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Abstract

The Semantic Web (SW) is an evolving extension of the World Wide Web, in which

content can be expressed not only in natural language, but also in languages (e.g. RDF/S)

that can be interpreted formally enabling the provision of more advanced searching, shar-

ing and integration services. However since knowledge is not static, but evolves over time,

there is a need for techniques for managing this evolution. One of them is that of archiv-

ing past versions. Archiving is useful for various reasons (interoperability, traceability,

provenance). For instance, in e-science failure to keep the previous states of data (over

which other experiments were based) jeopardizes scientific evidence and our ability to

verify findings.

In this work we use the term RDF KB (for short KB) to refer to any set or RDF/S

triples. POI (Partial Order Index) is a structure which has been proposed recently for

storing multiple (either versioned or not) KBs. POI exploits the fact that RDF is based

on a graph data model, and hence an RDF KB does not have a unique serialization (as

it happens with texts). This characteristic justifies exploring directions that have not

been elaborated by the classical versioning systems for texts (e.g. versioning systems

for software). In brief, POI offers notable space saving in comparison to the differential

storage of KBs (storing deltas), as well as efficiency in various cross version operations,

especially in cases where the contents of the KBs are subset-related.

This thesis focuses on methods for further reducing the space requirements of POI.

Specifically we introduce a variation of POI that we call CPOI (Compact POI), which

relies on gapped triple identifiers with variable length encoding schemes for natural num-

bers. For this structure we identified conditions under which CPOI guarantees space gains

(over POI and other storage options). Since these are sufficient (not necessary) conditions,

we conducted an extensive experimental evaluation, also for measuring the compression

ratio achieved, and for comparatively evaluating various identifier assignment policies.
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The results showed significant storage savings, specifically, the total space required in

large and realistic synthetic datasets is in average around 25 times less than the size of

the original dataset and 3 times less than the size of a differential (delta-based) storage.

The total size of CPOI is about 60%-80% of the size of plain POI, while the size of the

compressed sets is 8% of the size of the uncompressed sets.

Supervisor: Yannis Tzitzikas

Assistant Professor
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Sumpag c Arqeiojèthsh Pollapl¸n Ekdìsewn apì SÔnola Triplet¸n

RDF/S

MarÐa-GewrgÐa Yar�kh

Metaptuqiak  ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

O Shmasiologikìc Istìc (SI) eÐnai mÐa exelissìmenh epèktash tou Pagkìsmiou Is-

toÔ, sthn opoÐa to perieqìmeno mporeÐ na ekfrasteÐ ìqi mìno se fusik  gl¸ssa all� kai

se gl¸ssec (p.q. RDF/S) pou epidèqontai tupik c ermhneÐac kai kajistoÔn efikt  thn

paroq  prohgmènwn uphresi¸n anaz thshc, diamoirasmoÔ kai olokl rwshc plhroforÐac.

Kaj¸c ìmwc h gn¸sh den eÐnai statik , all� suneq¸c exelÐssetai, apaitoÔntai di�forec

teqnikèc gia th diaqeÐrish thc exèlix c thc. MÐa tètoia an�gkh eÐnai aut  thc arqeio-

jèthshc prohgoÔmenwn ekdìsewn. H arqeiojèthsh ekdìsewn eÐnai qr simh gia di�forouc

lìgouc (dialeitourgikìthta, iqnhlasimìthta, proèleush). Gia par�deigma sthn H-Epist mh

(E-Science) h apotuqÐa diat rhshc twn prohgoÔmenwn katast�sewn twn dedomènwn (epÐ

twn opoÐwn ektelèsthkan metagenèstera peir�mata) jètei se kÐnduno th dunatìthta epal -

jeushc twn ereunhtik¸n apotelesm�twn.

Sthn ergasÐa aut  me ton ìro B�sh RDF (BR) ja anaferìmaste se opoiod pote sÔnolo

triplet¸n RDF/S. To POI (Partial Order Index) eÐnai mÐa dom  pou prot�jhke prìsfata

gia thn apoj keush poll¸n (ekdìsewn) BRs, h opoÐa axiopoieÐ to ìti h RDF basÐzetai se

èna montèlo dedomènwn gr�fou, kai �ra mÐa BR den èqei mÐa monadik  seiriopoÐhsh (ìpwc

èqoun ta keÐmena). Aut  h idiaiterìthta dikaiologeÐ th diereÔnhsh kateujÔnsewn pou den

èqoun melethjeÐ sta plaÐsia twn klassik¸n susthm�twn ekdìsewn gia keÐmena (p.q. sta

sust mata diaqeÐrishc ekdìsewn logismikoÔ). En suntomÐa to POI prosfèrei shmantik 

exoikonìmhsh apojhkeutikoÔ q¸rou se sqèsh me th diaforik  apoj keush (delta-based

storage), idiaÐtera an up�rqoun BRs oi opoÐec sqetÐzontai me sqèsh uposunìlou.

H ergasÐa aut  epikentr¸jhke se mejìdouc gia peraitèrw meÐwsh twn apojhkeutik¸n a-

pait sewn tou POI. Sugkekrimèna, proteÐnoume mia èkdosh tou POI pou onom�zoume CPOI

(Compact POI) h opoÐa qrhsimopoieÐ diaforik� (gapped) anagnwristik� triplet¸n kai
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metablhtoÔ megèjouc kwdikopoi seic fusik¸n arijm¸n. Gia th dom  aut  melet same ana-

lutik� tic sunj kec upì tic opoÐec eggu�tai exoikonìmhsh q¸rou se sqèsh me to aplì POI

kai �llec epilogèc apoj keushc. Epeid  oi sunj kec eÐnai ikanèc (all� ìqi kai anagkaÐec),

kai prokeimènou na metr soume to lìgo sumpÐeshc (compression ratio) pou epitugq�netai,

all� kai na axiolog soume sugkritik� di�forec politikèc an�jeshc anagnwristik¸n, pro-

qwr same kai se mia ekten  peiramatik  axiolìghsh. Ta apotelèsmata katèdeixan shman-

tik� ofèlh q¸rou,  toi o apaitoÔmenoc q¸roc (se meg�la sÔnola sunjetik� paragmènwn

dedomènwn) eÐnai kat� mèso ìro perÐpou 25 forèc mikrìteroc apì to q¸ro twn arqik¸n

dedomènwn kai 3 forèc mikrìteroc apì th diaforik  apoj keus  touc. Tèloc, o q¸roc pou

katalamb�nei to CPOI eÐnai perÐpou to 60%-80% tou q¸rou pou apaiteÐ to aplì POI, en¸

h sumpiesmènh anapar�stash twn sunìlwn tou antistoiqeÐ sto 8% tou q¸rou pou apaitoÔn

ta mh sumpiesmèna sÔnola.

Epìpthc Kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc Kajhght c
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Stouc dÔo mou EutÔqhdec
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EuqaristÐec

Arqik� ja  jela na euqarist sw jerm� ton epìpth kajhght  mou k. Gi�nnh TzÐtzika gia

thn polÔ kal  sunergasÐa mac kai thn polÔtimh kajod ghs  tou gia thn olokl rwsh aut c

thc ergasÐac. EpÐshc, ja  jela na euqarist sw touc kajhghtèc k. Dhm trh Plexous�kh

kai ka. Eir nh Fountoul�kh pou me projumÐa dèqthkan na summet�sqoun sthn exetastik 

epitrop  thc metaptuqiak c mou ergasÐac, kaj¸c kai gia tic eÔstoqec parathr seic kai

sumboulèc touc.

'Ena meg�lo euqarist¸ ofeÐlw stouc fÐlouc mou, idiaÐtera sth MaÐrh Kampour�kh gia

th st rix  thc kai ìsa z same mazÐ ta teleutaÐa dÔo qrìnia, kaj¸c kai sto NÐko Man¸lh

kai ton Panagi¸th Papad�ko gia tic suzht seic mac. EpÐshc ja  jela na euqarist sw kai

ta upìloipa paidi� twn leuk¸n gia ìsa z same kai moirast kame mazÐ.

Tèloc, ja  jela na euqarist sw thn oikogènei� mou, ton mpamp� mou EutÔqh kai ton

aderfì mou EutÔqh gia th suneq  st rixh kai sumpar�stash pou mou èqoun prosfèrei kai

gia ìla ìsa èqoun k�nei gia mèna ìla aut� ta qrìnia. EpÐshc, ja  jela na euqarist sw

ton jeÐo mou Andrèa gia th st rixh kai thn ag�ph tou.
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Chapter 1

Introduction

1.1 Introduction to the Semantic Web

The semantic web [4] is an evolving extension of the World Wide Web, in which web

content can be expressed not only in natural language, but also in a format that can be

read and used by software agents, thus permitting them to process it more intelligently. It

derives from W3C director Sir Tim Berners-Lee’s vision of the Web as a universal medium

for data, information, and knowledge exchange. Instead of just creating standard terms

for concepts as is done in XML, the Semantic Web also allows users to provide formal defi-

nitions for the standard terms they create. Machines can then use inference algorithms to

reason about the terms and to perform translations between different sets of terms. It is

envisioned that the Semantic Web will enable more intelligent search, electronic personal

assistants, more efficient e-commerce, and coordination of heterogeneous embedded sys-

tems. The proposed, by World Wide Web Consortium (W3C)1, overview of the Semantic

Web can be seen in Figure 1.1.

Ontologies as Conceptual Models on the Web

Ontologies are often seen as basic building blocks for the Semantic Web, as they provide

a reusable piece of knowledge about a specific domain. A commonly used definition of

the term (based on the original use of the term in philosophy) is that an ontology is a

specification of a shared conceptualization of a domain [16]. Ontologies are often developed

1http://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/Overview.html#(19)

1



Figure 1.1: The Semantic Web architecture

by several persons and continue to evolve over time. Domain changes, adaptations to

different tasks, or changes in the conceptualization require modifications of the ontology.

This will likely cause incompatibilities in the applications and ontologies that refer to

them, and will give wrong interpretations to data or make data inaccessible [26].

