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Abstract

Code injection attacks continue to pose a threat to today’s computing sys-
tems, as they exploit software vulnerabilities to inject and execute arbitrary
or malicious code. Instruction Set Randomization (ISR) is able to protect a
system against remote machine code injection attacks by randomizing the
instruction set of each process. This way, the attacker will inject invalid
code that will fail to execute on the randomized processor and thus, the
attack will fail as well. However, all the existing implementations of ISR
are based on emulators and binary instrumentation tools that (7) incur a
significant runtime performance overhead, (i7) limit the ease of deployment
of ISR, (4ii) cannot protect the underlying operating system kernel, and (iv)

are vulnerable to evasion attempts trying to bypass ISR protection.

To address these issues we propose ASIST: an architecture with hard-
ware and operating system support for ISR. We present the design and
implementation of ASIST by modifying a SPARC processor, mapping it onto
an FPGA board and finally running our modified Linux kernel to support
the new features. The operating system loads the randomization key of
each running process into a newly defined register, and the modified pro-
cessor decodes the process’s instructions with this key before execution.
Moreover, ASIST protects the system against attacks that exploit kernel
vulnerabilities to run arbitrary code with elevated privileges, by using a

separate randomization key for the operating system.

iii



We show that ASIST transparently protects all applications and the op-
erating system kernel from machine code injection attacks with less than

1.5% runtime overhead, while only requiring 0.7% additional hardware.

Supervisor: Professor Evangelos Markatos



[TepiAnyn

Ot emBéoeilg epBoAIOU KOO1KA ouvexi{ouv Katl amoteAouv amneldr] yua td
onpePVA UMOAOYIOTIKA OUCTHHATA, £PO0OV EKPETAAEUOVIE aduvaplieg Tou Ao-
YIOHU1KOU QOTE va KAtapEPouV va £106AA0UV 010 ATIOPAKPUOHEVO CUCTN A KAl
va ekteAécouv apgiBoldo 1) kakoBoudo kwdika. H texvikn 1ng tuxalonoinong
TOU OUVOAOU TOU eVIOA®V Tou enegepyaotr) (ISR) éxet ) duvatdunua va mpo-
OTATEWPEL £€va OUCTNHA EVAVILA OE ATIOPAKPUCHEVEG ETTIOE0E1S EPIBOATI0U KOS 1K
TUXA10TIOIOVIAS TO OUVOAO T®V eVIOA®V g Kabe Siepyaociag. Me autov tov
TPOIT0, 0 £PBOAII0G KWO1KAG TOU et evoU Ja ATIOTUXEL va EKTEAEOTEL OTOV
TUXAL0TTOINPEVO EMECEPYAOTH] TOU Anopakpuopévou ouotfatog. Ilapodaura,
eve 1 teXViKY ISR eival 61adebopévn, 6Aeg o1 UTIAPXOUOCEG UAOIOOEIS NG
Baoidovrat oe mpooopowtég kat dAda spyaleia ta oroia (i) srugépouv onpav-
TKkn peioon omv anddoon tou ene§epyaoty), (ii) meplopidouv v eukodia
avAIudng TUXatononévou ouvoAou evioday, (iii) aduvatouv va rpootatéyouy
TOV ITUPIVA TOU AEITOUPYIKOU CUCTHHATOG, Kat (1v) efvatl erppert) otig erbéoetg

ITOU TpooTiafouv va MAPAKAPYPOUV TNV TEXVIKI).

Ia va avupetenicovpe autd ta poBAnuata nipoteivoupe 1o ASIST: pa
QPXITEKTOVIKY HE€ UOOTH P18 UAIKOU KAl AOY1OIKOU-AEITOUPYIKOU CUCTIIATOS
yld TV TUXA10TT01101] TOU GUVOAOU TRV EVIOAGV TOU enegepyaotr). [Tapabétoupe
10 0xedlaopo kat v vdoroinor tou ASIST tporonolwviag £vav eneepyaott)
SPARC tov ormoio ouvBeéoape oe pia mlaxkéta FPGA kat tpg§ape mave oe

auto AETOUPYIKO ouotnpa Linux to oroio pe ) 0£1pd TOU TPOITOIO|0aE



WOTE va urnootnpidet 1ig Katvoupyleg pag Asttoupyieg. To Aettoupyiko ouotnpa
POPTHOVEL €va KAE1S1, TO OMOI0 XPNOIOoToIEital yia Vv TUXAl0Moinon TV ev-
TOAQV NG TPEXoUoag Sadikaoiag o Evav VEO KATAX®PI T TIOU £XOUHE Opioet,
EMELTA O TUXALOTIOUPEVOS ETEEEPYAOTG AMTOKOSIKOIOEL TIG EVIOAEG NG O1-
adikaoiag pe autd to KAl mpwv v ektédeon toug. ErmutAéov, to ASIST
TIPOOTATEVEL TO CUCTNHA EVAVIIA Of €IOE0EIS TIOU EKPETAAEVOVIE aduvaplieg
TOU TUPLVA TOU AEITOUPYIKOU OUCTIHATOG Ao 10 va ektedéoouv aubaipeto
KOO1Ka pe audnuéva mpovopid, XPrnotponoioviag d1agopetikd KAe18i ya 1o
A&1toUpy1KO ouotnpa.

Zinpidoupe nwg 1o ASIST mpootatevetl 0Aeg 11§ EPAPHOYEG KAl TOV ITUPT VA
TOU AE1TOUPYIKOU OuoTHPATog arod ermbéoelg epBoAipiou Koadika pe Atyotepo
aro 1.5% peioon oty anoboon Tou TPEXOVIOG CUCTHATOG, VO ATTIAlTEl 1OVO

0.7% mapandave KUKAopatd.

Enoéning Kabnyntig: Evayyelog Mapkatog
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Introduction

Remote code injection attacks exploit software vulnerabilities to inject and
execute arbitrary malicious code, allowing the attacker to obtain full access
to the vulnerable system. There are several ways to achieve arbitrary code
execution through the exploitation of a software vulnerability. The vast ma-
jority of code injection attacks exploit vulnerabilities that allow the diversion
of normal control flow to the injected malicious code. Arbitrary code execu-
tion is also possible through the modification of non-control-data [18]. The
most commonly exploited vulnerabilities for code injection attacks are buffer
overflows [1]. Despite considerable research efforts [21,22,24,27,54], buffer

overflow vulnerabilities remain a major security threat [19]. Other software
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vulnerabilities that allow the corruption of critical data are format-string

errors [20] and integer overflows [26, 55].

Remotely exploitable vulnerabilities are continuously being discovered
in popular network applications [9, 10] and operating system kernels [5,
6,8, 17]. Thus, code injection attacks remain one of the most common
security threats [4], exposing significant challenges to current security sys-
tems. For instance, the massive outbreak of the Conficker worm in 2009
infected more than 10 million machines worldwide [43]. Like most of the
Internet worms, Conficker was based on a typical code injection attack
that exploited a vulnerability in Windows RPC [7]. Along with the con-
tinuous discovery of new remotely exploitable vulnerabilities and zero-day
attacks, the increasing complexity and sophisticated evasive methods of
attack techniques [2, 25, 39] has significantly reduced the effectiveness of

attack detection systems.

Instruction Set Randomization (ISR) [11,12,14,31,33,44] has been pro-
posed to defend against any type of code injection attack. ISR randomizes
the instruction set of a processor so that an attacker is not able to know
the processor’s “language” to inject meaningful code. Therefore, any in-
jected code will fail to accomplish the desirable malicious behavior, prob-
ably resulting in invalid instructions. To prevent successful machine code
injections, ISR techniques encrypt the instructions of a program that may
contain vulnerable software with a program-specific key. This key actually
defines the valid instruction set for this specific program. The processor de-
crypts at runtime every instruction of the respective process with the same
key. Only the correctly encrypted instructions will lead to the intended code
execution after decryption. Any injected code that is not encrypted with the

correct key will result in irrelevant or invalid instructions.

Existing ISR implementations use binary transformation tools, such as

objcopy, to encrypt the programs. For runtime decryption they use em-



ulators [14, 33], like Bochs [35], and Valgrind [38], software dynamic
translation tools [31], like Strata [45], or dynamic binary instrumenta-
tion tools [11, 12, 31, 44]. like Valgrind [38] and PIN [36]. However,
the existing ISR implementations have several limitations: (i) They incur a
significant runtime performance overhead due to the software emulator or
instrumentation tool used for decryption. This overhead is prohibitive for a
wide adoption of such techniques. (ii) Deployment is limited by the neces-
sity of several tools, like emulators, and manual encryption of the programs
that are protected with ISR. (i¢i) Existing implementations are vulnerable
to code injection attacks into the underlying emulator or instrumentation
tools. More importantly, they do not protect systems against attacks tar-
geting remotely exploitable kernel vulnerabilities [5, 6, 8, 17], which are be-
coming an increasingly attractive target for attackers. Exploiting a kernel
vulnerability may also allow for running user-level code with elevated ker-
nel privileges [34]. (iv) Most ISR implementations are vulnerable to evasion

attacks aiming to guess the encryption key and bypass ISR protection [51].

