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Tebis: Efficient Index Replication for Persistent LSM-based
Key-Value Stores

Abstract

Log-Structured Merge tree (LSM tree) Key-Value (KV) stores have become a foun-
dational layer in the storage stacks of datacenter and cloud services. Current approaches
for achieving reliability and availability avoid replication at the KV store level and instead
perform these operations at higher layers, e.g., the DB layer that runs on top of the KV
store. The main reason for taking that approach is that past designs for replicated KV
stores favor reducing network traffic and increasing I/O size. Therefore, they perform
costly compactions to reorganize data in both the primary and backup nodes since they
avoid sending the index over the network. Since all nodes in a rack-scale KV store func-
tion both as primary and backup nodes for different data shards (regions), this approach
eventually hurts overall system performance.

In this paper, we design and implement Tebis, an efficient rack-scale LSM-based KV
store that aims to significantly reduce the I/O amplification and CPU overhead in backup
nodes and make replication in the KV store practical. We rely on two observations: (a) the
increased use of RDMA in the datacenter, which reduces CPU overhead for communica-
tion, and (b) the use of KV separation that is becoming prevalent in modern KV stores. We
use a primary-backup replication scheme that performs compactions only on the primary
nodes and sends the pre-built index to the backup nodes of the region, avoiding all com-
pactions in backups. Our approach includes an efficient mechanism to deal with pointer
translation across nodes in the region index. Our results show that Tebis reduces in the
backup nodes, I/O amplification by up to 3×, CPU overhead by up to 1.6×, and memory
size needed for the write path by up to 2×, without increasing network bandwidth exces-
sively, and by up to 1.3×. Overall, we show that our approach has benefits even when
small KV pairs dominate in a workload (80%-90% of the total key-values). Finally, it
enables KV stores to operate with larger growth factors (from 10 to 16) to reduce space
amplification without sacrificing precious CPU cycles.





Αποδοτική Αντιγραφή Ευρετηρίων για Συστήματα Μόνιμης
Αποθήκευσης Ζευγαριών Κλειδιού-Τιμής Βασισμένα σε LSM

Περίληψη

Τα συστήματα αποθήκευσης ζευγαριών κλειδιού-τιμής βασισμένα σε δένδρα Log-
Structured Merge (LSM) έχουν γίνει ένα βασικό κομμάτι των λογισμικών αποθήκευσης
δεδομένων σε κέντρα δεδομένων και υπηρεσίες υπολογιστικών νεφών. Τέτοια συστήματα
πρέπει να αντιγράφουν τα δεδομένα τους, αλλά και μεταδεδομένα όπως το ευρετήριο,
ώστε να να επιτύχουν να είναι αξιόπιστα και διαθέσιμα. Ως τώρα, τα συστήματα απο-
θήκευσης αποφεύγουν να δημιουργούν τα αντίγραφα των δεδομένων στο επίπεδο του
συστήματος αποθήκευσης ζευγαριών κλειδιού-τιμής και προτιμούν να κάνουν αυτές τις
διεργασίες σε υψηλότερα στρώματα, όπως για παράδειγμα στην βάση δεδομένων που τρέ-
χει πάνω από το σύστημα αποθήκευσης ζευγαριών κλειδιού-τιμής. Παλαιότεροι σχεδια-
σμοί συστημάτων αποθήκευσης κλειδιού-τιμής προτιμούν να μειώσουν την κυκλοφορία
στο δίκτυο και να αυξήσουν το μέγεθος των αιτημάτων εγγραφής δεδομένων στον δίσκο.
Επομένως εκτελούν compactions για να αναδιοργανώσουν τα δεδομένα και στα κύρια και
στα δευτερεύοντα αντίγραφα των δεδομένων, αφού αποφεύγουν να στείλουν το ευρετή-
ριο χρησιμοποιώντας το δίκτυο. Καθώς όλοι οι κόμβοι σε ένα κατανεμημένο σύστημα
αποθήκευσης ζευγαριών κλειδιού-τιμής λειτουργούν ταυτόχρονα ως κύριοι και ως δευτε-
ρεύοντες κόμβοι για διαφορετικά δεδομένα, μία τέτοια προσέγγιση βλάπτει την απόδοση
ολόκληρου του συστήματος.

Σε αυτή την εργασία, σχεδιάζουμε και υλοποιούμε το Tebis, ένα αποδοτικό σύστημα
αποθήκευσης ζευγαριών κλειδιού-τιμής βασισμένο σε δένδρο LSM με στόχο την δρα-
στική μείωση του I/O amplification και του επεξεργαστικού κόστους για τα δευτερεύοντα
αντίγραφα ώστε να γίνει πρακτική η αντιγραφή των δεδομένων στο επίπεδο του συστήμα-
τος αποθήκευσης ζευγαριών κλειδιού-τιμής. Βασιζόμαστε σε δύο παρατηρήσεις: (α) η αυ-
ξημένη χρήση του RDMA στα κέντρα δεδομένων, το οποίο μειώνει το επεξεργαστικό κό-
στος για επικοινωνία μεταξύ κόμβων και (β) την διαδεδομένη χρήση του διαχωρισμού ζευ-
γαριών κλειδιού-τιμής σε σύγχρονα συστήματα αποθήκευσης ζευγαριών κλειδιού-τιμής.
Χρησιμοποιούμε ένα πρωτόκολλο αντιγραφής δεδομένων primary-backup όπου μόνο ο
κύριος κόμβος υπολογίζει το ευρετήριο και στη συνέχεια το στέλνει σε όλους τους δευτε-
ρεύοντες κόμβους, αποφεύγοντας έτσι όλα τα compactions στους δευτερεύοντες κόμβους.
Η προσέγγιση μας περιλαμβάνει και έναν αποδοτικό μηχανισμό μετάφρασης των δεικτών
του ευρετηρίου μεταξύ διαφορετικών κόμβων. Τα αποτελέσματα μας δείχνουν ότι το Tebis
μειώνει το I/O amplification έως και 3 φορές, το επεξεργαστικό κόστος έως και 1,6 φορές,
και την μνήμη που χρειάζεται για την εγγραφή δεδομένων έως και 2 φορές, αυξάνοντας τα
δεδομένα του δικτύου έως το πολύ 1,3 φορές. Συνολικά, δείχνουμε ότι η μέθοδος μας έχει
οφέλη ακόμα και σε περιπτώσεις όπου τα μικρά κλειδιά κυριαρχούν (80% - 90% επί του
συνόλου κλειδιών-τιμών). Τέλος, η μέθοδος μας επιτρέπει σε συστήματα αποθήκευσης
ζευγαριών κλειδιού-τιμής να λειτουργούν με μεγαλύτερους ρυθμούς αύξησης δεδομένων
από επίπεδο σε επίπεδο (growth factor), όπως 10 έως 16, μειώνοντας την περιττή χρήση
αποθηκευτικού χώρου λόγω των πολλαπλών επιπέδων (space amplification) χωρίς να επι-
φέρει επεξεργαστικό κόστος.
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Chapter 1

