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Abstract

Over the last decades Wireless Sensor Networks (WSNs) have attracted great attention, as

they constitute a key enabling technology for implementing sophisticated services in numerous

application domains, including area and environmental sensing, health care monitoring, and

industrial control systems. Despite their wide applicability, WSNs suffer from network and energy

imperfections, which inevitably often lead to missing measurements. The resulting low volume

of available data dramatically affects subsequent processing and learning tasks, such as detection

of unusual events, clustering, and classification.

In this thesis, we address the problem of missing WSN data by employing two non-conventional

techniques, which are capable of recovering measurements in a reliable fashion, namely: a) Matrix

Completion (MC), and b) Tensor Completion (TC). The key theoretical principle adopted is that

a complex signal can be recovered from a small number of random measurements, by exploiting

the underlying redundancies of the sensing data. However, this assumption is not satisfied in

real-life, and often, noisy datasets, which tend to be full rank. We tackle this limitation by in-

troducing the concept of appropriately forming the available data streams into low-rank 2D and

3D structures, thereby enabling the utilization of MC and TC in the WSN domain.

To test the efficacy of our approach, we experiment on two prominent fields, namely WSN-

based Smart Water Management (SWM) and Human Activity Recognition (HAR). We synthe-

size their respective processing and classification frameworks, which encapsulate our proposed

modules for data sampling, structuring, and recovery. These frameworks are evaluated against

numerous aspects, related to the quality of reconstruction on different volumes of missing data,

the accuracy of subsequent analysis (e.g. classification), and the impact of sub-sampling on

the network’s lifetime. Our analysis highlights the interaction of different recovery scenarios in

terms of data structuring and origin, with several state-of-the-art classifiers. The results demon-

strate that high reconstruction accuracy can be achieved through the developed modules, even

for the case of extremely under-sampled, multi-modal streams of data, lacking up to 80% of their

measurements.
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Περίληψη

Κατά τη διάρκεια των τελευταίων δεκαετιών, τα ασύρματα δίκτυα αισθητήρων έχουν προσελκύσει

μεγάλο ενδιαφέρον καθώς αποτελούν τη βασική τεχνολογία που επιτρέπει την υλοποίηση εξελιγμένων

υπηρεσιών σε πολλαπλούς τομείς εφαρμογών, οι οποίοι περιλαμβάνουν την παρακολούθηση του

περιβάλλοντος, ενός βιομηχανικού συστήματος και της ατομικής υγείας. ΄Ομως, παρά την ευρεία

εφαρμογή τους, τα ασύρματα δίκτυα αισθητήρων πάσχουν από δικτυακές και ενεργειακές ατέλειες,

που αναπόφευκτα οδηγούν σε απώλεια μετρήσεων. Ως αποτέλεσμα, ο χαμηλός όγκος από διαθέσιμα

δεδομένα επηρεάζει δραματικά τις επακόλουθες εργασίες επεξεργασίας και μάθησης, όπως η ανίχνευση

ασυνήθιστων γεγονότων, η ομαδοποίηση και η ταξινόμηση.

Στην παρούσα διπλωματική εργασία αντιμετωπίζουμε το πρόβλημα αυτό, προτείνοντας τις μη

συμβατικές μεθόδους της Συμπλήρωσης α) Πινάκων (ΣΠ) και β) Τανυστών (ΣΤ), οι οποίες είναι

σε θέση να ανακτούν τις απούσες μετρήσεις με έναν αξιόπιστο τρόπο. Η βασική θεωρητική αρχή

που υιοθετείται σε αυτές τις τεχνικές, είναι ότι ένα σύνθετο σήμα μπορεί να ανακτηθεί από ένα

μικρό αριθμό τυχαίων μετρήσεων, αξιοποιώντας τις υποκείμενες συσχετίσεις ανάμεσα στα δεδομένα.

Ωστόσο, η υπόθεση αυτή δεν ικανοποιείται σε πραγματικά, και συχνά θορυβώδη, σύνολα δεδομένων,

τα οποία τείνουν να είναι μεγάλης τάξεως. Αντιμετωπίζουμε αυτόν τον περιορισμό, εισάγοντας την

ιδέα της κατάλληλης διαμόρφωσης των διαθέσιμων ροών δεδομένων σε δισδιάστατες και τρισδιάστατες

δομές χαμηλής τάξης, η οποία επιτρέπει την χρήση των ΣΠ και ΣΤ στον τομέα των ασύρματων

δικτύων αισθητήρων.

Για να δοκιμάσουμε την αποτελεσματικότητα της προσέγγισής μας, πειραματιζόμαστε σε δύο

εξέχοντες τομείς και συγκεκριμένα στην έξυπνη διαχείριση του νερού μέσω των ασύρματων δικτύων

αισθητήρων και στην αναγνώριση της ανθρώπινης δραστηριότητας. Συνθέτουμε τα αντίστοιχα συστή-

ματα επεξεργασίας και ταξινόμησης, τα οποία ενσωματώνουν τις προτεινόμενες μεθόδους μας για

δειγματοληψία, δόμηση και ανάκτηση των δεδομένων. Τα εν λόγω συστήματα αξιολογούνται κατά

διάφορες πτυχές, που σχετίζονται με την ποιότητα της ανακατασκευής για ποικίλα ποσοστά ελλειπου-

σών τιμών, την ακρίβεια της μετέπειτα ανάλυσης (π.χ. ταξινόμηση) και την επίδραση της υπό-

δειγματοληψίας στη διάρκεια ζωής του δικτύου. Η ανάλυσή μας τονίζει την αλληλεπίδραση μεταξύ

διαφόρων σεναρίων ανάκαμψης, από την οπτική της δόμησης και της προέλευσης των δεδομένων,

και πολλαπλών σύγχρονων ταξινομητών. Τα αποτελέσματα επιδεικνύουν ότι, οι μέθοδοι που έχουν

αναπτυχθεί επιτυγχάνουν υψηλή ακρίβεια ανακατασκευής, ακόμη και για περιπτώσεις εξαιρετικής

υπο-δειγματοληψίας πολυτροπικών ροών δεδομένων, στις οποίες έχει χαθεί μέχρι και το 80% των

μετρήσεων.
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Chapter 1

Introduction

1.1 The emergence of Wireless Sensor Networks

Wireless Sensor Networks (WSNs) constitute an emerging technology that bridges the physical

and the digital information worlds under the ever-growing vision of the Internet of Things (IoT).

Intelligent data monitoring and management can be achieved through the use of networked em-

bedded devices, called sensor nodes, transmitting useful measurements and control instructions

via distributed WSNs [1–3].

A WSN is composed by a large number of nodes, each one equipped with sensors that mon-

itor physical or environmental conditions, in one or multiple sensing modalities, i.e. types of

measurements, such as temperature, humidity, sound, motion, and so on. The network comprises

homogeneous or heterogeneous sensor nodes, sampling the observed field at various rates depend-

ing on their respective modalities, the configuration of the network, and the remaining lifetime

of each node.

The first developments of WSNs were motivated by military applications, notably surveil-

lance in conflict zones. Today, the variety of possible applications of WSNs to the real world is

practically unlimited. Application fields include industrial infrastructure monitoring, home au-

tomation, healthcare, and traffic control. In this thesis, we focus on two prominent WSN-related

fields, namely Smart Water Management (SWM) and Human Activity Recognition (HAR). In

the following subsections, we provide a brief discussion related to the two application domains

considered herein along with our motivation for engaging with the particular research areas.

1.1.1 WSNs for Smart Water Management (SWM)

Smart Water Networks (SWNs) [4] are on a fast rise over the last decade, since they constitute

an emerging engineering field which addresses the interconnection between data technologies and

water infrastructures, with the objective to deliver sustainable solutions related to water resource

utilization. Driven by the application demands of modernizing water quality monitoring, acting

upon alerting events, and improving our awareness of water allocation and consumption, Cyber-
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Physical Systems (CPS) and Wireless Sensor Networks (WSNs) encapsulate the key-enabling

technologies for the next generation of SWN systems [5, 6].

Existing solutions in the arena of SWN are considered extremely useful both for responding

to alarming situations [7,8], as well as for engaging citizens in becoming part of water sustainable

policies [9,10]. In their majority, they are deployed close to urban areas thereby yielding feedback

on the actual quality of the water that flows within the pipes towards the plumbing facilities of the

individuals [11–14]. Despite their significance, such solutions cannot address water purification

for human consumption, which is becoming a critical aspect of water management, especially as

the natural resources of fresh water become scarcer and the population of urban areas grows.

Consequently, the necessity intensifies for expanding the engineering focus towards monitoring

and control of industrial treatment plants, which are responsible for water purification for human

consumption.

Water purification involves the combination of slowly varying physical and chemical processes,

for making untreated water suitable for human consumption. Such industrial processes are re-

sponsible for monitoring and controlling critical microbiological parameters, based on sparse and

sporadic samples, and they rely on off-line testing procedures and the involvement of experienced

personnel in the control loop. It has been recognized that employing WSNs in water treat-

ment plants would improve their autonomous character, by introducing novel paradigms of data

acquisition and processing.

1.1.2 WSNs for Human Activity Recognition (HAR)

Sensor-based Human Activity Recognition integrates the emerging area of wireless sensing with

novel data mining and machine learning techniques to model a wide range of human activities [15].

HAR is a rapidly expanding research area that attracts more and more attention in recent years,

since it holds a vital role in the monitoring and enhancement of human health and well-being

status [16], [17]. Extracting contextual information from sensor-acquired physical data is therefore

encountered in numerous health-related applications, such as elder care support, rehabilitation

assistance, chronic conditions management, and fitness coaching, just to name a few [18–20].

For instance, patients with diabetes, obesity, or heart disease are often required to follow a

well defined exercise routine as part of their treatments. Thus, recognizing activities such as

walking, running, or cycling becomes quite useful for providing feedback to the caregiver about

the patient’s behaviour. Likewise, patients with dementia and other mental pathologies could be

monitored for the detection of abnormal activities, and, thereby, the prevention of undesirable

consequences.

Currently there are various sensor-based approaches employed for monitoring the human

activity. Recent technological advances in smartphones and their ever-growing daily use by

the general public, has transformed them into an ideal first-hand tool for non-intrusive sens-

ing. Latest devices come with embedded built-in sensors such as microphones, dual cameras,
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accelerometers, gyroscopes, etc. This large set of sensing capabilities combined with their com-

putational competence and their mobile nature, consolidates smart-phones as a promising solution

for HAR [16,21–23].

Another broadly employed approach for collecting activity information is the utilization of

wearable platforms, for instance SHIMMER sensing devices [24], directly attached to the body

[25]. Such platforms have demonstrated their ability to monitor a variety of multiple attributes,

related to the user’s movement (e.g. using accelerometers or gyroscopes), environmental variables

(e.g. temperature and humidity), or physiological signals (e.g. heart rate or electrocardiogram).

A platform approach, where the sensing capability can be modified via physical and software

device configuration, addresses the need for heterogeneous sensing capabilities, while minimizing

the complexity of the hardware and software development, validation, and support.

It is often the case that the measurements recorded using the above mentioned approaches

are merged to those obtained by a number of other “smart” devices including sensors, such as

smart watches or even smart shoes. Combining sensor readings increases the overall quality of

information beyond the sum of the parts [24]. Hence, a typical activity recognition infrastructure

can be comprised of noumerous heterogeneous sensig devices, attached to several body parts,

acquiring different sensing modalities at various sampling rates, depending on the application

demands [26] [27]. Subsequently, the collected data are naturally indexed over the time dimension,

and processed by supervised machine learning algorithms for the detection of the underlying

activity over each window of time.

