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Abstract

Sparse and Low-Rank Techniques for Robust Speaker
Recognition and Missing-Feature Reconstruction

Christos Tzagkarakis

University of Crete

Department of Computer Science

Doctor of Philosophy, 2014

Speaker recognition is the process for recognizing a speaker automatically, based on speci�c

features extracted from the speech signal. It is divided in two distinct categories, namely, speaker

identi�cation and speaker veri�cation. A broad range of applications exploits at its core the

process of speaker recognition, where usually the presence of environmental noise in the speech

signal impedes the inference of correct decisions. An additional factor, which contributes to

the di�culty of recognizing a speaker correctly, is the limited amount of available training and

evaluation data. This can be due to either a practical di�culty in obtaining a large volume

of training data, or to the need to reduce the overall computational cost by using limited, yet

reliable, evaluation data.

Focusing on overcoming the above limitations, while achieving high rates of successful recog-

nition, this dissertation is divided in two main parts. In the �rst part, the problem of speaker

recognition is reduced in an equivalent classi�cation problem. To this end, we develop and

study the performance of classi�cation techniques, which are based on the framework of sparse

representations, where we focus on the task of speaker identi�cation by employing highly lim-

ited amounts of training and evaluation data, in environments with high levels of noise. The

main assumption that governs these techniques is that the identi�ed speech signal, and speci�-

cally the features that have been extracted from this signal, can be expressed as a sparse linear

combination in terms of the columns of an overcomplete matrix, which is often referred in the

literature with the term �dictionary�. This dictionary is constructed appropriately from the

available training data, while the computation of the sparse linear combinations is achieved via

the solution of an optimization problem based on `p-norms (p = 1 or 2). The optimally esti-

mated sparse weights of the linear combinations, the so-called sparse codes, which are obtained

as the solutions of the optimization problem, are then employed for the �nal identi�cation of

the speaker based on a minimum reconstruction error criterion.

Extending our previous classi�cation method based on sparse representations, we study the

e�ciency of a method for discriminative dictionary learning. This method estimates jointly the



dictionary comprising of the training data in conjunction with an appropriate linear classi�er.

The advantage of this approach is that it results in sparse codes, which are characterized by

enhanced discriminative capability. For this experimental evaluation of the performance of our

proposed method, through extensive simulations, a relatively small-sized database was used.

The corresponding data were corrupted by several distinct types of environmental noise, for

a wide range of signal-to-noise ratio values. Extensive comparisons with probabilistic mod-

els, which are based on the hypothesis that the extracted speech features follow a generalized

Gaussian distribution, as well as with some of the state-of-the-art classi�cation methods, such

as Gaussian mixture models and joint factor analysis, revealed the superiority of our proposed

method in terms of achieving higher correct recognition rates in noisy environments combined

with the use of short training and testing speech data.

The second part of this dissertation focuses on the use of low-rank techniques as a pow-

erful tool for extracting reliable features from a speech signal. More speci�cally, a technique

for recovering a low-rank matrix is designed, which is employed for the reconstruction of those

spectral regions of a speech signal, which are unreliable due to the presence of noise. The

discrimination of the spectral regions is achieved by means of a reliability mask, which discrim-

inates the regions characterized by the presence of noise from the regions which are dominated

by the speech signal information. The completion of the empty spectral regions is performed

based on the assumption that the logarithmic magnitude representation of a speech signal in the

time-frequency domain, obtained via the short-time Fourier transform (STFT), is of low rank.

Then, the Singular Value Thresholding (SVT) algorithm is exploited for the completion of those

regions of the STFT representation, which are considered to be unreliable. The experimental

evaluation of the proposed method reveals its power in extracting reliable features, which yield

high rates of correct speaker identi�cation in cases of high noise levels. The comparison against

the widely used method of sparse imputation, which is based on sparse representations, reveals

the superiority of our proposed approach in terms of achieving accurate speaker identi�cation,

especially for low levels of signal-to-noise ratios.

The above method does not take into account the existing prior knowledge with respect

to the available training data, constituting essentially an unsupervised method. Motivated by

this observation, we propose an extension of the matrix completion method, which exploits the

prior knowledge that the data matrix is low rank, as well as the knowledge that the data can be

represented e�ciently in terms of a dictionary. In particular, we proposed an algorithm for joint

low-rank representation and matrix completion (J-SVT). J-SVT is superior when compared

with the standard SVT with respect to the computation of the low-rank representation of

a data matrix in terms of a given dictionary, by employing a small number of observations

from the original matrix. Through extensive simulations, we observed an improvement of the

reconstruction error achieved by the J-SVT, in contrast to the typical SVT, for several distinct

experimental scenarios.
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Qarakthristik¸n

Qr stoc Tzagkar�khc

Panepist mio Kr thc
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Didaktorik  Diatrib , 2014

H anagn¸rish omilht  apoteleÐ th diadikasÐa thc autìmathc anagn¸rishc tou atìmou pou

mil�ei, me b�sh k�poia qarakthristik� pou ex�gontai apì to s ma fwn c. QwrÐzetai se dÔo epi-

mèrouc kathgorÐec, kai sugkekrimèna sthn tautopoÐhsh kai sthn epal jeush tou omilht . 'Ena

eurÔ f�sma efarmog¸n èqei wc pur na tou thn anagn¸rish omilht , ìpou sun jwc h parousÐa

periballontikoÔ jorÔbou sto s ma fwn c duskoleÔei thn exagwg  swst¸n ektim sewn. 'Enac

epiprìsjetoc par�gontac pou sumb�lei sth duskolÐa swst c anagn¸rishc apoteleÐ h periori-

smènh posìthta dedomènwn ekpaÐdeushc kai dedomènwn axiolìghshc. Autì mporeÐ na ofeÐletai

eÐte se lìgouc duskolÐac apìkthshc meg�lou ìgkou dedomènwn ekpaÐdeushc eÐte sthn an�gkh na

mei¸soume to upologistikì kìstoc mèsw thc qr shc lÐgwn, all� axiìpistwn, dedomènwn axiolì-

ghshc.

Sthn prosp�jei� mac na antimetwpÐsoume tic parap�nw duskolÐec, epitugq�nontac uyhl� po-

sost� epituqoÔc anagn¸rishc, h paroÔsa ergasÐa qwrÐzetai se dÔo mèrh. Sto pr¸to mèroc, to

prìblhma thc anagn¸rishc omilht  an�getai se èna prìblhma taxinìmhshc. Sthn kateÔjunsh

aut  anaptÔssoume kai melet�me sumperifor� teqnik¸n taxinìmhshc pou basÐzontai se upojèseic

arai c anapar�stashc, ìpou epikentrwnìmaste sthn efarmog  tautopoÐhshc omilht  me qr sh

polÔ periorismènwn dedomènwn ekpaÐdeushc kai axiolìghshc, se perib�llonta me uyhl� epÐpeda

jorÔbou. H basik  upìjesh pou dièpei tic sugkekrimènec teqnikèc eÐnai pwc to upì tautopoÐhsh

s ma fwn c, kai eidikìtera ta qarakthristik� pou èqoun exaqjeÐ apì autì, mporeÐ na grafeÐ

wc araiìc grammikìc sunduasmìc wc proc èna uperpl rh pÐnaka, o opoÐoc suqn� anafèretai sth

bibliografÐa me ton ìro lexikì. To lexikì autì kataskeu�zetai kat�llhla apì ta diajèsima

dedomèna ekpaÐdeushc, en¸ h eÔresh twn arai¸n grammik¸n anaparast�sewn epitugq�netai mèsw

thc epÐlushc enìc probl matoc beltistopoÐhshc me b�sh thn `p-nìrma (p = 1   2). Ta bèlti-

sta ektim¸mena arai� b�rh twn grammik¸n sunduasm¸n, oi eponomazìmenoi kai araioÐ k¸dikec,

pou prokÔptoun wc lÔseic tou probl matoc beltistopoÐhshc, qrhsimopoioÔntai gia thn telik 

tautopoÐhsh tou omilht  mèsw enìc kanìna el�qistou sf�lmatoc anakataskeu c.



EpekteÐnontac thn parap�nw mèjodo taxinìmhshc mèsw arai c anapar�stashc, exet�zoume

thn efarmog  mÐac mejìdou diakritik c ekm�jhshc lexikoÔ. Me thn mèjodo aut  ektim�tai apì

koinoÔ to lexikì pou perièqei ta dedomèna ekpaÐdeushc mazÐ me èna kat�llhlo grammikì taxino-

mht . To pleonèkthma aut c thc prosèggishc eÐnai ìti odhgeÐ sthn paragwg  arai¸n kwdÐkwn oi

opoÐoi qarakthrÐzontai apì megalÔterh diakritik  ikanìthta. Kat� th di�rkeia thc peiramatik c

axiolìghshc thc apìdoshc aut c thc mejìdou, mèsw prosomoi¸sewn, qrhsimopoi jhke mÐa sqe-

tik� oligomel c b�sh dedomènwn. Sta dedomèna aut� prostèjhkan di�fora eÐdh periballontikoÔ

jorÔbou gia èna eurÔ sÔnolo tim¸n shmatojorubikoÔ lìgou. Oi ekteneÐc sugkrÐseic pou pragma-

topoi jhkan tìso me pijanotik� montèla, ta opoÐa basÐzontai sthn upìjesh ìti ta qarakthristik�

thc fwn c akoloujoÔn genikeumènh Gaussian katanom , ìso kai me merikèc ek twn korufaÐwn me-

jìdwn taxinìmhshc, ìpwc montèla mÐxhc Gaussian katanom¸n kai koin c paragontik c an�lushc,

anèdeixan thn uperoq  thc proteinìmenhc mejìdou anaforik� me thn epÐteuxh uyhlìterwn poso-

st¸n swst c tautopoÐhshc se perib�llonta jorÔbou se sunduasmì me th qr sh periorismènhc

posìthtac dedomènwn ekpaÐdeushc kai axiolìghshc.

To deÔtero mèroc thc diatrib c melet�ei th qr sh teqnik¸n qamhl c t�xhc wc èna ergaleÐo gia

thn ektÐmhsh axiìpistwn qarakthristik¸n fwn c. Eidikìtera, efarmìzetai mÐa teqnik  an�kth-

shc pÐnaka qamhl c t�xhc gia thn anakataskeu  ekeÐnwn twn fasmatik¸n perioq¸n tou s matoc

fwn c, oi opoÐec den eÐnai axiìpistec exaitÐac thc èntonhc parousÐac jorÔbou. O diaqwrismìc

aut¸n twn fasmatik¸n perioq¸n epitugq�netai me th bo jeia miac m�skac axiopistÐac, h opoÐa

diakrÐnei tic perioqèc pou qarakthrÐzontai apì parousÐa jorÔbou se sqèsh me tic perioqèc stic

opoÐec epikrateÐ h plhroforÐa tou s matoc fwn c. H sumpl rwsh twn ken¸n fasmatik¸n perio-

q¸n pragmatopoieÐtai b�sei thc upìjeshc ìti h logarijmik  anapar�stash pl�touc enìc s matoc

fwn c sto pedÐo qrìnou-suqnìthtac mèsw tou short-time metasqhmatismoÔ Fourier (STFT) eÐ-

nai qamhl c t�xhc. Katìpin, o Singular Value Thresholding (SVT) algìrijmoc uiojeteÐtai gia

thn sumpl rwsh twn perioq¸n thc STFT anapar�stashc pou jewroÔntai wc mh axiìpistec. H

peiramatik  axiolìghsh thc proteinìmenhc mejìdou anadeiknÔei thn isqÔ thc ston upologismì

axiìpistwn qarakthristik¸n ta opoÐa odhgoÔn se arket� uyhl� posost� swst c tautopoÐhshc

omilht  se peript¸seic ìpou ta epÐpeda jorÔbou eÐnai uyhl�. H sÔgkrish me thn eurèwc qrhsimo-

poioÔmenh mèjodo thc sparse imputation, h opoÐa basÐzetai sthn upìjesh arai c anapar�stashc,

faner¸nei thn anwterìthta thc proteinìmenhc mejìdou anaforik� me thn epÐteuxh akriboÔc tau-

topoÐhshc omilht , gia qamhl� epÐpeda shmatojorubikoÔ lìgou.

H parap�nw mèjodoc de lamb�nei upìyh thn ek twn protèrwn gn¸sh pou up�rqei sqetik�

me ta dedomèna ekpaÐdeushc pou èqoume sth di�jes  mac, apotel¸ntac ousiastik� mÐa mèjodo

qwrÐc epÐbleyh. 'Eqontac aut  thn parat rhsh wc kÐnhtro, proteÐnetai mÐa epèktash thc mejìdou

sumpl rwshc pÐnaka h opoÐa ekmetalleÔetai thn ek twn protèrwn gn¸sh ìti o pÐnakac dedomè-

nwn eÐnai qamhl c t�xhc, kaj¸c kai th gn¸sh ìti ta dedomèna mporoÔn na anaparastajoÔn me

apotelesmatikì trìpo wc proc èna lexikì. Eidikìtera, proteÐnoume ènan algìrijmo apì koinoÔ

anapar�stashc qamhlìterhc t�xhc kai sumpl rwshc pÐnaka (J-SVT). O J-SVT uperèqei tou kla-

sikoÔ SVT ston upologismì thc anapar�stashc qamhlìterhc t�xhc enìc pÐnaka dedomènwn wc

proc èna dosmèno lexikì qrhsimopoi¸ntac lÐgec parathr seic apì ton arqikì pÐnaka. Mèsw pro-

somoi¸sewn parathreÐtai h beltÐwsh tou sf�lmatoc anakataskeu c pou epitugq�nei o J-SVT se

antÐjesh me ton tupikì SVT, gia di�fora peiramatik� sen�ria.
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Structure of the thesis

The present thesis deals with the problem of noise robust speaker identi�cation under limited

training and testing speech data. Our goal is twofold. First, we would like to study the ef-

�ciency of sparsity-based and discriminative dictionary learning classi�cation methods within

the context of highly limited amount of training and testing instances under noisy environ-

ments. Second, we leverage prior knowledge that the speech log-magnitude spectrotemporal

representation is low-rank in order to apply a missing data imputation method based on matrix

completion. We aim at enhancing the reliability of speech features using a matrix recovery

technique based on singular value thresholding algorithm. An extended version of standard

matrix completion that leverages prior knowledge that the matrix is low-rank and that the data

samples can be e�ciently represented by a �xed known dictionary is also proposed. The thesis

is organized as follows:

Chapter 1

This chapter provides the necessary background information of the speaker recognition research

area. We describe the main categories of a speaker recognition system associated with the

speci�c task undertaken. Besides, we analyze the basic compensation techniques adopted to

overcome the various robustness issues arisen in noisy environments. A brief overview of missing

data techniques is also given based on the use of reliability masks for producing reliable speech

features fed into a speaker recognition system as well as the core research work corresponding

to the speaker recognition problem under short training and evaluation speech data. The

chapter concludes by discussing our motivation and listing the main contributions of the this

dissertation.

Chapter 2

In this chapter, we describe a sparsity-based classi�cation approach proposed within the context

of noise robust speaker identi�cation using a limited amount of training and testing speech data.



We assume that each test instance can be sparsely represented as a linear combination of all the

training data (used to construct a dictionary) which have been obtained during the enrollment

phase. Speci�cally, we exploit the fact that the test instances coming from a certain speaker can

be expressed as a linear combination of the training instances associated with the same speaker.

The optimally estimated sparse weights of this linear combinations, dubbed as sparse codes, are

computed as the solutions of a sparse optimization problem. The estimated sparse codes are

then employed for the �nal identi�cation of the speaker based on a minimum reconstruction error

criterion. This method is compared with a proposed probabilistic model, which is based on the

assumption that the extracted speech features follow a generalized Gaussian distribution, as well

as with some of the state-of-the-art speaker identi�cation techniques revealing the superiority

of the sparsity-based approach under the constraint of using short test and training sessions in

noisy conditions.

Chapter 3

In this chapter, the second proposed method is presented for solving the noise robust speaker

identi�cation problem using a limited amount of training and testing utterances. In particular,

we aim at learning an overcomplete dictionary, resulting in highly discriminative sparse codes,

along with a linear classi�er. This estimation is performed in a joint fashion by imposing

additional constraints on the associated objective function in order to produce similar sparse

codes for those training samples belonging to the same speaker. This is in contrast to the sparse

representation classi�cation (SRC) approach introduced in the previous chapter, which do not

treat jointly the estimation of the dictionary, the sparse codes, and the classi�er parameters.

Several experiments comparing the discriminative dictionary learning technique with a UBM-

GMM system, as well as with the SRC approach show that the proposed method performs

better than the other two methods in the case of small amount of training data, and is very

robust to noisy conditions.

Chapter 4

This chapter describes a method for missing-feature reconstruction applied in the context of

noise robust speaker identi�cation using short training and testing data. Reconstruction of

missing features promotes robustness in speaker recognition applications under noisy condi-

tions. The low-rank behaviour of the log-magnitude spectrotemporal speech data is exploited

in the framework of missing data imputation, where a low-rank matrix recovery approach based

on singular value thresholding (SVT) algorithm is applied to reconstruct the unreliable spectro-

graphic data due to noise corruption. Experiments on real speech data performed to compare

its performance with the recently introduced sparse imputation technique showing that the

proposed technique achieves an improved performance in terms of higher correct identi�cation

rates especially for low signal-to-noise ratio (SNR) scenarios.

Chapter 5

In this chapter, an extension of the SVT-based low-rank matrix completion method for missing-



feature recovery is described. In particular, the approach analyzed in the previous chapter does

not take into account the existing prior knowledge with respect to the available training data,

constituting essentially an unsupervised method. This observation motivate us propose an

extension of the matrix completion method, which exploits the prior knowledge that the data

matrix is low rank, as well as the knowledge that the data can be represented e�ciently in

terms of a dictionary. In particular, we propose an algorithm for joint low-rank representation

and matrix completion (J-SVT). J-SVT is superior when compared with the standard SVT

with respect to the computation of the low-rank representation of a data matrix in terms of a

�xed dictionary, by employing a small number of observations from the original data matrix.

Through several simulations, we show that the reconstruction error achieved by the J-SVT is

lower with respect to the typical SVT, for several distinct experimental scenarios.

Chapter 6

This chapter serves as a conclusion and summarization of the main results of this thesis and

provides directions for future work.





Chapter

1

Introduction

Somewhere, something incredible is waiting
to be known.

