or o7 in

30 CHAPTER 3. ASIST ARCHITECTURE

case of leaf subroutine) to change the control flow (ret instrunction). Thus,

the modified processor will return to the (%i7 XOR usrkey)+8 address.

This way, the return address remains always encrypted, e.g., when it

is pushed onto the stack (window overflow), and it is always decrypted

by the jmpl instruction when returning. Hence, any modification of the

return address, e.g., though a stack­based buffer overflow or fake stack by

changing the stack base pointer, or any ret instructions executed by a ROP

exploit without the proper call, will lead to an unpredictable return address

upon decryption, as the usrkey is unknown to the attacker.

Note that jmpl is also used for indirect jumps, not only for function calls

and return, so our modified jmpl decrypts the given address only when the

i7 (or o7) register is used. This is a usual convention for function calls in

SPARC and it should be obeyed, i.e., the i7 and o7 registers should not be

used for any indirect jumps besides returning from function calls. Also,

the calling conventions should be strictly obeyed: return address cannot be

changed in any legal way before returning, and ret instructions without a

preceding call instruction cannot be called without a system crash. As the

calling conventions are not always strictly obeyed in several legacy applica­

tions and libraries, the use of return address encryption may not be always

possible. Therefore, although ASIST offers this hardware feature, it may

or may not be enabled by the software. We use one bit of the asist_mode

register to define whether the return address encryption will be enabled or

not.

A similar approach is implemented by Tuck et al. [54] to protect function

pointers from buffer overflows, and it could be integrated with ASIST to

thwart more types of return­to­libc attacks, besides attacks targeting the

return address.

3.3. HARDWARE SUPPORT 31

Figure 3.5: Decryption using XOR with 128­bit key. Based on the last two

bits of the instruction’s address (offset) we select the respective 32­bit part

of the 128­bit key for decryption.

Figure 3.6: Decryption using transposition with 160­bit key. The imple­

mentation of transposition requires significantly more hardware, because it

needs 32 multiplexers (one per each bit of the decrypted instruction) with

all the 32 bits of the encrypted instruction as input lines in each one. Each

multiplexer uses a 5­bit part of the key as select line.

32 CHAPTER 3. ASIST ARCHITECTURE

3.4 Operating System Support

We now describe the new functionality we added in the operating system to

support the ASIST hardware features for ISR in order to protect the system

from attacks against possibly vulnerable user­level processes and kernel’s

vulnerabilities.

3.4.1 Kernel Modifications

In our prototype we modified the Linux kernel, and we ported our changes

to 2.6.21 and 3.8 kernel versions. First, we added two new fields in the

process table records (task_struct in Linux kernel): the process’s key

and the asist_mode. We initialize the process’s key to zero and asist_mode

to dynamic, so each unencrypted program will be dynamically encrypted.

We changed the binary ELF loader to read the key of the executable

ELF file, in case it is statically encrypted, or generate a random key, in

case of dynamic encryption, after calling the execve() system call. Then,

the loader stores the process’s key to the respective process table record.

We also changed the scheduler to store the key of the next process that is

scheduled to run in the usrkey register before each context switch. For this,

we added an sta instruction before the context switch to store a 32­bit key.

For larger keys, the number of sta instructions depends on key size.

To implement dynamic encryption and shared library support we mod­

ified the page fault handler. For each page fault, we first check whether

it is related to code (text page fault) and whether the process that caused

the page fault uses dynamic code encryption. If so, we allocate and map

a new anonymous page that is not backed by any file. Upon the reception

of the requested page from disk (or buffer cache), we encrypt its data with

process’s key and copy it at the same step into the newly allocated page.

Then, the new page is mapped into the process’s address space. Eventually,

this page will contain the code that will be accessed by the process.

3.4. OPERATING SYSTEM SUPPORT 33

3.4.2 Kernel Encryption

To encrypt kernel’s code we used the same approach with static binary en­

cryption. We modified an uncompressed kernel image by (i) adding a new

note section that contains the kernel’s encryption key, and (ii) identifying

and encrypting all code sections. We had to carefully separate code from

data into different sections while building the kernel image. The oskey reg­

ister saves the key of kernel’s encrypted code. We modified the bootloader

to read and then store the kernel’s key into the oskey register with an sta

instruction, just before the control is transfered from bootloader to kernel.

Since oskey is initialized with zero, which has no effect in XOR decryption

that is also default, the unencrypted code of the bootloader can be success­

fully executed in the randomized processor.

We decided to statically encrypt the kernel’s code so as to not add any de­

lay to the boot process. Due to this, the key is decided once when the kernel

image is built and encrypted, and it cannot change without re­encryption.

Another option would be to encrypt the kernel’s code while booting, using

a new key that is randomly generated at this point. This option could add

a further delay to the boot process. However, most systems typically use a

compressed kernel image that is decompressed while booting. Thus, we can

encrypt the kernel’s code during the kernel loading stage when the image is

decompressed into memory. The routine that decompresses and loads the

kernel to memory must first generate a random key and then encrypt the

kernel’s code along with decompression.