1.2 The challenge of missing measurements in WSNs

The evolution of Wireless Sensor Networks and the ever-increasing demands of their applica-

tions have led to a number of limitations regarding the acquisition of sensor-based measurement

datasets. Limited lifetime, communication failures, memory and energy constraints, sensor de-

synchronization and portability, constitute only a subset of the existing factors leading to unob-

served or lost measurements in a typical WSN [28–30]. From a pragmatic point of view, such

under-sampled datasets hinder the efficient extraction of knowledge from the available data, thus

highlighting the need for the reconstruction of the unobserved data in the development of any

efficient WSN-based application [31, 32]. In the following, we briefly review these critical as-

pects, which are strongly related to the temporal sampling rate used for data acquisition on the

underlying WSN.

1.2.1 High temporal sampling rates

For WSNs operating in high data sampling rate regimes, although frequent sampling offers a

high-quality monitoring of the underlying processes, it may also have a dramatic effect on the

lifetime of the network. This effect is attributed to the close relationship between measurement
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acquisition and energy consumption. Waking-up a node, acquiring a measurement, performing

quantization, and storing the data in local memory, are all extremely energy-demanding tasks.

If communications with other nodes is also necessary due to, e.g., storage requirements, then the

impact on network lifetime is even more pronounced.

Another case that entails a large number of missing values in high data rate WSNs, concerns

measurements encoded in packets lost due to communications failures. This scenario occurs

typically in industrial environments, where heavy machinery has a detrimental impact on link

quality. Furthermore, in multi-hop networks, congestion and duty cycling can also lead to dropped

packets and, thus, lost measurements.

1.2.2 Low temporal sampling rates

A third scenario, is related to a low-frequency temporal sampling WSN. Either by design, or

due to clock de-synchronization, each sensor may end up sampling the underlying field at a

different time instance. As an example, consider the paradigm illustrated in Figure 3.1.2. Let us

assume that we have a network monitoring a field, where the entire collection of measurements

can be organized into a measurements matrix, where rows correspond to sensors and columns to

sampling instances. A fully synchronized network of 2 sensors, configured to inquire and record

the field every 10 minutes, would produce a [2 (sensors)]× [6 (measurements per sensor)] matrix,

(cf. Figure 3.1.2, top), with columns corresponding to measurements acquired at time intervals

00:10, 10:20, 20:30,... 50:60. One sensor could sample at 00:03, 00:13,..., 00:53 while the other

could sample at 00:07, 00:17, ..., 00:57. However, the overlying application could demand data

from the field, at a sampling rate beyond the temporal sampling capabilities of the network,

namely every 5 minutes, and specifically at timestamps 00:00, 00:05, 00:10, 00:15, ..., 00:55.

This scenario, would result in a 2 × 12 matrix, whose columns correspond to the timestamps

required by the application. Such a matrix will naturally miss 50% of its measurements, due to

the requested temporal super-resolution, (cf. Figure 3.1.2, bottom).

Figure 1.1: Example of missing values due to temporal super-resolution in a WSN. At the top
there is the fully-populated measurements matrix, whereas at the bottom we have the undersam-
pled super-resolved matrix, lacking 50% of its measurements.
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All of the above discussed scenarios, result in a significant number of missing data that can

have a dramatic impact on subsequent tasks, such as detection of unusual events, clustering of the

measurements, or data classification. For instance, from the perspective of Smart Water Man-

agement, these constraints are translated to the lack of sufficient data samples for characterising

different aspects of the water purification process. On the other hand, considering Human Activ-

ity Recognition, such under-sampled datasets hinder the performance of the underlying machine

learning algorithms.

1.3 Motivation and Objectives

The previously described scenarios regarding the occurrence of unobserved measurements and

their negative effects on high-level applications, highlight the fact that data recovery is an indis-

pensable operation in WSNs. These considerations serve as our motivation for the introduction

of efficient and robust mechanisms for data recovery in a reliable fashion.

In this thesis, we focus on two recovery techniques, namely Matrix Completion (MC) and

Tensor Completion (TC), which have been recognized as two promising novel approaches for

addressing the problem of missing values from a signal processing perspective. Their underlying

mathematical concept is that a complex signal can be recovered from a small number of random

measurements, far below the traditional Nyquist-Shannon limit. The key assumption herein, is

that the signal is sparse and that randomly sub-sampled matrix or tensor measurement data are

available, therefore making MC and TC appealing for WSN applications.

Our goal is to examine the efficacy of the MC and TC-based approaches on the aforementioned

WSN-based domains. In order to do so, we propose novel modules for realistic data sampling, 2D

and 3D structuring and recovery, and we encapsulate them in two application-specific frameworks.

The evaluation process relies on real-valued datasets.

1.4 Contribution

This thesis focuses on the accurate estimation of missing measurements on two highly distinct

fields of WSNs and it provides useful insights regarding the efficiency of our proposed methods

for both applications under scope.

More specifically, concerning the Smart Water Management study, we recommend the formu-

lation of the problem of the unobserved water treatment data as an instance of low rank Matrix

Completion and we propose a novel framework for the evaluation of MC theory. We consider

various approaches for the assessment of the system, which are related to the volume of the avail-

able data, the number of the sensors providing measurements for recovery, and ultimately the

realistic temporal super-resolution aspect that expresses the relationship between the sampling

rate and the netwiork operational characteristics. For all of the aforementioned considerations,

we have implemented their respective modules and embedded them to our proposed framework.
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Concerning the Human Activity Recognition study, we formulate it as a classification problem

and we propose a modular and scalable classification framework for the assessment of the overall

recognition process in the presence of artificially introduced and subsequently recovered missing

values. Moreover, we provide a direct comparison of the proposed techniques for Matrix and

Tensor Completion to another sophisticated method, that of the regularized expectation maxi-

mization. We review the interaction of recovery with a variety of evaluated classifiers, belonging

to major families of Machine Learning algorithms, namely Decision Trees, the instance-based

method of K-Nearest Neighbours, and kernel-based SVM classifiers. Furthermore, we introduce

a novel Hankelization process for constructing low-rank matrices and tensors from data streams

and three realistic scenarios for collective data recovery. We also reach useful conclusions on the

performance of the proposed framework under the pragmatic conditions of non-uniform occur-

rence of missing values per device and examine the impact of sub-sampling on the lifetime of the

underlying sensor network.

1.5 Related publications

Our proposed methodology, the associated evaluation studies, and the experimental findings with

real data have been summarized in the following three original publications, which have resulted

form this thesis.

1. S. Savvaki, G. Tsagkatakis, A. Panousopoulou, and P. Tsakalides, “Recovering Multimodal

Physical Data: Matrix & Tensor Completion on a Classification Framework”, Journal of

Biomedical and Health Informatics (J-BHI), Submitted.

2. S. Savvaki, G. Tsagkatakis, A. Panousopoulou, and P. Tsakalides, “Effects of Matrix Com-

pletion on the Classification of Undersampled Human Activity Data Streams”, in Proc. 24th

European Signal Processing Conference (EUSIPCO 2016), Budapest, Hungary, August 29

- September 2, 2016.

3. S. Savvaki, G. Tsagkatakis, A. Panousopoulou, and P. Tsakalides “Application of Matrix

Completion on Water Treatment Data”, in Proc. 1th International Workshop on Cyber-

Physical Systems for Smart Water Networks (CySWater 2015), CPS Week 2015, Seattle,

WA, USA, April 13-16, 2015.

1.6 Roadmap

The remainder of this thesis is organized as follows: In the next chapter, we present the necessary

preliminaries on the underlying theory of Matrix and Tensor Completion and we introduce our

approach for solving the corresponding problems. In Chapter 3, we describe our methodology

regarding the modules of data sampling, structuring, and recovery within a WSN framework,
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while in Chapters 4 and 5 we validate the efficiency of our concepts by applying them on two

highly distinctive WSN domains. More specifically, in Chapter 4, we incorporate our modules

within a proposed Smart Water Management framework for the reconstruction of WSN-based

water desalination data. In Chapter 5, we extend our studies in the Human Activity Recognition

field, experimenting on physical-kinetic human data and we extensively discuss our conducted

experiments and derived results. Final remarks are presented in Chapter 6 along with directions

for future work.
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Chapter 2

Matrix & Tensor Completion

In this chapter, our objective is to present the fundamentals on the underlying mathematical

theory of the two main techniques utilized in this thesis for missing data recovery, namely Matrix

and Tensor Completion (MC and TC, respectively). First, we focus on basic tensor operations

and then we proceed with the mathematical formulation of the MC and TC problems. Alongside,

we briefly review some state-of-the-art solvers for completing matricew and tensors, and lastly

we describe the specific algorithms that we have employed for MC and TC.

Figure 2.1: Fibers (top) and slices (bottom) of a third-order tensor.

2.1 Notation and preliminaries

In this work, following [33], we use bold lower-case letters x, y, . . . for vectors, bold upper-case

letters X, Y, . . . for matrices, and bold calligraphic letters X , Y , . . . for tensors.
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A tensor is a generalization of a vector and a matrix. A vector is a first-order (also called one-

way or one-mode) tensor and a matrix is a second-order tensor. An N -order tensor is defined as

X ∈ <I1×I2×···×IN and its (i1, i2, . . . , iN )-th component is denoted as xi1,i2,...,iN , where 1 ≤ ik ≤ Ik
and 1 ≤ k ≤ N .

A fiber of X is a vector x obtained by fixing all indices of X except one, while a slice of X is

a matrix X acquired by fixing all indices of X except two. This is illustrated in Figure 2.1, which

shows the fibers (at the top) and the slices (at the bottom) of a third-order tensor X ∈ <I1×I2×I3

.

It is often very convenient to represent a tensor as a matrix. Unfolding, also known as

matricization or flattening, is a process of reordering the elements of an N -order tensor into a

matrix. The unfolding operation along the n-th mode on a tensor X ∈ <I1×I2×···×IN is denoted

as X(n) ∈ <In×Πj 6=nIj , which is a matrix whose columns are the mode-n fibers of X . Notice that,

the choice of the ordering of the columns of X(n) does not matter for practical purposes. It is

enough that one sticks to the same rule to arrange the n-mode vectors as fibers of the nth mode

unfolding. As a simple example, the modal unfoldings for X ∈ <3×4×2 are shown below, where

X(:, :, 1) and X(:, :, 2) are the frontal slices of X .

X(:, :, 1) =


1 2 3 4

5 6 7 8

9 10 11 12

 , X(:, :, 1) =


13 14 15 16

17 18 19 20

21 22 23 24



X(1) =


1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24



X(2) =


1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24


X(3) =

[
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

]

The n-rank of a N-way tensor X , denoted as rankn(X ), is a generalization of the matrix rank.

The rank is an indicator of the correlations existing among the underlying data, meaning that

the lower the rank, the higher the data correlations. The rank of a matrix X ∈ <I1×I2 is defined

as the size of the largest collection of its linearly independent columns (the column rank), or its

linearly independent rows (the row rank). It is a non-negative integer, upper bounded by either

I1 or I2, thus rank (X) ≤ min(I1, I2). A matrix having a rank that is as large as possible is

said to be full-rank. Similarly, the rank of a tensor X is defined as an array: (rank(X(1)), . . .,
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rank(X(N))), containing the ranks of all node unfoldings X(n) of the tensor. We say that X is

approximately low-rank if X(n) is approximately low-rank for all n.