In order to form a real Semantic Web, it is necessary that the knowledge that is

represented in the different versions of ontologies is interoperable. It is therefore important

to create links between ontology versions that specify how the knowledge in the different

versions of the ontologies is related. These links can be used to re-interpret data and

knowledge under different versions of ontologies. Therefore, a versioning methodology is

needed to handle revisions of ontologies and the impact on existing sources.

RDF Data Model and RDFS

Usually an ontology defines a hierarchy of classes of objects in the described domain

and binary relations, called properties. The Resource Description Framework (RDF)2 is

a framework for representing such information in the Web. RDF has a simple data model

that is easy for applications to process and manipulate. It is based upon the idea of

2http://www.w3.org/TR/PR-rdf-syntax/
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making statements about resources in the form of subject-predicate-object expressions.

These expressions are known as triples in RDF terminology. The subject denotes the

resource (an RDF URI reference or a blank node3), and the predicate (an RDF URI

reference) denotes traits or aspects of the resource and expresses a relationship between

the subject and the object (an RDF URI reference, a literal or a blank node). A collection

of such triples represents an RDF graph, that is independent of any specific serialization

syntax.

Figure 1.2: RDF and RDFS layers. Blocks are properties, ellipses above the dashed line are
classes, ellipses below the dashed line are instances.

RDF Schema (RDFS)4 is an extension to RDF. It is used to define application-specific

classes and properties (a function that is not supported in RDF). Statements of RDFS

make it possible to define hierarchies of classes, hierarchies of properties and to describe

3A non-universally identified object, whose URI could not be shared across different RDF descriptions
4http://www.w3.org/TR/rdf-schema/
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domains and ranges of the properties. It also allows resources to be defined as instances

of classes, and subclasses of classes. Figure 1.2 illustrates an example of RDF and RDFS

layers (found in [2]).

1.2 Versioning Services

1.2.1 Versioning Services in the Software Development Area

Versioning is an extremely popular practice in the software development area. The

term refers to the creation and subsequent management of products that may be released

a multiple number of times. The main function of versioning is to track changes of a

document or a product over time. The versioning system can keep information about

who made a specific change and why, and allows removal of undesirable changes. Also,

it helps users to know what the documents contents where at a specific point in time.

Moreover, it can be used to achieve different versions of an important document.

Versioning is proved to be very helpful in software projects. It is extremely necessary

for any collaborative and distributed development, because of its ability for tracking every

change (allowing users to compare the current version of software with a previous one)

and also for reversing the changes (as per the requirement). Another very important

benefit of versioning is that, it helps in co-ordinating the efforts of contributing teams,

which might be located far away from each other.

A number of alternative versioning systems have been developed, such as Concurrent

Versions System (CVS) [3], in order to suite the needs of project teams. The technique

of versioning has gradually become one of the most important tracking techniques in the

field of software applications for all the above benefits that it offers.

1.2.2 Ontology Versioning

As ontology development becomes a more ubiquitous and collaborative process, de-

velopers face challenges in managing (and maintaining) multiple versions (of ontologies)

akin to software development in large projects.

Ontology Versioning is defined as the ability to handle changes in ontologies by creating
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and managing different variants of it. To achieve this ability, a methodology should pro-

vide methods to distinguish and recognize versions, procedures for updates and changes

in ontologies, and an interpretation mechanism for effects of change. Focused on ontolo-

gies, we can say that a versioning methodology provides mechanism to disambiguate the

interpretation of concepts for users of the ontology variants, and that it makes the effects

of changes on different tasks explicit.

Traditional versioning systems in software development domain, like CVS [3], enable

users to create and store versions, compare them, examine changes, and accept or reject

changes, but they treat software code and text documents as text files. A versioning

system for ontologies must compare the structure and semantics of the ontologies and

not their textual serialization. Two ontologies can be exactly the same conceptually,

but have very different text representations. For example, their storage syntax may be

different (e.g. RDF/XML, N-Triples, Trix). Even in the same format, the order in which

definitions appear in the text file may be different. We could canonicalize the ontology at

the syntactic level (in order to use efficiently a traditional text-based versioning system).

Moreover, a representation language may have several mechanisms for expressing the same

semantic structure. Thus, text-file comparison is largely useless for ontologies.

1.2.2.1 Versioning for RDF Models

Several modern applications, e.g. in life sciences [20, 14], require the provision of

versioning services over RDF datasets (either schema-free or schema-based) for various

purposes:

• Archiving: Keeping records of the different states (versions) of an ontology (during

ontology evolution process).

• Preservation: Both the long-term maintenance of the different versions and con-

tinued accessibility of their content (i.e. reconstruction capability of an arbitrary

version at a later time).

• Provenance: The documentation of the creation and the derivation history of an

ontology version.
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For instance, failure to keep the previous states of scientific data (over which other

experiments were based) jeopardizes scientific evidence and our ability to verify findings

[8]. Furthermore, collaborative applications, e.g. in e-learning [40], require supporting

several RDF datasets with parallel evolution tracks.

1.3 Contribution of this Thesis

As already mentioned in 1.2 one of the main functions of a version control system is

the ability to store versions. At the simplest level, it could simply retain multiple copies

of the different versions of the program, and label them appropriately. Another approach

that a revision control system may follow is to keep tracks and account for ownership of

changes to documents and code. The later seems to be very useful as it requires much

less storage space and it also allows easily track of changes between versions.

However, both of the above approaches (even the later) can have high space require-

ments in order to store a vast amount of versions. We need an efficient method that

guarantees significant space saving for storing large amount of data.

In this thesis our focus concentrates on providing efficient storage (and retrieval) ser-

vices for Semantic Web Knowledge Bases (KBs). The contribution of this thesis lies

in:

• Exploiting an indexing scheme for storing several versions (of RDF KBs).

• Proposing a compact representation for this indexing scheme based on gapped repre-

sentation of triple identifiers and variable-length encodings. We consider each triple

as a whole (i.e. we do not treat each triple’s element separately).

• Evaluating analytically and experimentally the storage space requirements for this

representation and comparing it with the storage space requirements of the main

approaches that are followed in RDF domain.

1.3.1 Organization of this thesis

The rest of this thesis is organized as follows:
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Chapter 2 describes the background and related work that have been done in ontology

versioning and storage (focus on RDF models), as well as compression techniques that

are popular in other domains and are adopted by our approach.

Chapter 3 describes an indexing scheme (called POI) for efficient storage and retrieval

of several versions of ontologies.

Chapter 4 elaborates on the problem of further reducing the storage space of POI.

The proposed techniques and the required storage space are evaluated analytically and

experimentally.

Chapter 6 concludes and report possible ideas that are worth for further research.
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Chapter 2

Background and Related Work

2.1 RDF/S Knowledge Bases

In general, a knowledge base1 (for short KB) is a special kind of database for knowledge

management, providing the means for the computerized collection, organization, and

retrieval of knowledge.

We concentrate on RDF KBs, where the knowledge is represented in RDF. An RDF

KB can be seen as a graph, whose nodes are entities (e.g., persons, companies, movies,

locations) and whose edges are relationships (e.g., bornOnDate, livesIn , actedIn). In

this graph are stored both RDF descriptions (instances) and RDF Schemata (class and

property hierarchies), as they described in Section 1.1. In any case, a KB can be considered

as a finite set of triples, that are either schema triples or instance triples.

2.2 Requirements and Key Aspects

A versioning system should allow its users to freely perform changes, create new ver-

sions and experiment with them, incorporate changes of others, recombine changes, with-

out fearing of introducing irreversible problems.

In general, the functional requirements for a versioning environment include:

• Create a new version by extending an existing one

1http://en.wikipedia.org/wiki/Knowledge base
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• Annotate a version with arbitrary metadata (such as author, intension, issues, com-

ments etc.)

• Evaluate queries over versions and such metadata

• Select and combine changes, apply them in an existing version to produce another,

and detect and resolve possible conflicts

• Versions comparison, analysis of changes and description of their consequences (such

as the exact compatibility problems that are introduced)

As far as the performance requirements, a version management system should provide

high performance:

• in the time needed to create (resp. retrieve) a new (resp. existing) version

• in the storage space required for each version

Several non text-based tools that have been developed for ontology versioning focus

on high level functions and they mainly overlook the performance requirements. In this

work, we concentrate on the latter.

The related work presented in the following Sections pertains to four different domains

of interest:

(i) RDF Triple Storage: Describes some popular RDF/S triple stores.

(ii) Compact RDF Triple Representations: Discusses systems and methods that aim

at compressing the RDF triples of an RDF/S KB. These works are complementary

to our work, as our approach aims to compress the total space needed for storing

several versions but does not compress the set of distinct triple strings. So, one

could adopt such techniques in order to compress the set of distinct triple strings,

since they are managed independently of the versions’ content and further reduce

the total storage space.

(iii) Versioning Approaches for Semantic Web: Discusses systems that support ver-

sioning services for ontologies. Most of them store ontology versions using existing

storage tools or RDF/S repositories and they mainly focus on high level functions.
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(iv) Compression Techniques in Information Retrieval: Discusses compression tech-

niques that are popular in the information retrieval area and they have shown to be

very efficient. We examine the adoption of such techniques in our index.

2.3 RDF Triple Storage

This Section discusses some popular RDF/S triple stores.

2.3.1 Sesame

Sesame [7] is an open source2 java framework for storing, querying and reasoning with

RDF/S. It can be used as a database for RDF/S or as a java library for applications than

need to work with RDF internally. It allows persistent storage of RDF data and schema

information, and provides access methods to that information through export and query

modules.

Sesame does not support versioning services. However, it can be used from other

versioning tools at the bottom layer of their architecture as a storage container for RDF

(e.g. we have seen that OMM follows such as approach).

Storage Space Perspective

An overview of Sesame’s overall architecture is depicted in Figure 2.1.

Sesame’s design and implementation are independent from any specific storage de-

vice. Thus, it can be deployed on top of a variety of storage devices, such as relational

databases, triple stores or object-oriented databases, without having to change other

functional modules.