34 CHAPTER 3. ASIST ARCHITECTURE

4
ASIST Prototype Implementation

In this section we describe the ASIST prototype implementation and hard­

ware synthesis using an FPGA board, We also present the results of the

hardware synthesis in terms of additional hardware needed for our proto­

type, comparing with the unmodified processor. Finally, we discuss how

the proposed system that we have implemented by modifying the SPARC

V8 Leon3 processor can be easily ported to other hardware architectures,

such as x86, and other operating systems.

4.1 Hardware Implementation

We modified Leon3 SPARC V8 processor [3], a 32­bit open­source syn­

thesizable processor [28], to implement the security features of ASIST for

hardware­based ISR support, as we described in Section 3.3. All hardware

35

36 CHAPTER 4. ASIST PROTOTYPE IMPLEMENTATION

Synthesized Processor Flip Flops LUTs

Vanilla Leon3 9,227 16,986

XOR with 32­bit key 9,294 (0.73% increase) 17,090 (0.61% increase)

XOR with 128­bit key 9,486 (2.81% increase) 17,116 (0.77% increase)

Transposition with 160­bit key 9,838 (6.62% increase) 18,153 (6.87% increase)

Table 4.1: Additional hardware used by ASIST. We see that ASIST adds just

0.6%–0.7% more hardware with XOR decryption using a 32­bit key, while

it adds significantly more hardware (6.6%–6.9%) when using transposition.

modifications for instruction decryption, required fewer than 100 lines of

VHDL code.

Leon3 uses a single­issue, 7­stage pipeline. Our implementation has 8

register windows, an 16 KB 2­way set associative instruction cache, and

a 16 KB 4­way set associative data cache. We synthesized and mapped

the modified ASIST processors on a Xilinx XUPV5 ML509 FPGA board [58].

The FPGA has 256 MB DDR2 SDRAM memory and the design operates at

80 MHz clock frequency. It also has several peripherals including an 100Mb

Ethernet interface.

4.2 Additional Hardware

Table 4.1 shows the results of the synthesis for three different hardware

implementations of ASIST, using XOR decryption with 32­bit and 128­bit

keys, and decryption with transposition using 160­bit key. We compare

them with the unmodified Leon3 processor as a baseline to measure the

additional hardware used by ASIST to implement ISR functionality in each

case. We see that ASIST with XOR encryption and 32­bit key adds less than

1% of additional hardware, both in terms of additional flip flops (0.73%) and

lookup tables (0.61%). When a larger key of 128 bits is used for encryption,

we observe a slight increase in the number of flip flops (2.81%) due to the

larger registers needed to store the two 128­bit keys. The implementation

4.3. KERNEL AND SOFTWARE MODIFICATIONS 37

of transposition results in significantly more hardware used, both for flip

flops (6.62% increase) and lookup tables (6.87% increase). This is due to the

larger circuit used for the hardware implementation of transposition, with

32 multiplexer with 32 input lines each, as we showed in Section 3.3.2.

4.3 Kernel and Software Modifications

The resulting system is a full­featured SPARC workstation using a Linux

operating system. We modified the Linux kernel as we described in Sec­

tion 3.4. We ported our Linux kernel modifications in 2.6.21 and 3.8.0

kernel versions. Although a single kernel is able to support both static and

dynamic encryption, depending on the existence of the ASIST note section

in the ELF, in order to separately evaluate the two approaches we had three

different versions of each kernel: an unmodified one, a kernel with static

encryption support only, and a kernel version only with dynamic encryption

support.

We built a cross compilation tool chain with gcc version 4.7.2 and

uClibc version 0.9.33.2 to cross compile the Linux kernel, libraries, and

user­level applications. Thus, all programs running in our system (both

vanilla and ASIST), including vulnerable programs and benchmarks, were

cross compiled with this tool chain in another PC. We slightly modified

linker scripts to separate code and data for both static and dynamic code

encryption, and align headers, code, and data into separate pages in case of

dynamic encryption. To implement static encryption, we extended objcopy

with the ---encrypt-code flag to add the new note section and encrypt

code sections. The key can be provided by the user or be randomly chosen

by the tool.

4.4 Portability to Other Systems

Our approach is easily portable to other architectures and operating sys­

tems. Regarding ASIST’s hardware extensions, implementing new registers

38 CHAPTER 4. ASIST PROTOTYPE IMPLEMENTATION

that are accessible by the operating system is quite easy in most archi­

tectures, including x86. Encrypting the return address at each function

call and decrypting it before returning depends on the calling convention at

each architecture. For instance, in x86 it can be implemented by slightly

modifying call and ret instructions. In our current design, we have im­

plemented the runtime instruction decryption for RISC architectures that

use fixed­length instructions. Thus, porting the decryption functionality in

other RISC systems will be straight­forward. On the other hand, CISC ar­

chitectures such as x86 support variable­length instructions. However, our

approach can also be implemented in such architectures with minor modi­

fications. Since instructions reside in memory before they are executed, we

can simply encrypt them without the need of precise disassembly, e.g., in

blocks of 32­bits, depending on the key size. In architectures with variable­

length instructions this encryption will not be aligned at each instruction,

but this is not an issue. The memory blocks will be decrypted accordingly

by the modified processor before execution. For instance, a memory block

can be decrypted based on the byte offset of its respective memory address.