Introduction

Replicated persistent key-value (KV) stores are the heart of modern datacenter storage
stacks [28, 24, 12, 10, 1]. These systems typically use an LSM tree [30] index structure
because of its 1) fast data ingestion capability for small and variable size data items while
maintaining good read and scan performance and 2) its low space overhead on the storage
devices [13]. LSM trees organize their data in hierarchical levels where the first level
(L0) is kept in memory and the rest of the levels are on the storage device. While there are
multiple ways to organize data across LSM tree levels [20, 30], in this work, we focus on
leveled LSM-based KV stores that organize their levels in non-overlapping ranges. When
a higher LSM tree level is full, its data is moved to a lower level through a compaction
operation. Compactions incur high CPU overhead and increase I/O amplification in LSM-
based KV stores.

To provide reliability and availability, state-of-the-art KV stores [10, 24] replicate their
KV pairs in multiple, typically two or three [5], nodes. Current designs for replication op-
timize network traffic and favor sequential I/O to the storage devices both in the primary
and backup nodes. Essentially, these systems perform costly compactions to reorganize
data in both the primary and backup nodes to ensure: (a) minimal network traffic by mov-
ing user data across nodes, and (b) sequential device access by performing only large I/Os.
However, this approach comes at a significant increase in device traffic (I/O amplification)
and CPU utilization at the backups. Given that all nodes in a replicated KV store function
both as primaries and backups at the same time for different regions, this approach hurts
overall system performance. For this reason, in many cases, current approaches for reli-
ability and availability avoid replication at the KV store level and instead perform these
operations at higher layers, e.g. the DB layer that runs ontop of the KV store [10, 24].

Nowadays, state-of-the-art KV stores [10, 24] adopt the eager approach [33, 24, 10]
which minimizes network traffic and recovery time at the expense of I/O amplification,
CPU, and memory overhead at the secondaries. This approach is appropriate for systems
designed for TCP/IP networks and Hard Disk Drives (HDDs).

In our work, we rely on two key observations: (a) the increased use of RDMA in the
datacenter [35, 17], especially at the rack level [21, 29, 14, 22], reduces CPU overhead
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2 CHAPTER 1. INTRODUCTION

for communication and (b) the use of KV separation that is becoming prevalent in mod-
ern KV stores [27, 25, 38, 31, 2, 15]. KV separation places KV pairs in a value log and
keeps an LSM index where values point to locations in the value log. As a result, they
only re-organize the keys (and pointers) in the multi-level structure. This technique in-
troduces small and random read I/Os, which fast storage devices can handle, and reduces
I/O amplification by up to 10x [3]. Additionally, recent works present hybrid KV place-
ment [38, 25], a technique that extends KV separation and significantly improves garbage
collection overhead for KV separation [9, 34], making it production ready.

We design and implement Tebis, an efficient rack-scale LSM-based KV store that sig-
nificantly reduces I/O amplification and CPU overhead in secondary nodes and makes
replication in the KV store practical. Tebis uses Kreon [8, 31] as its storage layer, an
open-source persistent LSM-based KV store designed for fast storage devices (NVMe)
and that uses KV separation to reduce I/O amplification. Moreover, Tebis uses one-sided
RDMA communication for data replication, client-server, and server-server communica-
tion. One-sided operations allow one peer to directly read or write the memory of a remote
peer without the remote one having to post an operation, hence bypassing the remote node
CPU and consuming CPU cycles only in the originating node. Tebis’s main novelty lies in
how it takes advantage of the design of its storage engine and RDMA networking to send
a pre-build index from primaries to secondaries in order to eliminate compactions in the
secondaries.

The three main design challenges in Tebis are the following. First, to efficiently repli-
cate the data (value log) Tebis uses an efficient RDMA-based primary-backup commu-
nication protocol. This protocol does not require the involvement of the replica CPU in
communication operations [36].

Second, since the index of the primary contains pointers to its value log, Tebis imple-
ments an efficient rewrite mechanism at the backups. Kreon performs all allocations in
2 MB segments and all logical structures in Kreon (level’s indexes and value log) are rep-
resented as a list of segments on the device. During its log and index replication process,
Tebis creates mappings between primary and backup segments. It later uses these map-
pings to efficiently rewrite pointers at the backups. This approach allows Tebis to operate
at larger growth factors to save space without significant CPU overhead.

Finally, to reduce CPU overhead for client-server communication, Tebis implements
an RDMA protocol with one-sided RDMA write operations. Tebis’s protocol supports
variable size messages that are essential for KV stores. Since these messages are sent in a
single round trip, Tebis is able to reduce the processing overhead at the server.