In order to achieve this, The Storage And Inference Layer (SAIL API) is used, which

is an internal API designed for storage and retrieval of RDF-based information. Its main

design principles are that it should:

- define a basic interface for storing RDF/S and retrieving and deleting from (persis-

tent) repositories

2http://sourceforge.net/projects/sesame/
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- abstract from the storage format used (i.e. if the data are stored in a database, in

memory or in files)

- be extendable to other RDF-based languages like DAML+OIL [21].

Figure 2.1: The Sesame Architecture

Each Sesame repository has its own SAIL object to represent it. The most important

of these implementations of the SAIL API is the SQL92SAIL, which is a generic imple-

mentation for SQL923. Recall that OMM implementation is based on this schema. It has

been tested in use with several DBMSs, including PostgreSQL4 and MySQL5. Figures 2.2,

2.3 depict the above database schemata respectively.

2.3.2 Jena2

Jena2 [44] is an open source6 Semantic Web framework for Java. It provides an

API to extract data from and write to RDF graphs. The graphs are represented as an

3http://www.andrew.cmu.edu/user/shadow/sql/sql1992.txt
4http://www.postgresql.org/
5http://www.mysql.com
6http://sourceforge.net/projects/jena/files/Jena/

12



Figure 2.2: The object-relational schema used with PostgreSQL

abstract “model”. A model can be sourced with data from files, databases, URLs or

a combination of these. A Model can also be queried through SPARQL query engine.

Jena also includes a rule-based inference engine. Moreover, it provides support for OWL

through an OWL API. Jena supports serialisation of RDF graphs to RDF/XML, N3,

N-Triples and relational database.

Storage Space Perspective

For persistent storage of RDF graphs a database engine is used (e.g. Postgresql,

MySQL, Oraqle). The database schema of Jena2 implementation consists of a statement

table, a literals table and a resources table as it is shown in Figure 2.4.

2.3.3 3store

3store[18] is an open source7 RDF triple store developed within the Advanced Knowl-

edge Technologies (AKT) project8 of the University of Southampton. It offers efficient

handling of large RDF knowledge bases (it has the ability to handle at least 20 million

7http://sourceforge.net/projects/threestore/
8http://www.aktors.org/technologies/3store/

13



Figure 2.3: The relational schema used with MySQL

triples and 5000 classes and properties) as well as processing of queries and generation of

RDF entailments. 3store is written in C and uses MySQL to store its raw RDF data and

caches. It provides access to the RDF data via RDQL or SPARQL over HTTP, on the

command line or via a C API.

Concisely, 3store main utilities include:

import: Takes RDF files, parses them and inserts the triples into the database.

rebuild taxonomy: Infers triples based on the schemas loaded via import.

info: Supplies summary information about the database, including numbers of files

and triples present.

RDQL: Query engine.

Storage Space Perspective

3store uses MySQL database to store RDF data and information. The arrangement of

tables in database schema is shown in Figure 2.5
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Figure 2.4: Jena2 Database Schema

2.3.4 YARS (Yet Another RDF Store)

YARS [19] is a system for persistent storage and retrieval of RDF data. It is a

lightweight open-source Java implementation and provides an efficient RDF indexing

structure. It defines and realizes a complete index structure including full-text indices for

RDF triples with context in order to support fast storage and retrieval of large amount

of RDF data (in the order of billions of triples). Persistency is supported through the use

of B+ trees. Internally, each RDF triple is extended with context (i.e., the source of the

RDF triple) and stored as quadruples (Subject, Predicate, Object, Context) encoded in

N39 format.

Storage Space Perspective

YARS in order to implement the index organization uses JDBM10, a lightweight open-

source library that includes implementation of B+ trees for persistent storage of data on

disc.

2.3.5 Discussion on Database Representations

Most of the above tools use a database approach in order to store their RDF/S data

and information. There are several ways to represent these information in a database

9http://www.w3.org/DesignIssues/Notation3.html
10http://jdbm.sourceforge.net/
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Figure 2.5: Database schema and ER diagram showing table relationships

schema. In [38] database represantations of RDF/S schemata and data are classified into

three popular groups:

a. a schema-aware: one table per RDF/S schema property or class is used, with explicit

or implicit storage of subsumption relationships (Figure 2.6).

b. a schema-oblivious : a single table with triples of the form ⟨subject-predicate-object⟩

is used, using integer identifiers (IDs) or not (using URIs themselves) to represent

resources (Figure 2.7).

c. a schema-hybrid : one table per RDF/S meta-class is created, namely, for class and

property instances with different range values (i.e., resource, string, integer, etc.).

Figure 2.8 depicts Hybrid representation.

Table 2.3.5 summarizes the storage schemes implemented by existing RDF/S stores.

Comparing these database representations with our approach, we could correlate our

approach with schema-oblivious representation, since we treat each triple as a whole.

It is very important to note, at this point, that all the above tools adopt a database

implementation to store their data because they focus on executing queries fast and
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Schema-aware Schema-oblivious
Sesame Sesame

Jena2
3store

Table 2.1: RDF/S storage schemes

efficiently over those data. They mainly overlook the storage space needed to store them,

as they presume that there is plenty of secondary memory space.

Figure 2.6: Schema-aware representation

Figure 2.7: Schema-oblivious representation

2.4 Compact RDF Triple Representations

This Section discusses systems and methods that aim at compressing the RDF triples

of an RDF/S Knowledge Base. They propose solutions for storing RDF triples for indexing

and querying or publishing and exchange.

2.4.1 RDF-3X

RDF-3X [29] engine is an architecture for executing SPARQL queries over large repos-

itories of RDF triples. This work aims at providing not only a powerful and fast query
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Figure 2.8: Schema-hybrid representation

processor, but also an efficient RDF triple storage.

In that architecture all triples are stored (sorted lexicographically) in a clustered B+-

tree, but instead of storing the values of each triple (S, P, O), all literals are replaced by ids

using a mapping dictionary. Several indexes are built in order to cover all 6 permutations

of the three dimensions of a triple and also all permutations of six binary and three

unary projections. For the projection indexes, the missing component(s) (S, P, or O)

are replaced by count aggregates, for fast statistical lookups. This exhaustive-indexing

approach is illustrated in the left part of Figure 2.911. Moreover, based on the observation

that neighboring triples are very similar (as the triples are sorted lexicographically), a

compression scheme for triple ids is adopted, storing only the changes between them

(inspired by methods used in IR). Byte-wise compression is used as it seems to perform

better than bit-wise compression for their dataset. Figure 2.10 depicts the structure of a

compressed triple. The delta for each value is computed, and then the minimum number

of bytes is used to encode just the delta. A header byte denotes the number of bytes

used by the following values. Each value consumes between 0 bytes (unchanged) and 4

bytes (delta needs the full 4 bytes), which means that there are 5 possible sizes per value.

For three values these are 5 * 5 * 5 = 125 different size combinations, which fits into the

payload of the header byte. The remaining gap bit is used to indicate a small gap: When

only value3 changes, and the delta is less than 128, it can be directly included in the

payload of the header byte. This kind of small delta is very common, and can be encoded

by a single byte. The details of the compression are shown in the right part of Figure

2.9. The algorithm computes the delta to the previous tuple. If it is small it is directly

encoded in the header byte, otherwise it computes the δi values for each of the tree values

11All Figures quoted in this Section are taken from the respective paper of each work.
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and calls encode. encode writes the header byte with the size information and then writes

the non-zero tail of the δi (i.e., it writes δi byte-wise but skips leading zero bytes). This

results in compressed tuples with varying sizes, but during decompression the sizes can be

reconstructed easily from the header byte. As all operations are byte-wise, decompression

involves only a few cheap operations and is very fast.

Figure 2.9: Differential indexes in RDF-3x (left) and Triple compression algorithm (right)

Figure 2.10: Structure of a compressed triple

triple1 (205, 413, 828)
triple2 (205, 413, 830)
triple3 (205, 414, 823)

Original Triples
triple1 (205, 413, 828)

bits:    8,     9,    10 
triple2 (0, 0, 2)

bits: 0, 0, 2
triple3 (0, 1, 823)

bits: 0,  1,  10

Deltas Representation

Triple Header Value1 Value2 Value3
triple1 (0,18) (205, 413, 828)
triple2 (1,2)
triple3 (0,6) (0, 1, 823)

Compressed Triples

Figure 2.11: Triples compression through an example

Figure 2.11 illustrates an example of compressing three triples. All literals are replaced

with their triple ids. The first triple remains the same, consuming 6 bytes (as many bytes
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as needed to represent its values). The second triple requires only 1 byte, as only the

third value changes and the delta can be included in the header byte. Lastly, the third

triple requires 4 bytes for its representation.

On all experiments that were performed, the total storage space for all indexes together

was less than the size of the original data (1.5 times less than the size of storing data in

RDF (XML) format and 3 times less than the size of storing data in triple form).

2.4.2 HTD representation

In this work a compact representation format for RDF data is presented [13], aiming

at compressing RDF data and providing indexed access to the RDF graph. This repre-

sentation decomposes an RDF data source into three main parts: Header, Dictionary and

Triples. It offers space savings and allows on-demand indexed access to the graph.

It is based on three main components:

• A header, including logical and physical metadata describing the RDF data set. This

serves as an entrance point to the information on the data set. It is kept in plain

form as it should always be available to any receiving agent for processing.

• A dictionary, organizing all the identifiers in the RDF graph. This provides a cat-

alog of the information entities in the RDF graph with high levels of compression.

PPM [10] is used to encode the dictionary.

• A set of triples, which comprises the pure structure of the underlying RDF graph

while avoiding the noise produced by long labels and repetitions.

In order to obtain an HDT representation of an RDF graph, firstly the basic RDF

features necessary to build the dictionary and the underlying graph are extracted, and then

some practical decisions are covered in order to have the HDT concrete implementation

for publication and exchange of RDF. This process is depicted in Figure 2.12.

The sets of subjects, predicates and objects in RDF are not disjoint. In order to

assign shorter IDs, four sets are distinguished: S-O (common subject-objects), S (the non

common subjects), O (the non common objects), P (the predicates). Figure 2.13 depicts

an example of these four sets within a dictionary building process.
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Figure 2.12: Construction of the HDT format from a set of triples

Figure 2.13: Incremental representation of an RDF data set with HDT

The Dictionary component assigns a unique ID to each element in the data set. An

original RDF triple can now be expressed by three IDs, replacing each element in triples

with the reference in the dictionary (ID-based replacement).