Also, since we have placed the decryption unit before the instruction cache,

decryption is performed at each word that is stored in cache, rather than

at each instruction.

We have implemented our prototype by modifying the Linux kernel.

However, the same modifications can be made in other operating systems

as well, as we change generic kernel modules such as the binary loader, the

process scheduler and context switch, and the page fault handler. These

modules exist in all modern operating systems and they can be changed

respectively to support the hardware features offered by a randomized pro­

cessor.

5
Experimental Evaluation

We mapped our prototype onto an FPGA running two versions of the Linux

kernel, 2.6.21 and 3.8, as described in Chapter 4. We used the Ethernet

adapter of the FPGA and configured the system with networking and a static

IP address. This allows for remote exploitation attempts for our security

evaluation, and for evaluating the performance of a Web server. As the

available memory on the FPGA is only 256 MB, and there is no local disk in

the system, we used NFS to mount a partition of a local PC that contains all

the cross compiled programs needed for the evaluation. To avoid measuring

NFS delays in our evaluation, we copied each executable program in the

local RAM file system before its execution.

39

40 CHAPTER 5. EXPERIMENTAL EVALUATION

We evaluated the ASIST prototype that uses XOR encryption with a 32­

bit key, comparing static and dynamic encryption implementations with an

unmodified system (vanilla processor and unmodified operating system).

We observed that using a larger key or transposition instead of XOR for

encrypting instructions has the same effectiveness on preventing code in­

jection attacks and the same efficiency in terms of performance. We did

not use the return address encryption in our security and performance

evaluation.

5.1 Security Evaluation

To demonstrate the effectiveness of ASIST at preventing code injection at­

tacks exploiting user­ or kernel­level vulnerabilities, we tested a representa­

tive sample of attacks shown in Table 5.1. The first six attacks target buffer

overflow vulnerabilities on user­level programs, while the last three attacks

target a NULL pointer dereference and two buffer overflow vulnerabilities of

the Linux kernel.

First, we ran a vanilla 2.6.21 kernel, which does not properly implement

a non­executable stack on SPARC. We built a custom program with a typical

stack­based buffer overflow vulnerability, and we used a large command­

line argument to inject SPARC executable code into the program’s stack,

which was successfully executed by overwriting the return address. We

then used an ASIST modified kernel without enabling the return address

encryption, and we ran a statically encrypted version of the vulnerable pro­

gram with the same argument. In this case, the program was terminated

with an illegal instruction exception, as the unencrypted injected code could

not be executed. Similarly, we ran an unencrypted version of the vulnerable

program and relied on the page fault handler for dynamic code encryption.

Again, the injected code caused an illegal instruction exception due to the

ISR.

5.1. SECURITY EVALUATION 41

CVE Reference Vulnerability Description Access Vector Location Vulnerable Program

CVE­2010­1451

Linux kernel before 2.6.33 does

not properly implement a non­

executable stack on SPARC platform

Local Stack Custom

CVE­2013­0722
Buffer overflow due to incorrect user­

supplied input validation
Remote Stack

Ettercap 0.7.5.1 and

earlier

CVE­2012­5611

Buffer overflow that allows remote

authenticated users to execute arbi­

trary code via a long argument to the

GRANT FILE command

Remote Stack
Oracle MySQL 5.1.65

and MariaDB 5.3.10

CVE­2002­1549

Buffer overflow that allows to execute

arbitrary code via a long HTTP GET

request

Remote Stack Light HTTPd (lhttpd) 0.1

CVE­2002­1337

Buffer overflow that allows to execute

arbitrary code via certain formatted

address fields

Remote BSS Sendmail 5.79 to 8.12.7

CVE­2002­1496

Buffer overflow that allows to execute

arbitrary code via a negative value in

the Content­Length HTTP header

Remote Heap
Null HTTPd Server 0.5.0

and earlier

CVE­2010­4258

Linux kernel allows to bypass ac­

cess_ok() and overwrite arbitrary

kernel memory locations by NULL

pointer dereference to gain privileges

Local Kernel
Linux kernel before

2.6.36.2

CVE­2009­3234

Buffer overflow that allows to execute

arbitrary user­level code via a ’’big

size data‘‘ to the perf_counter_open()

system call

Local
Kernel

stack
Linux kernel 2.6.31­rc1

CVE­2005­2490

Buffer overflow that allows to execute

arbitrary code by calling sendmsg()

and modifying the message contents

in another thread

Local Stack
Linux kernel before

2.6.13.1

Table 5.1: Representative subset of code injection attacks tested with ASIST.

We see that ASIST is able to successfully prevent code injection attacks

targeting vulnerable user­level programs as well as kernel vulnerabilities.

We performed similar tests with all the other vulnerable programs: Et­

tercap, which is a packet capture tool, MariaDB database, Light HTTPd and

Null HTTPd webservers, and sendmail. These programs were cross com­

42 CHAPTER 5. EXPERIMENTAL EVALUATION

piled with our toolchain and encrypted with our extended objcopy tool.