Carl Sagan (1934-1996)

Speaker recognition concerns the task of recognizing the identity of a claimed speaker. The

voice signal constitutes the core ingredient on which recognition is based. Vocal quality charac-

teristics associated with the rhythm and verbal idioms, pronunciation and intonation style, etc.

strongly a�ects the recognition accuracy. All these quality parameters should be jointly taken

into consideration for building a reliable practical speaker recognition system.

Speaker recognition [1, 2, 3, 4] can be categorized into speaker identi�cation and speaker

veri�cation. Generally speaking, speaker veri�cation is a one-to-one matching process where

one speaker's voice is matched to one template whereas speaker identi�cation is a one-to-many

match where the voice is compared against a speci�c number of voice patterns. Speaker identi-

�cation [5, 6, 7, 8, 9, 10, 11] is de�ned as the task of determining an unknown speaker's identity.

It can in turn be distinguished into two categories with respect to the speakers' set structure.

Speci�cally, in the case of closed-set speaker identi�cation we make the assumption that the

voice signal coming from the unknown speaker must belong to a �xed and known set of speakers.

Otherwise, we have an open-set speaker identi�cation [12, 13, 14], where the speakers that are

not members of the set of known speakers are categorized as impostors.

In speaker veri�cation, a speaker claims to be of a certain identity and his/her voice is used

to verify this claim. It can be considered as a binary hypothesis problem, where the goal is to

discern whether the voice of the speaker under veri�cation comes from a person whose voice has

been enrolled into the speech corpus and as a result is known to the system from a potentially

large group of voices unknown to the system. The combination of speaker veri�cation with

open-set speaker identi�cation leads to a system where the speaker is initially detected as an

impostor or non-impostor, and if the speaker is positively accepted then the speci�c speaker's

identity is estimated according to the speakers enrolled in the database.
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Speaker recognition can be adopted in a broad range of applications. First of all, security

constitutes the main core of diverse applications spanning from the control of entrance to

restricted areas (e.g. military facilities, governmental buildings etc.) to telephone banking

and commerce where the individual's voice is used to ensure a secure �nancial transaction.

Typically, a speci�c password or special phrase should be uttered in order to proceed with

the whole process. A second possible application is media indexing based on voiceprints. A

multimedia collection such as online movie database and broadcast news, audio books archives

etc. can be automatically indexed by using a speaker recognition system allowing the user to

navigate and access the audiovisual material based on content. Speaker recognition can also be

applied in the context of forensics, where a sample of a suspect's voice can be used as evidential

material within a court room or as an investigation tool during a criminal investigation.

Apart from the above, speaker recognition could play a crucial role in ambient intelligence

environments. During the last years a large interdisciplinary e�ort has been carried out towards

researching and studying problems in which the computer ceases to constitute a physical object

and turns into a pervasive presence in the surrounding �eld interacting with the user in various

ways. Imagine, for example, a typical meeting room where a simple equipment based on a

speaker recognition system could track the current speaker and take on-the-�y decisions about

changing camera orientation, automatic change of presentation slides, a personalized interaction

with the teleconference system etc. Besides, all the speaker-centric information produced during

the meeting could easily be used in an o�-line mode for meeting transcription as well as for

speaker diarization, namely estimating who spoke when.

Speaker recognition methods can also be divided into text-dependent and text-independent

methods. The former [15] requires the speaker to provide �xed utterances of keywords or sen-

tences, the same text being used for both training and recognition. However, in text-independent

recognition, the decision does not rely on a speci�c text being spoken. Thus, the speech training

data and the testing utterances of the same speaker may have completely di�erent linguistic

and phonetic content which should be taken into account during the recognition process. Text-

independent method constitutes a more challenging task and occurs in most practical situations

compared to the text-dependent one. In the next sections we will describe the main reasons

a�ecting the accuracy of a speaker recognition system and we will also mention our motivation

as well as the basic contribution points of the current thesis.

1.1 Robustness in speaker recognition

The e�ciency of practical speaker recognition systems in most cases is strongly a�ected by

the presence of noise, reverberation or other distortion factors usually associated with the



Chapter 1. Introduction 29

transmission medium of the speech signal or phonetic variability issues. Let us imagine, for

example, the case of an individual located in an external environment (e.g. a sidewalk near

a busy street) talking at the mobile phone and trying to accomplish a �nancial transaction.

The ambient noise permeates the entire voice signal and as a result reducing the recognition

performance which in turn causes a transaction failure. As an extension of the previous example,

consider the case of channel/handset mismatch between training and testing phases, where the

training data have been recorded via a mobile phone but during the recognition process the

speaker uses a landline phone to communicate with the system.

All these and many other practical examples indicate the fact that the robustness issue

and thus the accuracy of a speaker recognition system is related with the mismatch conditions

between the training data and the available data during the recognition process often termed

as session variability [16, 17]. The emotional status of the speaker such anxiety, sadness,

happiness, etc. can also produce session variations. Even in the case of ambient intelligence

environments such as smart o�ce or smart rooms where noise levels are almost negligible, some

session variations can occur because of the air conditioner operation sound or possible changes

in the speaker and acquisition terminal distance resulting in important di�erences in recorded

voice signals and thus leading to poor recognition performance [18].

1.1.1 Compensation methods

A plethora of techniques have been developed through the last decades to compensate for the

training/testing mismatch conditions. In particular, many approaches have been proposed in

the feature, model and match-score context in order to deal with the robustness issue. In

feature-based compensation methods the sequence of feature vectors (generally corresponding

to a short-term spectral representation) associated with a speaker's utterance is subject to in-

variance enhancement to non-speaker vocal quality information within the input speech signal.

In speci�c, the Cepstral Mean Normalization (CMN) compensation methods [19, 20, 21, 22]

exploit the fact that the noise is additive in the log-spectral domain, reducing in this way the

linear �ltering e�ects as expressed in various channel distortions. Under the noise additivity

assumption in the log-spectral domain and the fact that the channel signal does not signif-

icantly vary over the duration of an utterance, CMN aims to alleviate the distortion e�ects

by subtracting from each feature vector the average mean of those. CMN can be extended to

Cepstral Mean and Variance Normalization (CMVN) process [23] for equalizing the variances

of the features by dividing each feature vector by its standard deviation where a sliding window

strategy is followed. The window should be long enough to allow good estimates for the mean

and variance, yet short enough to capture time-varying properties of the channel.
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The relative spectral (RASTA) �ltering approach [24] is a channel compensation method

exploiting the inherent di�erences between the temporal properties of distortion e�ects and the

temporal properties of the speech. Speci�cally, RASTA performs a band-pass �ltering where

highly and slowly varying frequency components lying out of the �lter bandwidth are eliminated

as considered to contain non-speech information. The RASTA method can be regarded in

general as an evolved version of CMN where except from the noise components those components

which evolve in such a way as to be considered that do not contain information about the speech

are also eliminated.

Another group of methods is related with the modi�cation of the speech signal's power

spectral representation. The source-�lter speech production model is assumed towards adopt-

ing the linear prediction (LP) methodology during the feature extraction process. The pitch

information is captured within the LP residual, while the LP �lter response models the vocal

tract characteristics [25]. This information discrimination reveals the vocal tract properties in

noisy conditions. Additional weighting approaches can improve robustness such as liftering [22]

which enforces the computation of low order coe�cients against the noise sensitive higher order

coe�cients as well as post�ltering [26] which gives emphasis on formant regions based on the

assumption that the noise e�ect is eliminated in these regions.

Channel variability compensation and enhanced speaker recognition accuracy can be achieved

in light of feature transformation approaches. A feature transform is computed to convert

speaker-dependent features to speaker-independent features. The application of inverse trans-

form into the noisy speech features can reduce the distortion e�ects [22]. In [27] the transforma-

tion parameters are utilized in the feature domain to perform maximum a-posteriori adaptation

from a channel independent model to a set of channel dependent models. Feature warping [28]

and short-time Gaussianization [29] have also been proposed which involve modi�cation of the

short-term feature distribution to match a target distribution. It is assumed that the clean

(cepstral) features follow a speci�c distribution (for example a Gaussian distribution), which is

altered by the additive noise and channel distortions. This modi�cation is achieved by warping

the cumulative distribution function of the features in order to match the reference distribution

function.

The key idea behind model-based compensation is the modi�cation of speaker model param-

eters instead of handling speech features per se as a solution in learning the noise characteristics

without requiring the explicit identi�cation and labeling of di�erent conditions. Examples of

such methods include the speaker-independent variance transformation [30] and the transforma-

tion for synthesizing supplementary speaker models for other channel conditions that have not

been presented during the enrollment phase [31]. This can be practically achieved by building a

channel-independent multicondition background model using all training data from a collection
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of various channels, while channel-dependent models are constructed via maximum a-posteriori

adaptation and used to learn transformations between di�erent channels. The training/testing

mismatch may be lessened by synthesizing a training channel type to a testing channel type

during the recognition process. Multicondition training data are also utilized to jointly model

the inter-speaker (i.e., the set of special characteristics distinguishing di�erent speakers) and

channel variability under the factor analysis scheme [32, 33]. The basic idea lies in the decom-

position of the session variability component in a low-dimensional acoustic subspace.

There have also been proposed other techniques in which the focus is on noise compensation,

for example, parallel model combination [34, 35, 36], or Jacobian environmental adaptation [37,

38], assuming the availability of a statistical model of the environment or noise.

Score-based compensation methods are mainly used in speaker veri�cation task and the main

goal is to enforce scores from di�erent speakers to fall into a similar range so that a common

speaker-independent threshold can be used. Before proceeding further it would be helpful to

mention that during the training process in a speaker recognition system we usually built a

(probabilistic) model for each speaker belonging to the database. When we want to recognize

the speaker we have to evaluate the likelihood of the test utterance with respect to the trained

model and thus the so-called likelihood ratio scores are produced. The most dominant score-

domain methods include handset dependent score normalization (H-norm) providing robustness

to channel variability through the construction of Gaussian mixture models (GMMs) to model

non-linear uncompensated channel e�ects within each of the relevant conditions [39]. During

recognition the test segment is assigned a handset type classi�cation based on the handset

GMMs, and the speaker GMM likelihood is modi�ed by normalization with the handset model

parameters. The o�ine estimation of the normalization parameters is allowed in Z-norm [40]

method, where the explicit labeling of each test utterance according to its channel type is not

required. Z-norm approach can be extended by scaling the score distribution with the variance

of the imposter scores giving rise to the T-norm [41] method.

1.1.2 Missing data methods

It is of high importance to notice that all the methods described above were developed during

a long-term research e�ort to deal with the problem of robustness in the context of speaker

recognition. However, it still remains quite di�cult in many practical cases to successfully

apply these compensation approaches in order to achieve high accuracy recognition results.

This is mainly due to the fact that treatment of the environmental noise is hard to be induced

by the majority of the aforementioned compensation methods as opposed to the protection

against channel distortions. More speci�cally, feature-based compensation techniques cannot
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handle speech signals corrupted by environmental noise without the availability of matched

models although their modeling behaviour is quite robust in the case of linear channel e�ects.

Additionally, a limiting factor of model-based compensation methods is the requirement of

noise characteristics' knowledge which is needed for adaptation performance. As a general

conclusion, it could be stated that in dynamic and mutable environments dominated by highly

non-stationary and transient noise it is very di�cult to provide su�cient levels of robustness

by using these methods.

As a step towards building a more robust speaker recognition system in order to remove

the e�ects of non-stationary and transient environmental noise behaviour we could consider

the idea of using only those special feature components which are supposed to contain reliable

information about the voice signal at hand. Missing data techniques are based on this features

reliability assumptions and the e�ort is given on achieving enhanced robustness by enabling

the computation of reliable speech features under adverse noisy conditions. This technique

was �rstly proposed in the context of computer vision and especially for recovering partially

occluded images for recognition tasks [42, 43] Missing data approaches were later extended in

order to mimic the ability of human auditory system which can e�ciently process distorted

speech signals [44, 45]. In particular, consider a two-dimensional spectrotemporal representa-

tion of a noisy speech signal which can be decomposed into speech-and noise-dominated time-

frequency components. The speech-dominated components are considered reliable and can be

directly exploited for further use in a speaker recognition system [46], while other regions of the

time-frequency representation are mostly corrupted by background noise and thus labeled as

unreliable or missing spectrotemporal data. Missing data techniques are heavily based on the

missing data mask which constitutes a matrix indicating the reliable as well as the unreliable

spectrotemporal elements of a noisy speech signal. The accurate estimation of the reliability

mask is very crucial for the labeling of missing spectrographic regions.

Missing data techniques were �rstly introduced in automatic speech recognition (an overview

can be found in [47]). They can be distinguished into two main categories, namely imputation

and marginalization. Imputation [48, 49, 50, 51, 52, 53, 54, 55] is de�ned as the technique of sub-

stituting missing time-frequency components with an estimate of the time-frequency component

value based on speech signal's high degree of redundancy. In marginalization [56, 57, 58, 59],

missing spectrotemporal regions are ignored and thus, recognition is based on the reliable com-

ponents of the noisy speech signal's time-frequency representation, where observation likelihoods

are computed by integrating over the range of possible values of the missing components. All

these methods exploit various speech signals properties to estimate the missing features, from

the data correlation expressed through statistical models to sparsity-based estimation where

the features are sparsely represented in a given dictionary.
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Recently, a lot of research has been carried out in the �eld of speaker recognition wherein the

missing data strategy has been followed to minimize the side e�ects caused due to noise presence

in speech signals. In speci�c, speaker identi�cation is examined in [60, 61, 62], while in [63,

64, 65] speaker veri�cation is studied in the light of missing feature theory for improvement

of recognition performance, while in [66] both tasks are evaluated. In all these works, the

main steps include the use of a time-frequency binary mask to distinguish the reliable from the

unreliable spetrographic data which in most cases is followed by a marginalization procedure

to compensate for the missing spectrotemporal information.

Imputation appears to be somewhat advantageous compared with marginalization especially

due to the fact that after the reconstruction of the missing time-frequency components with

clean estimates, the new (reconstructed) time-frequency features can be directly applied to any

recognition system which has been trained on undistorted speech data. Hence, we can deduce

that imputation can be characterized as a system-independent method operating as a �black

box� which can be inserted in any recognition system as a noise robustness tool. Another bene�t

of imputation is that recognition accuracy is not a�ected at high and moderate signal-to-noise

ratio's (SNRs) regimes. However, typical imputation methods fail to preserve the recognition

performance at lower SNR values approximately below 5 dB. This decline in performance is

primarily attributed to the fact that at low SNRs the percentage of spetrotemporal regions

assigned as missing (or unreliable) is too high in relation to the total number of time-frequency

components, and therefore it is di�cult to achieve good clean estimates as a consequence of

limited reliable data. Besides, the stochastic nature of both speech and noise signal produces

heterogeneous speech-dominated and noise-dominated time-frequency regions. This complicates

the modeling of the problem which is usually based on local information and various correlation

properties of the reliable time-frequency areas.

Another reason for imputation ine�ciency at low SNR values constitutes the practical relia-

bility mask estimation. Practically, reliability mask should be estimated algorithmically based

upon the noisy voice signal as well as the available speech training data. In other words, there

is an analogy between mask's quality estimation and performance of the imputation method. In

this thesis, we are mainly interested in using an ideal (or oracle) reliability mask and thus, we

do not intend to deepen into a rigorous description of practical masks estimation algorithms.

For a more detailed overview on mask estimation methods, the interested reader is referred

to [67] and the citations therein.

The concept of sparse representation has also been exploited recently in the realm of missing

data imputation, attempting to recover missing data spectrotemporal areas. The basic assump-

tion is that the signal's spectral representation can be expressed as a sparse linear combination

of elements from an appropriately chosen dictionary. Sparse representation techniques falls
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into the compressive sensing framework [68, 69] which states that signals that are sparse or

compressible in a suitable transform basis can be recovered from a highly reduced number of

incoherent linear random projections, as opposed to the traditional signal processing paradigms,

which are dominated by the typical Shannon-Nyquist sampling theorem. In [50, 53] the solu-

tion of an `1-norm optimization problem is proposed towards solving missing data imputation

under the concept of sparse representation. In speci�c, sparse imputation �a term introduced

in [53]�states that missing speech spectra can be reconstructed by expressing them as a sparse

linear combination of dictionary elements called examples. After several experiments it was

found that sparse imputation could produce quite good performance especially for low SNR

values in the context of automatic speech recognition.

1.2 Speaker recognition using limited data

In the previous section, general information about speaker recognition systems was presented

along with how various robustness issues arise in noisy conditions can be dealt with using

compensation methods and missing data techniques. An additional key factor that also puts

at risk the performance of speaker recognition systems is the available amount of training and

testing data used during the recognition process. An obvious rule of thumb is that the more

the amount of data we have, the more accurate recognition rates will occur. However, in several

practical scenarios we could assume a limited amount of training and evaluation speech data.

One reason for that could be that it is often not feasible to have large amounts of training data

from all the speakers. Let us consider for example, the realistic scenario where the entrance of

a smart room in an ambient intelligence building 1 is equipped with a microphone recording the

speech of every person who wants to access the room. Suppose now that this person appears

for the �rst time in front of the entrance, and would like to have constant access in the future.

Practically speaking and based on the aforementioned rule of thumb about the speci�c amount

of training data we would like to have as much speech data as possible from that person.

Nonetheless, it is somewhat frustrating for the speaker to be for a long period of time in front

of the microphone while recording voice data, especially when the entrance is located outside

of the building. Thus, we are interested in acquiring a limited amount of training data while

keeping the recognition rate high. Secondly, we could notice that in order to speed up the

recognition process, the evaluation data should be as short as possible. Especially in cases

where the recognition procedure is performed under constrained computational resources (e.g.

recognition performed using a mobile phone) it is a need for achieving low-latency response.

1The described scenario constitutes a practical research problem as a part of the AmI programme
http://www.ics.forth.gr/ami/
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Some interesting works have been carried out in the �eld of speaker recognition under short

training and evaluation data assumptions with an emphasis given on speaker veri�cation. In [70],

the importance of speech detection process when applied in short duration speech data is high-

lighted and the limits of both GMM and support vector machine-based system with a GMM

supervector linear kernel are examined under a maximum a posteriori (MAP) adapted mean

parameters context. It is also indicated that eigenvoice modeling could increase the perfor-

mance. A joint factor analysis (JFA) model [33] is extended in [71] such as to independently

optimize the speaker and session variability subspaces, where it is shown that for speaker ver-

i�cation based on short utterances it is important for the session subspace to be trained with

matched length utterances, while the speaker subspace should be trained using as much data

as possible. JFA model is also used in [72] where i-vectors are combined with normalization

techniques such as within-class covariance normalization, linear discriminant analysis, scatter

di�erence nuisance attribute projection and Gaussian probabilistic linear discriminant analysis.