We evaluate Tebis’s performance using a modified version of the Yahoo Cloud Service
Benchmark (YCSB) [11] that supports variable key-value sizes for all YCSB workloads,
similar to Facebook’s [7] production workloads. Our results show that our index repli-
cation method compared to a baseline implementation that performs compactions at the
backups spends 10× fewer CPU cycles per operation to replicate its index. Furthermore,
it has 1.1 − 1.7× higher throughput, reduces I/O amplification by 1.1 − 2.3×, and in-
creases CPU efficiency by 1.2− 1.6×. Overall, Tebis technique of sending and rewriting
a pre-built index gives KV stores the ability to operate at larger growth factors and save
space without spending precious CPU cycles [3, 13].



Chapter 2

Design

2.1 Overview

Tebis is a persistent rack-scale KV store that increases CPU efficiency in backup regions
for data replication purposes. Tebis uses a primary-backup protocol [6] for replicating
the data via RDMA writes without involving the CPU of the backups [36] for efficiency
purposes. To reduce the overhead of keeping an up-to-date index at the backups, we design
and implement the Send Index operation for systems that use KV-separation [27, 31, 2, 15]
or hybrid KV placement [38, 25]. Primary servers, after performing a compaction from
levelLi toLi+1, send the resultingL′

i+1 to their backups in order to eliminate compactions
in backup regions. Because L′

i+1 contains references to the primary’s storage address
space, backups use a lightweight rewrite mechanism to convert the primary’s L′

i+1 into
a valid index for their own storage address space. During the Send Index operation, the
backup uses metadata (hundreds of KB) retrieved during the replication of the KV log to
translate pointers of the primary’s KV log into its own storage space.

We design and implement an RDMA Write-based protocol for both its server-server
and client-server communication. We build our protocol using one-sided RDMA write
operations because they reduce the network processing CPU overhead at the server [23]
due to the absence of network interrupts. Furthermore, Tebis, as a KV store, must support
variable size messages. We design our protocol to complete all KV operations in a single
round trip to reduce the messages processed per operation by the servers.

Tebis uses Kreon [8, 31] KV store for efficiently managing the index over its local
devices. We modify Kreon to use direct I/O to write its KV log to further reduce CPU
overhead for consecutive write page faults, since write I/Os are always large. Direct I/O
also avoids polluting the buffer cache from compaction traffic.

Finally, Tebis partitions the key-value space into non-overlapping key ranges named
regions and offers clients a CRUD API (Create, Read, Update, Delete) as well as range
(scan) queries. Tebis consists of the three following entities, as shown in Figure 2.1:

1. Zookeeper [19], a highly available service that keeps the metadata of Tebis highly
available and strongly consistent, and checks for the health of Tebis region servers.

3
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Tebis Rack

Zookeeper

Tebis Master

(3) KV Op Reply

Tebis Region Server
#0


Tebis Region Server
#N


(2) KV Op Request

(1) Read Region Map

(2) KV Op Request

(3) KV Op Reply

Client

Figure 2.1: Tebis overview.

2. Region servers, which keep a subset of regions for which they either have the pri-
mary or the backup role.

3. Tebis-Master, which is responsible for assigning regions to region servers and or-
chestrating recovery operations after a failure.

2.2 Primary-backup Value Log Replication

We design and implement a primary-backup replication protocol to remain available and
avoid data loss in case of failures. Each region server stores a set of regions and has either
the primary or backup role for any region in its set. The main design challenge that Tebis
addresses is to replicate data and keep full indexes at the backupswith low CPU overhead.
Having an up-to-date index at each backup is necessary to provide a fast recovery time in
case of a failure.

Tebis implements a primary-backup protocol over RDMA for replication [6, 36]. On
initialization, the primary sends a message to each backup to request an RDMA buffer
of the same size as Kreon’s value log segment (2 MB). When a client issues an insert or
update KV operation, the primary replicates this operation in its set of backup servers.
The primary completes the client’s operation in the following three steps:

1. Inserts the KV pair in Kreon, which returns the offset of the KV pair in the value
log, as shown in step 1 in Figure 2.2a).

2. Appends (via RDMA write operation) the KV pair to the RDMA buffer of each
replica at the corresponding offset, as shown in step 2 in Figure 2.2a).

3. Sends a reply to the client after receiving the completion event from all backups for
the above RDMA write operation.

The backup’s CPU is not involved in any of the above steps due to the use of RDMA
write operations. When a client receives an acknowledgment it means that its operations
has been replicated to all the memories of the replica set.
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Key-Value Log
Segments

1. Append

KV KVKV KVKV KV log0_primary log0_replica
Log Segment Map


log1_primary log1_replica

Primary Backup

4. Update Log
Segment Map

KV KVKV KVKV KV

2. Replicate

3. Flush Primary and
Replica Segments

log0_primary log1_primary log0_replica log1_replica

(a) Key-Value log replication process

Li Index Segments

Li+1 Index Segments

Primary Backup

idx0_primary idx0_replica
idx1_primary idx1_replica

Index Segment Map


idx2_primary idx2_replica

3. Update index
segment map

idx0_replica idx1_replica idx2_replica

4. Rewrite log pointers and
index pointers using Index

and Log Segment Map
L'i+1 Index Segments

1. Li to Li+1 compaction
merges the two indexes

2. Send L'i+1 Index

L'i+1 Index Segments

(b) Key-Value index replication process

Figure 2.2: Replication in Tebis.

When the last log segment of the primary becomes full, the primary writes this log
segment to persistent storage and sends a flush message to each backup requesting them
to persist their RDMA buffer, as shown in step 3 in Figure 2.2a. Backup servers then copy
their RDMA buffer to the last log segment of the corresponding Kreon region and write
that log segment to their persistent storage. Backup servers also update their log segment
map, as shown in step 4 in Figure 2.2a. The log segment map contains entries of the form
<primary value log segment, replica value log segment>. Each backup server keeps this
map and updates it after each flush message. Backups use this map to rewrite the primary
index. We will discuss this index rewriting mechanism in more detail in Section 2.3.