In all cases our remotely injected shellcode was executed successfully only

on the vanilla system, while ASIST always prevented the execution of the

injected code and resulted in illegal instruction exception.

We also tested attacks exploiting three kernel vulnerabilities with and

without ASIST. We cross compiled, modified and encrypted three different

kernel versions for each one: 2.6.21, 2.6.31­rc1 and 2.6.11. When running

the vanilla kernel on the unmodified processor, the kernel exploits resulted

in the successful execution of the provided user­level code with kernel priv­

ileges. On the other hand, the encrypted kernels with ASIST resulted in

kernel panic for all the exploits, avoiding a system compromise with kernel

privileges.

5.2 Performance Evaluation

To evaluate ASIST’s performance we compare (i) vanilla Leon3 with unmod­

ified Linux kernel (Vanilla), (ii) ASIST with static encryption (ASIST­Static),

and (iii) ASIST with dynamic code encryption (ASIST­Dynamic), when run­

ning the SPEC CPU2006 benchmark suite and two real world applications.

5.2.1 Benchmarks

We ran all the integer benchmarks from the SPEC CPU2006 suite (CINT2006) [52],

which includes several CPU­intensive applications. Figure 5.1 shows the

slowdown of each benchmark when using ASIST with static and dynamic

encryption, compared to the vanilla system. We see that both ASIST im­

plementations impose less than 1.5% slowdown in all benchmarks. For

most benchmarks, ASIST exhibits almost the same execution times as with

the unmodified system. This is due to the hardware­based instruction de­

cryption, which does not add any observable delay. Moreover, the modified

kernel performs minor extra tasks: it reads the key from the executable

file (for static encryption) or it randomly generates a new key (for dynamic

5.2. PERFORMANCE EVALUATION 43

encryption) only once per each execution, while it adds just one extra in­

struction before each context switch. We notice a slight deviation from

the vanilla execution time only for three of the benchmarks: gcc, sjeng,

and h264ref. For these benchmarks, we observe a slight slowdown of

1%–1.2% in static and 1%–1.5% in dynamic encryption. This deviation is

probably due to the different linking configurations (statically linked versus

dynamically linked shared libraries).

Figure 5.1: Runtime overhead using the SPEC CPU2006 benchmark suite.

We see that both ASIST implementations have negligible runtime overhead

compared to the vanilla system.

44 CHAPTER 5. EXPERIMENTAL EVALUATION

Benchmark Data page faults per second Text page faults per second

400.perlbench 38.4964 1.97215

401.bzip2 44.3605 0.193831

403.gcc 60.3235 3.93358

429.mcf 51.7769 0.0497679

445.gobmk 25.4735 0.905984

456.hmmer 0.0546246 0.0223249

458.sjeng 71.9751 0.0676988

462.libquantum 5.18675 0.0486765

464.h264ref 3.19614 0.0333707

Table 5.2: Data and text page faults per second when running the SPEC

CPU2006 benchmark suite. All benchmarks have very few text page faults

per second, which explains the negligible overhead of the dynamic encryp­

tion approach.

Setup Slowdown

Vanilla 1.0

ASIST­Static 1.0026

ASIST­Dynamic 1.0035

Table 5.3: Slowdown when inserting data into an sqlite3 database. We

see that ASIST achieves very close runtime performance with the vanilla

system.

One might expect that the dynamic encryption approach would experi­

ence a considerable performance overhead due to the extra memory copy

and extra work needed to encrypt code pages at each text page fault. How­

ever, our results in Figure 5.1 indicate that dynamic encryption performs

equally well with static encryption. Thus, our proposed approach to dynam­

ically encrypt program code at the page fault handler, instead of statically

encrypt the code before program’s execution, does not seem to add any

extra overhead.

5.2. PERFORMANCE EVALUATION 45

To better understand the performance of this approach, we instru­

mented the Linux kernel to measure the data and text page faults of each

process that uses the dynamic encryption mode. Table 5.2 shows the data

and text page faults per second for each benchmark. We see that all bench­

marks have a very low rate of text page faults, and most of them experience

significantly less than one text page fault per second. Moreover, we observe

that the vast majority of page faults are for data pages, while only a small

percentage of the total page faults are related to code. Therefore, we notice a

negligible overhead with dynamic code encryption at the page fault handler

for two main reasons: (i) as we see in Table 5.2, text page faults are very

rare, and (ii) the overhead of the extra memory copy and page encryption

is significantly less that the page fault’s overhead for fetching the requested

page from disk. Note that in our setup we use a RAM file system instead

of an actual disk, so a production system may experience an even lower

overhead.

The very low page fault rate for pages that contain executable code

makes the dynamic encryption a very appealing approach, as it imposes

practically zero runtime overhead, and at the same time it supports shared

libraries and transparently generates a new key at each program execution.

46 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.2: Slowdown when downloading different files from a lighttpd Web

server as a function of the file size. We see that ASIST adds less than 1%

delay for all file sizes.

