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Abstract

Sparse and Low-Rank Techniques for Robust Speaker
Recognition and Missing-Feature Reconstruction

Christos Tzagkarakis
University of Crete
Department of Computer Science
Doctor of Philosophy, 201/

Speaker recognition is the process for recognizing a speaker automatically, based on specific
features extracted from the speech signal. It is divided in two distinct categories, namely, speaker
identification and speaker wverification. A broad range of applications exploits at its core the
process of speaker recognition, where usually the presence of environmental noise in the speech
signal impedes the inference of correct decisions. An additional factor, which contributes to
the difficulty of recognizing a speaker correctly, is the limited amount of available training and
evaluation data. This can be due to either a practical difficulty in obtaining a large volume
of training data, or to the need to reduce the overall computational cost by using limited, yet
reliable, evaluation data.

Focusing on overcoming the above limitations, while achieving high rates of successful recog-
nition, this dissertation is divided in two main parts. In the first part, the problem of speaker
recognition is reduced in an equivalent classification problem. To this end, we develop and
study the performance of classification techniques, which are based on the framework of sparse
representations, where we focus on the task of speaker identification by employing highly lim-
ited amounts of training and evaluation data, in environments with high levels of noise. The
main assumption that governs these techniques is that the identified speech signal, and specifi-
cally the features that have been extracted from this signal, can be expressed as a sparse linear
combination in terms of the columns of an overcomplete matrix, which is often referred in the
literature with the term “dictionary”. This dictionary is constructed appropriately from the
available training data, while the computation of the sparse linear combinations is achieved via
the solution of an optimization problem based on ¢,-norms (p = 1 or 2). The optimally esti-
mated sparse weights of the linear combinations, the so-called sparse codes, which are obtained
as the solutions of the optimization problem, are then employed for the final identification of
the speaker based on a minimum reconstruction error criterion.

Extending our previous classification method based on sparse representations, we study the

efficiency of a method for discriminative dictionary learning. This method estimates jointly the



dictionary comprising of the training data in conjunction with an appropriate linear classifier.
The advantage of this approach is that it results in sparse codes, which are characterized by
enhanced discriminative capability. For this experimental evaluation of the performance of our
proposed method, through extensive simulations, a relatively small-sized database was used.
The corresponding data were corrupted by several distinct types of environmental noise, for
a wide range of signal-to-noise ratio values. Extensive comparisons with probabilistic mod-
els, which are based on the hypothesis that the extracted speech features follow a generalized
Gaussian distribution, as well as with some of the state-of-the-art classification methods, such
as Gaussian mixture models and joint factor analysis, revealed the superiority of our proposed
method in terms of achieving higher correct recognition rates in noisy environments combined
with the use of short training and testing speech data.

The second part of this dissertation focuses on the use of low-rank techniques as a pow-
erful tool for extracting reliable features from a speech signal. More specifically, a technique
for recovering a low-rank matrix is designed, which is employed for the reconstruction of those
spectral regions of a speech signal, which are unreliable due to the presence of noise. The
discrimination of the spectral regions is achieved by means of a reliability mask, which discrim-
inates the regions characterized by the presence of noise from the regions which are dominated
by the speech signal information. The completion of the empty spectral regions is performed
based on the assumption that the logarithmic magnitude representation of a speech signal in the
time-frequency domain, obtained via the short-time Fourier transform (STFT), is of low rank.
Then, the Singular Value Thresholding (SVT) algorithm is exploited for the completion of those
regions of the STFT representation, which are considered to be unreliable. The experimental
evaluation of the proposed method reveals its power in extracting reliable features, which yield
high rates of correct speaker identification in cases of high noise levels. The comparison against
the widely used method of sparse imputation, which is based on sparse representations, reveals
the superiority of our proposed approach in terms of achieving accurate speaker identification,
especially for low levels of signal-to-noise ratios.

The above method does not take into account the existing prior knowledge with respect
to the available training data, constituting essentially an unsupervised method. Motivated by
this observation, we propose an extension of the matrix completion method, which exploits the
prior knowledge that the data matrix is low rank, as well as the knowledge that the data can be
represented efficiently in terms of a dictionary. In particular, we proposed an algorithm for joint
low-rank representation and matrix completion (J-SVT). J-SVT is superior when compared
with the standard SVT with respect to the computation of the low-rank representation of
a data matrix in terms of a given dictionary, by employing a small number of observations
from the original matrix. Through extensive simulations, we observed an improvement of the
reconstruction error achieved by the J-SVT, in contrast to the typical SVT, for several distinct

experimental scenarios.



ITepiindn

Teyvixég Apoung xow Xouning Tagng
Avaropgdotacng via Ebowotn Avayvoelon
OwiAnt? xouw Avaxataoxsuny EANToY
XapaxTNELo TIXWYV

Xpnjorog Tlaykapdkng
IHavemortnuo Kpntng
Tunpa Emotiung Troloyiotay
Ardaktopikny Aatpifn, 2014

H avayvopion opint anotelel 1) Sadixacio TG auTOMATAC oVAYVOELOTS TOU ATOUOY TOU
WAdeL, ue Bdon xdmola yapaxTneio Tixd mou e&dyovion and to ofua guvic. Xwpilletu ot dYo et
HEPOUC XATNYOPIES, Xot CUYXEXQPIUEVA GTNY TauToToinoT ot oty enaideuoy tou owinth. 'Eva
gVP0 QACHA EPUPUOYWY EYEL WS TUETVAL TOU TNY AVAYVOEIOT, OANTY, 1oy cuvidws 1 tapousia
nepParhoviixol YopifBou oto onpa PwVAE duoxohelel TNV eCaywYT cwoTWY exTiuRoewy. Evag
eMNPOoUETOC TUPAYOVTAS TOU GUUBAAEL 611 BUGXOAA CWOTASC AVAYVOPIOTC AToTEAEL 1 TEPLOPL-
ouévn moocdTNTa Bedopévey exmaideuong xou dedopévey allohdynorng. Autd pmopet vo ogelleton
elte oe AOyoug Buoxohiog andxTnomne UEYdhou byxou Bedopévwy exnaidevorng eite oty avdyxn vo
UELOOOUUE TO UTOAOYLOTIXO x00T0¢ H€ow NG YeHone Alywy, ahhd aldmio Twy, DEBOUEVKDY alloNs-
Ymomne.

Y1y npoonddetd Yog Vo aVTIIETWTICOUYE TIC TUPATdve BUoXOMES, ETITUY Y AVOVTAS UYNAE To-
00O TA EMTUYOUC AVAYVWEIoNS, 1 Tapovoa epyacio ywpeiletar oc dbo pépn. XTo TpHTO Pépog, To
TEOBANUAL TNG vy VORIONS OWANTY avdyetar o éva mpofBinua tadvéunong. Xtny xatebiuvon
QUTY| AVATTUCGOUPE X0 LEAETAUE CUPTERLPOPS TEYVIXWY Takivounong tovu Bacilovta ot unodéoelg
QPG OVATAPAC TACTG, OTOU EMXEVIPWVOUNCTE OTNV EQUPUOYT TOUTOTOINONG OWANTY UE YeHoT)
TOA) TEQLOPLOUEVRY BEdOPEVWY exntaldeuomng xat allohdynong, o nepBdAlovta ue vPnid enineda
Yoptfou. H Bacixd) unddeon nou Siéner i ouyxexpiuéveg Tey VxS efval Twg TO UG TAUTOTOMOT
ofua VAC, xat EWBIXOTERA TA YAPUXTNEIOTIXA Tou €youv edayVel and autd, umopel va ypopel
¢ ApaldS YROUULXOS GUVDUAOUOS WS TPOS EVOL UTERTAYEY Tiivaxa, 0 OTolog ouy VY avapépeTar 6T
BiBhoypagla e tov 6po Aedixd. To Aedind autd xataoxevdleton xatdhinio and ta dradéotua
DEDOUEVA EXTAUDEUONE, EVED 1) EVPECT) TWV APALWY YRUUUIXMDY AVATIQUC TACEWY ENITUY Y AVETOL UECE
¢ enthuong evée mpoPhiuatos Behtiotonoinong pe Pdon v Lp-vépua (p = 1 4 2). Ta Béhti-
OTA EXTIUOUEVA apond BN OV YROUUXDY OUVBUOOU®Y, O ETOVOUUCOUEVOL Xt opotol XWOIXES,
Tou TEoxXUTTOLY ®¢ MIGE Tou TpoPifuatoc BeATIOTONOMONS, YENOLOTOOUVTL Yo TNV TEAXT

TAUTOTOMOT) TOU OUIANTY PECK EVOC XAVOVA ENAYIC TOU CPIARATOS OVIXATAOKEVHS.



Enexteivovtag v napamdve uédodo tadivounone uéow apauhc avanapdotaorc, e&etdloupe
™Y eQopuoYT) plag uedddou Saxpttxhc expdidnong Aedixod. Me v pédodo auty| extipdtor and
x0voU 10 Aeixd mou mepEyel Tor dedopéva exnaidevong pall ue €va xatdhAnho ypouwxd tadivo-
unth. To mheovéxtnua authc g mpooéyyiong eivon 4Tt odnYel 6Ny TopAY WYY APOLMY XWBIXWY O
orofot yapaxtnelCovton and peyahltepn Soxpitixy ixavotnta. Kotd tn Sidpxeia Tng netpopatinfic
agohdynone tng anddoang authg TNg UeEB6d0L, HEGW TEOTOUOIWGEWY, YENoLoToUNXE Wa o) E-
Tixd ohyouerric Bdomn dedopévwy. Xt dedopéva autd Tpoo VXY Sidpopa eldn nepBaAlOVTIXOL
YoplBou Yo Eva eupl oUYOAO TV onuatoPopuPixol Aoyou. Ot extevel ouyxploel Tou Tpayuo-
Tonoinxay 1600 Ye mavoTixd povtéla, to onola Bactlovtat oty unoVeoT OTL TA YALAXTNELO TIXY
™S pwvhc axoloudoly yevixeupévr Gaussian xatavour|, 600 xou UE UEPIXES EX TV XOPUPALLY UE-
V60wV tagivounong, éneg poviéha uilne Gaussian xatovopdy xot X0 TapayovVTIXHAC avahuong,
avédEIZay TNV UTEPOY T TNG TROTEWVOUEVNE HEVOB0U avapopixd pe TNy eniteuln LYNAGTEPWY TOGO-
0TOY 0wo TS Tautonoinong ot nepBdihovia YopliBou o GUVBLUOUS UE TN YPNOT TERLOPIOHEVNS
TOGOTN TS DEDOUEVWY EXTAUIBELGTS ot aIONOYNONG.

To 8eltepo Y€pog TNe DATEIBHC PEAETAEL TN YPNOT TEYVIXAOV YOUNANAS TAENE we éva epyaleio Yo
NV extiunoy alldToTOV YopuxTNEo TIXOY @wvhc. Edwdtepa, epapuoleton wlo teyvixt) ovdxty-
ong mivaxa YaunAhe TEENS Yol THY OVAXOTAGKEDY) EXEIVWY TWV QUCUATIXMY TEQLOYWY TOU GHUUTOS
puvig, ot omoleg dev elvon aliomioteg edantiag g évtovrg napouciag YoplfBou. O Baywpetopog
QUTOY TRV QACUITIXGY TEPLOYWY EMLTUYYAVETHL Ye TN Porlela wag udoxos adlomotiag, 1 onolo
otaxpiver Tic meptoyég mou yapaxtneilovtal and napoucia Yoplfou oe oyéan Ue TIC TEPLOYES 0TS
oroleg emxpatel N TANPoQopia ToU GHUATOSC PwVAS. H CUUTAEEGY TWVY XEVHVY QPACUATIXOY TEPLO-
Y@V Tpaypatonoteitan Bdoet Tng undleorng 61t 1 hoyoprduiny avamapdo Taor TAATOUE EVES GHUATOS
pwvhc oTo Tedlo ypdvou-cuyvétntac uéow tou short-time petaoynuatiopol Fourier (STFT) ei-
var younhfc téénc. Kotémy, o Singular Value Thresholding (SVT) odyéprdpoc viodeteitar yia
™V cuunAewaor tv neptoywy e STFT avarnopdo taong mouv Yewpoldvtar we pn aéidmotes. H
TetpopaTix?] alOAGYNOY TNG TPOTEWVOUEVNS UEVHBOU avadelxviel TV toyd TN 0TOV UTOAOYLOUO
a€IOTIOTWY YOPUXTNEO TIXGY Ta oTtola 08N YolY GE 0pXeTd LYNAE TOGOGTA CWO TN TAVTOTONOYS
oAnT o€ TepnTwaels 6mou ta enineda Yoplfou eivan udmid. H olyxpion pe Ty evpéwe ypnotuo-
rololuev pédodo tng sparse imputation, n onola Bactletun oty und¥EoT) dpaLhC AVATUPIC TAOTS,
(PAVEROVEL TNY AVOTEQOTNTA T1)G TPOTEVOUEVTS UEVOBOU avapoptxd Ye TNy eniteudn axpiBolc tau-
TomOlNONS OWANTY, Yiot YaunAd eninedo onuatodopufixol Adyou.

H nopandve yédodog de hopfdver umddn TNV ex TwV TROTEQWY YVWGON TOU UTAPYEL OYETIXY
pe to dedopéva exmaideuong mou éyoupe oty didleot| pog, anoTEAOVTAS oustao Tixd wia uédodo
ywelc eniBiedm. Eyovtoac auth tnv tapatipnon og xivteo, tpoteivetar pla enéxtoaon tng wedddou
oupmAfpwong mivaxa 1 onolo EXYETAAAEVETOL TNV EX TWV TROTERWY YVAOOT OTL O Tivaxog dedopé-
VOV VOl YaunAne TEng, xadde xou T YVOoT OTL T OEBOUEVA PUTOPOoUY VoL avanapao Tadoly UEe
AmOTEAEOPATIXO TEOTO W¢ Tpog €va Aelixd. Edixdtepa, npoteivoupe €vay alyoprdpo and xotvol
avamapdo Taene Yoaunhotepne Taing xa cupnifiowong nivaxa (J-SVT). O J-SVT unepéyer touv xha-
ool SVT o1ov unohoyiopd Tng avamopdoTaone YoUnAoTepnS Tagng evog mivaxa SedoUEVmY 6
Tpog €va Boouévo Ae€ixd yenowponowdviag Aiyeg napatnerioeic and tov apytxod mivoxa. Méow mpo-
OOUOIWOEWY TapaTnpeeitol 1) BEATIWOY TOU GQPIAIUTOS AVAXATACXEUNS Tou emtTuY Y dvel o J-SVT oe

4 7 N4 4 Ié
avtideon e tov Tumixd SVT, yia Sidpopa metpopotind oevdpla.
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Structure of the thesis

The present thesis deals with the problem of noise robust speaker identification under limited
training and testing speech data. Our goal is twofold. First, we would like to study the ef-
ficiency of sparsity-based and discriminative dictionary learning classification methods within
the context of highly limited amount of training and testing instances under noisy environ-
ments. Second, we leverage prior knowledge that the speech log-magnitude spectrotemporal
representation is low-rank in order to apply a missing data imputation method based on matrix
completion. We aim at enhancing the reliability of speech features using a matrix recovery
technique based on singular value thresholding algorithm. An extended version of standard
matrix completion that leverages prior knowledge that the matrix is low-rank and that the data
samples can be efficiently represented by a fixed known dictionary is also proposed. The thesis

is organized as follows:

Chapter

This chapter provides the necessary background information of the speaker recognition research
area. We describe the main categories of a speaker recognition system associated with the
specific task undertaken. Besides, we analyze the basic compensation techniques adopted to
overcome the various robustness issues arisen in noisy environments. A brief overview of missing
data techniques is also given based on the use of reliability masks for producing reliable speech
features fed into a speaker recognition system as well as the core research work corresponding
to the speaker recognition problem under short training and evaluation speech data. The
chapter concludes by discussing our motivation and listing the main contributions of the this

dissertation.

Chapter 2

In this chapter, we describe a sparsity-based classification approach proposed within the context

of noise robust speaker identification using a limited amount of training and testing speech data.



We assume that each test instance can be sparsely represented as a linear combination of all the
training data (used to construct a dictionary) which have been obtained during the enrollment
phase. Specifically, we exploit the fact that the test instances coming from a certain speaker can
be expressed as a linear combination of the training instances associated with the same speaker.
The optimally estimated sparse weights of this linear combinations, dubbed as sparse codes, are
computed as the solutions of a sparse optimization problem. The estimated sparse codes are
then employed for the final identification of the speaker based on a minimum reconstruction error
criterion. This method is compared with a proposed probabilistic model, which is based on the
assumption that the extracted speech features follow a generalized Gaussian distribution, as well
as with some of the state-of-the-art speaker identification techniques revealing the superiority
of the sparsity-based approach under the constraint of using short test and training sessions in

noisy conditions.

Chapter (3

In this chapter, the second proposed method is presented for solving the noise robust speaker
identification problem using a limited amount of training and testing utterances. In particular,
we aim at learning an overcomplete dictionary, resulting in highly discriminative sparse codes,
along with a linear classifier. This estimation is performed in a joint fashion by imposing
additional constraints on the associated objective function in order to produce similar sparse
codes for those training samples belonging to the same speaker. This is in contrast to the sparse
representation classification (SRC) approach introduced in the previous chapter, which do not
treat jointly the estimation of the dictionary, the sparse codes, and the classifier parameters.
Several experiments comparing the discriminative dictionary learning technique with a UBM-
GMM system, as well as with the SRC approach show that the proposed method performs
better than the other two methods in the case of small amount of training data, and is very

robust to noisy conditions.