A minimax strategy is used in [73] in order to estimate the �rst order statistics as a step to-

wards increasing the robustness of the extracted i-vectors for solving the problem of i-vectors'

uncertainty representation when computed using a small number of feature vectors.

A top-down bottom-up method using test token histograms is studied in [74] for the prob-

lem of in-set/out-of-set speaker recognition. The core idea is based on �lling acoustic holes and

fortifying the acoustic information using the claimed speaker's test token histogram adopting

a modi�ed scheme of GMM model. Additionally, a dimension-decoupled version of GMM is

proposed in [75] to deal with the problem of small sets of training and evaluation voice data

examined on speaker identi�cation task. In particular, a novel way to reduce the number of

necessary free parameters in the GMM is proposed in order to obtain more stable statistical

estimates of model parameters and likelihoods using less amount of data. An exemplar-based

sparse presentation approach is followed in [76], where sparse discriminant analysis and proba-

bilistic linear discriminant analysis techniques are used to model the sparse exemplar activations

for speaker identi�cation. The work presented in [77] comes as an extension of [76], where a

group sparsity constraint is introduced under a spectral factorization framework in order to

limit the number of active speakers from multiple candidates and managing to narrow down

the set of speakers to be active at a time.

According to the works brie�y described above it is obvious that speaker recognition based

on a small amount of training and evaluation voice data is a relatively modern research problem,

gradually begun to be studied during the last few years. However, it is clear that there is fertile

ground for further research, especially within the context of robust speaker recognition which

constitutes the main goal of the current thesis.
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1.3 Contributions of the thesis

In this study, our aim is to examine the e�ciency of techniques heavily based on sparse and low-

rank assumptions targeted at noise robust text-independent speaker identi�cation using a limited

amount of training and testing speech data. In speci�c, the current thesis can be distinguished

into two parts. In the �rst part, we examine the e�ciency of classi�cation methods based

on sparse representation of the available features. The focus is given on using short training

and testing sessions in adverse noisy conditions. In the second part, we study the problem of

recovering reliable speech features based on missing data imputation by exploiting the low-rank

behaviour of the speech spectrotemporal representation. The target application task is the same

as in the �rst part.

The main contributions of this thesis can be summarized as follows:

• The lack of an extensive research work of how sparsity-based classi�cation behaves under

the noisy speaker identi�cation task using a limited amount of training and evaluation

speech features led us to introduce the sparse representation classi�cation (SRC) in order

to examine its robustness e�ciency. Speech features are extracted from all the training

data and used to build a dictionary, where during the identi�cation process each test

feature vector can be represented as a linear combination of a few columns of the dictionary

which belong to the same speaker. The optimally estimated sparse weights of the linear

combinations are called sparse codes and computed via a solving an optimization problem

based on `p-norms, where p = 1 or p = 2.

• Speaker identi�cation is treated as multiple hypothesis problem based on a statistical

modeling approach. We exploit the statistical property that the extracted mel-frequency

cepstral coe�cients (MFCCs) follow a generalized Gaussian distribution (GGD). After es-

timating the GGD parameters of all the training and testing feature vectors the Kullback-

Leibler divergence (KLD) is adopted for computing the identity of the speaker.

• The raw data choice of dictionary elements in SRC context as well as the large size of

the dictionary motivate us to use a discriminative dictionary learning technique. We aim

at �nding a smaller dictionary whose elements will be chosen in such a way in order

to produce highly discriminative sparse codes which would lead in better classi�cation

results. This task is performed by jointly estimating a dictionary built by the training

data and an appropriate linear classi�er.

• We take advantage of the speech signal's low-rank property in the log-magnitude STFT

domain in order to generate reliable speech features before the identi�cation procedure. An

ideal binary reliability mask is used to distinguish the speech-dominated spectrotemporal
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regions from the noise-dominated ones. The missing regions are completed through the

application of Singular Value Thresholding (SVT) algorithm and thus a reliable STFT

spectrogram is recovered. A great advantage of the SVT-based proposed reconstruction

method is that it produces a reliable STFT spectrogram, which means that any type of

speech features based on STFT representation can be extracted and further used as input

to any classi�er.

• We propose a supervised version of SVT which estimates low-rank representation and

matrix completion in a joint fashion. SVT-based recovery algorithm acts in a unsuper-

vised manner because it does not take into consideration the existing prior knowledge

with respect to the available training data. This observation motivate us to propose an

extension of the SVT-based method, which exploits the prior knowledge that the data

matrix is low rank, as well as the knowledge that the data can be represented e�ciently

in terms of a dictionary which is built using the training data. The proposed algorithm

is named J-SVT and estimates the low-rank representation of a data matrix in terms of

a given dictionary, by employing a small number of observations from the original data

matrix.
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identi�cation





Chapter

2

Sparse representation classi�cation for

speaker identi�cation

No problem is too small or too trivial if we
can really do something about it.

Richard Feynman (1918-1988)

2.1 Introduction

As it was mentioned in Chapter 1, speaker recognition systems are essential in a variety of

security and commercial applications, such as information retrieval, control of �nancial transac-

tions, control of entrance into safe or reserved areas and buildings, etc. [3]. Speaker recognition

can be based on both the separate or combined use of several biometric features [78] (voice,

face, �ngerprints, etc.). In the current study, we focus on speaker identi�cation using only voice

patterns.

In order to correctly identify a person, each speaker in the database is usually assigned

a speci�c speaker model consistently describing the extracted speech features. During the

identi�cation process, the system returns the speaker's identity based on the closest matching

of the test utterance against all speaker models. This procedure has proven to be e�ective

under acoustic conditions in matched training and testing [5]. However, in practical applications

where speech signals are corrupted by noise due to either the environment in which the speaker

is present (e.g. the user is crossing a busy street) or due to the voice transmission medium

(e.g. the user is speaking through a cell-phone), robust identi�cation is a challenging problem.

Figure 2.1 shows the structure of a typical speaker identi�cation system. It is distinguished into

two phases. During the training (or enrollment) phase a model is built for each speaker in the

database with respect to the available speech training data. In order to identify an unknown

speaker, a speaker model is also built according to the testing data and the test speaker model

is compared to all the trained speaker models. This comparison is appropriately evaluated using

a matching rule and the result of this matching process provide us the estimated (or the most

probable) identity.
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Figure 2.1: Block diagram of a speaker identi�cation system.

The most popular approach for speaker identi�cation is based on Gaussian Mixture Models

(GMM) [5]. Other classi�ers based on joint factor analysis (JFA) [33] and Support Vector

Machines (SVM) [7] have also been used for this task. For a more detailed description can

be found in Chapter 1 and especially Section 1.2 focus on recognition systems using a limited

amount of speech data which is one of the main goals of the current work.

Recently, the focus of the speaker recognition research community has been given both on

the study of features that are more robust in noise environments and on �nding more robust

and e�cient identi�cation algorithms. Speci�cally, in [6] robust features based on mel-frequency

cepstral coe�cients (MFCCs [79]) are proposed, in combination with a projection measure tech-

nique for speaker identi�cation. In [80], the speech features are based on a harmonic decompo-

sition of the signal where a reliable frame weighting method is adopted for noise compensation.

In [10], the descriptors introduced are based on the AM-FM representation of the speech signal,

while in [8] the proposed features are derived from auditory �ltering and cepstral analysis (in

both cases a GMM is used to model the feature space). In [9, 81] the noise robust speaker

identi�cation problem under mismatched testing and training conditions is studied. In [9], the

identi�cation is performed in the space of adapted GMMs where Bhattacharyya shape is used

to measure the closeness of speaker models, while in [81] a multicondition model training and

missing feature theory is adopted to deal with the training and testing mismatch, where this

model is incorporated into a GMM for noise robust speaker identi�cation.

An important aspect in speaker identi�cation is that in real-time applications the system
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should be able to respond within a short time duration about the identity of the speaker.

However, when the number of the enrolled speakers in the database grows signi�cantly, it

is quite di�cult for the system to quickly assign the speaker with a speci�c identity. For

addressing such real-time e�ciency concerns, in [82] a method based on approximating GMM

likelihood scoring with an approximated cross entropy is proposed. In [11], the GMM-based

speaker models are clustered using a k-means algorithm so as to select only a small proportion

of speaker models used in likelihood computations. These approaches achieve a more e�cient

operation compared to state-of-the-art, without degrading the identi�cation performance in

large population databases.

2.2 State-of-the-art identi�cation methods

In the current section a description of the state-of-the-art methods used to perform speaker iden-

ti�cation is given. For the feature extraction task it is assumed that the speech signal/utterance

is segmented into overlapping frames, where MFCC features [79] are computed during the fea-

ture extraction process.

2.2.1 Gaussian Mixture Model

Gaussian Mixture Models (GMMs) have been applied with great success in the text-independent

speaker identi�cation problem [5]. The approach is to model the probability density function

(PDF) of the feature space of each speaker in the dataset (training phase) as a sum of Gaussian

functions, and then use the maximum a-posteriori rule to identify the speaker. A Gaussian

mixture density is a weighted sum ofM multidimensional Gaussian densities, where the mixture

density can be represented as

λi =
{
pim, µ

i
m,Σ

i
m

}
, m = 1, . . . ,M, (2.1)

where for the ith speaker, pim is the weight of the mth mixture (prior probability), µim is

the corresponding mean vector, Σi
m is the covariance matrix, and M is the total number of

Gaussian mixtures. Each speaker is represented by a GMM and the corresponding model λ,

whose parameters are computed via the Expectation-Maximization (EM) algorithm applied on

the training features. For the speaker identi�cation task (testing phase), the estimated speaker

identity (speaker index) is obtained based on the maximum a-posteriori probability for a given

sequence of observations as follows

Sq = arg max
1≤i≤S

p(λi|V) = arg max
1≤i≤S

p(V|λi)p(λi)
p(V)

. (2.2)
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In the above equation, V = {v1, . . . ,vN |vi ∈ F , i = 1, . . . , N} denotes a sequence of N feature

vectors, where F denotes the feature space and S is the total number of speakers. For equally

likely speakers and since p(V) is the same for all speaker models the above equation becomes

Sq = arg max
1≤i≤S

p(V|λi). (2.3)

For independent observations and using logarithms, the identi�cation criterion becomes

Sq = arg max
1≤i≤S

N∑
t=1

log p(vt|λi), (2.4)

where

p(vt|λi) =
M∑
m=1

pim
(2π)d/2|Σi

m|1/2
exp
{
− 1

2
(vt − µim)TΣi

m
−1

(vt − µim)
}
, (2.5)

d being the dimension of each feature vector.

Maximum a-posteriori adaptation

An extended version of the GMM model named universal background model-GMM (UBM-

GMM) was introduced in [39] in order diminish the drawback that the available speech samples

from speci�c speakers are often not enough to e�ciently estimate a GMM model. The core

concept of the UBM-GMM technique is based on the fact that once a model has been trained

using speaker-independent speech training data, this can be further utilised as a prior when

training speci�c speaker-dependent models. This can be translated in turning the ML estimation

process into a maximum a-posteriori adaptation (MAP) one, where the prior is represented by

the UBM model. In other words, a UBM model is trained and then an estimation of the

speaker GMMs is performed by adaptation of the UBM using the individual speaker data as

the adaptation data.

In the case of speaker identi�cation, the use of UBM-GMM is not necessary to be adopted

since each speaker's estimated GMM model is su�cient to perform the identi�cation in a typical

manner. However, the use of UBM-GMM might be preferable in cases of little or insu�cient

speech data because it can model more accurate all the feature space across all speakers.

Given the set of feature vectors V and the UBM model λUBM the adapted mean new vectors

are derived (the index i has been removed for the sake of simplicity in the equations below), as

a trade-o� between the UBM model means µm and the new data in the form

µ̂m =
nm

nm + τ
µ̄m +

τ

nm + τ
µm, (2.6)
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where µ̂m is the adapted mean for them-th mixture, τ is a weighting MAP parameter controling

the importance of training samples and the UBM during the adaptation process. The occupation

likelihood of the adaptation data corresponding to each speaker is denoted by nm, µm is the

speaker-independent UBM mean and µ̄m is the mean of the observed individual speaker's

adaptation data de�ned as

µ̄m =
1

nm

∑
t

wmpm(vt)∑M
m=1wmpm(vt)

vt, (2.7)

where pm(vt) is a multidimensional Gaussian density as in (2.5).

2.2.2 Joint factor analysis

Joint factor analysis (JFA) modeling is based on estimating the speaker space representing by

the eigenvoice matrix and the session space de�ned by the eigensession matrix. An extension

of JFA includes the estimation of only a single space referred to as total variability space which

models both the speaker and session variabilities. The largest eigenvalues of the total variability

covariance matrix are used to built the total variability matrix which in turn represents the total

variability space. The factor analysis model is described as follows

M = m + Tw, (2.8)

where M ∈ RMd×1 represents the supervector (de�ned as the concatenation of the means of the

GMMs for each speaker into a high-dimensional and �xed single vector, of dimensionMd×1 with

M denoting the number of Gaussian centres and d is the dimension of the features space) of a

speci�c speaker or utterance, m ∈ RMd×1 corresponds to the speaker-independent and channel-

independent supervector of the UBM model, T ∈ RKd×D de�nes the total variability space

and w ∈ RD×1 is a random vector which is assumed to follow a standard normal distribution

N (0, I). The components of w are the total factors for a given speaker or utterance, also called

as i-vectors. The matrix T is low-rank and its columns span the subspace where most of the

speaker-speci�c information lives, along with channel variability.

After the de�nition of the total variability space in (2.8), the i-vector training is considered.

Now, let us assume that each speaker's utterance corresponds to a sequence of feature vectors

V = {v1, . . . ,vN} and the total variability space T is �xed. We want to estimate the maximum

probability of a speci�c speaker denoted by its supervector M given the utterance.

The Baum-Welch statistics needed to estimate the i-vector for a given speech utterance are
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obtained by

ηm =
N∑
n=1

P (m|vn, λUBM) (2.9)

χm =
N∑
n=1

P (m|vn, λUBM)vn, (2.10)

wherem = 1, . . . ,M is the Gaussian index and λUBM denotes the UBM. The posterior probabil-

ity of them-th mixture component generating the feature vector vn is denoted by P (m|vn, λUBM).

The centralized �rst-order Baum-Welch statistics based on the UBM mean mixtures are also

needed for i-vector estimation

χ̃m =

N∑
n=1

P (m|vn, λUBM)(vn − µm), (2.11)

where µm is the mean of the m-th UBM mixture component.

The maximum likelihood estimation problem can be written as

max
M

p(M|V) = max
M

p(V|M)p(M) = min
M

{
− log(p(V|m + Tw))− log(p(w))

}
, (2.12)

where p(w) ∼ N (0, I). The solution of problem (2.12) is given by the following equation

w = (I + T TΣ−1η(V)T )−1T TΣ−1χ̃(V), (2.13)

where Σ ∈ RMd×Md is a diagonal covariance matrix modeling the residual variability not cap-

tured by the total variability matrix T which is estimated during the factor analysis training [83].

The diagonal matrix η(V) ∈ RMd×Md contains blocks in its main diagonal of the form ηmI with

m = 1, . . . ,M . The supervector χ̃(V) ∈ RMd×1 is obtained by concatenating all the �rst-order

Baum-Welch statistics χ̃m for a given utterance V.

After the total variability space and i-vectors estimation, linear discriminant analysis (LDA)

is applied to project the i-vectors into a lower dimensional space as y = Ψw. The goal in LDA

is the maximization of between-class (or inter-speaker) covariance matrix and the minimization

of the within-class (or intra-speaker) covariance matrix. The intra-speaker covariance for S

speakers is computed as

Σb =
S∑
s=1

(ws − w̄)(ws − w̄)T (2.14)
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while the inter-speaker covariance matrix is given by

Σw =
S∑
s=1

1

us

us∑
t=1

(ws
t − w̄s)(w

s
t − w̄s)

T , (2.15)

where us corresponds to the total number of utterances for each the s-th speaker and

w̄s =
1

us

us∑
t=1

ws
t (2.16)

is the mean of i-vectors for each speaker. The speaker population mean w̄ is the mean of the

total data set

w̄ =
1

utr

S∑
s=1

(
us∑
t=1

ws
t

)
, (2.17)

with utr = u1 + u2 + . . .+ uS denoting the total number of utterances.

The main goal of LDA is to maximize the between-speaker variation while minimizing the

within-speaker variances, by adopting the Fisher criterion. More simply, the purpose of LDA is

to maximize the Rayleigh quotient

J (Ψ) =
ΨTΣbΨ

ΨTΣwΨ
. (2.18)

This maximization computes a projection matrix Ψ composed by the best eigenvectors (those

with highest eigenvalues) of the general eigenvalue equation

Σbq = λΣwq, (2.19)

where λ is a diagonal matrix of eigenvalues. The i-vectors are then submitted to the projection

matrix Ψ obtained from LDA. The dimension of the new subspace y with y = Ψw, must be

less than the number of speakers used during training.

For a speaker identi�cation task, given the i-vector ws corresponding to speaker s and the

i-vector wt of the speaker to be identi�ed, we are interested in testing two hypotheses, i.e., H1

that both ws and wt share the same speaker identity or H0 that the i-vectors were generated

from di�erent speakers. The identi�cation score can be computed as the log-likelihood ratio for

this hypothesis test as

llr scores = log
p(ws,wt|H1)

p(ws|H0)p(wt|H0)
. (2.20)
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The estimated identity of the speaker is given by the following rule

Sq = arg max
1≤s≤S

llr scores, (2.21)

where a more detailed analysis regarding the log-likelihood scoring function can be found in [84].

2.3 Proposed identi�cation methods

In the following, we describe the proposed classi�cation methods for the speaker identi�cation

task under noisy conditions and using short training and testing utterances.

2.3.1 Statistical Modeling based on Generalized Gaussian Density

In this subsection, we describe a statistical approach which treats the speaker identi�cation

problem as a multiple hypothesis problem. Following the notation of the previous subsection,

let us again assume that there are S speakers in total and the set of N independent feature

vectors is de�ned as V = {v1, . . . ,vN |vi ∈ F , i = 1, . . . , N}, where F denotes the feature space.