Figure 5.3: Slowdown when inserting data into sqlite3 as a function of the

number of insertions. We see that ASIST experiences less than 1% slowdown

even for very small datasets.

5.2. PERFORMANCE EVALUATION 47

5.2.2 Real­world Applications

We evaluated ASIST with two real­world applications. First, we ran the

lighttpd Web server in a vanilla system and in the two versions of ASIST.

We used another machine located in the local network to repeatedly down­

load 14 files of different sizes, ranging from 1 KB to 8 MB, and we measured

the average download time for each file. Figure 5.2 shows the slowdown

of the download time as a function of the file size for each system. We

see that ASIST does not impose any considerable delay, as the download

time remains within 1% of the vanilla system for all files. We also notice

that both static and dynamic encryption implementations perform almost

equally good. We measured the page faults caused by lighttpd: 261 data

page faults per second, and just 0.013 text page fault per second. Thus,

the dynamic encryption did not add any runtime overhead to the server.

Moreover, we observed that most of the text page faults occur during the

first few milliseconds of the lighttpd execution, when the code is loaded

into memory, and then practically no text page fault occurs.

In our last benchmark we ran an sqlite3 database in the vanilla and in

the two ASIST setups. To evaluate the performance of sqlite3 we used the

C/C++ SQLite interface to implement a simple benchmark that reads a large

tab­separated file and updates a table’s entries with the respective values in

an aggressive manner. Table 5.3 shows the results of this benchmark that

measures data insertions and selections Figure 5.3 shows the slowdown

when inserting data into the database using this benchmark as a function

of the number of insertions for all setups. We observe that as in all previous

cases, ASIST imposes less than 1% slowdown on the database’s operation

for both static and dynamic approaches, even on small datasets that do not

provide ASIST with enough time to amortize the encryption overhead.

48 CHAPTER 5. EXPERIMENTAL EVALUATION

5.3 Memory Overhead

In order to successfuly encrypt the pages containing the executable code in

the dynamic implementation we create an anonymous copy of the mapped

page (copy on write). The fact that we create a new page per code/text page

that we see in each page fault, means that resident memory of the binary

due to the text page faults will be twice as much comparing it with the

Vanilla or static implementation. Although double the memory footprint of

a running process may seem like a lot, that is not entirely true. We should

keep in mind that the text pages caused by the text page faults are not

brought into memory all at once, instead they are scattered throughout the

program’s execution, thus diminishing the memory footprint of the running

process.

Benchmark Vanilla Tata PFs ASIST­Static Text PFs ASIST­Dynamic Text PFs

400.perlbench 3417 3458 3416

401.bzip2 6673 6638 66375

403.gcc 8924 8868 8871

429.mcf 19768 19810 19767

445.gobmk 4849 4807 3911

456.hmmer 161 117 116

458.sjeng 44653 44691 44458

462.libquantum 2878 2921 2877

464.h264ref 9909 9866 9832

Table 5.4: We see the Text page faults generated by the operating system

when running the SPEC in all 3 implementation. As it appears from the

numbers, there is no significant difference in the number of the generated

page faults between the Vanilla implementation and the other two ASIST

implementations

5.3. MEMORY OVERHEAD 49

5.3.1 External Fragmentation

Due to the rules governing memory allocation, more computer memory is

sometimes allocated than is needed mostly due to data alignment. Unlike

other types of fragmentation, internal fragmentation is difficult to reclaim

and that is why programms usually live with it. External fragmentation on

the other way arises when free memory is separated into small blocks/pages

and is interspersed by allocated memory. The problem of external fragmen­

tation is mostly handled by compiler optimizations which by intermixing

data and code and thus utilizing a page size to its fullest.

As we describe in Section 3.2 our scheme requires that data and code

need to be seperated. Thus, we modified the linker in order to produce

a binary which ELF format wouldn’t allow intermixed code and data. We

expected that this modification would have an impact on the number of the

generated text and data faults. In Table 5.4 we present the number of only

the text faults generated throught the execution of the SPEC benchmarks

in all three implementations. As we can see from the Table 5.4, most of the

benchmarks have a negligible increase in the number of the generated text

faults, while in some cases, e.g.hmmer the vanilla implementation seems

to generate more text faults than both the static and dynamic implementa­

tions.

50 CHAPTER 5. EXPERIMENTAL EVALUATION

6
Related Work

6.1 Instruction Set Randomization

ISR was initially introduced as a generic defense against code injections by

Kc et al. [33] and Barrantes et al. [11, 12]. To demonstrate the feasibility

of ISR, they proposed implementations in Bochs [35] and Valgrind [38]

respectively. Hu et al. [31] implemented ISR with Strata SDT tool [45] using

AES as a stronger encryption for instruction randomization. Boyd et al. [14]

proposed a selective ISR to reduce the runtime overhead. Portokalidis and

Keromytis [44] implemented ISR using Pin [36] with moderate overhead

and shared libraries support. In Section 2.3 we described in more detail all

the existing software­based ISR implementations and we compared them

with ASIST. ASIST addresses most of the limitations of the existing ISR

51

52 CHAPTER 6. RELATED WORK

approaches owing to its simple and efficient hardware and operating system

support.