Chapter

This chapter describes a method for missing-feature reconstruction applied in the context of
noise robust speaker identification using short training and testing data. Reconstruction of
missing features promotes robustness in speaker recognition applications under noisy condi-
tions. The low-rank behaviour of the log-magnitude spectrotemporal speech data is exploited
in the framework of missing data imputation, where a low-rank matrix recovery approach based
on singular value thresholding (SVT) algorithm is applied to reconstruct the unreliable spectro-
graphic data due to noise corruption. Experiments on real speech data performed to compare
its performance with the recently introduced sparse imputation technique showing that the
proposed technique achieves an improved performance in terms of higher correct identification

rates especially for low signal-to-noise ratio (SNR) scenarios.

Chapter [5

In this chapter, an extension of the SVT-based low-rank matrix completion method for missing-



feature recovery is described. In particular, the approach analyzed in the previous chapter does
not take into account the existing prior knowledge with respect to the available training data,
constituting essentially an unsupervised method. This observation motivate us propose an
extension of the matrix completion method, which exploits the prior knowledge that the data
matrix is low rank, as well as the knowledge that the data can be represented efficiently in
terms of a dictionary. In particular, we propose an algorithm for joint low-rank representation
and matrix completion (J-SVT). J-SVT is superior when compared with the standard SVT
with respect to the computation of the low-rank representation of a data matrix in terms of a
fixed dictionary, by employing a small number of observations from the original data matrix.
Through several simulations, we show that the reconstruction error achieved by the J-SVT is

lower with respect to the typical SVT, for several distinct experimental scenarios.

Chapter [6]
This chapter serves as a conclusion and summarization of the main results of this thesis and

provides directions for future work.






CHAPTER

1

Introduction

Somewhere, something incredible is waiting
to be known.

CARL SAGAN (1934-1996)

Speaker recognition concerns the task of recognizing the identity of a claimed speaker. The
voice signal constitutes the core ingredient on which recognition is based. Vocal quality charac-
teristics associated with the rhythm and verbal idioms, pronunciation and intonation style, etc.
strongly affects the recognition accuracy. All these quality parameters should be jointly taken
into consideration for building a reliable practical speaker recognition system.

Speaker recognition [1L 2, [, 4] can be categorized into speaker identification and speaker
verification. Generally speaking, speaker verification is a one-to-one matching process where
one speaker’s voice is matched to one template whereas speaker identification is a one-to-many
match where the voice is compared against a specific number of voice patterns. Speaker identi-
fication 5] 6] [7, 8 [9] 10, 1] is defined as the task of determining an unknown speaker’s identity.
It can in turn be distinguished into two categories with respect to the speakers’ set structure.
Specifically, in the case of closed-set speaker identification we make the assumption that the
voice signal coming from the unknown speaker must belong to a fixed and known set of speakers.
Otherwise, we have an open-set speaker identification [12] 13} [14], where the speakers that are
not members of the set of known speakers are categorized as impostors.

In speaker verification, a speaker claims to be of a certain identity and his/her voice is used
to verify this claim. It can be considered as a binary hypothesis problem, where the goal is to
discern whether the voice of the speaker under verification comes from a person whose voice has
been enrolled into the speech corpus and as a result is known to the system from a potentially
large group of voices unknown to the system. The combination of speaker verification with
open-set speaker identification leads to a system where the speaker is initially detected as an
impostor or non-impostor, and if the speaker is positively accepted then the specific speaker’s

identity is estimated according to the speakers enrolled in the database.
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Speaker recognition can be adopted in a broad range of applications. First of all, security
constitutes the main core of diverse applications spanning from the control of entrance to
restricted areas (e.g. military facilities, governmental buildings etc.) to telephone banking
and commerce where the individual’s voice is used to ensure a secure financial transaction.
Typically, a specific password or special phrase should be uttered in order to proceed with
the whole process. A second possible application is media indexing based on voiceprints. A
multimedia collection such as online movie database and broadcast news, audio books archives
etc. can be automatically indexed by using a speaker recognition system allowing the user to
navigate and access the audiovisual material based on content. Speaker recognition can also be
applied in the context of forensics, where a sample of a suspect’s voice can be used as evidential
material within a court room or as an investigation tool during a criminal investigation.

Apart from the above, speaker recognition could play a crucial role in ambient intelligence
environments. During the last years a large interdisciplinary effort has been carried out towards
researching and studying problems in which the computer ceases to constitute a physical object
and turns into a pervasive presence in the surrounding field interacting with the user in various
ways. Imagine, for example, a typical meeting room where a simple equipment based on a
speaker recognition system could track the current speaker and take on-the-fly decisions about
changing camera orientation, automatic change of presentation slides, a personalized interaction
with the teleconference system etc. Besides, all the speaker-centric information produced during
the meeting could easily be used in an off-line mode for meeting transcription as well as for
speaker diarization, namely estimating who spoke when.

Speaker recognition methods can also be divided into text-dependent and tezt-independent
methods. The former [I5] requires the speaker to provide fixed utterances of keywords or sen-
tences, the same text being used for both training and recognition. However, in text-independent
recognition, the decision does not rely on a specific text being spoken. Thus, the speech training
data and the testing utterances of the same speaker may have completely different linguistic
and phonetic content which should be taken into account during the recognition process. Text-
independent method constitutes a more challenging task and occurs in most practical situations
compared to the text-dependent one. In the next sections we will describe the main reasons
affecting the accuracy of a speaker recognition system and we will also mention our motivation

as well as the basic contribution points of the current thesis.

1.1 Robustness in speaker recognition

The efficiency of practical speaker recognition systems in most cases is strongly affected by

the presence of noise, reverberation or other distortion factors usually associated with the
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transmission medium of the speech signal or phonetic variability issues. Let us imagine, for
example, the case of an individual located in an external environment (e.g. a sidewalk near
a busy street) talking at the mobile phone and trying to accomplish a financial transaction.
The ambient noise permeates the entire voice signal and as a result reducing the recognition
performance which in turn causes a transaction failure. As an extension of the previous example,
consider the case of channel /handset mismatch between training and testing phases, where the
training data have been recorded via a mobile phone but during the recognition process the

speaker uses a landline phone to communicate with the system.

All these and many other practical examples indicate the fact that the robustness issue
and thus the accuracy of a speaker recognition system is related with the mismatch conditions
between the training data and the available data during the recognition process often termed
as session wvariability [16, 17]. The emotional status of the speaker such anxiety, sadness,
happiness, etc. can also produce session variations. Even in the case of ambient intelligence
environments such as smart office or smart rooms where noise levels are almost negligible, some
session variations can occur because of the air conditioner operation sound or possible changes
in the speaker and acquisition terminal distance resulting in important differences in recorded

voice signals and thus leading to poor recognition performance [18].

1.1.1 Compensation methods

A plethora of techniques have been developed through the last decades to compensate for the
training /testing mismatch conditions. In particular, many approaches have been proposed in
the feature, model and match-score context in order to deal with the robustness issue. In
feature-based compensation methods the sequence of feature vectors (generally corresponding
to a short-term spectral representation) associated with a speaker’s utterance is subject to in-
variance enhancement to non-speaker vocal quality information within the input speech signal.
In specific, the Cepstral Mean Normalization (CMN) compensation methods [19], 20, 21), 22]
exploit the fact that the noise is additive in the log-spectral domain, reducing in this way the
linear filtering effects as expressed in various channel distortions. Under the noise additivity
assumption in the log-spectral domain and the fact that the channel signal does not signif-
icantly vary over the duration of an utterance, CMN aims to alleviate the distortion effects
by subtracting from each feature vector the average mean of those. CMN can be extended to
Cepstral Mean and Variance Normalization (CMVN) process [23] for equalizing the variances
of the features by dividing each feature vector by its standard deviation where a sliding window
strategy is followed. The window should be long enough to allow good estimates for the mean

and variance, yet short enough to capture time-varying properties of the channel.
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The relative spectral (RASTA) filtering approach [24] is a channel compensation method
exploiting the inherent differences between the temporal properties of distortion effects and the
temporal properties of the speech. Specifically, RASTA performs a band-pass filtering where
highly and slowly varying frequency components lying out of the filter bandwidth are eliminated
as considered to contain non-speech information. The RASTA method can be regarded in
general as an evolved version of CMN where except from the noise components those components
which evolve in such a way as to be considered that do not contain information about the speech
are also eliminated.

Another group of methods is related with the modification of the speech signal’s power
spectral representation. The source-filter speech production model is assumed towards adopt-
ing the linear prediction (LP) methodology during the feature extraction process. The pitch
information is captured within the LP residual, while the LP filter response models the vocal
tract characteristics [25]. This information discrimination reveals the vocal tract properties in
noisy conditions. Additional weighting approaches can improve robustness such as liftering [22]
which enforces the computation of low order coefficients against the noise sensitive higher order
coefficients as well as postfiltering [26] which gives emphasis on formant regions based on the
assumption that the noise effect is eliminated in these regions.

Channel variability compensation and enhanced speaker recognition accuracy can be achieved
in light of feature transformation approaches. A feature transform is computed to convert
speaker-dependent features to speaker-independent features. The application of inverse trans-
form into the noisy speech features can reduce the distortion effects [22]. In [27] the transforma-
tion parameters are utilized in the feature domain to perform maximum a-posteriori adaptation
from a channel independent model to a set of channel dependent models. Feature warping [28§]
and short-time Gaussianization [29] have also been proposed which involve modification of the
short-term feature distribution to match a target distribution. It is assumed that the clean
(cepstral) features follow a specific distribution (for example a Gaussian distribution), which is
altered by the additive noise and channel distortions. This modification is achieved by warping
the cumulative distribution function of the features in order to match the reference distribution
function.

The key idea behind model-based compensation is the modification of speaker model param-
eters instead of handling speech features per se as a solution in learning the noise characteristics
without requiring the explicit identification and labeling of different conditions. Examples of
such methods include the speaker-independent variance transformation [30] and the transforma-
tion for synthesizing supplementary speaker models for other channel conditions that have not
been presented during the enrollment phase [3I]. This can be practically achieved by building a

channel-independent multicondition background model using all training data from a collection
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of various channels, while channel-dependent models are constructed via maximum a-posteriori
adaptation and used to learn transformations between different channels. The training/testing
mismatch may be lessened by synthesizing a training channel type to a testing channel type
during the recognition process. Multicondition training data are also utilized to jointly model
the inter-speaker (i.e., the set of special characteristics distinguishing different speakers) and
channel variability under the factor analysis scheme [32] 33]. The basic idea lies in the decom-
position of the session variability component in a low-dimensional acoustic subspace.

There have also been proposed other techniques in which the focus is on noise compensation,
for example, parallel model combination [34] [35], [36], or Jacobian environmental adaptation [37,

38|, assuming the availability of a statistical model of the environment or noise.

Score-based compensation methods are mainly used in speaker verification task and the main
goal is to enforce scores from different speakers to fall into a similar range so that a common
speaker-independent threshold can be used. Before proceeding further it would be helpful to
mention that during the training process in a speaker recognition system we usually built a
(probabilistic) model for each speaker belonging to the database. When we want to recognize
the speaker we have to evaluate the likelihood of the test utterance with respect to the trained
model and thus the so-called likelihood ratio scores are produced. The most dominant score-
domain methods include handset dependent score normalization (H-norm) providing robustness
to channel variability through the construction of Gaussian mixture models (GMMs) to model
non-linear uncompensated channel effects within each of the relevant conditions [39]. During
recognition the test segment is assigned a handset type classification based on the handset
GMMs, and the speaker GMM likelihood is modified by normalization with the handset model
parameters. The offline estimation of the normalization parameters is allowed in Z-norm [40]
method, where the explicit labeling of each test utterance according to its channel type is not
required. Z-norm approach can be extended by scaling the score distribution with the variance

of the imposter scores giving rise to the T-norm [41] method.

1.1.2 Missing data methods

It is of high importance to notice that all the methods described above were developed during
a long-term research effort to deal with the problem of robustness in the context of speaker
recognition. However, it still remains quite difficult in many practical cases to successfully
apply these compensation approaches in order to achieve high accuracy recognition results.
This is mainly due to the fact that treatment of the environmental noise is hard to be induced
by the majority of the aforementioned compensation methods as opposed to the protection

against channel distortions. More specifically, feature-based compensation techniques cannot
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handle speech signals corrupted by environmental noise without the availability of matched
models although their modeling behaviour is quite robust in the case of linear channel effects.
Additionally, a limiting factor of model-based compensation methods is the requirement of
noise characteristics’ knowledge which is needed for adaptation performance. As a general
conclusion, it could be stated that in dynamic and mutable environments dominated by highly
non-stationary and transient noise it is very difficult to provide sufficient levels of robustness
by using these methods.

As a step towards building a more robust speaker recognition system in order to remove
the effects of non-stationary and transient environmental noise behaviour we could consider
the idea of using only those special feature components which are supposed to contain reliable
information about the voice signal at hand. Missing data technigques are based on this features
reliability assumptions and the effort is given on achieving enhanced robustness by enabling
the computation of reliable speech features under adverse noisy conditions. This technique
was firstly proposed in the context of computer vision and especially for recovering partially
occluded images for recognition tasks [42] [43] Missing data approaches were later extended in
order to mimic the ability of human auditory system which can efficiently process distorted
speech signals [44] [45]. In particular, consider a two-dimensional spectrotemporal representa-
tion of a noisy speech signal which can be decomposed into speech-and noise-dominated time-
frequency components. The speech-dominated components are considered reliable and can be
directly exploited for further use in a speaker recognition system [46], while other regions of the
time-frequency representation are mostly corrupted by background noise and thus labeled as
unreliable or missing spectrotemporal data. Missing data techniques are heavily based on the
missing data mask which constitutes a matrix indicating the reliable as well as the unreliable
spectrotemporal elements of a noisy speech signal. The accurate estimation of the reliability
mask is very crucial for the labeling of missing spectrographic regions.

Missing data techniques were firstly introduced in automatic speech recognition (an overview
can be found in [47]). They can be distinguished into two main categories, namely imputation
and marginalization. Imputation [48),149] 50, 51],[52] 53 54, 55] is defined as the technique of sub-
stituting missing time-frequency components with an estimate of the time-frequency component
value based on speech signal’s high degree of redundancy. In marginalization [56], [57) 58] 9],
missing spectrotemporal regions are ignored and thus, recognition is based on the reliable com-
ponents of the noisy speech signal’s time-frequency representation, where observation likelihoods
are computed by integrating over the range of possible values of the missing components. All
these methods exploit various speech signals properties to estimate the missing features, from
the data correlation expressed through statistical models to sparsity-based estimation where

the features are sparsely represented in a given dictionary.
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Recently, a lot of research has been carried out in the field of speaker recognition wherein the
missing data strategy has been followed to minimize the side effects caused due to noise presence
in speech signals. In specific, speaker identification is examined in [60, 61} 62], while in [63],
64, [65] speaker verification is studied in the light of missing feature theory for improvement
of recognition performance, while in [66] both tasks are evaluated. In all these works, the
main steps include the use of a time-frequency binary magk to distinguish the reliable from the
unreliable spetrographic data which in most cases is followed by a marginalization procedure
to compensate for the missing spectrotemporal information.

Imputation appears to be somewhat advantageous compared with marginalization especially
due to the fact that after the reconstruction of the missing time-frequency components with
clean estimates, the new (reconstructed) time-frequency features can be directly applied to any
recognition system which has been trained on undistorted speech data. Hence, we can deduce
that imputation can be characterized as a system-independent method operating as a “black
box” which can be inserted in any recognition system as a noise robustness tool. Another benefit
of imputation is that recognition accuracy is not affected at high and moderate signal-to-noise
ratio’s (SNRs) regimes. However, typical imputation methods fail to preserve the recognition
performance at lower SNR values approximately below 5 dB. This decline in performance is
primarily attributed to the fact that at low SNRs the percentage of spetrotemporal regions
assigned as missing (or unreliable) is too high in relation to the total number of time-frequency
components, and therefore it is difficult to achieve good clean estimates as a consequence of
limited reliable data. Besides, the stochastic nature of both speech and noise signal produces
heterogeneous speech-dominated and noise-dominated time-frequency regions. This complicates
the modeling of the problem which is usually based on local information and various correlation
properties of the reliable time-frequency areas.

Another reason for imputation inefficiency at low SNR values constitutes the practical relia-
bility mask estimation. Practically, reliability mask should be estimated algorithmically based
upon the noisy voice signal as well as the available speech training data. In other words, there
is an analogy between mask’s quality estimation and performance of the imputation method. In
this thesis, we are mainly interested in using an ideal (or oracle) reliability mask and thus, we
do not intend to deepen into a rigorous description of practical masks estimation algorithms.
For a more detailed overview on mask estimation methods, the interested reader is referred
to [67] and the citations therein.

The concept of sparse representation has also been exploited recently in the realm of missing
data imputation, attempting to recover missing data spectrotemporal areas. The basic assump-
tion is that the signal’s spectral representation can be expressed as a sparse linear combination

of elements from an appropriately chosen dictionary. Sparse representation techniques falls
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into the compressive sensing framework [68 69] which states that signals that are sparse or
compressible in a suitable transform basis can be recovered from a highly reduced number of
incoherent linear random projections, as opposed to the traditional signal processing paradigms,
which are dominated by the typical Shannon-Nyquist sampling theorem. In [50] 53] the solu-
tion of an ¢;-norm optimization problem is proposed towards solving missing data imputation
under the concept of sparse representation. In specific, sparse imputation —a term introduced
in [53]-states that missing speech spectra can be reconstructed by expressing them as a sparse
linear combination of dictionary elements called examples. After several experiments it was
found that sparse imputation could produce quite good performance especially for low SNR

values in the context of automatic speech recognition.

