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Abstract 

Bone marrow edema (BME) is a non-specific finding that can accompany a wide 

variety of conditions affecting the bone marrow including acute trauma, acute bone 

marrow edema syndromes (transient osteoporosis, regional migratory osteoporosis), 

chronic regional pain syndrome, avascular necrosis, infection, inflammatory arthritis, 

osteoarthritis at advanced stages of the disease, tendinopathies, and primary and 

metastatic malignancies. The imaging modality of choice for the depiction of bone 

marrow edema is magnetic resonance imaging  (MRI) with fluid-sensitive sequences. 

The appearance of BME on MRI can complicate the diagnosis of diseases affecting the 

bone marrow, creating diagnostic dilemmas that challenge general radiologists or 

even specialized musculoskeletal radiologists. The most important diagnostic 

challenges faced in everyday radiological practice are (a) the differentiation between 

transient osteoporosis of the hip and avascular necrosis, (b) the differentiation 

between subchondral insufficiency fractures of the knee and advanced osteoarthritis 

presenting with BME and (c) the accurate staging of avascular necrosis. Accurate 

diagnosis in these cases is of utmost importance since it can change the treatment from 

conservative (for transient osteoporosis) to surgical (for avascular necrosis) or can 

determine the choice between joint preserving surgery (early stages of avascular 

necrosis) and total hip arthroplasty (late stages of avascular necrosis. The aim of this 

PhD was to leverage the power of novel image analysis methods  such as radiomics 

and deep learning to tackle the aforementioned diagnostic dilemmas. Radiomics 

includes the extraction of high-dimensional data from regions of interest that can be 

used for the detailed characterization of lesions. Artificial intelligence (traditional 

machine learning or deep learning) methods can be used to either analyse radiomics 

data or to independently perform image recognition tasks for diagnostic purposes 

attempting the automation of disease detection. For the purposes of this PhD, 

radiomics data have been utilized for the analysis of proximal femurs with either 

avascular necrosis or transient osteoporosis of the hip, used to train machine learning 

models to distinguish between the two conditions. These models achieved excellent 

performance in distinguishing between the two conditions, performing equally to 

musculoskeletal radiologists and better than a general radiologist. In addition, in 
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order to further automate the diagnosis between these two conditions, and to avoid 

bias related to the manual steps for radiomics data preparation, deep learning was 

used to distinguish between the two using whole images. Three convolutional neural 

networks (CNNs) were trained with a transfer learning methodology and finetuned 

with our data, in order to diagnose between transient osteoporosis and avascular 

necrosis. The consensus decision between the three CNNs was found to be highly 

accurate, performing better than two experts. Subsequently, a CNN ensemble was 

used to differentiate between subchondral insufficiency fractures and advanced 

osteoarthritis of the knee. The consensus decision of the network ensemble was 

compared to the diagnosis of expert radiologists. This CNN ensemble was found to 

be highly accurate in the differentiation between the two conditions performing better 

than one of the two experts. Finally, CNNs were used to distinguish between early 

(ARCO 1-2) and late stages of avascular necrosis (ARCO 3-4). The consensus decision 

of three CNNs was found to reach high performance in this diagnostic task. To further 

validate the model, a dataset from another country was used to assess model 

performance on unknown data and this validation performance was compared to the 

diagnosis of expert readers. Despite the performance drop in the external dataset, the 

CNN ensemble was still highly accurate in recognizing late AVN achieving a 

performance similar to the two experts. In conclusion, the work presented herein 

demonstrated the potential of radiomics and deep learning to assist diagnostic 

decisions in some of the most complicated tasks related to the presence of BME on 

MRI.  
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Περίληψη 

Το οίδηµα του οστικού µυελού αποτελεί ένα µη-ειδικό εύρηµα το οποίο συνοδεύει µια 

σειρά παθήσεων που επηρεάζουν το µυελό των οστών όπως το τραύµα, τα οξέα 

σύνδροµα οιδήµατος του οστικού µυελού (παροδική οστεοπόρωση και περιοχική 

µεταναστευτική οστεοπόρωση), το σύνδροµο χρόνιου περιοχικού πόνου, η ανάγγεια 

νέκρωση (οστεονέκρωση) της µηριαίας κεφαλής, λοιµώξεις, φλεγµονώδεις 

αρθροπάθειες, προχωρηµένη οστεοαρθρίτιδα, τενοντοπάθειες, πρωτοπαθείς 

κακοήθειες και µεταστάσεις. Η απεικονιστική µέθοδος εκλογής για την απεικόνιση 

του οιδήµατος στον οστικό µυελό είναι η Μαγνητική Τοµογραφία µε ακολουθίες 

ευαίσθητες στα υγρά. Η απεικόνιση του οστεοµυελικού οιδήµατος σε µαγνητική 

τοµογραφία µπορεί να περιπλέξει τη διαφορική διάγνωση παθήσεων που επηρεάζουν 

τον οστικό µυελό, δηµιουργώντας διαγνωστικά διλήµµατα που προβληµατίζουν όχι 

µόνο γενικούς ακτινολόγους αλλά και ακτινολόγους µε εξειδίκευση στο µυοσκελετικό 

σύστηµα. Τέτοια διλήµµατα στην καθηµερινή διαγνωστική πράξη αποτελούν (α) η 

διαφορική διάγνωση παροδικής οστεοπόρωσης του ισχίου από οστεονέκρωση της 

µηριαίας κεφαλής, (β) η διάκριση µεταξύ κατάγµατος ανεπάρκειας του γόνατος και 

προχωρηµένης οστεοαρθρίτιδας η οποία συνοδεύεται από οστεοµυελικό οίδηµα και 

(γ) η ακριβής σταδιοποίηση της ανάγγειας νέκρωσης της µηριαίας κεφαλής. Η 

ακριβής διάγνωση στις προαναφερθείσες περιπτώσεις είναι εξαιρετικής σηµασίας 

καθώς µπορεί να καθοδηγήσει την απόφαση για χειρουργική θεραπεία (νέκρωση 

κεφαλής, προχωρηµένη οστεοαρθρίτιδα) σε σχέση µε συντηρητική θεραπεία 

(παροδική οστεοπόρωση, κάταγµα ανεπάρκειας γόνατος). Επίσης ακριβής 

σταδιοποίηση της ανάγγειας νέκρωσης της µηριαίας κεφαλής καθορίζει την απόφαση 

για ολική αρθροπλαστική του ισχίου σε προχωρηµένα στάδια της νόσου. Ο στόχος της 

παρούσας διατριβής είναι η χρήση σύγχρονων µεθόδων ραδιωµικής ανάλυσης και 

τεχνητής νοηµοσύνης για την επίλυση των προαναφερθέντων διαγνωστικών 

διληµµάτων. Η ραδιωµική ανάλυση αποτελεί µέθοδο µε την οποία εξάγονται 

λεπτοµερή δεδοµένα από ιατρικές εικόνες τα οποία χρησιµοποιούνται στη συνέχεια 

για τον ακριβή χαρακτηρισµό περιοχών ενδιαφέροντος. Η τεχνητή νοηµοσύνη 

µπορεί να προσφέρει µεθόδους για την ανάλυση δεδοµένων ραδιωµικής καθώς και 

για την ανάλυση ολόκληρης εικόνας µε µοντέλα βαθιάς µάθησης (deep learning). Για 
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τους σκοπούς της παρούσας διατριβής δεδοµένα ραδιωµικής εξήχθησαν από εικόνες 

µαγνητικής τοµογραφίας εγγύς µηριαίων µε παροδική οστεοπόρωση ή οστεονέκρωση 

της µηριαίας κεφαλής. Τα δεδοµένα αυτά χρησιµοποιήθηκαν για την εκπαίδευση 

µοντέλων µηχανικής µάθησης για τη διάκριση µεταξύ των δυο παθήσεων. Τα µοντέλα 

αυτά πέτυχαν άριστη διάκριση µεταξύ των δύο παθήσεων, ενώ έδωσαν διαγνώσεις µε 

ακρίβεια όµοια µε ακτινολόγους που έχουν λάβει εξειδικευµένη εκπαίδευση στο 

µυοσκελετικό σύστηµα. Η µέθοδος αυτή φάνηκε να έχει καλύτερα αποτελέσµατα σε 

σχέση µε γενικό ακτινολόγο. Στη συνέχεια, σε µια προσπάθεια πλήρους 

αυτοµατοποίησης της διαγνωστικής διαδικασίας και αποφυγής λαθών που 

σχετίζονται µε τη χρονοβόρα διαδικασία εξαγωγής δεδοµένων ραδιωµικής, 

χρησιµοποιήθηκαν τρία µοντέλα βαθιάς µάθησης που εκπαιδεύτηκαν να 

αναγνωρίζουν εικόνες παροδικής οστεοπόρωσης και οστεονέκρωσης. Τα µοντέλα 

αυτά έλαβαν συναινετική απόφαση για τη σωστή διάγνωση σε κάθε εικόνα, 

αποδίδοντας καλύτερα από ακτινολόγους µυοσκελετικού. Οµοίως µοντέλα βαθιάς 

µάθησης εκπαιδεύτηκαν να διακρίνουν µεταξύ υποχόνδρινων καταγµάτων 

ανεπάρκειας του γόνατος και προχωρηµένης οστεοαρθρίτιδας. Ο συνδυασµός των 

µοντέλων αυτών απέδωσε καλύτερα ή το ίδιο σε σχέση µε ειδικούς ακτινολόγους. 

Τέλος, βαθιά µάθηση χρησιµοποιήθηκε για τη διάκριση µεταξύ πρώιµης (ARCO 1-2) 

και προχωρηµένης (ARCO 3-4) οστεονέκρωσης της µηριαίας κεφαλής. Η συναινετική 

απόφαση τριών µοντέλων βαθιάς µάθησης απέδωσε εξαιρετικά στη διάγνωση µεταξύ 

των δυο καταστάσεων. Προκειµένου µάλιστα να επιβεβαιωθεί η απόδοση των 

µοντέλων έγινε αξιολόγησή τους µε τη χρήση εικόνων από κέντρο του εξωτερικού και 

στη συνέχεια πραγµατοποιήθηκε σύγκριση µε τη διάγνωση από δυο εξειδικευµένους 

ακτινολόγους µυοσκελετικού. Παρά τη µικρή µείωση στην απόδοση των µοντέλων 

όταν δοκιµάστηκαν σε εξωτερικά δεδοµένα, φάνηκε να διατηρούν υψηλή συνολική 

απόδοση η οποία κρίθηκε όµοια µε την απόδοση των δυο εξειδικευµένων 

ακτινολόγων. Συµπερασµατικά, τα αποτελέσµατα που παρουσιάζονται στην 

παρούσα διδακτορική διατριβή επιβεβαιώνουν ότι η ραδιωµική ανάλυση και µέθοδοι 

τεχνητής νοηµοσύνης όπως η βαθιά µάθηση µπορούν να αποδώσουν εξαιρετικά στη 

λήψη συγκεκριµένων διαγνωστικών αποφάσεων οι οποίες σχετίζονται µε την 

παρουσία οστεοµυελικού οιδήµατος και οι οποίες προκαλούν διλήµµατα στην καθ’ 

ηµέρα διαγνωστική πράξη των γενικών και εξειδικευµένων ακτινολόγων. 
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Bone marrow edema (BME) is a non-specific finding that can be found in a 

series of benign and malignant conditions. The imaging modality of choice for the 

depiction of BME is Magnetic Resonance Imaging (MRI), where BME can be identified 

as bone marrow areas of low-signal intensity of T1-w sequences and high-signal 

intensity on fluid-sensitive sequences such as Short Tau Inversion Recovery (STIR) 

and Proton Density -weighted fat saturated sequences [1, 2].  BME can accompany a 

series of conditions affecting the bone marrow including acute bone marrow edema 

syndromes (transient osteoporosis, regional migratory osteoporosis), chronic regional 

pain syndrome, avascular necrosis (AVN), infection, inflammatory arthritis, 

osteoarthritis at advanced stages of the disease, tendinopathies, and 

primary/metastatic malignancies [1–3].  

Our group and other research groups have previously shown that the 

morphology and the location of BME can be extremely helpful or even pathognomonic  

in the diagnosis of certain diseases. Such cases include the half-moon appearance of 

BME at the femoral neck, which can indicate the presence of intra-articular osteoid 

osteoma (in cases with no history of lower limb overuse) or stress reactions/fractures 

(“half-moon” sign) [4, 5], and the lack of BME in the inner lower quadrant of the 

femoral head which is characteristic of acute BME syndromes (“sparing sign”) [6]. 