6.2 Other Defenses against Code Injection Attacks

Modern hardware platforms support non­executable data protection, such

as the No eXecute (NX) bit [41]. This feature prevents stack or heap data

from being executed by marking the respective memory pages with the NX

bit, so it is capable to protect systems against code injection attacks with­

out any performance degradation. However, its effectiveness depends on

its proper use by software. For instance, an application may not set the

NX bit on all data segments. This may be due to backwards compatibility

constraints, self­modifying code, or bad programming practices.Also, the

NX bit cannot prevent return to libc attacks that use existing code to accom­

plish the attack [48]. We believe that ASIST can be used complementary to

NX bit to serve as an additional layer of security, e.g., in case that NX bit

may not be applicable or can be bypassed. For instance, many ROP exploits

use the code of mprotect() to make the pages that contain injected code

executable, and so bypassing the NX bit protection mechanism. This way,

they can execute arbitrary code to implement the attack without the need

to identify more specific gadgets, which may not be easy to find, e.g., due to

the use of Address Space Layout Randomization (ASLR). In contrast, these

exploits cannot execute any injected code in a system using ASIST, as this

code will not be correctly encrypted and will not be successfully executed in

the ASIST processor. In such cases, ISR as an inherent part of the system,

as suggested by ASIST, is able to offer another security layer by transpar­

ently protecting against any type of code injection attacks. Thus, ASIST

with ASLR provides a stronger defense against such attacks.

A recent attack demonstrated by Snow et al. [50] is also able to bypass

NX bit and ASLR protection using ROP. First, it exploits a memory disclo­

6.3. DEFENSES AGAINST BUFFER OVERFLOW ATTACKS. 53

sure to map process’s memory layout, and then it uses a disassembler to

dynamically discover gadgets that can be used for the ROP attack. ASIST

with ASLR, however, is able to prevent this attack: even if memory with exe­

cutable code leaks to the attacker, the instructions will be encrypted with a

randomly­generated key. This way, attacker will not be able to disassemble

the code and find useful gadgets. ASIST ensures that key does not reside in

process’s memory, while stronger encryption algorithms (like AES) can also

fit in our design to avoid inferring the key.

SecVisor [46] protects the kernel from code injection attacks using a

hypervisor to prevent unauthorized code execution in the kernel. While

SecVisor focuses on kernel’s code integrity, ASIST prevents the execution of

unauthorized code in both user­ and kernel­level by implementing efficiently

and transparently ISR with hardware support.

6.3 Defenses against Buffer Overflow Attacks.

A significant number of research efforts have been made to provide pro­

tection against buffer overflow attacks. StackGuard [22] uses canaries to

protect the stack, while PointGuard [21] protects function pointers from

buffer overflows by encrypting all pointers while they reside in memory and

decrypts them before they are loaded into a register. Both techniques are

implemented with compiler extensions, so they require program recompi­

lation. In contrast, BinArmor [49] protects existing binaries from buffer

overflows without access to source code, by discovering the data structures

and then rewriting the binary.

6.4 Other Randomization­based Defenses.

Address Space Layout Randomization (ASLR) [42] randomizes the memory

layout of a process at runtime or at compile time to protect against code­

reuse attacks. Giuffrida et al. [29] propose an approach with address space

randomization to protect the operating system kernel. Bhatkar et al. [13]

54 CHAPTER 6. RELATED WORK

present randomization techniques for the addresses of the stack, heap,

dynamic libraries, routines and static data in an executable. Wartell et

al. [56] randomize the instruction addresses at each execution to address

code­reuse attacks. Jiang et al. [32] prevent code injections by randomizing

the system call numbers.

6.5 Hardware Support for Security

There are numerous research efforts aiming to provide hardware support

for security without sacrificing performance. Dalton et al. [23, 24] pro­

pose a hardware­based architecture for dynamic information flow tracking,

by extending a SPARC V8 processor with four tag bits per each register

and memory word, as well as with tag propagation and runtime checks

to defend against buffer overflows and high­level attacks. Greathouse et

al. [30] present a design for accelerating dynamic analysis techniques with

hardware support for unlimited watchpoints. These efforts significantly re­

duce the performance cost for dynamic information flow analysis, which

has a very high overhead in software­based implementations. Frantzen

and Shuey [27] implement a hardware­assisted technique for the SPARC

architecture to provide return address protection. Tuck et al. [54] propose

hardware encryption to protect function pointers from buffer overflow at­

tacks with improved performance, extending the computationally expensive

software­based pointer encryption used by pointguard [21]. Our approach

is similar to these works: we also propose hardware support for another

existing technique that prevents the execution of any code that is not au­

thorized to run in the system.