To address these issues we propose ASIST: a hardware/software scheme
to support ISR on top of an unmodified ISA. Researchers have proposed
hardware extensions to enhance security in the past [24, 30,47, 54] includ-
ing ISR [47], in the past. We advocate that hardware support for ISR is
essential to guard against code injection attacks, at both user- and kernel-

level, without incurring significant performance penalty at runtime.

ASIST uses distinct per-process keys and another key for the operat-
ing system kernel’s code. To support runtime decryption at the CPU, we
propose the use of two new registers in the ASIST-enabled processor: the
usrkey and oskey registers, which contain the user- and kernel-level key
of the running process. These registers are memory mapped and they are
only accessible by the operating system via the privileged instructions sta

and lda that store/load word to/from alternate space; our implementation
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for the SPARC architecture maps these registers into a new Address Space
Identifier (ASI). The operating system is responsible for reading or generat-
ing the key of each program at load time, and associate it with the respective
process. It is also responsible to store at the usrkey register the key of the
next process scheduled for execution at a context switch. Whenever a trap
to kernel is called, the CPU enters supervisor mode and the value of the
oskey register is used to decrypt instructions. When the CPU is not in

supervisor mode, it decrypts each instruction using the usrikey register.

We explore two possible choices for implementing the decryption unit at
the instruction fetch pipeline of the modified processor. We also implement
two different encryption algorithms, (7) XOR and (ii) Transposition, and
use different key sizes. Additionally, we compare two alternative techniques
for encrypting the executable code: (i) statically, by adding a new section in
ELF that contains the key and encrypting all code sections with this key us-
ing a binary transformation tool, and (ii) dynamically, by generating a ran-
dom key at load time and encrypting with this key all the memory mapped
pages that contain code at the page fault handler. The dynamic encryption
approach can support dynamically linked shared libraries, whereas static
encryption requires statically linked binaries. We discuss and evaluate the
advantages of each approach in terms of security and performance. Our
modified processor can also encrypt the return address at each function
call and decrypt it before returning to caller. In this way, ASIST protects

the system from any stack-based attack targeting the return address.

To demonstrate the feasibility of our approach we present the prototype
implementation of ASIST by modifying the Leon3 SPARC V8 processor [3], a
32-bit open-source synthesizable processor [28]. We mapped the modified
processor to a Xilinx XUPV5 ML509 FPGA board [58]. We also modified
the Linux kernel 3.8 to support the implemented hardware features for ISR

and evaluate our prototype. Our experimental evaluation results show that
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ASIST is able to prevent code injection attacks and buffer overflow exploits,
which succeed on the vanilla system, practically without any performance
overhead, while adding less than 1% of additional hardware to support
ISR with our design. Our results also indicate that the proposed dynamic
code encryption at the page fault handler does not impose any significant
overhead, due to the low page fault rate for pages with executable code.
This outcome makes our dynamic encryption approach very appealing, as
it is able to transparently encrypt any executable program, it generates a
different random key at each execution, and it supports shared libraries

with negligible overhead.

1.1 Contributions

The main contributions of this work are:

e We propose ASIST: the first hardware-based support for ISR to pre-
vent machine code injections without any performance overhead. We
demonstrate the feasibility of hardware-based support for ISR by pre-
senting the design, implementation, and experimental evaluation of
ASIST.

e We introduce a dynamic code encryption technique that transparently
encrypts pages with executable code at the page fault handler, using
a randomly generated key for each execution. We show that this
technique supports shared libraries and does not impose significant
overhead to the system.

e We explore different choices for the decryption unit in hardware, we
compare static and dynamic encryption, as well as different encryption
algorithms and key sizes in order to improve the resistance of ISR

against evasion attempts.
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e We show that a hardware-based ISR implementation, like ASIST, is
able to protect the system against attacks that exploit OS kernel vul-
nerabilities.

e We evaluated our prototype implementation with hardware-enabled
ISR and show that it is able to prevent code injection attacks with

negligible overhead.

1.2 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 explains our threat
model, gives some background information about ISR, and discusses the
limitations of current ISR implementations. In Chapter 3 we present the
design of our proposed architecture: a modified processor with ISR sup-
port, a modified operating system to support the new hardware features,
static and dynamic encryption of user-level applications, and encryption of
kernel’s code. We also discuss the different design choices for our system.
Chapter 4 gives some details of our prototype implementation and synthesis
of the new processor onto an FPGA. In Chapter 5 we experimentally evaluate
the security and performance of the prototype implementation of our pro-
posed architecture. Finally, Chapter 6 reviews prior work, and Chapter 7

concludes the thesis.



Instruction Set Randomization

In this section we describe our threat model, give some background on ISR,
and discuss the main limitations of existing implementations that empha-

size the need for hardware support.

2.1 Threat Model

2.1.1 Remote and Local Machine Code Injection Attacks.

The threat model we address in this work is the remote or local exploita-
tion of any software vulnerability that allows the diversion of the control
flow to execute arbitrary, malicious code. We address vulnerabilities in the
stack, heap, or BSS, e.g., any buffer overflow that overwrites the return

address, a function pointer, or any control data. We focus on protecting
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Runtime Self- Dynamic Kernel
ISR Implementa- Shared Hardware . ROP
Over- modifying Encryption Encryp- Protec-
tion Libraries Support Prevention
head Code tion tion
Bochs emulator [33] High No No No XOR with 32-bit key No No No
Valgrind tool [11,12] | High Yes API No XOR with random key Yes No No
Strata SDT [31] Medium No No No AES with 128-bit key No No No
EMUrand emula-
Medium No No No XOR with 32-bit key No No No
tor [14]
Pin tool [44] Medium Yes Partially No XOR with 16-bit key No No No
XOR with 32-bit-128-
ASIST Zero Yes API Yes bit key, Transposition | Yes Yes Yes
with 160-bit key

Table 2.1: Comparison of ASIST with existing ISR implementations. ASIST
provides a hardware-based implementation of ISR without runtime over-
head, it supports the necessary features of current systems and protects

against kernel vulnerabilities.

the potentially vulnerable systems against any type of machine code injec-
tion attacks. In a typical binary code injection attack, the attacker sends
a malicious input that exploits a memory corruption vulnerability on the
victim’s computer, which permits remote execution of arbitrary code and
even complete takeover of the system. This code is usually supplied by the
attacker as a part of malicious input, and the control flow is driven at this

input.

2.1.2 Kernel vulnerabilities

Remotely exploitable vulnerabilities on the operating system kernel [5, 6, 8,
17] are becoming an increasingly attractive target for attackers. Our threat
model includes code injection attacks based on kernel vulnerabilities. We
propose an architecture that is capable of protecting the operating system
kernel as well. We also address attacks that use a kernel vulnerability to run

user-level codei, return-to-user attacks, with elevated kernel privileges [34].
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2.1.3 Return-to-libc and ROP attacks.

Instead of injecting new code into a vulnerable program, an attacker can
execute existing code upon changing the control flow of a vulnerable system:
re-direct the execution to existing library functions, attacks typically known
as return-to-libc attacks [37], or use existing instruction sequences ending
with a ret instruction (called gadgets) to implement the attack, a technique
known as return-oriented programming (ROP) [15,48]. Although ISR protects
a system against any type of code injection attacks, its threat model does
not address return-to-libc and ROP attacks that use existing code to harm
or takeover a system. Existing implementations of ISR follow this threat
model so they do not aim to protect the system from return-to-libc attacks.
However, due to the rise of such attacks, we aim to protect systems from

return-to-libc attacks using the same hardware.
2.1.4 Key Guessing Attacks.

Existing ISR implementations are vulnerable to key guessing or key stealing
attacks [51,57]. This way, sophisticated attackers may be able to bypass
the ISR protection mechanism, by guessing the key and then injecting and
executing code that is correctly encoded with this key. In this work, we
aim to design and implement ISR in a way that it will be very difficult for

attackers to guess or infer the code randomization key.

2.2 Defense with ISR

ISR protects a system against any native code injection attacks. To accom-
plish this, ISR uses per-process randomized instruction sets. This way, the
attacker cannot inject any meaningful code into the memory of the vulner-
able program. The injected code will not perform the intended malicious
behavior and will probably crash after just a few instructions [11]. To apply
the ISR idea, existing implementations first encrypt the binary code of each

program with the program’s secret key before it is loaded for execution.
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The program’s key defines the mapping of the encrypted instructions to the
real instructions supported by the CPU. Then, at runtime, the randomized
processor decrypts every instruction with the proper program’s key before
execution. Any injected instruction sequences that have not been correctly
encrypted will result in irrelevant or invalid instructions after the obligatory
decryption. On the other hand, correctly encrypted code will be decrypted

and executed normally.

2.3 Limitations of Existing Implementations

2.3.1 Existing Implementations

Existing ISR Implementations [11, 12, 14, 31, 33, 44] use binary transfor-
mation tools, such as objcopy, to encrypt the code of user-level programs
that will be protected. For runtime decryption they use emulators [35] or
dynamic binary instrumentation tools [36, 38,45]. In Table 2.1 we list and

compare all the existing ISR implementations.