The Triples component performs a subject ordered grouping, that is, triples are re-

organized in adjacency lists,12 in sequential order of subject IDs. Due to this order, an

immediate saving can be achieved by omitting the subject representation, as it is known

the first list corresponds to the first subject, the second list to the following, and so on. In

12Adjacency List is a compact data structure that facilitates managing and searching. For example, the set of
triples: (s, p1, o11), ..., (s, p1, o1n1), (s, p2, o21), ..., (s, p2, o2n2), ..., (s, pk, oknk ) can be written as the adjacency list:
s → [(p1, (o11, ..., o1n1), (p2, (o21, ..., o2n2)), ..., (pk, (oknk ))].
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the notation above, all the data is represented by one stream, in which the list of objects

associated with a subject (s) and a predicate (p) is represented just after the p. Instead,

this representation is splited into two coordinated streams of Predicates and Objects. The

first stream of Predicates corresponds to the lists of predicates associated with subjects,

maintaining the implicit grouping order. The end of a list of predicates implies a change

of subject, and must be marked with a separator, e.g. the non-assigned zero ID. The

second stream (Objects) groups the lists of objects for each pair (s, p). These pairs are

formed by the subjects (implicit and sequential), and coordinated predicates following

the order of the first stream. In this case, the end of a list of objects (also marked in the

stream) implies a change of (s, p) pair, moving forward in the first stream processing.

2.4.3 Discussion

Both of the above approaches ([29, 13]) aim at compressing the RDF triples by using

ids for each (subject-predicate-object) element of the triples, and providing indexes that

can be exploited for query processing. These works are complementary to our work,

since we treat each triple as a whole, and we do not compress the set of distinct triple

strings. Specifically, one could adopt such techniques in a versioning framework in order

to compress the set of distinct triple strings, if they are managed independently of the

versions’ content, and to further reduce the overall occupied space.

2.5 Versioning Approaches for Semantic Web

This Section discusses other systems and tools that support versioning services for

ontologies. Most of them store ontology versions using existing storage tools or RDF/S

repositories. Some of the latter are described in the next Section as well.

2.5.1 x-RDF-3X

The work presented in [30] presents an extension of the RDF-3x system [29] that

supports versioning and some other services as time-travel access and transactions on RDF

databases. Versioning is achieved by maintaining versions of individual triples (updates

are considered as pairs of insertions and deletions, so two timestamps fields are used, the
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created and deleted to denote the life of each triple version). The [created, deleted ] interval

is the lifespan of the triple version, where deleted has a null value for versions that are

presently alive. The database state of a given point in time t can be reconstructed by

returning all triples for which t falls into the corresponding lifespan interval.

Ideally, timestamps reflect the commit order of transactions, but unfortunately the

commit order is not known when inserting new data. In order to cope with this problem

each transaction is assigned a write timestamp once it starts updating the differential

index, and this timestamp is then used for all subsequent operations. Ideally the migration

is performed at transaction commit only, which means that the timestamps perfectly

reflect the commit order and need no further updates. Moreover, a transaction inventory

is used, that tracks transaction ids, their begin and commit times (BOT and EOT), the

version number used for each transaction, and the largest version number of all committed

transactions (highCV #) at the commit time of a transaction (Figure 2.14). This inventory

serves to efficiently decide if a transaction committed before another one. Also, it relates

the relative time of transaction ordering and version numbering to wall clock times. This

is needed for supporting time-travel queries and snapshot isolation.

Figure 2.14: The transaction inventory that keeps all transactions info

Regarding the experimental evaluation synthetic workloads were constructed based on

real data (from the LibraryThing book-tagging web site) and the x-RDF-3x system was

compared with two other systems: PostgreSQL and Jena. The results show that the first

system was 3 times more space efficient than the others systems.

2.5.2 Versioning Model for Biomedical Ontology Versions

In [23] a database approach is proposed for managing versions of biomedical ontologies.

It aims at providing management of many versions of large biomedical ontologies and

efficient storage of them. That approach maintains a life time (with two additional fields

23



as the x-RDF-3x system) for all ontology concepts, relationships and attribute values.

The version model has been realized within a generic database repository to store the

versions of different ontologies and to support uniform version access. Figure 2.15 depicts

the relational repository schema for the versioning model. It consists of different entities to

consistently represent ontologies, ontology versions, concepts and the ontology structure

(Ontology Relationships). The latter entity represents the set of relationships; each of

them is associated with a relationship type (e.g. is-a, part-of). To flexibly store attribute

values for each ontology concept the entity-attribute-value concept has been applied. In

this way, the entity Attributes holds the set of attributes describing the semantics of

the associated attribute values (entity Element Attribute Values) of an ontology concept.

Each ontology concept, relationship, and attribute value is associated with a life time

represented by the fields date-from and date-to. Using these time periods, any ontology

version can be completely reconstructed by taking the version date attribute (entity On-

tology Versions) into account, such that it holds date− from ≤ version date ≤ date− to.

Actually, one can determine the snapshot of an ontology for any point in time after the

creation date.

Figure 2.15: The relational repository schema for the versioning model
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Regarding the experimental evaluation 62 versions of the Gene Ontology has been

tested and compared the storage requirements with the IC method. However no measured

comparative results are reported (only estimations regarding the compression achieved).

2.5.3 OntoView

OntoView [27] is a web-based system that helps users to manage changes in RDF-

based ontologies. It provides a transparent interface to different versions of ontologies, by

maintaining not only the transformations between them, but also the conceptual relations

between concepts in different versions. It allows user to specify the conceptual implication

of each difference between subsequent versions and to export the differences as adaptations

or transformations.

One of the main features of OntoView is the ability to compare ontologies. Two terms

are used to distinguish changes:

Conceptual change: a change in the definition of a concept or property that affects its

formal semantics.

Explication change: a change in the definition of a concept, without changing the con-

cept itself. For example, attaching a slot “fuel-type” to a Class “Car”, is a change that

describes the Class more extensively, does not affect the conceptualization. OntoView

compares versions of ontologies at a structural level, showing which definitions of onto-

logical concepts or properties are changed. An example of such a graphical comparison of

two versions of a DAML+OIL ontology is depicted in Figure 2.16. In this web view, the

user can characterize each difference, as described previously. The comparison function

of OntoView uses the actual diff tool of CVS. This is a line-based tool, that highlight the

lines that textually differ in two versions. So, in order to achieve structural comparison,

the ontology is canonicalized at the syntactic level before being given to the diff tool.

OntoView provides some basic support for the analysis of the effects of changes. First,

on request it can also highlight the places in the ontology where conceptually changed

concepts or properties are used. For example, if a property “hasChild” is changed, it will

highlight the definition of the class “Mother”, which uses the property “hasChild”.

Moreover, OntoView reads in changes and ontologies via several methods. Specifically,

ontologies can be read in as a whole, either by providing a URL or by uploading them
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Figure 2.16: Comparing two ontologies in Ontoview

to the system. The user has to specify if the provided ontology is new or that it should

be considered as an update to an already known ontology. In the first case, the user also

has to provide a “location” for the ontology in the hierarchical structure of the OntoView

system. Then, the user is guided through a short process in which he is asked to supply

the meta-data of the version (as far as this can not be derived automatically, such as the

date and user), to characterize the types of the changes, and to decide about the identifier

of the ontology.

Identification of versions of ontologies is a very important issue. OntoView supports

persistent and unique identification of web-based ontologies. It uses the namespace mech-

anism with URIs for ontology identification, separated from the location of the ontology

file. Depending on the compatibility effects of the type of change, it assigns a new iden-

tifier or it keeps the previous one (if the new version has non-conceptual changes).

The main advantage of storing the conceptual relations between versions of concepts
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and properties is the ability to use these relations for the re-interpretation of data and

other ontologies that use the changed ontology. To facilitate this, OntoView can ex-

port differences between ontologies as separate mapping ontologies, which can be used as

adapters for data sources or other ontologies.

Storage Space Perspective

OntoView supports ontologies’ storage and provides a transparent interface to arbitrary

versions of ontologies. It stores the contents of the versions and also keeps track of the

meta-data (i.e. author, date and intention of the update), the conceptual relations be-

tween constructs in the ontologies (e.g. specified by equivalence relations or subsumption

relations) and the transformations between them (e.g. change of a restriction on a prop-

erty, addition of a class, removal of a property). It is based on CVS, and its underlying,

syntactic-level, diff tool. CVS is widely used in software development to allow collab-

orative development of source code. It uses delta compression13 for efficient storage of

different versions of the same file.

2.5.4 SemVersion

SemVersion [43] is a Java library for providing versioning facilities for RDF models

and RDF-based ontology languages. It is inspired by CVS.

SemVersion provides an easy to use API. The user can commit a new version either by

providing the complete contents of the version or a diff, that is, the change that is to be

applied on a preexisting version to create the new one. Every version is decorated with

metadata (like parents, has a branch, a label and a provenance URI).

One of its main functions is the computation of diffs. It provides both structural (set-

theoretic difference of two RDF triple sets) and semantic diff (including into the triple

sets all inferred triples).

Identification of versions is also provided, by generating globally unique URIs for every

version.

SemVersion also handles the problems created in computing the structural diff caused

by blank nodes. Blank nodes cannot be globally identified, as they lack a URI, so there is

13Delta compression is a way of storing (or transmitting) data in the form of differences between sequential
data rather than complete files. The differences are recorded in discrete files called “deltas” or “diffs”.
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no knowledge about the relation between two blank nodes from different models. The RDF

semantics dictates to treat them as different. As a result, the diff between a model and

itself is not empty, if it contains blank nodes. To overcome this, SemVersion introduces

the concept of blank node enrichment. This technique adds a property to the blank

nodes leading to a URI, which is globally unique. This URI makes blank nodes globally

addressable, while they remain formally blank nodes in the RDF model. So, the content

of every version is blank node enriched before it is stored in the RDF storage layer.

Moreover SemVersion supports branch and merge operations. Also, there is some

primitive support for reporting conflicts, but not resolving them programmatically.