Each backup keeps the log segment map per backup region in memory. The log seg-
ment map has a small memory footprint; for a 1 TB device capacity and two replicas, the
value log will be 512 GB in the worst case. With the segment size set to 2MB, the memory
size of the log segment map across all regions will be at most 4 MB. In case of primary
failure, the new primary informs its backups about the new mappings.

2.3 Efficient Backup Index Construction

Tebis instead of repeating the compaction process at each server to reduce network traf-
fic, takes a radical approach. Primary executes the heavy, in terms of CPU, compaction
process of Li and Li+1 and sends the resulting L′

i+1 to the backups. This approach has
the following advantages. First, servers do not need to keep an L0 level for their backup
regions, reducing the memory budget for L0 by 2× when keeping one replica per region
or by 3× when keeping two replicas. Second, backups save device I/O and CPU since
they do not perform compactions for their backup regions.

Essentially, this approach trades network I/O traffic for CPU, device I/O, and memory
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at servers since network bulk transfers are CPU efficient due to RDMA. The main design
challenge to address is sending the primary level index to the backup in a format that
backups can rewrite with low CPU overhead. Tebis implements the rewriting process at
the backup as follows.

When level Li of a region in a primary is full, Tebis starts a compaction process to
compact Li with Li+1 into L′

i+1. The primary reads Li and Li+1 and builds L′
i+1 B+-tree

index. L′
i+1 is represented in the device as a list of segments (currently set to 2 MB) which

contains either leaf or index nodes of the B+-tree. Leaf nodes contain pairs of the form
<key prefix, pointer to value log> whereas index nodes contains pairs of the form <pivot,
pointer to node>.

To transfer the L′
i+1 index, the primary initially requests from each backup to register

an RDMA buffer of segment size. Tebis only uses these buffers during the L′
i+1 index

transfer and deregisters and frees them once the compaction is completed.

On receiving a leaf segment, each backup region server parses it and performs the
following steps. Leaf segments contain key prefixes that work across both indexes. The
backup has to rewrite pointers to the value log before using them. Tebis’s storage engine
performs all allocations in 2 MB aligned segments. As a result, the first high 22 bits of
a device offset refer to the segment’s start device offset. The remaining bits are an offset
within that segment. To rewrite the value log pointers of the primary, the backup first
calculates the segment start offset of each KV pair. Since all segments are aligned, it does
this through a modulo operation with segment size. Then it issues a lookup in the log map
and replaces the primary segment address with its local segment address.

For index segments, Tebis keeps in-memory an index map for the duration of L′
i+1

compaction. Backups add entries to this map whenever they receive an index segment
from the primary. This map contains entries using as the primary’s index segment as the
key and the corresponding backup’s index segment as the value, as shown in Figure 2.2b.
This mechanism translates pointers to index or leaf nodes within the segment the same
way as it does for value log pointers in leaves. Finally, on compaction completion, the
primary sends the root node offset of Li+1 to each backup, which each backup translates
to its storage space.

2.4 Failure Detection

Tebis uses Zookeeper’s ephemeral nodes to detect failures. An ephemeral node is a node in
Zookeeper that gets automatically deleted when its creator stops responding to heartbeats
of Zookeeper. Every region server creates an ephemeral node during its initialization. In
case of a failure, the Tebis-Master gets notified about the failure and runs the corresponding
recovery operation. In case of Tebis-Master failure, all region servers get notified about
its failure through the ephemeral node mechanism. Then, they run an election process
through Zookeeper and decide which node takes over as Tebis-Master.
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2.5 Failure Recovery

Tebis uses Zookeeper, similar to other systems [1, 26], to store its region map. Each entry
in the region map consists of the range of the region <start key, end key>, the primary
server responsible for it, and the list of its backup servers. The region map is infrequently
updated when a region is created, deleted after a failure, or during load-balancing opera-
tions. Therefore, in Tebis Zookeeper operations are not in the common path of data access.

The Tebis-Master reads the region map during its initialization and issues open region
commands to each region server in the Tebis cluster, assigning them a primary or a backup
role. After initialization, the role of the Tebis-Master is to orchestrate the recovery process
in case of failures and to perform load balancing operations.

Clients read and cache the region map during their initialization. Before each KV op-
eration, clients look up their local copy of the region map to determine the primary region
server where they should send their request. Clients cache the region map since each re-
gion entry is 64 B, meaning just 640 KB are enough for a region map with 10,000 regions,
and changes to it are infrequent. When a client issues a KV operation to a region server
that is not currently responsible for the corresponding range, the region server instructs it
to update their region map.

Tebis has to handle three distinct failure cases: 1) backup failure, 2) primary failure,
and 3) Tebis-Master failure. Since each Tebis region server is part of multiple region
groups, a single node failure results in numerous primary and backup failures, which the
Tebis-Master handles concurrently. First, we discuss how we handle backup failures.

In case of a backup failure, the Tebis-Master replaces the crashed region server with
another one that is not already part of the corresponding region’s group. The Tebis-Master
then instructs the rest of the region servers in the group to transfer the region data to
the new member of the region group. The region experiencing the backup failure will
remain available throughout the whole process since its primary is unaffected. However,
during the reconstruction of the new backup, the region data are more susceptible to future
failures, since there’s one less backup copy.

In case of a primary failure, the Tebis-Master first promotes one of the existing backup
region servers in that region group to the primary role, and updates the region map. The
new primary already has a complete KV log and an index for levels Li, where i ≥ 1.
The new primary region server replays the last few segments of its value log in order to
construct an L0 index in its memory before being able to server client requests. Now that
a new primary region server exists for the group, the Tebis-Master handles this failure as
if it were a backup failure. During the primary reconstruction process, Tebis cannot server
client requests from the affected region.