Kc et al. [33] implemented ISR by modifying the Bochs emulator [35]
to decrypt at runtime the code of statically encrypted programs, using XOR
with a 32-bit key in their prototype. The use of an emulator results in
significant slowdown, up to 290 times slower execution on CPU intensive
applications while this system does not support shared libraries and self-
modifying code. Barrantes et al. [11, 12] use Valgrind [38] to decrypt
applications’ code, which is encrypted with XOR and a random key equal
to the program’s length when applications are loaded into Valgrind. This
prototype supports shared libraries by copying each randomized library per
process, and offers an API for self-modifying code. However, the perfor-
mance overhead with Valgrind is also very high, up to 2.9 times slower
than native execution. Hu et al. [31] implemented ISR with a software dy-
namic translation tool [45] using AES encryption with 128-bit key size to

prevent attacks trying to guess the encryption key [51]. Dynamic transla-
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tion results in lower but still significant performance overhead, that is close
to 17% on average and as high as 250%. To reduce runtime overhead, Boyd
et al. [14] proposed a selective ISR that limits the emulated and randomized
execution only to code sections that are more likely to contain a vulnerabil-
ity. Portokalidis and Keromytis [44] implemented ISR with shared libraries
support using Pin binary instrumentation tool [36]. The runtime overhead
ranges from 10% to 75% for popular applications, while it has four-times

slower execution when memory protection is applied to Pin’s code.
2.3.2 Limitations

The main limitations of the existing ISR implementations are:

1. High runtime performance overhead. All the existing implementations
of ISR have a considerable runtime overhead, which becomes sig-
nificantly higher for CPU-intensive applications. This is because all
the proposed systems use extra software to emulate or translate the
instructions before they are executed, which results to more instruc-
tions and increased execution times. We argue that the most efficient
approach is a hardware-based implementation of ISR.

2. Deployment difficulties. The need for several tools, such as emula-
tors and binary instrumentation tools, as well as the need for manual
encryption of all programs that will be protected, and the partial sup-
port for shared libraries limit the ease of deployment of ISR. On the
other hand, we aim to build a system that will be able to transparently
protect any program running on it without any modifications.

3. Cannot protect kernel vulnerabilities. None of the existing ISR proto-
type implementations is able to defend against attacks exploiting ker-
nel vulnerabilities [5,6,8,17,34]. Such attacks are getting increasingly
popular and allow attackers to run code with kernel privileges so we

would like to protect the operating system kernel as well. Moreover,
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the underlying emulators or instrumentation tools may be vulnera-
ble to buffer overflow and code injection attacks. Although Pin has
been extended with PinOS to instrument kernel’s code as well [16], it
has not been used to implement ISR support for the kernel. Even in
this case, the code of PinOS would not be protected, while the use of
a virtual machine in PinOS would impose a significant performance
overhead.

4. Cannot prevent ROP attacks. ISR cannot protect a vulnerable random-
ized program against ROP attacks [15, 48], which use existing code to
harm the system. This is because ISR was proposed to prevent code
injection attacks, not code-reuse attacks that using existing code.
Thus, the existing implementations follow the same threat model.
However, due to the rise of such attacks recently, we would like to
be able to easily extend an ISR system in order to provide defenses
against ROP attacks as well.

5. Evasion attacks by guessing the encryption key. Many of the pro-
posed ISR implementations are vulnerable to evasion attacks that try
to guess the encryption key and inject valid code into the vulnerable
system [51,57]. as they use a constant key for each program among
multiple executions. Sovarel et al. [51] demonstrate the feasibility of
an incremental attack that uses partial key guessing to reduce the
number of tries needed to find the key. Also, attackers may be able to

steal or infer the encryption key when memory secrecy breaks [53,57].

To put our work into context, we compare ASIST with other ISR im-
plementations in Table 2.1. ASIST is the only ISR implementation with
hardware support, resulting in negligible runtime overhead for any type of
applications. ASIST also supports a new dynamic code encryption approach
that allows the transparent encryption of any application with shared li-

braries. To defend against attempts to guess or steal the encryption key,
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ASIST (i) stores the encryption key in a hardware register accessible only
by the kernel through privileged instructions, and avoids storing the key in
process’s memory, (i) generates a new random key at each execution of the
same program when dynamic encryption is used, (iii) supports large key
sizes up to 128-bit, and (iv) besides XOR and transposition (already imple-
mented), it supports more secure encryption algorithms in case of memory
disclosure. Moreover, ASIST prevents the execution of injected code at the
kernel, e.g.due to a kernel vulnerability, by using separate keys for user-
level programs and kernel’s code. Finally, ASIST is able to prevent ROP
attacks targeting the return address by encrypting the return address in

the modified processor.
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CHAPTER 2. INSTRUCTION SET RANDOMIZATION



ASIST Architecture

We now describe the design of the ASIST architecture in hardware and

operating system, as well as the approach we use on code encryption.

3.1 Architecture Overview

Our architecture spans hardware, operating system and user space (see
Figure 3.1), to support hardware-assisted ISR. ASIST supports two alter-
native ways of code encryption: static and dynamic. In static encryption,
the key is pre-defined and exists within the executable file, while all code
sections are already encrypted with this key. In case of dynamic encryption,
the executable file is unmodified and the key is decided randomly by the re-
spective loader of the operating system at the beginning of each execution.

The code sections are encrypted dynamically at runtime whenever a code

15
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Figure 3.1: ASIST architecture. The operating system reads the key from the

]

ELF binary (static encryption) or randomly generates a new key (dynamic
encryption), saves the key in the process table, and stores the key of the
running process in the usrkey register. using the sta instruction. The
processor decrypts each instruction with usrkey or oskey register, according
to the supervisorbit. The decryption fits into the pipeline before instructions
are fetched and stored in the instruction cache, without spending an extra

cycle.
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page is requested from file system and before this page gets mapped to the

process’s virtual address space.

The processor has been extended with two new registers: usrkey and
oskey, which store the keys of the running user-level process and operating
system kernel’s code respectively. The operating system keeps the key of
each process in a respective field in the process table, and stores the key of
the next process that is scheduled for execution in the usrkey register using
the sta privileged SPARC instruction. Moreover, the processor is modified
to decrypt each instruction before the instruction fetch cycle, using one of
the above two registers as a key, according to the supervisor bit. In the

following of this section we describe this design in more detail.

3.2 Encryption

We first describe the approaches we follow for the encryption of an exe-
cutable program. We support two possible options for encrypting an exe-
cutable program: static and dynamic encryption. In static encryption, the
program is encrypted before each execution with a pre-defined key. using
a modified objcopy binary transformation tool. In dynamic encryption,
a key is randomly generated at the binary loader, and all code pages are
encrypted with this key at the page fault handler before they are mapped to

the process’s address space.

The main advantage of static code encryption is that it has no runtime
overhead for code encryption. However, this approach has several draw-
backs. First, the same key is used for each execution, which makes it
susceptible to brute force attacks trying to guess this key. Second, it needs
to manually run the encryption program once per each executable file be-
fore running. Third, static encryption does not support shared libraries; all
programs must be statically linked with all necessary libraries. In contrast,

dynamic encryption has a number of advantages: it generates a random key
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ELF file before the encryption ELF file after the encryption

ELF header ELF header IO v —
—” p2align 2 ’
Program header table Program header table T ﬂ,nag'?;'. of # name size
- Jlong 3f - 2f # desc size
init .note.asist long 0x2 # type
- 0: .asciz "ASIST" # name
.init T 1: .p2align 2
S 2: .long 0x01234567 # desc (key)
lext ~~. |3: p2align 2
dext
fini
rodata fini
.rodata .
|| New section
data || Encrypted section
data
.bss
bss
Section header table
Section header table

Figure 3.2: The ELF format of a statically encrypted executable file. The key
is stored in a new note section inside the ELF file, and all the code sections

are encrypted with this key.

at each execution so it cannot be easily guessed, it encrypts all executables
transparently without the need to run an encryption program, and it is able
to support shared libraries. The drawback of dynamic encryption is a po-
tential runtime overhead to encrypt a code page when it is loaded from the
file system to memory at a code page fault. In Chapter 5 we experimentally
evaluate this overhead and show that due to the low number of code page

faults, dynamic encryption is very efficient.
3.2.1 Static Binary Encryption

To statically encrypt an ELF executable we extended objcopy with a new
flag (———encrypt—code). The encryption key can be provided by the user,
else it is randomly chosen by the tool. Figure 3.2 shows the modifications
of a statically encrypted ELF executable file. We add a new note section

(.note.asist) inside the encrypted ELF file that contains the program’s
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encryption key. We also changed the ELF binary loader in the Linux kernel
to read the note section from the ELF, get the key, and store it in a new
field (key) of the current process i.e., the process that called the execve ()
system call to load this binary file. The existence of the .note.asist
section indicates that the file has been statically encrypted with the given
key. In this mode of operation we set a new field per process (asist_mode)
to static. The key is stored in the process table and is used by the kernel
to update the usrkey hardware register each time this process is sched-
uled for execution, so that the modified processor will properly decrypt its

instructions.