Each speaker is assigned a hypothesis Hi. The goal is to select one hypothesis out of S best

describing the test speaker's data. Under the common assumption of equal prior probabilities

of the hypotheses, the optimal rule resulting in the minimum probability of classi�cation error

is to select the hypothesis with the highest likelihood among the S. Thus, the correct identity

is assigned to the speaker corresponding to the hypothesis Hj if

p(V|Hj) ≥ p(V|Hi), i 6= j ,∀ i = 1, ..., S. (2.22)

For solving this problem, a parametric approach is adopted where each conditional probability

density p(V|Hi) is modeled by a member of a family of PDFs, denoted by p(V;θi), where θi is

a set of model parameters. Under this assumption, the extracted features for the ith speaker

are represented by the estimated model parameter θ̂i, computed in the feature extraction stage.

For assigning the correct identity i∗ to the closest speaker identity:

1. compute the Kullback-Leibler divergence (KLD) between the density of the speaker to be

identi�ed p(V;θt) and the density p(V;θi) associated with the ith speaker identity in the

database, ∀ i = 1, . . . , S

D(p(V;θt)‖p(V;θi)) =

∫
p(v;θt) log

p(v;θt)

p(v;θi)
dv (2.23)
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2. assign i∗ to the identity corresponding to the smallest value of the KLD

i∗ = arg min
i
D(p(V;θt)‖p(V;θi)) , i = 1, . . . , S. (2.24)

A chain rule holds for the KLD and is applied in order to combine the KLDs from multiple

data sets or dataset dimensions. This rule states that the KLD between two joint PDFs, p(V,W)

and q(V,W), where V,W are assumed to be independent data sets, is given by

D(p(V,W)‖q(V,W)) = D(p(V)‖q(V)) +D(p(W)‖q(W)). (2.25)

The proposed method is based on �tting a Generalized Gaussian density (GGD) on the PDF

of the features set. In fact, independence among MFCC vector components is assumed, thus a

GGD for each scalar component is estimated. This task can be achieved by estimating the two

parameters of the GGD (α, β), which is de�ned as

p(v; α, β) =
β

2αΓ(1/β)
e−(|v|/α)β , (2.26)

where Γ(·) is the Gamma function, and the GGD parameters are computed using Maximum

Likelihood (ML) estimation. Substitution of (2.26) into (2.23) gives the following closed form

for the KLD between two GGDs

D(pα1,β1 ||pα2,β2) = log
(β1α2Γ(1/β2)

β2α1Γ(1/β1)

)
+
(α1

α2

)β2 Γ(β2+1
β1

)

Γ( 1
β1

)
− 1

β1
. (2.27)

In the current work, mel-frequency coe�cients are used as feature vectors. Based on the inde-

pendence assumption (2.25) and the KLD between two GGDs (2.27), the overall mean distance

between two feature sets V1, V2 is as follows

D(V1‖V2) =
1

d

d∑
k=1

D
(
pV1
αk,βk

‖pV2
αk,βk

)
, (2.28)

where d is the dimension of the feature space F (i.e., the order of the mel-cepstral coe�cients).

The PDF pV1
αk,βk

and pV2
αk,βk

denote the GGD of the kth mel-frequency coe�cient of the feature

set V1 and V2, respectively.

2.3.2 Sparse Representation Classi�cation

The approach of classi�cation based on sparse representation is described in this subsection.

This approach was initially applied in face recognition in [85], and is �rst applied here for noise
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robust speaker identi�cation under short test and training sessions.

Let us assume that the ni training samples corresponding to the feature vectors of the ith

speaker are arranged as columns of a matrix

Vi = [vi,1|vi,2| . . . |vi,ni ] ∈ Rd×ni (2.29)

dubbed as dictionary, where the column vector vi,j denotes the j
th d-dimensional feature vector

of the ith speaker, and ni is the number of training feature vectors for the i
th speaker. The total

number of training feature vectors in our database equals Ntr = n1 + . . .+ nS .

In a speaker identi�cation application, the goal is to infer correctly the identity of an unknown

speaker, given a new test sample (feature vector) xt ∈ Rd×1. In the following, let xt be a feature

vector, which is extracted from the ith speaker. Then, it can be expressed as a linear combination

of the training samples associated with this speaker as follows

xt = ci,1vi,1 + ci,2vi,2 + · · ·+ ci,nivi,ni = Vi ci, (2.30)

where ci = {ci,j}nij=1 is the vector of coe�cients of the representation of xt in terms of the

columns of Vi.

The overall training data matrix V is formed by concatenating all the training data matrices

Vi, i = 1, . . . , S,

V = [v1,1| · · · |v1,n1 |v2,1| · · · |v2,n2 | · · · |vS,1| · · · |vS,nS ]

= [V1|V2| · · · |VS ] ∈ Rd×Ntr . (2.31)

By combining (2.30) and (2.31), xt can be expressed in terms of the overall training data matrix

V, namely, xt = Vc, where

c = [0, . . . , 0, ci,1, ci,2, . . . , ci,ni , 0, . . . , 0] ∈ RNtr×1 (2.32)

denotes the coe�cients vector, hereafter called the sparse code, whose elements are all zero

except for those associated with the ith speaker. Notice that, the larger the number of speakers

S is, the sparser the sparse code c will be. This observation motivates us to solve the following

optimization problem for a sparse solution

ĉ = arg min
c
‖c‖0 , s.t. xt = Vc, (2.33)

where ‖ · ‖0 denotes the `0 norm, which counts the number of non-zero elements in a vector.
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The optimization problem in (2.33) is an NP-hard problem. However, an approximate solution

can be obtained if the `0 norm is substituted by the `1 norm as follows

ĉ = arg min
c
‖c‖1 , s.t. xt = Vc, (2.34)

where ‖ · ‖1 denotes the `1 norm of a vector. The e�cient solution of the optimization problem

in (2.34) has been studied extensively.

Given the training data matrix V and the new feature vector (test sample) xt, the follow-

ing optimization problem can be practically solved through the orthogonal matching pursuit

(OMP) [86] algorithm in order to obtain an estimate of c,

ĉ = arg min
c
‖xt −Vc‖2 , s.t. ‖c‖0 = K, (2.35)

where ‖ · ‖2 denotes the `2 norm, ‖ · ‖0 is the `0 (pseudo)norm, which is de�ned as the number

of non-zero elements of a given vector and K denotes the number of iterations of the algorithm

or, equivalently, the number of non-zero elements in ĉ.

Algorithm 1: Orthogonal matching pursuit (OMP) algorithm

Input: xt, V, maximum iterations jmax, tolerance ε
Output: estimated sparse code c

1 Initialization:

2 j = 1
3 rj = xt
4 Λj = ∅
5 while j ≤ jmax or ‖rj‖2 ≤ ε do
6 b = (VΛcj

)T rj

7 I∗ = arg min
I
|bI |

8 Λj+1 = Λj ∪ I∗

9 cΛj+1 = V†Λj+1
xt

10 rj+1 = xt −VΛj+1cΛj+1

11 j = j + 1

12 end

The OMP algorithm has been proposed within the context of greedy sparse approximation

algorithms, where each column selection of V, also known as atom selection, is not changed.

However, the residual approximation error update is performed by projecting the current resid-

ual onto the subspace spanned by the atoms selected up to a certain iteration. Algorithm 1

implements the OMP sparse estimation process. In the OMP algorithm, the set of active in-

dexes Λ is de�ned and initialized as the empty set. Inner products are calculated between the

residual error and a sub-dictionary whose atom indexes are restricted to be in Λc that is the
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complement of the active set (i.e., only the inner products of unused atoms are evaluated at

each iteration). The atom achieving the larger absolute inner product value is selected and

then the set Λ is updated to include the chosen index as well as the residual error update is

performed by calculating the vector of coe�cients cΛ resulted from the signal's projection onto

the subspace spanned by the active atoms. This is achieved by computing the Moore-Penrose

pseudo-inverse V†Λ of the sub-dictionary V†Λ := (VT
ΛVΛ)−1VT

Λ that contains the active atoms.

During OMP all the inner product operations are computed only for the atoms that do not

belong to the active set because the residual error at each iteration is orthogonal to the space

spanned by the atoms belonging to the active set. This means that, at each iteration, the inner

products 〈r,vk〉 = 0 ∀ k ∈ Λ and the same atom cannot be selected twice. Moreover, if the

dictionary is a basis that spans the space Rd, the algorithm converges to a representation with

zero residual error after at most d iterations. The advantage of using the OMP algorithm in

terms of convergence comes at the expense of computing one pseudo-inverse matrix per iteration

ĉΛ = arg min
cΛ

‖xt −VcΛ‖2. (2.36)

In the ideal case, the indices of the non-zero entries of the estimated sparse code ĉ will

correspond to those columns of V associated with the ith speaker, and thus, the test sample xt

will be assigned correctly to that speaker. However, due to potential modeling errors and/or

noise-corrupted data, in practice there may be also several non-zero entries of small amplitude

in ĉ, which correspond to multiple speakers. To overcome this drawback, we de�ne for each

speaker i an indicator function δi : RNtr → RNtr such that the only non-zero entries of vector

δi(ĉ) ∈ RNtr are from the ith speaker, and this procedure is repeated S times for each speaker.

As a result, for a given speaker i we can approximate x̂it = Vδi(ĉ) and assign the test sample

to the speaker with the minimum residual between xt and x̂it as

i∗ = arg min
i
‖xt −Vδi(ĉ)‖2 , i = 1, . . . , S. (2.37)

This process is performed for each frame of the speech signal of the speaker to be identi�ed,

and the �nal class, that is, the speaker's identity, is estimated by means of a majority voting

approach applied on a prede�ned set of frames. In other words, the unknown speaker is assigned

the class to which most of the frames of his/her speech signal are classi�ed in using (2.37).

2.4 Experimental results

In this section, we examine the identi�cation performance of the three methods described in

Section 2.2, regarding the correct speaker identi�cation rate. For this purpose, several sim-
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Figure 2.2: Example Amplitude Probability Density curves of the 8-th MFCC coe�cient from
the training data (20 sec) of the 10-th speaker.

ulations under noisy conditions were conducted. The speech signals used for the simulations

were obtained from the VOICES corpus, available by OGI's CSLU [87], which consists of twelve

speakers (seven male and �ve female speakers). For all simulations, 20-dimensional MFCC co-

e�cients were extracted from the speech utterances in a segment-by-segment basis. The frame

duration was kept at 20 msec with 10 msec of frame shift. Before the feature extraction task,

the training as well as the test utterances were pre-�ltered using a low-pass �lter of the form

H(z) = 1− 0.97z−1, and then a silence detector algorithm based on the short-term energy and

zero-crossing measures of speech segments was applied 1. All the speech signals in the corpus

have a sampling rate of 22050 Hz. For the GMM-based identi�cation results, a GMM with a

diagonal covariance matrix was chosen for the simulations. The number of mixtures depended

on the amount of training data (see description of Experiment 1 below).

For the GGD-based identi�cation case, Amplitude Probability Density (APD) curves (P (|X| >

x)) are adopted to show that the GGD best matches the actual density of the data. An example

for a part of the VOICES corpus is given in Figure 2.2, where we compare the empirical APD

(solid line) against the APD curves obtained for the GGD, Weibull, Gamma, Exponential and

the Gaussian models. The results in the �gure correspond to the 8th MFCC coe�cient of the

training data (20 sec duration) corresponding to the 10th speaker (independence among feature

vector components is assumed). Clearly, the GGD follows more closely the empirical APD than

the other densities. This trend was observed in the majority of the training utterances used

1http://www.mathworks.com/matlabcentral/�leexchange/19298-speechcore
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in our experiments. Thus, the GGD model is expected to give better results than the other

densities when applied directly to the MFCC coe�cients of the twelve speakers.

The performance evaluation follows the philosophy as described in [5], where each sequence

of feature vectors {xt} is divided into overlapping segments of Q feature vectors, where the

segments have the following form

x1,x1,x3, . . . ,xQ︸ ︷︷ ︸
1st segment

xQ+1, . . . ,xP−1,xP

x1,x2,x3, . . . ,xQ,xQ+1︸ ︷︷ ︸
2nd segment

, . . . ,xP−1,xP

...

x1,x2,x3, . . . ,xQ,xQ+1, . . . ,xP−Q,xP−Q+1, . . . ,xP−1,xP︸ ︷︷ ︸
P−Q+1th segment

(2.38)

The correct identi�cation rate of the jth speaker is computed as the percentage of the cor-

rectly identi�ed segments of length Q over the total number of segments

correct ident. rate (CIRj) =
# correctly identi�ed segments

total# of segments
· 100%, (2.39)

where in the current work the total number of segments equals P − Q + 1. The total mean

correct identi�cation rate is used as an evaluation metric during the test simulations de�ned as

mean CIR =
1

S

S∑
j=1

CIRj , (2.40)

where S denote the total number of speakers.

In the previous sections, it was mentioned that in the current work the focus is given on noise

robust speaker identi�cation using short training and testing sessions. Towards this direction,

white Gaussian noise is added on the test utterances, the SNR taking the values of 10, 15, 20,

25 dB. In addition, the test segment lengths Q vary from 10 to 500 with a step size of length

40. Length Q = 10 corresponds to 0.1 sec, length Q = 50 corresponds to 0.5 sec, and so forth.

The training utterances have a duration of 5, 10, 15 and 20 seconds, corresponding to a quite

short training session. The training for all methods is performed using the clean speech data.

2.4.1 Experiment 1 � Identi�cation using GMM

In this experiment, during the training process the MFCC coe�cients for each speaker are

collected. For each speaker, the corresponding MFCC data are modeled using a diagonal GMM.

The number of mixtures was chosen to be 4, for the 5 and 10 sec training data, and 8 for the 15
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and 20 sec training data. These choices of parameters were found experimentally to produce the

best performance for the GMM-based identi�cation. Clearly, the number of mixtures is small

due to the small size of the training dataset. During the identi�cation process, the identi�cation

rule (2.4) is used, and the correct identi�cation rate is computed as in (2.40).

2.4.2 Experiment 2 � Identi�cation using KLD based on GGD

The same experimental steps as in Experiment 1 are also followed here. Thus, for each speaker

the MFCC vectors are collected during the training process. We estimate the GGD parameters

(α, β) for each vector component, assuming independence among the MFCC components. Dur-

ing the identi�cation process, a test utterance contains multiple MFCC vectors as explained.

For each MFCC component of the test vectors, the GGD parameters (α, β) are estimated. In

order to identify a speaker, we compute the KLD between the GGD model of the test data and

each of the GGD models of the speakers in the dataset (per vector component). This procedure

results in 20 distance values (since each MFCC vector contains 20 components). The �nal step

is to compute the mean of these distances, as in (2.28). The identity of the speaker whose data

result in the minimum distance is identi�ed as the �nal result. The correct identi�cation rate

is computed as in (2.40).

2.4.3 Experiment 3 � Identi�cation using SRC

In this subsection, the experimental procedure for the SRC approach is described. First, consider

that from the training speech data of each speaker a number of ni of MFCC vectors is extracted.

Consider a test utterance length of Q frames. Adopting the notations from the theory of SRC

in Section 2.3.2, the training matrix V has dimension 20×(12 ·ni) and the test sample (feature)

vector xt is a 20× 1 vector. The test segment consists of Q distinct test samples xt. Thus, the

optimization problem of the form

(Pq) : ĉq = arg min
cq
‖cq‖1 , s.t. xt,q = Vcq, for q = 1, . . . , Q (2.41)

is solved Q times for each di�erent xt,q. The Orthogonal Matching Pursuit [86] is used to solve

this problem. Each solution ĉq of the problem (Pq) is used to get an identity i (for i = 1, . . . , 12)

of one of the 12 speakers in the dataset. Thus, a segment of length Q vectors will provide Q

identi�cation results. The predominant identity is found based on the majority of the decisions

and the identi�cation rate is computed as in (2.40).
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2.4.4 Discussion

In this subsection, the main observations of the results in Figures (2.3.a)-(2.3.d) are discussed.

The percentage of correct identi�cation results is given as a function of the length of the test

utterance. We are mainly interested to examine the performance of the described methods for

short test sessions. The four �gures correspond to training data of duration 5, 10, 15, and

20 sec respectively, so as to examine the e�ect of using a short training dataset. The correct

identi�cation rates as a function of the test utterances segment length L are depicted. The black,

red and green curves correspond to the SRC, GMM and KLD-GGD method, respectively. There

are twelve curves in total, where the �rst part of each legend name indicates the corresponding

method and the last part indicates the SNR value used for this method, e.g. �SRC 10dB� means

that the black solid curve depicts the identi�cation performance of the SRC approach under

noise conditions of 10dB. From the Figures (2.3.a)-(2.3.d) we notice that the SRC method is

superior over the GMM and KLD-GGD approach, especially for short test and training sessions,

and is quite robust to noise. The GMM performance improves as the training and test data

duration increases because the large amount of feature vectors increases the accuracy of the

GMM model, however its sensitivity to noise is clearly indicated. The KLD-GGD approach

does not have high correct identi�cation rates even in the case where the amount of training

and test data is 20 and 5 sec, respectively. Based on the results, we can assume that the GGD

parameters (α, β) are not well-estimated in the case where the test data have short duration.

The main point regarding the SRC method that has to be highlighted is that even in the case

where the training data duration is 5 sec and the test utterance segments length is as low as 2

sec, the performance is greater than 80% for SNR values 15, 20 and 25 dB. Even in the extreme

case of 10 dB SNR, the correct identi�cation rate is above 70% for at least 2 sec test utterance

segments length. Additionally, for lower test sessions than 2 sec the identi�cation results for

SRC are signi�cantly better than the baseline method. For example, for 20 sec training data

and 1.5 sec of test data, the SRC method gives correct identi�cation above 70% for all SNR

values. For the same case, for 10 dB SNR, GMM results in correct identi�cation of slightly

more than only 20%. This is important for applications where a decision must be made using a

small amount of test data, without having enough training data for a given number of speakers,

and the speaker is located in a noisy environment.



Chapter 2. Sparse representation classi�cation for

speaker identi�cation 57

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

Training Data Duration: 5 sec

Test Utterance Length (sec)

%
 C

o
rr

e
c
t

 

 

KLD−GGD 10dB
KLD−GGD 15dB
KLD−GGD 20dB
KLD−GGD 25dB
GMM 10dB
GGM 15dB
GGM 20dB
GMM 25dB
SRC 10dB
SRC 15dB
SRC 20dB
SRC 25dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

Training Data Duration: 10 sec

Test Utterance Length (sec)

%
 C

o
rr

e
c
t

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

Training Data Duration: 15 sec

Test Utterance Length (sec)

%
 C

o
rr

e
c
t

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

Training Data Duration: 20 sec

Test Utterance Length (sec)

%
 C

o
rr

e
c
t

 

 

(a) (b)

(d)(c)

Figure 2.3: Speaker identi�cation performance as a function of the test data duration for dif-
ferent number of SNR values. The duration of the training data is: (a) 5 sec, (b) 10 sec, (c) 15
sec and (d) 20 sec.