1.2 Speaker recognition using limited data

In the previous section, general information about speaker recognition systems was presented
along with how various robustness issues arise in noisy conditions can be dealt with using
compensation methods and missing data techniques. An additional key factor that also puts
at risk the performance of speaker recognition systems is the available amount of training and
testing data used during the recognition process. An obvious rule of thumb is that the more
the amount of data we have, the more accurate recognition rates will occur. However, in several
practical scenarios we could assume a limited amount of training and evaluation speech data.
One reason for that could be that it is often not feasible to have large amounts of training data
from all the speakers. Let us consider for example, the realistic scenario where the entrance of
a smart room in an ambient intelligence building E]is equipped with a microphone recording the
speech of every person who wants to access the room. Suppose now that this person appears
for the first time in front of the entrance, and would like to have constant access in the future.
Practically speaking and based on the aforementioned rule of thumb about the specific amount
of training data we would like to have as much speech data as possible from that person.
Nonetheless, it is somewhat frustrating for the speaker to be for a long period of time in front
of the microphone while recording voice data, especially when the entrance is located outside
of the building. Thus, we are interested in acquiring a limited amount of training data while
keeping the recognition rate high. Secondly, we could notice that in order to speed up the
recognition process, the evaluation data should be as short as possible. Especially in cases
where the recognition procedure is performed under constrained computational resources (e.g.

recognition performed using a mobile phone) it is a need for achieving low-latency response.

!The described scenario constitutes a practical research problem as a part of the AmlI programme
http://www.ics.forth.gr/ami/
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Some interesting works have been carried out in the field of speaker recognition under short
training and evaluation data assumptions with an emphasis given on speaker verification. In [70],
the importance of speech detection process when applied in short duration speech data is high-
lighted and the limits of both GMM and support vector machine-based system with a GMM
supervector linear kernel are examined under a maximum a posteriori (MAP) adapted mean
parameters context. It is also indicated that eigenvoice modeling could increase the perfor-
mance. A joint factor analysis (JFA) model [33] is extended in [71] such as to independently
optimize the speaker and session variability subspaces, where it is shown that for speaker ver-
ification based on short utterances it is important for the session subspace to be trained with
matched length utterances, while the speaker subspace should be trained using as much data
as possible. JFA model is also used in [72] where i-vectors are combined with normalization
techniques such as within-class covariance normalization, linear discriminant analysis, scatter
difference nuisance attribute projection and Gaussian probabilistic linear discriminant analysis.
A minimax strategy is used in [73] in order to estimate the first order statistics as a step to-
wards increasing the robustness of the extracted i-vectors for solving the problem of i-vectors’

uncertainty representation when computed using a small number of feature vectors.

A top-down bottom-up method using test token histograms is studied in [74] for the prob-
lem of in-set/out-of-set speaker recognition. The core idea is based on filling acoustic holes and
fortifying the acoustic information using the claimed speaker’s test token histogram adopting
a modified scheme of GMM model. Additionally, a dimension-decoupled version of GMM is
proposed in [75] to deal with the problem of small sets of training and evaluation voice data
examined on speaker identification task. In particular, a novel way to reduce the number of
necessary free parameters in the GMM is proposed in order to obtain more stable statistical
estimates of model parameters and likelihoods using less amount of data. An exemplar-based
sparse presentation approach is followed in [76], where sparse discriminant analysis and proba-
bilistic linear discriminant analysis techniques are used to model the sparse exemplar activations
for speaker identification. The work presented in [77] comes as an extension of [76], where a
group sparsity constraint is introduced under a spectral factorization framework in order to
limit the number of active speakers from multiple candidates and managing to narrow down

the set of speakers to be active at a time.

According to the works briefly described above it is obvious that speaker recognition based
on a small amount of training and evaluation voice data is a relatively modern research problem,
gradually begun to be studied during the last few years. However, it is clear that there is fertile
ground for further research, especially within the context of robust speaker recognition which

constitutes the main goal of the current thesis.
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1.3 Contributions of the thesis

In this study, our aim is to examine the efficiency of techniques heavily based on sparse and low-
rank assumptions targeted at noise robust text-independent speaker identification using a limited
amount of training and testing speech data. In specific, the current thesis can be distinguished
into two parts. In the first part, we examine the efficiency of classification methods based
on sparse representation of the available features. The focus is given on using short training
and testing sessions in adverse noisy conditions. In the second part, we study the problem of
recovering reliable speech features based on missing data imputation by exploiting the low-rank
behaviour of the speech spectrotemporal representation. The target application task is the same
as in the first part.

The main contributions of this thesis can be summarized as follows:

e The lack of an extensive research work of how sparsity-based classification behaves under
the noisy speaker identification task using a limited amount of training and evaluation
speech features led us to introduce the sparse representation classification (SRC) in order
to examine its robustness efficiency. Speech features are extracted from all the training
data and used to build a dictionary, where during the identification process each test
feature vector can be represented as a linear combination of a few columns of the dictionary
which belong to the same speaker. The optimally estimated sparse weights of the linear
combinations are called sparse codes and computed via a solving an optimization problem

based on ¢,-norms, where p =1 or p = 2.

e Speaker identification is treated as multiple hypothesis problem based on a statistical
modeling approach. We exploit the statistical property that the extracted mel-frequency
cepstral coefficients (MFCCs) follow a generalized Gaussian distribution (GGD). After es-
timating the GGD parameters of all the training and testing feature vectors the Kullback-
Leibler divergence (KLD) is adopted for computing the identity of the speaker.

e The raw data choice of dictionary elements in SRC context as well as the large size of
the dictionary motivate us to use a discriminative dictionary learning technique. We aim
at finding a smaller dictionary whose elements will be chosen in such a way in order
to produce highly discriminative sparse codes which would lead in better classification
results. This task is performed by jointly estimating a dictionary built by the training

data and an appropriate linear classifier.

o We take advantage of the speech signal’s low-rank property in the log-magnitude STFT
domain in order to generate reliable speech features before the identification procedure. An

ideal binary reliability mask is used to distinguish the speech-dominated spectrotemporal
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regions from the noise-dominated ones. The missing regions are completed through the
application of Singular Value Thresholding (SVT) algorithm and thus a reliable STET
spectrogram is recovered. A great advantage of the SVT-based proposed reconstruction
method is that it produces a reliable STEFT spectrogram, which means that any type of
speech features based on STFT representation can be extracted and further used as input

to any classifier.

e We propose a supervised version of SVT which estimates low-rank representation and
matrix completion in a joint fashion. SVT-based recovery algorithm acts in a unsuper-
vised manner because it does not take into consideration the existing prior knowledge
with respect to the available training data. This observation motivate us to propose an
extension of the SVT-based method, which exploits the prior knowledge that the data
matrix is low rank, as well as the knowledge that the data can be represented efficiently
in terms of a dictionary which is built using the training data. The proposed algorithm
is named J-SVT and estimates the low-rank representation of a data matrix in terms of
a given dictionary, by employing a small number of observations from the original data

matrix.
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2

Sparse representation classification for
speaker identification

No problem is too small or too trivial if we
can really do something about it.

RICHARD FEYNMAN (1918-1988)

2.1 Introduction

As it was mentioned in Chapter [I speaker recognition systems are essential in a variety of
security and commercial applications, such as information retrieval, control of financial transac-
tions, control of entrance into safe or reserved areas and buildings, efc. [3]. Speaker recognition
can be based on both the separate or combined use of several biometric features [78] (voice,
face, fingerprints, etc.). In the current study, we focus on speaker identification using only voice
patterns.

In order to correctly identify a person, each speaker in the database is usually assigned
a specific speaker model consistently describing the extracted speech features. During the
identification process, the system returns the speaker’s identity based on the closest matching
of the test utterance against all speaker models. This procedure has proven to be effective
under acoustic conditions in matched training and testing [5]. However, in practical applications
where speech signals are corrupted by noise due to either the environment in which the speaker
is present (e.g. the user is crossing a busy street) or due to the voice transmission medium
(e.g. the user is speaking through a cell-phone), robust identification is a challenging problem.
Figure 2.1]shows the structure of a typical speaker identification system. It is distinguished into
two phases. During the training (or enrollment) phase a model is built for each speaker in the
database with respect to the available speech training data. In order to identify an unknown
speaker, a speaker model is also built according to the testing data and the test speaker model
is compared to all the trained speaker models. This comparison is appropriately evaluated using
a matching rule and the result of this matching process provide us the estimated (or the most

probable) identity.
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Figure 2.1: Block diagram of a speaker identification system.

The most popular approach for speaker identification is based on Gaussian Mixture Models
(GMM) [5]. Other classifiers based on joint factor analysis (JFA) [33] and Support Vector
Machines (SVM) [7] have also been used for this task. For a more detailed description can
be found in Chapter [I] and especially Section [I.2] focus on recognition systems using a limited
amount of speech data which is one of the main goals of the current work.

Recently, the focus of the speaker recognition research community has been given both on
the study of features that are more robust in noise environments and on finding more robust
and efficient identification algorithms. Specifically, in [6] robust features based on mel-frequency
cepstral coefficients (MFCCs [79]) are proposed, in combination with a projection measure tech-
nique for speaker identification. In [80], the speech features are based on a harmonic decompo-
sition of the signal where a reliable frame weighting method is adopted for noise compensation.
In [10], the descriptors introduced are based on the AM-FM representation of the speech signal,
while in [8] the proposed features are derived from auditory filtering and cepstral analysis (in
both cases a GMM is used to model the feature space). In [9, BI] the noise robust speaker
identification problem under mismatched testing and training conditions is studied. In [9], the
identification is performed in the space of adapted GMMs where Bhattacharyya shape is used
to measure the closeness of speaker models, while in [8I] a multicondition model training and
missing feature theory is adopted to deal with the training and testing mismatch, where this
model is incorporated into a GMM for noise robust speaker identification.

An important aspect in speaker identification is that in real-time applications the system
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should be able to respond within a short time duration about the identity of the speaker.
However, when the number of the enrolled speakers in the database grows significantly, it
is quite difficult for the system to quickly assign the speaker with a specific identity. For
addressing such real-time efficiency concerns, in [82] a method based on approximating GMM
likelihood scoring with an approximated cross entropy is proposed. In [II], the GMM-based
speaker models are clustered using a k-means algorithm so as to select only a small proportion
of speaker models used in likelihood computations. These approaches achieve a more efficient
operation compared to state-of-the-art, without degrading the identification performance in

large population databases.

2.2 State-of-the-art identification methods

In the current section a description of the state-of-the-art methods used to perform speaker iden-
tification is given. For the feature extraction task it is assumed that the speech signal /utterance
is segmented into overlapping frames, where MFCC features [79] are computed during the fea-

ture extraction process.

2.2.1 Gaussian Mixture Model

Gaussian Mixture Models (GMMs) have been applied with great success in the text-independent
speaker identification problem [5]. The approach is to model the probability density function
(PDF) of the feature space of each speaker in the dataset (training phase) as a sum of Gaussian
functions, and then use the maximum a-posteriori rule to identify the speaker. A Gaussian
mixture density is a weighted sum of M multidimensional Gaussian densities, where the mixture

density can be represented as

)\i:{pfn,,uin,ilfn}, m=1,...,M, (2.1)

" mixture (prior probability), pio s

where for the i'" speaker, p is the weight of the m!
the corresponding mean vector, X! is the covariance matrix, and M is the total number of
Gaussian mixtures. Fach speaker is represented by a GMM and the corresponding model A,
whose parameters are computed via the Expectation-Maximization (EM) algorithm applied on
the training features. For the speaker identification task (testing phase), the estimated speaker

identity (speaker index) is obtained based on the maximum a-posteriori probability for a given

sequence of observations as follows

Ai)p(Ai
Sy = arg 1@{22%]7()\2-]1)) = arg max M (2.2)

1<i<s  p(V)
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In the above equation, V = {vy,...,vy|v; € F,i=1,..., N} denotes a sequence of N feature
vectors, where F denotes the feature space and S is the total number of speakers. For equally

likely speakers and since p()) is the same for all speaker models the above equation becomes
= ). 2.
Sy = arg lrgiagxsp(\/l&) (2.3)

For independent observations and using logarithms, the identification criterion becomes

N
Sy = arg nax. ; log p(vi|Ai), (2.4)

where

1 i i —1 i
p(vilA) Z d/m e = 5= i) TEL (v = ) (2.5)

d being the dimension of each feature vector.

Maximum a-posteriori adaptation

An extended version of the GMM model named universal background model-GMM (UBM-
GMM) was introduced in [39] in order diminish the drawback that the available speech samples
from specific speakers are often not enough to efficiently estimate a GMM model. The core
concept of the UBM-GMM technique is based on the fact that once a model has been trained
using speaker-independent speech training data, this can be further utilised as a prior when
training specific speaker-dependent models. This can be translated in turning the ML estimation
process into a maximum a-posteriori adaptation (MAP) one, where the prior is represented by
the UBM model. In other words, a UBM model is trained and then an estimation of the
speaker GMMs is performed by adaptation of the UBM using the individual speaker data as
the adaptation data.

In the case of speaker identification, the use of UBM-GMM is not necessary to be adopted
since each speaker’s estimated GMM model is sufficient to perform the identification in a typical
manner. However, the use of UBM-GMM might be preferable in cases of little or insufficient
speech data because it can model more accurate all the feature space across all speakers.

Given the set of feature vectors V and the UBM model Ay gy, the adapted mean new vectors
are derived (the index ¢ has been removed for the sake of simplicity in the equations below), as

a trade-off between the UBM model means p,, and the new data in the form

_ T
T
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where fi,, is the adapted mean for the m-th mixture, 7 is a weighting MAP parameter controling
the importance of training samples and the UBM during the adaptation process. The occupation
likelihood of the adaptation data corresponding to each speaker is denoted by n,,, W, is the
speaker-independent UBM mean and p,, is the mean of the observed individual speaker’s

adaptation data defined as

_ 1 wmpm(vt)
Ky = — Vi, (2.7)
Nim ; Zi\n/lzl wmpm(vt)

where pp,(v¢) is a multidimensional Gaussian density as in (2.5]).

2.2.2 Joint factor analysis

Joint factor analysis (JFA) modeling is based on estimating the speaker space representing by
the eigenvoice matrix and the session space defined by the eigensession matrix. An extension
of JFA includes the estimation of only a single space referred to as total variability space which
models both the speaker and session variabilities. The largest eigenvalues of the total variability
covariance matrix are used to built the total variability matrix which in turn represents the total

variability space. The factor analysis model is described as follows
M =m+ Tw, (2.8)

where M € RMx1 yepresents the supervector (defined as the concatenation of the means of the
GMNMs for each speaker into a high-dimensional and fixed single vector, of dimension Mdx1 with
M denoting the number of Gaussian centres and d is the dimension of the features space) of a
specific speaker or utterance, m € RM4*1 corresponds to the speaker-independent and channel-
independent supervector of the UBM model, T € RE4P defines the total variability space
and w € RP*1 is a random vector which is assumed to follow a standard normal distribution
N(0,1I). The components of w are the total factors for a given speaker or utterance, also called
as i-vectors. The matrix T is low-rank and its columns span the subspace where most of the

speaker-specific information lives, along with channel variability.

After the definition of the total variability space in (2.8)), the i-vector training is considered.
Now, let us assume that each speaker’s utterance corresponds to a sequence of feature vectors
V = {vi1,..., vy} and the total variability space T is fixed. We want to estimate the maximum

probability of a specific speaker denoted by its supervector M given the utterance.

The Baum-Welch statistics needed to estimate the i-vector for a given speech utterance are
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obtained by

N
Nm = Z P(m|vnp, Aum) (2.9)
n=1
N
Xm = Z P(m‘vna )\UBM)Vna (210)
n=1

where m = 1,..., M is the Gaussian index and Aypy denotes the UBM. The posterior probabil-
ity of the m-th mixture component generating the feature vector v,, is denoted by P(m/|vy, Aupm)-
The centralized first-order Baum-Welch statistics based on the UBM mean mixtures are also

needed for i-vector estimation

N
)Zm = Z P(m\vn, )\UBM)(Vn - ”’m)7 (211)

n=1

where p,,, is the mean of the m-th UBM mixture component.

The maximum likelihood estimation problem can be written as
maxp(M[V) = max p(VIM)p(M) = min { ~ log(p(Vim + Tw)) ~ log(p(w))}, ~ (212)
where p(w) ~ N(0,Z). The solution of problem is given by the following equation
w= T +T'S"'yW)T) ' TS (v), (2.13)

where 3 € RMdxMd i5 5 diagonal covariance matrix modeling the residual variability not cap-
tured by the total variability matrix T" which is estimated during the factor analysis training [83].

The diagonal matrix n(V) € RMdxMd

contains blocks in its main diagonal of the form n,,I with
m =1,...,M. The supervector Y(V) € RM¥1 is obtained by concatenating all the first-order

Baum-Welch statistics X, for a given utterance V.

After the total variability space and i-vectors estimation, linear discriminant analysis (LDA)
is applied to project the i-vectors into a lower dimensional space as y = ¥w. The goal in LDA
is the maximization of between-class (or inter-speaker) covariance matrix and the minimization
of the within-class (or intra-speaker) covariance matrix. The intra-speaker covariance for S

speakers is computed as

S

Ty =) (e — W) (ws —w)T (2.14)
s=1
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while the inter-speaker covariance matrix is given by

=30 - D (wi - w)(wi - w), (215)

1 &
We=—> Wi (2.16)

is the mean of i-vectors for each speaker. The speaker population mean w is the mean of the

total data set

(iw), (2.17)

with ugy = ug + us + . . . + ug denoting the total number of utterances.