Our static encryption tool also finds and encrypts all the code sections in
ELF. Therefore, all needed libraries must be statically linked, to be properly
encrypted. Moreover, it is important to completely separate code from data
into different sections during the creation of the original ELF by the linker.
This is because the encryption of any data, which are not decrypted by the
modified processor, will probably disrupt the program execution. Fortu-
nately, many linkers are configured this way. Similarly, compiler optimiza-
tions like jump tables, which are used to perform faster switch statements

with indirect jumps, should be also moved to a separate, non-code section.

To address the issue of using the same key at all executions, with static
encryption, which may facilitate a key guessing attack, one approach could
be to re-encrypt the binary after a process crash. Another approach could
be to encrypt the original binary at the user-level part of execve (), by
randomly generating a new key and copying the binary into an encrypted
one using the same approach we described above, meaning adding a note
section with the new key and encrypting the code sections with this key
in the new binary. This approach will also work only with statically linked
libraries. However, we do not recommend this approach due to the extra

time needed to copy and encrypt the entire binary at load time, especially for
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large binaries that are also statically linked with large libraries. Encrypting
the entire binary is probably an unnecessary overhead, as many parts of
the code that will be encrypted are unlikely to be actually executed. Note
that for this reason the binary loaders do not read the entire binary from
disk to load into memory; they usually memory map the binary file to the

process’s virtual address space and read code pages from disk as needed.
3.2.2 Dynamic Code Encryption

We now introduce a new technique to dynamically encrypt a program’s code
before it is loaded into the process’s memory. This approach is based on
the fact that every page with executable code will be loaded from disk (or
buffer cache) to the process’s address space the first time it is accessed by
the program through a page fault. Thus, we decided to perform the code
encryption at this point. This way, ASIST encrypts only the code pages that
are actually used by the program at each execution.

First, the ELF binary loader is modified to randomly generate a new key,
which is stored into the process table as a record of the current process. It
also sets the asist_mode field of the current process to dynamic in order to
distinguish processes running a statically encrypted binary from processes
using dynamic encryption. The code encryption is performed by the page
fault handler at a text page fault, i.e., on a page containing executable code,
if the process that is responsible for the page fault uses dynamic encryption
according to asist_mode. Then, a new anonymous page is allocated, and
the code page fetched from disk (or buffer cache) is encrypted and copied
on this page using the process’s encryption key. The new page is finally
mapped to the process’s address space. so the encrypted code is found at
the address requested by the program.

We allocate an anonymous page, i.e., a page that is not backed by a file,
and copy the encrypted code on this page, so that the changes due to the

code encryption will not be stored at the original binary file. This technique,
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encryption aside, is similar to copy-on-write technique. Although processes
running the same code could share the respective code pages in physical
memory, we have a separate copy of each page with executable code for
each process, as they have different keys and so different representations
of the same code in memory. This may result in a small memory overhead,
but it is necessary in order to use a different key per process and achieve
better isolation. This memory overhead could be avoided if all processes
running the same code use the same key, which enables an effective shar-
ing of encrypted code pages, in expense though of weaker security against
key guessing and other attacks that may compromise the key. In our imple-
mentation, we choose to use a different key per process and a small memory

overhead.

In practice, the memory allocated for code accounts only for a small
fraction of the total memory used by the process. Note that we can still
benefit from buffer cache, to avoid unnecessary disk accesses, as we copy

the cached page.

In order to use a different key per each process that use the dynamic
encryption mode, we also modified the fork () system call to randomly
generate a new key for the child process. When the modified fork () copies
the parent process’s page table, it omits copying its last layer so that the
child’s code pages will not be mapped with pages encrypted with the parent’s
key. Thus, a page fault will occur at the first code access and the code pages

will be encrypted with the child’s key.

To operate correctly, the dynamic encryption approach requires a sep-
aration of code and data per each page. For this, we modify the linker to
align the ELF headers, data, and code sections to a new page, by adding
the proper padding. In this way we can easily separate code from data and

headers at different pages.
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3.2.3 Shared Libraries

Our dynamic code encryption technique supports the use of shared libraries
without extra effort. The code of a shared library is encrypted with each
process’s key on the respective page fault when loading a page to process’s
address space, as we explained above. In this way we have a separate copy
of each shared library’s page for each process. This is necessary in order to

use a different key per process, which offers better protection and isolation.

3.2.4 Self-modifying Code

The design we presented does not support randomized programs with self-
modifying code or runtime code generation, i.e., programs that modify their
code or generate and execute new code (or change existing code). A random-
ized program that generates unencrypted code and then tries to execute it
will result in invalid instructions executing, as the unencrypted code will
be decrypted by the ASIST processor with the program’s key. Thus, the un-
encrypted code cannot be executed. To support such programs, we added
a new system call in Linux kernel: asist_encrypt (char xbuf, int
size) . This system call encrypts the code that exists in the memory region
starting from buf with size bytes length, using the current process’s key
that is stored in process table as a record of the current process. However,
the buf buffer may be vulnerable to a code injection attack, e.g., due to a
buffer overflow vulnerability in the program that may lead to the injection
of malicious code into buf. Then, this code will be correctly encrypted us-
ing asist_encrypt () and will be successfully executed. Like previous
work supporting ISR with self-modifying code [11], we believe that programs
should carefully use the asist_encrypt () system call to avoid malicious

code injection in buf.
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3.2.5 Encryption Algorithms and Key Size

We now discuss the encryption algorithms and key size we can use in ASIST.
The simplest, and probably the fastest, encryption algorithm is to XOR each
bit of the code with the respective bit of the key. Since code is much larger
than a typical key, the bits of the key are reused. To accelerate encryption
we XOR code and key as 32-bit words, instead of bits. The same algorithm
is used for decryption with the same key. However, XOR was found to
be susceptible to key guessing and key extraction attacks [51,57]. In our
prototype we implemented XOR encryption with key size that can range
from 32-bit to 128-bit, to reduce the probability of a successful guess. The
key size should be a multiple of 32-bit i.e., 32-bit, 64-bit, 96-bit, or 128-bit,

to support XOR between 32-bit words.

We also implemented transposition, which is a stronger encryption algo-
rithm than XOR. In transposition we shuffle the bits of a 32-bit word using
an 160-bit key (also called as transposition table). For each bit of the en-
crypted word we choose one of the 32 bits of the original word based on the
respective bits of the key which are used to choose one of 32 bits at each
position. The same key is used for decryption. We use the asist_mode
flag to define the encryption algorithm, key size, and encryption method
(static or dynamic). This flag exists in the process table records, and may

also exist in the .note.asist ELF section of a statically encrypted binary.

3.2.6 Tolerance to Key Guessing Attacks

To evade ISR protection, an attacker can try to guess the encryption key and
inject code encrypted with this key. The probability of a successful guess
with XOR encryption is 1/2FV 5i>¢ e g., 1/232 for 32-bit key and 1/2'?® for
128-bit key. In case of transposition, the probability of a successful guess

is 1/32!, which is much lower than the respective probability with XOR.
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Figure 3.3: ASIST hardware support for runtime instruction decryption. We
see the modified ASIST processor that decrypts every instruction with XOR
and 32-bit key before the instruction cache. The key of the user-level run-
ning process is stored in usrkey register, and operating system’s key is
stored in oskey register using the sta privileged SPARC instruction. The

supervisor bit defines which of these two keys will be used.

In case of a single guess, all the above probabilities seem good enough
to protect a system. However, if the same key is used consistently, e.g., in
case of static encryption, without re-encryption, a brute force attack can
be used to eventually guess the correct key. Sovarel et al. [51] present
an incremental attack that reduces the number of tries needed to find the
encryption key by observing system’s behavior. ASIST can address such
attacks with dynamic encryption, as a new key is generated before each ex-
ecution. Barrantes et al. [11] show that code injections in systems protected
with ISR result in the execution of at most five instructions before causing
an exception. Therefore, as dynamic encryption changes the key at each
program execution, a brute force or incremental attack cannot succeed and
the probability of success of a brute force or incremental attack remains

1/2k¢y siz¢ with XOR or 1/32! with transposition.

3.3 Hardware Support

We now discuss in more detail the hardware support provided by ASIST

for runtime instruction decryption. Figure 3.3 outlines ASIST’s hardware
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architecture for ISR support when using XOR with a 32-bit key. We added
two new registers to store the encryption keys: usrkey for the key of the
user-level running process, and oskey for the operating system’s key. These
registers are memory mapped using a new Address Space Identifier (ASI),
and are accessible only by the operating system through two privileged
SPARC instructions: sta (store word to alternate space) and lda (load word
from alternate space). We reserved a free ASI for these registers, that should
be given in these instructions. The value of the key that will be stored with
sta is first placed into a register, which is given in this instruction. Another
register given to sta contains the address, that is O for usrkey and 32 for

oskey.

The operating system sets the usrkey register using sta with the key of
the user-level process that is scheduled for execution before each context
switch. In case of a 32-bit key, a single sta instruction can store the entire

key. For larger keys, more than one sta instructions may be needed.