2.5 Experimental results: a multicondition perspective

In practical applications speech signals are contaminated with noise due to either the noisy

environment in which the speaker is present (e.g., car, restaurant) or the voice transmission

medium (e.g., cell-phone, voice over IP communication). To deal with such problems and

achieve accurate identi�cation, multicondition GMMs have been proposed (e.g., [81]).

The idea behind the multicondition GMM is to enlarge the training set by corrupting the

clean speech training data with simulated noise with di�erent characteristics. As a result, the

training set is increased to contain Z+1 di�erent subsets T0, T1, . . . , TZ , i.e., clean data T0 plus

noisy data T1, . . . , TZ at Z di�erent noisy conditions. To estimate the correct speaker during

the identi�cation process, a GMM of the typical form as described in Section 2.2.1 is applied on

the augmented training set T = T0, . . . , TZ and the maximum a posteriori probability rule (2.4)

is then used to estimate the identity of the speaker.

In this section, we examine the identi�cation performance of the SRC compared with a
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multicondition GMM and a baseline GMM, regarding the correct speaker identi�cation rate.

For this purpose, several simulations under noisy conditions were conducted. The speech signals

used for the simulations were obtained from the VOICES corpus, available by OGI's CSLU [87],

which consists of twelve speakers (seven male and �ve female speakers). The speech signals,

originally sampled at 22 kHz, were downsampled to 8kHz, with N = 320 samples per frame

and 50% overlapping between frames. For all simulations, 22-dimensional LSF coe�cients were

extracted from the speech utterances in a segment-by-segment basis. For the GMM-based

identi�cation results, a GMM with a diagonal covariance matrix was chosen for the simulations.

The number of mixtures depended on the amount of training data.

The performance evaluation follows the philosophy as described in Section 2.4 (see 2.38

and 2.40). In the following two subsections we describe the simulations conducted to examine

the correct identi�cation rates of the two proposed approaches.
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Figure 2.4: Speaker identi�cation performance as a function of the noise SNR. The duration
of the training data is 30 utterances (per speaker). Correct identi�cation rates evaluated using
three di�erent types of noise: white, speech babble, car engine. The test segment length is 140
frames.
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2.5.1 Speaker identi�cation based on SRC

In the current proposed approach the focus is on noise robust speaker identi�cation using short

training and testing sessions. To explore this, three di�erent types of noise are added to the test

utterances: white noise, speech babble noise and car engine noise. The noise signals were taken

from the NOISEX-92 database [88]. The SNR of the corrupted speech takes the values of 10, 15,

20 dB. In addition, the test segment lengths Q is chosen to be 100, 200, 300. Length Q = 100

corresponds to 2 sec, length Q = 200 corresponds to 4 sec, and length Q = 300 corresponds to

6 sec. The training utterances have a duration of 5, 10, 15 and 20 seconds, corresponding to a

quite short training session. The testing data (over which the identi�cation results per segment

are averaged) have a duration of approximately 20 sec. The experimental results of the current

section can be categorized as follows:

1. baseline GMM : train clean speech data only, where the number of mixtures was chosen to

be 4, for the 5 and 10 sec training data, and 8 for the 15 and 20 sec training data. These

choices of parameters were found experimentally to produce the best performance for the

GMM-based identi�cation. Clearly, the number of mixtures is small due to the small size

of the training dataset. During the identi�cation process, the identi�cation rule (2.4) is

used, and the correct identi�cation rate is computed as in (4.21).

2. multicondition GMM : train clean plus noisy speech data (clean data are corrupted during

training by white noise of SNR 10, 15 and 20 dB), where the number of mixtures was

experimentally chosen to be 8, for the 5 and 10 sec training data, and 16 for the 15 and

20 sec training data.

3. SRC : consider that from the training speech data of each speaker a number of ni of

LSF vectors are extracted. Consider a test utterance length of Q frames. Adopting the

notations from the theory of SRC in Section 2.3.2, the training matrix V has dimension

22× (12 · ni) (each matrix Vi contains clean plus noisy speech data, corrupted by white

noise of SNR 10, 15 and 20 dB) and the test sample (feature) vector xt is a 22× 1 vector.

The test segment consists of Q distinct test samples xt. Thus, the optimization problem

of the form

(Pq) : ĉq = arg min
cq
‖cq‖1

s.t. xt,q = Vcq, for q = 1, . . . , Q (2.42)

is solved Q times for each di�erent xt,q. Orthogonal Matching Pursuit [86] is used to

solve this problem. Each solution ĉq of the problem (Pq) is used to get an identity i (for



60 Sparse and low-rank techniques for robust SR and MF reconstruction

i = 1, . . . , 12) of one of the 12 speakers in the dataset. Thus, a segment of length Q

vectors will provide Q identi�cation results. The predominant identity is found based on

the majority of the decisions and the identi�cation rate is computed as in (2.40).
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Figure 2.5: Speaker identi�cation performance as a function of the test data duration for dif-
ferent number of white noise SNR values. The duration of the training data is: (a) 5 sec, (b)
10 sec, (c) 15 sec and (d) 20 sec.

Before analyzing the experimental results of the proposed method in terms of short training

and testing sessions, we are interested to test the SRC approach using a larger dataset of

training and testing vectors. These results depicted in Fig. 2.4. The correct identi�cation

rates as a function of the three types of noise SNR are depicted. The test utterance length

is 140 frames, where 30 utterances per speaker were used for training (30 utterances gives

about 150 sec amount of training data). The black, red and blue curves correspond to the

baseline GMM (noted as �BSLN GMM�), multicondition GMM (noted as �MLCN GMM�) and

the SRC method, respectively. In the BSLN GMM method, 32 mixtures per speaker were

trained (diagonal covariance matrix),while in the BLSN GMM approach 64 diagonal mixtures

per speaker (clean and noisy speech data) were trained. For this particular case, for the SRC

method the V matrix is formed using the GMM centers taken from the MLCN GMM training
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process, so as to provide comparable performance results. In the remaining results, this matrix

in fact contains the actual speech feature vectors. It can be seen in Fig. 2.4 that the SRC
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Figure 2.6: Speaker identi�cation performance as a function of the test data duration for dif-
ferent number of speech babble noise SNR values. The duration of the training data is: (a) 5
sec, (b) 10 sec, (c) 15 sec and (d) 20 sec.

method, in which the performs worse than the BSLN GMM and MLCN GMM for the white

and speech babble noise. The MLCN GMM is superior than the other two methods, which can

be expected since it has been shown to provide very good results when using large training and

testing sessions.

The performance evaluation results in terms of correct identi�cation rates for short training

and testing sessions corresponding to the white noise, speech babble and car engine noise are

depicted in Figs. 2.5-2.7, respectively, where the identi�cation results are given as a function

of the length of the test utterance. We are mainly interested in examining the performance

of the described SRC-based method for short test sessions. In each �gure, the four sub�gures

correspond to training data of duration 5, 10, 15, and 20 sec respectively, so as to examine the

e�ect of using a short training dataset. The correct identi�cation rates as a function of the test

utterances of segment length Q are depicted.



62 Sparse and low-rank techniques for robust SR and MF reconstruction

There are nine curves in total in each sub�gure, where the �rst part of each legend name

indicates the corresponding method and the last part indicates the SNR value used for this

method, e.g., �SRC 15dB� means that the blue solid curve depicts the identi�cation performance

of the SRC approach under noise conditions of 15 dB.
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Figure 2.7: Speaker identi�cation performance as a function of the test data duration for dif-
ferent number of car engine noise SNR values. The duration of the training data is: (a) 5 sec,
(b) 10 sec, (c) 15 sec and (d) 20 sec.

From the Figs. 2.5-2.7 we notice that the SRC method appears to be quite robust to di�erent

noise conditions and it is superior to the BSLN GMM and MLCN GMM approaches in all

training cases as well as in all noisy conditions, except for the case of 5 and 10 sec training data

duration of 20 dB white noise where SRC appears to be slightly worse than the MLCN GMM

method.

In Fig. 2.5 (white noise) the MLCN GMM approach appears to be better than the BSLN

GMM because it is trained using clean plus noisy speech data contaminated with white noise

and as a result it appropriately captures the characteristics of such a wideband noise during

the GMM parameters estimation process. However, the performance of BSLN GMM seems to

improve in the case of speech babble and car engine noise and achieves identi�cation performance

approximately similar to the MLCN GMM. This observation is more obvious in Fig. 2.7.b-2.7.d,
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where the performance of the BSLN GMM is slightly better in all cases than the MLCN GMM,

because the small amount of training data is not enough for the MLCN GMM to capture

the statistical properties (via the GMM parameters estimation) of noise with di�erent spectral

characteristics compared to the white noise. The main point regarding the SRC method that has

to be highlighted is that the performance is approximately greater than 80% for SNR values

15 and 20 dB in the case where the training data duration is 20 sec and the test utterance

segments length is 200 frames.

2.6 Experimental results: beyond state-of-the-art

In this section, we perform an extra set of simulations in order to verify the e�ectiveness of

the proposed SRC-based speaker identi�cation approach against the state-of-the-art methods

of UBM-GMM and JFA. We used the VOICES corpus as in the previous section. The original

signals are sampled at 22 kHz, and downsampled to 16 kHz. During the feature extraction step,

an analysis window of 640 samples, i.e., 40 ms at 16000 samples per second with 50% overlapping

between two consecutive frames, is employed to compute a mel-frequency spectrogram of Ω = 30

bands, where a silence detector algorithm based on the short-term energy and zero-crossings
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Figure 2.8: Correct identi�cation rates as a function of the SNR. The proposed SRC is compared
against the state-of-the-art UBM-GMM and JFA methods for four noise types.

measure of speech segments is applied2. A cepstral mean and variance normalization process

2http://www.mathworks.com/matlabcentral/�leexchange/19298-speechcore
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followed by feature warping is also applied during the training and testing feature extraction

process.

The resulting Ω× T mel-spectrogram, where T is the total number of frames on which mel-

frequency analysis was performed, is of size 30 × 600 with T = 600 corresponding to approxi-

mately 12.02 sec uttered training data per speaker. For the UBM-GMM framework a diagonal

covariance matrix was chosen during the simulations. We pooled all the target speakers training

data using the mel-scale frequency coe�cients of order Ω = 30, where after experimentation we

found that best results on average obtained when used 16 number of mixtures. The dimension

of the total variability space was set to 12, which equals the number of speakers of VOICES

corpus.

The average identi�cation error rate is computed as the percentage of the erroneously iden-

ti�ed segments over the total number of test segments. For each speaker, the total number of

test utterances used for the evaluation is equal to 4, where the segment length is set to 400

frames (corresponding around to 8.02 sec). The test utterances are corrupted by four di�erent

types of additive noise, namely, speech babble noise, car engine noise, factory �oor noise and

F-16 cockpit noise, where the SNR of the corrupted speech takes the values of -5, 0, 5, 10 and

15 dB. The noise signals were taken from the NOISEX-92 database [88].
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Figure 2.9: Average correct identi�cation rates across all noise types comparing SRC vs. JFA
vs. UBM-GMM.

In Fig. 2.9 are depicted the average correct identi�cation rates for all the compared methods

across all noise types. It is easy to verify that SRC is better than JFA and UBM-GMM in all

noisy conditions. In speci�c, the achieved SRC correct rates are greater than 76% in the case

of speech babble, car engine and factory �oor noise types. Additionally, JFA is better than

UBM-GMM by approximately 7.6% for the speech babble noise and about 7% for the factory

�oor noise. Contrary, UBM-GMM appears to better as compared to JFA in the case of car
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engine noise by 8.9%, while for the F16 cockpit noise UBM-GMM achieves an average correct

identi�cation error about 8.2% more than JFA.
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Chapter

3

Discriminative dictionary sparse coding

for speaker identi�cation

It is all right to make mistakes; nothing is
perfect because with perfection, we would
not exist.

Stephen Hawking (1942-)

3.1 Introduction

Following the goal of achieving robust identi�cation results under limited amount of training and

testing speech data, the focus is given on enhancing the discriminative ability of the estimated

sparse codes. Towards this direction, a discriminative learning approach is introduced. The

problem is faced under a joint learning perspective, where an overcomplete dictionary is learned,

resulting in highly discriminative sparse codes, along with a linear classi�er. A speech corpus

of twelve speakers is used for the identi�cation evaluation towards the direction of examining

applications consisting of a moderate number of speakers

3.2 Prior work on sparsity based classi�cation for speech signals

The concept of sparse representation (or sparse coding) comes as an alternative solution to the

universal data models, which do not generalize well for limited training data. Prior work on

classi�cation of speech signals has been already described in Chapter 1. The main focus is given

on representing an input test sample as a sparse linear combination of an overcomplete matrix,

the so-called dictionary, whose columns consist of a set of basis functions, usually referred to as

atoms. Next, we will mention prior work on classi�cation of speech signals based in this kind

of assumptions some of them already mentioned in Section 1.2.

In [89], robust speech recognition is achieved by modeling noisy speech signals as a sparse

linear combination of speech and noise exemplars (spectro-temporal representations spanning

multiple time-frames of the speech signal). A similar approach is followed in [90], where a
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combination of large vocabulary continuous speech recognition techniques with small vocabulary

tasks results in low phonetic error rates. Sparse codes may also serve as a new type of feature

vectors to be given as input in a typical classi�er. More speci�cally, a gradient descent-based

dictionary learning approach is adopted in [91] to learn the redundant matrix related with

the training data. This comes in combination with a multilayer perceptron classi�er, which is

applied on the generated sparse codes for phoneme recognition. The same task is also studied

in [92]. An orthogonal matching pursuit-based (OMP) dictionary learning technique is applied

and the obtained sparse codes are further used for classi�cation by means of a support vector

machine (SVM) classi�er. A phone recognition approach employing hidden Markov models

(HMM) is examined in [93], using sparse codes which take advantage of the phonetic labels

information as additional features during the recognition process. Moreover, the sparse codes

feature extraction is followed by sparse discriminant analysis to perform speaker recognition

in [76], while in [94] SRC is used for the same task using GMM mean supervectors as feature

vectors on clean speech data taken from TIMIT speech corpus.

Dictionary learning techniques can be applied for learning the best dictionary that gives the

most discriminative sparse codes for classi�cation. The work in [95] showed that a satisfactory

speaker veri�cation performance can be achieved by applying a supervised K-SVD algorithm

for learning an appropriate discriminative dictionary. Motivated by the successful application

of K-SVD for face and object categorization [96], our proposed method addresses the prob-

lem of text-independent speaker identi�cation by extending our previous work [97]. Here, we

adopt a discriminative dictionary learning approach, which is applied on noise robust speaker

identi�cation under the assumption of short training speech utterances.

Here, the proposed method learns an overcomplete dictionary, resulting in highly discrimina-

tive sparse codes, along with a linear classi�er. This estimation is performed in a joint fashion

by imposing additional constraints on the associated objective function in order to produce

similar sparse codes for those training samples belonging to the same speaker. This is in con-

trast to recently introduced sparsity-based methods [89, 90, 91, 92, 93, 76, 94], which do not

treat jointly the estimation of the dictionary, the sparse codes, and the classi�er parameters.

On the other hand, in [95], a method was suggested to learn jointly only the dictionary and

the sparse codes. To the best of our knowledge, this is the �rst study on noise robust speaker

identi�cation, which tackles the problem from such a threefold joint learning perspective.

3.3 Reconstructive dictionary sparse coding

Before proceeding with the description of the discriminative sparse coding technique, let us

�rst mention the main points related with the reconstructive dictionary sparse coding task.



Chapter 3. Discriminative dictionary sparse coding for speaker identi�cation 69

A reconstructive dictionary learning method aims at learning an overcomplete dictionary for

sparse coding approximation. Following the notation of Section 2.3.2, let

V = {vi}Ntri=1 ∈ Rd×1 (3.1)

be a set of Ntr input signals building the corresponding data matrix

V = [v1|v2| · · · |vNtr ]. (3.2)

The goal of dictionary sparse coding (or dictionary learning) is to �nd a dictionary D ∈ Rd×Z

with a �xed number of Z columns or atoms such that

V ≈ DC, (3.3)

where the columns of matrix C ∈ RZ×Ntr contain the sparse representation coe�cients. In

other words, each input signal vi can be sparsely represented on the estimated dictionary D

and it is associated with a sparse representation vector ci (i.e., it contains a small number of

nonzero coe�cients).

The estimation of dictionary D and sparse representation matrix C can be formalized in a

similar way as in (2.35) as follows

D̂, Ĉ = arg min
D,C
‖V −DC‖2F ,

s.t. ‖cj‖0 = K , ∀j = 1, . . . , Ntr , (3.4)

where the objective function is the Frobenius norm ‖·‖F of the residual error and the sparsity of

the representation coe�cients is enforced in the approximation of every input signal. The most

popular strategy in handling the optimization problem (3.4) is to solve alternatively, starting

from an initial guess D0 of the dictionary and solving the two following steps iteratively

Sparse coding update: during the t-th iteration given a �xed dictionary Dt the matrix of

sparse representation coe�cients Ct can be estimated as a typical sparse coding problem

using any solver that is suitable to the particular K-sparse approximation problem.

Dictionary update: during the (t+ 1)-th iteration given a �xed matrix of sparse represen-

tation coe�cients Ct, the dictionary Dt+1 is updated in order to improve the objective of

the dictionary learning optimization, where each dictionary atom is normalized to have

unit norm.