The main goal of LDA is to maximize the between-speaker variation while minimizing the
within-speaker variances, by adopting the Fisher criterion. More simply, the purpose of LDA is

to maximize the Rayleigh quotient

2>

= — 2.18
'y, o (2.18)

J(¥)

This maximization computes a projection matrix ¥ composed by the best eigenvectors (those

with highest eigenvalues) of the general eigenvalue equation
g = AXyq, (2.19)

where A is a diagonal matrix of eigenvalues. The i-vectors are then submitted to the projection
matrix ¥ obtained from LDA. The dimension of the new subspace y with y = ¥w, must be

less than the number of speakers used during training.

For a speaker identification task, given the i-vector wy corresponding to speaker s and the
i-vector wy of the speaker to be identified, we are interested in testing two hypotheses, i.e., Hy
that both w, and w; share the same speaker identity or Hy that the i-vectors were generated
from different speakers. The identification score can be computed as the log-likelihood ratio for

this hypothesis test as
p(ws, wy|H)

p(ws|Ho)p(wi|Ho)

llr scores = log (2.20)
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The estimated identity of the speaker is given by the following rule
= llr s 2.21
Sy = arg max llr scores, (2.21)

where a more detailed analysis regarding the log-likelihood scoring function can be found in [84].

2.3 Proposed identification methods

In the following, we describe the proposed classification methods for the speaker identification

task under noisy conditions and using short training and testing utterances.

2.3.1 Statistical Modeling based on Generalized Gaussian Density

In this subsection, we describe a statistical approach which treats the speaker identification
problem as a multiple hypothesis problem. Following the notation of the previous subsection,
let us again assume that there are S speakers in total and the set of NV independent feature
vectors is defined as V = {vy,...,vy |v; € F,i=1,..., N}, where F denotes the feature space.
Fach speaker is assigned a hypothesis H;. The goal is to select one hypothesis out of S best
describing the test speaker’s data. Under the common assumption of equal prior probabilities
of the hypotheses, the optimal rule resulting in the minimum probability of classification error
is to select the hypothesis with the highest likelihood among the S. Thus, the correct identity
is assigned to the speaker corresponding to the hypothesis H; if

p(VIH,) > p(VIHy), i #§,¥i=1,...5. (2.22)

For solving this problem, a parametric approach is adopted where each conditional probability
density p(V|H;) is modeled by a member of a family of PDFs, denoted by p(V;8;), where 6; is
a set of model parameters. Under this assumption, the extracted features for the i*" speaker
are represented by the estimated model parameter éi, computed in the feature extraction stage.

For assigning the correct identity ¢* to the closest speaker identity:

1. compute the Kullback-Leibler divergence (KLD) between the density of the speaker to be
identified p(V; 8;) and the density p(V;8;) associated with the i*! speaker identity in the
database, Vi=1,...,8

p(v;0;)
p(v;0;)

D(p(V:8,)|lp(V:6;)) = / p(v:8,) log v (2.23)
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2. assign ¢* to the identity corresponding to the smallest value of the KLD

i* = argmin D(p(V;60;)||p(V;0;)), i=1,...,5. (2.24)

A chain rule holds for the KLD and is applied in order to combine the KLDs from multiple
data sets or dataset dimensions. This rule states that the KLD between two joint PDFs, p(V, W)

and ¢(V, W), where V, W are assumed to be independent data sets, is given by

D(p(V, W)lla(V,W)) = D(p(V)llg(V)) + Dp(W)l[g(WV)). (2.25)

The proposed method is based on fitting a Generalized Gaussian density (GGD) on the PDF
of the features set. In fact, independence among MFCC vector components is assumed, thus a

GGD for each scalar component is estimated. This task can be achieved by estimating the two

parameters of the GGD (a, /), which is defined as

. _ B (el
p(vv auﬁ) - QOZF(l/ﬁ)e 9 (226)

where I'(+) is the Gamma function, and the GGD parameters are computed using Maximum
Likelihood (ML) estimation. Substitution of (2.26) into (2.23) gives the following closed form
for the KLD between two GGDs

Blazf(l/ﬂz)> N <M)B2F(B%T1

D(pa1,51 Hpo&,ﬁz) = log <ﬁ2alr(1/ﬁ1) o - —. (2.27)

In the current work, mel-frequency coefficients are used as feature vectors. Based on the inde-
pendence assumption (2.25)) and the KLD between two GGDs (2.27)), the overall mean distance

between two feature sets Vi, Vs is as follows

U

DW1[Va) = Z ( pot 5 D22 Bk) (2.28)

k:

where d is the dimension of the feature space F (i.e., the order of the mel-cepstral coefficients).
The PDF p v B and pxi B denote the GGD of the k™ mel-frequency coefficient of the feature
set V1 and Vs, respectively.

2.3.2 Sparse Representation Classification

The approach of classification based on sparse representation is described in this subsection.

This approach was initially applied in face recognition in [85], and is first applied here for noise
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robust speaker identification under short test and training sessions.

Let us assume that the n; training samples corresponding to the feature vectors of the ¥

speaker are arranged as columns of a matrix
V,; = [VZ‘71‘V1‘72| Ce ’Vi,ni] S Rdxni (2.29)

dubbed as dictionary, where the column vector v; ; denotes the 4 d-dimensional feature vector
of the i*" speaker, and n; is the number of training feature vectors for the i*" speaker. The total

number of training feature vectors in our database equals Ny = n1 + ...+ ng.

In a speaker identification application, the goal is to infer correctly the identity of an unknown
speaker, given a new test sample (feature vector) x; € R¥1. In the following, let x; be a feature
vector, which is extracted from the i*" speaker. Then, it can be expressed as a linear combination

of the training samples associated with this speaker as follows
Xt = Ci1Vil + CiaVia + -+ Cin,Vin, = ViCi, (2.30)

where ¢; = {cm}}zl is the vector of coefficients of the representation of x; in terms of the

columns of V.

The overall training data matrix V is formed by concatenating all the training data matrices

Vii=1,...,8,

Vo= vl Vil veal o [ Veng | [vsal o [Vis i)

= [V|Vy|---|Vg] € RNt (2.31)

By combining (2.30)) and (2.31)), x; can be expressed in terms of the overall training data matrix

V., namely, x; = V¢, where
Cc = [0, ..o 0, Cils Ci,2y -+« Cings o, ..., O] S RN”XI (232)

denotes the coefficients vector, hereafter called the sparse code, whose elements are all zero
except for those associated with the i*" speaker. Notice that, the larger the number of speakers
S is, the sparser the sparse code c will be. This observation motivates us to solve the following

optimization problem for a sparse solution
¢ =argmin||c|o, s.t. x, = Vg, (2.33)
(¢

where || - ||o denotes the £y norm, which counts the number of non-zero elements in a vector.
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The optimization problem in (2.33) is an NP-hard problem. However, an approximate solution

can be obtained if the ¢y norm is substituted by the ¢; norm as follows
¢ =argmin||c||;, s.t. x; = Vg, (2.34)
C

where | - ||; denotes the ¢; norm of a vector. The efficient solution of the optimization problem
in has been studied extensively.

Given the training data matrix V and the new feature vector (test sample) x;, the follow-
ing optimization problem can be practically solved through the orthogonal matching pursuit

(OMP) [86] algorithm in order to obtain an estimate of c,
¢ = argmin ||x; — Vcl|2, s.t. [[c|jo = K, (2.35)
C

where || - ||2 denotes the ¢o norm, || - [|o is the £y (pseudo)norm, which is defined as the number
of non-zero elements of a given vector and K denotes the number of iterations of the algorithm

or, equivalently, the number of non-zero elements in €.

Algorithm 1: Orthogonal matching pursuit (OMP) algorithm

Input: x;, V, maximum iterations jyax, tolerance e
Output: estimated sparse code ¢

1 Initialization:

2 7=1

3 r; =Xy

4 Aj =

5 while j < juax or rjll, <edo
6 b = (VA§>TI‘J'

7 I = argmlin|b1|
8 Aj+1 = Aj ur*
_ vt
9 CAjpy = VAj+1Xt
10 rjy1 =Xt — ‘/AJJFICAJ.+1
11 j=7+1
12 end

The OMP algorithm has been proposed within the context of greedy sparse approximation
algorithms, where each column selection of V, also known as atom selection, is not changed.
However, the residual approximation error update is performed by projecting the current resid-
ual onto the subspace spanned by the atoms selected up to a certain iteration. Algorithm
implements the OMP sparse estimation process. In the OMP algorithm, the set of active in-
dexes A is defined and initialized as the empty set. Inner products are calculated between the

residual error and a sub-dictionary whose atom indexes are restricted to be in A€ that is the
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complement of the active set (i.e., only the inner products of unused atoms are evaluated at
each iteration). The atom achieving the larger absolute inner product value is selected and
then the set A is updated to include the chosen index as well as the residual error update is
performed by calculating the vector of coefficients cp resulted from the signal’s projection onto
the subspace spanned by the active atoms. This is achieved by computing the Moore-Penrose
pseudo-inverse V}L\ of the sub-dictionary Vj\ = (VKVA)*lVK that contains the active atoms.

During OMP all the inner product operations are computed only for the atoms that do not
belong to the active set because the residual error at each iteration is orthogonal to the space
spanned by the atoms belonging to the active set. This means that, at each iteration, the inner
products (r,vi) = 0V k € A and the same atom cannot be selected twice. Moreover, if the
dictionary is a basis that spans the space R?, the algorithm converges to a representation with
zero residual error after at most d iterations. The advantage of using the OMP algorithm in

terms of convergence comes at the expense of computing one pseudo-inverse matrix per iteration
€A = argmin [|x; — Vea||o. (2.36)
cA

In the ideal case, the indices of the non-zero entries of the estimated sparse code ¢ will
correspond to those columns of V associated with the i*? speaker, and thus, the test sample x;
will be assigned correctly to that speaker. However, due to potential modeling errors and/or
noise-corrupted data, in practice there may be also several non-zero entries of small amplitude
in ¢, which correspond to multiple speakers. To overcome this drawback, we define for each
speaker i an indicator function §; : RVt~ — Rt such that the only non-zero entries of vector
6;(¢) € RN are from the i*® speaker, and this procedure is repeated S times for each speaker.
As a result, for a given speaker i we can approximate X; = V§;(¢) and assign the test sample

to the speaker with the minimum residual between x; and X! as
i* =argmin||x; — V5 (€)|l2, i1 =1,...,5. (2.37)
2

This process is performed for each frame of the speech signal of the speaker to be identified,
and the final class, that is, the speaker’s identity, is estimated by means of a majority voting
approach applied on a predefined set of frames. In other words, the unknown speaker is assigned

the class to which most of the frames of his/her speech signal are classified in using (2.37).

2.4 Experimental results

In this section, we examine the identification performance of the three methods described in

Section regarding the correct speaker identification rate. For this purpose, several sim-
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Figure 2.2: Example Amplitude Probability Density curves of the 8-th MFCC coefficient from
the training data (20 sec) of the 10-th speaker.

ulations under noisy conditions were conducted. The speech signals used for the simulations
were obtained from the VOICES corpus, available by OGI's CSLU [87], which consists of twelve
speakers (seven male and five female speakers). For all simulations, 20-dimensional MFCC co-
efficients were extracted from the speech utterances in a segment-by-segment basis. The frame
duration was kept at 20 msec with 10 msec of frame shift. Before the feature extraction task,
the training as well as the test utterances were pre-filtered using a low-pass filter of the form
H(z) =1-0.97z"!, and then a silence detector algorithm based on the short-term energy and
zero-crossing measures of speech segments was applied E] All the speech signals in the corpus
have a sampling rate of 22050 Hz. For the GMM-based identification results, a GMM with a
diagonal covariance matrix was chosen for the simulations. The number of mixtures depended
on the amount of training data (see description of Experiment 1 below).

For the GGD-based identification case, Amplitude Probability Density (APD) curves (P(|X| >
x)) are adopted to show that the GGD best matches the actual density of the data. An example
for a part of the VOICES corpus is given in Figure 2.2] where we compare the empirical APD
(solid line) against the APD curves obtained for the GGD, Weibull, Gamma, Exponential and
the Gaussian models. The results in the figure correspond to the 8 MFCC coefficient of the
training data (20 sec duration) corresponding to the 10" speaker (independence among feature
vector components is assumed). Clearly, the GGD follows more closely the empirical APD than

the other densities. This trend was observed in the majority of the training utterances used

"http:/ /www.mathworks.com/matlabcentral /fileexchange /19298-speechcore
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in our experiments. Thus, the GGD model is expected to give better results than the other
densities when applied directly to the MFCC coefficients of the twelve speakers.

The performance evaluation follows the philosophy as described in [5], where each sequence
of feature vectors {x;} is divided into overlapping segments of @ feature vectors, where the

segments have the following form

X1, X1,X3, .-, XQ XQ+1,- -, XP-1,XP

~
15t segment

X1, X2, X3 -+, XQy XQ+15 - -+, XP—1, XP
2nd segment (238)
X1,X2,X3,.. -, XQ, XQ+15- -+ XP-Q) XP-Q+15---,XP-1,XP

P—Q+1%" segment

The correct identification rate of the j* speaker is computed as the percentage of the cor-

rectly identified segments of length @) over the total number of segments

tly identified t
correct ident. rate (CIR;) = 7# correctly identified segments 100%, (2.39)
total # of segments

where in the current work the total number of segments equals P — @ + 1. The total mean

correct identification rate is used as an evaluation metric during the test simulations defined as

S
1
mean CIR = g ;::1 CIR;, (2.40)

where S denote the total number of speakers.

In the previous sections, it was mentioned that in the current work the focus is given on noise
robust speaker identification using short training and testing sessions. Towards this direction,
white Gaussian noise is added on the test utterances, the SNR taking the values of 10, 15, 20,
25 dB. In addition, the test segment lengths @ vary from 10 to 500 with a step size of length
40. Length @ = 10 corresponds to 0.1 sec, length @@ = 50 corresponds to 0.5 sec, and so forth.
The training utterances have a duration of 5, 10, 15 and 20 seconds, corresponding to a quite

short training session. The training for all methods is performed using the clean speech data.

2.4.1 Experiment 1 — Identification using GMM

In this experiment, during the training process the MFCC coefficients for each speaker are
collected. For each speaker, the corresponding MFCC data are modeled using a diagonal GMM.

The number of mixtures was chosen to be 4, for the 5 and 10 sec training data, and 8 for the 15
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and 20 sec training data. These choices of parameters were found experimentally to produce the
best performance for the GMM-based identification. Clearly, the number of mixtures is small
due to the small size of the training dataset. During the identification process, the identification

rule (2.4) is used, and the correct identification rate is computed as in (2.40)).

2.4.2 Experiment 2 — Identification using KLD based on GGD

The same experimental steps as in Experiment 1 are also followed here. Thus, for each speaker
the MFCC vectors are collected during the training process. We estimate the GGD parameters
(a, B) for each vector component, assuming independence among the MFCC components. Dur-
ing the identification process, a test utterance contains multiple MFCC vectors as explained.
For each MFCC component of the test vectors, the GGD parameters (a, 3) are estimated. In
order to identify a speaker, we compute the KLD between the GGD model of the test data and
each of the GGD models of the speakers in the dataset (per vector component). This procedure
results in 20 distance values (since each MFCC vector contains 20 components). The final step
is to compute the mean of these distances, as in . The identity of the speaker whose data

result in the minimum distance is identified as the final result. The correct identification rate

is computed as in ([2.40]).

2.4.3 Experiment 3 — Identification using SRC

In this subsection, the experimental procedure for the SRC approach is described. First, consider
that from the training speech data of each speaker a number of n; of MFCC vectors is extracted.
Consider a test utterance length of @ frames. Adopting the notations from the theory of SRC
in Section[2.3.2] the training matrix V has dimension 20 x (12-n;) and the test sample (feature)
vector x; is a 20 x 1 vector. The test segment consists of @) distinct test samples x;. Thus, the

optimization problem of the form
(Py): €, =argmin|cgll1, s.t. xpq = Vey, for ¢=1,...,Q (2.41)
Cq

is solved @ times for each different x;,. The Orthogonal Matching Pursuit [86] is used to solve
this problem. Each solution ¢, of the problem (F;) is used to get an identity ¢ (for i =1,...,12)
of one of the 12 speakers in the dataset. Thus, a segment of length ) vectors will provide @
identification results. The predominant identity is found based on the majority of the decisions

and the identification rate is computed as in ([2.40)).
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2.4.4 Discussion

In this subsection, the main observations of the results in Figures (2.3 a)—d) are discussed.
The percentage of correct identification results is given as a function of the length of the test
utterance. We are mainly interested to examine the performance of the described methods for
short test sessions. The four figures correspond to training data of duration 5, 10, 15, and
20 sec respectively, so as to examine the effect of using a short training dataset. The correct
identification rates as a function of the test utterances segment length L are depicted. The black,
red and green curves correspond to the SRC, GMM and KLD-GGD method, respectively. There
are twelve curves in total, where the first part of each legend name indicates the corresponding
method and the last part indicates the SNR value used for this method, e.g. “SRC 10dB” means
that the black solid curve depicts the identification performance of the SRC approach under
noise conditions of 10dB. From the Figures (2.3]a)-(2.3]d) we notice that the SRC method is
superior over the GMM and KLD-GGD approach, especially for short test and training sessions,
and is quite robust to noise. The GMM performance improves as the training and test data
duration increases because the large amount of feature vectors increases the accuracy of the
GMM model, however its sensitivity to noise is clearly indicated. The KLD-GGD approach
does not have high correct identification rates even in the case where the amount of training
and test data is 20 and 5 sec, respectively. Based on the results, we can assume that the GGD
parameters (a, ) are not well-estimated in the case where the test data have short duration.
The main point regarding the SRC method that has to be highlighted is that even in the case
where the training data duration is 5 sec and the test utterance segments length is as low as 2
sec, the performance is greater than 80% for SNR values 15, 20 and 25 dB. Even in the extreme
case of 10 dB SNR, the correct identification rate is above 70% for at least 2 sec test utterance
segments length. Additionally, for lower test sessions than 2 sec the identification results for
SRC are significantly better than the baseline method. For example, for 20 sec training data
and 1.5 sec of test data, the SRC method gives correct identification above 70% for all SNR
values. For the same case, for 10 dB SNR, GMM results in correct identification of slightly
more than only 20%. This is important for applications where a decision must be made using a
small amount of test data, without having enough training data for a given number of speakers,

and the speaker is located in a noisy environment.
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Figure 2.3: Speaker identification performance as a function of the test data duration for dif-
ferent number of SNR values. The duration of the training data is: (a) 5 sec, (b) 10 sec, (¢) 15
sec and (d) 20 sec.