The ASIST processor chooses between usrkey and oskey for decrypting
instructions based on the value of the Supervisor bit. The Supervisor bit
is 0 when the processor executes user-level code, so the usrikey is used for
decryption, and it is 1 when the processor executes kernel’s code (super-
visor mode), so the oskey is selected. When a trap instruction is executed
(ta instruction in SPARC), control is transferred from user to kernel and
the Supervisor bit changes from O to 1; interrupts are treated similarly.
Thus, the next instructions will be decrypted with oskey. Control is trans-
ferred back to user from kernel with the return from trap instruction (rett in
SPARC). Then the Supervisor bit becomes O and the usrkey is used. The
context switch is performed when the operating system runs, and oskey
is used for decryption. Then the proper key of the process that will run

immediately after rett is stored at usrkey. When rett is called, and control
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returns back to user-level, the proper key of the running process is already
at the usrkey register.

The decryption unit is placed before the instruction fetch cycle, when
instructions are moved from memory to the instruction cache. We should
note that decryption fits in the processor’s pipeline and no extra cycle is
spent on it. Therefore, we expect no runtime overhead from the hardware
decryption part. We expect a slight increase on the cost and on the power
consumption due to the extra hardware we used. Also, ASIST’s hardware
architecture is backwards compatible with programs and operating system
kernels that are not encrypted. We set the default value of the key registers
to zero, which has no effect on the decryption (the default decryption algo-
rithm is XOR). Any unencrypted program with an unmodified kernel will
be normally executed on the ASIST processor, but without ISR protection.
In the rest of this section we discuss alternative choices for the placement
of the decryption unit, and support for different decryption algorithms and

key sizes.
3.3.1 Placement of the Decryption Unit

We decided to place the decryption unit as early as possible in the modi-
fied processor to avoid adding any performance overhead or spend an extra
cycle, and to avoid breaking any runtime optimizations, like branch pre-
diction, made by the processor. There are two possible choices for placing
the decryption unit: before and after the instruction cache. Figure 3.4
presents the two options. We implemented both cases and both use the
same amount of extra hardware, while none of them add any runtime over-
head. When the decryption unit is after the instruction cache, the instruc-
tions are stored encrypted in cache and the decryption takes place at each
fetch cycle. Therefore, it is on the critical path of the processor and al-
though it may not add any observable delay for simple decryption schemes,

it may add a delay for more complex decryption algorithms. Also, as the
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decryption circuit is utilized at each fetch cycle, it may result in increased
power consumption. However, this approach protects the system from a
possible code injection in the instruction cache. as the instructions remain
encrypted in the cache and they are always decrypted in the path from the
instruction cache to the fetch and execution.

On the other hand, when the decryption unit is located before the in-
struction cache, it is accessed only on instruction cache misses. Thus,
the decryption circuit is used significantly fewer times than in the previous
case. This leads to reduced power consumption for decryption, as the in-
structions that are executed many times, e.g., in loops, are found decrypted
in the instruction cache. Also, an increased delay for more complex encryp-
tion at this point will not have significant impact to the overall performance
of the processor as in the previous case. In this case, instructions are stored
unencrypted into the instruction cache, which could be vulnerable to code
injections in the instruction cache. However, to the best of our knowledge,
it is not possible to inject code in the instruction cache without passing from
the path we have modified to decrypt each instruction. For this reason, we

selected to place the decryption unit before the instruction cache.

3.3.2 Decryption Algorithms and Key Size

As we explained in Section 3.2.5, we implemented two different encryption
algorithms: XOR and transposition and consequently two respective de-
cryption algorithms in hardware. The XOR decryption with a 32-bit key
is simple to implement, as we illustrate in Figure 3.3. We also support
different key sizes for XOR, from 32 to 128 bits.

Figure 3.5 shows the implementation of XOR decryption with 128-bit
key. Since each encrypted instruction in our architecture (SPARC V8) is
a 32-bit word, we need to select the proper 32-bit part of the 128-bit key,
the same part that was used in the encryption of this instruction. Thus,

we use the two last bits of the instruction’s address (word offset) to select
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the correct 32-bit part of the 128-bit key using a multiplexer, and finally
decrypt the instruction. The same approach is used for XOR decryption

with other key sizes, multiple of 32 bits.

The implementation of decryption with transposition, as shown in Fig-
ure 3.6, requires significantly more hardware. This is because it needs 32
multiplexers, one per bit of the decrypted instruction. Each multiplexer has
32 input lines with all the 32 bits of the encrypted instruction, to choose the
proper bit that corresponds to the bit of the original (decrypted) instruction.
It also has 5 select lines that define the selection of the input bit at each
position. The 5 select lines of each multiplexer are a 5-bit part of the 160-bit
key. that is used with transposition. Besides the additional hardware, the
runtime operation of transposition is equally fast with XOR, as it does not

spend an extra cycle and does not impose any delay to the processor.

To dynamically select the decryption algorithm and key size, we have
added another memory mapped register: asist_mode. This register can be
set by the operating system to define the decryption algorithm and key size

that will be used in the hardware.

3.3.3 Return Address Encryption

The design we have presented so far is able to efficiently protect the system
against any type of binary code injection attacks, using ISR. To transpar-
ently protect a system against return-to-libc and ROP attacks [15, 48], we
extended our hardware design to provide protection of the return address
integrity without any runtime overhead. To this end, we slightly modified
the ASIST processor to encrypt the return address in each function call us-
ing the process’s key, and decrypt it just before returning to the caller. This
is similar to the XOR random canary defense [22], which uses mprotect ()
to hide the canary table from attackers. On the other hand, we take ad-

vantage of the two hardware key registers, which are not accessible by an
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Figure 3.4: Alternative choices for the placement of the decryption unit in the

ASIST-enabled processor.

attacker, to hide the encryption key. Also, our hardware implementation
does not impose any performance overhead.

In the SPARC V8 architecture, function calls are performed with the call
synthetic instruction, which is equal to jmpl func_addr,%07. Hence, call
writes the contents of the program counter (PC), i.e., the return address,
into the o7 register, and then transfers the control to the function’s address
JSunc_addr. To return from a function, the ret synthetic instruction is used,
which is equal to jmpl %i7+8,%g0 when returning from a normal subroutine
(i7 register in the callee is the same with o7 register in the caller) and jmpl
%07+8,%g0 when returning from a leaf subroutine.

To encrypt the return address on each function call in the modified
processor, we just XOR the value of the PC with the usrkey register when
a call or jmpl instruction is executed and the value of the PC is stored into
the o7 register. The return address, i.e., the i7 register in the callee, is

decrypted with usrkey when a jmpl instruction uses the i7 register (or o7 in
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case of leaf subroutine) to change the control flow (ret instrunction). Thus,

the modified processor will return to the (%i7 XOR usrkey)+8 address.

This way, the return address remains always encrypted, e.g., when it
is pushed onto the stack (window overflow), and it is always decrypted
by the jmpl instruction when returning. Hence, any modification of the
return address, e.g., though a stack-based buffer overflow or fake stack by
changing the stack base pointer, or any ret instructions executed by a ROP
exploit without the proper call, will lead to an unpredictable return address

upon decryption, as the usrikey is unknown to the attacker.

Note that jmplis also used for indirect jumps, not only for function calls
and return, so our modified jmpl decrypts the given address only when the
i7 (or 07) register is used. This is a usual convention for function calls in
SPARC and it should be obeyed, i.e., the i7 and 07 registers should not be
used for any indirect jumps besides returning from function calls. Also,
the calling conventions should be strictly obeyed: return address cannot be
changed in any legal way before returning, and ret instructions without a
preceding call instruction cannot be called without a system crash. As the
calling conventions are not always strictly obeyed in several legacy applica-
tions and libraries, the use of return address encryption may not be always
possible. Therefore, although ASIST offers this hardware feature, it may
or may not be enabled by the software. We use one bit of the asist mode
register to define whether the return address encryption will be enabled or

not.

A similar approach is implemented by Tuck et al. [54] to protect function
pointers from buffer overflows, and it could be integrated with ASIST to
thwart more types of return-to-libc attacks, besides attacks targeting the

return address.
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Figure 3.6: Decryption using transposition with 160-bit key. The imple-
mentation of transposition requires significantly more hardware, because it
needs 32 multiplexers (one per each bit of the decrypted instruction) with
all the 32 bits of the encrypted instruction as input lines in each one. Each

multiplexer uses a 5-bit part of the key as select line.
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3.4 Operating System Support

We now describe the new functionality we added in the operating system to
support the ASIST hardware features for ISR in order to protect the system
from attacks against possibly vulnerable user-level processes and kernel’s

vulnerabilities.