2.2 Problem formulation for Matrix Completion - MC

Let us consider a sensor network consisting of I1 nodes. Each node samples at a fixed rate and

forwards the data to a sink through a multi-hop way. Thus, at the sink we should get an [I1]× [I2]

matrix, where I2 is the number of samples obtained in each node, i.e., X ∈ <I1×I2 . However,

due to lossy transmissions, the failure of sensor nodes, and other factors previously described

in Section 1.2, some data are missing and the matrix is incomplete. Hence, we end up with

a partially observed [I1] × [I2] matrix M whose missing entries we wish to recover using only

the available k << I1 × I2 measurements. In general, this is an ill-posed problem, unless some

additional constraints are imposed on M. Specifically, it was recently proved [34], that exact

recovery is feasible from most sets of k sampled entries, even of surprisingly small cardinality,

given that M is low-rank.

Formally, let Ω be the set of known indices (i1, i2) corresponding to the available measure-

ments. The linear map A is defined as a projection operator setting all unknown indices to zero,

that is

A(Mi1i2) =

1, if (i1i2) ∈ Ω

0, otherwise

A natural way to fill in the missing values is to estimate the lowest-rank matrix X which

agrees with the given data in M [35], by solving:

minimize
X

rank(X)

subject to A(Xi1i2) = A(Mi1i2), ∀(i1i2) ∈ Ω . (2.1)

Although one could seek an approximate matrix X by minimizing the rank [35], rank minimization

is an NP-hard problem in general [36]. However, it was recently shown that exact matrix recovery

is possible through convex optimization [34], [37]. The relaxation of the above problem that was

shown to produce accurate approximations, is based on the replacement of the rank function with

the more computationally tractable nuclear norm, which represents the convex envelope of the

rank. Singular Value Decomposition (SVD) decomposes the [I1]× [I2] measurements matrix, into

a product of an orthonormal matrix U, a diagonal matrix S, and another orthonormal matrix

V, such that:

M = USVT . (2.2)

According to the spectral theorem associated to the SVD, the number of singular values, i.e., the
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diagonal entries of S, reveals the rank of the matrix. Low rank matrices, such as the ones produced

by spatio-temporally correlated processes, are characterized by a small number of singular values.

Furthermore, the rank of a measurement matrix might be artificially increased, due to noise that

typically follows an independent distribution. Hence, considering a lower-rank approximation of

the matrix results in an implicit de-noising of the sampled data. Based on the SVD analysis of

a matrix, the minimization in (2.1) can be reformulated as:

minimize
X

‖X‖∗

subject to A(Xi1i2) = A(Mi1i2), ∀(i1i2) ∈ Ω, (2.3)

where the nuclear norm ‖X‖∗ of a matrix X is defined as the sum of its singular values,

‖X‖∗ =
∑

σi(X)

and it reveals its rank. Equation (2.3) constitutes a semi-definite, computationally tractable

problem [38]. Recovery of the matrix is possible, provided that Ω is sampled uniformly and

matrix M obeys a low coherence condition. Then, with probability 1−n−3, the solution of (2.3)

will converge to the solution of (2.1), provided that the number of obtained samples obeys

k ≥ Cn6/5rlog(n),

where n = max(I1, I2), C is an appropriate constant, and r is the matrix rank.

For the noisy case, an approximate version of (2.3) can be solved [39], by replacing the equality

constraint with an inequality constraint given by ‖A(Xi1i2)−A(Mi1i2)‖2F ≤ ε, where

‖X‖2F =
∑

λ2
i

denotes the Frobenius norm and ε is the approximation error. The optimization is therefore

formulated as:

minimize
X

‖X‖∗

subject to ‖A(Xi1i2)−A(Mi1i2)‖2F ≤ ε, ∀(i1i2) ∈ Ω. (2.4)

2.2.1 State-of-the-art in Matrix Completion algorithms and our employed ap-

proach

Computing the SVD in order to design a standard nuclear norm solver unsurprisingly plays a

critical computational role for large matrices. The efficient and accurate solution to this problem

has attracted much research attention in recent years. Some of the existing methods for doing

so, include but are not limited to:
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• The singular value thresholding (SVT) algorithm proposed in [40], that is essentially a gradient

method for solving the dual of a regularized approximation of Equation (2.3).

• The Fixed-Point Continuation with Approximate (FPCA) Singular Value Decomposition method

in [41], solving a least squares (regularized with the nuclear norm) Lagrangian version of Equa-

tion (2.3).

• The Accelerated Proximal Gradient Lagrangian (APGL) method in [42] that solves another

Lagrangian version of Equation (2.3).

• The Proximal Point Algorithm (PPA) in [43] that solves the general nuclear norm minimization

problem with linear equality and second-order cone constraints.

• Interior-point methods in [35], [34], and [44] for solving the semi-definite programming refor-

mulation of Equation (2.3).

However, most of the aforementioned related efforts involve applying a soft-thresholding op-

erator on the singular values of an iterate, which requires repeated calls to an SVD or truncated

SVD solver. Thus, such approaches are not scalable to large-scale problems [40], [41], [42] that

typically occur within a WSN.

In the following, we present some previous work on applying the MC theory in WSNs. The

authors in [45] suggest a method to recover the lost data in internet traffic matrices by utilizing

low-rankness and spatio-temporal correlation. Moreover, [29] proposes an algorithm using the

low-rank structure, time stability, space similarity, and multi-attribute correlation to estimate

the missing data in highly incomplete data matrices. Authors in [46] present an algorithm that

utilizes the low-rankness and short term stability features to reduce data traffic in WSNs.

We depart from these approaches by addressing the issue of high computational complex-

ity presented by state-of-the-art solvers of the MC problem. Hence, in this thesis, we employ

the Augmented Lagrange Multipliers (ALM) based MC algorithm proposed in [47], to solve a

reformulation of the nuclear norm minimization problem, that is:

minimize
X,E

‖X‖∗

subject to X + E = M , A(Ei1i2) = 0, ∀ (i1i2) ∈ Ω, (2.5)

Equation (2.5) is strongly connected to the formulation of the Robust Rrincipal Component

Analysis (RPCA) problem, extensively described in [47], which can be solved very efficiently.

According to literature, the considered ALM algorithm exhibits high recovery performance and

quick convergence [47], [48].
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Algorithm 1 General Method of Augmented Lagrange Multiplier

Output: Xk

1: ρ ≥ 1
2: while not converged do
3: Solve Xk+1 = arg minX L(X,Yk, µk).
4: Yk+1 = Yk + µkh(Xk+1);
5: Yk+1 = Yk + µk(Xk+1);
6: Update µk to µk+1.
7: end while

2.2.1.1 Overview of the method of Augmented Lagrange Multipliers

In [49], the general method of augmented Lagrange multipliers is introduced for solving con-

strained optimization problems of the kind:

minimize
X

f(X)

subject to h(X) = 0, (2.6)

where f : <I1 ⇒ < and h : <I1 ⇒ <I2 . One may define the augmented Lagrangian function:

L(X,Y, µ) = f(X) + 〈Y, h(X)〉+
µ

2
‖h(X)‖2F ,

where µ is a positive scalar. Then, the optimization problem can be solved via the method of

augmented Lagradge multipliers, outlined in Algorithm 1.

Under some rather general conditions, when µk is an increasing sequence and both f and h

are continuously differentiable functions, it has been proven in [49] that the Lagrange Multipliers

Yk produced by Algorithm 1 converges Q-linearly to the optimal solution when µk is bounded,

and super-Q-linearly when µk is unbounded. This superior convergence property of ALM makes

it very attractive. Another merit of ALM is that the optimal step size to update Yk is proven to

be the chosen penalty parameter µk, making the parameter tuning much easier than the iterative

thresholding algorithm. A third merit of ALM is that the algorithm converges to the exact optimal

solution, even without requiring µk to approach infinity [49]. In contrast, strictly speaking both

the iterative thresholding and APG approaches mentioned earlier can only find approximate

solutions to the problem. Finally, the analysis of convergence and the implementation of the

ALM-based algorithms is relatively simple.

2.3 Problem formulation for Tensor Completion

Since tensors constitute a generalization of matrices, the theory of Tensor Completion is an ex-

tension of the theory of Matrix Completion. Thus, in direct analogy to the formulation of the

MC problem, let us assume that the measurements in our considered sensor network are now

forwarded at a sink implemented by a third-order tensor structure. At this case, the aforemen-
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tioned factors leading to missing measurements within a WSN would result in an under-sampled

[I1]× [I2]× [I3] tensor T , which we wish to recover from a fraction k of its entries being available.

Equation (2.3) for the matrix case (i.e., the two-order tensor) is extended to higher-order

tensors by solving the following optimization problem to estimate the lowest-rank tensor X
which agrees with the given data:

minimize
X

‖X‖∗

subject to A(X i1i2i3) = A(T i1i2i3), ∀(i1i2i3) ∈ Ω, (2.7)

where Ω is the index set (i1, i2, i3) of observed entries and the linear map A is defined as a random

projection operator keeping the entries in Ω and zeroing out others; that is

A(T i1i2i3) =

1, if (i1i2i3) ∈ Ω

0, otherwise

Nonetheless, the tensor nuclear norm is not defined as the convex envelope of the tensor rank,

as in the matrix case. Unlike matrices, computing the rank of a general tensor (mode number >

2) is an NP hard problem [50]. Therefore, there is no explicit expression for the convex envelope

of the tensor rank to the best of our knowledge.

However, [51] proposes a convex formulation of Equation (2.7), by defining the tensor nuclear

norm as:

‖X‖∗ =

n∑
i=1

αi‖X (i)‖∗

where αi’s are constants satisfying αi ≥ 0 and
∑n

i=1 αi = 1. Thus, the nuclear norm for a general

tensor case is defined in [51] as the convex combination of the nuclear norms of all matrices

unfolded along each of its modes. Under this definition, (2.7) can be written as:

minimize
X

n∑
i=1

αi‖X (i)‖∗

subject to A(X i1i2i3) = A(T i1i2i3), ∀(i1i2i3) ∈ Ω (2.8)

2.3.1 State-of-the-art in Tensor Completion algorithms and our employed ap-

proach

According to literature [52] [51], state-of-the-art methods for low-rank tensor completion involve

unfolding the tensor into a matrix and the succeeding application of a matrix nuclear-norm

minimization algorithm using Singular Value Decomposition (SVD), such as FPCA [41], APGL

[42] and many others. However, as previously reported, this approach can be very slow or

not applicable for large-scale problems. Moreover, such methods that treat tensors as matrices
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utilize only one mode low-rankness of the underlying tensor and do not exploit all the available

correlations that exist in the structure.

To address these issues, we employ the recently proposed approach of Low-rank Tensor Com-

pletion using Parallel Matrix Factorization [33]. According to this technique, each mode of the

tensor is unfolded to a set of matrix factors, which are being updated alternatively by dynamically

adjusting their rank estimates, a computationally more efficient practice than SVD.

Formally, tensor T is unfolded to a set of matrix factors Xn Yn, such that Tn ≈ XnYn,

for n = 1, 2, 3 denoting the number of dimensions. Introducing one common variable Z to relate

these matrix factorizations, we solve the following problem to recover the low-rank tensor X that

agrees with the given data:

minimize
X,Y,Z

3∑
n=1

αn

2
‖XnYn − Zn‖2F

subject to A(X i1i2i3) = A(T i1i2i3), (i1, i2, i3) ∈ Ω , (2.9)

where X = {X1,X2,X3} and Y = {Y1,Y2,Y3}. In the model, αn are weights that satisfy∑
n αn = 1 and ‖X‖2F =

√
〈X ,X 〉 denotes the Frobenius norm of X .