Storage Space Perspective

The high-level architecture of the implementation consists of several layers (Figure

2.17). Each layer depends on the layer below. To users only the SemVersion API and the

RDF2GO API are exposed. The layers are:

• SemVersion API - the versioning API to be used by users;

• RDFREACTOR - a framework for domain specific object-oriented RDF access in Java;

• RDF2GO - an abstraction over triple (and quad) stores, such as Jena[44], Sesame[7],

YARS[19], etc.

• YARS - a scalable quad store.

SemVersion stores each version of an RDF model as unique independent graph than

contain the whole model. Even if the user provides a diff in order to create a new

version, then these changes are applied to the model (all the identified triples are added

or removed) and the new version is stored independently. The architecture of SemVersion

is based on RDF2GO and RDFREACTOR, as we have already mentioned. Both choices

helped in keeping the programming flexible and fast, so the triple store can be easily

switched from one to another. All these storage alternative choices of Jena, Sesame and

YARS are described in the next Section.
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Figure 2.17: The Layered Architecture of SemVersion

2.5.5 Ontology Middleware Module

Ontology Middleware Module (OMM) [24] is an open source14, knowledge management

system. It allows knowledge representation and management in RDF/S and languages

structurally compatible with it, such as, DAML+OIL and OWL. OMM is an extension

of Sesame [7] repository enriching it with support of versioning, meta-information, access

control (security) and Description Logic (DL) reasoning.

As far as versioning services, OMM provides tracking of the changes in the knowledge

(on structural level). The history of changes in the repository could be defined as sequence

of states, as well as a sequence of updates, because there is always an update that turned

repository from one state to the next one. Some of these states could be pointed out as

versions (that is a user’s or application’s decision). So, versions are labelled states of the

repository.

OMM supports meta-information for resources, statements and versions. Also, in order

to resolve problems that caused by the inference of triples - for example, an addition of a

statement could lead to the appearance of more statements, but what should be done if

later we delete the first statement? Deletion of the inferred statements too is not always

desirable because of dependencies that may have been created in the meantime with others

new statements - OMM uses an approach called Truth Maintenance System (TMS). In

essence, for each statement (or at least for the inferred ones) information is being kept

14http://www.ontotext.com/omm/downloads.html
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about the statements or expressions that “support” it, i.e. such that lead to its inference.

Storage Space Perspective

The implementation of OMM is based on Sesame’s database schema (shown in Figure

2.18), extending it appropriately to support the tracking of the changes and it is depicted

in Figure 2.19. In table TRIPLES HIST , the columns BornAt and DiedAt indicate

the states of the repository (versions). Specifically, these columns contain a UID, that

is an update identifier whose value determines the “lifetime” of the statement. In table

UPDATES all the relevant information to each update is kept (i.e. the time when it

happened and the user who performed the update).

Figure 2.18: The database schema used from the SQL92SAIL of Sesame

Figure 2.19: The database schema implemented of Ontology Middleware as extensions of Sesame
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For example, suppose that we add a triple t1 in version v1 (UID=1), and then we delete

it in version v2 (UID=2), and then we readd it in version v3 (UID=3) and last we delete

it in version v4 (UID=4). The TRIPLES HIST table will be as follows (for brevity’s

sake we have used TripleId column instead of Subject, Predicate, Object columns):

TripleId BornAt DiedAt

t1 1 2

t1 3 4

The main idea of this implementation is that the original tables (of the database

schema of Sesame) remain unchanged and additional tables are used to preserve the

tracking information. When a user needs to be able to work with a previous version,

the appropriate state is branched into a separate auxiliary repository which is read-only

and has no support for tracking changes. This schema has the following advantages and

disadvantages:

+ working with the current version is as fast as without tracking, the implementation

is much simpler

+ working with old version is as fast as working with the current one - the same

optimizations work

- some information is duplicated

- to start work with old version a dummy branch is created, which takes both consid-

erable time and space

2.5.6 Comparison

Discussion on Storage Space Requirement

Most of the tools propose high level services for manipulating versions but none of these

have so far focused on the performance aspect of these services (they mainly overlook the

storage space perspective). In general, we could identify the following approaches:

- Independent Copies (IC): Every new version is stored independently. This ap-

proach is followed by SemVersion and OntoView. It is also adopted in [31]. It
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guarantees that the retrieval of an arbitrary version is prompt, but the obvious

drawback of this approach is the excessive storage space requirements.

- Change Based (CB): Only deltas between two subsequent versions are stored. This

approach adopted in [3, 39]. To construct the contents of a particular version one has

to execute a (potentially long) sequence of deltas (which could be computationally

expensive). Related work for the Semantic Web includes [46, 41]. [30, 23, 24] falls

into this category as it keeps tracks of the changes. The only difference with this

implementation is that it is faster to retrieve the contents of a particular version

(one query need to be executed).

2.6 Compression Techniques in IR

This section discusses compression techniques that are popular in the information

retrieval (IR) area. In IR, the adoption of gapped document identifiers and identifier

encoding schemes saves space in an inverted index because there are words that occur

in many documents (in general because the distribution of words in documents tends to

follow an inverse power-law [47]). Specifically, if the documents that share a lot of common

words get close identifiers, and we adopt a gapped representation for their identifiers using

an encoding scheme that represents small integers with a small number of bits, then the

postings lists of these common words will have small bit representation. To ensure that

documents with a lot of common words get close identifiers, the documents of the corpus

are clustered, so that documents that share a lot of common words are placed in the same

cluster. Subsequently documents are given identifiers on a cluster basis.

Experiments in the IR domain (specifically in the TREC web data [33]) have shown

that the compression ratio of the compressed index is around 30%-45%. In more

detail, there are two main issues concerning this problem: (a) the assignment technique

for documents ids and (b) the encoding that will be used. Regarding the former, many

approaches have been proposed for the reassignment of documents ids [35, 36, 34, 6,

5], aiming at improving the performance of compression by achieving as small gaps as

possible.

Most of these works propose algorithms for the reassignment problem, based on the
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fact that an efficient ordering can be derived from clustering. So, these algorithms first

cluster the collection of documents and then assign the new ids considering the way that

documents are grouped within the clusters.

2.6.1 Document identifier assignment according to the lexicographical order-

ing of the URLs

In [35] a very simple and effective ordering is proposed: assigning identifiers to doc-

uments according to the lexicographical ordering of the URLs. This is based on the

hypothesis that “documents containing correlated terms are very likely to be hosted by

the same site thus will also share a large prefix of their URLs”.

The algorithm just consists of sorting the list of URLs, yet very efficient, since it does

not require any set intersection operations. The results have shown that this technique is

very efficient and fast. It achieves better compression ratios than the clustering techniques

and the time needed to compute the assignment is two orders of magnitude smaller than

the time needed by clustering. Furthermore, the URL-ordering method is more scalable

to collections of even billion of URLs.

2.6.2 Document reordering using B&B algorithm

In [6] approach a weighted similarity graph is constructed, in which a vertex represents

a document and an edge between two vertices represents their similarity. After that, a

reordering of the documents ids is performed according to the B&B algorithm recursively

splits the graph into smaller subgraphs, representing smaller subsets of the collection,

until all subgraphs become a singleton. Thereafter, the docIds are reassigned according

to a depth-first traversal of the resulting tree.

2.6.3 Document identifier reassignment using TSP algorithm

In [34] a weighted similarity graph is constructed as before. Thereafter, the Traveling

Salesman Problem (TSP) heuristic algorithm is used to find a cycle in the similarity graph

having maximal weight and traversing each vertex exactly once. The suboptimal cycle

found is finally broken at some point and the docIds are reassigned to the documents

according to the ordering established. The rationale is that since the cycle preferably
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traverses edges connecting documents sharing a lot of terms, if we assign close ids to

these documents, we should expect a reduction in the average value of d-gaps and thus in

the size of the compressed inverted file index. Unfortunately, the above approaches are too

expensive in both time and space, and that makes them unfeasible for large collections.

2.6.4 Assigning identifiers to documents on the fly

The work presented in [36] proposes four assignment techniques, based on clustering,

which assign ids to document on the fly, i.e. during the inversion of the document col-

lection. To compute efficiently an effective assignment, they propose the Transactional

Model, which is based on the popular bag-of-words model and allows the assignment algo-

rithm to be placed into the typical spidering-indexing life cycle of a WSE. The proposed

algorithms can be used to assign docIds while the spidered collection is being processed

by the Indexer. They follow two opposite strategies: in the first approach the algorithms

recursively split the collection in a way that minimizes the distance of lexicographically

closed documents (top-down), while in the second approach (bottom-up), the algorithms

compute an effective reordering using variants of the popular k-means clustering algo-

rithm. When the index will be actually committed on the disk, the new docId assignment

will be already computed. Instead, the other methods proposed so far require that the

inverted file has already been computed in advance.

2.6.5 Document identifier reassignment using dimensionality reduction with

SVD

Finally, [5] proposes a reassignment technique that arranges the input data into a lower

dimensionality space, which reflects the main association relationships between terms and

documents. The Singular Value Decomposition (SVD) technique is used and then the

Greedy-NN TSP algorithm is applied. However SVD transformation is not very scalable,

and the block partitioning approach proposed for scalability reduces the effectiveness of

the method.
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Chapter 3

The Partial Order Index (POI)

3.1 Introduction

In this Chapter an indexing scheme is described, called POI [42], which is based on

partial orders and focus on performance aspects such as the storage space and the time

needed to create/retrieve a version, as they described in Chapter 1. This Section provides

an overview of POI, while the subsequent Sections describe it in detail.

POI aims at exploiting the fact that it is expected to have several versions (not nec-

essarily consecutive) whose contents overlap, as well as the fact that RDF graphs have

not a unique serialization, as it happens with text. The latter allows the exploration of

directions that have not been elaborated by the classical versioning systems for texts (e.g.

[39, 3]), in order to reduce the storage space and to provide efficient version insertion and

retrieval.