Nonetheless, despite the progress in the diagnosis of conditions accompanied by 

BME, its identification on routine MRI examinations can be extremely confusing for 

inexperienced readers, requiring extensive expertise in musculoskeletal radiology and 

a combination of imaging and clinical features. Even for experienced MSK 

radiologists, certain diagnostic dilemmas still exist that are related to the presence of 

BME and can complicate diagnosis of routine MRI examinations. Such dilemmas 

include: 

1. The differentiation between transient osteoporosis and advanced stages of 

avascular necrosis of the hip [1, 7–9] 

2. The differentiation between subchondral insufficiency fractures of the knee 

and advanced osteoarthritis [10–12] 

3. The accurate staging of AVN, where BME usually appears in later stages of 

the disease [13, 14] 
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Accurate diagnosis in all the aforementioned cases is of utmost importance for 

the selection of an appropriate treatment plan which in cases of AVN and advanced 

osteoarthritis could involve surgery, whereas in cases of transient osteoporosis and 

subchondral insufficiency fractures would require conservative treatment with 

reduced weightbearing. In addition, accurate staging of AVN would play a role in 

selecting either a joint preserving surgical method (e.g. core decompression) in early 

stages or total hip arthroplasty in late stages of the disease [14, 15]. 

Radiomics analysis and artificial intelligence methods have rapidly infiltrated 

radiological research and clinical practice over the past decade [16]. Radiomics 

includes the extraction of high-dimensional mathematical image features 

imperceptible to the human eye from a region of interest and the analysis of that data, 

usually with artificial intelligence/machine learning methods, to enable diagnostic 

decisions [17, 18]. Artificial intelligence methods, including traditional machine 

learning algorithms (e.g. support vector machines, random forests, gradient boosting 

methods) and deep learning models, can be used to analyse radiomics data but can be 

also used independently to analyse images for diagnostic purposes [19–21]. These 

methods allow certain degrees of automation of the diagnostic process and have been 

shown to reach accurate diagnostic decisions especially when dealing with very 

specific diagnostic tasks such as fracture detection [22], even outperforming human 

readers. 

The work presented in this PhD leverages the power of radiomics and artificial 

intelligence to address the aforementioned diagnostic dilemmas related to the 

presence of BME and is structured to reflect the use of radiomics and artificial 

intelligence to address multiple diagnostic dilemmas related to the presence of BME. 

The most important background and a critical appraisal of current literature has been 

presented in chapter 2, followed by a detailed description of aims/objectives and a 

general methodology section (chapters 3 and 4, respectively). Subsequently, starting 

from the differentiation between transient osteoporosis and avascular necrosis of the 

hip, chapter 5 demonstrates that radiomics analysis achieved high accuracy in the 

differentiation between the two conditions, while reaching a performance that is equal 

or better than human readers. In order to overcome the manual steps related to 

radiomics feature extraction and region of interest segmentation, deep learning has 
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been used in chapter 6 to automate the diagnosis between AVN and transient 

osteoporosis of the hip. A consensus convolutional neural network (CNN) ensemble 

has been shown to accurately distinguish between the two conditions using whole MR 

images of the hip, without the need for manual segmentation and radiomics feature 

extraction. This novel CNN ensemble has been then used in chapter 7 to distinguish 

between the BME caused by subchondral insufficiency fractures of the knee and 

advanced osteoarthritis. The ensemble was found to be highly accurate in the 

differentiation between the two conditions and the performance of the deep learning 

pipeline was found equal or better than expert MSK radiologists. In chapter 8, a 

similar CNN ensemble achieved accurate distinction between early and late stages of 

AVN which was validated with an international image dataset and was found more 

accurate that expert readers. Finally, chapter 9 provides a critical conclusion, future 

perspectives  and directions for further research. 
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2.1 Bone marrow edema 

2.1.1 Pathophysiology and imaging 

 

Bone marrow is the primary site of haematopoiesis in a normal adult. It consists 

of a bony trabecular network that creates spaces filled with cells, water, fat and protein 

that changes according to the age and in various disease states, with a variable 

proportion of red and yellow component at different ages. In a healthy adult, red 

haematopoietic marrow is predominant in early stages of life, being converted 

gradually to yellow (fatty) marrow as age increases [9, 23].  

In order to achieve a deep understanding of bone marrow imaging for the 

recognition of normal image variants and the differential imaging diagnosis between 

conditions that affect the bone marrow, a basic knowledge of bone marrow histology 

and physiology is extremely important. The pathophysiology of bone marrow edema 

is still unclear, however, it has been proposed that it reflects a complex phenomenon 

with a combination of trauma-related sequelae including vascular rupture, 

hypervascularity and abundant blood perfusion, and physiological adaptation 

mechanisms which differ depending the underlying condition[9, 23]. 

The appearance of bone marrow on MR imaging is mainly dependent on the 

concentrations of water and fat in-between bony trabeculae. Since bone appears 

without signal on MR sequences, the appearance of bone marrow is dependent on the 

concentration of fluid (such as in cases of BME), as well as on the relative concentration 

of red and yellow marrow components.  Suppression of the signal of fat with 

sequences such as fat suppressed Proton Density (PD)-weighted and Short tau 

Inversion Recovery sequences is extremely important because of the similar signal of 

water and fat in T2-w sequences. Suppression of the signal of fat in the 

aforementioned sequences reveals the signal of fluid (fluid-sensitive) sequences 

allowing the identification of edema [24].  

In fluid-sensitive sequences, red marrow is distinguished from BME based on 

the fact that it yields less intense signal, is contained within anatomical barriers (e.g. 

epiphyseal plate) and is characteristically found in individuals in need for 
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haematopoiesis (e.g. smokers, patients with anaemia, patients with high body mass 

index, individuals living in high altitudes etc.) and in young adults[24, 25].  

 Areas of BME can have certain morphological characteristics depending on the 

underlying condition. A representative example is the half-moon sign of BME in the 

femoral neck, where BME retains a half-moon morphology in cases of an underlying 

osteoid osteoma of the femoral neck or in cases of stress fractures of the femoral neck 

[5, 26]. Another example is the sparing of the medial portion of the femoral head by 

BME in early stages of transient osteoporosis of the hip [6]. Such morphological 

characteristics could be attributed to the configuration of cancellous bone struts such 

as the network of principal compressive and tensile trabeculae which can form 

boundaries for the containment of BME [4].  

 

2.1.2 Conditions appearing with BME 

2.1.2.1 Acute bone marrow edema syndromes 

Acute bone marrow edema syndromes include transient osteoporosis of the hip 

(TOH) and regional migratory osteoporosis (RMO). These syndromes are 

characterized by the acute onset of pain without a history of trauma and reversibility 

of the symptoms only with conservative treatment. The equivalent of transient 

osteoporosis in the knee is called subchondral insufficiency fracture (SIF) of the knee 

and its pathophysiology is considered to be the same as transient osteoporosis of the 

hip. The exact mechanism behind acute bone marrow edema syndromes is still 

unclear, even though transient bone demineralization is thought to be implicated, as 

well as hyperaemia leading to demineralization, neurogenic compression or ischemia 

of vessels supplying nerve roots [27, 28].  

On MRI they are characterized by the presence of extensive BME with the 

presence of subchondral irregular low signal intensity lines withing the area of BME 

representing subchondral fractures in almost 50% of the patients (Figure 1) [6]. The 

main site affected by TOH is the hip where edema can also involve the acetabulum 

apart from the femoral head[1–3, 9]. On plain radiographs, osteopenia may be 

detected but the modality of choice for the diagnosis of bone marrow edema 

syndromes is MRI with fluid sensitive sequences. Paramagnetic contrast 

administration demonstrates enhancement of the region of BME, as well as joint 
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effusion and synovitis, even though contrast is not routinely administered since it is 

not necessary for the diagnosis of BME. A combination of the history (acute onset 

without trauma) and characteristic imaging appearance is the basis of the diagnosis. 

When found in the proximal femur, BME can extend to the greater trochanter and it 

usually spares the medial part of the femoral head . In cases where no proper 

treatment measures are taken, articular collapse will be noted as a consequence of the 

subchondral insufficiency fractures.  

 

 

RMO is a condition where migration of the edema is noted, a while after the 

initial TO event [29]. Such migration can happen to other locations such as the knee 

or the ankle and has the same imaging and pathophysiological characteristics as TO. 

The chance of edema migration has been estimated to be close to 20% in a large cohort 

of patients with TOH, however, other studies have reported a migration chance of up 

to 72%[30]. A characteristic feature of patients with acute bone marrow edema 

syndromes is the low bone mineral density as shown on femoral neck and spinal 

Α Β 

Figure 1 A 60-year-old male patient with transient osteoporosis of the right hip. 

Extensive bone marrow edema (thick arrows) appears with high signal intensity on coronal STIR 

(A) and low signal intensity on coronal T1-weighted (B) images of the proximal femur. Bone 

marrow edema extends to the area of the greater trochanter and spares the bone marrow of the 

medial part of the femoral head (sparing sign – thin arrows). 
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DEXA examinations [2, 11]. Perfusion imaging in these patients shows delayed peak 

enhancement at the areas of BME [31]. 

 

 

 

2.1.2.2 Avascular necrosis 

 

Avascular necrosis (AVN) of the hip affects approximately 20,000 patients 

every year in the USA and is the most common cause of total hip arthroplasty (THA) 

at young ages, demonstrated with bilateral involvement in >70% of patients [14].  

AVN results from irreversible ischemia in the subchondral area which results to 

necrosis of the subchondral bone that loses its mechanical properties resulting to 

articular collapse. Apart from fractures that disrupt the blood supply to the femoral 

head, a series of other risk factors have been described for the appearance of AVN, 

including alcohol consumption, smoking, radiation, hypercoagulation states, lipid 

storage diseases, autoimmune disorders and others [32].   

Clinically, patients may be completely asymptomatic or present with pain 

around the hip, groin, buttock linked to reduced internal rotation of the hip and 

potential pain radiation to the knee [32, 33] and one of the previously mentioned risk 

factors can be usually noted.  

In early stages of the disease prior to articular collapse, joint preservation 

techniques (core decompression, vascularized grafting, etc) are available with the 

potential to avoid THA which is the last resort after articular collapse and the 

development of secondary osteoarthritis [34, 35]. Therefore, differentiation between 

early and late AVN is of utmost importance for appropriate treatment selection.  

Several systems have been proposed for the staging of AVN with the most 

popular being the Association Research Circulation Osseous (ARCO) [36], the Ficat 

and Arlet classification [37] and the Steinberg (University of Pennsylvania) 

classification[38]. The ARCO classification is the commonly used one and is suggested 

as the classification of choice in the 2019 international guidelines on the management 

of AVN [32]. According to the latest version of ARCO, AVN can be divided in 4 stages 

as shown on Table 1. 
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Table 1 The latest (2019) revision of the ARCO staging system 

ARCO stage Image Findings Details 

I Unremarkable X-

ray 

“Band-like” sign and “single line” 

sign on fluid sensitive sequences. A 

cold spot can be seen on bone scan  Findings on MRI 

II Findings on X-ray “Band-like” sign on T1-w sequences 

and “single line” sign on fluid 

sensitive sequences. On X-rays or CT, 

osteosclerosis, localized osteopenia, 

cystic lesions. No evident fracture, no 

flattening of the head. 

 Findings on MRI 

IIIA  Femoral head depression up to 2 mm 

IIIB  Femoral head depression >2 mm 

IV  Findings indicative of osteoarthritis 

 

As suggested by the 2019 guidelines for the management of AVN, for cases 

with ARCO <3 joint preserving surgical techniques (core decompression, stem cell 

transplantation or bone grafting/osteotomy) and/or vasodilators/anticoagulation 

treatment is recommended. For early ARCO 3 and above, joint replacement starts to 

become an option depending on the availability of vascularized bone grafting and the 

condition of the joint. For this reason distinguishing between early and late AVN is 

extremely important for the selection of appropriate treatment. This can be extremely 

complicated due to the presence of bone marrow edema that is in most cases present 

in ARCO>3 [39] but can be sometimes also seen in early disease. In addition, 

evaluation of articular surface collapse should be done in 3D and can be extremely 

complicated for inexperienced readers, especially in the absence of an evident crescent 

sign. 

Another difficulty in the diagnosis of AVN lies in the confusion between AVN 

and TOH. This has been a long-lasting literature debate, especially in the previous 

decade [40–44]. Our group and other research groups have shown that there is no 

relationship between the two conditions in terms of histology [42], clinical progression 

to articular collapse (which is not a feature of TOH) [6], the uptake of contrast in 
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dynamic contrast enhanced MRI studies [44] and the morphology of subchondral 

fracture lines [6]. The irregular thin subchondral fractures encountered in TOH have 

a completely different appearance to either the serpiginous band-like sign with a 

concavity towards the joint space that surrounds the necrotic portion of the head, or 

the fluid-filled crescent sign (subchondral fracture) seen in late stages of AVN. 

Nonetheless, despite the accumulating evidence showing no relationship between the 

two entities, studies continue to be published with a pronounced confusion between 

the two entities [45, 46]. The importance of distinguishing between the two lies in the 

fact that a patient diagnosed with TOH will undergo conservative treatment whereas 

a patient with AVN will most probably undergo some type of surgical management. 