7
Conclusion

We have presented the design, implementation and evaluation of ASIST: a

hardware­assisted architecture for ISR support. ASIST is designed to offer

(i) improved performance, without runtime overhead, (ii) improved secu­

rity, by protecting the operating system and resisting key guessing attempts,

and (iii) transparent operation, with shared libraries support and no need

for any program modifications. Our experimental evaluation shows that

ASIST does not impose any significant overhead (less than 1.5%), while it is

able to prevent code injection attacks that exploit user­level and kernel­level

vulnerabilities. We have also proposed a new approach for dynamic code

encryption at the page fault handler when code is first loaded into process’

memory. This approach transparently encrypts unmodified binaries that

55

56 CHAPTER 7. CONCLUSION

may use shared libraries with a new key at each execution, offering pro­

tection against incremental key guessing attacks. Our results indicate that

dynamic code encryption is efficient, without adding any overhead due to

the low text page fault rate. Our work shows that ASIST can address most of

the limitations of existing software­based ISR implementations while adding

less than 0.7% additional hardware to a SPARC processor. We believe that

ASIST can be easily ported to other architectures to strengthen existing

defenses against code injection attacks.

Bibliography

[1] Common vulnerabilities and exposures (cve). http://cve.mitre.org/.

[2] The metasploit project. http://www.metasploit.com/.

[3] The SPARC Architecture Manual, Version 8. www.sparc.com/standards/

V8.pdf.

[4] USA National Vulnerability Database. http://web.nvd.nist.gov/

view/vuln/statistics.

[5] Linux Kernel Remote Buffer Overflow Vulnerabilities. http://secwatch.

org/advisories/1013445/, 2006.

[6] OpenBSD IPv6 mbuf Remote Kernel Buffer Overflow. http://www.

securityfocus.com/archive/1/462728/30/0/threaded, 2007.

[7] Microsoft Security Bulletin MS08­067 – Critical. http://www.microsoft.

com/technet/security/Bulletin/MS08-067.mspx, 2008.

[8] Microsoft Windows TCP/IP IGMP MLD Remote Buffer Overflow Vulnerability.

http://www.securityfocus.com/bid/27100, 2008.

[9] Microsoft security advisory (975191): Vulnerabilities in the ftp service in

internet information services. http://www.microsoft.com/technet/

security/advisory/975191.mspx, 2009.

[10] Microsoft security advisory (975497): Vulnerabilities in smb could al­

low remote code execution. http://www.microsoft.com/technet/

security/advisory/975497.mspx, 2009.

57

58 BIBLIOGRAPHY

[11] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović. Randomized

Instruction Set Emulation. ACM Transactions on Information and System Se­

curity, 8(1), 2005.

[12] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi.

Randomized Instruction Set Emulation to Disrupt Binary Code Injection At­

tacks. In ACM Conference on Computer and Communications Security (CCS),

2003.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient

Approach to Combat a Board Range of Memory Error Exploits. In USENIX

Security Symposium, 2003.

[14] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis. On the

General Applicability of Instruction­Set Randomization. IEEE Transactions on

Dependable Secure Computing, 7(3), 2010.

[15] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good Instruc­

tions Go Bad: Generalizing Return­Oriented Programming to RISC. In ACM

Conference on Computer and Communications Security (CCS), 2008.

[16] P. P. Bungale and C.­K. Luk. PinOS: A Programmable Framework for Whole­

System Dynamic Instrumentation. In ACM SIGPLAN/SIGOPS Conference on

Virtual Execution Environments (VEE), 2007.

[17] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek.

Linux Kernel Vulnerabilities: State­of­the­Art Defenses and Open Problems.

In Asia­Pacific Workshop on Systems (APSys), 2011.

[18] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non­Control­Data

Attacks Are Realistic Threats. In USENIX Security Symposium, 2005.

[19] S. Christey and A. Martin. Vulnerability Type Distributions in CVE. http://

cve.mitre.org/docs/vuln-trends/vuln-trends.pdf, 2007.

[20] C. Cowan, M. Barringer, S. Beattie, G. Kroah­Hartman, M. Frantzen, and

J. Lokier. FormatGuard: Automatic Protection From printf Format String

Vulnerabilities. In USENIX Security Symposium, 2001.

BIBLIOGRAPHY 59

[21] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointguardTM: Protecting

Pointers from Buffer Overflow Vulnerabilities. In USENIX Security Symposium,

2003.

[22] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive Detection

and Prevention of Buffer­Overflow Attacks. In USENIX Security Symposium,

1998.

[23] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Information flow

Architecture for Software Security. In ACM/IEEE International Symposium on

Computer Architecture (ISCA), 2007.

[24] M. Dalton, H. Kannan, and C. Kozyrakis. Real­World Buffer Overflow Protec­

tion for Userspace & Kernelspace. In USENIX Security Symposium, 2008.

[25] D. Danchev. Managed polymorphic script obfuscation

services. http://ddanchev.blogspot.com/2009/08/

managed-polymorphic-script-obfuscation.html, 2009.

[26] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow in

c/c++. In International Conference on Software Engineering (ICSE), 2012.

[27] M. Frantzen and M. Shuey. StackGhost: Hardware Facilitated Stack Protec­

tion. In USENIX Security Symposium, 2001.