When the Tebis-Master crashes, the rest of the region servers in the Tebis cluster will
be notified through Zookeeper’s ephemeral node mechanism, as discussed in Section 2.4.
They will then use Zookeeper in order to elect a new Tebis-Master. During the Tebis-
Master downtime, Tebis cannot handle any region failures, meaning that any region that
has suffered a primary failure will remain unavailable until a new Tebis-Master is elected
and initiates the recovery process for any regions that suffered a failure.
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Client Server

Local Remote

Remote Local

2. RDMA Write request

1. Allocate
request & reply 3. RDMA Write reply

Figure 2.3: Allocation and request-reply flow of our RDMAWrite-based communication
protocol.

2.6 RDMAWrite-based Communication Protocol

Tebis performs all client server communication via one-sided RDMAwrite operations [23]
to avoid network interrupts and thus reduce the CPU overhead in the server’s receive
path [23, 22]. Furthermore, to avoid the overhead of registering and deregistering RDMA
memory buffers per KV operation, the server and client allocate a pair of buffers during
queue pair (QP) creation. Their size is dynamic within a range (256 KB currently) set
by the client on QP creation. region server frees this buffer when a client disconnects or
suffers a failure. The client manages these buffers to improve CPU efficiency in the server.

Clients allocate a pair of messages for each KV operation; one for their request and
one for the server’s reply. All buffers sizes are multiples of a size unit named message
segment size (currently set to 128 bytes). Clients put in the header of each request the
offset at their remote buffer where region server can write its reply. Upon completion of a
request, the region server prepares the request’s reply in the corresponding local circular
buffer at the offset supplied by the client. Then it issues an RDMA write operation to the
client’s remote circular buffer at the exact offset. Figure 2.3 shows a visual representation
of these steps. As a result, the region server avoids expensive synchronization operations
between its workers to allocate space in the remote client buffers and update buffer state
metadata (free or reserved). If the client allocates a reply of insufficient size, the region
server sends part of the reply and informs the client to retrieve the rest of the data.

2.6.1 Receive Path

To detect incoming messages, in the absence of network interrupts, each region server
has a spinning thread which spins on predefined memory locations in its corresponding
clients’ remote circular buffers, named rendezvous points. The spinning thread detects
a new message by checking for a magic number in the last field of the message header,
called the receive field, at the next rendezvous location. After it detects a new message
header, it reads the payload size from the message header to determine the location of the
message’s tail. Upon successful arrival of the tail, it assigns the new client request to one
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Figure 2.4: Message detection and task processing pipeline in Tebis. For simplicity, we
only draw one circular buffer and a single worker.

of its workers and advances to the next rendezvous location of the circular buffer.
To support variable size messages Tebis adds appropriate padding so that their size

is message segment aligned. This quantization has two benefits: 1) Possible rendezvous
points are at the start of each segment, offset by the size of a message header minus the
size of the header’s receive field. Upon reception of a message the region server advances
its rendezvous point by adding the current message size. 2) The region server does not
have to zero the whole message upon each request completion; it only zeros the possible
rendezvous points in the message segments where the request was written.

2.6.2 Reset Operation in Circular Buffers

There are two ways to reset the rendezvous point to the start of the circular buffer: 1)
When the last message received in the circular buffer takes up its whole space, the server
will pick the start of the circular buffer as the next rendezvous location, and 2) When
the remaining space in the circular buffer is not enough for the client to send their next
message, they will have to circle back to the start of the buffer. In this case, they will send
a reset rendezvous message to inform the server that the next rendezvous location is now
at the start of the circular buffer.

2.6.3 Task Scheduling

To limit the max number of threads, Tebis uses a configurable number of workers. Each
worker has a private task queue to avoid CPU overhead associated with contention on
shared data. In this queue, the spinning thread places new tasks, as shown in Figure 2.4.
Workers poll their queue to retrieve a new request and sleep if no new task is retrieved
within a set period of time (currently 100 µs). The primary goal of Tebis’s task scheduling
policy is to limit the number of wake-up operations, since they include crossings between
user and kernel space. The spinning thread assigns a new task to the current worker unless
its task queue has more than a set amount of tasks already enqueued. In the latter case, the
spinning thread selects a running worker with less than that set amount of queued tasks
and assigns to it the new task. If all running workers already exceed the task queue limit,
the spinning thread wakes up a sleeping worker and enqueues this task to their task queue.
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Chapter 3

Evaluation Methodology

Our testbed consists of two servers where we run the KV store. The servers are identical
and are equipped with an AMD EPYC 7551P processor running at 2 GHz with 32 cores
and 128 GB of DDR3 DRAM. Each server uses as a storage device a 1.5 TB Samsung
NVMe from the PM173X series and a Mellanox ConnectX 3 Pro RDMA network card
with a bandwidth of 56 Gbps. We limit the buffer cache used by Tebis’s storage engine
(Kreon) using cgroups to be a quarter of the dataset in all cases.

In our experiments, we run the YCSB benchmark [11] workloads Load A and Run A
– Run D. Table 3.1 summarizes the operations run during each workload. We use a C++
version of YCSB [32] and we modify it to produce different values according to the KV
pair size distribution we study. We run Tebiswith a total of 32 regions across both servers.
Each server serves as primary for the 16 and as backup for the other 16. Furthermore, each
server has 2 spinning threads and 8 worker threads in all experiments. The remaining cores
in the server are used for compactions.

In our evaluation, we also vary the KV pair sizes according to the KV sizes proposed
by Facebook [7], as shown in Table 3.2. We first evaluate the following workloads where
all KV pairs have the same size: Small (S), Medium (M), and Large (L).