The K-SVD algorithm [98] can be adopted to solve the problem (3.4) following the itera-
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tive strategy described above. In speci�c, we assume that the objective function J (D,C) =

‖V −DC‖F can be written as the sum of rank-1 matrices as follows

J (D,C) = ‖V −DC‖F =

∥∥∥∥∥∥V −
Z∑
p=1

dpc
T
p

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
(

V −
∑
q 6=p

dqc
T
q

)
− dpc

T
p

∥∥∥∥∥∥
F

. (3.5)

Now, we can observe that the sparse representation coe�cients' vector cTp and the atom dp can

be optimized in a joint fashion by minimizing the cost function (3.5), i.e., computing the best

rank-1 approximation of the partial residual matrix

Ep = V −
∑
q 6=p

dqc
T
q . (3.6)

The partial residual matrix Ep and its rank-1 approximation are restricted to the columns

Algorithm 2: K-SVD reconstructive dictionary learning

Input: V, D0, maximum iterations jmax, sparsity threshold K
Output: estimated dictionary D and sparse representation matrix C

1 Initialization:

2 while j ≤ jmax do

3 for n = 1 to Ntr do

4 ĉn = arg mincn ‖vn −Djcn‖2 , s.t. ‖cn‖0 = K,
5 end

6 for p = 1 to Z do

7 Λp = j ⊆ {1, . . . , Ntr} when cp,j 6= 0 (for each atom dp the set Λp of zero
elements of the p-th row of C, i.e., the set of training data that use the p-th atom
in their sparse approximation)

8 Ep =

(
V −

∑
m 6=p dmcTp

)
Λp

(calculate a partial residual matrix and restrict its

columns to the active set of signals that use the p-th atom for their sparse
approximation)

9 [A,Σ,Γ] = SVD(Ep) (descending order of the singular values {σ})
10 dp = a1

11 cΛp = σ1,1γ
T
1 (the representation coe�cients (cTp )Λp and the atoms dp are

updated using the best rank-1 approximation of the partial residual matrix Ep

which is computed using SVD decomposition)

12 dp =
dp
‖dp‖

13 end

14 j = j + 1

15 end

In addition, the support of the sparse representation coe�cients must not be changed during

the dictionary update step and thus, the partial residual matrix Ep and its corresponding rank-1

approximation of are restricted to the columns corresponding to the signals that use the p-th
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atom in their sparse approximation, i.e., the indexes corresponding to the non-zero elements of

the vector cp.

3.4 Discriminative dictionary sparse coding based on K-SVD

In the previous section, the dictionary learning problem is introduced within the framework

of minimizing the reconstruction error. Moving a step further, we are interested in enhancing

the discriminativeness of the estimated sparse representation coe�cients (or sparse codes). We

aim at solving a dictionary sparse coding optimization problem which will incorporate extra

optimization terms associated with the discriminative constraints. Here, a method of discrim-

inative dictionary sparse coding based on a (class) label-consistent K-SVD is analyzed, which

constitutes the key component of the proposed approach. This method, which was introduced

in the framework of face and object recognition [96] and to our knowledge is now applied for

a �rst time in the �eld of speaker identi�cation. We apply the method in the context of noisy

conditions using small training data sessions.

The sparse coding optimization problem expressed by (2.35) can be extended to the following

dictionary learning optimization problem:

D̂, Ĉ = arg min
D,C
‖V −DC‖2F

s.t. ‖cj‖0 = K , ∀j = 1, . . . , Ntr , (3.7)

where ‖ · ‖F denotes the Frobenius norm of a matrix, D ∈ Rd×Z is the learned dictionary,

C ∈ RZ×Ntr is the matrix of sparse codes, where cj denotes the j
th column of C, and Z is

the dictionary size. We emphasize at this point that the sparse codes {cj}Ntrj=1 ∈ RZ×1 are of

di�erent dimensionality compared with the sparse code vectors introduced in the �rst part of

the current section. However, the same symbol is used for notational convenience.

In order to enhance the discrimininative capability of the estimated sparse codes, an addi-

tional constraint is embedded in the objective function (3.7) as follows,

D̂, Ĉ, M̂ = arg min
D,C,M

‖V −DC‖2F + λ1‖P−MC‖2F

s.t. ‖cj‖0 = K , ∀j = 1, . . . , Ntr , (3.8)

where λ1 is a regularization parameter controlling the trade-o� between the reconstruction

error ‖V − DC‖2F and the discriminative sparse-code error ‖P −MC‖2F . The columns of

P = [p1| · · · |pNtr ] ∈ RZ×Ntr contain the discriminative sparse codes of the training features

V, while M ∈ RZ×Z is a linear transformation matrix. In particular, P has a block-diagonal
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structure, where each one of the S blocks is an mi × ni matrix of ones, Jmi×ni , with mi and

ni denoting the number of training feature vectors and dictionary items, respectively, which

share the same class label (that is, correspond to the same speaker). For example, assuming

D = [d1| . . . |d6] and V = [v1| . . . |v9], where d1, d2, v1, v2 and v3 are from class 1, d3, v4, v5,

and v6 are from class 2, and d4, d5, d6, v7, v8 and v9 are from class 3, P can be de�ned as

P =



1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1


(3.9)

In addition, M transforms the original sparse codes C so as to increase their discriminative

power in the new (sparse features) space RZ . As a result, the discriminative sparse-code er-

ror promotes (class) label consistency in the new (transformed) sparse codes by enforcing the

features from the same speaker to have similar sparse representation.

In the following, let Bc de�ne a linear classi�er, where B ∈ RS×Z denotes the classi�er

parameters, and c is a column of the sparse code matrix C. The output of the linear classi�er

will be an S × 1 vector, whose largest element corresponds to the index i if the sparse code

c is related with speaker i. Thus, in order to estimate the linear classi�er parameters B, we

incorporate the classi�cation error ‖H−BC‖2F , related with all the sparse codes contained in

C, into the objective function (3.8) as follows,

D̂, Ĉ, M̂, B̂ = arg min
D,C,M,B

‖V −DC‖2F + λ1‖P−MC‖2F + λ2‖H−BC‖2F

s.t. ‖cj‖0 = K , ∀j = 1, . . . , Ntr , (3.10)

where λ1 and λ2 are regularization parameters controlling the trade-o� between the reconstruc-

tion error ‖V−DC‖2F , the discriminative sparse-code error ‖P−MC‖2F , and the classi�cation

error ‖H − BC‖2F . Matrix H = [h1| · · · |hNtr ] ∈ RS×Ntr contains the class labels (or speaker

index) of the training features V. The column hj ∈ RS×1, which corresponds to the training

feature vector vj ∈ V of the ith speaker, is de�ned as an all-zeros vector except for the index

corresponding to the true speaker label i ∈ {1, . . . , S}. For example, a label vector

hi = (0, . . . , 0, 1, 0, . . . , 0)T ∈ RS×1

corresponding to a training vector vi,n, i ∈ {1, . . . , S} and n ∈ {ni−1, . . . , ni−1 + ni − 1} with
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n0 = 1, where the non-zero element indicates that the training feature vector belongs to speaker

j.

The K-SVD Algorithm 2 is adopted in the proposed scheme to estimate simultaneously the

unknown parameters by solving the reformulated optimization problem (3.10) of the form

D̂, Ĉ, M̂, B̂ = arg min
D,C,M,B

∥∥∥∥∥


V
√
λ1P
√
λ2H

−


D
√
λ1M
√
λ2B

C

∥∥∥∥∥
2

F

s.t. ‖cj‖0 = K , ∀j = 1, . . . , Ntr . (3.11)

After the solution of the optimization problem (3.11), the estimated dictionary D̂ and classi�er

parameters' matrix B̂ are exploited for the �nal classi�cation process. Given a test sample xt

we �rst compute its sparse representation by solving

γ̂ = arg min
γ
‖xt − D̂γ‖2 , s.t. ‖γ‖0 = K (3.12)

through the OMP algorithm. Finally, the estimated linear classi�er B̂ is applied to estimate

the class (or the speaker identity) of the test sample by �nding the index of the maximum value

of the class label vector

τ = B̂γ̂

i∗ = arg max
i
τ (i) , i = 1, . . . , S , (3.13)

where τ ∈ RS×1. As in SRC, this classi�cation process is followed for each speech signal's frame,

where �nally majority voting is performed for a prede�ned set of frames to �nd the unknown

speaker's identity.

3.5 Experimental results

In this section, the identi�cation performance of the proposed discriminative K-SVD approach,

described in Section 3.4, is evaluated in terms of the correct identi�cation rate, and is compared

with the SRC approach (discussed in Section 2.3.2) constituting the key part of the recent

classi�cation approaches for speech signals mentioned in Section 3.2. We also use the UBM-

GMM [39] as the second method for comparison. The speech signals used in the subsequent

experimental evaluations are obtained from the VOICES corpus, which is available from OGI's

CSLU [87], consisting of 12 speakers (7 male and 5 female).

The original signals are sampled at 22 kHz, and downsampled to 8 kHz. During the fea-
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Table 3.1: Average correct identi�cation rates (%) for the discriminative K-SVD, SRC and
UBM-GMM for �ve di�erent number of SNR values and four noise types: white, speech babble,
car engine and factory �oor. The duration of the training data is 10 sec.

Noise SNR K-SVD SRC UBM-GMM
(dB) 25 50

20 89.11 96.32 92.89 97.41
15 86.24 97.43 87.15 98.42

White 10 82.92 86.77 83.45 96.41
5 74.75 71.96 58.71 47.70
0 57.04 51.57 31.50 34.67

Avg. 78.01 80.81 70.74 74.92

20 83.95 80.41 89.88 73.90
Speech 15 88.05 81.18 86.28 55.99
babble 10 80.23 83.25 70.06 30.76

5 65.33 71.62 20.76 15.16
0 46.43 47.55 9.46 13.77

Avg. 72.79 72.80 55.28 37.91

20 85.52 86.45 83.29 61.55
Engine 15 76.69 82.12 69.32 49.53
car 10 50.92 64.84 65.74 34.75

5 24.75 42.55 33.82 26.80
0 13.55 27.65 17.36 17.85

Avg. 50.28 60.72 53.90 38.09

20 84.10 80.39 84.84 66.09
Factory 15 78.32 79.92 73.16 49.39
�oor 10 73.10 75.64 63.92 11.69

5 45.83 59.41 16.87 8.34
0 18.12 44.18 8.33 8.33

Avg. 59.89 67.90 49.42 28.76

ture extraction step, an analysis window of 320 samples, with 50% overlapping between two

consecutive frames, is employed to compute a mel-frequency spectrogram of Ω = 40 bands,

where a silence detector algorithm based on the short-term energy and zero-crossings measure

of speech segments is applied1. The resulting Ω × T mel-spectrogram, where T is the total

number of frames on which mel-frequency analysis was performed, is reshaped by vectorizing

every φ consecutive columns, and thus the new matrix is of size φΩ× bT/φc = Ω̃× T̃ . For the

UBM-GMM framework a diagonal covariance matrix was chosen during the simulations. We

pooled all the target speakers training data using the mel-scale frequency coe�cients of order

Ω = 40, where after experimentation we found that best results on average obtained when used

64 number of mixtures.

It is also important to point out that for the K-SVD and SRC-based simulations φ = 13

1http://www.mathworks.com/matlabcentral/�leexchange/19298-speechcore
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following the same vectorizing strategy as in exemplar-based techniques (ref. Section 3.2). In

addition, φ = 1 during the UBM-GMM evaluation process as a consequence of a more stable

behaviour in capturing the discriminative statistics of lower dimensional features corresponding

to short training data as in our study.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

white noise

C
o
r
r
e
c
t 

(%
)

SNR (dB)

 

 

K−SVD 25

K−SVD 50

SRC

UBM−GMM

Figure 3.1: Speaker identi�cation performance as a function of the white noise SNR.

The duration of the training data was around 10 sec per speaker. The average correct

identi�cation rate is computed as the percentage of the correctly identi�ed segments over the

total number of test segments. For each speaker, the total number of test segments used for

the evaluation is approximately equal to 70, obtained by sliding a window of 15.6 sec over the

time interval of the last 10 utterances, whose duration is about 60 sec.

The test utterances are corrupted by four di�erent types of additive noise: white noise, speech

babble noise, car engine noise and factory �oor noise, where the SNR of the corrupted speech

takes the values of 0, 5, 10, 15 and 20 dB. The noise signals were taken from the NOISEX-92

database [88]. In all cases, the data were trained under the multicondition framework [81], where

the training dataset is enlarged by corrupting the clean speech training data with simulated noise

of di�erent characteristics. Here, the clean speech data are corrupted by white noise of SNR

10, 15 and 20 dB. The sparsity threshold K mentioned in Sections 2.3.2 and 3.4 was chosen

experimentally to be 10 during the SRC evaluation procedure, while for K-SVD a sparsity

threshold equal to 25 was found to give the best performance. Besides, the regularization

parameters λ1 and λ2 of optimization problem (3.11) set equal to 0.25 and 2.25 on average,

respectively.

As we can see from the experimental results in Table 3.1 (a visualization of the table can

be found in Figures 3.1- 3.4), SRC achieves at least 15% higher average identi�cation rates

compared with the UBM-GMM with an exception in the case of white noise, where UBM-GMM
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Figure 3.2: Speaker identi�cation performance as a function of the speech babble noise SNR.

is about 4% better. The third and fourth column correspond to the identi�cation rates obtained

using a learned K-SVD dictionary of size 25% and 50% (termed as KSVD-25 and KSVD-50) of

the initial training data matrix size, respectively. It is obvious that the proposed discriminative

K-SVD approach is on average far better than that of the two methods used for comparison in

both dictionary size schemes. A correct identi�cation rate of at least 60% is on average achieved

with the KSVD-25 in the case of the three out of the four noise types. In addition, KSVD-50

accomplishes at least approximately 70% in three of the four noisy conditions, where in noisy

conditions such as 0 and 5 dB SNR is quite robust compared with the two methods used for

comparison that completely fail to achieve acceptable identi�cation rates.
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Figure 3.3: Speaker identi�cation performance as a function of the car engine noise SNR.

It is also important to notice how the identi�cation rates are compared between KSVD-50
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and KSVD-25. In particular, we note that KSVD-25 achieves almost similar identi�cation rates

in the case of white and speech babble noise compared to KSVD-50 and it performs lower than

KSVD-50 (approximately 10% lower rates) in the case of car engine and factory �oor noise.

Computational cost is very crucial in real-time applications of speaker identi�cation. In such
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Figure 3.4: Speaker identi�cation performance as a function of the factory �oor noise SNR.

applications we would like to achieve as high as possible correct identi�cation rates using small

amount of data. Towards this direction, KSVD-25 could be applied on 25% of the initial training

data in order to achieve robust identi�cation rates under adverse noisy conditions. Figure 3.5

shows the average correct identi�cation rates (where the mean value across all SNR values

white speech babble car engine factory floor
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Figure 3.5: Average correct identi�cation rates across all noise types comparing K-SVD 25 vs.
K-SVD 50 vs. SRC vs. UBM-GMM.

per noise type is computed) of all the methods for all types of noise. It is obvious that both

discriminative dictionary sparse coding techniques, i.e., K-SVD 25 and K-SVD 50, are superior
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to SRC and UBM-GMM except car engine noise where SRC is slightly better than K-SVD 25.
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Chapter

4

Missing features reconstruction based on

a low-rank assumption

Errors using inadequate data are much less
than those using no data at all.

Charles Babbage (1791-1871)

4.1 Introduction

Speaker recognition is a very challenging task especially in environments dominated by noise.

This is even more di�cult in the case where a limited amount of training and testing data

is available in order to take correct decisions. The quality of speech features plays a key role

for acquiring good recognition results. As a consequence, it is of high importance to provide

a classi�cation system with features which are as reliable as possible. However, the reliability

of speech features is inversely proportional to the level of environmental noise, enhancing low

recognition accuracy.

Missing data techniques (MDT) overcome this limitation by enabling the computation of

reliable speech features under adverse noisy conditions. They assume that a noisy speech

signal can be decomposed into speech-and noise-dominated time-frequency components. The

speech-dominated components are considered reliable and can be directly exploited for further

use, while the noise-dominated elements are categorized as unreliable, and labeled as missing

spectrotemporal data. A literature review on MDT methods can be found in Section 1.1.2. For

the sake of completeness we brie�y mention below some of the basic works in the �eld. MDT

have been extensively applied in the context of robust automatic speech recognition (ASR) as a

solution to performance degradation due to noisy speech features, and they are distinguished in

two main categories, namely, marginalization and imputation. In marginalization [56, 58, 59],

speech decoding is based on the reliable components of a noisy time-frequency representation,

while the unreliable components are eliminated or marginalized up to the observed values. The

imputation approach [49, 50, 51, 52, 53, 54, 55] is associated with the estimation of the missing

data, so that decoding can be performed in a conventional manner. These methods exploit
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various speech signals properties to estimate the missing features, from the data correlation

expressed through statistical models to sparsity-based estimation where the features are sparsely

represented in a given dictionary. It is of high importance to notice that the estimation of

a reliability mask plays a key role during the discrimination between reliable and unreliable

spectrotemporal components. The interested reader can �nd an overview of MDT for ASR

in [47].

Recently, a lot of research has been carried out in the �eld of speaker recognition wherein

the MDT strategy has been followed to minimize the side e�ects caused due to noise presence

in speech signals. In speci�c, speaker identi�cation is examined in [60, 61, 62], while in [64,

65] speaker veri�cation is studied in the light of missing feature theory for improvement of

recognition performance, while in [66] both tasks are evaluated. In all these works, the main

steps include the use of a time-frequency binary mask to distinguish the reliable from the

unreliable spetrographic data which in most cases is followed by a marginalization procedure

to compensate for the missing spectrotemporal information.

In this thesis, a novel imputation scheme based on matrix completion [99] is proposed for re-

covering the missing log-scale speech magnitude spectrographic data. This method exploits the

low-rank behaviour of the speech spectrotemporal representation and proposed in the context

of noise robust text-independent speaker identi�cation under the assumption of short training

and testing sessions restrictions as examined in the previous sections. Here, we compare our

low-rank based approach with a deterministic imputation method which is heavily based on

sparsity assumptions as a consequence of verifying the missing-feature reconstruction e�ciency

of low-rank matrix recovery techniques. Thus, during performance evaluation we conduct a

large number of simulations on a small-sized corpus revealing the e�ciency of the proposed

method compared to the sparse imputation technique which has been shown to achieve or even

to exceed the state-of-the-art accuracy regarding ASR [53].

4.2 Low-rank matrix recovery

Matrix completion (MC) enables the recovery of a low-rank or approximately low-rank ma-

trix M ∈ Rn1×n2 from at least O(nrν ln2 n) entries selected uniformly at random (with ν

corresponding to the so-called degree of incoherence) [100], where n = max{n1, n2} and r =

rank(M). We assume that all the scalars, vectors and matrices are real-valued. The original

matrix can be recovered from the partially observed matrix by solving the following convex
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optimization problem

min
X

‖X‖∗

s.t. Xij = Mij , (i, j) ∈ I ⊂ {1, . . . , n1} × {1, . . . , n2},
(4.1)

where k = |I| ≥ Cnr ln2 n denotes the number of observed entries (C is a positive constant),

X ∈ Rn1×n2 is the decision variable and the nuclear norm is de�ned as ‖X‖∗ =
∑min{n1,n2}

q=1 σq

with σ1, . . . , σmin{n1,n2} ≥ 0 corresponding to the singular values of X.