2.5 Experimental results: a multicondition perspective

In practical applications speech signals are contaminated with noise due to either the noisy
environment in which the speaker is present (e.g., car, restaurant) or the voice transmission
medium (e.g., cell-phone, voice over IP communication). To deal with such problems and
achieve accurate identification, multicondition GMMs have been proposed (e.g., [€1]).

The idea behind the multicondition GMM is to enlarge the training set by corrupting the
clean speech training data with simulated noise with different characteristics. As a result, the
training set is increased to contain Z + 1 different subsets 1,11, ...,17, i.e., clean data Ty plus
noisy data T1,...,Tz at Z different noisy conditions. To estimate the correct speaker during
the identification process, a GMM of the typical form as described in Section [2.2.1]is applied on
the augmented training set T = Ty, ..., Tz and the maximum a posteriori probability rule
is then used to estimate the identity of the speaker.

In this section, we examine the identification performance of the SRC compared with a
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multicondition GMM and a baseline GMM, regarding the correct speaker identification rate.
For this purpose, several simulations under noisy conditions were conducted. The speech signals
used for the simulations were obtained from the VOICES corpus, available by OGI's CSLU [87],
which consists of twelve speakers (seven male and five female speakers). The speech signals,
originally sampled at 22 kHz, were downsampled to 8kHz, with N = 320 samples per frame
and 50% overlapping between frames. For all simulations, 22-dimensional LSF coefficients were
extracted from the speech utterances in a segment-by-segment basis. For the GMM-based
identification results, a GMM with a diagonal covariance matrix was chosen for the simulations.

The number of mixtures depended on the amount of training data.

The performance evaluation follows the philosophy as described in Section (see [2.38
and [2.40). In the following two subsections we describe the simulations conducted to examine

the correct identification rates of the two proposed approaches.

test segment length: 140 frames, training data: 30 utterances
100 - T T T =

90 -

===©==MLCN GMM, white noise
= @& = MLCN GMM, speech babble 80+
oo MLCN GMM, engine car
=== SRC, white noise

- X = SRC, speech babble 70 .
1 SRC, engine car

==X BSLN GMM, white noise R B

= P> = BSLN GMM, speech babble 60 - R

o 4 '+ BSLN GMM, engine car

% Correct
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Figure 2.4: Speaker identification performance as a function of the noise SNR. The duration
of the training data is 30 utterances (per speaker). Correct identification rates evaluated using
three different types of noise: white, speech babble, car engine. The test segment length is 140
frames.
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2.5.1 Speaker identification based on SRC

In the current proposed approach the focus is on noise robust speaker identification using short
training and testing sessions. To explore this, three different types of noise are added to the test
utterances: white noise, speech babble noise and car engine noise. The noise signals were taken
from the NOISEX-92 database [88]. The SNR of the corrupted speech takes the values of 10, 15,
20 dB. In addition, the test segment lengths @ is chosen to be 100, 200, 300. Length @ = 100
corresponds to 2 sec, length ¢ = 200 corresponds to 4 sec, and length @ = 300 corresponds to
6 sec. The training utterances have a duration of 5, 10, 15 and 20 seconds, corresponding to a
quite short training session. The testing data (over which the identification results per segment
are averaged) have a duration of approximately 20 sec. The experimental results of the current

section can be categorized as follows:

1. baseline GMM : train clean speech data only, where the number of mixtures was chosen to
be 4, for the 5 and 10 sec training data, and 8 for the 15 and 20 sec training data. These
choices of parameters were found experimentally to produce the best performance for the
GMM-based identification. Clearly, the number of mixtures is small due to the small size
of the training dataset. During the identification process, the identification rule is

used, and the correct identification rate is computed as in (4.21)).

2. multicondition GMM : train clean plus noisy speech data (clean data are corrupted during
training by white noise of SNR 10, 15 and 20 dB), where the number of mixtures was
experimentally chosen to be 8, for the 5 and 10 sec training data, and 16 for the 15 and

20 sec training data.

3. SRC: consider that from the training speech data of each speaker a number of n; of
LSF vectors are extracted. Consider a test utterance length of @) frames. Adopting the
notations from the theory of SRC in Section the training matrix V has dimension
22 x (12 - n;) (each matrix V; contains clean plus noisy speech data, corrupted by white
noise of SNR 10, 15 and 20 dB) and the test sample (feature) vector x; is a 22 x 1 vector.
The test segment consists of @) distinct test samples x;. Thus, the optimization problem

of the form

(Pg): €g= argnéin [cqll1
q

st. Xt g =Vecy, for ¢q=1,...,Q (2.42)

is solved @ times for each different x;,. Orthogonal Matching Pursuit [86] is used to

solve this problem. Each solution ¢, of the problem (P;) is used to get an identity ¢ (for
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i = 1,...,12) of one of the 12 speakers in the dataset. Thus, a segment of length @
vectors will provide @ identification results. The predominant identity is found based on
the majority of the decisions and the identification rate is computed as in (2.40)).
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Figure 2.5: Speaker identification performance as a function of the test data duration for dif-
ferent number of white noise SNR values. The duration of the training data is: (a) 5 sec, (b)
10 sec, (c¢) 15 sec and (d) 20 sec.

Before analyzing the experimental results of the proposed method in terms of short training
and testing sessions, we are interested to test the SRC approach using a larger dataset of
training and testing vectors. These results depicted in Fig. The correct identification
rates as a function of the three types of noise SNR are depicted. The test utterance length
is 140 frames, where 30 utterances per speaker were used for training (30 utterances gives
about 150 sec amount of training data). The black, red and blue curves correspond to the
baseline GMM (noted as “BSLN GMM?”), multicondition GMM (noted as “MLCN GMM”) and
the SRC method, respectively. In the BSLN GMM method, 32 mixtures per speaker were
trained (diagonal covariance matrix),while in the BLSN GMM approach 64 diagonal mixtures
per speaker (clean and noisy speech data) were trained. For this particular case, for the SRC

method the V matrix is formed using the GMM centers taken from the MLCN GMM training
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process, so as to provide comparable performance results. In the remaining results, this matrix

in fact contains the actual speech feature vectors. It can be seen in Fig. that the SRC
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Figure 2.6: Speaker identification performance as a function of the test data duration for dif-
ferent number of speech babble noise SNR values. The duration of the training data is: (a) 5
sec, (b) 10 sec, (¢) 15 sec and (d) 20 sec.

method, in which the performs worse than the BSLN GMM and MLCN GMM for the white
and speech babble noise. The MLCN GMM is superior than the other two methods, which can
be expected since it has been shown to provide very good results when using large training and

testing sessions.

The performance evaluation results in terms of correct identification rates for short training
and testing sessions corresponding to the white noise, speech babble and car engine noise are
depicted in Figs. 2.5}2.7 respectively, where the identification results are given as a function
of the length of the test utterance. We are mainly interested in examining the performance
of the described SRC-based method for short test sessions. In each figure, the four subfigures
correspond to training data of duration 5, 10, 15, and 20 sec respectively, so as to examine the
effect of using a short training dataset. The correct identification rates as a function of the test

utterances of segment length @ are depicted.
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There are nine curves in total in each subfigure, where the first part of each legend name
indicates the corresponding method and the last part indicates the SNR value used for this
method, e.g., “SRC 15dB” means that the blue solid curve depicts the identification performance
of the SRC approach under noise conditions of 15 dB.
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Figure 2.7: Speaker identification performance as a function of the test data duration for dif-
ferent number of car engine noise SNR values. The duration of the training data is: (a) 5 sec,
(b) 10 sec, (c) 15 sec and (d) 20 sec.

From the Figs. 2.5}2.7] we notice that the SRC method appears to be quite robust to different
noise conditions and it is superior to the BSLN GMM and MLCN GMM approaches in all
training cases as well as in all noisy conditions, except for the case of 5 and 10 sec training data
duration of 20 dB white noise where SRC appears to be slightly worse than the MLCN GMM
method.

In Fig. (white noise) the MLCN GMM approach appears to be better than the BSLN
GMM because it is trained using clean plus noisy speech data contaminated with white noise
and as a result it appropriately captures the characteristics of such a wideband noise during
the GMM parameters estimation process. However, the performance of BSLN GMM seems to
improve in the case of speech babble and car engine noise and achieves identification performance

approximately similar to the MLCN GMM. This observation is more obvious in Fig. 2.7/b{2.7]d,
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where the performance of the BSLN GMM is slightly better in all cases than the MLCN GMM,
because the small amount of training data is not enough for the MLCN GMM to capture
the statistical properties (via the GMM parameters estimation) of noise with different spectral
characteristics compared to the white noise. The main point regarding the SRC method that has
to be highlighted is that the performance is approximately greater than 80% for SNR values
15 and 20 dB in the case where the training data duration is 20 sec and the test utterance

segments length is 200 frames.

2.6 Experimental results: beyond state-of-the-art

In this section, we perform an extra set of simulations in order to verify the effectiveness of
the proposed SRC-based speaker identification approach against the state-of-the-art methods
of UBM-GMM and JFA. We used the VOICES corpus as in the previous section. The original
signals are sampled at 22 kHz, and downsampled to 16 kHz. During the feature extraction step,
an analysis window of 640 samples, i.e., 40 ms at 16000 samples per second with 50% overlapping
between two consecutive frames, is employed to compute a mel-frequency spectrogram of (2 = 30

bands, where a silence detector algorithm based on the short-term energy and zero-crossings
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Figure 2.8: Correct identification rates as a function of the SNR. The proposed SRC is compared
against the state-of-the-art UBM-GMM and JFA methods for four noise types.

measure of speech segments is appliedﬂ A cepstral mean and variance normalization process

*http:/ /www.mathworks.com/matlabcentral /fileexchange /19298-speechcore
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followed by feature warping is also applied during the training and testing feature extraction
process.

The resulting 2 x T mel-spectrogram, where 1" is the total number of frames on which mel-
frequency analysis was performed, is of size 30 x 600 with T" = 600 corresponding to approxi-
mately 12.02 sec uttered training data per speaker. For the UBM-GMM framework a diagonal
covariance matrix was chosen during the simulations. We pooled all the target speakers training
data using the mel-scale frequency coefficients of order 2 = 30, where after experimentation we
found that best results on average obtained when used 16 number of mixtures. The dimension
of the total variability space was set to 12, which equals the number of speakers of VOICES
COTpuS.

The average identification error rate is computed as the percentage of the erroneously iden-
tified segments over the total number of test segments. For each speaker, the total number of
test utterances used for the evaluation is equal to 4, where the segment length is set to 400
frames (corresponding around to 8.02 sec). The test utterances are corrupted by four different
types of additive noise, namely, speech babble noise, car engine noise, factory floor noise and
F-16 cockpit noise, where the SNR of the corrupted speech takes the values of -5, 0, 5, 10 and
15 dB. The noise signals were taken from the NOISEX-92 database [§8].
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Figure 2.9: Average correct identification rates across all noise types comparing SRC vs. JFA
vs. UBM-GMM.

In Fig. are depicted the average correct identification rates for all the compared methods
across all noise types. It is easy to verify that SRC is better than JFA and UBM-GMM in all
noisy conditions. In specific, the achieved SRC correct rates are greater than 76% in the case
of speech babble, car engine and factory floor noise types. Additionally, JFA is better than
UBM-GMM by approximately 7.6% for the speech babble noise and about 7% for the factory
floor noise. Contrary, UBM-GMM appears to better as compared to JFA in the case of car
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engine noise by 8.9%, while for the F16 cockpit noise UBM-GMM achieves an average correct

identification error about 8.2% more than JFA.
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CHAPTER

3

Discriminative dictionary sparse coding
for speaker identification

It is all right to make mistakes; nothing is
perfect because with perfection, we would
not exist.

STEPHEN HAWKING (1942-)

3.1 Introduction

Following the goal of achieving robust identification results under limited amount of training and
testing speech data, the focus is given on enhancing the discriminative ability of the estimated
sparse codes. Towards this direction, a discriminative learning approach is introduced. The
problem is faced under a joint learning perspective, where an overcomplete dictionary is learned,
resulting in highly discriminative sparse codes, along with a linear classifier. A speech corpus
of twelve speakers is used for the identification evaluation towards the direction of examining

applications consisting of a moderate number of speakers

3.2 Prior work on sparsity based classification for speech signals

The concept of sparse representation (or sparse coding) comes as an alternative solution to the
universal data models, which do not generalize well for limited training data. Prior work on
classification of speech signals has been already described in Chapter [I] The main focus is given
on representing an input test sample as a sparse linear combination of an overcomplete matrix,
the so-called dictionary, whose columns consist of a set of basis functions, usually referred to as
atoms. Next, we will mention prior work on classification of speech signals based in this kind
of assumptions some of them already mentioned in Section [I.2]

In [89], robust speech recognition is achieved by modeling noisy speech signals as a sparse
linear combination of speech and noise exemplars (spectro-temporal representations spanning

multiple time-frames of the speech signal). A similar approach is followed in [90], where a
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combination of large vocabulary continuous speech recognition techniques with small vocabulary
tasks results in low phonetic error rates. Sparse codes may also serve as a new type of feature
vectors to be given as input in a typical classifier. More specifically, a gradient descent-based
dictionary learning approach is adopted in [91] to learn the redundant matrix related with
the training data. This comes in combination with a multilayer perceptron classifier, which is
applied on the generated sparse codes for phoneme recognition. The same task is also studied
in [92]. An orthogonal matching pursuit-based (OMP) dictionary learning technique is applied
and the obtained sparse codes are further used for classification by means of a support vector
machine (SVM) classifier. A phone recognition approach employing hidden Markov models
(HMM) is examined in [93], using sparse codes which take advantage of the phonetic labels
information as additional features during the recognition process. Moreover, the sparse codes
feature extraction is followed by sparse discriminant analysis to perform speaker recognition
in 76], while in [94] SRC is used for the same task using GMM mean supervectors as feature
vectors on clean speech data taken from TIMIT speech corpus.

Dictionary learning techniques can be applied for learning the best dictionary that gives the
most discriminative sparse codes for classification. The work in [95] showed that a satisfactory
speaker verification performance can be achieved by applying a supervised K-SVD algorithm
for learning an appropriate discriminative dictionary. Motivated by the successful application
of K-SVD for face and object categorization [96], our proposed method addresses the prob-
lem of text-independent speaker identification by extending our previous work [97]. Here, we
adopt a discriminative dictionary learning approach, which is applied on noise robust speaker
identification under the assumption of short training speech utterances.

Here, the proposed method learns an overcomplete dictionary, resulting in highly discrimina-
tive sparse codes, along with a linear classifier. This estimation is performed in a joint fashion
by imposing additional constraints on the associated objective function in order to produce
similar sparse codes for those training samples belonging to the same speaker. This is in con-
trast to recently introduced sparsity-based methods [89], 90 911, 92 93], [76), [94], which do not
treat jointly the estimation of the dictionary, the sparse codes, and the classifier parameters.
On the other hand, in [95], a method was suggested to learn jointly only the dictionary and
the sparse codes. To the best of our knowledge, this is the first study on noise robust speaker

identification, which tackles the problem from such a threefold joint learning perspective.

3.3 Reconstructive dictionary sparse coding

Before proceeding with the description of the discriminative sparse coding technique, let us

first mention the main points related with the reconstructive dictionary sparse coding task.
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A reconstructive dictionary learning method aims at learning an overcomplete dictionary for

sparse coding approximation. Following the notation of Section [2.3.2] let

V = {v;}Vr e RO (3.1)
be a set of Ny input signals building the corresponding data matrix

V = [vilval---[v,]. (3.2)

The goal of dictionary sparse coding (or dictionary learning) is to find a dictionary D € R%*%

with a fixed number of Z columns or atoms such that
V ~ DC, (3.3)

where the columns of matrix C € R?*Mr contain the sparse representation coefficients. In
other words, each input signal v; can be sparsely represented on the estimated dictionary D
and it is associated with a sparse representation vector c¢; (i.e., it contains a small number of
nonzero coefficients).

The estimation of dictionary D and sparse representation matrix C can be formalized in a

similar way as in ([2.35)) as follows

D.C = in ||V — DC|2
: argrlgl}gll 1%,

st llejllo=K, ¥j=1,..., Ny | (3.4)

where the objective function is the Frobenius norm ||- ||z of the residual error and the sparsity of
the representation coeflicients is enforced in the approximation of every input signal. The most
popular strategy in handling the optimization problem (§3.4) is to solve alternatively, starting

from an initial guess Dy of the dictionary and solving the two following steps iteratively

Sparse coding update: during the t-th iteration given a fixed dictionary D; the matrix of
sparse representation coefficients C; can be estimated as a typical sparse coding problem

using any solver that is suitable to the particular K-sparse approximation problem.