The drawback of this approach is that all mode ranks r1, r2, r3 must be specified in the

algorithm, yet the knowledge of their true values is not assumed. To tackle this difficulty, we

adopt the rank increasing scheme introduced in [33]. We dynamically update the rank estimates

starting from underestimated ranks for the factor matrices, i.e. r = 1, in each mode. The ranks

are then gradually increased if the algorithm detects slow progress in the updates of the singular

values of their corresponding factor matrices. Thus, (2.9) is solved by cyclically updating X,Y

and Z. The procedure is performed for all modes in parallel, making this a rather fast recovery

process, as well as effective since it exploits the low-rankness of all tensor modes. Though this TC

method is non-convex, it has already delivered promising results on both synthetic and real-world

MRI and hyper-spectral data [33] [53].



Chapter 3

A novel modular system for missing

data completion in WSN-based

applications

In this chapter, we describe our proposed modular approach for the effective recovery of missing

WSN measurements within the matrix and tensor completion frameworks. We consider three

key aspects: How do missing values occur in a typical WSN? Which is the optimal way for

structuring the under-sampled data? And should the data be recovered using a centralized or a

distributed strategy? We attack these issues by implementing three respective modules, which

will be thereafter embedded into a complete processing system for real data experimentation on

two specific application domains, in order to evaluate their performance.

3.1 The sampling module

The goal of this module is to implement the realistic conditions described in Section 1.2 that

lead to unobserved measurements in WSNs, by considering two distinct approaches. Without

loss of generality, in this thesis we consider zeros in the place of missing values we are trying to

recover. The percentage of missing data is indicated by the fill ratio metric, defined as the ratio

of the amount of non-zero elements over the number of all the entries in a measurement matrix

of dimensions [I1]× [I2]:

f =
#non− zero elements

[I1]× [I2]
.

3.1.1 Approach A: Introducing missing values via sub-sampling

In order to reproduce the sub-sampling conditions of WSNs operating in high data rates, such as

the ones described in Section 1.2.1, we artificially introduce missing values, namely zeros, in the

datasets at hand.
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Considering the fact that WSN nodes are able to simultaneously acquire measurements cor-

responding to multiple sensing modalities, each one often comprising 3-axially mapped data

encoded to packets, we implement the sampling module by applying random zero-placement at

the same temporal instances for all the data channels related to a specific modality, according

to a fixed fill ratio. As a realistic example, consider the failure of the battery of a sensor node

leading in missing packets, which are lost at different moments for each one of the node’s sensing

modalities.

A visual representation of this sampling scheme is illustrated in Figure 3.1, showing a dataset

created from the recordings of I1 sensor nodes, where each node captures n 3-axial modalities of

I2 samples. The white-coloured cells indicate the missing values, i.e. zeros, at the same cells per

modality.

Figure 3.1: Example of artificial sub-sampling in a network of I1 sensor nodes and n 3-axial
modalities of I2 samples, where zero-placement is applied at the same temporal instances per
modality.

3.1.2 Approach B: Introducing missing values via temporal super-resolution

Herein, we attempt to approach the problem of missing WSN measurements from a different

perspective, in order to cover WSNs operating at low data rates, as described in Section 1.2.2.

Unlike the previous sampling scheme, in this case the zero-valued entries are not randomly intro-

duced according to a specified fill ratio. Instead, they naturally arise as we increase the temporal

sampling rate beyond the operating characteristics of the network.

More specifically, let us consider an [I1 × n] × [I2] fully-populated measurements matrix,

depicted in Figure 3.2 (left), resulting from the measurements acquired by I1 devices, where each

node captures n 3-axial modalities at time intervals I2. The data therein, were recorded at a

sampling rate s, which is the maximum sampling rate of our WSN. Increasing the value of s

to, e.g., 2s, leads to an increase in the dimensionality of the measurements matrix, such that

the number of columns, i.e. the size of each time interval, is doubled, while the number of rows

remains constant, namely [I1×n]× [I2×2]. Since we are operating beyond the temporal sampling
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capabilities of the network, there are not enough measurements to fill the expanded measurements

matrix, according to the timestamps on which the measurements were obtained. Subsequently,

zero-valued measurements are introduced at cells, as presented in Figure 3.2 (right). Moreover,

the value of the filling ratio, f , in this sampling approach is inversely proportional to the increase

in the sampling rate. Thus, for the illustrated case, f is set to 0.5.

Figure 3.2: Example of temporal super-resolution via doubling the sampling rate in a network of
I1 sensor nodes and n 3-axial modalities acquired at I2 time intervals.

3.2 The Hankelization module

The purpose of the Hankelization module is to address the fact that real WNS-obtained ob-

servations are often contaminated by noise, resulting in sub-sampled matrices that tend to be

of full rank. Hence, matrix and tensor completion methods, which assume low-rankness of the

underlying data, may be inefficient for high-rank noisy matrices. Herein, we tackle this problem

by appropriately organizing the available streams of data into low-rank Hankel matrices, thereby

enabling the utilization of MC and TC in the WSN domain.

A Hankel matrix is a square matrix in which each ascending skew-diagonal from left to right

is constant, e.g.:



a b c d e

b c d e f

c d e f g

d e f g h

e f g h i g


Hankel matrices have recently been employed in numerous applications including system iden-
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tification [54], recognition of actions in video [55], and the reconstruction of vital signs [56], due

to their ability to capture the essence of the temporal evolution of the data in a compact way.

We found that this property also stands for the WSN-acquired data, since few of their singular

values capture most of their nuclear norm, facilitating the application of our recovery methods.

Therefore, we propose the Hankelization process described in the next section.

3.2.1 From data streams to matrices

Assume we have a data time series X = {x1, x2, . . . , xI} of length I. The first step of the

Hankelization process involves the segmentation of the data stream into consecutive windows of

size I2 with an overlap l. According to these parameters, the time series X is mapped into l lagged

windows, Xi = {xi, . . . , xi+I2−1} for i = 1, . . . , I1, where I1 = I − I2 + 1. The resulting trajectory

matrix X of dimensions I1 × I2 is a Hankel matrix having one main property; cross-diagonal

elements of X are equal: xj+i−1 = xi+j−1. Thus, X is written:

X =


X1

X2

...

XI1

 =


x1 x2 x3 . . . xI2

x2 x3 x4 . . . xI2+1

...
...

...
. . .

...

xI1 xI1+1 xI1+2 . . . xI


Nevertheless, the random introduction of missing measurements on a Hankel matrix, using

the approaches described in the previous section, would violate its structure. Therefore, we take

one step back and sample the available fully-populated data streams, in order to obtain Hankel

matrices, which contain missing values. The overall Hankelization process is illustrated in Figure

3.3.

Figure 3.3: The Hankelization process. The available fully-populated data streams are structured
into low-rank sub-sampled Hankel matrices.

3.2.2 Generalization: From matrices to tensors

In this section, we scale up our proposed Hankelization process to higher dimensional data, by

forming third-order matrices, namely tensors. For an I1 × I2 × I3 tensor X to be created, more

than one available data streams are required. Each data stream of length I is structured into
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a separate “small scale” Hankel matrix X of dimensions I1 × I2 and the tensor X is formed by

vertically concatenating these Hankel-slices along the third dimension, as displayed in Figure 3.4.

Figure 3.4: Extension of the Hankelization process from matrices to third-order tensors.

3.3 The recovery module

This is the most crucial module proposed in this thesis, where our employed recovery techniques

are applied on the constructed low-rank, sub-sampled 2D and 3D Hankel structures, respectively.

A key question we aim to answer herein, is related to the origin and structuring of the data

involved in each instance of the reconstruction module. Our goal was to explore the ability of

MC and TC to exploit the correlations that may exist on data originating from a single or multiple

sensing modalities and devices. To this end, we consider three different scenarios as follows:

• Scenario 1 - Single-device recovery : In this scenario, we follow a distributed WSN mentality

for the reconstruction. More specifically, we assume that each device in the network has access

only to its stored sub-sampled structures, that contain the grouped data of all the modalities

captured by this single sensing device. Thus, in Scenario 1, the MC-based or TC-based recovery

takes place on each device locally, and its instances are as many as the devices within the WSN.

• Scenario 2 - Collective recovery per modality : This scenario implements a centralized WSN

scheme, where the available measurements are sent to a central processing station, concate-

nated per modality, and thereafter recovered. More specifically, each call of the reconstruction

module herein, involves all the data in the network, corresponding to a specific sensing modal-

ity captured by all the devices. Hence, the instances of Scenario 2 are as many as the available

modalities.

• Scenario 3 - Collective recovery : In this scenario, a centralized WSN is also considered, how-

ever, in this case the reconstruction involves the totality of the available data streams, orig-

inating from all the sensing modalities and devices in the network, hence there is only one

reconstruction call.
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Subsequently, recovery is applied on:

• the vertically concatenated collective [I1×# of involved data streams]× [I2] matrices per sce-

nario for the case of MC, and

• the [I1]× [I2]× [I3] tensors per scenario for TC.

Finally, the data are reorganized to form the initial, yet reconstructed matrix per data stream.

Figure 3.5 illustrates an instance of the 2D recovery module for Scenario 2, regarding the 3-axial

modality 1 in a test-bed of 2 sensing devices. The respective instance of the 3D recovery module

is depicted in Figure 3.6. Instances of Scenario 1 and Scenario 3 are formed in a similar manner,

according to their correspondingly involved data streams.

The modules described above are rather general and can be easily instantiated within nu-

merous WSN-based application domains, challenged by unobserved or lost measurements. In the

following two chapters, we examine the efficiency of our proposed methods, by utilizing them

for the composition of a processing framework for Smart Water Management (SWM) and a

classification framework for Human Activity Recognition (HAR), respectively.

Figure 3.5: Instance of the 2D recovery module for Scenario 2, regarding the 3-axial modality 1
in a test-bed of 2 sensing devices.
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Figure 3.6: Instance of the 3D recovery module for Scenario 2, regarding the 3-axial modality 1
in a test-bed of 2 sensing devices.



24 Novel Techniques for the Estimation of Multi-modal Missing Data in WSNs



Chapter 4

Case study 1: Matrix Completion for

the recovery of water treatment data

colected by a WSN

Recent advances in Cyber-Physical Systems (CPS) have revolutionized water management in

urban areas. Nevertheless, literature reports minor progress in introducing CPS-based systems

in industrial water treatment plants, responsible for water purification. Such environments would

greatly benefit by adopting CPS technologies in general, and Wireless Sensor Networks (WSNs)

in particular. However, WSNs suffer from a series of industrial monitoring constraints, described

in Section 1.2, which inevitably lead to missing measurements. In this chapter, we study the

problem of efficient estimation of missing water treatment data, collected by a WSN deployed

in a water desalination plant. Our goal is to examine how data redundancies can be used for

the recovery of extremely under-sampled matrices, by applying the theory of low-rank Matrix

Completion via the method of the Augmented Lagrange Multipliers, analysed in Chapter 2.

To this end, we implement a realistic framework for experimentation, which is composed by a

subset of the modules presented in the previous chapter. We consider three key issues related to

the performance of our considered method; namely, efficient recovery of missing measurements,

single-device versus collective recovery of measurements matrices, and the problem of temporal

super-resolution.

4.1 The proposed framework for SWM

The process of imputing missing water treatment data is incorporated into the framework depicted

in Figure 4.1. Our focus is on the sampling and recovery modules. In this section, we extensively

describe the methods that we have utilized for their instantiation within the specified application

framework.
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Figure 4.1: Case study 1 - The proposed framework for water treatment data.

4.1.1 The data collection module

Data collection took place at the La Tordera pilot desalination plant, owned by Acciona Agua 1,

by deploying a customized WSN solution. The deployment environment and WSN modules

are illustrated in Figure 4.2. Each device features an IEEE-802.15.4-based protocol stack, that

employs a customized CSMA-based solution for adaptive link scheduling [57] and the IEFT

Standard for Routing over Low Power Lossy Networks (RPL) [58].