Then, we evaluate workloads that use mixes of S, M, and L KV pairs. We use small-
dominated (SD) KV size distribution proposed by Facebook [7], as well as two newmixed
workloads: MD (medium dominated) and LD (large dominated). We summarize these KV
size distributions in Table 3.2.

Workload
Load A 100% inserts
Run A 50% reads, 50% updates
Run B 95% reads, 5% updates
Run C 100% reads
Run D 95% reads, 5% inserts

Table 3.1: Workloads evaluated with YCSB. All workloads use a Zipfian distribution
except for Run D that use latest distribution.

11



12 CHAPTER 3. EVALUATION METHODOLOGY

KV Size Mix Cache per Dataset
S%-M%-L% #KV Pairs Server (GB) Size (GB)

S 100-0-0 100M 0.38 3
M 0-100-0 100M 1.4 11.4
L 0-0-100 100M 11.9 95.2
SD 60-20-20 100M 2.8 23.2
MD 20-60-20 100M 3.3 26.5
LD 20-20-60 100M 7.5 60

Table 3.2: KV size distributions we use for our YCSB evaluation. Small KV pairs are
33 B, medium KV pairs are 123 B, and large KV pairs are 1023 B. We report the record
count, cache size per server, and dataset size used with each KV size distribution.

We examine the throughput (KOperations/s), efficiency (KCycles/operation), I/O am-
plification, and network amplification of Tebis for the three following setups: (1) without
replication (No Replication), (2) with replication, using our mechanism for sending the
index to the backups (Send Index), and (3) with replication, where the backups perform
compactions to build their index (Build Index), which serves as a baseline. In Build In-
dex, servers keeps additionally an L0 level in memory for their backup regions, whereas
in Send Index, they do not. For these two setups two be equal, and since we always use
the same number of regions, in Build Index we configure each region L0 size to be half of
the L0 size used in the other two setups.

We measure efficiency in cycles/op and define it as:

efficiency =
CPU_utilization

100 × cycles
s × cores

average_ops
s

cycles/op,

where CPU_utilization is the average of CPU utilization among all processors, excluding
idle and I/O wait time, as given by mpstat. As cycles/s we use the per-core clock fre-
quency. average_ops/s is the throughput reported by YCSB, and cores is the number of
system cores including hyperthreads.

I/O amplification measures the excess device traffic generated due to compactions (for
primary and backup regions) by Tebis, and we define it as:

IO_amplification =
device_traffic
dataset_size

,

where device_traffic is the total number of bytes read from or written to the storage device
and dataset_size is the total size of all key-value requests issued during the experiment.

Lastly, network amplification is a measure of the excess network traffic generated by
Tebis, and we define it as:

network_amplification =
network_traffic
dataset_size

,

where network_traffic is the total number of bytes sent by and received from the servers’
network cards.
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Figure 3.1: Performance and efficiency of Tebis for YCSB workloads Load A, Run A –
Run D with the SD KV size distribution.

3.1 Experimental Evaluation

In our evaluation of Tebis we answer the following questions:
1. How does our backup index construction (Send Index) method compare to perform-

ing compactions in backup regions (Build Index) to construct the index?

2. Where does Tebis spend its CPU cycles? How many cycles does Send Index save
compared to Build Index for index construction?

3. How does increasing the growth factor affect Tebis?

4. Does Send Index improve performance and efficiency in small-dominated work-
loads, where KV separation gains diminish?

3.1.1 Tebis Performance and Efficiency

In Figure 3.1 we evaluate Tebis using YCSB workloads Load A and Run A – Run D for
the SD [7] workload. Since replication doesn’t impact read-dominated workloads, the
performance in workloads Run B – Run D remains the same for all three deployments.
We focus the rest of our evaluation on the insert and update heavy workloads Load A and
Run A.

We run Load A and Run A workloads for all six KV size distributions and with growth
factor 4 which minimizes I/O amplification (but not space amplification). We set the L0

size to 64K keys for the No Replication and Send Index configurations and to 32K keys
for the Build Index configuration, since Build Index has twice as many L0 indexes. We
measure throughput, efficiency, and I/O amplification for the three different deployments
explained in Section 3. We summarize these results in Figure 3.2. We also report the tail
latency in these workloads for the SD KV size distribution in Figure 3.3.
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Figure 3.2: Throughput, efficiency, I/O amplification, and network amplification for the
different key-value size distributions during the (a) YCSB Load A and (b) Run A work-
loads.
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Figure 3.4: Breakdown of cycles spent per operation on network, storage, log replication
and index replication.

Compared to Build Index, Send Index increases throughput by 1.1− 1.7× for all KV
size distributions, increases CPU efficiency by 1.2− 1.6×, and reduces I/O amplification
by 1.1− 3.0×. Also, it is crucial to notice that compared to No Replication, Build Index
increases I/O amplification by 1.6− 3.4× while Send Index only increases I/O amplifica-
tion by 1.4− 1.5×, since eliminating compactions in backup regions means no additional
read traffic for replication. Furthermore, Tebis increases CPU efficiency by replacing ex-
pensive I/O operations and key comparisons during compactions with a single traversal of
the new index segments and hash table accesses to rewrite them.

Sending the backup region indexes over the network increases network traffic up to
1.2×. This trade-off favors Tebis since it pays a slight increase in network traffic for
increased efficiency and decreased I/O amplification.

We also measure the tail latency for YCSB workloads Load A and Run A using the
SD KV size distribution. As shown in Figure 3.3, Send Index improves the 99, 99.9, and
99.99% tail latencies from 1.1 to 1.5× compared to Build Index for all Load A and Run
A operations.