Dictionary update: during the (¢ 4 1)-th iteration given a fixed matrix of sparse represen-
tation coefficients Cy, the dictionary Dy is updated in order to improve the objective of
the dictionary learning optimization, where each dictionary atom is normalized to have

unit norm.

The K-SVD algorithm [98] can be adopted to solve the problem (3.4) following the itera-
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tive strategy described above. In specific, we assume that the objective function J(D,C) =

|V —DC]|| can be written as the sum of rank-1 matrices as follows

Z
J(D,C)=|V-DC|y=|V-= dyef| = (V - quc§> —dyel| . (3.5)

p=1 P a7#p Ia

T

Now, we can observe that the sparse representation coefficients’ vector c,,

and the atom d, can
be optimized in a joint fashion by minimizing the cost function ({3.5)), i.e., computing the best

rank-1 approximation of the partial residual matrix

E, =V - dgl. (3.6)
q#p

The partial residual matrix E, and its rank-1 approximation are restricted to the columns

Algorithm 2: K-SVD reconstructive dictionary learning

Input: V, Dy, maximum iterations jyax, sparsity threshold K
Output: estimated dictionary D and sparse representation matrix C

1 Initialization:
2 while j < jh.x do
3 for n =1 to Ny do

4 ¢, = argming, ||[vy, —Djcyll2, s.t. [lenllo = K,

5 end

6 forp=1to Z do

7 Ap =37 C{1,..., Ny} when ¢,; # 0 (for each atom d,, the set A, of zero
elements of the p-th row of C, i.e., the set of training data that use the p-th atom
in their sparse approximation)

8 E, = <V — Zm?ép dmcg> (calculate a partial residual matrix and restrict its

A

columns to the active set of psignals that use the p-th atom for their sparse
approximation)

9 [A,%,T] =SVD(E,) (descending order of the singular values {o})

10 dp = ai

11 cp, = 01,1'le (the representation coefficients (CZ)AP and the atoms d,, are
updated using the best rank-1 approximation of the partial residual matrix E,
which is computed using SVD decomposition)

12 d, =

P ldyl

13 end

14 j=7+1

15 end

In addition, the support of the sparse representation coefficients must not be changed during
the dictionary update step and thus, the partial residual matrix E, and its corresponding rank-1

approximation of are restricted to the columns corresponding to the signals that use the p-th
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atom in their sparse approximation, i.e., the indexes corresponding to the non-zero elements of

the vector c,,.

3.4 Discriminative dictionary sparse coding based on K-SVD

In the previous section, the dictionary learning problem is introduced within the framework
of minimizing the reconstruction error. Moving a step further, we are interested in enhancing
the discriminativeness of the estimated sparse representation coefficients (or sparse codes). We
aim at solving a dictionary sparse coding optimization problem which will incorporate extra
optimization terms associated with the discriminative constraints. Here, a method of discrim-
inative dictionary sparse coding based on a (class) label-consistent K-SVD is analyzed, which
constitutes the key component of the proposed approach. This method, which was introduced
in the framework of face and object recognition [96] and to our knowledge is now applied for
a first time in the field of speaker identification. We apply the method in the context of noisy
conditions using small training data sessions.

The sparse coding optimization problem expressed by can be extended to the following

dictionary learning optimization problem:

D,C = in |V — DC||?
,C arg%l}gll Cli%

st llejllo=K, ¥j=1,..., Ny | (3.7)

where || - || denotes the Frobenius norm of a matrix, D € R%*Z is the learned dictionary,
C € R%*Ner 5 the matrix of sparse codes, where c; denotes the % column of C, and Z is
the dictionary size. We emphasize at this point that the sparse codes {cj}jy:t’"l e RZ*! are of
different dimensionality compared with the sparse code vectors introduced in the first part of
the current section. However, the same symbol is used for notational convenience.

In order to enhance the discrimininative capability of the estimated sparse codes, an addi-

tional constraint is embedded in the objective function (3.7) as follows,

N A NI — . _ 2 _ 2
D, C.M =arg min [V —DC|[k + Ai[|P - MC][7

s.t. chHo = K, VJ = 1, cen ’Ntr y (38)

where A1 is a regularization parameter controlling the trade-off between the reconstruction
error [V — DC|% and the discriminative sparse-code error |P — MC|%. The columns of
P = [p1| - |pn,] € R?*Ntr contain the discriminative sparse codes of the training features

V, while M € R?*Z s a linear transformation matrix. In particular, P has a block-diagonal
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structure, where each one of the S blocks is an m; X n; matrix of ones, J,,,xn,, with m; and
n; denoting the number of training feature vectors and dictionary items, respectively, which
share the same class label (that is, correspond to the same speaker). For example, assuming
D =[dy]...|ds] and V = [vy]...|vg], where d;, d2, vi, v2 and v3 are from class 1, ds, vy4, Vs,

and vg are from class 2, and dy4, ds, dg, v7, vs and vg are from class 3, P can be defined as

111000000
111000000
000111000

P= (3.9)
000000T111
000000111
000000111

In addition, M transforms the original sparse codes C so as to increase their discriminative
power in the new (sparse features) space R?. As a result, the discriminative sparse-code er-
ror promotes (class) label consistency in the new (transformed) sparse codes by enforcing the

features from the same speaker to have similar sparse representation.

In the following, let Bc define a linear classifier, where B € R5*# denotes the classifier
parameters, and c is a column of the sparse code matrix C. The output of the linear classifier
will be an S X 1 vector, whose largest element corresponds to the index ¢ if the sparse code
c is related with speaker 7. Thus, in order to estimate the linear classifier parameters B, we
incorporate the classification error |[H — BC||%, related with all the sparse codes contained in

C, into the objective function (3.8) as follows,

N O NT P : . 2 _ 2 . 2
Da 07 M7 B = arg D,Iélj\I/},B ||V DCHF + A1||:P MCHF + AQHH BCHF

st llejllo=K, ¥j=1,..., Ny | (3.10)

where A\; and \g are regularization parameters controlling the trade-off between the reconstruc-
tion error ||V — DC||%, the discriminative sparse-code error |P —MC]||%, and the classification
error |[H — BC||%. Matrix H = [hy|- - |hy, ] € RN contains the class labels (or speaker
index) of the training features V. The column h; € RS*! which corresponds to the training
feature vector v; € V of the M speaker, is defined as an all-zeros vector except for the index

corresponding to the true speaker label i € {1,...,S}. For example, a label vector
hi = (0,...7071’07‘”70)’11 GRSXI

corresponding to a training vector v;,, ¢ € {1,...,5} and n € {n;_1,...,n;—1 + n; — 1} with
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ng = 1, where the non-zero element indicates that the training feature vector belongs to speaker
j.

The K-SVD Algorithm [2]is adopted in the proposed scheme to estimate simultaneously the
unknown parameters by solving the reformulated optimization problem (3.10]) of the form

A D )
]j,C,M,]g:argDmil\r/}B vaMP |- VAIM | C
Vo H VB F
st llejllo=K, Vj=1,...,Ny. (3.11)

After the solution of the optimization problem (B.11)), the estimated dictionary D and classifier
parameters’ matrix B are exploited for the final classification process. Given a test sample x;

we first compute its sparse representation by solving
¥ = argmin |x; — D|l2, s.t. |[vllo =K (3.12)

through the OMP algorithm. Finally, the estimated linear classifier B is applied to estimate
the class (or the speaker identity) of the test sample by finding the index of the maximum value

of the class label vector

T = B4

i* =argmaxT(i), i=1,...,5, (3.13)
(2

where 7 € R91. Asin SRC, this classification process is followed for each speech signal’s frame,
where finally majority voting is performed for a predefined set of frames to find the unknown

speaker’s identity.

3.5 Experimental results

In this section, the identification performance of the proposed discriminative K-SVD approach,
described in Section is evaluated in terms of the correct identification rate, and is compared
with the SRC approach (discussed in Section constituting the key part of the recent
classification approaches for speech signals mentioned in Section [3.2] We also use the UBM-
GMM [39] as the second method for comparison. The speech signals used in the subsequent
experimental evaluations are obtained from the VOICES corpus, which is available from OGI’s
CSLU [87], consisting of 12 speakers (7 male and 5 female).

The original signals are sampled at 22 kHz, and downsampled to 8 kHz. During the fea-



74 Sparse and low-rank techniques for robust SR and MF reconstruction

Table 3.1: Average correct identification rates (%) for the discriminative K-SVD, SRC and
UBM-GMM for five different number of SNR values and four noise types: white, speech babble,
car engine and factory floor. The duration of the training data is 10 sec.

Noise |SNR K-SVD SRC |UBM-GMM
(dB)| 25 | 50

20 | 89.11 | 96.32 | 92.89 97.41

15 | 86.24 | 97.43 | 87.15 98.42
White | 10 | 82.92 | 86.77 | 83.45 96.41
5 | 7475 | 71.96 | 58.71 47.70
0 | 57.04 | 51.57 | 31.50 34.67
Avg. 78.01 | 80.81 | 70.7 74.92

20 | 83.95 | 80.41 | 89.88 73.90
Speech | 15 | 88.05 | 81.18 | 86.28 55.99
babble | 10 | 80.23 | 83.25 | 70.06 30.76
b} 65.33 | 71.62 | 20.76 15.16
0 46.43 | 47.55 9.46 13.77
Avg. 72.79 | 72.80 | 55.28 37.91

20 | 85.52 | 86.45 | 83.29 61.55
Engine | 15 | 76.69 | 82.12 | 69.32 49.53

car 10 | 50.92 | 64.84 | 65.74 34.75
5 24.75 | 42.55 | 33.82 26.80
0 13.55 | 27.65 | 17.36 17.85
Avg. 50.28 | 60.72 | 53.90 38.09
20 | 84.10 | 80.39 | 84.84 66.09

Factory| 15 | 78.32 | 79.92 | 73.16 49.39
floor 10 | 73.10 | 75.64 | 63.92 11.69

b} 45.83 | 9941 | 16.87 8.34
0 18.12 | 44.18 8.33 8.33
Avg. 59.89 | 67.90 | 49.42 28.76

ture extraction step, an analysis window of 320 samples, with 50% overlapping between two
consecutive frames, is employed to compute a mel-frequency spectrogram of = 40 bands,
where a silence detector algorithm based on the short-term energy and zero-crossings measure
of speech segments is appliedﬂ The resulting 2 x T mel-spectrogram, where T' is the total
number of frames on which mel-frequency analysis was performed, is reshaped by vectorizing
every ¢ consecutive columns, and thus the new matrix is of size ¢Q x |T/¢| = Q x T. For the
UBM-GMM framework a diagonal covariance matrix was chosen during the simulations. We
pooled all the target speakers training data using the mel-scale frequency coefficients of order
Q) = 40, where after experimentation we found that best results on average obtained when used

64 number of mixtures.

It is also important to point out that for the K-SVD and SRC-based simulations ¢ = 13

"http: //www.mathworks.com/matlabcentral /fileexchange/19298-speechcore
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following the same vectorizing strategy as in exemplar-based techniques (ref. Section 3.2). In
addition, ¢ = 1 during the UBM-GMM evaluation process as a consequence of a more stable
behaviour in capturing the discriminative statistics of lower dimensional features corresponding

to short training data as in our study.

white noise
100F ‘ _
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Figure 3.1: Speaker identification performance as a function of the white noise SNR.

The duration of the training data was around 10 sec per speaker. The average correct
identification rate is computed as the percentage of the correctly identified segments over the
total number of test segments. For each speaker, the total number of test segments used for
the evaluation is approximately equal to 70, obtained by sliding a window of 15.6 sec over the
time interval of the last 10 utterances, whose duration is about 60 sec.

The test utterances are corrupted by four different types of additive noise: white noise, speech
babble noise, car engine noise and factory floor noise, where the SNR of the corrupted speech
takes the values of 0, 5, 10, 15 and 20 dB. The noise signals were taken from the NOISEX-92
database [88]. In all cases, the data were trained under the multicondition framework [81], where
the training dataset is enlarged by corrupting the clean speech training data with simulated noise
of different characteristics. Here, the clean speech data are corrupted by white noise of SNR
10, 15 and 20 dB. The sparsity threshold K mentioned in Sections and was chosen
experimentally to be 10 during the SRC evaluation procedure, while for K-SVD a sparsity
threshold equal to 25 was found to give the best performance. Besides, the regularization
parameters A1 and Ao of optimization problem set equal to 0.25 and 2.25 on average,
respectively.

As we can see from the experimental results in Table (a visualization of the table can
be found in Figures , SRC achieves at least 15% higher average identification rates
compared with the UBM-GMM with an exception in the case of white noise, where UBM-GMM
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speech babble noise
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Figure 3.2: Speaker identification performance as a function of the speech babble noise SNR.

is about 4% better. The third and fourth column correspond to the identification rates obtained
using a learned K-SVD dictionary of size 25% and 50% (termed as KSVD-25 and KSVD-50) of
the initial training data matrix size, respectively. It is obvious that the proposed discriminative
K-SVD approach is on average far better than that of the two methods used for comparison in
both dictionary size schemes. A correct identification rate of at least 60% is on average achieved
with the KSVD-25 in the case of the three out of the four noise types. In addition, KSVD-50
accomplishes at least approximately 70% in three of the four noisy conditions, where in noisy
conditions such as 0 and 5 dB SNR is quite robust compared with the two methods used for

comparison that completely fail to achieve acceptable identification rates.

car engine noise
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Figure 3.3: Speaker identification performance as a function of the car engine noise SNR.

It is also important to notice how the identification rates are compared between KSVD-50
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and KSVD-25. In particular, we note that KSVD-25 achieves almost similar identification rates
in the case of white and speech babble noise compared to KSVD-50 and it performs lower than
KSVD-50 (approximately 10% lower rates) in the case of car engine and factory floor noise.

Computational cost is very crucial in real-time applications of speaker identification. In such
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Figure 3.4: Speaker identification performance as a function of the factory floor noise SNR.

applications we would like to achieve as high as possible correct identification rates using small
amount of data. Towards this direction, KSVD-25 could be applied on 25% of the initial training
data in order to achieve robust identification rates under adverse noisy conditions. Figure [3.5

shows the average correct identification rates (where the mean value across all SNR values

1001 ; ‘ _
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Figure 3.5: Average correct identification rates across all noise types comparing K-SVD 25 vs.
K-SVD 50 vs. SRC vs. UBM-GMM.

per noise type is computed) of all the methods for all types of noise. It is obvious that both

discriminative dictionary sparse coding techniques, i.e., K-SVD 25 and K-SVD 50, are superior
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to SRC and UBM-GMM except car engine noise where SRC is slightly better than K-SVD 25.
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Missing features reconstruction based on
a low-rank assumption

Errors using inadequate data are much less
than those using no data at all.

CHARLES BABBAGE (1791-1871)

4.1 Introduction

Speaker recognition is a very challenging task especially in environments dominated by noise.
This is even more difficult in the case where a limited amount of training and testing data
is available in order to take correct decisions. The quality of speech features plays a key role
for acquiring good recognition results. As a consequence, it is of high importance to provide
a classification system with features which are as reliable as possible. However, the reliability
of speech features is inversely proportional to the level of environmental noise, enhancing low
recognition accuracy.

Missing data techniques (MDT) overcome this limitation by enabling the computation of
reliable speech features under adverse noisy conditions. They assume that a noisy speech
signal can be decomposed into speech-and noise-dominated time-frequency components. The
speech-dominated components are considered reliable and can be directly exploited for further
use, while the noise-dominated elements are categorized as unreliable, and labeled as missing
spectrotemporal data. A literature review on MDT methods can be found in Section For
the sake of completeness we briefly mention below some of the basic works in the field. MDT
have been extensively applied in the context of robust automatic speech recognition (ASR) as a
solution to performance degradation due to noisy speech features, and they are distinguished in
two main categories, namely, marginalization and imputation. In marginalization [56] 58| [59],
speech decoding is based on the reliable components of a noisy time-frequency representation,
while the unreliable components are eliminated or marginalized up to the observed values. The
imputation approach [49] 50} 51), 52, 53| 54, [55] is associated with the estimation of the missing

data, so that decoding can be performed in a conventional manner. These methods exploit
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various speech signals properties to estimate the missing features, from the data correlation
expressed through statistical models to sparsity-based estimation where the features are sparsely
represented in a given dictionary. It is of high importance to notice that the estimation of
a reliability mask plays a key role during the discrimination between reliable and unreliable
spectrotemporal components. The interested reader can find an overview of MDT for ASR

in [47].

Recently, a lot of research has been carried out in the field of speaker recognition wherein
the MDT strategy has been followed to minimize the side effects caused due to noise presence
in speech signals. In specific, speaker identification is examined in [60, 61}, [62], while in [64]
65] speaker verification is studied in the light of missing feature theory for improvement of
recognition performance, while in [66] both tasks are evaluated. In all these works, the main
steps include the use of a time-frequency binary mask to distinguish the reliable from the
unreliable spetrographic data which in most cases is followed by a marginalization procedure

to compensate for the missing spectrotemporal information.

In this thesis, a novel imputation scheme based on matrix completion [99] is proposed for re-
covering the missing log-scale speech magnitude spectrographic data. This method exploits the
low-rank behaviour of the speech spectrotemporal representation and proposed in the context
of noise robust text-independent speaker identification under the assumption of short training
and testing sessions restrictions as examined in the previous sections. Here, we compare our
low-rank based approach with a deterministic imputation method which is heavily based on
sparsity assumptions as a consequence of verifying the missing-feature reconstruction efficiency
of low-rank matrix recovery techniques. Thus, during performance evaluation we conduct a
large number of simulations on a small-sized corpus revealing the efficiency of the proposed
method compared to the sparse imputation technique which has been shown to achieve or even

to exceed the state-of-the-art accuracy regarding ASR [53].