Figure 4.2: Case study 1 - The desalination plant (left) and the WSN module used for the
collection of water desalination data (right).

4.1.2 The sampling module

The sampling module is implemented by using the two approaches presented in Section 3.1,

namely via the artificial introduction of missing values via random sub-sampling and by temporal

super-resolution of the WSN’s maximum sampling rate.

A significant aspect of the sampling process is related to the amount of the unobserved

measurements. Therefore, we modify this module accordingly, by engaging numerous cases of

missing measurements with the purpose of reaching robust conclusions regarding the efficiency

of our proposed recovery method. The key parameter herein, dictating the percentage of missing

values within the data at hand, is the fill ratio f , defined in the previous Chapter. High values

1http://www.acciona-agua.com/
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of f result in relatively “dense” matrices lacking only a few measurements, while low fill ratios

lead to “sparse” matrices where the majority of measurements is unobserved.

4.1.3 The recovery module

For the recovery module we used the ALM-based MC method, described in Section 2. Note that,

in this case study we do not implement the aforementioned Hankelization process, since we are

dealing with rather low-rank data. Thus, instead of structuring the available measurements into

Hankel matrices, we adopt the simple approach of the vertical concatenation of the data into one

large sub-sampled measurements matrix of dimensions [I1 × n]× [I2], as depicted in Figure 4.3.

I1 stands for the number of devices included in the WSN, n for the number of the data streams,

namely channels, captured by each device, and I2 for the timestamps of the measurements.

Moreover, the data are grouped per device, and we refer to the “virtual” frequency of each device

as a sensing modality. This allows us to generalize the specific study and its conclusions, to other

cases of WSN-based monitoring beyond water treatment.

Figure 4.3: Case study 1 - The proposed structuring of data (general case).

As far as the recovery scenarios are concerned, the implementation of the recovery module

herein concentrates on the number of devices providing the measurements. Notice that, since

each device in this case study represents a modality, Scenario 2, i.e., the collective recovery per

modality, and Scenario 3, i.e., the overall collective recovery, are identical. Thus, the performance

of the MC-based reconstruction is evaluated, when considering data from a single device (Scenario

1), as opposed to Scenario 2/3, where collective recovery is performed using measurements from

all the devices/virtual modalities. According to the first option, MC-based recovery takes place

locally at each device. Practically speaking, in this scenario, recovery takes place on a sub-matrix

of the measurements matrix shown in Figure 4.3, by employing only the data corresponding to

a specified device. The second option, incorporates a sink and applies MC to the collective

measurements matrix, I1 × I2.
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4.1.4 The evaluation module

A key issue for the implementation of the evaluation module, is related to the specific metric

that we use in order to quantify the obtained results. We evaluate the proposed framework based

upon the commonly used Normalized Mean Square Error (NMSE), defined as the mean squared

error between the initial fully-populated and the reconstructed measurements matrix, normalized

with respect to the l2 norm.

4.2 Experimental evaluation of the proposed framework

The goal of this section is to assess the effectiveness of the ALM algorithm for MC on WSN-based

water desalination data against various aspects, which are related to the volume of the data, the

percentage of missing entries, which arise either due to sub-sampling or temporal super-resolution,

and the number of devices providing measurements.

4.2.1 Dataset

The dataset considered for our evaluation purposes contains water impedance measurements

(Ohm), sampled at n = 10 different channels per device, by I1 = 5 devices at different stages

of the desalination process. WSN measurements were collected for a 3 day period (25th, 26th,

27th October 2014) and the sampling rate of the nodes was set to 1 measurement per hour per

node. Hence, our initial, fully-populated measurements matrix, contains in total [I1 = 5 × n =

10] × [I2 = 3 × 24] = 3600 measurements. Thus, the general underlying matrix containing

the available measurements, illustrated in Figure 4.3, is instantiated as presented in Figure 4.4,

according to the dataset at hand.

Figure 4.4: Case study 1 - The proposed structuring of data, based upon the water dataset at
hand.

4.2.2 Effects of measurement matrix dimensions

In this experiment, we investigate the Matrix Completion recovery capabilities as a function of

the sub-sampling factor, f , on the measurements matrix. The objective is to assess how the
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MC-based recovery performance is associated with the volume of the data, by using four different

sizes of measurements matrices, generated from the initial fully-populated [50]× [72] matrix.

Therefore, we gradually reduce the dimensionality by a factor of two, by assuming that for

each day the number of sampling instances, i.e., columns of the matrix, is halved, while the

number of rows, i.e., number of modalities, remains constant. As a result, the measurements

matrix dimensions at the second experiment is [50] × [36 (2 hours sampling interval)], at the

third experiment is [50] × [18 (4 hours sampling interval)], and so on. For each data size, f was

initiated at 0.1 and was iteratively incremented up to 0.9, with a step size equal to 0.02.

Figure 4.5, depicts the recovery performance measured by the NMSE as a function of f . We

can observe that increasing f has a positive effect on the reconstruction quality. Regardless the

size of the measurements matrix, the amount of missing values affects crucially the reconstruction

performance. The results also show that the NMSE converges at high values of f , for all 4 sizes

of the measurements matrix. Moreover, it is demonstrated that, for larger data matrices, the

convergence of NMSE is much smoother.
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Figure 4.5: Case study 1 - Normalized MSE as a function of f with respect to 4 different
measurements matrix sizes.

Figure 4.6(a) depicts a fully sampled [50] × [72] measurements matrix and Figures 4.6(b)-

4.6(d) present the MC reconstructed matrices when f equals to 0.1, 0.5, and 0.9, respectively.

It is apparent that higher fill ratios lead to more accurate measurements reconstruction, in ac-

cordance with both the theoretical models, as well as the quantified results presented at Figure

4.5. Furthermore, we observe that although the reconstruction at 0.1 exhibits noisy artifacts,

one can still get an meaningful overall sense of the behaviour of the data. Finally, it is shown

that even 50% of the measurements can produce very accurate estimations. This suggests that

a dramatic reduction in the sampling requirements for this application is possible through MC

reconstruction.
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Figure 4.6: Case study 1 - (a) The original fully-sampled measurements matrix and the MC-
recovery results: (b) reconstructed matrix from 10% of the measurements, (c) reconstructed
matrix from 50% of the measurements, (d) reconstructed matrix from 90% of the measurements.

4.2.3 MC for temporal super-resolution

In this set of experimental results, we attempt to approach the problem of missing measurements

from a different angle, related to the low temporal sampling characteristics of this application’s

underlying WSN. Herein, the missing values naturally arise as we increase the temporal sampling

rate beyond its maximum value, thus performing temporal super-resolution, as described in

Section 3.1.2.

More specifically, the [50]× [72] fully-populated measurements matrix corresponds to a sam-

pling rate of 1 measurement every 60 minutes, for all 5 devices and 10 channels, which is the

maximum sampling rate of our testbed. Increasing this sampling rate to, e.g., one measure-

ment every 15 minutes, leads to an increase in the dimensionality of the measurements matrix to

[50] × [4 ∗ 72]. The number of columns is quadrupled, but there are not enough measurements

obtained to fully-populate the expanded measurements matrix, thus leading to zero-value filled

cells. In this case, f is equal to 0.25. Table 4.1 presents the dimensionality, and corresponding

values of f for the sampling rates used in this experiment.
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Figure 4.7: Case study 1 - The initial (left) and reconstructed (right) when the dimensions of the
measurements matrix are (a) [50]× [72], (b) [50]× [144], (c) [50]× [288], (d) [50]× [432].



32 Novel Techniques for the Estimation of Multi-modal Missing Data in WSNs

Table 4.1: Case study 1 - Dimensionality and fill ratio for different sampling rates.

Sampling rate Dimensionality Fill ratio (f)

60 minutes [50]× [72] 1

30 minutes [50]× [144] 0.5

15 minutes [50]× [288] 0.25

10 minutes [50]× [432] 0.16

Herein, it is not possible for us to calculate the NMSE metric, since the reference measure-

ments matrix does not exist. Nevertheless, we have conducted this experiment, in order to

visually assess the performance of MC-based recovery. This corresponds to the realistic condi-

tions, where the reference measurements matrix will not be available. We performed the MC

reconstruction experiment for 4 different sizes of matrices, presented in Table 1. Results are

shown in Figures 4.7(a)-(d).

Since we super-resolve in the temporal domain, the lack of ground truth data means that we

cannot estimate the performance via some error metric. However, the visual observations made

suggest that, while the dimensionality of the matrices increases and the fill ratio decreases, the

MC-reconstructed data maintain their smoothness and distribution to a great extent, compared

to the initial fully-populated measurements matrix of dimensions [50] × [72]. This gives a fairly

good intuition, as far as the efficiency of ALM matrix completion is concerned, on the performance

of the proposed scheme in truly lost or unavailable measurements.

4.2.4 Impact of the number of devices

In the final set of experiments, we evaluate the performance of MC-based reconstruction when

considering data from a single device (Scenario 1), as opposed to scenarios where collective

recovery is performed using measurements from all the devices/virtual modalities (Scenario 2/3).

Figures 4.8 and 4.9 illustrate the recovery performance with respect to f for devices 1, 2,

and 5, respectively. Note here that the NMSE is calculated between the initial fully populated

sub-matrix of each device and recovered sub-matrix according to Scenario 1 and Scenario 2/3,

respectively.

Regarding devices 2 and 5, we observe that, as we move on to higher values of f , i.e., above

0.4 and 0.5 respectively, the single-device recovery achieves better reconstruction results. This

behaviour is different than the case of device 1, where the reconstruction quality in the collective

recovery scenario is better compared to the single-device case for high values of f . The exper-

imental results suggest that, by exploiting the intra-device correlation, collective reconstruction

can achieve superior performance compared to the single-device case for most situations, although

at high sampling rates, the performance gain is marginal.

As far as device 1 is concerned, it is demonstrated that high reconstruction quality in the

single-device case can indeed be accomplished using just local measurements. Nevertheless, col-

lective recovery achieves better reconstruction, over all different values of f . This result suggests
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Figure 4.9: Case study 1 - NMSE w.r.t. f for single-device vs. collective recovery regrading the
devices 1 and 5.

that collective MC recovery has the ability to fully utilize the correlation that exists among

devices, even if such correlations are not explicitly encoded into the recovery process, thus high-

lighting the generalization ability of our proposed schemes.
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Chapter 5

Case Study 2: Matrix and tensor

completion for recovering

multi-modal HAR data

Sensor-based human activity recognition (HAR) is encountered in many applications in the area

of pervasive healthcare and plays a crucial role in biomedical research. However, a major chal-

lenge related to this domain lies in the poor performance of machine learning algorithms in the

common case of unobserved or missing measurements. In this chapter, we study the problem of

accurate estimation of missing multi-modal physical data and we propose a complete framework

for data structuring, reconstruction, classification, and assessment of the overall recognition pro-

cess in the scenario of unobserved values. We introduce the concept of organizing the available

data streams into low-rank Hankel structures and we exploit data redundancies using sophisti-

cated recovery techniques, with an emphasis on Matrix and Tensor Completion. Moreover, we

examine the interaction between the data reconstruction and the subsequent classification steps,

by experimenting with several state-of-the-art classifiers. The proposed framework is evaluated

with respect to various levels of missing values, that are uniform or non-uniform per sensing

device, as well as different collective recovery scenarios in terms of data structuring and origin.

Finally, the influence of sub-sampling on the battery consumption of Shimmer sensing platforms

is reviewed. Our experimental findings rely on two public datasets containing physical data, that

extend to numerous activities, multiple sensing modalities and devices.