 

 

2.1.2.3 Other conditions appearing with BME 

A series of other conditions are associated with ΒΜΕ including acute trauma, 

stress injuries, chronic regional pain syndrome, infections, inflammatory 

arthropathies, benign and malignant tumours. However, these conditions fall out of 

the spectrum of this PhD since no significant diagnostic dilemmas arise in relationship 

with BME in these conditions, since other primary findings (e.g. erosions, fracture 

lines, cartilage damage, masses) are used for the diagnosis of these conditions in 

conjuction with disease-specific clinical details such as inflammatory markers and 

signs of inflammation, history of trauma or overuse,  and history of malignancy at 

another site are used to reach a final diagnosis.  

 

 

  

2.2 Principles of radiomics 

 “Omics” analyses were first introduced in biological sciences with the 

development of fields such as genomics, transcriptomics, proteomics, metabolomics, 

epigenomics etc. These “omics” analyses performed a global characterization of 

biological systems by quantifying all measurable molecules of a defined class [47–49]. 

In this manner, biology shifted from probing concentrations of single metabolites or 
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single proteins to the wholistic snapshot of a biological system at a given time point . 

This has been the epitome of personalized medicine since it allowed the detailed 

characterization of disease states, the modelling of cellular physiology and the 

detection of druggable targets for the development of novel therapeutic molecules [17, 

50–54].  

Radiomics includes the extraction of high-dimensional mathematical image 

features imperceptible to the human eye from a region of interest and the analysis of 

that data, usually with artificial intelligence/machine learning methods, to enable 

diagnostic decisions [17, 18]. As accurately mentioned by Gillies et al. [17] “images are 

more than pictures, they are data” which can be used for the detailed characterization 

of lesions or areas of interest. Radiomics allow precise characterization of lesions 

capturing fine details in the imaging appearance of a disease phenotype that is 

ultimately affected by changes in all other omics layers (from genome to metabolome). 

Radiomics can be used to pinpoint correlations between image characteristics and 

disease states or treatment responses being able to predict current or future biological 

traits or the response to a certain treatment [55–60]. 

Radiomics analysis involves a series of relatively well-defined steps starting 

from the definition of the lesion of interest and the modality of choice, proceeding 

with the image acquisition and pre-processing steps to prepare for feature extraction 

that can be done either in a traditional machine learning manner or in a deep-learning 

manner in cases of abundant data. These features are then used to train and validate 

artificial intelligence models that enable predictions of predefined outcomes (Figure 2).  
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The features extracted from medical images can be classified into semantic or 

agnostic [17, 61]. Semantic features are part of radiologists’ everyday language, used 

to describe lesion characteristics that include size, shape, volume, length, diameter, 

vascularity and others. These lesions are included in radiomics, not in a qualitative 

manner but in a rather quantitative manner. On the contrary, agnostic features are 

generally not understood by every radiologist since they quantify relationships 

between pixels and voxels that are not simple to conceptualize. These include first 

order statistics, second order statistics and high-level statistics. First order features 

include summary numbers and histogram statistics such as mean, median, 

maximum/minimum, entropy, asymmetry or flatness of histogram values. These are 

Figure 2 A multidisciplinary radiomics workflow 

Initially a group of clinicians should define the clinical problem that the proposed model should deal 

with and make decisions on what kind of imaging modalities should be recruited. Imaging scientists 

needs to make sure that acquisition protocols are optimally designed producing high quality images, 

as well as for the pre-processing of the images. Then depending on the size of the available imaging 

studies we need to decide which pipeline to use. In case of big data (in the order of thousands) a deep 

radiomics approach can be suggested avoiding tedious and time-consuming processes like tumor 

segmentation by multiple radiologists. In addition, deep convolutional neural networks have been 

proven more efficient to model complex problems compared with traditional machine learning 

algorithms, as long as data availability requirement is satisfied. Finally, the data sets are allocated for 

training, validation and testing purposes (reproduced under CC BY license from [61]). 
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different to texture or second-order features, that attempt to reveal relationships 

between voxels that are characterized by similar contrast providing a measure of 

lesion heterogeneity that cannot be otherwise described with semantic features. Such 

heterogeneity can explain why lesions that look similar on imaging have a very 

different biological behaviour, since the human eye cannot visualize such texture 

differences. A multitude of texture features can be extracted (hundreds) to obtain a 

detailed description of a lesion. Finally, higher order features can be obtained by 

applying filters to the original image that augment certain patterns. Such filters 

include wavelets, that transform the image by matrix multiplication with a series of 

radial or linear waves and Laplacian transformations of Gaussian filters that identify 

regions with high coarseness [17, 62]. Wavelet transformation highlights edges and 

irregular lines and eliminates noise profile inconsistencies, being thus valuable in the 

analysis of images originating from multiple scanners [63, 64]. 

Attempts are made to standardize the way radiomics features are extracted in 

order to promote reproducible research and standardized biomarker identification. 

Such initiatives include the Imaging Biomarker Standardization Initiative [65, 66] 

which is an international collaboration on standardizing the way radiomics features 

are extracted. Another attempt for standardization has been made by the creators of 

the PyRadiomics package[58] which is the most commonly used method for the 

extraction of radiomics data from medical images. 

Following data extraction and dataset preparation, machine learning methods 

are employed for the training and validation of potentially useful/predictive models. 

These are classification or regression models which include a series of traditional 

machine learning algorithms such as random forests, gradient boosting models, 

support vector machines (SVM) and artificial neural networks. In this thesis SVM and 

gradient boosting methods (XGboost, CatBoost) have been used and will be further 

explained. Gradient Boosting algorithms represent methods that have been extremely 

successful in handling tabular data (e.g. radiomics).  

They include methods such as XGBoost, AdaBoost, LightBoost and CatBoost 

which are ensemble models combining a series of weak classifiers in an attempt to 

optimize accuracy and robustness. The first of this model class was AdaBoost which 

was published in 1997 [67, 68]. The core of the gradient boosting concept includes the 
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optimization of a loss function e.g  log-loss (classification) and a series of decision trees 

(weak learners) which offer potential data splits for optimal classification that are 

subsequently added one at a time to the ensemble while minimizing loss with a 

gradient descent method [69]. Gradient descent represents an optimization methods 

that identifies local minima of loss function [70]. XGBoost is the most popular and 

powerful of gradient descent methods that has won a series of data science and 

machine learning competitions  

(https://github.com/dmlc/xgboost/blob/master/demo/README.md#mac

hine-learning-challenge-winning-solutions). XGBoost minimizes a regularized loss 

function in an attempt to reduce model complexity and can be scaled up without 

significant increases in resources [71]. The backbone of XGboost uses C++ but has been 

also implemented in R and python packages with relatively simple commands. 

Multiple radiomics studies have successfully utilized gradient boosting algorithms 

[72–74]. 

Support Vector Machines (SVM) is a well-known traditional machine learning 

algorithm suitable for data-limited scenarios. SVM computes a geometrical way to 

maximize the difference between predefined classes. For this purpose it creates a 

hyperplane that passes between data points of each class after subjecting the dataset 

to a transformation with a kernel function. Subsequently the hyperplane that 

maximizes the distance between data classes is computed [68].  

 

2.3 Fundamentals of deep neural networks 

Deep learning has been recently applied to medical imaging, in order to avoid 

the manual extraction of hand-crafted radiomics features which provide a detailed but 

rather time consuming analysis and potentially biased characterization of images. The 

revolution of deep learning came with the development of powerful graphics cards 

(GPUs) that can handle complex calculations (convolutions) that allow neural 

networks to analyse images. Neural networks obtained their name by the resemblance 

of their structure to the complex connections between neurons in the human brain 

(Figure 3). 
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  The most important neural networks that revolutionized medical imaging were 

convolutional neural networks (CNNs) [75]. The first CNN was introduced by LeCun 

et al. in 1989 for the recognition of handwritten digits in Zip codes of the US Postal 

Service [76]. The network worked by calculating convolutions ie. merging operations 

for the information of a set of pixels in the image. By going through a series of 

convolutional layers the image is analysed to derive information that can in the end 

yield a prediction probability denoting whether an object belongs to a specific class. 

Each layer is connected to the others with weights that can be visualized as power of 

a synapse between two neurons. Deep learning has been feasible due to the 

development of backpropagation by Geoffrey Hinton et al. [77], which is the method 

that CNNs use to iteratively modify their weights by comparing their output to the 

ground truth until they “learn” the appropriate weights that allow an accurate 

prediction.   

Several deep learning architectures have been proposed with the first being 

AlexNet by Krizhevsky et al. from the group of Geoffrey Hinton, which achieved 

classification of 1.2 million images to 1000 classes with an error of 15.2% in 2012 [75, 

78]. Since then a series of CNN architectures have been developed with the most 

commonly used being VGG-16, Inception-ResNet V2 and InceptionV3. The 

architectures of these networks can be found in Figure 4. 

 

Figure 3 A neural network representation of human brain 

Reproduced with permission from Saba L et al. [75] 

Image courtesy of https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception 
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These models have achieved excellent results in classifying medical images such as 

the detection of pneumonia in chest x-rays (96% AUC for VGG-16) [79], fracture 

detection (95.4% AUC for InceptionV3) [80] and the detection of sacral fractures on 

radiographs (98.9% and 98.4% AUC for InceptionV3 and Inception ResNetV2 

respectively) [81].  

 

2.4 Transfer learning 

Deep learning models require an abundance of image data in order to 

iteratively learn the appropriate weights to achieve the optimal performance. 

However, in cases of where diseases with low prevalence are studied or where the 

local population does not allow the construction of a sufficient dataset, transfer 

learning has been proposed to reduce the need for a large training dataset while 

significantly reducing computational costs [82]. In the most common form of transfer 

Figure 4 CNN architectures used in this thesis (created with biorender.com) 
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learning CNNs are trained using a large dataset to obtain the initial weights and to 

learn recognizing patterns common in all kinds of images (e.g. edges). Subsequently 

the initial weights are frozen and the final trainable layers are finetuned using the 

smaller local dataset to allow the CNN to learn the details of each specific application. 

Datasets used for transfer learning include ImageNet with >14 million images of 

everyday objects (including cars and animals) and the recently launched 

RadImageNet with 5 million medical (CT, MRI, ultrasound, PET) images from 500,000 

patients. RadImageNet was recently launched (2022) and no studies (apart from the 

original RadImageNet publication) have yet utilized it for the training of CNNs [83].  

 

 

2.5 Artificial intelligence and radiomics for the study of the 

musculoskeletal system 

2.5.1 Radiomics for the study of musculoskeletal disease 

2.5.1.1 Oncological applications 

Radiomics has been used in MSK radiology mainly for oncological 

applications. Radiomics data have been used to distinguish between benign and 

malignant bone lesions such as the differentiation between sacral chordoma and giant 

cell tumour [60] and the differentiation between osteoblastic metastases and bone 

islands [84] with an AUC of almost 95% for the former and 96% for the latter. It is also 

interesting that when radiomics models were compared to human diagnostic 

performance for the differentiation between bone islands and metastases, the 

radiomics-based method was equal to two readers and better than a third reader [84], 

demonstrating the potential of the method to assist diagnostic decisions. Similar 

radiomics models using SPECT data, CT data and their combination achieved AUC 

of approximately 92% for the differentiation between benign and malignant sclerotic 

bone lesions [85].  

Apart from osteoblastic lesions, cartilaginous tumours have also been analysed 

with radiomics by Gitto et al. who have established a radiomics method for the 

differentiation between atypical cartilaginous tumours (grade I chondrosarcoma) and 

grade II chondrosarcoma using MR images. The importance of development of an 
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accurate radiomics model for such am application is that in cases of atypical 

cartilaginous tumours watchful waiting or intralesional curettage can be applied 

whereas for grade II chondrosarcoma a more aggressive wide resection is indicated 

[56]. Yi et al. have also shown that radiomics from T2-w images are superior to 

contrast enhanced T1-w images in differentiating Ewing sarcoma from osteosarcoma 

[86].  Similar work has been presented on the detection of malignancy in soft tissue 

tumors. Indeed, a radiomics-based SVM model with linear kernel achieved a 96% 

AUC in the detection of malignant lipomatous soft tissue tumors [59]. However, 

radiomics models have not only been used for disease detection but for the prediction 

of the response to neoadjuvant chemotherapy in patients with osteosarcoma [55] 

 

2.5.1.2 Non-neoplastic musculoskeletal disorders 

Radiomics has found limited applications for non-neoplastic disorders 

compared to the number of applications noted for musculoskeletal and soft tissue 

tumours. In rheumatological disease, radiomics has been used for the detection of 

inflammatory sacroiliitis [87] and for the differentiation between different types of 

myopathy [88]. Application of radiomics for the detection of sacroiliitis is the only case 

of machine learning that has been used for the diagnosis of diseases related to BME. 

Finally, radiomics has been applied to the analysis of the texture of paraspinal muscles 

[89], which did not manage to predict fatty atrophy but could correlate with muscle 

strength. 

 

2.5.2 Deep learning for the study of musculoskeletal disease 

2.5.2.1 Non-neoplastic musculoskeletal disorders 

With regards to deep learning, the majority of applications to the 

musculoskeletal system have to do with the detection of fractures on plain 

radiographs. Several attempts have been made with some of them achieving excellent 

results in large patient cohorts[22]. The field has progressed to the extent that deep 

learning based commercial software (e.g. Gleamer’s BoneView) has been tested in 

large patient cohorts achieving impressive results, comparable to multiple human 

readers [90]. Such software can be used clinically since it has received CE mark and 
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FDA approval for use not only in adults but also in paediatric population with an age 

>2 years. 