4.2 Low-rank matrix recovery

Matrix completion (MC) enables the recovery of a low-rank or approximately low-rank ma-
trix M € R™*™ from at least O(nrvIn®n) entries selected uniformly at random (with v
corresponding to the so-called degree of incoherence) [I00], where n = max{n;,n2} and r =
rank(M ). We assume that all the scalars, vectors and matrices are real-valued. The original

matrix can be recovered from the partially observed matrix by solving the following convex
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optimization problem

min || X[,
X (4.1)
s.t. Xij:Mij> (’i,j)EIC{l,...,nl}X{1,...,712},

where k = |Z| > CnrIn®n denotes the number of observed entries (C' is a positive constant),
X € R™*™ ig the decision variable and the nuclear norm is defined as || X ||, = Zgl:iri{m’M} oq
with oq,... s Omin{ni,no} = 0 corresponding to the singular values of X.

In the following, let the standard matrix completion linear map A : R™*"2 — R*  The
constraints X;; = M;;, V(4,5) € Z in can be represented by using the linear map Az as

follows

H}}n X, s.t. Az(X) =1b, (4.2)
where b := Az(M) contains the sample values extracted from M. Each row of Az(M) corre-
sponds to the sampling of a single (4, j) element of M.

The equality constraint in (4.2)) can also be written in matrix form
A7(X) = Az, © = vec(X) VX € R™*"2 (4.3)

where A € RF*™72 and vec(-) : R™>*"2 — R™™2X1 denotes the vectorization mapping; any
vectorization mapping (e.g., row major order or column major order) is acceptable as long as

it is fixed. In matrix completion, each row of A contains exactly 1 non-zero entry.

We also make use of the adjoint of Az which takes a vector and maps it to a sparse matrix

with the nonzero entries of the sparse matrix corresponding to Z. Specifically,
A() - R 5 RMXm2 with k= |Z| < ning,

and we have the property
h = Az(A5(h)) Vh € RF*L,

Singular value thresholding (SVT) [I0I] algorithm can be used for solving MC problems
since SVT is efficient and can be successfully applied in solving large-scale matrix problems
arising in speech features enhancement. Specifically, SVT minimizes the following constraint

optimization problem
. 1
min 7 || X]|, + 5 1X)1% st Az(X) = Az(M), (4.4)

where the positive constant 7 is a trade off between the nuclear and Frobenius norm. The
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solution to problem (4.4)) converges to that of (4.1)) as 7 — co. SVT comprises the two following

iterative steps
X =Dr(AL(Ys-1))
Yr = Y1 — 0(Az(Xy) — b).

(4.5)

In the above equation the shrinkage operator D;, also known as soft-thresholding operator,
is denoted as D, = UX, VT where U and V are matrices with orthonormal columns and
3, = diag(max{o; — 7,0}) with {Ji}?;nf{nl’m’} corresponding to the singular values of the

decomposed matrix. The step size of the iterative algorithmic process is given by §.

4.3 Missing-features recovery using low-rank matrix completion

As it was mentioned in the introduction, in the current part of our work the main goal is to
enhance the reliability of speech features degraded due to environmental (ambient) noise, which
are used in speaker identification by adopting the MC framework as described in the previous
section. Thus, it is crucial to reduce the noise effects after the feature extraction process by
following a missing-feature reconstruction approach.

In particular, the observed speech data can be represented in the time-frequency domain as
Y(f,p) = S(f,p) +N(f,p), where Y € REF*P § ¢ REXF and N € RF*F is the log-magnitude
short-time Fourier transform (STFT) of the observed (noisy) speech signal, the clean speech
signal and the contaminating noise, respectively. The discrete frequency index is denoted by f
and p is the frame number.

The first step of spectrotemporal reconstruction is to apply a binary reliability mask in order
to distinguish the reliable from the unreliable (or missing) spectrographic speech data. We
assume that reliable time-frequency (T-F) units are dominated by speech, while unreliable T-F

units contain mostly noise. The ideal (oracle) binary mask is computed as follows

1 := reliable, 101log;q <||]€f((§’f)))l|> Y

0 := unreliable, otherwise

W(f,p) = (4.6)

where W € BI*F with B = {0,1} and ) is a pre-defined threshold expressed in dB. We recover
the missing spectrotemporal data W © Y, where ® denotes the element-wise product of the

two matrices by solving the optimization problem (4.2)) as follows

A~

Y = arg H}}n 1 X, st. Az(X)=Az(WQOY). (4.7)

The linear map Az in (4.7)) is related with matrix A as defined in (4.3)), where the set of indices
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T corresponds to the non-zero entries of the binary mask W

T={(i,§) | W(i.,) £0}, ¥(i,j) € {1,..., F} x {1,..., P}.
Optimization problem (4.7) can be rewritten as

N . 1 9
Y —argmin X, + 5 1 X1

5.8, A7(X) = AZ (WO Y)

adopting the SVT algorithmic framework.

In order to examine the low-rankness of the original data matrix Y, we use speech data
obtained from the VOICES corpus, which is available from OGI’s CSLU [87]. The speech
database is comprised of 12 speakers (7 male and 5 female), where 50 utterances per speaker of
duration around 4 sec each were recorded under quiet conditions. We take the first 3 utterances
per speaker to compute the log-magnitude STFT. The ordered singular values spectra of all
the speakers corresponding to an FF'T size of 1024, i.e., the number of STFT matrix rows is
F =513, are depicted in Fig. We observe that they attain very low values, where the 98%
of the energy concentration is manifested around 50. Thus, we can assume that the approximate
rank of the original data matrix Y is 50, and thus MC can be potentially applied to recover the
missing data of the incomplete matrix W ®Y . The estimated log-magnitude STFT matrix Y is

15000 1
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: : 98% of the energy
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% 50 100 150 200 250

Singular values

(b)

....................................

Figure 4.1: Ordered singular values spectra of the log-magnitude STFT spectrograms. The
concentration of 98% of the energy is around 50.
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further used to compute the mel-frequency spectrographic representation, which will be termed
as mel-spectrogram. This representation corresponds to a matrix whose columns consist of
mel-frequency log spectral vectors, each of which represents the frequency warped log spectrum

of a short speech frame
Q = 10-logy, (B - 10Y/19) ¢ R>P, (4.9)

where the matrix B € R¥¥ contains the mel-spaced filterbank amplitudes and d is the number

of mel—ﬁltersﬂ The mel-frequency cepstral coefficients are given by
D=9Q, (4.10)

where ¥ denotes the d x d discrete cosine transform (DCT) matrix. The features in D are then

Mask
estimation

Missing data

i i A Recovered Mel
mputation L., |
‘alggr?ﬂl?r\ t representation Iteri

Figure 4.2: Flow diagram depicting the procedure of missing data imputation based on missing
data imputation

used for the text-independent noise robust speaker identification task. A schematic representa-
tion of missing-feature recovery based on missing data imputation can be found in Figure {:2]
4.4 Missing-feature recovery based on sparse imputation

In this section, we briefly describe the sparse imputation (SI) method [53] previously applied

in the context of missing data imputation for robust speech recognition. The core idea in SI is

'The matrix B is computed using the VOICEBOX toolbox.
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that a given signal can be represented as a sparse linear combination of basis elements.

If we combine the log-magnitude STEFT of the clean speech data S with and
the obtained mel-frequency cepstra are given by the matrix Dg € R®”. By following a
“concatenate-then-shift” process the d x P mel-frequency cepstra matrix Dg is transformed
into a new matrix of size (dT") x (| (P —T)/&| + 1), where T is the number of columns used
in each iteration during the concatenation procedure and £ is the sliding amount. Here, we
assume that € = 1, i.e., we shift by one column at a time. The rescaled matrix is denoted by
Dg with the i-th column being equal to &Sﬂ' € RITX1 " Each input test sample ng,i can be
expressed as a sparse linear combination of an overcomplete matrix, the so-called dictionary,
whose columns consist of a set of basis elements, usually referred to as atoms or exemplars. The

linear combination is written as
R B
dsi=» g = Ga, (4.11)
=1

where o; is an [-dimensional coefficients vector and G is an overcomplete dictionary of size
dT x g with 8 > dT'. Due to the sparsity coefficients vector’s assumption, only a few exemplars

are active and contribute to the representation of cNiS’,».

The focus is given on estimating reliable speech features further used for speaker identifica-
tion under noisy conditions. We make the assumption that a set of speech data coming from the
same speaker will have a similar sparse representation given the dictionary G which contains

the training speech data of all speakers belonging to a database. In specific, G is formed by

concatenating all the rescaled training mel-frequency cepstra matrices G;, i =1,...,J,
G = [91,1| T |91,m1|92,1‘ T |92,m2‘ T |9J,1 |9J,mJ]
= [G1|Ga|---|G] € RIT*P, (4.12)

where J is the total number of speakers in the corpus and 8 =m1 +mo + ...+ my. If a; is a

sufficiently sparse vector then the solution of the following optimization problem
&; = argmin |al|; st.ds; = Ga. (4.13)
a

gives a unique solution to (4.11). Efficient ways to solve the convex optimization problem
in (4.13) have been studied extensively. One way is to recast (4.13)) as an ¢; norm constrained

least squares problem of the form

Q&; = arg min HGa—&gi 2+>\Ha”13 (4.14)
a
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where the least absolute shrinkage and selection operator (LASSO) algorithm [102] can be
applied to compute its solution.

The mel-frequency cepstra matrix Dy € R4 corresponds to the noisy speech data Y.
By following the same “concatenate-then-shift” procedure as before, we obtain the rescaled
versions W e RUD*UP=T)/¢]+1) 3nd Dy e RED*(UP-T)/EI+1) of the mask W and noisy
mel-frequency cepstra Dy, respectively. Then, the element-wise multiplication D’ = W & Dy
gives a rough estimation of the reliable features. The reliable elements Ei;l of the ¢-th column

can be used to approximate the corresponding elements of c~l57i by solving the problem

& = arg min HGTa — &;Z
a ’

_+ Al (4.15)

where G, correspond to the rows of G associated with the reliable features. The obtained

sparse representation &; can be used to estimate the clean observation vector as
ds; = G (4.16)

It is important to note that by solving (4.15]) the reconstruction error will not be zero in general,

thus we only impute the unreliable elements

~ dS,z - dY,z
ds; = (4.17)
dg; = G,

where G, and QZZ corresponding to the rows of G and cCiSL for which the i-th column w; of W
equals zero.

If we apply — for all columns of the features matrix f)’{/ we end up with a set
of (dT) x (| (P —T)/¢] + 1) solutions of the form {figl}Z In matrix form notation the set
{figz}z can be denoted by f)g which reflects a reliable estimation of the noisy speech features.
A reshaped d x P version of f) s can be considered denoised version of the mel-frequency cepstra

matrix Dg of the underlying speech signal, which can be used directly for speaker identification.

4.5 Experimental results

In this section, we show that the proposed low-rank matrix completion approach is an effi-
cient method to reconstruct the missing T-F components of speech signals used during speaker
identification. First, the reconstruction performance of the SVT algorithm is evaluated and

compared with other matrix completion methods. Then, we demonstrate the superior recon-
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struction performance of the SVT algorithm against the SI method, in terms of achieving an

increased correct identification accuracy over the VOICES corpus.

4.5.1 Evaluation of SVT matrix completion on missing data imputation for

speaker identification

In this section, we compare the reconstruction performance of the SVT [101] algorithm with
the performance obtained by reconstructing the missing data matrix using LMaFit [103] and
ScGrassMC [104]. The experimental set-up, also used in our previous work [105], is adopted
for the SVT performance assessment. More specifically, we are interested in achieving noise
robust speaker identification, where noisy speech features are processed under a missing data
imputation framework [53] towards reducing the effects of noise in order to enhance the speaker
identification accuracy. In the subsequent experimental evaluations we use UBM—GMME] [39]
as the main classification process after feature enhancement through missing data imputation.

The original speech signals are sampled at 22 kHz, and downsampled to 16 kHz. During
feature extraction, an analysis window of 40 msec (equivalent to 640 samples), with a step size of
20 msec (corresponding to 320 samples), is employed to compute a mel-frequency spectrogram
of 30 bands. For the UBM-GMM classifier a diagonal covariance matrix of 16 Gaussian mixtures
was chosen during the simulations, where 10 sec of clean speech training data (per speaker) were
used. We selected the last five utterances as testing data per speaker. Speech babble noise and
factory floor noise were used to additively corrupt the test utterances. The SNR of the distorted
speech is set to -15, -10, -5, 0, 5, and 10 dB, while the noise signals belong to the NOISEX-92
database [88]. For each combination of noise type and SNR level, the sampling ratio of the
observed matrix W ©Y is defined as

number of observed values (k)
matrix size (F' x P)

Sampling ratio = (4.18)

We note that the sampling ratio (4.18) is inversely proportional to the number of zeros in
the binary mask W as defined in (4.6)), i.e., for smaller SNR values the amount of unreliable
features increases, and thus the number of observed values k corresponding to the reliable

features decreases. As a result, we can define the missing values ratio as follows

number of observed values (k)
matrix size (F' x P)

Missing values ratio = 1 — Sampling ratio =1 — (4.19)

The performance evaluation follows the strategy described in [97]. In particular, having

solved 1} each completed matrix ¥ corresponds to a sequence of feature vectors (columns)

*Universal Background Model for Gaussian Mixture Model
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{9, € REX1IE | of the form

@17@25 @37 s 7@P71’@P‘

Fach sequence of that form is divided into overlapping segments of ) feature vectors, where

the segments have the following form

@17@27@37 s 7@@ @Q—&-la s 7@P—17@P

15t segment

@1)@27 @35 cee @Q7@Q+1a cee QP—la @P
2nd segment (420)

@1)@27 @37 SRR @Qa@Q—l—h ) @P—Q?@P—Q—O—lv cee >@P—17@P

P—Q+1*" segment

The segment length @ is set to 400 during the testing simulations, which corresponds to ap-
proximately 8 sec. The correct identification rate (CIR) of the j-th speaker is computed as the

percentage of the correctly identified segments of length @ over the total number of segments

# cor. identified segments

CIR; = - 100%, (4.21)

total # of segments

where the total number of segments equals P — Q) 4+ 1. The total mean correct identification

rate is used as an evaluation metric during the test simulations, which is given by

R J
1 1 i
mean CIR = = ;_1 (J ;:1 CIRj> , (4.22)

where R and J denote the total number of Monte Carlo runs and speakers, respectively. The

correct identification rate CIR] of speaker j during the r-th Monte Carlo run is given by 1)

The average correct identification rates, computed as the percentage of the correctly iden-
tified segments over the total number of test segments, for 10 Monte Carlo runs are depicted
in Figures [4.3] and The SVT algorithm is compared with LMaFit and ScGrassMC, as well
as with the no matrix completion (no MC) technique where the missing data matrix W oY
is used explicitly for the speaker identification task. Fig. shows the results corresponding
to the speech babble noise, while Fig. corresponds to the correct identification rates in the
case of factory floor noise. The vertical bars indicate the 95% confidence intervals. It is clear
that the SVT matrix completion algorithm outperforms substantially the other three evaluated

methods across all the SNR noise levels. In particular, we can see that in both noise cases at
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Figure 4.3: Mean correct identification rates (%) for the SVT, LMaFit, ScGrassMC and no MC
for six different number of SNR values, where speech babble noise is added. The numbers inside
the parentheses represent the missing values ratios (4.19)).
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Figure 4.4: Mean correct identification rates (%) for the SVT, LMaFit, ScGrassMC and no MC
for six different number of SNR values, where factory floor noise is added. The numbers inside
the parentheses represent the missing values ratios (4.19)).

-10 dB SNR, i.e., when approximately 80% of the data is missing, the speaker identification
accuracy is around 80%. For all other cases, where the SNR is at least -5 dB the achieved

correct identification rates are above 87%.
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4.5.2 Evaluation of SVT against sparse imputation

In this section, we examine the reconstruction performance of the proposed low-rank matrix
completion method as described in Sections and [4.3] with respect to the resulting correct
identification rates compared with the SI approach overviewed in Section Fig. and

1007 1007
90t
80
~ 80r ~
S S
S 70 S 60l
N N
£ 60 2
= =
S 50/ s 40|
&) o
40 +
207
30t —~~SVT, speech babble|
n ---E{--‘SI,‘spe‘ech‘bab‘ble‘
2916—12 -8 4 0 4 8 12 O—16—12 -8 -4 0 4 8 12
(a) SNR (dB) (b) SNR (dB)

Figure 4.5: Mean correct identification rates (%) for the SVT vs. SI for eight different number
of SNR values, where speech babble noise is added.

Fig. show the identification accuracy corresponding to speech babble and factory floor noise,
respectively. In this simulation, we consider six different SNR values (-16, -12, -8, -4, 0, 4, 8
and 12 dB). Specifically, we focus on examining the reconstruction performance of SVT matrix
completion compared with SI mainly in noisy conditions, i.e. for values of SNR below -4 dB.

In Fig.[4.5] (a) and Fig.[4.6] (a) the solid line corresponds to the identification rates achieved by
the proposed SVT matrix completion approach, while the dotted line represents the performance
of the sparse imputation method. In all cases, the vertical bars indicate the 95% confidence
intervals. The difference in performance between the two methods especially in low SNR values
appear more clearly in the bar plots as depicted in Fig. [£.5/(b) and Fig. .6](b). It is important
to address that low-rank matrix recovery performs better than SI for SNR values below -4 dB
for both noise types, especially in the case of speech babble noise where SVT achieves 30%
and 15% higher identification rates than SI for -16 dB and -12 dB, respectively. Similarly,
SVT achieves an increase of 10% in the identification accuracy when compared with SI, for the
factory floor noise at -16 dB. Clearly, for all the SNR values greater than -4 dB, SVT is slightly
better than SI except for the case of 0 dB and 4 dB wherein SI slightly outperforms SVT.