In the following, let the standard matrix completion linear map A : Rn1×n2 → Rk. The

constraints Xij = Mij , ∀ (i, j) ∈ I in (4.1) can be represented by using the linear map AI as

follows

min
X
‖X‖∗ s.t. AI(X) = b, (4.2)

where b := AI(M) contains the sample values extracted from M . Each row of AI(M) corre-

sponds to the sampling of a single (i, j) element of M .

The equality constraint in (4.2) can also be written in matrix form

AI(X) ≡ Ax, x := vec(X) ∀X ∈ Rn1×n2 , (4.3)

where A ∈ Rk×n1n2 and vec(·) : Rn1×n2 → Rn1n2×1 denotes the vectorization mapping; any

vectorization mapping (e.g., row major order or column major order) is acceptable as long as

it is �xed. In matrix completion, each row of A contains exactly 1 non-zero entry.

We also make use of the adjoint of AI which takes a vector and maps it to a sparse matrix

with the nonzero entries of the sparse matrix corresponding to I. Speci�cally,

A∗I(·) : Rk×1 → Rn1×n2 with k = |I| ≤ n1n2,

and we have the property

h = AI(A∗I(h)) ∀h ∈ Rk×1.

Singular value thresholding (SVT) [101] algorithm can be used for solving MC problems

since SVT is e�cient and can be successfully applied in solving large-scale matrix problems

arising in speech features enhancement. Speci�cally, SVT minimizes the following constraint

optimization problem

min
X

τ ‖X‖∗ +
1

2
‖X‖2F s.t. AI(X) = AI(M), (4.4)

where the positive constant τ is a trade o� between the nuclear and Frobenius norm. The
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solution to problem (4.4) converges to that of (4.1) as τ →∞. SVT comprises the two following

iterative steps Xt = Dτ (A∗I(yt−1))

yt = yt−1 − δ(AI(Xt)− b).
(4.5)

In the above equation the shrinkage operator Dτ , also known as soft-thresholding operator,

is denoted as Dτ = UΣτV
T where U and V are matrices with orthonormal columns and

Στ = diag(max{σi − τ, 0}) with {σi}min{n1,n2}
i=1 corresponding to the singular values of the

decomposed matrix. The step size of the iterative algorithmic process is given by δ.

4.3 Missing-features recovery using low-rank matrix completion

As it was mentioned in the introduction, in the current part of our work the main goal is to

enhance the reliability of speech features degraded due to environmental (ambient) noise, which

are used in speaker identi�cation by adopting the MC framework as described in the previous

section. Thus, it is crucial to reduce the noise e�ects after the feature extraction process by

following a missing-feature reconstruction approach.

In particular, the observed speech data can be represented in the time-frequency domain as

Y (f, ρ) = S(f, ρ) +N(f, ρ), where Y ∈ RF×P , S ∈ RF×P and N ∈ RF×P is the log-magnitude

short-time Fourier transform (STFT) of the observed (noisy) speech signal, the clean speech

signal and the contaminating noise, respectively. The discrete frequency index is denoted by f

and ρ is the frame number.

The �rst step of spectrotemporal reconstruction is to apply a binary reliability mask in order

to distinguish the reliable from the unreliable (or missing) spectrographic speech data. We

assume that reliable time-frequency (T-F) units are dominated by speech, while unreliable T-F

units contain mostly noise. The ideal (oracle) binary mask is computed as follows

W (f, ρ) =

1 := reliable, 10 log10

(
|S(f,ρ)|
|N(f,ρ)|

)
> λ

0 := unreliable, otherwise
(4.6)

whereW ∈ BF×P with B = {0, 1} and λ is a pre-de�ned threshold expressed in dB. We recover

the missing spectrotemporal data W � Y , where � denotes the element-wise product of the

two matrices by solving the optimization problem (4.2) as follows

Ŷ = arg min
X
‖X‖∗ s.t. AI(X) = AI(W � Y ). (4.7)

The linear map AI in (4.7) is related with matrix A as de�ned in (4.3), where the set of indices
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I corresponds to the non-zero entries of the binary mask W

I = {(i, j) |W (i, j) 6= 0}, ∀(i, j) ∈ {1, . . . , F} × {1, . . . , P}.

Optimization problem (4.7) can be rewritten as

Ŷ = arg min
X

τ ‖X‖∗ +
1

2
‖X‖2F

s.t. AI(X) = AI(W � Y )

(4.8)

adopting the SVT algorithmic framework.

In order to examine the low-rankness of the original data matrix Y , we use speech data

obtained from the VOICES corpus, which is available from OGI's CSLU [87]. The speech

database is comprised of 12 speakers (7 male and 5 female), where 50 utterances per speaker of

duration around 4 sec each were recorded under quiet conditions. We take the �rst 3 utterances

per speaker to compute the log-magnitude STFT. The ordered singular values spectra of all

the speakers corresponding to an FFT size of 1024, i.e., the number of STFT matrix rows is

F = 513, are depicted in Fig. 4.1. We observe that they attain very low values, where the 98%

of the energy concentration is manifested around 50. Thus, we can assume that the approximate

rank of the original data matrix Y is 50, and thus MC can be potentially applied to recover the

missing data of the incomplete matrixW �Y . The estimated log-magnitude STFT matrix Ŷ is
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Figure 4.1: Ordered singular values spectra of the log-magnitude STFT spectrograms. The
concentration of 98% of the energy is around 50.
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further used to compute the mel-frequency spectrographic representation, which will be termed

as mel-spectrogram. This representation corresponds to a matrix whose columns consist of

mel-frequency log spectral vectors, each of which represents the frequency warped log spectrum

of a short speech frame

Q = 10 · log10

(
B · 10Ŷ /10

)
∈ Rd×P , (4.9)

where the matrix B ∈ Rd×F contains the mel-spaced �lterbank amplitudes and d is the number

of mel-�lters1. The mel-frequency cepstral coe�cients are given by

D = ΨQ, (4.10)

where Ψ denotes the d×d discrete cosine transform (DCT) matrix. The features in D are then
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Figure 4.2: Flow diagram depicting the procedure of missing data imputation based on missing
data imputation

used for the text-independent noise robust speaker identi�cation task. A schematic representa-

tion of missing-feature recovery based on missing data imputation can be found in Figure 4.2.

4.4 Missing-feature recovery based on sparse imputation

In this section, we brie�y describe the sparse imputation (SI) method [53] previously applied

in the context of missing data imputation for robust speech recognition. The core idea in SI is

1The matrix B is computed using the VOICEBOX toolbox.



Chapter 4. Missing features reconstruction based on a low-rank assumption 87

that a given signal can be represented as a sparse linear combination of basis elements.

If we combine the log-magnitude STFT of the clean speech data S with (4.9) and (4.10)

the obtained mel-frequency cepstra are given by the matrix DS ∈ Rd×P . By following a

�concatenate-then-shift� process the d × P mel-frequency cepstra matrix DS is transformed

into a new matrix of size (dT ) × (b(P − T )/ξc + 1), where T is the number of columns used

in each iteration during the concatenation procedure and ξ is the sliding amount. Here, we

assume that ξ = 1, i.e., we shift by one column at a time. The rescaled matrix is denoted by

D̃S with the i-th column being equal to d̃S,i ∈ RdT×1. Each input test sample d̃S,i can be

expressed as a sparse linear combination of an overcomplete matrix, the so-called dictionary,

whose columns consist of a set of basis elements, usually referred to as atoms or exemplars. The

linear combination is written as

d̃S,i =

β∑
l=1

αl,i gl = Gαi, (4.11)

where αi is an β-dimensional coe�cients vector and G is an overcomplete dictionary of size

dT ×β with β � dT . Due to the sparsity coe�cients vector's assumption, only a few exemplars

are active and contribute to the representation of d̃S,i.

The focus is given on estimating reliable speech features further used for speaker identi�ca-

tion under noisy conditions. We make the assumption that a set of speech data coming from the

same speaker will have a similar sparse representation given the dictionary G which contains

the training speech data of all speakers belonging to a database. In speci�c, G is formed by

concatenating all the rescaled training mel-frequency cepstra matrices Gi, i = 1, . . . , J ,

G = [g1,1| · · · |g1,m1
|g2,1| · · · |g2,m2

| · · · |gJ,1| · · · |gJ,mJ ]

= [G1|G2| · · · |GJ ] ∈ RdT×β, (4.12)

where J is the total number of speakers in the corpus and β = m1 +m2 + . . .+mJ . If αi is a

su�ciently sparse vector then the solution of the following optimization problem

α̂i = arg min
a
‖a‖1 s.t. d̃S,i = Ga. (4.13)

gives a unique solution to (4.11). E�cient ways to solve the convex optimization problem

in (4.13) have been studied extensively. One way is to recast (4.13) as an `1 norm constrained

least squares problem of the form

α̂i = arg min
a

∥∥∥Gα− d̃S,i∥∥∥
2

+ λ ‖α‖1 , (4.14)
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where the least absolute shrinkage and selection operator (LASSO) algorithm [102] can be

applied to compute its solution.

The mel-frequency cepstra matrix DY ∈ Rd×P corresponds to the noisy speech data Y .

By following the same �concatenate-then-shift� procedure as before, we obtain the rescaled

versions W̃ ∈ R(dT )×(b(P−T )/ξc+1) and D̃Y ∈ R(dT )×(b(P−T )/ξc+1) of the mask W and noisy

mel-frequency cepstra DY , respectively. Then, the element-wise multiplication D̃r
Y = W̃ � D̃Y

gives a rough estimation of the reliable features. The reliable elements d̃
r
Y,i of the i-th column

can be used to approximate the corresponding elements of d̃S,i by solving the problem

α̂i = arg min
a

∥∥∥Grα− d̃
r
Y,i

∥∥∥
2

+ λ ‖α‖1 , (4.15)

where Gr correspond to the rows of G associated with the reliable features. The obtained

sparse representation α̂i can be used to estimate the clean observation vector as

̂̃
dS,i = Gα̂i. (4.16)

It is important to note that by solving (4.15) the reconstruction error will not be zero in general,

thus we only impute the unreliable elements

̂̃
dS,i =


̂̃
d
r

S,i = d̃
r
Y,i

̂̃
d
u

S,i = Guα̂i,

(4.17)

where Gu and
̂̃
d
u

S,i corresponding to the rows of G and
̂̃
dS,i for which the i-th column w̃i of W̃

equals zero.

If we apply (4.15)-(4.17) for all columns of the features matrix D̃r
Y we end up with a set

of (dT ) × (b(P − T )/ξc + 1) solutions of the form {̂̃dS,i}i. In matrix form notation the set

{̂̃dS,i}i can be denoted by ˆ̃DS which re�ects a reliable estimation of the noisy speech features.

A reshaped d×P version of ˆ̃DS can be considered denoised version of the mel-frequency cepstra

matrix D̂S of the underlying speech signal, which can be used directly for speaker identi�cation.

4.5 Experimental results

In this section, we show that the proposed low-rank matrix completion approach is an e�-

cient method to reconstruct the missing T-F components of speech signals used during speaker

identi�cation. First, the reconstruction performance of the SVT algorithm is evaluated and

compared with other matrix completion methods. Then, we demonstrate the superior recon-
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struction performance of the SVT algorithm against the SI method, in terms of achieving an

increased correct identi�cation accuracy over the VOICES corpus.

4.5.1 Evaluation of SVT matrix completion on missing data imputation for

speaker identi�cation

In this section, we compare the reconstruction performance of the SVT [101] algorithm with

the performance obtained by reconstructing the missing data matrix using LMaFit [103] and

ScGrassMC [104]. The experimental set-up, also used in our previous work [105], is adopted

for the SVT performance assessment. More speci�cally, we are interested in achieving noise

robust speaker identi�cation, where noisy speech features are processed under a missing data

imputation framework [53] towards reducing the e�ects of noise in order to enhance the speaker

identi�cation accuracy. In the subsequent experimental evaluations we use UBM-GMM2 [39]

as the main classi�cation process after feature enhancement through missing data imputation.

The original speech signals are sampled at 22 kHz, and downsampled to 16 kHz. During

feature extraction, an analysis window of 40 msec (equivalent to 640 samples), with a step size of

20 msec (corresponding to 320 samples), is employed to compute a mel-frequency spectrogram

of 30 bands. For the UBM-GMM classi�er a diagonal covariance matrix of 16 Gaussian mixtures

was chosen during the simulations, where 10 sec of clean speech training data (per speaker) were

used. We selected the last �ve utterances as testing data per speaker. Speech babble noise and

factory �oor noise were used to additively corrupt the test utterances. The SNR of the distorted

speech is set to -15, -10, -5, 0, 5, and 10 dB, while the noise signals belong to the NOISEX-92

database [88]. For each combination of noise type and SNR level, the sampling ratio of the

observed matrix W � Y is de�ned as

Sampling ratio =
number of observed values (k)

matrix size (F × P )
. (4.18)

We note that the sampling ratio (4.18) is inversely proportional to the number of zeros in

the binary mask W as de�ned in (4.6), i.e., for smaller SNR values the amount of unreliable

features increases, and thus the number of observed values k corresponding to the reliable

features decreases. As a result, we can de�ne the missing values ratio as follows

Missing values ratio = 1− Sampling ratio = 1− number of observed values (k)

matrix size (F × P )
. (4.19)

The performance evaluation follows the strategy described in [97]. In particular, having

solved (4.7) each completed matrix Ŷ corresponds to a sequence of feature vectors (columns)

2Universal Background Model for Gaussian Mixture Model
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{ŷt ∈ RF×1}Pt=1 of the form

ŷ1, ŷ2, ŷ3, . . . , ŷP−1, ŷP .

Each sequence of that form is divided into overlapping segments of Q feature vectors, where

the segments have the following form

ŷ1, ŷ2, ŷ3, . . . , ŷQ︸ ︷︷ ︸
1st segment

ŷQ+1, . . . , ŷP−1, ŷP

ŷ1, ŷ2, ŷ3, . . . , ŷQ, ŷQ+1︸ ︷︷ ︸
2nd segment

, . . . , ŷP−1, ŷP

...

ŷ1, ŷ2, ŷ3, . . . , ŷQ, ŷQ+1, . . . , ŷP−Q, ŷP−Q+1, . . . , ŷP−1, ŷP︸ ︷︷ ︸
P−Q+1th segment

(4.20)

The segment length Q is set to 400 during the testing simulations, which corresponds to ap-

proximately 8 sec. The correct identi�cation rate (CIR) of the j-th speaker is computed as the

percentage of the correctly identi�ed segments of length Q over the total number of segments

CIRj =
# cor. identi�ed segments

total# of segments
· 100%, (4.21)

where the total number of segments equals P − Q + 1. The total mean correct identi�cation

rate is used as an evaluation metric during the test simulations, which is given by

mean CIR =
1

R

R∑
r=1

(
1

J

J∑
j=1

CIRr
j

)
, (4.22)

where R and J denote the total number of Monte Carlo runs and speakers, respectively. The

correct identi�cation rate CIRr
j of speaker j during the r-th Monte Carlo run is given by (4.21).

The average correct identi�cation rates, computed as the percentage of the correctly iden-

ti�ed segments over the total number of test segments, for 10 Monte Carlo runs are depicted

in Figures 4.3 and 4.4. The SVT algorithm is compared with LMaFit and ScGrassMC, as well

as with the no matrix completion (no MC) technique where the missing data matrix W � Y

is used explicitly for the speaker identi�cation task. Fig. 4.3 shows the results corresponding

to the speech babble noise, while Fig. 4.4 corresponds to the correct identi�cation rates in the

case of factory �oor noise. The vertical bars indicate the 95% con�dence intervals. It is clear

that the SVT matrix completion algorithm outperforms substantially the other three evaluated

methods across all the SNR noise levels. In particular, we can see that in both noise cases at



Chapter 4. Missing features reconstruction based on a low-rank assumption 91

−15 (0.89) −10 (0.81) −5 (0.72) 0 (0.63) 5 (0.54) 10 (0.45)
10

20

30

40

50

60

70

80

90

100

C
or

re
ct

 (
%

)

SNR (dB)

 

 

SVT, speech babble
LMaFit, speech babble
ScGrassMC, speech babble
no MC, speech babble

Figure 4.3: Mean correct identi�cation rates (%) for the SVT, LMaFit, ScGrassMC and no MC
for six di�erent number of SNR values, where speech babble noise is added. The numbers inside
the parentheses represent the missing values ratios (4.19).
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Figure 4.4: Mean correct identi�cation rates (%) for the SVT, LMaFit, ScGrassMC and no MC
for six di�erent number of SNR values, where factory �oor noise is added. The numbers inside
the parentheses represent the missing values ratios (4.19).

-10 dB SNR, i.e., when approximately 80% of the data is missing, the speaker identi�cation

accuracy is around 80%. For all other cases, where the SNR is at least -5 dB the achieved

correct identi�cation rates are above 87%.
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4.5.2 Evaluation of SVT against sparse imputation

In this section, we examine the reconstruction performance of the proposed low-rank matrix

completion method as described in Sections 4.2 and 4.3, with respect to the resulting correct

identi�cation rates compared with the SI approach overviewed in Section 4.4. Fig. 4.5 and
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Figure 4.5: Mean correct identi�cation rates (%) for the SVT vs. SI for eight di�erent number
of SNR values, where speech babble noise is added.

Fig. 4.6 show the identi�cation accuracy corresponding to speech babble and factory �oor noise,

respectively. In this simulation, we consider six di�erent SNR values (-16, -12, -8, -4, 0, 4, 8

and 12 dB). Speci�cally, we focus on examining the reconstruction performance of SVT matrix

completion compared with SI mainly in noisy conditions, i.e. for values of SNR below -4 dB.

In Fig. 4.5.(a) and Fig. 4.6.(a) the solid line corresponds to the identi�cation rates achieved by

the proposed SVT matrix completion approach, while the dotted line represents the performance

of the sparse imputation method. In all cases, the vertical bars indicate the 95% con�dence

intervals. The di�erence in performance between the two methods especially in low SNR values

appear more clearly in the bar plots as depicted in Fig. 4.5.(b) and Fig. 4.6.(b). It is important

to address that low-rank matrix recovery performs better than SI for SNR values below -4 dB

for both noise types, especially in the case of speech babble noise where SVT achieves 30%

and 15% higher identi�cation rates than SI for -16 dB and -12 dB, respectively. Similarly,

SVT achieves an increase of 10% in the identi�cation accuracy when compared with SI, for the

factory �oor noise at -16 dB. Clearly, for all the SNR values greater than -4 dB, SVT is slightly

better than SI except for the case of 0 dB and 4 dB wherein SI slightly outperforms SVT.