5.1 The proposed framework for HAR

Activity recognition in the presence of reconstructed values is incorporated into a complete and

modular classification framework depicted in Figure 5.1. Similar to other machine learning ap-

plications, our proposed classification framework contains a training phase for the classifiers to

produce their predictive models, prior to the testing phase which evaluates the performance of
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the system.

Empirical work on handling missing values within classification frameworks has primarily ad-

dressed the challenge of induction from incomplete training data [32], [59]. Nevertheless, in this

case study, we depart from this approach by proposing a novel framework, where the unobserved

measurements are introduced in the evaluation stage. This consideration corresponds to realistic

scenarios, where the system training can be performed off-line in ideal sensing conditions, yet

the evaluation stage is dynamically affected by numerous constraints that lead to missing val-

ues. Hence, both the training and the testing stages involve the modules of data partitioning,

hankelization, feature extraction, and classification, while the recovery module is integrated at

the testing phase. The following sections contain a thorough description of the aforementioned

framework modules.

Figure 5.1: Case study 2 - The proposed HAR framework. Reconstruction is incorporated in
the testing phase. Subsequently, feature extraction and classification is performed using the
predictive models formed on training phase.

5.1.1 The partitioning module

Datasets at hand are randomly and per user partitioned into non-overlapping training and testing

sets, imposing that each subset encompasses at least one instance from each of the activities. More

specifically, for the training phase a subset of the users IDs is randomly selected. The time-series

data streams corresponding to the traces of these users are acquired from the database and

constitute the input to the training phase. The remaining user IDs and their respective data are

utilized for evaluation at the testing phase.

5.1.2 The Hankelization module

During the training phase, the [I3] fully-populated sensor streams are segmented to [I1] con-

secutively lagged temporal windows of I2 samples and structured to form their respective (2D)

Hankel matrices or (3D) Hankel-sliced tensors, depending on the subsequently applied recovery

technique, through the Hankelization process described in Section 3.2.

During the testing phase, prior to segmentation, data sampling is applied in order to artificially
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introduce missing values in the test data streams. We apply random zero-placement at the same

instances for all data streams of each sensing modality, following the rational described in Section

3.1. Hence, the succeeding Hankelization process on the sub-sampled test data streams generates

2D or 3D structures containing unobserved values that need to be reconstructed.

5.1.3 The recovery module

This is the most crucial module of the overall procedure, where the recovery techniques are applied

on the previously formed sub-sampled Hankel structures. In this case study, we focus on the two

recovery techniques, namely Matrix Completion (MC) and Tensor Completion (TC), described

in Chapter 2. We also provide a direct comparison of MC and TC, to another sophisticated

method for reconstruction, that of the Regularized Expectation Maximization (RegEM) [60]. In

the following, we give a brief description of the RegEM imputation technique.

RegEM is a sophisticated iterative method for finding maximum likelihood estimates of param-

eters, where the model depends on unobserved latent variables. The RegEM iteration alternates

between filling in the missing values in the sub-sampled matrix with their conditional expectation

values, given the available data and the estimates of the mean and of the covariance matrix, and

by revising the estimates of these parameters. These estimates are then used to determine the

distribution of the latent variables in the next iteration. The distribution parameters of the re-

gression model are computed by an individual ridge regression for each missing value, until they

converge or until a predetermined maximum number of iterations is reached. This is a rather

computationally complex, yet very effective algorithm [60], applied for the reconstruction of vital

signs, as well as health care data [56], [61].

Another key question we aim to answer herein, apart from the optimal utilized recovery

technique, is related to the origin and structuring of the data involved in each reconstruction

instance. To this end, we consider the three scenarios presented in Section 3.3, involving data

from a single or multiple sensing modalities and devices. For each scenario, we employ the

proposed methods for recovery and we evaluate the reconstruction quality using the Normalized

Mean Square Error (NMSE) metric for various cases of missing data determined by the fill ratio

f .

5.1.4 The feature extraction & classification modules

During training, the previously formed high dimensional fully-populated structures are trans-

formed to a lower dimension feature space through the procedure of feature extraction. For each

time window of training data, a vector of 22 informative and non-redundant statistical features,

namely the mean, standard deviation, min, max, 1st component of principal component analysis,

interquartile range, variance, kurtosis, skewness, median, zero crossing rate, and a histogram of

10 bins, is extracted and given as input to each machine learning algorithm. Then, the respective

activity recognition models are produced. Likewise, at the testing phase, the extracted feature
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set of the partially observed test Hankel matrices is evaluated on each of the previously trained

learning models, generating the predicted activity label.

5.1.4.1 Utilized classifiers

For classification, we employ the following state-of-the-art off-the-shelf classifiers: 1

Decision trees: This classifier builds a hierarchical model in which each internal node

represents a test on an attribute, e.g. whether a coin flip comes up heads or tails, each branch

stands for the outcome of the test, and each leaf node corresponds to a class label, namely the

decision taken after computing all attributes. The paths from root to leaf represent classification

rules. We use Gini’s diversity index as the impurity reduction criterion of our decision tree and

set the maximum number of splits to 50.

K-Nearest Neighbours (K-NN): The K-NN classification algorithm uses the principle of

similarity, i.e. distance, between the training set and the new observation to be classified. The

new observation is assigned to the most common class through a majority vote of its K nearest

neighbours. The distance of the neighbours of an observation is calculated using a distance

metric called similarity function. In this work, we engage two versions of this classifier, namely

the Euclidean and the Cosine distanced K-NN respectively, with K = 10 neighbours.

Support Vector Machines (SVMs): SVMs rely on kernel functions that project all in-

stances to a higher dimensional space with the aim of maximizing the margin around a decision

boundary, i.e. hyperplane, to partition the data. In their standard formulation, SVMs are linear

classifiers. However, non-linear classification can be achieved by extending SVM through kernel

methods. The key idea of kernel methods is to project the data from the original data space to

a high dimensional space called feature space by using a given non-linear kernel function. We

apply two versions of SVMs, using Gaussian and Quadratic kernels, respectively.

The aforementioned parameters have been fine-tuned through experimentation and provide

the best predictive model for each of the above listed classifiers. In addition, we use classification

accuracy as our evaluation metric to assess the effectiveness of the classification algorithms in

use.

5.2 Experimental evaluation

The main objective of this chapter is to empirically evaluate the effect of test data recovery on

the accuracy of the subsequent classification. We start by describing the datasets in use and we

follow up with the set-up of each conducted experiment and the demonstration and discussion of

the derived results.

1http://www.mathworks.com/help/stats/classificationlearner-app.html.
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5.2.1 Datasets

In this study, we consider the following two popular databases for the classification of activities

of daily living, shortly described in Table 5.1:

• HAR Smartphones Dataset [62], [63]: This dataset contains body motion recordings of

thirty subjects performing 5 physical activities (Walking, Climbing stairs, Sitting, Standing,

Laying). A smart phone (Samsung Galaxy S II) placed on the subject’s waist was used to

capture 3-axial linear acceleration and angular velocity motion signals. The raw data were

pre-processed by applying noise filters.

• MHEALTH Shimmer Dataset [64], [65], [66] : This dataset was created from the sensor

recordings of ten subjects performing 12 daily activities (standing still, sitting and relaxing,

lying down, walking, climbing stairs, waist bends forward, frontal elevation of arms, knees

bending, cycling, jogging, running, jumping front & back). Shimmer2 wearable sensors at-

tached on the subject’s chest, right wrist, and left ankle were utilized as the devices recording

multi-local 3-axial linear acceleration, rate of turn, and magnetic field motion signals. We con-

sider this dataset as a generalization of HAR in terms of the variety of the number, intensity

and execution speed of activities, as well as the diversity of sensing devices and modalities

involved.

Data streams of both datasets were obtained at a sampling rate of 50 Hz, while the experiments

were labelled manually through video-recordings.

Table 5.1: Comparison of the employed datasets for Human Activity Recognition.

HAR MHEALTH

Device Smart phone Shimmer2
(Samsung Galaxy S II)

Number of locations One Multiple

Body Parts Waist Chest
Right wrist
Left ankle

Number of activities 5 12

Modalities Accelerometer Accelerometer
Gyroscope Gyroscope

Magnetometer

In the following experimental sections, the datasets at hand were partitioned to 70% for

training and 30% for testing, respectively. The available time-series data streams per dataset were

segmented in I1 consecutive temporal windows of I2 = 128 samples, to form the aforementioned

Hankel structures with a 50% overlap. Our experimentation (see Appendix A) demonstrated

these as the optimum parameters, in accordance to what is reported in the bibliography [67].
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5.2.2 Effects of measurement matrix dimensions on MC-based NMSE

In this set of experiments, we investigate the matrix completion recovery abilities as a function of

f and the size of the measurements matrix. The objective is to assess how the NMSE is associated

to the size of the data, by evaluating the recovery as a function of different sizes of measurements

matrices ranging from I1 = 34 up to 340, consecutive windows of I2 = 128 samples, and fill ratios

from f = 0.1 to 0.9 with a step size of 0.1. The presented results come from the x-axis data

stream of the available modalities in the HAR dataset. Our observations are extended to the

MHEALTH dataset.
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Figure 5.2: Case study 2 - NMSE as a function of f and test data size for the x-axis accelerometer
(left) and the x-axis gyroscope (right) of the HAR dataset, considering Scenario 1.

Figure 5.2 illustrates the recovery performance measured by the NMSE as a function of

f and the size of test data for Scenario 1. We observe that higher fill ratios lead to more

accurate data reconstruction, as expected. Moreover, the size of the measurements matrix plays

a crucial role to the recovery performance, since larger matrices are clearly shown to present

lower reconstruction error. This is reasonable, considering that larger data matrices contain a

greater number of observed measurements, which can be exploited by the MC method for more

precise reconstruction of the unobserved values. However, one cannot fail to notice that there is

an important trade-off concerning the associated computational complexity, as the matrices grow

to higher dimensions.

A final significant comment regarding this experiment, is related to the relative magnitude

of the NMSE between the two modalities under scope on HAR. It is noticed that the gyroscope

channel presents much higher overall NMSE, than that of the accelerometer for all fill ratios

and matrix sizes. This can be explained by examining the magnitude of the singular values of

each channel individually, as depicted in Figure 5.3. As demonstrated, the accelerometer data

exhibit a much higher linear correlation than the gyroscope ones, manifested by the smaller

number of dominating singular values. The resulting observed superior performance of MC upon
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the accelerometers comes in accordance to the underlying theoretical model for this recovery

method, described in Section 2.2.
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Figure 5.3: Case study 2 - The magnitude of the singular values of x-axis accelerometer (left)
and x-axis gyroscope (right) channels of the HAR dataset.

5.2.3 Sufficient training time per dataset

The objective of this experiment is to define the sufficient training period for all of the employed

classifiers, on fully-populated test data streams, i.e. f = 1, in order to provide a ground truth

for our later experiments on partially observed data. Obviously, in this experiment we omit the

sampling step of the testing phase in order to obtain full test Hankel matrices.

The system is trained with numerous sizes of randomly selected data per user, corresponding

to up to 70% of each dataset. This percentage is proportionate to the data of up to 21 and

up to 7 distinctive subjects of the HAR and MHEALTH datasets, respectively. Since our data

streams are captured at a constant rate of 50Hz, 7.25 minutes are needed to capture the data

of an average user (I1 = 340 windows) of the HAR dataset and 11.2 minutes per user (I2 = 525

windows) for the MHEALTH dataset. Subsequently, the classifiers are tested on the resulting

predictive models and evaluated with respect to the classification accuracy on predicting the

activities, namely labels, of the test set. For each training set, the test set considers the data of

one randomly selected user.