3.4.1 Kernel Modifications

In our prototype we modified the Linux kernel, and we ported our changes
to 2.6.21 and 3.8 kernel versions. First, we added two new fields in the
process table records (task_struct in Linux kernel): the process’s key
and the asist_mode. We initialize the process’s key to zero and asist_mode
to dynamic, so each unencrypted program will be dynamically encrypted.
We changed the binary ELF loader to read the key of the executable
ELF file, in case it is statically encrypted, or generate a random key, in
case of dynamic encryption, after calling the execve () system call. Then,
the loader stores the process’s key to the respective process table record.
We also changed the scheduler to store the key of the next process that is
scheduled to run in the usrkey register before each context switch. For this,
we added an sta instruction before the context switch to store a 32-bit key.

For larger keys, the number of sta instructions depends on key size.

To implement dynamic encryption and shared library support we mod-
ified the page fault handler. For each page fault, we first check whether
it is related to code (text page fault) and whether the process that caused
the page fault uses dynamic code encryption. If so, we allocate and map
a new anonymous page that is not backed by any file. Upon the reception
of the requested page from disk (or buffer cache), we encrypt its data with
process’s key and copy it at the same step into the newly allocated page.
Then, the new page is mapped into the process’s address space. Eventually,

this page will contain the code that will be accessed by the process.
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3.4.2 Kernel Encryption

To encrypt kernel’s code we used the same approach with static binary en-
cryption. We modified an uncompressed kernel image by (i) adding a new
note section that contains the kernel’s encryption key, and (ii) identifying
and encrypting all code sections. We had to carefully separate code from
data into different sections while building the kernel image. The oskey reg-
ister saves the key of kernel’s encrypted code. We modified the bootloader
to read and then store the kernel’s key into the oskey register with an sta
instruction, just before the control is transfered from bootloader to kernel.
Since oskey is initialized with zero, which has no effect in XOR decryption
that is also default, the unencrypted code of the bootloader can be success-
fully executed in the randomized processor.

We decided to statically encrypt the kernel’s code so as to not add any de-
lay to the boot process. Due to this, the key is decided once when the kernel
image is built and encrypted, and it cannot change without re-encryption.
Another option would be to encrypt the kernel’s code while booting, using
a new key that is randomly generated at this point. This option could add
a further delay to the boot process. However, most systems typically use a
compressed kernel image that is decompressed while booting. Thus, we can
encrypt the kernel’s code during the kernel loading stage when the image is
decompressed into memory. The routine that decompresses and loads the
kernel to memory must first generate a random key and then encrypt the

kernel’s code along with decompression.
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ASIST Prototype Implementation

In this section we describe the ASIST prototype implementation and hard-
ware synthesis using an FPGA board, We also present the results of the
hardware synthesis in terms of additional hardware needed for our proto-
type, comparing with the unmodified processor. Finally, we discuss how
the proposed system that we have implemented by modifying the SPARC
V8 Leon3 processor can be easily ported to other hardware architectures,

such as x86, and other operating systems.

4.1 Hardware Implementation

We modified Leon3 SPARC V8 processor [3], a 32-bit open-source syn-
thesizable processor [28], to implement the security features of ASIST for

hardware-based ISR support, as we described in Section 3.3. All hardware
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Synthesized Processor Flip Flops LUTs
Vanilla Leon3 9,227 16,986
XOR with 32-bit key 9,294 (0.73% increase) 17,090 (0.61% increase)
XOR with 128-bit key 9,486 (2.81% increase) 17,116 (0.77% increase)
Transposition with 160-bit key | 9,838 (6.62% increase) 18,153 (6.87% increase)

Table 4.1: Additional hardware used by ASIST. We see that ASIST adds just
0.6%-0.7% more hardware with XOR decryption using a 32-bit key, while

it adds significantly more hardware (6.6%-6.9%) when using transposition.

modifications for instruction decryption, required fewer than 100 lines of
VHDL code.

Leon3 uses a single-issue, 7-stage pipeline. Our implementation has 8
register windows, an 16 KB 2-way set associative instruction cache, and
a 16 KB 4-way set associative data cache. We synthesized and mapped
the modified ASIST processors on a Xilinx XUPV5 ML509 FPGA board [58].
The FPGA has 256 MB DDR2 SDRAM memory and the design operates at
80 MHz clock frequency. It also has several peripherals including an 100Mb

Ethernet interface.

4.2 Additional Hardware

Table 4.1 shows the results of the synthesis for three different hardware
implementations of ASIST, using XOR decryption with 32-bit and 128-bit
keys, and decryption with transposition using 160-bit key. We compare
them with the unmodified Leon3 processor as a baseline to measure the
additional hardware used by ASIST to implement ISR functionality in each
case. We see that ASIST with XOR encryption and 32-bit key adds less than
1% of additional hardware, both in terms of additional flip flops (0.73%) and
lookup tables (0.61%). When a larger key of 128 bits is used for encryption,
we observe a slight increase in the number of flip flops (2.81%) due to the

larger registers needed to store the two 128-bit keys. The implementation
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of transposition results in significantly more hardware used, both for flip
flops (6.62% increase) and lookup tables (6.87% increase). This is due to the
larger circuit used for the hardware implementation of transposition, with

32 multiplexer with 32 input lines each, as we showed in Section 3.3.2.

4.3 Kernel and Software Modifications

The resulting system is a full-featured SPARC workstation using a Linux
operating system. We modified the Linux kernel as we described in Sec-
tion 3.4. We ported our Linux kernel modifications in 2.6.21 and 3.8.0
kernel versions. Although a single kernel is able to support both static and
dynamic encryption, depending on the existence of the ASIST note section
in the ELF, in order to separately evaluate the two approaches we had three
different versions of each kernel: an unmodified one, a kernel with static
encryption support only, and a kernel version only with dynamic encryption
support.

We built a cross compilation tool chain with gcc version 4.7.2 and
uClibc version 0.9.33.2 to cross compile the Linux kernel, libraries, and
user-level applications. Thus, all programs running in our system (both
vanilla and ASIST), including vulnerable programs and benchmarks, were
cross compiled with this tool chain in another PC. We slightly modified
linker scripts to separate code and data for both static and dynamic code
encryption, and align headers, code, and data into separate pages in case of
dynamic encryption. To implement static encryption, we extended ob jcopy
with the ———-encrypt-code flag to add the new note section and encrypt
code sections. The key can be provided by the user or be randomly chosen

by the tool.

4.4 Portability to Other Systems

Our approach is easily portable to other architectures and operating sys-

tems. Regarding ASIST’s hardware extensions, implementing new registers
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that are accessible by the operating system is quite easy in most archi-
tectures, including x86. Encrypting the return address at each function
call and decrypting it before returning depends on the calling convention at
each architecture. For instance, in x86 it can be implemented by slightly
modifying call and ret instructions. In our current design, we have im-
plemented the runtime instruction decryption for RISC architectures that
use fixed-length instructions. Thus, porting the decryption functionality in
other RISC systems will be straight-forward. On the other hand, CISC ar-
chitectures such as x86 support variable-length instructions. However, our
approach can also be implemented in such architectures with minor modi-
fications. Since instructions reside in memory before they are executed, we
can simply encrypt them without the need of precise disassembly, e.g., in
blocks of 32-bits, depending on the key size. In architectures with variable-
length instructions this encryption will not be aligned at each instruction,
but this is not an issue. The memory blocks will be decrypted accordingly
by the modified processor before execution. For instance, a memory block
can be decrypted based on the byte offset of its respective memory address.
Also, since we have placed the decryption unit before the instruction cache,
decryption is performed at each word that is stored in cache, rather than
at each instruction.

We have implemented our prototype by modifying the Linux kernel.
However, the same modifications can be made in other operating systems
as well, as we change generic kernel modules such as the binary loader, the
process scheduler and context switch, and the page fault handler. These
modules exist in all modern operating systems and they can be changed
respectively to support the hardware features offered by a randomized pro-

CESSsor.



Experimental Evaluation

We mapped our prototype onto an FPGA running two versions of the Linux
kernel, 2.6.21 and 3.8, as described in Chapter 4. We used the Ethernet
adapter of the FPGA and configured the system with networking and a static
IP address. This allows for remote exploitation attempts for our security
evaluation, and for evaluating the performance of a Web server. As the
available memory on the FPGA is only 256 MB, and there is no local disk in
the system, we used NFS to mount a partition of a local PC that contains all
the cross compiled programs needed for the evaluation. To avoid measuring
NFS delays in our evaluation, we copied each executable program in the

local RAM file system before its execution.
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We evaluated the ASIST prototype that uses XOR encryption with a 32-
bit key, comparing static and dynamic encryption implementations with an
unmodified system (vanilla processor and unmodified operating system).
We observed that using a larger key or transposition instead of XOR for
encrypting instructions has the same effectiveness on preventing code in-
jection attacks and the same efficiency in terms of performance. We did
not use the return address encryption in our security and performance

evaluation.

5.1 Security Evaluation

To demonstrate the effectiveness of ASIST at preventing code injection at-
tacks exploiting user- or kernel-level vulnerabilities, we tested a representa-
tive sample of attacks shown in Table 5.1. The first six attacks target buffer
overflow vulnerabilities on user-level programs, while the last three attacks
target a NULL pointer dereference and two buffer overflow vulnerabilities of

the Linux kernel.