Specifically, POI approach views an RDF KB as a set of triples. It is important to

note that the structure (and occupied space) of POI is independent of the version his-

tory. Knowledge of version history can be exploited just for speeding up some operations

(specifically the insertion of versions that are defined by combining existing versions). It

follows that the benefits from adopting POI are not limited to versioning. It could also

be exploited for building repositories appropriate for collaborative applications, e.g. for

applications that require keeping personal and shared spaces (KBs) as it is the case of

modern e-learning applications (e.g. see trialogical e-learning [40]). In such cases, a set

of KBs are needed to be stored that are not historically connected and are expected to
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overlap.

In comparison to the change-based approaches (proposed in the context of the SW [46]

or not [9, 11]) we could say that POI stores explicitly only the versions with the minimal

(with respect to set containment) contents. All the rest versions are stored in a positively

incremental way, specifically positive deltas are organizing as a partially ordered set (that

is history-independent) aiming at minimizing the total storage space. It follows that

POI occupies less space than the change-based approach in cases where there are several

versions (or KBs in general) not necessarily consecutive (they could be even in parallel

evolution tracks) whose contents are related by set inclusion (⊆).

Regarding version retrieval time, the cost of retrieving the contents of a version in

the change-based approach is analogous to the distance from the closest stored snapshot

(either first or last version, according to the delta policy adopted [11]). Having a POI the

cost is independent of any kind of history, but it depends on the contents of the particular

version, specifically on the depth of the corresponding node in the POI graph.

In general, POI is an advantageous approach for archiving set-based data, especially

good for inclusion-related and “oscillating”1 data.

3.2 Framework and Notations

First of all, some notations are introduced as they are described in [42].

Def. 1 If T is the set of all possible RDF triples (or quadruples if we consider graph

spaces [17]), then :

• a knowledge base (for short KB) is a (finite) subset S of T ,

• a named knowledge base (for short NKB) is a pair (S, i) where i is an identifier and

S is a KB,

• a multi knowledge base (for short MKB) is a set of NKBs each having a distinct

identifier, and

• a versioned knowledge base (for short VKB) is a MKB plus an acyclic subsequent

relation over the identifiers of the NKBs that participate to MKB.
1Suppose, for instance, a movie database describing movies, theaters that showtimes. Unlike movie descrip-

tions, which rarely change, theaters and showtimes change daily.
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Service Pre-condition Post-Condition

1 insert(S, i) i ̸∈ id(V ) V ′ = V ∪ {(S, i)}
2 merge(i, j, h,⊙) {i, j} ⊆ id(V ), h ̸∈ id(V ) V ′ = V ∪ (D(i) ⊙ D(j), h),

next′(i) = next(i) ∪ {h},
next′(j) = next(j) ∪ {h}

Table 3.1: Version creation services

Let Id be the set of all possible identifiers (e.g. the set of natural numbers). If

v = (S, i) is a NKB (i.e. S ⊆ T , i ∈ Id) then we will say that i is the identifier of v, and

S is the content of v (we shall write id(v) = i and D(i) = S respectively).

Let V = {v1, . . . , vk} be a MKB. We shall use id(V ) to denote the identifiers of vi, i.e.

id(V ) = { id(v) | v ∈ V }

and D(V ) to denote their KBs, i.e.

D(V ) = { D(i) | i ∈ id(V )}

We shall use TV denote the set of all distinct triples of V , i.e.

TV = ∪i∈id(V )D(i)

So D(V ) is a family of subsets of TV .

A subsequent (version) relation over a MKB V is any function of the form next :

id(V ) → P(id(V )), where P(·) denotes powerset. For instance, suppose that next(i) =

{j, k}. In this case we will say that i is a direct previous version of j and k, and that j

and k are direct next versions of i. If next(i) = ∅, then we will call version i leaf version

of V . We call a version id i the root version of V , if there does not exist any version id j,

such that i ∈ next(j). A pair (V, next) is a VKB if the graph (id(V ), next) is acyclic.

Table 3.1 presents some version management services and their semantics in the form

of conditions that should hold before their call and after their run. In particular, insert

adds a new version with id i and version content S. Additionally, merge differs from

insert service in that the content of the new version (with identifier h) is the result of the

application of a set operator, denoted by ⊙ (i.e. ∪,∩, \), on the contents of two (or more)

existing versions (having identifiers i and j). In this way we could model operators like

those proposed in [22].
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Partial Order IndexIndividual Copies Hasse Diagram
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Figure 3.1: Storage Example when the partial order index is used (right) or not (left)

3.3 The Partial Order Index (POI) in Detail

In this Section POI is described through a small intuitive example. Consider a ver-

sioned knowledge base (V, next). Specifically consider a V comprising four versions with:

D(1) = {a, b}, D(2) = {a, b, c}, D(3) = {a, c} and D(4) = {a, b, c}, where a, b, c denote

triples. This means that V = {({a, b}, 1), ({a, b, c}, 2),

({a, c}, 3), ({a, b, c}, 4)}. Below methods for storing V are presented. To aid understand-

ing, Figure 3.1 sketches the storage policies that we will investigate in the sequel. One

trivial approach, which is adopted by current SW versioning tools [43, 31, 25], is to store

each individual NKB independently and entirely. Another approach [46, 9, 11] is to store

the initial NKB and the deltas of every other version with respect to its previous version.

Since versions usually contain overlapping triples, we propose the use of an index in order

to reduce the number of triple copies. For instance, in the example of Figure 3.1 four

copies of triple a are stored in the trivial case (see the left part of Figure 3.1). However,

with the use of the POI, only two a copies are stored (see the right part of Figure 3.1).

To describe this index, firstly some preliminary background material and definitions are

introduced.

Given two subsets S, S ′ of T , we shall say that S is narrower than S ′, denoted by

S ≤ S ′, if S ⊇ S ′. So, ∅ is the top element of ≤, and the infinite set T is the bottom

element. Clearly, (P(T ),≤) is a partially ordered set (poset).

We can define the partial order of a versioned KB by restricting ≤, on the elements

of D(V ). For brevity, we shall use the symbol ⊑ to denote ≤|D(V ).

In our running example, we have D(V ) = {{a, b}, {a, b, c}, {a, c}, {a, b, c}} and the

third diagram of Figure 3.1 shows the Hasse diagram of the partially ordered set (D(V ),⊑

). This diagram actually illustrates the structure of the so-called storage graph that is

introduced below.
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Notation Definition Equiv. Notation

R a binary relation over the set of nodes N →
Rt the transitive closure of the relation R →t

Rr the reflexive and transitive reduction of the relation R →r

Up(n) = {n′ | (n, n′) ∈ R} = {n′ | n → n′}
Down(n) = {n′ | (n′, n) ∈ R} = {n′ | n′ → n}
Upt(n) = {n′ | (n, n′) ∈ Rt} = {n′ | n →t n′}
Downt(n) = {n′ | (n′, n) ∈ Rt} = {n′ | n′ →t n}
content(n) = ∪{ stored(n′) | n′ ∈ Upt(n)}

Table 3.2: Notations for Storage Graphs

A storage graph Υ is any pair ⟨Γ, stored⟩ where Γ = (N, R) is a directed acyclic graph

and stored is a function from the set of nodes N to P(T ). If (a, b) ∈ R, i.e. it is an edge,

we will also write a → b.

For a node n ∈ N , stored(n) is actually a set of triples, so it is the storage space

associated with node n. Table 3.2 shows all notations (relating to storage graphs) that

will be used.

For each node n of a storage graph we can define its content, denoted by content(n),

by exploiting the structure of the graph and the function stored. Specifically we define:

content(n) = ∪{ stored(n′) | n →t n′} (3.1)

so it is the union of the sets of triples that are stored in all nodes from n to the top

elements of Γ. We should stress that content(n) is not stored, instead it is computed

whenever it is necessary.

The Partial-Order Index, for short POI, is a storage graph whose structure is that of

(D(V ),⊑r). Note that ⊑r denotes the reflexive and transitive reduction of ⊑. Consider

a NKB (D(i), i). Each version id i is associated with a node ni whose storage space is

defined as:

stored(ni) = D(i) \ { D(j) | D(j) ⊑ D(i) }

= D(i) \ { stored(nj) | ni →t nj }

= D(i) \ { stored(nj) | nj ∈ Upt(ni) }

It follows easily that if ni →t nj then it holds stored(ni) ∩ stored(nj) = ∅. The fourth

diagram of Figure 3.1 illustrates the storage graph of this policy for our running example.

For each node ni the elements of stored(ni) are shown at the internal part of that node.
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Figure 3.2: Best (upper) and worst (bottom) case for POI

Although we have 4 versions, Γ contains only 3 nodes. As an example, D(4) = {a, b} ∪

{a, c} = {a, b, c}.

3.4 Analyzing Storage Space Requirements

In this Section, IC , CB and POI approaches are compared with respect to storage space.

To show the best and worst cases for POI we consider two examples. In the first example,

we consider 10 knowledge bases (KBs) ai, where i ∈ [0, 9] each being a set of triples where

each triple is assigned a unique identifier. Specifically assume that the contents of the

KBs are:

a0 = a5 = {1, 2, 3, 4, 5, 6},

a1 = a6 = {2, 3, 4, 5, 6},

a2 = a7 = {3, 4, 5, 6},

a3 = a8 = {4, 5, 6}, and

a4 = a9 = {5, 6},

where 1...6 are triple identifiers. We assume that they form a single evolution track, i.e.

ai+1 is the next version of ai for all i ∈ [0, 9]. The upper part of Figure 3.2 illustrates

what is stored in IC, POI and CB approach. The stored triples are drawn in a colored

background. Especially for CB we draw with different background the triples that should

be added with those that should be deleted (both are stored).

In the second example, we consider 6 knowledge bases (KBs) ai, where i ∈ [0, 5], again

forming a single evolution track. Specifically assume that the contents of the KBs are:
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a0 = {1, 2, 3, 4},

a1 = {2, 3, 4, 5},

a2 = {3, 4, 5, 6},

a3 = {4, 5, 6, 7},

a4 = {5, 6, 7, 8}, and

a5 = {6, 7, 8, 9},

where 1...9 are triple identifiers. The bottom part of Figure 3.2 illustrates what is stored

in IC, POI and CB approach.