Figure 5.4 illustrates the performance of each classifier measured by the classification accuracy

as a function of training time. As expected, the increase of time for training has a pronounced

effect on the system’s learning. Is it observed that all considered classifiers present stable per-

formance when trained for at least 100 minutes of non-recurring data for the HAR dataset. For

the MHEALTH dataset, the lower bound of efficient training time is 60 minutes. Moreover, re-

sults suggest that Support Vector Machines outperform all other employed classifiers and manage

accuracy of over 90% for both datasets when trained for sufficient time.



42 Novel Techniques for the Estimation of Multi-modal Missing Data in WSNs

Training Time (Minutes)
20 40 60 80 100 120 140

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 %

50

60

70

80

90

100

Decision Tree
Euclidean KNN
Cosine KNN
Gaussian SVM
Quadratic SVM

Training Time (Minutes)
20 30 40 50 60 70

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 %

50

60

70

80

90

100

Decision Trees
Euclidean KNN
Cosine KNN
Gaussian SVM
Quadratic SVM

Figure 5.4: Case study 2 - HAR (left) and MHEALTH (right) classification accuracy w.r.t.
training time for all classifiers on fully-populated test matrices. (Mean of 10 runs.)

5.2.4 Comparing Different Recovery Techniques

In this set of experiments, we are interested in comparing the performance of the three considered

methods for reconstruction, namely MC and RegEM for matrices and TC for tensors. Figure 5.5

illustrates comparative plots of the NMSE (top) and the corresponding running times (bottom)

of all applied recovery techniques as a function of f , on HAR (left) and MHEALTH (right),

respectively. The presented results are cumulative for the total of the available streams per dataset

and regard the single-device recovery (Scenario 1). Results indicate that RegEM achieves the best

reconstruction quality on both datasets, followed by MC, while TC has the worse performance

at all fill ratios, in terms of the NMSE metric.

Regarding the HAR dataset (left), we notice that RegEM and MC perform almost identically

in terms of NMSE, with RegEM slightly outperforming MC at low fill ratios (top-left). However,

the superiority of RegEM comes with a significant computational complexity that leads to a

remarkable increase in its running time (bottom-left). Indicatively, at f = 0.4 RegEM is executed

in 220.7 seconds ' 3.6 minutes, while MC needs only 2.7 seconds. On the other hand, TC is

inferior concerning the cumulative NMSE metric, especially at low fill ratios. In terms of the

recorded TC running time, it is much faster than RegEM, yet slower than MC, since it is executed

on approximately 20 seconds at all fill ratios.

Similar observations hold for the MHEALTH dataset (right), where RegEM once again slightly

outperforms MC but it needs two orders of magnitude more running time. It is noteworthy that

at f = 0.4, MC runs for 13.7 seconds while RegEM requires 2101 seconds, i.e. ' 35 minutes on

this larger dataset.
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Figure 5.5: Case study 2 - Cumulative NMSE (top) and corresponding running times (bottom)
w.r.t. f of all applied reconstruction methods for HAR (left) and MHEALTH (right). (Scenario
1 - Mean of 10 runs.)

5.2.5 Running Time per Recovery Scenario

The goal of this experiment is to further examine the running time of the employed reconstruction

methods, especially when moving from the relatively “small scale” collective matrices/tensors

of Scenario 1 to higher volumes of data required by Scenarios 2 & 3. The results concerning

the corresponding cumulative reconstruction times for all data streams are presented in Figure

5.6. Note that for the HAR dataset, single-device recovery (Scenario 1) is identical to collective

recovery (Scenario 3), since in this dataset there is only one sensing device.

Figure 5.6 (top) shows that TC exhibits an almost constant running time for all fill ratios,

which increases slightly for higher values of f . This outcome suggests that the computational

complexity of the TC algorithm is not directly related to the volume of missing data to be

recovered. However, it is strongly associated to the size of the underlying tensor, as expected,

since Scenario 3 requires slightly longer execution times than Scenarios 1 & 2. The difference in

the size and structuring of each tensor per scenario is dictated by its third dimension, namely the

number of vertically concatenated Hankel-slices. This can range from I3 = 3 available channels

for the sensor attached on the subject’s chest (for an instance of Scenario 1) to I3 = 21 (Scenario
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Figure 5.6: Case study 2 - TC (top), MC (middle) and RegEM (bottom) running time for HAR
(left) and mHealth (right) w.r.t. f , for Scenario 1,2,3. (Mean of 10 runs.)

3), which is the total number of data streams included in the MHEALTH dataset.

MC on the other hand, demonstrates entirely different behaviour, as highlighted in Figure

5.6 (middle). The running time decreases when moving to fuller matrices, denoting that the

computational complexity is strongly associated to the amount of missing data. Moreover, one

would expect MC to need higher running times for collective recovery, since it is dealing with

measurements matrices of greater size. Notwithstanding, Scenarios 1 & 3 for MC are the most

efficient also in terms of time. Specifically, instead of performing MC reconstruction individually

for each vertically concatenated matrix per modality (Scenario 2), we perform only one recon-
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struction call of higher computational complexity (Scenario 3), which is more time-effective. On

HAR (middle-left) this observation is more noticeable at low fill ratios, where there are greater

volumes of data to be recovered. However, on MHEALTH (middle-right) the difference between

the MC running time between Scenario 2 and Scenarios 1 & 3 is prominent.

Finally, the RegEM algorithm presents an exponential increase in its running time when

shifting to the overall collective scenario, as illustrated in Figure 5.6 (bottom). Specifically, the

cumulative running time of all fill ratios of Scenario 3 is ' 32.5 minutes on the HAR dataset

(bottom-left), whereas on MHEALTH it scales up to 13.2 hours in total (bottom-right). Conse-

quently, despite its superiority in terms of NMSE, we consider RegEM inefficient for large-scale

data recovery on commodity hardware.

5.2.6 Impact of MC & TC on Classification Accuracy

In this experimental section, we aim to evaluate the classification accuracy of our proposed

framework in the presence of TC and MC reconstructed test measurements. Herein, we display

our findings corresponding to the totality of the classifiers we have experimented upon. More

analytically:

• Figure 5.7 presents our results regarding the Decision Trees.

• Figure 5.8 shows the classification accuracy of a Euclidean distanced K-NN classifier.

• Figure 5.9 illustrates the performance of a Cosine distanced K-NN classifier.

• Figure 5.10 demonstrates our findings related to an SVM using a Gaussian kernel.

• Figure 5.11 is assigned to the accuracy of an SVM using a Quadratic kernel.

Each figure depicts the accuracy of the corresponding classifier w.r.t. to f , considering MC

(left) and TC (right) for all recovery scenarios on HAR (top) and MHEALTH (bottom). To

demonstrate the efficiency of our suggested schemes, we also provide a direct comparison of the

achieved performance per scenario to the one managed by the classifiers on features extracted

from fully-populated structures, i.e. f = 1 (green straight curves), which can be considered as

ground truth.

With respect to the engaged scenarios for MC reconstruction (left), Scenario 1/3 is shown to

be the most effective data structuring technique for the HAR dataset. Specifically, on HAR (top-

left), Scenario 1/3 outperforms Scenario 2 at all fill ratios. On MHEALTH, results also report

collective scenarios as the most promising ones, alternating between Scenario 2 and Scenario 3

depending on the classifier in use. On MHEALTH (bottom-left) the superiority of the collective

scenarios is obvious on extremely under-sampled structures, i.e. f < 0.4, whereas as the fill ratio

increases, all scenarios perform identically. This outcome suggests that MC can fully utilize the

correlation that exists among diverse modalities or diverse devices, even if such correlations are

not explicitly encoded into the recovery process.
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Figure 5.7: Case study 2 - Classification accuracy of Decision Trees on HAR (top) and MHEALTH
(bottom) w.r.t. to f , considering ground truth, and MC (left) or TC (right) reconstruction for
all scenarios. (Mean of 10 runs.)
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Figure 5.8: Case study 2 - Classification accuracy of Euclidean K-NN on HAR (top) and
MHEALTH (bottom) w.r.t. to f , considering ground truth, missing (non-recovered) data, and
MC (left) or TC (right) reconstruction for all scenarios. (Mean of 10 runs.)
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Figure 5.9: Case study 2 - Classification accuracy of Cosine KNN on HAR (top) and MHEALTH
(bottom) w.r.t. to f , considering ground truth, and MC (left) or TC (right) reconstruction for
all scenarios. (Mean of 10 runs.)
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Figure 5.10: Case study 2 - Classification accuracy of Gaussian SVM on HAR (top) and
MHEALTH (bottom) w.r.t. to f , considering ground truth, and MC (left) or TC (right) re-
construction for all scenarios. (Mean of 10 runs.)
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Figure 5.11: Case study 2 - Classification accuracy of Quadratic SVM on HAR (top) and
MHEALTH (bottom) w.r.t. to f , considering ground truth, and MC (left) or TC (right) re-
construction for all scenarios. (Mean of 10 runs.)

However, for TC reconstruction (right), experimental results of the reconstruction scenarios

are marginal depending on the dataset and the considered classifier. On HAR (top-right), their

performance is almost identical for all classifiers in use, but on MHEALTH (bottom-right) there

are variations on the prevailing scenario according to the employed classifier. More analytically,

on both K-NNs, Scenario 2 slightly outperforms Scenarios 1 & 3 at low fill ratios, i.e. f < 0.4.

On the other hand, SVMs and Decision Tress clearly report Scenario 1 as the most efficient

structuring method for reconstruction. This remark indicates that, as the data extend to diverse

sensing devices, the rank of the underlying tensor increases, thus leading to inferior collective

recovery for TC for the majority of the employed classifiers.

Considering MC (left) as compared to TC (right), the results demonstrate the latter as the

most efficient recovery technique, on extremely under-sampled structures, meaning f ≤ 0.3. The

superiority of TC is more noticeable for the MHEALTH dataset. Thereby, there is at least one

recovery scenario, where the classification accuracy in the presence of TC-recovered data exceeds

80% for only 10% of the measurements available, for almost all of the classifiers in use. This

outcome contradicts our aforementioned intuition on the performance of TC, depending on the

cumulative NMSE metric. Such a result can be explained, though, by once again examining the

existing correlations among the data. The Singular Value Decomposition of each data stream

revealed that some data channels are rather low-rank, while others are not. TC can recover
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the strongly correlated streams with high precision, but fails for higher-ranked data, resulting

in an increased total NMSE than that of MC. Nonetheless, the superior classification accuracy

achieved by TC, especially on MHEALTH, suggests that the accurately predicted low-rank data

streams, i.e. accelerometers, are much more dominant and statistically significant than the poorly

recovered less correlated ones, gyroscopes and magnetometers.

Moreover, Table 5.2 shows the direct numerical comparison of the classification accuracy man-

aged in the presence of missing data, to the one achieved by Scenario 3 MC-based reconstruction

for f = 0.4 on an indicative subset of classifiers per dataset. The substantial improvement in

the performance of all classifiers in use highlights the significance as well as the effectiveness of

recovery in truly lost or unavailable measurements. Furthermore, Cosine K-NN is shown as the

most missing values-tolerant classifier, unlike Gaussian SVM which performs poorly under such

circumstances.

Table 5.2: Case study 2 - Comparison of classification accuracy of the proposed classification
framework for non-recovered vs. MC-recovered (Scenario 3) data.

Missing Data MC-Recovered Data
f = 1 f = 0.4 f = 0.4

HAR Tree 90.0 76.2 86.4

HAR Eucl. K-NN 90.2 80.4 86.2

HAR Cosine K-NN 89.5 82.5 87

MHEALTH Gaussian SVM 93.6 58.6 87.2

MHEALTH Quadr. SVM 95.8 78.4 89.5

Finally, Figure 5.12 illustrates the classification accuracy of an indicative subset of the em-

ployed classifiers per dataset for Scenario 3 MC & TC with respect to f , compared to the one

achieved from fully-populated structures.