As an overall conclusion, our experimental evaluation revealed that low-rank matrix recov-
ery can compete other state-of-the-art missing data imputation methods like ST even without

exploiting the a priori knowledge of training data as extra information which could enhance the
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identification performance.



94

Sparse and low-rank techniques for robust SR and MF reconstruction




CHAPTER

5

Joint Low-Rank Representation and Ma-
trix Completion Based on SVT

Try not to become a man of success, but
rather try to become a man of value.

ALBERT EINSTEIN (1879-1955)

5.1 Introduction

Many real-world problems often require the estimation of a matrix with missing entries. In
general, the matriz completion problem involves the computation of the missing entries in a
partially observed data matrix by imposing high data redundancy constraints through a low-
rank model. The seminal papers [99, [106] prove that in many cases, the matrix can be correctly
estimated with high probability from a number of observed entries greater than or equal to a
certain constant value. The estimation is in the form of a rank minimization problem, where
the nuclear norm [107], i.e., sum of the singular values, is used as the convex surrogate of the
rank function.

Many algorithms have been proposed to solve the matrix completion (MC) problem. They
can be summarized into two main categories with respect to the nature of the optimization
problem. The first group of algorithms employs nuclear norm minimization such as in singular
value thresholding (SVT) [101], templates for first-order conic solvers (TFOCS) [108], acceler-
ated proximal gradient (APGL) [I09] and augmented Lagrange multiplier (ALM) [110]. The
second class of MC algorithms minimizes an approximation error objective function on a Grass-
mann manifold as examined in OPTSPACE [111], subspace evolution and transfer (SET) [112],
Grassmanian rank-one update subspace estimation (GROUSE) [113], scaled gradients on Grass-
mann manifolds (ScGrassMC) [104], etc. Additionally, the low-rank matrix fitting algorithm
(LMaFit) [103] optimizes an approximation error objective function based on the nuclear norm
minimization framework, while in [114] MC is studied from a Bayesian point of view.

Over the last few years, MC has been tested in a wide range of practical applications in-

cluding robust video denoising [115], bearing estimation of narrowband sources in sensor ar-
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rays [116], received signal-strength fingerprint based indoor localization in wireless local area
networks [117] and audio bandwidth expansion [II8]. It has also been utilized for other sci-
entific problems such as position calibration in circular ultrasound tomography devices [119],

high-quality reconstructions for large scale seismic interpolation problems [120], etc.

Nuclear norm minimization for subspace segmentation has been developed in parallel with
MC since the germinal work introduced in [I12I]. The described low-rank representation idea
looks for the lowest rank estimate of a data matrix with respect to a collection of data drawn
from a union of multiple subspaces. Specifically, a learned dictionary or the data matrix itself
can be exploited for seeking the low-rank representation (LRR) of the data. LRR seems to be
very promising especially for classification tasks. For example, [122] 123] show that minimizing
a nuclear norm based objective function coupled with sparsity constraints and a discriminative
(or supervised) term enhances the power to discriminate features in image recognition. In [124]
LRR is also adopted for music tagging, while in [125] is extended to the case of multiple

dictionaries for music and singing voice separation.

Here, we propose a joint LRR and MC approach in the light of SVT framework. Especially,
we are interested in studying the effect of estimating the lowest rank representation of a data
matriz with respect to a given basis or dictionary connected with a partially observed version of
it under an SVT scheme. A dictionary based MC method has been recently proposed in [126],
where a similar optimization problem is examined for reconstruction and classification of simu-
lated sensor network data using the CVX software package [127]. This method can potentially
solve problems of very small size, however, the computational time is prohibitive for practical
applications even for data matrices of moderate size. The novelty of the proposed approach
is twofold. Firstly, in the current work a more rigorous mathematical formulation of the joint
LRR and MC problem is presented by restating the optimization problem and giving a detailed
algorithmic process for the estimation of the data matrix. Secondly, we employ an SVT algo-
rithmic solution especially targeted for medium scale data, where an experimental evaluation
is performed on synthetic data proving the efficacy of the proposed method. To the best of our
knowledge, this is the first time that LRR is connected with MC under an SVT algorithmic
process. Our proposed approach can be regarded as an enhanced version of SVT in the case
that we have knowledge of the data generation process via a dictionary or basis. Therefore,
we are strongly interested in examining the performance of the proposed algorithm versus the

performance of the typical SVT algorithm under these conditions.

The rest of the chapter is organized as follows: Section describes the proposed joint
LRR and MC approach along with an SVT-based solution. An experimental evaluation of the
proposed technique compared with typical SVT algorithm is described in Section
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5.2 Joint low rank representation and matrix completion using

SVT

Singular value decomposition (SVD) followed by soft-thresholding on the computed singular
values constitutes the core of the SVT algorithm described in Section Any procurable
information of the underlying procedure that generated the data matrix M is not taken into
account by MC. Sometimes this property is considered as an asset since it does not require the
explicit knowledge of such a generation procedure. In other cases, however, extra information
about the data matrix is available and exploiting this knowledge can lead to more accurate
solutions of different tasks at hand.

As mentioned in Section the low-rank representation (LRR) approach has been recently
introduced as an alternative to typical subspace-based methods like the SVD. The goal is to find
the lowest rank representation of a data matrix by solving the following convex optimization
problem

mgn IL|, st. M =ML, (5.1)

where M is the data matrix and L is a low-rank matrix. Adopting the LRR formulation, let
us assume that the additional information of the data matrix M can be modelled according to
a specific matrix decomposition of the form M = GL, where G is a known dictionary and L
is a low-rank matrix containing the corresponding representation coefficients. Thus, problem
can be formulated as

mLin |L|, s.t. M =GL. (5.2)

To apply the LRR scheme on matrices with missing data, we use the linear sampling operator
Az. The proposed sampling scheme is a combination of MC and LRR and seeks a low-rank coef-
ficient matrix L from a small number of measurements Az (M ). Thus, the convex optimization

problem takes the form below
mgn |L|, s.t. Az(X) = Az(M) and X = GL. (5.3)

The goal is to efficiently solve problem (5.3) in the context of the SVT algorithm so that we
can solve large-scale problems. Hence, combining (4.4)) and (5.3)) we get the joint LRR and MC
version of SVT dubbed J-SVT defined as follows

1
min 7 |||, + 5 IL||% s.t. Az(X) =band X = GL, (5.4)

where X € R™m>X™2 M ¢ Rm*n2 G € RM*K [ € REX"2 gnd K denotes the size of the
dictionary. In the J-SVT problem (5.4)), we consider the additional constraint that X must
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Algorithm 3: J-SV'T algorithm
Input: Az, observed values b, dictionary G, step size §, tolerance €, parameter 7 > 0,
maximuin iterations tmax
Output: estimated matrix X = GLp

1 Initialization: y, = 7b/||GT A%(b)||

2 fort =1 to tax do

8 [Uy, =, Vi, s = SVDshrink(GT A%(y,), 7, 51-1)
4 Lt = UtEtVZ

5 if [AZ(GL;) bl < €[], then

6 break

7 end

8 Yir1 =Y — 6(Az(GLy) — b)

9 end

be in the form X = GL for a fixed dictionary G. This constraint only amounts to changing
the linear operator, and that does not affect the convergence proofs of SVT under a correctly

scaled . Recall that SVT converges with § < 2||Az|~2. We have the following similar result:

Theorem 5.1. With step-size 6 < 2| Az o G|| =2, J-SVT produces a sequence L; that converges
to the unique minimizer of (5.4).

Proof. The proof of convergence for the SVT algorithm only uses the fact that Az is a linear
operator and can be extended to handle a generic linear operator A. By letting A = A70G and
A* = GT A% we arrive at J-SVT. The step-size must satisfy § < 2||A|| 72 = 2|4z o G||72. O

Since || Az o G|| < |G|, the step-size can best estimated using any upper bound on the
spectral norm of G.

Algorithm {4 implements the SVDshrink operation. The partialSVD(Z, s) algorithm returns
the top s singular values and singular vectors. The most common computational approach is
the Lanczos method. Here, we use the implementation in PROPACK, which re-orthogonalizes
the singular vectors as needed in order to improve numerical stability. These Lanczos methods
only require matrix-vector multiplies of the form Zw and Z7v, and thus we take advantage of
sparsity in Z. If GT has a fast transform, we can also take advantage of this, and never even
need to explicitly form the G or GT matrix (e.g., if G is the FFT or FFT-based).

In another improvement on regular SVT, we introduce the Nesterov accelerated [128] version,

which applies to both MC and LRR-MC problems.

Theorem 5.2. Algorithm [5 produces a sequence Ly that converges to the unique minimizer of
BA) if o <Az o G|I7%

Proof. This is a special case of the framework in [I08] and the strong convexity of the objective.

O]
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Algorithm 4: SVDshrink algorithm
Input: internal integer parameter £

1 function SVDshrink(Z, 7, so)

2 s so+1

3 repeat

4 [U,3%, V] = partialSVD(Z,s)

5 54 s+4

6

7

8

until ¥, <71
return [U,D,(X),V,s]
end function

Algorithm 5: Accelerated J-SV'T algorithm: identical to J-SVT except replace line 8 in
J-SVT with the following and initialize z; = y;.

8 ziy1 =Yy — 0(Az(GLy) — b)

9 Y1 = 2t + g (201 — 21)

Note that we have lost a factor of 2 in the step-size bound in the accelerated version, which
is because we can no longer over-relax (see [129]). Despite the smaller step-size, it has faster

convergence rate guarantees and typically works faster in practice.

5.3 Experimental results

In this section, we compare the reconstruction performance of the proposed J-SVT scheme with
the performance obtained by reconstructing the missing data matrix using the SV'T algorithm.
For this purpose, we perform simulations on synthetic data, where the dictionary G and the
low-rank representation matrix L are generated from normally distributed random samples. As

an evaluation metric, we employ the relative error, which is defined as follows:

|% - p]
F

Relative error = ——+——%
M|z

where X is the recovered matrix and M is the original full data matrix. In the present case
study, the size of the original data matrix M is set equal to nq X no = 300 x 500. The maximum
number of iterations tmax, the tolerance e and the parameter 7 are set equal to 100, 10~° and
5,/n1nz, respectively. The step size 0 is set equal to 1.9 in the case of SVT, while for the
accelerated version of J-SVT we use § = |G| ™% In the subsequent experimental evaluation,
the reconstruction performance of both the J-SVT and SVT algorithms is also examined as a

function of the sampling ratio, which is given by

number of observed values (k)

Sampling ratio =
pHne matrix size (n; X ng)
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Based on 10 Monte Carlo runs for each scenario, the total average were computed to show the

overall relative errors for each algorithm.
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Figure 5.1: Relative error as a function of sampling ratio. The size of dictionary G is 300 x 1500.
The rank of matrix L is: (a) 10, (b) 40, (¢) 70 and (d) 100.
As a first set of experiments, we examine the reconstruction performance of J-SVT for a

varying matrix rank. Figure reveals that our proposed J-SV'T algorithm outperforms clearly
the SVT counterpart in case of a dictionary size 300 x 1500. More specifically, Figure (a)
shows that the relative error achieved by J-SVT is almost zero for a sampling ratio (SR) > 0.3,
while the relative error achieved by SV'T approaches zero for a significantly higher sampling
ratio SR > 0.7. The effect of a varying matrix rank is shown in Figures [5.1](b)-(d), which
depict the reconstruction performance for matrix ranks equal to 40, 70 and 100, respectively.
As it can be seen, the relative error corresponding to J-SVT is close to zero for SR ~ 0.7,
whereas the relative error of SVT approaches zero only for an almost full sampling (SR ~ 0.9).

The second set of experiments concerns the performance evaluation of the two algorithms
by varying the dictionary size. In Figure the reconstruction accuracy of J-SV'T is compared
with the performance of SVT for dictionary sizes of 300 x 1000, 300 x 1500, 300 x 2000 and
300 x 2500, by fixing rank(L) = 50. Clearly, J-SVT outperforms again SVT, while we highlight

the approximately constant recovery behaviour of J-SVT regardless of the dictionary size. This
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Figure 5.2: Relative error as a function of sampling ratio. The rank of matrix L is 50. The size
of dictionary G is: (a) 300 x 1000, (b) 300 x 1500, (c) 300 x 2000 and (d) 300 x 2500.

observation is very important, since it reveals that J-SV'T is highly robust, in terms of achieving
a low reconstruction error, even in case of small-sized dictionaries, which represent our data in
a compact way. This comes also as a significant advantage of J-SV'T towards its application
in practical scenarios, where the size of the dictionary comes at the expense of an increased
computational and memory complexity.

As a final experimental evaluation, we compare the robustness of J-SVT against SVT under
noisy conditions. In particular, the relative error curves presented in Figure [5.3| correspond to
observed data corrupted by additive white noise, with the signal-to-noise ratio (SNR) being
equal to 10, 15, 20 and 25 dB. As it can be seen J-SVT achieves a significantly improved
reconstruction quality in regard with SVT. Especially in Figure [.3}(b)-(d), SVT has almost
twice as high relative error on average for the same range of sampling ratio values. As expected,

the performance of SVT converges to the performance of J-SVT for a full sampling ratio (= 1).
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Figure 5.3: Relative error as a function of sampling ratio. The size of dictionary G is 300 x 1500
and the rank of matrix L is 50. The SNR level is set to: (a) 10 dB, (b) 15 dB, (c) 20 dB and
(d) 25 dB.



CHAPTER

6

Conclusions and Future work

The future is always beginning now.

MARK STRAND (1934-)

In this thesis, we studied the problem of robust speaker identification under the constraints
of using a limited amount of training and evaluation speech data. In the first part of the current
thesis, the focus is given on the problem of speaker identification using highly limited amounts
of testing and training sessions, in noisy environments. A sparsity-based technique is proposed
based on the assumption that the identified speech signal, and specifically the features that
have been extracted from this signal, can be expressed as a sparse linear combination in terms
of a dictionary. The optimally estimated sparse codes, which are obtained as the solutions of
an optimization problem, are then employed for the final identification of the speaker based on
a minimum reconstruction error criterion. An extension of the sparsity-based approach is then
introduced to estimate jointly the dictionary comprising of the training data in conjunction
with an appropriate linear classifier. The advantage of this approach is that it results in sparse
codes, which are characterized by enhanced discriminative capability. Extensive experimen-
tal evaluations revealed the superiority of the proposed techniques compared to probabilistic
approaches as well as compared to state-of-the-art speaker identification methods.

In the second part of this thesis, a technique for recovering a low-rank matrix is designed,
which is employed for the reconstruction of those spectral regions of a speech signal, which
are unreliable due to the presence of noise. The reconstruction of the unreliable spectral re-
gions is performed by adopting the Singular Value Thresholding (SVT) algorithm, based on
the assumption that the logarithmic magnitude representation of a speech signal in the time-
frequency domain, obtained via the short-time Fourier transform (STFT), is of low rank. The
comparison against the widely used method of sparse imputation, which is based on sparse
representations, reveals the superiority of our proposed approach in terms of producing more
reliable features. Then, an extended version of the matrix completion method, which exploits

the prior knowledge that the data matrix is low rank, as well as the knowledge that the data
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can be represented efficiently in terms of a dictionary. In specific, a novel algorithm is proposed
for joint low-rank representation and matrix completion (J-SVT), which is superior when com-
pared with the standard SVT with respect to the computation of the low-rank representation
of a data matrix in terms of a given dictionary, by employing a small number of observations
from the original matrix. Through extensive simulations, we observed an improvement of the
reconstruction error achieved by the J-SVT, in contrast to the typical SVT, for several distinct
experimental scenarios.

There are still many open problems to be examined and future work to be done which
will introduce further development on missing-feature reconstruction and discriminative sparse

coding techniques. Some of them can be listed as below:

e Extend the experimental evaluation set-up in corpora containing more speakers and deal-
ing with a broader range of noise types. Other types of applications could also be examined

such speech stressed classification problems.

e Examine the discriminative properties of i-vectors compared to typical speech features

such as MFCCs, especially under the discriminative dictionary learning framework.

e The combination of probabilistic models such as GGD with discriminative dictionary
learning approaches, could lead in enhanced classification accuracy by taking advantage

of the a-priori knowledge of the specific statistical behaviour of the speech features.

e The discriminative constraints modeled by the matrix P in (3.8)) could be replaced by a
distance metric (learning) constraint in order to further “push” the sparse codes from the

same class to have very small distances.

e Another idea is related with the classification error in (3.10). In the current thesis, this
error (i.e. matrix B) is related with a linear classifier. A natural extension is to incorporate

a non-linear classifier, which could lead to more robust classification performance.

e The unsupervised nature of SVT-based missing-feature reconstruction could be exploited
to produce reliable log-magnitude STFT representations of noisy speech signals. This
method is classifier-independent and thus, it could be straightforwardly used in automatic

speech recognition applications, to deal with robustness issues.

e Practical estimated reliability masks could be applied to distinguish the reliable from
the unreliable spectrotemporal regions. We expect that low-rank matrix completion will
perform better than sparse imputation because it is more resistant to a large number of

missing time-frequency bins.
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e FExperiments with real speech data using the J-SVT algorithm. Additionally, we could
study the J-SVT approach in the light of L-BFGS approach as a tool to further decrease

the computational time.
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