Let us now describe formally the best and worst case of each policy. If Z denotes a

policy, we shall use spacet(Z) to denote the number of triples that are stored according

to policy Z. It is not hard to see that

|TV | ≤ spacet(POI) ≤ spacet(IC) =
∑

i∈id(V )

|D(i)|

|TV | ≤ spacet(CB) ≤ 2
∑

i∈id(V )

|D(i)|

Regarding the first formula, strict inequality holds, i.e. spacet(POI) < spacet(IC) if there

is a version whose content is a subset of the content of another version. The worst case

for POI is when all nodes of the storage graph are leaves (except for the root). This is

the case drawn in the bottom part of Figure 3.2. That case leads to space requirements

equal to those of IC. On the other hand, the best case for POI, is when the content of

every version is a subset of the content of every version with greater (or equal) content

cardinality. In that case every triple is stored only once in the storage graph. This is the

case drawn in the upper part of Figure 3.2. Regarding CB, the worst case is to have a track

where the same set of triples is once stored and once deleted in an alternative fashion. In

that case, CB stores 2 × spacet(IC) triples. The best case for CB is when the contents of

the KBs form a chain with respect to ⊆ (also holding in the best case for POI) and they

are consecutive in the version history (which is not required for the best case of POI). In

that case CB stores every triple only once and thus coincides with the best case of POI.

Regarding graph size, for IC and CB no index structure has to be kept as the entire

of every version is stored explicitly. Concerning POI, the number of nodes of the storage

graph is |D(V )|. Notice that |D(V )| ≤ |id(V )|, i.e. less than or equal to the number of
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Figure 3.3: Example of adding a new version using Algorithm Insert POIds

versions2. The number of edges coincides with the size of the relation ⊑r. This relation

can have at most N2

4
relationships. This value is obtained when Γ is a bipartite graph,

whose N
2

nodes are connected with all other N
2

nodes. More on the overall comparison of

these policies are described below.

3.5 Version Insertion Algorithms

The insertion algorithms exploit the structure and the semantics of the storage graph.

Intuitively, we have to check whether the new version is subset or superset of one of the

existing versions. To this end, we start from the root(s) of the storage graph and we

descend. To be more specific, let B be a family of subsets of T , let < be the cover relation

over these and let <r be its transitive reduction. Suppose that we want to insert a new

subset A (i.e. A ̸∈ B) and update accordingly the relation <r. We define:

Parents(A) = min
<

{ B | A < B} = { B | A <r B}

Children(A) = max
<

{ B | B < A} = { B | B <r A}

2In the example of Figure 3.1, |D(V )| = 3 while |id(V )| = 4
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3.5.1 POI-Plain (Insert POIp) Insertion Algorithm

Algorithm InsertInPoset

Input: A: a set of triples.

Output: updated cover relation of the poset so that to contain a node corresponding to

A (if there is no such node already).

1. /* FIND PARENTS */

2. Stack = new STACK();

3. PARENTS = new Set();

4. NOTPARENTS = new Set();

5. while not(isEmpty(Stack))

6. do n = pop(Stack);

7. if n ∈ NOTPARENTS

8. then push(Stack, {x ∈ Down(n) | x /∈ PARENTS)});

9. else if n.contents = A /* a node with contents A already exists */

10. then break;

11. else if n.contents ⊂ A /* all upper nodes of n are certainly not parents */

12. then PARENTS = (PARENTS ∪{n}) \ Upt(n);

13. NOTPARENTS = NOTPARENTS ∪Upt(n);

14. push(Stack, Down(n));

15. /* FIND CHILDREN */

16. Stack = new STACK(PARENTS); /* a new stack with initial contents the set PAR-

ENTS */

17. CHILDREN = new Set();

18. while not(isEmpty(Stack))

19. do n = pop(Stack);

20. if (n.contents ⊃ A)

21. then CHILDREN = CHILDREN ∪{n};

22. else push(Stack, Down(n));

23. /* CONNECT A */
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24. nA = new node(A);

25. for each c ∈ CHILDREN

26. do Add(c → nA); /* i.e. Add( c <r A) */

27. for each p ∈ PARENTS

28. do Add(nA → p); /* i.e. Add( A <r p) */

29. /* ELIMINATE REDUNDANCIES */

30. for each c ∈ CHILDREN

31. for each p ∈ PARENTS

32. do if c → p

33. then Delete(c → p); /* i.e. if c <r p then Delete(c <r p) */

To update <r we have to add the relationships A <r p for every p ∈ Parents(A),

and c <r A for every c ∈ Children(A). In addition we have to eliminate redundant

relationships (that may exist between Parent(A) and Children(A), specifically we have to

eliminate all c <r p relationships where c ∈ Children(A) and p ∈ Parents(A)). Let now

see how we could find the children and the parents of a set A and update appropriately

the relation <r. Returning to the problem at hand, this scenario corresponds to the

case where each node n of a storage graph had explicitly stored contents(n). Algorithm

InsertInPoset sketches the crux of the algorithm in pseudocode. It is based on a Stack

and two sets called PARENTS and NOTPARENTS. The root of the storage is denoted

by root(Γ) and every storage graph has a single root corresponding to a dummy version

with an empty content. Note that the relation → of the storage graph corresponds to

the relation <r, i.e. a → b ⇒ content(b) ⊂ content(a). An indicative example of version

addition is illustrated in Figure 3.3. The stack contents are shown in every step.

To implement version insertion we could use Alg. InsertInPoset . The only difference

is that in a storage graph n.contents (where n is a node) is not explicitly stored (instead

only n.stored is stored). One naive approach would be to compute n.contents by taking

the union of the stored triples of its (direct and indirect) broader nodes, i.e. to use the

formula (3.1). Each such computation would require O(d(n)) set union operations where

d(n) is the depth of the node n multiplied to the average number of parents. If the storage

graph is a tree, then all set union operations would actually be concatenations (and thus

faster). In case of DAG, we have to perform set union operations only for nodes that have
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more than one father. We will hereafter call this algorithm POI-Plain insertion (for short

Insert POIp) algorithm.

3.5.2 POI-DoubleStack (Insert POIds) Insertion Algorithm

To reduce the number of set union operations that are issued by the Insert POIp al-

gorithm for computing content(n) for a node n, here we present a more time efficient al-

gorithm which employs a second stack (actually it is a cache) for keeping stored (and thus

reusing) results of operations that have already been computed. The second stack, called

CStack (where ′C ′ comes from contents), stores elements comprising of two components:

a version id and its content (i.e. a set of triples). The extension of Alg. InsertInPoset

with the second stack is Algorithm Insert-POIdsc .

Algorithm TSContent

Input: n: a node id.

Output: the set of triples comprising the content of node n (the stack CStack is updated,

if necessary).

1. if e = lookup(CStack, n)

2. then return e.content; /* returns the contents of element e */

3. else

4. Res = stored(n);

5. for each n′ ∈ Up(n)

6. do Res = Res ∪ TSContent(n′); /* this is a concatenation if |Up(n) =

1|*/

7. push(CStack, (n, Res)); /* pushes a pair (key, content) to the stack */

8. return Res;

To compute the contents of a node n it uses the function TSContent (Algorithm

TSContent) which accesses the second stack. If the storage graph were a tree then we

would be sure that all broader nodes of a node are in the stack (in both Stack and CStack

stacks). However the storage graph is a DAG in the general case, so this is not always true.

That’s why TSContent uses a lookup and if the sought element is not in CStack it creates

and stores it to CStack. We will hereafter call this algorithm Insert POI-DoubleStack
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(for short Insert POIds) insertion algorithm.

3.5.3 POI-DoubleStackAndClean (Insert POIdsc) Insertion Algorithm

To reduce the total space needed by CStack, Alg. Insert-POIdsc actually uses a dif-

ferent implementation of Alg. TSContent called TSContentAndClean (Alg. TSCon-

tentAndClean) that frees the contents of those versions that are not needed any more.

Specifically, an element of CStack should be removed if one of the following two condi-

tions holds:

(a) its content is not a subset of A, so the traversal of the storage graph will not continue

to its descendants and therefore its contents are not needed any more,

(b) it is not a (definite) parent of the node to be inserted and all its children are already

in CStack. Specifically, if all its children are already in CStack the version content is not

needed because it is a subset of the content of every child of it.

To this end we extend the structure of each CStack element with a third component,

denoted by Y , which is actually a variable initialized to the number of children (of the

corresponding node) that is decreased by one whenever lookup finds and fetches that

element. When it reaches 0, the element (if not a parent) should be removed because that

means that the contents of all its children are already stored in CStack. We will hereafter

call this algorithm Insert POI-DoubleStack(Clean) (for short Insert Insert POIdsc).

Algorithm Insert-POIdsc

Input: A: a set of triples.

Output: updated storage graph and CStack.

1. /* FIND PARENTS */

2. Stack = new STACK();

3. PARENTS = new Set();

4. NOTPARENTS = new Set();

5. push (Stack, {root(Γ)});

6. while not(isEmpty(Stack))

7. do n = pop(Stack);

8. if n ∈ NOTPARENTS

9. then push(Stack, {x ∈ Down(n) | x /∈ PARENTS)});
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10. else

11. if n.contents = A /* a node with contents A already exists */

12. then break;

13. else

14. if TSContentAndClean(n, PARENTS, n) ⊂ A

15. then PARENTS = (PARENTS ∪{n}) \ Upt(n);

16. NOTPARENTS = NOTPARENTS ∪Upt(n);

17. delElems(CStack, Upt(n));

18. push(Stack, Down(n));

19. else delElem(CStack, n);

20. /* FIND CHILDREN */

21. Stack = new STACK(PARENTS);

22. CHILDREN = new Set();

23. while not(isEmpty(Stack))

24. do n = pop(Stack);

25. if TSContentAndClean(n, PARENTS, n) ⊃ A

26. then CHILDREN = CHILDREN ∪{n};

27. else push(Stack, Down(n));

28. /* CONNECT A */

29. nA = new node(A);

30. nA.stored = A \ ∪ {TSContentAndClean(n′) | n′ ∈ Parents};

31. for c ∈ CHILDREN

32. do Add(c → nA); /* i.e. Add( c <r A) */

33. for p ∈ PARENTS

34. do Add(nA → p); /* i.e. Add( A <r p) */

35. /* ELIMINATE REDUNDANCIES */

36. ... as in Alg. InsertInPoset

37. /* UPDATE THE STORED CONTENTS OF THE CHILDREN NODES */

38. for c ∈ CHILDREN

39. do c.stored = c.stored - A;

Algorithm TSContentAndClean
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Input: n: a node id

1. PARENTS: the ids of n’s parents

2. initialN : a node id (in the root call of the routine n = initialN).