As an overall conclusion, our experimental evaluation revealed that low-rank matrix recov-

ery can compete other state-of-the-art missing data imputation methods like SI even without

exploiting the a priori knowledge of training data as extra information which could enhance the
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Figure 4.6: Mean correct identi�cation rates (%) for the SVT vs. SI for eight di�erent number
of SNR values, where factory �oor noise is added.

identi�cation performance.
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Chapter

5

Joint Low-Rank Representation and Ma-

trix Completion Based on SVT

Try not to become a man of success, but
rather try to become a man of value.

Albert Einstein (1879-1955)

5.1 Introduction

Many real-world problems often require the estimation of a matrix with missing entries. In

general, the matrix completion problem involves the computation of the missing entries in a

partially observed data matrix by imposing high data redundancy constraints through a low-

rank model. The seminal papers [99, 106] prove that in many cases, the matrix can be correctly

estimated with high probability from a number of observed entries greater than or equal to a

certain constant value. The estimation is in the form of a rank minimization problem, where

the nuclear norm [107], i.e., sum of the singular values, is used as the convex surrogate of the

rank function.

Many algorithms have been proposed to solve the matrix completion (MC) problem. They

can be summarized into two main categories with respect to the nature of the optimization

problem. The �rst group of algorithms employs nuclear norm minimization such as in singular

value thresholding (SVT) [101], templates for �rst-order conic solvers (TFOCS) [108], acceler-

ated proximal gradient (APGL) [109] and augmented Lagrange multiplier (ALM) [110]. The

second class of MC algorithms minimizes an approximation error objective function on a Grass-

mann manifold as examined in OPTSPACE [111], subspace evolution and transfer (SET) [112],

Grassmanian rank-one update subspace estimation (GROUSE) [113], scaled gradients on Grass-

mann manifolds (ScGrassMC) [104], etc. Additionally, the low-rank matrix �tting algorithm

(LMaFit) [103] optimizes an approximation error objective function based on the nuclear norm

minimization framework, while in [114] MC is studied from a Bayesian point of view.

Over the last few years, MC has been tested in a wide range of practical applications in-

cluding robust video denoising [115], bearing estimation of narrowband sources in sensor ar-
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rays [116], received signal-strength �ngerprint based indoor localization in wireless local area

networks [117] and audio bandwidth expansion [118]. It has also been utilized for other sci-

enti�c problems such as position calibration in circular ultrasound tomography devices [119],

high-quality reconstructions for large scale seismic interpolation problems [120], etc.

Nuclear norm minimization for subspace segmentation has been developed in parallel with

MC since the germinal work introduced in [121]. The described low-rank representation idea

looks for the lowest rank estimate of a data matrix with respect to a collection of data drawn

from a union of multiple subspaces. Speci�cally, a learned dictionary or the data matrix itself

can be exploited for seeking the low-rank representation (LRR) of the data. LRR seems to be

very promising especially for classi�cation tasks. For example, [122, 123] show that minimizing

a nuclear norm based objective function coupled with sparsity constraints and a discriminative

(or supervised) term enhances the power to discriminate features in image recognition. In [124]

LRR is also adopted for music tagging, while in [125] is extended to the case of multiple

dictionaries for music and singing voice separation.

Here, we propose a joint LRR and MC approach in the light of SVT framework. Especially,

we are interested in studying the e�ect of estimating the lowest rank representation of a data

matrix with respect to a given basis or dictionary connected with a partially observed version of

it under an SVT scheme. A dictionary based MC method has been recently proposed in [126],

where a similar optimization problem is examined for reconstruction and classi�cation of simu-

lated sensor network data using the CVX software package [127]. This method can potentially

solve problems of very small size, however, the computational time is prohibitive for practical

applications even for data matrices of moderate size. The novelty of the proposed approach

is twofold. Firstly, in the current work a more rigorous mathematical formulation of the joint

LRR and MC problem is presented by restating the optimization problem and giving a detailed

algorithmic process for the estimation of the data matrix. Secondly, we employ an SVT algo-

rithmic solution especially targeted for medium scale data, where an experimental evaluation

is performed on synthetic data proving the e�cacy of the proposed method. To the best of our

knowledge, this is the �rst time that LRR is connected with MC under an SVT algorithmic

process. Our proposed approach can be regarded as an enhanced version of SVT in the case

that we have knowledge of the data generation process via a dictionary or basis. Therefore,

we are strongly interested in examining the performance of the proposed algorithm versus the

performance of the typical SVT algorithm under these conditions.

The rest of the chapter is organized as follows: Section 5.2 describes the proposed joint

LRR and MC approach along with an SVT-based solution. An experimental evaluation of the

proposed technique compared with typical SVT algorithm is described in Section 5.3.
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5.2 Joint low rank representation and matrix completion using

SVT

Singular value decomposition (SVD) followed by soft-thresholding on the computed singular

values constitutes the core of the SVT algorithm described in Section 4.2. Any procurable

information of the underlying procedure that generated the data matrix M is not taken into

account by MC. Sometimes this property is considered as an asset since it does not require the

explicit knowledge of such a generation procedure. In other cases, however, extra information

about the data matrix is available and exploiting this knowledge can lead to more accurate

solutions of di�erent tasks at hand.

As mentioned in Section 5.1, the low-rank representation (LRR) approach has been recently

introduced as an alternative to typical subspace-based methods like the SVD. The goal is to �nd

the lowest rank representation of a data matrix by solving the following convex optimization

problem

min
L
‖L‖∗ s.t. M = ML, (5.1)

where M is the data matrix and L is a low-rank matrix. Adopting the LRR formulation, let

us assume that the additional information of the data matrixM can be modelled according to

a speci�c matrix decomposition of the form M = GL, where G is a known dictionary and L

is a low-rank matrix containing the corresponding representation coe�cients. Thus, problem

(5.1) can be formulated as

min
L
‖L‖∗ s.t. M = GL. (5.2)

To apply the LRR scheme on matrices with missing data, we use the linear sampling operator

AI . The proposed sampling scheme is a combination of MC and LRR and seeks a low-rank coef-

�cient matrix L from a small number of measurements AI(M). Thus, the convex optimization

problem takes the form below

min
L
‖L‖∗ s.t. AI(X) = AI(M) and X = GL. (5.3)

The goal is to e�ciently solve problem (5.3) in the context of the SVT algorithm so that we

can solve large-scale problems. Hence, combining (4.4) and (5.3) we get the joint LRR and MC

version of SVT dubbed J-SVT de�ned as follows

min
L

τ ‖L‖∗ +
1

2
‖L‖2F s.t. AI(X) = b and X = GL, (5.4)

where X ∈ Rn1×n2 , M ∈ Rn1×n2 , G ∈ Rn1×K , L ∈ RK×n2 and K denotes the size of the

dictionary. In the J-SVT problem (5.4), we consider the additional constraint that X must
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Algorithm 3: J-SVT algorithm

Input: AI , observed values b, dictionary G, step size δ, tolerance ε, parameter τ > 0,
maximum iterations tmax

Output: estimated matrix X = GLT

1 Initialization: y1 = τb/‖GTA∗I(b)‖
2 for t = 1 to tmax do

3 [U t,Σt,V t, st] = SVDshrink(GTA∗I(yt), τ, st−1)

4 Lt = U tΣtV
T
t

5 if ‖AI(GLt)− b‖2 ≤ ε ‖b‖2 then
6 break

7 end

8 yt+1 = yt − δ(AI(GLt)− b)
9 end

be in the form X = GL for a �xed dictionary G. This constraint only amounts to changing

the linear operator, and that does not a�ect the convergence proofs of SVT under a correctly

scaled δ. Recall that SVT converges with δ < 2‖AI‖−2. We have the following similar result:

Theorem 5.1. With step-size δ < 2‖AI ◦G‖−2, J-SVT produces a sequence Lt that converges

to the unique minimizer of (5.4).

Proof. The proof of convergence for the SVT algorithm only uses the fact that AI is a linear

operator and can be extended to handle a generic linear operator A. By letting A = AI ◦G and

A∗ = GTA∗I we arrive at J-SVT. The step-size must satisfy δ < 2‖A‖−2 = 2‖AI ◦G‖−2.

Since ‖AI ◦ G‖ ≤ ‖G‖, the step-size can best estimated using any upper bound on the

spectral norm of G.

Algorithm 4 implements the SVDshrink operation. The partialSVD(Z, s) algorithm returns

the top s singular values and singular vectors. The most common computational approach is

the Lanczos method. Here, we use the implementation in PROPACK, which re-orthogonalizes

the singular vectors as needed in order to improve numerical stability. These Lanczos methods

only require matrix-vector multiplies of the form Zu and ZTv, and thus we take advantage of

sparsity in Z. If GT has a fast transform, we can also take advantage of this, and never even

need to explicitly form the G or GT matrix (e.g., if G is the FFT or FFT-based).

In another improvement on regular SVT, we introduce the Nesterov accelerated [128] version,

which applies to both MC and LRR-MC problems.

Theorem 5.2. Algorithm 5 produces a sequence Lt that converges to the unique minimizer of

(5.4) if δ ≤ ‖AI ◦G‖−2.

Proof. This is a special case of the framework in [108] and the strong convexity of the objective.
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Algorithm 4: SVDshrink algorithm

Input: internal integer parameter `
1 function SVDshrink(Z, τ, s0)
2 s← s0 + 1
3 repeat

4 [U ,Σ,V ] = partialSVD(Z, s)
5 s← s+ `
6 until Σs,s ≤ τ
7 return [U ,Dτ (Σ),V , s]
8 end function

Algorithm 5: Accelerated J-SVT algorithm: identical to J-SVT except replace line 8 in
J-SVT with the following and initialize z1 = y1.

88 zt+1 = yt − δ(AI(GLt)− b)
99 yt+1 = zt+1 + t

t+3 (zt+1 − zt)

Note that we have lost a factor of 2 in the step-size bound in the accelerated version, which

is because we can no longer over-relax (see [129]). Despite the smaller step-size, it has faster

convergence rate guarantees and typically works faster in practice.

5.3 Experimental results

In this section, we compare the reconstruction performance of the proposed J-SVT scheme with

the performance obtained by reconstructing the missing data matrix using the SVT algorithm.

For this purpose, we perform simulations on synthetic data, where the dictionary G and the

low-rank representation matrix L are generated from normally distributed random samples. As

an evaluation metric, we employ the relative error, which is de�ned as follows:

Relative error =

∥∥∥X̂ −M∥∥∥
F

‖M‖F
,

where X̂ is the recovered matrix and M is the original full data matrix. In the present case

study, the size of the original data matrixM is set equal to n1×n2 = 300×500. The maximum

number of iterations tmax, the tolerance ε and the parameter τ are set equal to 100, 10−5 and

5
√
n1 n2, respectively. The step size δ is set equal to 1.9 in the case of SVT, while for the

accelerated version of J-SVT we use δ = ‖G‖−2. In the subsequent experimental evaluation,

the reconstruction performance of both the J-SVT and SVT algorithms is also examined as a

function of the sampling ratio, which is given by

Sampling ratio =
number of observed values (k)

matrix size (n1 × n2)
.
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Based on 10 Monte Carlo runs for each scenario, the total average were computed to show the

overall relative errors for each algorithm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R
el

a
ti

v
e 

E
rr

o
r

Rank: 10

 

 

SVT

J−SVT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R
el

a
ti

v
e 

E
rr

o
r

Rank: 40

 

 

SVT

J−SVT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R
el

a
ti

v
e 

E
rr

o
r

Rank: 70

Sampling Ratio

 

 

SVT

J−SVT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R
el

a
ti

v
e 

E
rr

o
r

Rank: 100

Sampling Ratio

 

 

SVT

J−SVT

(a) (b)

(c) (d)

Figure 5.1: Relative error as a function of sampling ratio. The size of dictionaryG is 300×1500.
The rank of matrix L is: (a) 10, (b) 40, (c) 70 and (d) 100.

As a �rst set of experiments, we examine the reconstruction performance of J-SVT for a

varying matrix rank. Figure 5.1 reveals that our proposed J-SVT algorithm outperforms clearly

the SVT counterpart in case of a dictionary size 300 × 1500. More speci�cally, Figure 5.1.(a)

shows that the relative error achieved by J-SVT is almost zero for a sampling ratio (SR) > 0.3,

while the relative error achieved by SVT approaches zero for a signi�cantly higher sampling

ratio SR > 0.7. The e�ect of a varying matrix rank is shown in Figures 5.1.(b)-(d), which

depict the reconstruction performance for matrix ranks equal to 40, 70 and 100, respectively.

As it can be seen, the relative error corresponding to J-SVT is close to zero for SR ≈ 0.7,

whereas the relative error of SVT approaches zero only for an almost full sampling (SR ≈ 0.9).

The second set of experiments concerns the performance evaluation of the two algorithms

by varying the dictionary size. In Figure 5.2, the reconstruction accuracy of J-SVT is compared

with the performance of SVT for dictionary sizes of 300 × 1000, 300 × 1500, 300 × 2000 and

300×2500, by �xing rank(L) = 50. Clearly, J-SVT outperforms again SVT, while we highlight

the approximately constant recovery behaviour of J-SVT regardless of the dictionary size. This
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Figure 5.2: Relative error as a function of sampling ratio. The rank of matrix L is 50. The size
of dictionary G is: (a) 300× 1000, (b) 300× 1500, (c) 300× 2000 and (d) 300× 2500.

observation is very important, since it reveals that J-SVT is highly robust, in terms of achieving

a low reconstruction error, even in case of small-sized dictionaries, which represent our data in

a compact way. This comes also as a signi�cant advantage of J-SVT towards its application

in practical scenarios, where the size of the dictionary comes at the expense of an increased

computational and memory complexity.

As a �nal experimental evaluation, we compare the robustness of J-SVT against SVT under

noisy conditions. In particular, the relative error curves presented in Figure 5.3 correspond to

observed data corrupted by additive white noise, with the signal-to-noise ratio (SNR) being

equal to 10, 15, 20 and 25 dB. As it can be seen J-SVT achieves a signi�cantly improved

reconstruction quality in regard with SVT. Especially in Figure 5.3.(b)-(d), SVT has almost

twice as high relative error on average for the same range of sampling ratio values. As expected,

the performance of SVT converges to the performance of J-SVT for a full sampling ratio (= 1).
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Figure 5.3: Relative error as a function of sampling ratio. The size of dictionary G is 300×1500
and the rank of matrix L is 50. The SNR level is set to: (a) 10 dB, (b) 15 dB, (c) 20 dB and
(d) 25 dB.



Chapter

6

Conclusions and Future work

The future is always beginning now.

Mark Strand (1934-)

In this thesis, we studied the problem of robust speaker identi�cation under the constraints

of using a limited amount of training and evaluation speech data. In the �rst part of the current

thesis, the focus is given on the problem of speaker identi�cation using highly limited amounts

of testing and training sessions, in noisy environments. A sparsity-based technique is proposed

based on the assumption that the identi�ed speech signal, and speci�cally the features that

have been extracted from this signal, can be expressed as a sparse linear combination in terms

of a dictionary. The optimally estimated sparse codes, which are obtained as the solutions of

an optimization problem, are then employed for the �nal identi�cation of the speaker based on

a minimum reconstruction error criterion. An extension of the sparsity-based approach is then

introduced to estimate jointly the dictionary comprising of the training data in conjunction

with an appropriate linear classi�er. The advantage of this approach is that it results in sparse

codes, which are characterized by enhanced discriminative capability. Extensive experimen-

tal evaluations revealed the superiority of the proposed techniques compared to probabilistic

approaches as well as compared to state-of-the-art speaker identi�cation methods.

In the second part of this thesis, a technique for recovering a low-rank matrix is designed,

which is employed for the reconstruction of those spectral regions of a speech signal, which

are unreliable due to the presence of noise. The reconstruction of the unreliable spectral re-

gions is performed by adopting the Singular Value Thresholding (SVT) algorithm, based on

the assumption that the logarithmic magnitude representation of a speech signal in the time-

frequency domain, obtained via the short-time Fourier transform (STFT), is of low rank. The

comparison against the widely used method of sparse imputation, which is based on sparse

representations, reveals the superiority of our proposed approach in terms of producing more

reliable features. Then, an extended version of the matrix completion method, which exploits

the prior knowledge that the data matrix is low rank, as well as the knowledge that the data
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can be represented e�ciently in terms of a dictionary. In speci�c, a novel algorithm is proposed

for joint low-rank representation and matrix completion (J-SVT), which is superior when com-

pared with the standard SVT with respect to the computation of the low-rank representation

of a data matrix in terms of a given dictionary, by employing a small number of observations

from the original matrix. Through extensive simulations, we observed an improvement of the

reconstruction error achieved by the J-SVT, in contrast to the typical SVT, for several distinct

experimental scenarios.

There are still many open problems to be examined and future work to be done which

will introduce further development on missing-feature reconstruction and discriminative sparse

coding techniques. Some of them can be listed as below:

• Extend the experimental evaluation set-up in corpora containing more speakers and deal-

ing with a broader range of noise types. Other types of applications could also be examined

such speech stressed classi�cation problems.

• Examine the discriminative properties of i-vectors compared to typical speech features

such as MFCCs, especially under the discriminative dictionary learning framework.

• The combination of probabilistic models such as GGD with discriminative dictionary

learning approaches, could lead in enhanced classi�cation accuracy by taking advantage

of the a-priori knowledge of the speci�c statistical behaviour of the speech features.

• The discriminative constraints modeled by the matrix P in (3.8) could be replaced by a

distance metric (learning) constraint in order to further �push� the sparse codes from the

same class to have very small distances.

• Another idea is related with the classi�cation error in (3.10). In the current thesis, this

error (i.e. matrix B) is related with a linear classi�er. A natural extension is to incorporate

a non-linear classi�er, which could lead to more robust classi�cation performance.

• The unsupervised nature of SVT-based missing-feature reconstruction could be exploited

to produce reliable log-magnitude STFT representations of noisy speech signals. This

method is classi�er-independent and thus, it could be straightforwardly used in automatic

speech recognition applications, to deal with robustness issues.

• Practical estimated reliability masks could be applied to distinguish the reliable from

the unreliable spectrotemporal regions. We expect that low-rank matrix completion will

perform better than sparse imputation because it is more resistant to a large number of

missing time-frequency bins.
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• Experiments with real speech data using the J-SVT algorithm. Additionally, we could

study the J-SVT approach in the light of L-BFGS approach as a tool to further decrease

the computational time.
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