First, we ran a vanilla 2.6.21 kernel, which does not properly implement
a non-executable stack on SPARC. We built a custom program with a typical
stack-based buffer overflow vulnerability, and we used a large command-
line argument to inject SPARC executable code into the program’s stack,
which was successfully executed by overwriting the return address. We
then used an ASIST modified kernel without enabling the return address
encryption, and we ran a statically encrypted version of the vulnerable pro-
gram with the same argument. In this case, the program was terminated
with an illegal instruction exception, as the unencrypted injected code could
not be executed. Similarly, we ran an unencrypted version of the vulnerable
program and relied on the page fault handler for dynamic code encryption.
Again, the injected code caused an illegal instruction exception due to the

ISR.
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CVE Reference | Vulnerability Description Access Vector ‘ Location‘ Vulnerable Program

Linux kernel before 2.6.33 does
CVE-2010-1451 | not properly implement a non- | Local Stack Custom

executable stack on SPARC platform

Buffer overflow due to incorrect user- Ettercap 0.7.5.1 and
CVE-2013-0722 Remote Stack

supplied input validation earlier

Buffer overflow that allows remote

authenticated users to execute arbi- Oracle MySQL 5.1.65
CVE-2012-5611 Remote Stack

trary code via a long argument to the and MariaDB 5.3.10

GRANT FILE command

Buffer overflow that allows to execute
CVE-2002-1549 | arbitrary code via a long HTTP GET | Remote Stack Light HTTPd (lhttpd) 0.1

request

Buffer overflow that allows to execute
CVE-2002-1337 | arbitrary code via certain formatted | Remote BSS Sendmail 5.79 to 8.12.7

address fields

Buffer overflow that allows to execute

Null HTTPd Server 0.5.0
CVE-2002-1496 | arbitrary code via a negative value in | Remote Heap
and earlier

the Content-Length HTTP header

Linux kernel allows to bypass ac-

cess_ok() and overwrite arbitrary Linux kernel before
CVE-2010-4258 Local Kernel

kernel memory locations by NULL 2.6.36.2

pointer dereference to gain privileges

Buffer overflow that allows to execute

arbitrary user-level code via a “big Kernel
CVE-2009-3234 Local Linux kernel 2.6.31-rcl

size data“ to the perf_counter_open() stack

system call

Buffer overflow that allows to execute

arbitrary code by calling sendmsg() Linux kernel before
CVE-2005-2490 Local Stack

and modifying the message contents 2.6.13.1

in another thread

Table 5.1: Representative subset of code injection attacks tested with ASIST.
We see that ASIST is able to successfully prevent code injection attacks

targeting vulnerable user-level programs as well as kernel vulnerabilities.

We performed similar tests with all the other vulnerable programs: Et-
tercap, which is a packet capture tool, MariaDB database, Light HTTPd and

Null HTTPd webservers, and sendmail. These programs were cross com-
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piled with our toolchain and encrypted with our extended objcopy tool.
In all cases our remotely injected shellcode was executed successfully only
on the vanilla system, while ASIST always prevented the execution of the
injected code and resulted in illegal instruction exception.

We also tested attacks exploiting three kernel vulnerabilities with and
without ASIST. We cross compiled, modified and encrypted three different
kernel versions for each one: 2.6.21, 2.6.31-rcl and 2.6.11. When running
the vanilla kernel on the unmodified processor, the kernel exploits resulted
in the successful execution of the provided user-level code with kernel priv-
ileges. On the other hand, the encrypted kernels with ASIST resulted in
kernel panic for all the exploits, avoiding a system compromise with kernel

privileges.

5.2 Performance Evaluation

To evaluate ASIST’s performance we compare (7) vanilla Leon3 with unmod-
ified Linux kernel (Vanilla), (i7) ASIST with static encryption (ASIST-Static),
and (i7i) ASIST with dynamic code encryption (ASIST-Dynamic), when run-

ning the SPEC CPU2006 benchmark suite and two real world applications.

5.2.1 Benchmarks

We ran all the integer benchmarks from the SPEC CPU2006 suite (CINT2006) [52],
which includes several CPU-intensive applications. Figure 5.1 shows the
slowdown of each benchmark when using ASIST with static and dynamic
encryption, compared to the vanilla system. We see that both ASIST im-
plementations impose less than 1.5% slowdown in all benchmarks. For
most benchmarks, ASIST exhibits almost the same execution times as with
the unmodified system. This is due to the hardware-based instruction de-
cryption, which does not add any observable delay. Moreover, the modified
kernel performs minor extra tasks: it reads the key from the executable

file (for static encryption) or it randomly generates a new key (for dynamic
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encryption) only once per each execution, while it adds just one extra in-
struction before each context switch. We notice a slight deviation from
the vanilla execution time only for three of the benchmarks: gcc, sjeng,
and h264ref. For these benchmarks, we observe a slight slowdown of
1%-1.2% in static and 1%-1.5% in dynamic encryption. This deviation is
probably due to the different linking configurations (statically linked versus

dynamically linked shared libraries).
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Figure 5.1: Runtime overhead using the SPEC CPU2006 benchmark suite.
We see that both ASIST implementations have negligible runtime overhead

compared to the vanilla system.
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Benchmark Data page faults per second | Text page faults per second

400.perlbench 38.4964 1.97215
401.bzip2 44.3605 0.193831

403.gcc 60.3235 3.93358
429.mcef 51.7769 0.0497679
445.gobmic 25.4735 0.905984
456.hmmer 0.0546246 0.0223249
458.sjeng 71.9751 0.0676988
462.libquantum 5.18675 0.0486765
464.h264ref 3.19614 0.0333707

Table 5.2: Data and text page faults per second when running the SPEC
CPU2006 benchmarlk suite. All benchmarks have very few text page faults
per second, which explains the negligible overhead of the dynamic encryp-

tion approach.

Setup Slowdown
Vanilla 1.0
ASIST-Static 1.0026
ASIST-Dynamic 1.0035

Table 5.3: Slowdown when inserting data into an sqlite3 database. We
see that ASIST achieves very close runtime performance with the vanilla

system.

One might expect that the dynamic encryption approach would experi-
ence a considerable performance overhead due to the extra memory copy
and extra work needed to encrypt code pages at each text page fault. How-
ever, our results in Figure 5.1 indicate that dynamic encryption performs
equally well with static encryption. Thus, our proposed approach to dynam-
ically encrypt program code at the page fault handler, instead of statically
encrypt the code before program’s execution, does not seem to add any

extra overhead.
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To better understand the performance of this approach, we instru-
mented the Linux kernel to measure the data and text page faults of each
process that uses the dynamic encryption mode. Table 5.2 shows the data
and text page faults per second for each benchmark. We see that all bench-
marks have a very low rate of text page faults, and most of them experience
significantly less than one text page fault per second. Moreover, we observe
that the vast majority of page faults are for data pages, while only a small
percentage of the total page faults are related to code. Therefore, we notice a
negligible overhead with dynamic code encryption at the page fault handler
for two main reasons: (i) as we see in Table 5.2, text page faults are very
rare, and (ii) the overhead of the extra memory copy and page encryption
is significantly less that the page fault’s overhead for fetching the requested
page from disk. Note that in our setup we use a RAM file system instead
of an actual disk, so a production system may experience an even lower
overhead.

The very low page fault rate for pages that contain executable code
makes the dynamic encryption a very appealing approach, as it imposes
practically zero runtime overhead, and at the same time it supports shared

libraries and transparently generates a new key at each program execution.
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Figure 5.2: Slowdown when downloading different files from a lighttpd Web

server as a_function of the file size. We see that ASIST adds less than 1%

delay for all file sizes.

1.20 T T T T - T
Vanilla
ASIST-Static m—
1.15 } ASIST-Dynamic s -
1.10 -

Slowdown
5
on

128 256 K12 1024 2048 4096 8192
Table Insertions

Figure 5.3: Slowdown when inserting data into sqlite3 as a function of the
number of insertions. We see that ASIST experiences less than 1% slowdown

even for very small datasets.
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5.2.2 Real-world Applications

We evaluated ASIST with two real-world applications. First, we ran the
lighttpd Web server in a vanilla system and in the two versions of ASIST.
We used another machine located in the local network to repeatedly down-
load 14 files of different sizes, ranging from 1 KB to 8 MB, and we measured
the average download time for each file. Figure 5.2 shows the slowdown
of the download time as a function of the file size for each system. We
see that ASIST does not impose any considerable delay, as the download
time remains within 1% of the vanilla system for all files. We also notice
that both static and dynamic encryption implementations perform almost
equally good. We measured the page faults caused by 1ighttpd: 261 data
page faults per second, and just 0.013 text page fault per second. Thus,
the dynamic encryption did not add any runtime overhead to the server.
Moreover, we observed that most of the text page faults occur during the
first few milliseconds of the 1ighttpd execution, when the code is loaded

into memory, and then practically no text page fault occurs.