Regarding MC (left), we notice that on both datasets the utilized classifiers manage accuracy

of only 1 − 2% lower than the ground truth at f = 0.5, whereas at f = 0.6 they reach optimal

performance. Thus, a significant observation related to the overall performance of MC within

our proposed framework is that, near-optimal classification accuracy is feasible even on extremely

under-sampled matrices, where 50% or more of their observations are recovered.

As far as TC is concerned (right), ground-truth accuracy is nearly reached at f = 0.6 on

both datasets. Moreover, the above discussed high quality results of TC at low fill ratios of

Euclidean K-NN are extended to the rest of the considered classifiers. Regarding 0.3 ≤ f ≤ 0.6,

MC slightly outperforms TC, whereas at high fill ratios they exhibit similar performance. A

noteworthy remark is the accuracy of ' 85% achieved by Cosine K-NN for f = 0.2. This is a

very promising outcome highlighting the effectiveness of TC structuring and recovery method on

multi-modal and extremely under-sampled tensors, containing just 20% of their measurements.
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Figure 5.12: Case study 2 - Classification accuracy for MC (left) and TC (right) reconstruction
w.r.t. to f , considering Scenario 3 for HAR (top) and MHEALTH (bottom). (Mean of 10 runs.)

5.2.7 Different Sampling per Device

The objective of this experiment is to address more realistic scenarios, in terms of the occurrence

of missing values. Let us consider a number of sensing devices attached on a subject. With high

probability, energy limitations could easily lead to different volumes of missing values per device.

Our goal is to examine the impact of these conditions on our proposed framework.

We implemented such scenarios by adjusting the sampling step of the preprocessing module

accordingly. The experiment was conducted on the MHEALTH dataset, where there are three

sensing devices and the utilized recovery methods were MC and TC. Missing values were intro-

duced by performing different sampling per device, e.g. f=0.3 available chest data, f=0.5 for the

right wrist, and f=0.7 for the data acquired from the left ankle. Table 5.3 summarizes our exper-

imental findings regarding the SVM classifier with a Gaussian kernel for nine different sampling

sets, grouped per three mean values of fill ratio, namely f=0.2, f=0.5, and f=0.8.

A first observation concerning the classification accuracy in the presence of missing values, is

that the device attached to the right wrist provides the classifiers with the most “distinguishable”

data among all of the considered mean f values. Higher fill ratios on the right wrist, followed

by less left ankle data and even more limited data originating from the chest, are shown as the
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Table 5.3: Case study 2 - Classification accuracy of Gaussian SVM considering different sampling
per device for MC/TC-recovered data.

most advantageous data acquisition scenario in this framework.

Moreover, our remarks regarding the need for data recovery are extended from uniform to

non-uniform sampling per device experiments. For each sampling set considered, there is at least

one reconstruction scheme, that significantly outperforms the classification accuracy achieved at

the presence of non-recovered data. The most prominent paradigm is the performance of Scenario

1 TC at mean f = 0.2, where the accomplished accuracy is ' 35% higher than the ground truth.

It is also shown, that there is not a specific sampling set per mean fill ratio producing the opti-

mal accuracy. For mean f = 0.2 and f = 0.5, right wrist is indicated as the most data-dominant

body part, whereas for mean f = 0.8 increasing chest data, results in the best performance.

With respect to the structuring scenarios, TC reports Scenario 1 as the most promising, since

it prevails at all mean fill ratios (green bold), while the respective results are marginal for MC

depending on the distribution of the sampling set (red bold). Finally, our experimental findings

do not indicate a specific sensing body-part as more low rank, thus more “appealing” to MC or

TC reconstruction.

5.2.8 Effects of Sub-sampling on Battery Consumption of Shimmer Sensing

Platforms

Our goal is to address the limitations leading to missing measurements from a different, yet more

optimistic, perspective in terms of energy consumption. We argue that the deliberate introduction

of missing values through sub-sampling, combined with an accurate reconstruction method, could

actually be used as an energy efficient data acquisition and communication approach, resulting

in favour of the lifetime of the involved devices.

To facilitate exposition, we experimented on Shimmer3 sensing platforms, devices broadly

used for capturing human activity. We employed the ShimmerCapture host application to mon-

itor and log data on a Windows 8 laptop. Our test-bed consisted of four Shimmer3 platforms

capturing 3-axial accelerometer, gyroscope, magnetometer and battery voltage data, in accor-
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dance to the available physical data streams provided by the MHEALTH dataset. Each device

operated at a different sampling rate s and streamed the obtained data over Bluetooth radio. The

recorded voltage status of the lithium polymer 3.7V - 450mAh Shimmer battery after 9 hours of

operation per device is illustrated at Table 5.13. Note that, the voltage values are mapped to the

corresponding remaining battery capacity according to the Shimmer3 documentation [68].

Table 5.4: Case study 2 - Shimmer3 battery status after 9 hrs of use.

Device 1 Device 2 Device 3 Device 4

Sampling Rate s(Hz) 50 100 256 512

Voltage (mV) 3710 3668 3635 3625

Remaining Capacity % 25.3 15.5 7.5 5.3

Now, let us consider that sampling at s = 512 Hz produces a fully-populated data matrix

of f = 1. Reducing the sampling rate to s = 256 would produce an under-sampled dataset

of f = 0.5. With this consideration in mind, Figure 5.13 illustrates a direct mapping of the

classification accuracy achieved by Cosine K-NN at four different fill ratios, for Scenario 3 TC-

recovered data, with respect to the remaining battery capacity.
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Figure 5.13: Case study 2 - Classification accuracy of Cosine K-NN for TC-Scenario 3 recon-
struction w.r.t. the remaining battery capacity of a Shimmer3 platform after 9 hours of use.

Results show that reducing the sampling rate can in fact positively affect the lifetime of the

device, especially at the data rates commonly used for Human Activity Recognition, i.e. 50−100

Hz. Specifically, reducing the sampling rate from 100 to 50 Hz, provides us with a capacity gain

of about 10%, which is translated into over 1 hour of extra lifetime for the underlying platform,

at the cost of just ' 2.5% classification accuracy. This is a very useful outcome showing us that

the considered recovery methods can in fact “create” truly or deliberately lost measurements.



Chapter 6

Conclusions and future work

6.1 Concluding remarks

In this thesis, we have addressed the problem of estimating missing measurements in Wireless

Sensor Networks by employing novel mathematical techniques for data structuring and recon-

struction, while experimenting on two different application domains, namely, Smart Water Man-

agement and Human Activity Recognition.

On the first case study, we have investigated the application of the theory of Matrix Comple-

tion for the estimation of missing measurements in a water treatment plan. We have considered

three scenarios of paramount importance for the current operation of a WSN-based monitoring

paradigm; namely recovery from missing entries, single-device vs. collective recovery of measure-

ments matrices, and temporal super-resolution. Based on our experimental findings, we were

able to infer that MC is a viable approach for estimating missing measurements, where such

missing measurements are either attributed to lost/unobserved measurements or, in the case of

super-resolving, to non-acquired data. Additionally, collective recovery has been proved to be

able to achieve better reconstruction than single-device recovery.

Regarding the second application field, we have investigated the effects of various 2D and

3D data structuring and reconstruction methods on a proposed physical activity classification

framework. We have experimented on two publicly available datasets, with different dynamics

in the variety of activities, sensing modalities, and devices. Based on our experimental findings,

Matrix Completion comes out as a very stable and fast reconstruction method, exhibiting high

performance with less than 50% of the available measurements. Moreover, Tensor Completion

achieves most promising results on multi-modal data acquired by multiple devices, performing

at near-optimal levels even with more than 80% of the data lost or unavailable. Results, once

again, outline the effectiveness of collective recovery for MC, as it better exploits the correlations

introduced among the data through our proposed Hankelization structuring process. Finally,

sub-sampling is demonstrated as a significant factor directly contributing to the increase of the

network lifetime.
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6.2 Future directions

Our proposed methods and modules on both domains are very generic by nature. In the future

they can be easily applied to the recovery of other types of WSN-based measurements with an

emphasis on IoT-related fields within infrastructure systems, such as smart homes, intelligent

transportation, and the smart grid.

Additionally, a very interesting possible future research aspect could be related to the embed-

ding of our proposed modules into energy-efficient WSN-sampling architectures. This could be

accomplished by studying the quantification of the trade-off between the energy gain achieved by

sub-sampling at the sensing device and the consumption of resources used for the reconstruction

of the missing data collected by the host.

Regarding WSN-based classification problems, future work could involve the implementation

of an extra module, that of low-rank data streams selection, where only the most correlated data

will be utilized on the subsequent reconstruction. Thus, the considered MC an TC recovery

methods, which assume low-rankness of the underlying data, will be able to achieve even better

recovery, leading to improved classification accuracy. For the rest of the channels, classification

could rely on the available measurements or to reconstructed ones using an alternative method

of imputation.

Another future direction for research could include the incorporation of feature selection

algorithms into our proposed classification framework. Since the extracted features are directly

related to the quality of the reconstructed raw values, the selection of the most representative

features per imputation method, could have a significant effect on the performance of the system.

Finally, the real time aspect of the considered methods should definitely by addressed in the

future. For efficient real time recovery, data should be segmented to smaller windows in order to

enable the construction of matrices or tensors of lower dimensionality. The framework must also

involve a “memory” module, shifting the data structures through time, so that at the current

time instance only a small percentage of data needs to be recovered, while the rest of the data

were recovered and stored at previous time instances.



Appendix A

Analysis on setting the optimum

parameters for the Hankelization

module

The key parameters for the Hankelization module are the window size I2 and the overlap l, as

discussed in Section 3.2. They dictate the form and shape of the resulting Hankel structure, as

well as the redundancies introduced among the data. In the experiments presented in Chapter

5, these parameters where set to I2 = 128 samples and l = 50%× I2 for the available time-series

data streams per dataset. These values were not set arbitrarily. They were drawn through the

experimentation presented in this Appendix.

In the following experiments, we considered the six data streams available in HAR dataset,

namely the accelerometer and the gyroscope measurements on x,y, and z axis. Our goal was to

assess the performance of MC on various Hankel matrices, resulting from different values of I2

and l. Note that recovery takes place on each Hankel matrix locally, i.e. per stream of data.

The first experimental set, examines the NMSE rising from matrices created by a specified

value for the window size, i.e. I2 = 128 samples, and various values for the overlap parameter,

regarding several fill ratios from f = 0.1 to 0.9 with a step size of 0.1. The results corresponding

to the totality of the data streams within HAR dataset, are illustrated in Figure A.1. It is

thereby demonstrated that the optimum results, meaning the lower NMSE, is derived at overlap

l = 64 = 50%× I2.

The next experiments are in direct concordance to the aforementioned ones, nevertheless, at

this case the varying parameter is the window size, while the overlap remains constant and set

to l = 50% × I2. The results, presented in Figure A.2 show that the majority of streams report

the value I2 = 128, as the optimum value with reference to the window size.
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Figure A.1: NMSE w.r.t. f for window size set to 128 samples and various overlaps, regarding the
x(left)/y(middle)/z(right)-axis accelerometers (top) and gyroscopes (bottom) in HAR dataset.

Figure A.2: NMSE w.r.t. f for overlap set to 50% of the window size and various sizes of windows,
regarding the x(left)/y(middle)/z(right)-axis accelerometers (top) and gyroscopes (bottom) in
HAR dataset.
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