3.1.2 Cycles/Op Breakdown

We run YCSB workloads Load A and Run A and profile Tebis using perf with call graph
tracking enabled. We profile Tebiswhile using Send Index and Build Index configurations.
We use the call graph profiles generated to measure where CPU cycles are spent in Tebis
for Send Index and Build Index. We count the CPU cycles spent on four major parts of
our system:

• Storage: Cycles spent in KV store operations, excluding replication

• Network and Runtime: Cycles spent on detecting, scheduling, and processing
client requests, excluding storage and replication
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Figure 3.5: Send Index improvement over Build Index for Load A, Run A and different
growth factors.

• Log Replication: Cycles spent on replicating KV pairs in a backup’s value log

• Index Replication: Cycles spent to construct indexes for backup regions. Send
index spends these cycles to rewrite the index segments they receive from primary
region servers. Build Index spends these cycles on compactions and iterating KV
value log segments to insert them into Kreon’s L0 index

• Other: All cycles not spent in the above categories

Figure 3.4 summarizes the results of our profiling.
Tebis’s Send Index technique requires 28% fewer cycles than performing compactions

to construct backup indexes. This 28% cycles amount to roughly 12K cycles per operation.
They are divided into: 5.5K fewer cycles for replicating backup indexes, 2K fewer cycles
spent on storage, 2K fewer cycles spent on network and runtime processing, and 2.5K
fewer cycles spent on other parts of the system. With the Send Index method, Tebis region
servers spend 10× fewer cycles on constructing backup indexes and 1.36× fewer cycles
overall when compared to using the Build Index method.

Sending the primary index to backups eliminates compactions for backup regions re-
sulting in increased CPU efficiency during backup index construction. While backup re-
gion servers have to rewrite these index segments, the rewriting process only involves
hash table lookups without requiring any read I/O, resulting in a more efficient backup
index construction technique.

In comparison with Send Index, Build Index also spends 1.16x cycles on network and
runtime processing. This is due to additional queuing effects which are a result of the
increased load due to backup compactions.

3.1.3 Impact of Growth Factor

In Figure 3.5 we show that the gains in performance, efficiency, and I/O amplification
during Load A remain constant when increasing the growth factor. However, during Run
A, the gains of our Send Index approach compared to Build Index increase. Most notably,
with growth factors 12 and 16, the performance improvement is 2.1 and 1.7× respectively.
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Figure 3.6: Throughput, efficiency, I/O amplification, and network amplification for in-
creasing percentages of small KVs during (a) YCSB Load A and (b) Run A workloads.

Similarly, efficiency is improved by 2.4 and 1.9×, and I/O amplification is decreased by
60%.

KV stores intentionally increase growth factor [3, 13] (from 4 to 8-10) and pay the
penalty of higher I/O amplification to reduce space. In the Build Index, this penalty is
further amplified to two or three times according to the number of replicas per region.
However, Send Index eliminates these redundant compactions and allows us to increase
the growth factor and thus the space efficiency of LSM tree-based KV stores without
sacrificing significantly performance or CPU efficiency.

3.1.4 Small KVs Impact

The KV separation [27, 31, 9] and hybrid placement techniques [25, 38] gains in I/O am-
plification decrease for small ≤ 33 B KV pairs, which are important for internet-scale
workloads [7]. This decrease is because the gains for KV separation of small KV pairs is
around 2× [38]. However, if we include also the garbage collection overheads, the gains
further diminish making KV separation identical to putting KVs in-place as RocksDB [16]
does.
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In this experiment, we investigate the impact that small KV pairs percentage has on
the efficiency of Send Index method. We set the growth factor to 12 and examine four
workloads where we vary small KV pairs percentage to 40%, 60%, 80%, and 100%. In
all four cases, we equally divide the remaining percentage between medium and large KV
pairs.

As shown in Figure 3.6, Send Index has from 1.2 to 2.3× better throughput and effi-
ciency than Build Index across all workloads. I/O amplification for Build Index increases
from 7.4 to 9.3×. From the above, we conclude that the Send Indexmethod has significant
benefits even for workloads that consist of 80%-90% small KV pairs.
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Related Work

In this section we group related work in the following categories: (a) LSM tree compaction
offload techniques, (b) Log and index replication techniques, and (c) efficient RDMA
protocols for KV stores:

Compaction offload: Acazoo [18] splits its data into shards and keeps replicas for each
shard using the ZAB [19] replication protocol. Acazoo offloads compaction tasks from a
shard’s primary to one of its replicas. Then, on compaction completion, it reconfigures the
system through an election to make the server with the newly compacted data the primary.

Hailstorm [4] is a rack-scale persistent KV store. It uses a distributed filesystem to
provide a global namespace and scatters SSTs across the rack (in a deterministic way).
Thus it can scale its I/O subsystem similar to HBase/HDFS [1]. Unlike HBase, it schedules
compaction tasks to other servers through the global namespace offered by the distributed
filesystem substrate.

Unlike these systems, Tebis can efficiently keep both the primary and backup indexes
up to date through the send index operation by using RDMA to perform efficient bulk
network transfers.

Log and index replication techniques: Rose [33] is a distributed replication engine that
targets racks with hard disk drives and TCP/IP networking where device I/O is the bottle-
neck. In particular, it replicates data using a log and builds the replica index by applying
mutations in an LSM tree index. The LSM tree removes random reads for updates and
always performs large I/Os. Tebis shares the idea of Rose to use the LSM tree to build an
index at the replica. However, it adapts its design for racks that use fast storage devices
and fast RDMA networks where the CPU is the bottleneck. It does this by sending and
rewriting the index and removing redundant compactions at the backups.