Another important application of deep learning has been the detection of 

meniscal and ACL tears.  Fritz et al. have done a review and meta-analysis of deep 

learning studies for the detection of meniscal tears, showing that CNNs can achieve a 

high performance for the detection of medial meniscal tears but sensitivity for the 

detection of lateral meniscal tears was significantly lower hindering clinical 

application [91]. The same study showed that a series of studies have been performed 

for the detection of ACL tears achieving high AUCs (93% to 100%) but pooled data 

demonstrated that MSK radiologists performed better than most algorithms [92, 93]. 

Nonetheless, the authors highlighted the fact that inexperienced readers would 

benefit more from such deep learning algorithms[91]. 

Several deep learning publications exist for spinal disease. Research efforts 

have been focused on the automatic detection of spinal levels [94], the multi-level 

Figure 5 Example of the detected region of the vertebrae and the corresponding assessments of the mid-sagittal 

slice of an MRI (a).  

The red boxes are the detected vertebrae regions and the blue boxes are the extracted disc regions passed 

through to the classifier. (b) L2–L3 and L5–S1 disc volume examples from (a) and their resulting predictions 

computed from the disc volumes. Likewise, (d) the L1–L2 and L5–S1 disc volume examples from (c) and the 

predictions. Reproduced under CC BY license from Jamaludin et al. Eur Spine J 2017 [94]). 



 

 
34 

quantification of canal and foraminal stenosis [94, 95] and the detection of disc 

degeneration.  

Finally, deep learning has been used to automate a series of non-diagnostic 

tasks in MSK radiology image denoising [96], examination protocolling to reduce 

time, segmentation of regions of interest [97], implant brand/type recognition [98, 99], 

body composition analysis [100] as well as the automation of measurements such as 

the measurement of femoral component subsidence after total hip replacement [101] 

and the measurement of pelvic/hip angles such as the CE angle, Tonnis angle, sourcil 

angle, Sharp’s angle and femoral head extrusion index [102].  

 

2.5.2.2 Oncological applications 

Deep learning has been used in orthopedic oncological applications especially 

for the detection of pathological vertebral fractures, the identification of either 

sclerotic or lytic spinal metastases on CT with an AUC >80% [103]. Deep learning has 

achieved high performance in the differentiation between benign and malignant 

vertebral fractures on CT and MRI [104, 105].  

The studies utilizing deep learning for the study of musculoskeletal primary 

tumors are limited. The only available studies to date, include the automated 

segmentation-grading of soft tissue sarcomas [106] which yielded moderate AUCs 

~75% for the staging of sarcomas and the prediction of post-surgical recurrence of 

giant cell tumors based on the pre-surgical MRI which performed better than human 

experts [107].  
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Chapter 3 Aim & Objectives 
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The aim of this PhD project was to utilize radiomics and artificial intelligence methods 

to assist the diagnosis of bone marrow disease characterized by bone marrow edema. 

These state-of-the-art methods were used to address important clinically relevant 

questions where significant expertise in MSK and bone marrow imaging is required 

for the accurate image-based diagnosis. Ultimately, the aim of this PhD was to 

demonstrate the capability of radiomics and artificial intelligence methods to assist 

the reporting of MSK examinations where the presence of ΒΜΕ can raise diagnostic 

or treatment dilemmas. Specific objectives included: 

1. To use radiomics and traditional machine learning methodology for the 

differentiation between transient osteoporosis (TOH) and avascular necrosis 

(AVN) of the hip. MRI-based radiomics from femoral head segments was used 

to differentiate between the two conditions (chapter 5). 

2. To utilize deep learning models for the differentiation between TOH and AVN. 

Use of deep learning overcomes the need for femoral head segmentation and 

automates the diagnostic decision. Towards this objective, three convolutional 

neural network (CNNs) architectures were trained using transfer learning and 

finetuned with our custom dataset and the ensemble consensus decision of all 

three networks was recorded as the final decision of the algorithm (chapter 6). 

3. To distinguish between BME related to subchondral insufficiency fractures of 

the knee (SIF) or advanced osteoarthritis, using deep learning. Transfer 

learning was also used to train three CNNs and their consensus decision was 

used as the output of the algorithm (chapter 7). 

4. To distinguish between early (ARCO<3) or late (ARCO ³3) stages of AVN 

using deep learning with a similar transfer learning methodology (Chapter 8). 
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Chapter 4 Materials & Methods 
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This chapter presents methodology used throughout this thesis, in more than 

one chapter. Methodology unique to each individual chapter is presented at the 

beginning of the respective chapter.  

 

4.1 Patients & ethics 

4.1.1 Avascular necrosis and transient osteoporosis of the hip 

Anonymized consecutive MRI examinations of patients with avascular 

necrosis of the hip (AVN) and transient osteoporosis of the hip (TOH) were 

retrospectively collected from the archive of the second opinion bone marrow imaging 

clinic of our hospital (run by a MSK radiologist with 40 years of experience in MSK 

imaging) between July 2014 and March 2020. The aforementioned MRI examinations 

were performed in a multitude of MR scanners (1.5T or 3T) of multiple vendors. 

Exclusion criteria included: trauma,  infection, tumours, inflammatory arthropathies, 

follow-up <1-year, prior surgery on the hip of interest 1. 

 

4.1.2 Subchondral insufficiency fractures of the knee and advanced osteoarthritis 

Consecutive MRI examinations with subchondral insufficiency fractures (SIF) 

or advanced osteoarthritis (OA) of the knee were retrospectively collected from the 

RIS-PACS system of our hospital and two collaborating clinics by retrospectively 

examining 1756 knee MRI examinations. All patients with SIF or OA accompanied by 

bone marrow edema were included. Exclusion criteria included: (i) history of recent 

knee trauma or intervention, (ii) clinical and laboratory diagnosis of infectious or 

inflammatory arthropathy and (iii) MRI findings of bone marrow reconversion 

extending to the epiphysis, (iv) neoplasms around the knee. Cases where SIF and OA 

coexisted and cases with a fluid filled subchondral fracture surrounded by BME, with 

or without articular collapse, were also excluded. 

 

 

 
1 Detailed inclusion criteria and ground truth establishment methods can be found in 

each individual chapter. 
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4.1.3 Ethics 

Approval of the project was obtained by the University Hospital of Heraklion 

Ethical Committee (Ref. No. 360/08/29-04-2020) and informed consent was waived 

due to the anonymized retrospective nature of the study. 

 

 

4.2 Radiomics pipeline 

In order to address vendor/scanner variability between STIR MR images, grey 

level harmonization was achieved by means of histogram normalization and by 

establishing a fixed bin width according to the PyRadiomics guidelines for MRI-based 

radiomics (https://pyradiomics.readthedocs.io). In addition, voxel spacing 

standardization was applied by voxel dimension resampling to 1x1x1 mm. Proximal 

femurs (neck/head proximal to the intertrochanteric line) were manually segmented 

with paint tool of 3D slicer (v 4.11 for Windows, slicer.org) and radiomics features 

were extracted with the use of PyRadiomics implementation of 3DSlicer. Single reader 

segmentation is justified by the clear-cut boundaries of bone tissue which do not allow 

boundary confusion with adjacent soft-tissue structures.  
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Extracted radiomics features included first order, shape-based, gray level co-

occurrence matrix (glcm), gray level run length matrix (glrlm), gray level size zone 

matrix (glszm), neighbouring gray tone difference matrix (ngtdm) and gray level 

dependence matrix (gldm) features, as well as their wavelet and Laplacian of Gaussian 

transformations. A total 849 radiomics features were extracted from each segment and 

used for further analysis. 

Figure 6 MRI-based radiomics pipeline 

MR images are obtained and the region of interest is segmented (1). Subsequently, 

radiomics features are extracted and the dataset undergoes preprocessing (2) prior to 

use for machine learning purposes. The final dataset is used for the training and 

validation of machine learning models, which are evaluated for their performance and 

compared to expert readers. 
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Dataset curation included collinearity correction by removal of all features with 

a Pearson correlation coefficient >0.7. Relevant radiomics features were subsequently 

selected with the use of Boruta tree-based feature selection algorithm with a p-value 

threshold at 0.01, to enable the construction of meaningful signatures while limiting 

the possibility of overfitting (Figure 6 MRI-based radiomics pipeline. The dataset was then 

split to training and testing and scaled based on the formula 𝑅𝐹!"#$%& =
'()*!"
+,!"

 prior to 

use for machine learning model development.  

 

4.3 CNN training with transfer learning 

Convolutional neural network architectures (VGG-16, Inception-ResNetV2, 

InceptionV3) were trained with a transfer learning methodology in order to tackle the 

limited size of our dataset as proposed by [82]. Prior to use in deep learning all images 

were resized to 150x150 px to fit the input specifications of the aforementioned CNN 

architectures. In addition, datasets were augmented by means of horizontal image 

flipping rotation (10o clockwise/anticlockwise) to expose the network to a higher 

amount of training data. Firstly, the initial layers of each network were trained with 

the use of ImageNet dataset (public dataset of >14 million images) to allow the 

networks to recognize generic features that cannot be learned with the use of a small 

clinical dataset. Subsequently, network weights were frozen and the final trainable 

layers of each network were finetuned with the use of our datasets. CNN training was 

performed for 50 -100 epochs with an early stopping function in order to avoid 

overfitting.  

Deep learning was performed with Python v.3.8, the Keras framework and the 

TensorFlow backend on a Windows 10 Pro workstation with 32 GB RAM, Intel i7-

10700F @2,9 GHz CPU and NVIDIA GeForce RTX 2060 Super 8GB GPU. 

 

4.4 Statistical analysis 

Descriptive statistics were used to analyze patient demographics, presented as 

frequencies and mean ± standard deviation (SD). Sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) were calculated for each 
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machine learning classifier and expert reader for the detection of AVN against TOH. 

CNN performance was evaluated using precision, recall and f1-scores for each 

individual CNN and the ensemble.  

Receiver operating characteristic (ROC) curves were constructed with the use 

of the pROC R package and classifier performance was assessed with the respective 

area under the curve (AUC) and 95% confidence intervals for the AUC calculated by 

bootstrapping. Expert reader performance (AUC) was compared to the machine 

learning classifiers with the use of DeLong’s method [108]. Statistical analysis was 

performed with the use of R (v. 4.03, https://www.R-project.org/) and the non-

parametric Mann–Whitney U test was used to compare the ages of patients between 

groups. Significance was defined with a p-value lower than a = 0.05.  
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Chapter 5 – Radiomics and machine learning enable 

the differentiation between avascular necrosis and 

transient osteoporosis of the hip 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published in Klontzas et al. Diagnostics 2021 [72]. Copyright remains with 

the authors under CC BY license. 
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5.1 Introduction 

Transient osteoporosis (TOH) and avascular necrosis of the hip (AVN) 

represent two disease entities that can be associated with bone marrow edema (BME) 

of the proximal femur [1, 2]. BME is the hallmark of TOH, whereas in AVN it appears 

at late stages of the disease [1]. This has caused a longstanding confusion in 

radiological and orthopaedic literature, where AVN was initially thought to be a 

continuation of TOH. This confusion is facilitated by the fact that subchondral 

fractures can be found in both entities [1, 6, 14]. Nonetheless, it is widely now accepted 

that they represent distinct disease entities which have a completely different 

pathophysiology [42] and there is no progression of TOH to AVN [6, 43]. Indeed, the 

appearance of subchondral fractures in TOH is completely different to the appearance 

of the “crescent” sign or “band-like” sign seen in AVN [14]. Differentiation between 

the two is of utmost importance since the management of TOH, which is a self-limiting 

condition, is entirely conservative (reduced weightbearing) whereas the treatment of 

AVN is mainly surgical. Even though accurate differentiation between the two entities 

is extremely important since it can lead to unnecessary surgery, great confusion still 

exists in literature [45, 46] and accurate diagnosis requires a combination of clinical 

and imaging findings and experience of the reader in MSK radiology.  

To overcome the difficulty in radiological diagnosis between the two entities, 

radiomics analysis was employed to achieve a comprehensive analysis of image 

features and patterns that are indiscernible to the human eye for the differentiation 

between the two entities. Radiomics data were extracted from segments of the 

proximal femur in MR images of patients with either AVN or TOH. Omics data 

analysis was then performed and three machine learning classifiers were constructed 

to differentiate between the two conditions. Finally, the clinical value of the proposed 

classifiers was assessed by comparing the performance of the classifiers to the 

diagnostic performance of MSK and general radiologists as well as radiology 

residents. 
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5.2 Chapter-specific Methodology 

5.2.1 Patients 

A total of 213 consecutive hips were retrospectively included, comprising 104 

hips (n=67 patients) with AVN and 109 hips with TOH (n=107 patients). Recruitment 

was performed as previously described.  