[28] Gaisler Research. Leon3 synthesizable processor. http://www.gaisler.

com.

[29] C. Giuffrida, A. Kuĳsten, and A. S. Tanenbaum. Enhanced Operating System

Security Through Efficient and Fine­grained Address Space Randomization.

In USENIX Security Symposium, 2012.

[30] J. L. Greathouse, H. Xin, Y. Luo, and T. Austin. A Case for Unlimited Watch­

points. In ACM Intrnational Conference on Architectural Support for Program­

ming Languages and Operating Systems (ASPLOS), 2012.

[31] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C. Knight,

A. Nguyen­Tuong, and J. Rowanhill. Secure and Practical Defense Against

Code­Injection Attacks using Software Dynamic Translation. In ACM SIG­

PLAN/SIGOPS Conference on Virtual Execution Environments (VEE), 2006.

60 BIBLIOGRAPHY

[32] X. Jiang, H. J. Wangz, D. Xu, and Y.­M. Wang. RandSys: Thwarting Code

Injection Attacks with System Service Interface Randomization. In IEEE Inter­

national Symposium on Reliable Distributed Systems (SRDS), 2007.

[33] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code­Injection At­

tacks With Instruction­Set Randomization. In ACM Conference on Computer

and Communications Security (CCS), 2003.

[34] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard: Lightweight

Kernel Protection Against Return­to­User Attacks. In USENIX Security Sym­

posium, 2012.

[35] K. P. Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux Journal,

1996.

[36] C.­K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2005.

[37] Nergal. The Advanced return­into­lib(c) Exploits: PaX Case Study. Phrack,

11(58), 2001.

[38] N. Nethercote and J. Seward. Valgrind: A Framework for heavyweight Dy­

namic Binary Instrumentation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2007.

[39] J. Oberheide, M. Bailey, and F. Jahanian. PolyPack: An Automated Online

Packing Service for Optimal Antivirus Evasion. In USENIX Workshop on Of­

fensive Technologies (WOOT), 2009.

[40] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis. Asist:

architectural support for instruction set randomization. In Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security,

CCS ’13, pages 981–992, New York, NY, USA, 2013. ACM.

[41] L. D. Paulson. New Chips Stop Buffer Overflow Attacks. IEEE Computer,

37(10), 2004.

[42] PaX Tream. Homepage of PaX. http://pax.grsecurity.net/.

BIBLIOGRAPHY 61

[43] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C analysis. SRI Interna­

tional, 2009.

[44] G. Portokalidis and A. D. Keromytis. Fast and Practical Instruction­Set Ran­

domization for Commodity Systems. In Annual Computer Security Applications

Conference (ACSAC), 2010.

[45] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L.

Soffa. Retargetable and Reconfigurable Software Dynamic Translation. In

International Symposium on Code Generation and Optimization: Feedback­

Directed and Runtime Optimization (CGO), 2003.

[46] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor to Pro­

vide Lifetime Kernel Code Integrity for Commodity OSes. In ACM Symposium

on Operating Systems Principles (SOSP), 2007.

[47] S. Sethumadhavan, S. J. Stolfo, A. Keromytis, J. Yang, and D. August. The

SPARCHS Project: Hardware Support for Software Security. In SysSec Work­

shop, 2011.

[48] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return­into­libc

without Function Calls (on the x86). In ACM Conference on Computer and

Communications Security (CCS), 2007.

[49] A. Slowinska, T. Stancescu, and H. Bos. Body Armor for Binaries: Preventing

Buffer Overflows Without Recompilation. In USENIX Annual Technical Confer­

ence (ATC), 2012.

[50] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and A.­R.

Sadeghi. Just­In­Time Code Reuse: On the Effectiveness of Fine­Grained

Address Space Layout Randomization. In IEEE Symposium on Security and

Privacy, 2013.

[51] A. N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? the Effectiveness of

Instruction Set Randomization. In USENIX Security Symposium, 2005.

[52] Standard Performance Evaluation Corporation (SPEC). SPEC CINT2006

Benchmarks. http://www.spec.org/cpu2006/CINT2006.

62 BIBLIOGRAPHY

[53] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Wal­

ter. Breaking the Memory Secrecy Assumption. In ACM European Workshop

on System Security (EUROSEC), 2009.

[54] N. Tuck, B. Calder, and G. Varghese. Hardware and Binary Modification

Support for Code Pointer Protection From Buffer Overflow. In IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2004.

[55] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving Integer

Security for Systems with KINT. In USENIX Symposium on Operating System

Design and Implementation (OSDI), 2012.

[56] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary Stirring: Self­

randomizing Instruction Addresses of Legacy x86 Binary Code. In ACM Con­

ference on Computer and Communications Security (CCS), 2012.

[57] Y. Weiss and E. G. Barrantes. Known/Chosen Key Attacks against Software

Instruction Set Randomization. In Annual Computer Security Applications

Conference (ACSAC), 2006.

[58] Xilinx. Xilinx University Program XUPV5­LX110T Development Sys­

tem. http://www.xilinx.com/support/documentation/boards_

and_kits/ug347.pdf, 2011.