Tailwind [36] is a replication protocol that uses RDMA writes for data movement,
whereas for control operations, it uses conventional RPCs. The primary server transfers
log records to buffers at the backup server by using one-sided RDMA writes. Backup
servers are entirely passive; they flush their RDMA buffers to storage periodically when
the primary requests it. They have implemented and evaluated their protocol on RAM-
Cloud, a scale-out in-memory KV store. Tailwind improves throughput and latency com-
pared to RAMCloud. Tebis adopts Tailwind’s replication protocol for its value log but
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further proposes a method to keep a backup index efficiently.
Active-Memory [39] is a primary-backup replication protocol that, like Tebis, identi-

fies the CPU and not the network traffic as the main bottleneck in modern data serving
systems. Active-Memory takes advantage of RDMA in order to have the primary perform
transaction updates directly in the memory of their backups. The primary takes advantage
of the in-order delivery guarantee of RDMA connected QPs to write an undo log entry
in each backup before altering its memory, to make sure that the backups recoverable
in case of a primary failure. While Active-Memory focuses on transactional in-memory
databases, Tebis is a persistent rack-scale LSM KV store where the main performance
bottleneck is the compactions required to construct the multi-level LSM tree index. Be-
cause of this, Tebis focuses on taking advantage of excess network bandwidth in order to
eliminate compactions when building the backup LSM tree indexes.

Efficient RDMA protocols for KV stores: Kalia et al. [23] analyze different RDMA
operations and show that one-sided RDMA write operations provide the best throughput
and latency metrics. Tebis uses one-sided RDMA write operations to build its protocol.

A second parameter is whether the KV store supports fixed or variable size KVs. For
instance, HERD [22], a hash-based KV store, uses RDMA writes to send requests to the
server, and RDMA send messages to send a reply back to the client. Send messages re-
quire a fixed maximum size for KVs. Tebis uses only RDMAwrites and appropriate buffer
management to support arbitrary KV sizes. HERD uses unreliable connections for RDMA
writes, and an unreliable datagram connection for RDMA sends. Note that they decide to
use RDMA send messages and unreliable datagram connections because RDMA write
performance does not scale with the number of outbound connections in their implemen-
tation. In addition, they show that unreliable and reliable connections provide almost the
same performance. Tebis uses reliable connections to reduce protocol complexity and ex-
amines their relative overhead in persistent KV stores. We have not detected scalability
problems yet.

Other in-memory KV stores [29, 14, 37] use one-sided RDMA reads to offload read
requests to the clients.

For instance, Pilaf [29] argues that read requests dominate in datacenters and therefore
focuses on using RDMA to increase the CPU efficiency of those requests. In more detail,
Pilaf clients use RDMA read operations to read a pointer to a KV from its hash table and
then to read the KV. RDMA read is a one-sided operation, meaning that Pilaf nodes do not
take part in the communication required to complete a client’s read request.

FaRM [14] makes use of RDMA read to offload read requests to the clients, similarly
to Pilaf. FaRM stores KV pairs in a hash table and clients can use RDMA read to retrieve
them. FaRM design a new hashing scheme that tries to minimize the number of RDMA
read operations required for a client to retrieve a KV.

In contrast to Pilaf and FaRM, Tebis does not use RDMA reads since lookups in LSM
tree-based systems are complex. Typically, lookups consist of multiple accesses to the
devices to fetch data. These data accesses must also be synchronized with compactions.

While FaRM clients use RDMA read to read data from its hash table, they send insert
requests to the server using RDMA write. Clients write these requests in a circular buffer
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and use another RDMAwrite to advance the circular buffer’s tail. The sender keeps a copy
of the buffer’s head pointer, which the receiver updates in order to make space available
to the sender. In Tebis we also use RDMA write to send insert requests. However, we
quantize our circular buffer into fixed size segments so that the sender and the receiver
can both determine the next message location, without having to resort to updating the
receiver’s pointers from the sender and vice-versa. These differences mean that Tebis uses
a single RDMAWrite for each insert request, since it doesn’t need to update any pointers
on the receiver’s side, while FaRM makes better use of its communication buffer space,
since it doesn’t have to pad messages.
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Chapter 5

Conclusions & Future Work

In this paper, we design Tebis, a replicated persistent LSM-based KV store that targets
racks with fast storage devices and fast network (RDMA). Tebis implements an RDMA
write-based client-server protocol and replicates its data using an efficient RDMA write-
based primary-backup protocol. Tebis identifies the CPU instead of the network as the
bottleneck and because of it takes a novel approach to keep an up-to-date index at the back-
ups and avoid rebuilding it in case of a failure. Instead of performing compactions at the
backup servers (Build Index) primary sends a pre-built index after each level compaction
(Send Index), trading a slight increase in network traffic for increased CPU efficiency and
decreased I/O amplification. Tebis implements an efficient index rewrite mechanism at the
backups, which is used to translate the primary index’s pointers into valid backup index
pointers. Compared to Build Index, we find that Send Index increases throughput by up
to 1.7×, CPU efficiency by up to 1.6×, decreases I/O amplification by up to 3.0×, and
decreases tail latency by up to 1.5× during YCSB Load A and Run A workloads.

Our approach enables KV stores to operate with larger growth factors in order to save
space (6% space saved by increasing the growth factor from 10 to 16), without inducing
significant CPU overhead. Furthermore, we show that Send Index provides significant
benefits even in workloads where small KVs account for as much as 90% of the total
operations. We believe that the Send Index technique can be adopted by state-of-the-art
replicated LSM-based KV stores to increase their CPU and space efficiency.

Lastly we have identified the following two areas for future work. First, offloading or
parallelizing compactions within the rack in order to better distribute their CPU overhead
and limit their effect on the tail latency observed by the client.

Second, making use of backup copies to serve read and scan requests. In our current
design, all client operations are served from the primary copy of a region. However, in
cases where one the servers that has a backup copy has a lower load than the primary
server, it could be beneficial for the backup server to serve read and scan requests in order
to alleviate the pressure on the primary server. Since Tebis has a complete LSM tree index
for all the out of memory levels, serving read and scan requests from storage is straight
forward. A more in-depth approach is required if one is to ensure that a more recent copy
is not in the in-memory L0 tree.
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