 

5.2.2 MR imaging and ground truth establishment 

Diagnosis was established with the combination of imaging and clinical data 

including (1) the nature of pain onset, with acute pain onset indicating TOH and 

insidious pain onset indicating AVN, (2) the presence of risk factors predisposing to 

AVN. In order to establish the diagnosis of TOH, all potential TOH patients were 

followed-up for at least 1 year to ensure spontaneous resolution of symptoms with 

conservative treatment. Images were obtained at several 1.5T and 3T MR scanners 

across the country and were evaluated at the second opinion bone marrow imaging 

clinic of our department. MR imaging evaluation for ground truth establishment 

included a minimum of (1) coronal T1-w, (2) axial fat-suppressed PD/T2-w, (3) 

coronal short tau inversion recovery (STIR), (4) a high-resolution 3D gradient echo 

sequence for the global evaluation of the hip joint. In cases, where the existing MR 

protocol was insufficient, the examination was repeated in our department. Images 

were evaluated by a MSK radiologist with 40 years of experience together with all 

available clinical data and in collaboration with the referring orthopaedic surgeon.  

Diagnosis of AVN was established with the identification of the “band-like” 

sign as low-signal intensity line on T1-w images, as well as the “single line” as high 

signal intensity line on fluid-sensitive sequences (fs PD/T2-w and STIR). BME and 

subchondral fractures (high signal intensity lines on fluid sensitive sequences) 

indicated advanced stages of AVN (ARCO³3). The diagnosis of TOH was established 

based on the identification of extensive BME at the proximal femur. Secondary 

findings supportive of the diagnosis included the presence of the “sparing sign” [6], 

synovitis and joint effusion. Ultimately, the diagnosis was confirmed by the resolution 

of symptoms and BME over the course of the follow-up only with conservative 

treatment. For the purposes of radiomics analysis mid-coronal STIR images were used 
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since STIR images suffice for the diagnosis of both conditions in routine practice given 

the fact that they are the sequences of choice for the evaluation of BME.  

 

5.2.3 Radiomics analysis and machine learning model development 

Image preprocessing, radiomics feature extraction and dataset preparation was 

performed as described in chapter 4. In order to utilize radiomics data for the 

differentiation between TOH and AVN, three machine learning classifiers, XGBoost, 

CatBoost and Support Vector Machines (SVM) were trained using 70% of the dataset 

and tested using 30% of the data. Classifiers were built using 10-fold crossvalidation 

in the training dataset and hyperparameter tuning was performed using random 

search. The testing dataset could be considered as an external validation set since 

examinations came from a multitude of MR scanners (Figure 7). Models were trained 

and tested with the use of R programming language (v.4.03, www.R-project.org) with 

the use of “xgboost”, “catboost” and “e1071” packages.  
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Figure 7 Computational pipeline for radiomics analysis and machine learning model 

development. 

 The process starts with image acquisition and segmentation of the femoral head and neck 

(1) followed by radiomics analysis (2) consisting of feature extraction and data 

preprocessing in preparation for subsequent model development (3). Three machine 

learning algorithms (XGboost, CatBoost and SVM) were trained and validated with 

multivendor data and their performance was compared to that of expert readers. TOH: 

Transient Osteoporosis of the Hip; AVN: Avascular Necrosis; STIR: Short Tau Inversion 

Recovery; LoG: Laplacian of Gaussian; SVM: Support Vector Machine (created with 

BioRender.com, reproduced under CC BY license from [72]). 
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5.2.4 Comparison to expert readers 

Radiologists in training (a 4th and a 5th year resident with a special interest in 

MSK imaging), a general radiologist and two MSK radiologists (7 and 5 years of MSK 

experience, respectively) evaluated all images utilized for model development and 

provided a diagnosis blinded to the ground truth and to the predictions of radiomics 

models. Radiologists at all levels of experience (residents to MSK experts) were 

recruited in order to understand how the results of the algorithm compare to real life 

reporting and were presented with randomly shuffled images of our test set. In cases 

where no consensus could be reached by all three MSK-oriented readers (two MSK 

radiologists and a final year resident with MSK interest) were recorded as challenging 

and were used for further benchmarking of the developed algorithms.  

 

 

5.3 Results 

5.3.1 Dataset demographics 

Patients with TOH had a mean age of 45.77 ± 10.3 years which was found similar to 

the age of AVN patients which was found to be 43.74 ± 14.77 years (P=0.464). The 

dataset contained a total of 119 left and 94 right hips of 61 female and 113 male 

patients. Details on patient demographics can be found in Table 2. 

 

 

 

5.3.2 Radiomics and machine learning 

 

Table 2 Patient demographics 
 Total AVN hips TOH hips 

Number of hips 213 104 109 

Age 44.76 ± 12.53 years 43.74±14.77 years 45.77±10.3 years  

Side 94R - 119L 56L - 48R 63L - 46R 
Sex* 61F - 113M  38F - 29M 23F - 84M 

*: number of patients; AVN: avascular necrosis; TOH: transient osteoporosis of the hip; F: female; M: male; R: 
right; L: left 
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Boruta tree-based algorithm was used for feature selection yielding a subset of 38 

meaningful radiomics features (31 wavelet and 7 original) which were subsequently 

used for machine learning model development (Figure 8). XGBoost was achieved the 

highest performance of all three models for the differentiation between TOH and 

AVN reaching an AUC of 93.7% (95% CI from 87.7 to 99.8%), whereas CatBoost 

achieved slightly lower performance with an AUC of 92.1% (95% CI from 85.4 to 

98.8%) and SVM achieved the lowest AUC of 87.4% (95% CI from 79.1 to 95.6%) (Figure 

9 and Table 3). Given the excellent performance of XGBoost, it was selected as the 

model of reference and features important to model performance were extracted. A 

total of 31/38 radiomics features were important determinants of  

Figure 8 Identification of important features with the use of Boruta feature selection.  

Following collinearity correction and scaling, Boruta was applied as an artificial intelligence algorithm to select 

relevant features for unbiased development of machine learning classifiers. The Z-score boxplot presents rejected 

(red), tentative (yellow) and accepted (green) features. P<0.01 was used as a cut-off for the selection of accepted 

features. Blue boxes represent Z-scores of shadow features acting as internal controls for the selection of important 

variables. Subsequent machine learning was performed using accepted (green) features (reproduced under CC BY 

license from [72]). 
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XGBoost performance with 3/38 (entropy, short-run emphasis and wavelet filtered 

maximum) were the most important determinants of the model’s capacity to 

distinguish between AVN and TOH (Figure 10).  

 

 

 

Figure 9 Receiver Operating Characteristics (ROC) curves of machine learning models.  

XGboost (A), CatBoost (B) and Support Vector Machines (SVM) (C). Light blue areas represent the respective 

95% confidence intervals calculated with bootstrapping. AUC: Area Under the Curve (reproduced under 

CC BY license from [72]) 
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Table 3 Performance of the three machine learning algorithms 

Performance 
Measure XGB CB SVM 

AUC (95% CI) 93.74% (87.7 - 99.8%) 92.1% (85.4 - 98.8%) 87.4% (79.1 - 95.6%) 
Sensitivity 93.55% 90.32% 83.87% 
Specificity 93.94% 93.94% 90.91% 

PPV 93.55% 93.33% 89.66% 
NPV 93.94% 91.18% 85.71% 

P-value <0.001 

AUC: Area Under the Curve; CI: Confidence interval; XGB:XGboost; CB: CatBoost; SVM: Support 
Vector Machines; PPV: positive predictive value; NPV: negative predictive value 

Figure 10 Radiomics features identified as important for the performance of XGboost.  

Important features belong to two clusters based on their degree of importance. Cluster 2 

contains three features which represent the most important determinants of XGboost 

performance in differentiating between TOH and AVN (reproduced under CC BY license from 

[72])  
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5.3.3 Comparison of radiomics models to expert readers 

The clinical value of the developed radiomics-based method was assessed by 

comparing the best performing radiomics model (XGboost) to the performance of 

radiologists at the whole spectrum of training (residents - experts) and expertise 

(general radiology – MSK radiology). One of the two MSK experts (MSKR2) achieved 

the highest performance with an AUC of 90.6% (95% CI from 86.7% to 94.5) with a 

sensitivity of 89.42% and a specificity of 91.82%, compared to the second MSK 

radiologist (MSKR2) who achieved a slightly lower performance with an AUC of 

88.3% (95% CI from 84% to 92.7%). A similar performance to fellowship-trained MSK 

radiologists was achieved by residents with a special interest (>6 months of training 

during specialty) in MSK radiology achieving AUCs of 88.9% and 87.2% for the 4th 

and the 5th year resident, respectively. Performance of the general radiologist was 

found significantly lower than the performance of XGboost (P=0.017) whereas no 

other reader reached a significantly different performance compared to the model 

(Figure 11 and Table 4). Finally, in order to benchmark the model against complicated 

cases, XGboost was tested in cases where no consensus could be reached by expert 

readers, reaching an AUC of 91.7% (95% CI 75.3–100%) (Figure 12). 
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Figure 11 Comparison between Receiver Operating Characteristics (ROC) curves of 

XGboost and expert readers.  

ROC curves of XGboost and musculoskeletal radiologists are plotted as continuous 

whereas the ROC curves of residents and the general radiologist are plotted as dashed 

lines. XGboost (pink line) is shown to have the best performance which was 

significantly higher than the performance of a general radiologist (GR – purple line). 

XGB: XGboost; MSKR: Musculoskeletal Radiologist; GR: General Radiologist; RR: Ra-

diology Resident; OBS: Observer; AUC: Area Under the Curve (reproduced under CC 

BY license from [72]). 
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Table 4 Comparison of XGboost to expert readers 

Performance 
Measure XGB MSKR1 MSKR2 GR RR1 RR2 

AUC (95% CI) 93.74% (87.7 - 
99.8%) 

88.3% (84 - 
92.7%) 

90.6% (86.7 - 
94.5%) 

84.5% (80 
- 89%) 

88.9% (84.8 
- 93.1%) 

87.2% (82.7 
- 91.7%) 

Sensitivity 93.55% 89.42% 89.42% 98.08% 94.23% 84.47% 

Specificity 93.94% 87.27% 91.82% 70.91% 83.64% 90% 

PPV 93.55% 86.92% 91.18% 76.12% 84.48% 88.78% 

NPV 93.94% 89.72% 90.18% 97.50% 93.88% 86.09% 

 
P-value* 0.15 0.39 0.017** 0.19 0.08 

AUC: Area Under the Curve; CI: Confidence interval; CR:Consultant radiologist; RR: radiology resident; PPV: 
positive predictive value; NPV: negative predictive value; *P-value of the comparison of each reader to XGB; **: 

statistically significant value 

Figure 12 Examples of cases where differential diagnosis between avascular necrosis (AVN) and 

transient osteoporosis of the hip (TOH) can be complicated (reproduced under CC BY license from 

[72]). 
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5.4 Discussion 

 

In this chapter I have created an MRI-based radiomics model that achieved 

differentiation between hips with AVN and TOH. The model reached a performance 

that was equal to MSK trained radiologists and radiology residents and higher that a 

general radiologist and achieved excellent performance when benchmarked against a 

subset of complicated cases. 

Distinguishing between AVN and TOH is a challenging task for radiologists 

and several attempts have been made to distinguish between the two[43]. The 

diagnostic challenge raises by the fact that subchondral fractures and BME can be 

present in both conditions. However, as we have previously shown in a cohort of 155 

hips with AVN with a follow-up between 1-10 years, subchondral insufficiency 

fractures that are demonstrated in almost 50% of TOH patients have a different 

appearance compared to the “crescent sign” in AVN [6, 43, 109] . In addition, it has 

been shown that bone marrow edema is present in advanced stages of AVN as a 

complication of articular collapse [39]. Dynamic contrast-enhanced MRI has been 

proposed as a way to distinguish between the two conditions but, alas, with a limited 

sample size that cannot sufficiently prove the value of the method for all stages of 

AVN [44]. For this purpose, the method presented herein achieved a performance of 

approximately 95% AUC, scoring similarly to MSK experts and higher that a general 

radiologist. This pipeline has the potential to be used as a tool to assist the diagnostic 

decisions of reporting radiologists with the ultimate aim to reach optimal treatment 

decisions and avoid unnecessary surgery for patients with TOH that could be 

misdiagnosed for AVN. 
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A series of radiomics features were found important for the predictive capacity 

of the presented XGboost model. The majority of these features were wavelet 

transformations of original features. This can potentially reflect the image appearance 

of characteristics specific to each one of the diseases, including the presence of the 

“crescent sign” of AVN, the pattern of BME, serpiginous AVN changes and the low 

signal irregular lines of subchondral fractures seen in TOH [14]. These characteristics 

consist of edges and irregular lines which are significantly highlighted when an image 

undergoes wavelet transformation at distinct scales [63, 64]. Another important 

advantage of wavelet transformation is the elimination of noise profile inconsistencies 

that may arise between different MR scanners of our datasets. These inconsistencies 

have been greatly addressed by image equalization prior to radiomics analysis, 

nonetheless, wavelet transformations offer an additional filtration layer to address 

potential remaining inconsistencies. 