In our last benchmark we ran an sgl i te3 database in the vanilla and in
the two ASIST setups. To evaluate the performance of sglite3 we used the
C/C++ SQLite interface to implement a simple benchmark that reads a large
tab-separated file and updates a table’s entries with the respective values in
an aggressive manner. Table 5.3 shows the results of this benchmark that
measures data insertions and selections Figure 5.3 shows the slowdown
when inserting data into the database using this benchmark as a function
of the number of insertions for all setups. We observe that as in all previous
cases, ASIST imposes less than 1% slowdown on the database’s operation
for both static and dynamic approaches, even on small datasets that do not

provide ASIST with enough time to amortize the encryption overhead.
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5.3 Memory Overhead

In order to successfuly encrypt the pages containing the executable code in
the dynamic implementation we create an anonymous copy of the mapped
page (copy on write). The fact that we create a new page per code/text page
that we see in each page fault, means that resident memory of the binary
due to the text page faults will be twice as much comparing it with the
Vanilla or static implementation. Although double the memory footprint of
a running process may seem like a lot, that is not entirely true. We should
keep in mind that the text pages caused by the text page faults are not
brought into memory all at once, instead they are scattered throughout the
program’s execution, thus diminishing the memory footprint of the running

process.

Benchmark Vanilla Tata PFs | ASIST-Static Text PFs | ASIST-Dynamic Text PFs

400.perlbench 3417 3458 3416
401.bzip2 6673 6638 66375
403.gcc 8924 8868 8871
429.mcef 19768 19810 19767
445.gobmic 4849 4807 3911
456.hmmer 161 117 116
458.sjeng 44653 44691 44458
462.libquantum 2878 2921 2877
464.h264ref 9909 9866 9832

Table 5.4: We see the Text page faults generated by the operating system
when running the SPEC in all 3 implementation. As it appears from the
numbers, there is no significant difference in the number of the generated
page faults between the Vanilla implementation and the other two ASIST

implementations
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5.3.1 External Fragmentation

Due to the rules governing memory allocation, more computer memory is
sometimes allocated than is needed mostly due to data alignment. Unlike
other types of fragmentation, internal fragmentation is difficult to reclaim
and that is why programms usually live with it. External fragmentation on
the other way arises when free memory is separated into small blocks/pages
and is interspersed by allocated memory. The problem of external fragmen-
tation is mostly handled by compiler optimizations which by intermixing
data and code and thus utilizing a page size to its fullest.

As we describe in Section 3.2 our scheme requires that data and code
need to be seperated. Thus, we modified the linker in order to produce
a binary which ELF format wouldn’t allow intermixed code and data. We
expected that this modification would have an impact on the number of the
generated text and data faults. In Table 5.4 we present the number of only
the text faults generated throught the execution of the SPEC benchmarks
in all three implementations. As we can see from the Table 5.4, most of the
benchmarks have a negligible increase in the number of the generated text
faults, while in some cases, e.g.hmmer the vanilla implementation seems
to generate more text faults than both the static and dynamic implementa-

tions.
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Related Work

6.1 Instruction Set Randomization

ISR was initially introduced as a generic defense against code injections by
Kc et al. [33] and Barrantes et al. [11, 12]. To demonstrate the feasibility
of ISR, they proposed implementations in Bochs [35] and Valgrind [38]
respectively. Hu et al. [31] implemented ISR with Strata SDT tool [45] using
AES as a stronger encryption for instruction randomization. Boyd et al. [14]
proposed a selective ISR to reduce the runtime overhead. Portokalidis and
Keromytis [44] implemented ISR using Pin [36] with moderate overhead
and shared libraries support. In Section 2.3 we described in more detail all
the existing software-based ISR implementations and we compared them

with ASIST. ASIST addresses most of the limitations of the existing ISR
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approaches owing to its simple and efficient hardware and operating system

support.

6.2 Other Defenses against Code Injection Attacks

Modern hardware platforms support non-executable data protection, such
as the No eXecute (NX) bit [41]. This feature prevents stack or heap data
from being executed by marking the respective memory pages with the NX
bit, so it is capable to protect systems against code injection attacks with-
out any performance degradation. However, its effectiveness depends on
its proper use by software. For instance, an application may not set the
NX bit on all data segments. This may be due to backwards compatibility
constraints, self-modifying code, or bad programming practices.Also, the
NX bit cannot prevent return to libc attacks that use existing code to accom-
plish the attack [48]. We believe that ASIST can be used complementary to
NX bit to serve as an additional layer of security, e.g., in case that NX bit
may not be applicable or can be bypassed. For instance, many ROP exploits
use the code of mprotect () to make the pages that contain injected code
executable, and so bypassing the NX bit protection mechanism. This way,
they can execute arbitrary code to implement the attack without the need
to identify more specific gadgets, which may not be easy to find, e.g., due to
the use of Address Space Layout Randomization (ASLR). In contrast, these
exploits cannot execute any injected code in a system using ASIST, as this
code will not be correctly encrypted and will not be successfully executed in
the ASIST processor. In such cases, ISR as an inherent part of the system,
as suggested by ASIST, is able to offer another security layer by transpar-
ently protecting against any type of code injection attacks. Thus, ASIST

with ASLR provides a stronger defense against such attacks.

A recent attack demonstrated by Snow et al. [50] is also able to bypass

NX bit and ASLR protection using ROP. First, it exploits a memory disclo-
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sure to map process’s memory layout, and then it uses a disassembler to
dynamically discover gadgets that can be used for the ROP attack. ASIST
with ASLR, however, is able to prevent this attack: even if memory with exe-
cutable code leaks to the attacker, the instructions will be encrypted with a
randomly-generated key. This way, attacker will not be able to disassemble
the code and find useful gadgets. ASIST ensures that key does not reside in
process’s memory, while stronger encryption algorithms (like AES) can also
fit in our design to avoid inferring the key.

SecVisor [46] protects the kernel from code injection attacks using a
hypervisor to prevent unauthorized code execution in the kernel. While
SecVisor focuses on kernel’s code integrity, ASIST prevents the execution of
unauthorized code in both user- and kernel-level by implementing efficiently

and transparently ISR with hardware support.

6.3 Defenses against Buffer Overflow Attacks.

A significant number of research efforts have been made to provide pro-
tection against buffer overflow attacks. StackGuard [22] uses canaries to
protect the stack, while PointGuard [21] protects function pointers from
buffer overflows by encrypting all pointers while they reside in memory and
decrypts them before they are loaded into a register. Both techniques are
implemented with compiler extensions, so they require program recompi-
lation. In contrast, BinArmor [49] protects existing binaries from buffer
overflows without access to source code, by discovering the data structures

and then rewriting the binary.

6.4 Other Randomization-based Defenses.

Address Space Layout Randomization (ASLR) [42] randomizes the memory
layout of a process at runtime or at compile time to protect against code-
reuse attacks. Giuffrida et al. [29] propose an approach with address space

randomization to protect the operating system kernel. Bhatkar et al. [13]
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present randomization techniques for the addresses of the stack, heap,
dynamic libraries, routines and static data in an executable. Wartell et
al. [56] randomize the instruction addresses at each execution to address
code-reuse attacks. Jiang et al. [32] prevent code injections by randomizing

the system call numbers.

6.5 Hardware Support for Security

There are numerous research efforts aiming to provide hardware support
for security without sacrificing performance. Dalton et al. [23, 24] pro-
pose a hardware-based architecture for dynamic information flow tracking,
by extending a SPARC V8 processor with four tag bits per each register
and memory word, as well as with tag propagation and runtime checks
to defend against buffer overflows and high-level attacks. Greathouse et
al. [30] present a design for accelerating dynamic analysis techniques with
hardware support for unlimited watchpoints. These efforts significantly re-
duce the performance cost for dynamic information flow analysis, which
has a very high overhead in software-based implementations. Frantzen
and Shuey [27] implement a hardware-assisted technique for the SPARC
architecture to provide return address protection. Tuck et al. [54] propose
hardware encryption to protect function pointers from buffer overflow at-
tacks with improved performance, extending the computationally expensive
software-based pointer encryption used by pointguard [21]. Our approach
is similar to these works: we also propose hardware support for another
existing technique that prevents the execution of any code that is not au-

thorized to run in the system.



Conclusion

We have presented the design, implementation and evaluation of ASIST: a
hardware-assisted architecture for ISR support. ASIST is designed to offer
(7) improved performance, without runtime overhead, (ii) improved secu-
rity, by protecting the operating system and resisting key guessing attempts,
and (i17) transparent operation, with shared libraries support and no need
for any program modifications. Our experimental evaluation shows that
ASIST does not impose any significant overhead (less than 1.5%), while it is
able to prevent code injection attacks that exploit user-level and kernel-level
vulnerabilities. We have also proposed a new approach for dynamic code
encryption at the page fault handler when code is first loaded into process’

memory. This approach transparently encrypts unmodified binaries that
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may use shared libraries with a new key at each execution, offering pro-
tection against incremental key guessing attacks. Our results indicate that
dynamic code encryption is efficient, without adding any overhead due to
the low text page fault rate. Our work shows that ASIST can address most of
the limitations of existing software-based ISR implementations while adding
less than 0.7% additional hardware to a SPARC processor. We believe that
ASIST can be easily ported to other architectures to strengthen existing

defenses against code injection attacks.
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