 The work of this chapter has strengths and limitations. Strengths of this work 

include the relatively large number of hips examined in our dataset, given the low 

prevalence of the two diseases, especially TOH. Additionally, the use of a multi-

vendor dataset increases the value and generalizability  of our results since the models 

have been exposed to data from multiple scanners. Another strength of our approach 

is the demonstration of the diagnostic capacity of the proposed model compared to a 

series of radiologists at all levels of training and expertise. Nonetheless, this work 

carries certain limitations. First of all, the retrospective nature of the study, which was 

inevitable due to the low prevalence of the studied disease states. Manual 

segmentation could also present a potential limitation of our work. However, 

variability in the segmentation of structures (femoral head/neck) surrounded by thick 
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cortical bone with clear boundaries significantly reduces the possibility of 

segmentation errors. Finally, use of only coronal STIR images for the extraction of 

radiomics data could be a limitation of our approach since in everyday clinical practice 

a series of sequences are available to the reporting radiologists. Nonetheless, fluid-

sensitive sequences (STIR, fs PD/T2-w) are sufficient in everyday diagnostic practice, 

when a radiologist faces the dilemma to distinguish between TOH and AVN, since 

such sequences are the gold standard for the depiction of BME which is a common 

characteristic of both disease entities. 
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Chapter 6 – Deep learning for the differentiation 

between avascular necrosis and transient osteoporosis 

of the hip 

 

 

 

 

 

 

 

 

 

Results presented in this chapter have been published in Klontzas et al. Diagnostics, 2022 [110].  

Copyright under CC BY license stays with the author. 
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6.1 Introduction 

As demonstrated in chapter 5, radiomics analysis allows the accurate 

differentiation between TOH and AVN. Nonetheless, the process is limited by the 

need for accurate segmentation of the region of interest, and the presence of the 

additional time consuming and computationally expensive steps of radiomics feature 

extraction, selection and dataset curation for machine learning.  

The purpose of the work presented in this chapter was to overcome potential 

bottlenecks in the pipeline of chapter 5. For this purpose, deep learning was 

employed, utilizing whole images, skipping the manual steps of radiomics analysis 

and automating the differentiation between AVN and TOH. Three well-established 

convolutional neural network (CNN) architectures were trained with a transfer 

learning methodology and finetuned with the dataset of chapter 5. Subsequently, an 

ensemble consensus decision was recorded by combining the results of all three CNNs 

and the ensemble decision was compared to the decision of an MSK radiologist and 

an MSK imaging fellow. 

 

 

6.2 Chapter-specific Methodology 

6.2.1 Data preparation and deep learning model training and testing 

Image preparation for deep learning was performed as described in chapter 4. 

In order to account for the limited sample size and group imbalance, the dataset was 

augmented to a total of 420 images (210 TOH and 210 AVN) as suggested by Candemir 

et al[82] (see chapter 4 for details on data augmentation).  

Transfer learning was performed with the use of three well-established CNN 

architectures, VGG-16, Inception V3 and Inception-ResNetV2. The initial weights of 

these networks were obtained from the ImageNet dataset with >14 million images  

and then the final trainable layers were finetuned with 70% of our data. The rest (30%) 

were used for validation of the networks. Adopting a transfer learning methodology 

is an important strategy to tackle data-limited scenarios for deep learning model 

training [82]. Networks were trained for a maximum of 50 epochs with an early 

stopping function in order to avoid overfitting. Visual assessment of 
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training/validation accuracy and training/validation loss plots was used as an extra 

measure to avoid overfitting. The decision of each individual network was 

subsequently recorded and a consensus CNN ensemble decision was reached as the 

decision reached by at least two out of three networks (Figure 13).  

 

 

 

6.2.2 Comparison of CNN ensemble to expert readers 

CNN ensemble performance on the validation set was benchmarked against the 

diagnosis of one MSK radiologist with 7 years of experience and one MSK radiology 

fellow, who have both work in our specialized center for bone marrow imaging.  

 

 

 

 

Figure 13 Flow diagram describing methodology followed for data augmentation, deep learning model 

training with transfer learning, and the development of a model ensemble for the diagnosis of TOH vs. AVN  

(created with BioRender.com and reproduced under CC BY license from [110]). 
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6.3 Results 

6.3.1 Deep learning model training and validation 

All three CNNs achieved an AUC between 96% and 97.6% as demonstrated in 

. Even though, Inception-ResNetV2 achieved the same performance compared to the 

model ensemble the ensemble achieved a 0% type I error for the detection of TOH, a 

100% precision for the detection of AVN and 100% recall for the detection of TOH. 

Interestingly, the type I error of the ensemble (AVNs diagnosed as TOH) was lower 

than all individual CNNs. Interestingly, the majority of TOH cases were correctly 

identified as TOH with no mistakes for the ensemble, VGG-16 and Inception-

ResNetV2 and only one mistake (false negative) by InceptionV3 (Figure 14 and Table 

5. Performance metrics of individual convolutional neural networks and the respective network 

ensemble.) . 

 

Figure 14 Confusion matrices for the individual and ensemble CNN decisions 

Matrices represent CNN ensemble (A), VGG-16 (B), InceptionV3 (C) and Inception-ResNetV2 

(D). TOH: transient osteoporosis of the hip; AVN: avascular necrosis of the femoral head. 
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Table 5. Performance metrics of individual convolutional 
neural networks and the respective network ensemble.   

  AUC Group Precision Recall f1-score 

Model 
ensemble 97.62% 

    
AVN 1 0.95 0.98 
TOH 0.95 1 0.98 

VGG-16 96.03% 
     

AVN 1 0.92 0.96 
TOH 0.93 1 0.96 

InceptionV3 96.82% 
     

AVN 1 0.94 0.97 
TOH 0.94 1 0.97 

Inception-
ResNet-V2 97.62% 

    
AVN 0.98 0.97 0.98 
TOH 0.97 0.98 0.98 

AUC: Area Under the Curve; AVN: Avascular Necrosis; TOH: Transient Osteoporosis of the 
Hip 
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6.3.2 Comparison between CNN ensemble and expert readers 

In order to further benchmark the CNN ensemble, its diagnostic performance 

was compared to the diagnosis of expert readers who were presented with the images 

of the validation dataset. The model ensemble achieved a higher performance than 

both experts (P<0.001) reaching an AUC of 97.6% (95%CI from 95% to 100%), 

compared to 80.2% (95%CI from 73.1 to 87.2%) and 84.9% (95%CI from 78.8% to 91%) 

for the MSK radiologist and fellow respectively (Figure 15). 

 

 

Figure 15 Receiver Operating Characteristics (ROC) curves of the model ensemble and MSK 

imaging experts 

Model ensemble curve is plotted as a pink line, the MSK radiologist curve is plotted with brown 

color and the MSK fellow curve is plotted with a turquoise color. MSK Rad: Musculoskeletal 

Radiologist; AUC: Area Under the Curve. 
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6.4 Discussion 

As discussed extensively in chapter 5, differentiation between TOH and AVN 

is of utmost importance for the selection of the appropriate treatment plan and the 

decision between conservative (TOH) and surgical treatment (AVN). In this chapter, 

I have introduced a deep learning methodology that overcomes potential 

shortcomings of radiomics analysis and provides automated differentiation between 

the two disease entities using a multivendor/multi-institutional dataset. The CNN 

ensemble presented in this chapter achieved excellent predictive capacity which was 

found significantly higher than expert MSK radiologists.  

The work presented in chapter 5 set the basis for the comprehensive analysis 

of femoral head images with radiomics that provides a highly accurate distinction 

between TOH and AVN [72]. Nonetheless the CNN ensemble reached an AUC of 98% 

which was higher than expert readers, which was not the case with the XGboost 

radiomics model which achieved a maximum AUC of approximately 94% which was 

not significantly higher than expert performance.  Interestingly enough, reader 

performance in this work was found between 80.2% and 84.9% which is poorer than 

the performance of readers in the chapter 5. This can be attributed first to the 

differences in reader experience, as well as to intrinsic dataset differences arising from 

the augmentation process.  

CNN performance (both ensemble and individual CNNs) is comparable to 

CNN performance with other medical imaging datasets. Examples include X-ray 

datasets where voting CNN ensembles were used for the detection of tuberculosis 

[111]. The authors created an ensemble of Inception and Xception models and 

employed several augmentation/preprocessing steps. A similar voting strategy has 

been used by Tsiknakis et al. [112] who have combined Xception, InceptionV3, ResNet 

and Inception-ResNet architectures to perform an image classification task that 

included twenty classes of images. Their ensemble reached an AUC of almost 100% 

demonstrating the value of voting ensembles in solving classification problems.  

Importantly, even though similar AUCs can be reached with the use of single CNNs, 

ensemble voting strategies offer robust results minimizing type I and type II errors.  
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This work has certain strengths and weaknesses. One of the most important 

strengths is the use of a multi-vendor dataset for the training and validation of CNNs. 

It has been establish that between-scanner batch effects can limit the applicability of 

models trained with data of only one scanner. Therefore, using data from multiple 

scanners has been suggested as a strategy to increase the generalizability of CNN 

predictions [113]. Another strength of our approach is the comparison to MSK experts 

that demonstrates the clinical value of our models. With regards to the limitations of 

our approach, these are similar to the limitations described in chapter 5. 
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Chapter 7 – Deep learning for the differentiation 

between subchondral insufficiency fractures of the 

knee and advanced osteoporosis 

 

 

 

 

 

 

 

 

Results presented in this chapter have been published in Klontzas et al. Injury, 2022 [114].  

Reuse of own publication data in a thesis is permitted by Elsevier. 
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7.1 Introduction 

One of the most common diagnostic dilemmas arising when reporting knee 

MRI is the differentiation between bone marrow edema (BME) (also called bone 

marrow lesions – BML) in the context of subchondral insufficiency fractures (SIF) and 

BME in the context of osteoarthritis (OA) [1, 2, 9, 11, 115, 116]. On the one hand, SIF 

was previously known as spontaneous osteonecrosis of the knee, but is currently 

widely accepted that no necrosis is involved in the pathophysiology of the disease. 

Indeed, SIF is thought to result from micro-trabecular insufficiency fractures that are 

associated with extensive BME extending from the subchondral zone of the bone deep 

inside the bone marrow [12, 117, 118]. On the other hand, OA is characterised by 

cartilage damage and BME is encountered late in the course of the disease and is 

thought to be correlated with the presence of pain and progressive disease [119, 120]. 

BME in OA appears in a limited bone marrow area characteristically at outer joint 

sites, especially where cartilage loss is noted [119, 120].  Nonetheless, differentiation 

between BME related to SIF and BME related to OA can be extremely complicated, 

especially when no low-signal fracture line is seen in SIF [117] or when SIF and OA 

coexist. Differentiation between SIF and OA is extremely important, since it defines 

the treatment plan which is conservative in cases of SIF (reduced weight-bearing) or 

surgical (total knee arthroplasty) in cases of advanced OA. 

The aim of the work presented in this chapter was to use transfer learning to 

train a convolutional neural network (CNN) ensemble with a consensus voting 

strategy as presented in chapter 6, that would differentiate SIF from OA. The 

performance of the proposed strategy was compared to the performance of MSK 

radiologists. Such a deep learning methodology would be a valuable tool to assist 

complicated diagnoses by inexperienced and experienced readers. 

 

  

 

 

7.2 Chapter-specific Methodology 

7.2.1 Patients – MRI diagnosis 



 

 
68 

Patient recruitment has been described in detail in chapter 4. A total of 212 

knees with SIF and 102 knees with advanced OA were included in the study.  

All MRI examinations were blindly evaluated by a senior MSK radiologist with 

40 years of experience, and two MSK radiologists with 5 and 7 years of experience in 

musculoskeletal imaging respectively. Ground truth was established in cases with 

agreement of all three radiologists. In cases with conflict, final ground truth diagnosis 

was considered the one with the agreement of at least two experts. 

For the purposes of ground truth establishment, all examinations included at 

least (1) PD-w fat-suppressed sequences at three planes, (2) one coronal T1-w 

sequence and (3) a sagittal gradient echo sequence. SIF ground truth diagnosis was 

established using a combination of imaging and clinical data including: (a) the 

identification of BME extending from the subchondral area to the 

epiphysis/metaphysis, (b) identification of focal thickening of the subchondral bone 

or low-signal intensity area in the immediate subarticular bone, (c) potential 

identification of low signal intensity irregular lines within areas of BME at variable 

depths deep to the articular surface (indicating subchondral fracture lines), (d) 

depiction of a fluid-filled cleft in the subchondral bone (depiction of c and d is not 

necessary for the diagnosis). Clinical indications of SIF included the acute onset of 

pain and complete symptom resolution only with reduced weightbearing [12]. 

Clinical indications for the diagnosis of OA on were based on the recommendations 

of European League Against Rheumatism (EULAR) including: (a) pain linked to 

activity, limited morning stiffness and joint functional impairment, (b) enlargement of 

the joint, (c) movement restriction and (d) crepitus. Image-based (MRI) diagnosis of 

OA included the following findings: (a) the presence of osteophytes, (b) cartilage 

damage, (c) bone marrow edema, (d) degenerative meniscal tears/subluxation [121] 

(Figure 16).  
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CNNs were trained with the use of mid-coronal PD-w fat suppressed images, 

which represent fluid sensitive images and are considered to be the gold standard for 

the depiction of BME.  

 

 

Figure 16  Imaging features of typical subchondral insufficiency fracture (A,B) and osteoarthritis (C,D) 

cases.  

Coronal (A) and sagittal (B) fat-suppressed intermediate weighted MR images of a 53-year-old male 

patient with a history of 1-month pain without any injury, demonstrate bone marrow edema (arrows) 

in keeping with the presence of subchondral insufficiency trabecular microfractures. The articular 

cartilage is intact. In comparison, coronal (C) and sagittal (D) fat-suppressed intermediate weighted 

MR images of a 62-year-old female patient with a history of 9-month medial compartment pain, show 

bone marrow edema (arrows), articular cartilage erosion in the medial femoral and tibial condyles 

(thin arrows) in keeping with the presence of degenerative osteoarthritis. There is also meniscal 

degeneration and a marginal osteophyte (open arrow). 
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7.2.2 Data preparation and CNN ensemble development 

Data preparation for deep learning was performed as described in chapter 4. In 

order to tackle the limited number of examinations, data augmentation was 

performed with horizontal flipping and clockwise/anti-clockwise rotation (10o) 

reaching a total of 500 SIF and 500 OA images for training and 87 images in each group 

for validation of the algorithm (85%/15% data split) (Figure 17).  

  

The same CNN architecture ensemble (VGG-16, InceptionV3 and Inception-

ResNetV2) as the one presented in chapter 6 was trained with transfer learning and 

finetuned with our data and predictions were derived for each of the individual 

models as well as for their consensus decision (Figure 18). Images of the validation 

Figure 17 Schematic describing the convolutional neural network architectures used in this study and 

the transfer learning process used for the development of the deep learning ensemble.  

ReLU: Rectified Linear Unit; PD-w fs: proton density weighted with fat suppression; OA: osteoarthritis; 

SIF: subchondral insufficiency fractures (created with BioRender.com) (reproduced with permission 

from Klontzas et al Injury 2022 [114]). 
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dataset were also evaluated by two MSK radiologists to compare the performance of 

the CNN ensemble to real life diagnostic scenarios. 

 

 

 

 

7.3 Results 

7.3.1 Patient characteristics 

Patients included in this study had a mean age of 62.67 ± 10.8 years for the SIF group 

and 63.87 ± 11.84 years for the OA group. A total of 60 female and 42 male patients 

with OA were included in the study compared to a total of 93 male and 119 female 

patients with SIF. 

 

Figure 18 Schematic describing the convolutional neural network architectures used in this study and the transfer 

learning process used for the development of the deep learning ensemble.  
ReLU: Rectified Linear Unit; PD-w fs: proton density weighted with fat suppression; OA: osteoarthritis; SIF: 
subchondral insufficiency fractures (created with BioRender.com) (Reproduced with permission from Klontzas et 
al. Injury 2022 [114]). 
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7.3.2 Performance of individual CNNs and the CNN ensemble and comparison to 

radiologists 

 

The highest performance among individual CNNs was reached by InceptionV3 that 

achieved a total AUC of 93.68%, compared to VGG-16 which achieved the smallest 

AUC of 82.18%. Inception-ResNetV2 demonstrated a slightly worse precision 

compared to InceptionV3, reaching however a similar AUC (92.53%). The 

performance of the CNN ensemble was the highest compared to each individual CNN 

(with an AUC of 95.97%). Detailed performance metrics can be found in Table 8 and 

Figure 19. 

 In order to benchmark the performance of the ensemble against expert 

performance, images of the validation set were blindly evaluated by two MSK 

radiologists . One of the two experts scored lower (AUC of 82.76%) than the CNN 

ensemble (P<0.001) whereas the other achieved a score (AUC 91.95%) that did not 

differ significantly compared to the consensus ensemble decision (P>0.05) (Table 7, 

Figure 21 and Figure 20). 

 
Table 6 Performance metrics of individual models and the 
neural network ensemble.   

  AUC Group Precision Recall f1-score 

Model 
ensemble 95.97% 

    

SIF 0.98 0.94 0.96 
OA 0.94 0.98 0.96 

VGG-16 82.18% 
        

SIF 0.89 0.91 0.84 
OA 0.77 0.74 0.81 

InceptionV3 93.68% 
        

SIF 0.94 0.93 0.94 
OA 0.93 0.94 0.94 

Inception-
ResNet-V2 92.53% 

    

SIF 0.90 0.95 0.93 
OA 0.95 0.90 0.92 

AUC: Area Under the Curve; SIF: Subchondral Insufficiency Fractures; OA: Osteoarthritis 
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Table 7. Performance metrics of expert readers compared to the model ensemble. 

  AUC Group Precision Recall f1-score 

Model 
ensemble 

95.97% 
(93.1% - 
98.9%)  

    

SIF 0.98 0.94 0.96 

OA 0.94 0.98 0.96 

MSKR1 91.95% 
(87.9% - 96%) 

        

SIF 0.92 0.92 0.92 
OA 0.92 0.92 0.92 

MSKR2 82.76% 
(77.5% - 88%) 

    

SIF 0.76 0.97 0.85 

OA 0.95 0.69 0.80 

AUC: Area Under the Curve; SIF: Subchondral Insufficiency Fractures; OA: Osteoarthritis  

Figure 19 Confusion matrices from the validation of the neural network ensemble (A) and each 

individual neural network (B – VGG-16, C – Inception-ResNetV2, D - InceptionV3) 

OA: osteoarthritis; SIF: subchondral insufficiency fractures (reproduced with permission from Klontzas 

et al. Injury 2022 [114]). 
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Figure 21 Performance of the CNN ensemble compared to MSK radiologists. (A) Examples of correctly classified 

(green) and misclassified (red) cases of subchondral insufficiency fractures and OA by the convolutional neural 

network (CNN) ensemble and each one of the two musculoskeletal radiologists (MSKR1 & MSKR2). 

Figure 20 Comparison between Receiver Operating Characteristics (ROC) curves of the CNN ensemble and expert 

readers 

CNN ensemble ROC curve (black line) is shown to have significantly higher performance than the one of the MSK 

radiologists (MSKR2 – green line) and equal to the other (MSKR1 – blue line). MSKR: Musculoskeletal Radiologist; 

OBS: Observer; AUC: Area Under the Curve. *: P<0.05 for the comparison to the performance of the ensemble. 
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7.4 Discussion 

In this chapter, I have developed a CNN ensemble that accurately differentiates 

between BME related to SIF compared to BME related to advanced OA. The proposed 

deep learning methodology achieved a performance that was equal to or higher than 

expert MSK radiologists. 

SIF was traditionally considered to be related to necrosis, being previously 

known as “spontaneous osteonecrosis of the knee”. Nonetheless it has been nowadays 

established that necrosis is not a feature in the pathophysiology of the disease [1, 29], 

which occurs as a result of micro-trabecular insufficiency fractures of the knee 

accompanied by abundant BME that is nicely depicted by fluid-sensitive sequences 

on MRI [117]. The importance of our method lies in the fact that it can become an 

important tool assisting the differential diagnosis between SIF and advanced OA that 

presents with BME. This can be extremely important in cases where: (1) subchondral 

fracture lines are not evident in SIF (42% of patients) [117], (2) unicompartmental 

osteoarthritis may be complicated by SIF, (3) subchondral sclerosis due to 

osteoarthritis may mimic the appearance of subchondral fractures seen in SIF [12, 117, 

118, 122]. In these cases, reaching the correct diagnosis can determine the need for 

surgical treatment (total knee arthroplasty) which is the treatment of choice for 

advanced knee OA. 

Our work has certain strengths and limitations. Strengths include the training 

of our algorithms on a multi-institutional/multivendor dataset that can increase the 

generalizability of our results and the large number of SIF patients which represents 

the largest SIF cohort presented in literature to date (to the best of our knowledge). 
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Limitations of our approach may be the lack of histological confirmation of SIF which, 

however, is neither feasible not ethically justified in clinical practice. The lack of an 

external validation dataset could be another limitation of our results which is, to a 

certain extent, alleviated by the use of a multi-institutional MRI cohort. Finally, the 

fact that cases where SIF and OA co-existed were excluded from our dataset could be 

a limitation of our study. However, in such cases where advanced OA is a prominent 

feature treatment will be surgical irrespective of the co-existence of SIF. 
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Chapter 8 – Deep learning for the staging of avascular 

necrosis of the hip 

 

 

 

 

 

 

 

 

 

 

Results presented in this chapter are currently under review in “European Radiology”. Part of the work of this 

chapter has become feasible by funding from the Young Researcher’s grant awarded to Dr Klontzas by the 

European Society of Musculoskeletal Radiology.  
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8.1 Introduction 

 

In cases where AVN is left untreated, it progresses to joint collapse and 

secondary osteoarthritis with THA being the only treatment option. However, in early 

stages of the disease prior to articular collapse, joint preservation techniques (core 

decompression, vascularized grafting, etc.) are available with the potential to avoid 

THA [34]. Therefore, differentiation between early and late AVN is of utmost 

importance for appropriate treatment selection.  

A variety of AVN staging systems exist, with the system of the Association 

Research Circulation Osseous (ARCO) [36] being the most commonly used and the 

one recommended in the latest (2019) international guidelines on the management of 

AVN [32]. The latest version of ARCO defines four main stages, with joint 

preservation techniques being available for the two first stages (ARCO < 3) whereas 

hip replacement being the recommended treatment for terminal disease (ARCO 3-4). 

Nonetheless, distinguishing between ARCO 2 (early) and ARCO 3A (late) is an 

extremely challenging task, requiring significant expertise in musculoskeletal 

radiology and a combination of imaging findings including indications of loss of 

femoral head sphericity and the presence of a subchondral fracture[32, 123, 124]. 

Artificial intelligence has been previously used for the diagnosis of AVN on 

plain radiographs [125] and MRI [126], to identify factors increasing the risk for 

collapse[127],  and to differentiate late AVN from other causes of proximal femoral 

bone marrow edema such as transient osteoporosis [72, 110]. Attempts have been also 

recently made to quantify the necrotic volume and surface area in an attempt to 

associate this with the stage of AVN [15]. However, quantification of the necrotic part 

volume is not part of any clinically relevant classification system and volume cut-offs 

have not been set to levels that will define optimal treatment.  

The aim of this chapter was to develop a deep learning methodology to 

differentiate between early (ARCO 1 & 2) and late (ARCO 3 & 4) stages of AVN. For 

this purpose, convolutional neural networks (CNNs) have been trained with a transfer 

learning methodology and finetuned with the use of a cohort of patients with AVN. 

The algorithm was internally tested and then subjected to external validation on an 
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international cohort of AVN patients and its performance was benchmarked against 

the performance of musculoskeletal radiologists. Development of such a model would 

be invaluable in assisting clinical decisions between joint preservation surgery and 

total hip arthroplasty. 

 

8.2 Chapter-specific Methodology 

8.2.1 Patient characteristics 

 

For the purposes of this chapter two cohorts of patients were used. The first cohort 

(for the rest of the chapter will be called the University Hospital of Heraklion – UHH 

cohort) consisted of all hips with AVN (104 hips – 67 patients) that were used for the 

work presented in chapters 5 and 6. A combination of transfer learning and data 

augmentation were used to address the small size of the dataset as proposed by 

Candemir et al. [82](described below).  

The second cohort was used for the external validation of the developed deep 

learning methodology. This was an independent anonymised cohort from a centre 

located in another country (Technical University of Munich – for the rest of the text 

will be called the TUM cohort, n=49 hips) which were retrospectively selected based 

on the same criteria (Figure 22). 

 

8.2.2 Ground truth ARCO staging 

Ground truth staging of AVN was established based on imaging, according to the 

ARCO classification [3]. This is currently the gold standard practice for clinical 

diagnosis and staging, since the diagnosis of AVN does not warrant biopsy. Ground 

truth staging was performed independently by two MSK radiologists (40 and 10 years 

of experience, respectively) and in cases of disagreement final stage was defined by 

consensus. To ensure accurate ground truth grading the experts had access to the 

whole MRI protocol including T1-w, STIR or PD/T2 fs and high-resolution 3D 
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gradient echo images. AVN was diagnosed by the presence of the “band-like” sign on 

T1-w images [16]. Subsequently, two groups of hips were defined based on T1-w, STIR 

and high-resolution 3D gradient echo images: (i) cases with a subchondral fracture, 

cases with loss of head sphericity and/or associated bone marrow edema and cases 

with signs of secondary osteoarthritis were classified as “late AVN” (ARCO 3-4) (ii) 

cases without the aforementioned findings were classified as “early AVN” (ARCO 1-

2) (Figure 23) [1, 17, 18].  

Figure 22 Flow diagram explaining the characteristics of the UHH and TUM cohorts for training/testing 

and external validation respectively. AVN: Avascular necrosis of the hip; CNN: Convolutional Neural 

Networks; MSK: Musculoskeletal; ARCO: Association Research Circulation Osseous (created with 

biorender.com). 
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8.2.3 Data pre-processing and augmentation 

Mid-coronal STIR images through each femoral head were used for model 

training, testing and validation. Images were resized to 150 x 150 pixels and then 

images were randomly split 70:30 in training: testing sets. Data harmonization and 

bias correction was performed by matching image histograms to account for intra-

scanner variability and achieve grey level normalization.  In order to eliminate group 

imbalance bias and to expose the model to additional training/testing data, images 

were augmented using rotation of 10o (clockwise and anti-clockwise) as well as 

horizontal image flipping. The final training and testing datasets consisted of a total 

Figure 23 Coronal STIR (A) and T1-w (B) MR images, showing bilateral idiopathic avascular necrosis, 

in a 43-year-old male presenting with a left painful hip. 

The lesion on the right hip (arrows), is asymptomatic and is occult on plain radiographs (not shown). 

The lesion on the left, is associated with bone marrow edema (open arrow) secondary to mild articular 

surface flattening (short arrows). According to ARCO classification, the right lesion is stage I and the 

left stage III. 
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of 350 training and 150 testing images for each of the two groups (early vs late AVN) 

(Figure 22). 

 

8.2.4 Convolutional Neural Network Ensemble Training and External Validation 

A CNN ensemble was used as described in Chapter 4. Briefly, transfer learning 

was applied by obtaining the initial weights of three individual CNN architectures, 

VGG-16, InceptionV3 and Inception-ResNetV2, training first with the ImageNet 

dataset followed by weight freezing and final trainable layer finetuning with the use 

of our training dataset [128]. Network performance was subsequently evaluated with 

the use of the UHH testing dataset. A consensus ensemble decision of the three CNNs 

was recorded as the agreement of at least two out of three CNNs. To further 

benchmark the performance of the CNN ensemble, the resulting model was externally 

validated on a set of 49 hips from a radiology department of another country (TUM 

dataset). Images were resized and used without any further pre-processing. Ground 

truth for the TUM dataset was established with the same method as for the UHH 

dataset External validation images were also assessed by two experienced MSK 

radiologists (10 and 7 years of MSK experience) blinded to the results of the ensemble 

and their performance was compared to the performance of the ensemble.  

 

8.3 Results 

8.3.1 Individual and ensemble CNN performance 

Each CNN architecture was initially subjected to internal testing with the UHH 

cohort where Inception-ResnetV2 achieved the highest individual performance with 

an AUC of 99.7% (95%CI 99-100%), followed by InceptionV3 and VGG-16 with AUCs 

of 99.3% (95%CI 98.4-100%) and 97.3% (95%CI 95.5-99.2%) respectively. VGG-16 had 

the highest number of misclassified cases with three early cases misclassified as late 

and five late cases misclassified as early.  
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The model ensemble achieved an AUC similar to Inception ResnetV2 with only one 

early case misclassified as late (Figure 24 and Table 8).  

Figure 24 Performance of individual CNNs and their ensemble on the UHH cohort.  

Model performance is demonstrated on Receiver Operating Characteristics (ROC) curves of the 

ensemble and the CNNs (A) and confusion matrices for the CNN ensemble (B) and individual CNNs 

(C-E). Insert on (A) magnifies the upper left corner of the ROC graph. AUC: Area under the curve 
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Performance of CNNs dropped when benchmarked with the TUM external 

validation cohort. VGG-16 achieved the highest individual AUC of 78.9% (95%CI 51.6 

– 79.6%) followed by InceptionV3 and Inception ResnetV2 with AUCs of 74.8% 

(95%CI 58.1-84.7%) and 76.59% (95%CI 58.1-84.7%) respectively. Despite the 

performance drop, VGG-16 exhibited excellent precision for the diagnosis of late AVN 

and recall for the diagnosis of early AVN without any early cases misclassified as late. 

The best performance was achieved by the model ensemble which achieved an 

excellent AUC of 85.5% (95%CI 72.2-93.9%) with only 3 late cases misclassified as early 

and 4 early cases misclassified as late. Performance of the CNN ensemble was 

significantly higher than all individual CNNs (P-value 0.014, 0.01 and 0.028 for the 

comparison of the ensemble to VGG-16, Inception ResnetV2 and InceptionV3 

respectively) (Figure 25 and Table 8). 

 

 Table 8 Performance metrics of individual 
models and the neural network ensemble    

    

   Internal Testing (UHH cohort) External Validation (TUM cohort) 

   Group AUC Precision Reca
ll 

f1-
score AUC Precision Recall f1-

score 

Model 
ensemble 

 

     
85.5%  
(72.2-

93.9%) 

   
Early 
AVN 

99.7%  
(99-100%) 1 0.99 1 0.86 0.82 0.84 

Late AVN  0.99 1 1 0.85 0.88 0.87 

VGG-16  

         
78.9%  
(51.6-

79.6%) 

   

Early 
AVN 

97.3%  
(95.5-

99.2%) 
0.97 0.98 0.97 

0.58 1 0.73 

Late AVN  0.98 0.97 0.97 1 0.38 0.56 

InceptionV
3 

 

         
74.8%  
(58.1-

84.7%) 

   

Early 
AVN 

99.3%  
(98.4-
100%) 

0.99 0.99 0.99 
0.8 0.55 0.65 

Late AVN  0.99 0.99 0.99 0.7 0.88 0.78 

Inception 
ResNetV2 

 

     
76.59%  
(58.1-

84.7%) 

   
Early 
AVN 

99.7%  
(99-100%) 1 0.99 1 0.85 0.5 0.63 

Late AVN  0.99 1 1 0.69 0.92 0.79 
 AUC: Area Under the Curve; AVN: Avascular Necrosis of the hip; AUC is presented as percentage with 

range of 95% confidence interval 
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8.3.2 Comparison between the CNN ensemble and human readers 

 

Performance of the CNN ensemble was compared to the performance of expert 

readers on the TUM external validation cohort. The first MSK radiologist achieved an 

AUC of 75.7% (95%CI 62.7-87.9%), whereas the second achieved an AUC of 73.08% 

(95%CI 60.4 -86.4%). No significant difference was found between the performance of 

each MSK radiologist and the CNN ensemble (P-value 0.22 and 0.092 for the 

comparison of the CNN ensemble to the first and second MSK radiologist 

respectively). Both MSK radiologists achieved excellent recall values for the detection 

of late AVN (96.1% and 92.3% respectively) with only 1 and 2 late cases misclassified 

as early for the first and second MSK radiologist respectively (Figure 26). 

 

 

Figure 25 Performance of individual CNNs and their ensemble on the external validation TUM cohort.  

Model performance is demonstrated on Receiver Operating Characteristics (ROC) curves of the ensemble and the 

CNNs (A) and confusion matrices for the CNN ensemble (B) and individual CNNs (C-E). AUC: Area under the curve 
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8.4 Discussion 

Herein, a CNN ensemble was presented that achieved excellent performance 

in differentiating between early (ARCO 1-2) and late (ARCO 3-4) AVN of the hip. 

Three individual CNN architectures were trained and a consensus ensemble decision 

was derived. The excellent performance of the CNN ensemble was confirmed by 

external validation and was found equal to the performance of experienced MSK 

radiologists.  

Development of a deep learning methodology to differentiate early from late 

AVN can be of great value in everyday clinical practice. The difficulty of 

Figure 26 Receiver Operating Characteristics (ROC) curve comparing the performance of the CNN 

ensemble and the two expert MSK radiologists on the external validation cohort.  

AUC: Area under the curve; MSK Rad: musculoskeletal radiologist 
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distinguishing between ARCO 2 and 3A has been highlighted in several publications 

[39, 123, 124] and several indirect findings have been proposed as indicators of late 

AVN including the presence of bone marrow edema [39], joint effusion, cystic 

changes, bone resorption [123], and a combination of T2 signal heterogeneity, articular 

surface irregularity and a necrotic-viable interface with a width >3 mm [124]. 

Nonetheless, this remains a challenging task especially for non-experienced 

radiologists or in cases where high resolution sequences are not available that have 

been shown to be suitable for the accurate evaluation of all associated findings of AVN 

[129]. Given the fact that AVN can be asymptomatic in early stages [8] it can be 

randomly identified in pelvic MRI examinations that are not tailored to the evaluation 

of the proximal femur. Our CNN ensemble achieved excellent performance in 

distinguishing between early and late AVN only with the use of coronal STIR images. 

This presents a great advantage in the hands of inexperienced readers and in cases 

where high resolution images through the femoral head are not available to allow 

comprehensive ARCO staging.  

Interestingly enough, all individual CNNs presented an important drop in 

performance when validated on the external TUM cohort. Such a performance drop 

has been found in the majority of externally validated deep learning studies [130, 131] 

. External validation is of utmost importance in establishing the “real-world” 

performance of deep learning algorithms but, alas, it can be found in only 6% of AI 

manuscripts [132]. Despite the fact that the exact reasons responsible for performance 

drop during external validation are still largely unknown [130], the size of the training 

dataset or the number of participating institutions in the training dataset have been 

shown to have no effect on external performance [130]. Nonetheless, being able to 

achieve an ensemble AUC >85% in a dataset acquired in another country provides 

strong evidence about the generalizability of our method. 

 MSK radiologists achieved AUCs in the range 70-75% which reflects the 

difficulty in staging the disease, especially in the absence of high-resolution images 

focused on the femoral head which would allow visualization of subchondral 

fractures equally or better than CT [13]. MSK radiologists were presented with the 

same coronal STIR images as the ones used for the external validation of our deep 

learning method. Both MSK experts achieved a high recall (sensitivity) in detecting 
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late AVN whereas the CNN ensemble achieved high precision and recall for both late 

and early disease. Achieving a similar performance to MSK experts highlights the 

clinical value of the proposed algorithm especially in the setting of general radiology 

practices where highly experienced MSK radiologists are not available and protocols 

are not focused on the evaluation of the hip.  

Our work has certain strengths and limitations. The use of a multi-institutional 

training dataset, the validation on an external dataset and the comparable 

performance to expert readers are important advantages of the proposed deep 

learning methodology. Limitations of the proposed work include the retrospective 

nature of the study and the limited training dataset. However, we have used transfer 

learning and data augmentation, which represent strategies suitable for deep learning 

with small datasets [82], alleviating this limitation as shown by the excellent 

performance in the internal and external cohorts. Training of the algorithms solely on 

coronal STIR images could be also considered as a limitation of our study. However, 

coronal fluid-sensitive sequences are part of most pelvic MRI protocols even when 

they are not focused on the hips. Such sequences can depict all the features required 

for ARCO staging including subchondral fractures, bone marrow edema, joint 

effusion, synovitis, and loss of head sphericity [14]. Therefore, being able to stage the 

disease based on a sequence present in most settings (even when AVN is an incidental 

finding), increases the clinical value of our method.  

In conclusion, a CNN ensemble has been trained and validated that accurately 

distinguishes between early and late stages of AVN. The ensemble performs well in 

external data from another country and has comparable performance to expert MSK 

radiologists. This deep learning methodology has the potential to assist the accurate 

staging of AVN without the need for expertise in MSK radiology ultimately leading 

to the correct treatment strategy. 
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Chapter 9 - Conclusions & Future Perspectives 
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In conclusion, this PhD presented the use of radiomics and deep learning 

methodologies to reach important diagnostic decisions where the presence of BME 

could complicate the diagnosis. The algorithms presented herein performed equally 

or outperformed experts in all the assigned tasks, setting the basis for the introduction 

of such algorithms to the clinical practice. Importantly, multi-vendor datasets were 

used to expose the algorithms to diverse data increasing the generalizability of the 

methods and the AVN staging algorithm was validated on a dataset from another 

country demonstrating its applicability to diverse data. 

The research presented in this thesis creates opportunites for further research. 

First of all, algorithms need to be validated on larger and more diverse datasets to 

ensure their generalizability. In addition, all the algorithms developed can be 

formulated in python packages or independent executable files with a user interface 

to allow immediate use in clinical practice. This will require significant computer 

science expertise but will potentially allow the distribution of the algorithms to 

collaborators and readers of our work all around the world.  

Significant questions are also raised based on our results. First of all, conversion 

of algorithms to receive 3D inputs could significantly benefit cases with AVN in cases 

where the necrotic lesion is better visualized in more than one slice. However, transfer 

learning with 3D models is still challenging since the ImageNet dataset contains 2D 

images. However, the use of transfer learning with RadImageNet [83] data (once the 

dataset will become fully available) could significantly increase the performance and 

generalizability of our algorithms.  

With regards to the radiomics data extracted from TOH and AVN images, these 

can be used in data integration projects. In such projects they can be combined with 

other types of omics data to derive conclusions about the underlying 

pathophysiological mechanisms of each of the two conditions.  

Finally, the proposed algorithms could be incorporated in a federated learning 

framework to allow the testing from other clinical sites and the further optimization 

of the algorithms. Ultimately, incorporating the algorithms into PACS systems will 

allow its seamless use in everyday radiological reporting.  
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