Output: the sets of triples comprising the content of node n. The stack is updated

(addition, deletion) if necessary.

3. if e = lookup(CStack, n)

4. then Res = getElemContent(CStack, n);

5. if (e.Y == 1) & (n /∈ PARENTS)

6. then delElem(CStack, n);

7. else editElem(CStack, (n, Res, Y), (n, Res, Y-1)); /* decreases the 3rd

component of the stack element */

8. else

9. Res = stored(n);

10. for each n′ ∈ Up(n)

11. do Res = Res ∪ TSContentAndClean(n′, PARENTS, initialN); /*

concatenation */

12. push(CStack, (n, Res, |Down(n)|)); /* pushes a triple (key, content, number

of children) to the stack */

13. return Res;

Figure 3.3 shows these stacks in our running example. Specifically, the left stack is

the Stack, the center stack is the CStack as employed by TSContent algorithm, while

the right one is the CStack as employed by TSContentAndClean algorithm. After the

PARENTS have been computed, CSTack remains the same and therefore we show only

Stack. Notice how shorter CStack is according to TSContentAndClean.

3.5.4 History-based Version Insertion Speedup

We have already described a general algorithm for inserting versions and recall that the

storage space requirements of POI are independent of the evolution history. However the

knowledge of the evolution history can speed up version insertion, especially in the case

we insert versions that are defined through set operations over existed versions. Below

we discuss some cases.
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• Creation by Union

For instance, consider the case we want to insert a new version v3 such that D(v3) =

D(v1)∪D(v2), where v1, v2 are existing versions. In that case, the search for parents

begins with the POI nodes n1, n2 that correspond to v1 and v2 respectively, instead

of the root, because D(v1) ⊂ D(v3) and D(v2) ⊂ D(v3). Nodes n1 and n2 will be

the parents of the POI node that corresponds to v3, unless there exists a descendant

n4 (corresponding to an existing version v4) of n1 or n2, such that D(v4) ⊂ D(v3).

• Creation by Intersection

Additionally, the case where D(v3) = D(v1)∩D(v2) is in a sense dual to the previous

one, as the children of n3 will be n1, n2 or some nodes above them.

3.6 Cross Version Operations

In general, cross-version operations are expensive in both IC and CB approach. The

availability of a POI allows performing them more efficiently.

3.6.1 Containment Checking

For instance, containment checking can clearly benefit from a POI. To decide whether

D(i) ⊆ D(j) one could pose a reachability query on the storage graph (no need to access

the contents of the versions). Moreover, by adopting a labeling scheme [1] for the storage

graph Γ we could decide inclusion in O(1).

3.6.2 Containment Queries

Additionally, let S be a set of triples. Suppose we want to find all versions i such that

S ⊆ D(i) (or D(i) ⊆ S). Specifically consider the following kind of queries:

• subset queries, i.e. { i | D(i) ⊂ S}

• equality queries, i.e. { i | D(i) = S}

• superset queries, i.e. { i | D(i) ⊃ S}
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Such queries would be very expensive in the IC or in the CB approach. By employing

a POI we can use the insertion algorithm to insert S to the storage graph. Let n be

the inserted node. The sought versions are those that point to nodes of Nrt(n) (resp.

Brt(n)). Specifically, if A denotes the nodes of the storage graph what we should find in

order to compute the answer, then:

• subset queries: A = Nrt(n)

• equality queries: A = {n}

• superset queries: A = Brt(n)

The answer of such queries, i.e. the sought versions identifiers, are those identifiers that

point to the nodes in the set A.

Notice that for subset/supset queries the answer can be computed (and returned)

gradually and in an order that reflects the distance (in the Hasse Diagram) from the node

that corresponds to the set S. So in a superset query the versions whose contents are

closer to S are returned first. It follows that this technique is appropriate for big datasets

where gradual query evaluation and results ranking are desirable properties.

Containment queries can be straightforwardly extended with negation.

• negative subset queries, i.e. { i | D(i) ̸⊂ S}

Here A = N \ Nrt(n)

• inequality queries, i.e. { i | D(i) ̸= S}

Here A = N \ {n}

• negative superset queries, i.e. { i | D(i) ̸⊃ S}

Here A = N \ Brt(n)

3.7 Extensions

3.7.1 Semi-lattice approach

Let X be the minimum in size family of subsets of T which includes the family of sets

D(V ) and is closed with respect to intersection. Obviously, (X,⊑) is a meet-semilattice.
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Figure 3.4: Example of the semi-lattice approach

We can define a storage graph whose structure is that of (X,⊑r). Again, each version id

i is associated with a node ni whose storage space is defined exactly as in POI.

It follows easily that the storage graph of this policy satisfies the following properties:

• i ̸= j ⇒ stored(ni) ∩ stored(nj) = ∅

• for each i, j ∈ id(V ), the storage graph contains a node x such that content(x) =

Si ∩ Sj.

One can easily see that this index guarantees that each t ∈ TV is stored exactly once

(something that is not true for POI).

Figure 3.4 shows an example of a worst case for POI and how the semi-lattice approach

would be in that case. Notice that each triple is stored only once.

The storage gains obtained are compensated by the space required to keep the excessive

number of nodes and edges of the storage graph.

3.8 Comparison with Change-Based Approach

As far as the storage space requirements, POI stores explicitly only the versions with

the minimal (with respect to set containment) contents. All the rest versions are stored

in a positively incremental way. Specifically positive deltas are organized as a partially

ordered set (that is history-independent) aiming at minimizing the total storage space. It

follows that POI occupies less space than the change-based approach in cases where there

are several versions (or KBs in general) not necessarily consecutive (they could be even

in parallel evolution tracks) whose contents are related by set inclusion (⊆).

In respect of the cost to retrieve the contents of a version, in the CB approach is

analogous to the distance from the closest stored snapshot (either first or last version,
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according to the delta policy adopted [11]). On the contrary, in POI it is independent of

any kind of history, but it depends on the contents of the particular version, specifically

on the depth of the corresponding node in the POI graph.
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Chapter 4

The Compact POI (CPOI)

4.1 Introduction

In the previous Chapters we discussed the most popular approaches that are followed

for the storage of several versions. As the necessity of keeping many versions of a KB

(or more) in many applications brings on the need of storing a vast amount of data, the

exigency of an efficient storage approach with low storage space requirements becomes

essential. In the previous Chapter, POI was described and discussed. It was explained

that POI structure offers efficient performance in aspects like the storage space and the

time needed for handling versions of RDF/S data and information. However, there are

cases that a POI cannot guarantee space savings (i.e. versions having none subset or

superset relations). We need an approach that not only offers significant space savings

over a large amount of data, but also guarantees space savings in all cases.

This Chapter elaborates on the problem of further reducing the storage space of POI.

In particular, it investigates whether techniques which have been used with success in

the area of IR (Information Retrieval) systems and WSE (Web Search Engines) can be

exploited for RDF data. In IR, the adoption of encoding schemes in an inverted index

saves space because there are words that occur in many documents. Specifically, if the

documents that share a lot of common words get close identifiers, and a gapped repre-

sentation for their identifiers is adopted using an encoding scheme that represents small

integers with a small number of bits, then the postings lists of these common words will

have small bit representation. To ensure that documents with a lot of common words get
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close identifiers, the documents of the corpus are clustered, so that documents that share

a lot of common words are placed in the same cluster. Subsequently documents are given

identifiers on a cluster basis. Experiments in the IR domain (specifically in the TREC web

data [33]) have shown that the compression ratio, defined as the size of the compressed file

as a percentage of the uncompressed file (i.e. Compression ratio = Compressed size
Uncompressed size

100%),

is around 30%-45%. In our case, since each triple has a unique identifier, and hence each

node of POI stores a set of identifiers, we investigate whether special identifier assignments

and integer encodings, such as Elias-γ [12], can reduce (and under what conditions) the

occupied space.1 Although POI by construction offers significant storage gains, the moti-

vation for investigating this approach is to tackle the cases where POI is slightly beneficial;

cases where there are several overlapping versions which are not related by inclusion. In

such cases, POI behaves like the IC approach. An appropriate identifier encoding promises

space gains in such cases.

Hereafter the term CPOI (Compact POI) will be used to refer to a compact version

of POI, that relies on gapped numeric identifiers and special encodings. To grasp the

idea Figure 4.1 illustrates an example of using the gapped representation of the nodes’s

contents and their encoding using Elias-γ. We consider 6 knowledge bases (KBs), whose

contents are:

a0 = {1, 2, 3, 4, 5},

a1 = {1, 2, 3, 4, 5, 6},

a2 = {1, 2, 3, 4, 7, 8},

b0 = {1, 2, 3},

b1 = {1, 2, 3, 4, 5, 6}, and

b2 = {1, 2, 7},

where 1...8 are triple identifiers.

The left part of Figure 4.1 shows the structure of the original storage graph (plain POI).

The middle part of the same Figure exhibits the gapped representation with integers. In

this representation, as we will explain in detail later, we consider the elements of a node

as a list of ids in ascending order and we keep the first id unchanged while each one of

the rest ids is replaced by its difference from the previous id. The right part of Figure 4.1

1In general schemes that encode small values with shorter codes are ideal for applications where the probability
of the integer n follows a power law [32].
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shows the final form of a CPOI. Specifically, the first value of every node is represented

as a normal integer, while the rest values are represented using a special encoding for

integers (Elias-γ here).

Regarding evaluation we consider that an identifier assignment/encoding scheme is

successful if the size of CPOI is: less than the size of the original (non-encoded) POI, and

less than the size obtained using a random assignment of identifiers. In addition, the

cost for the reassignment should be fast enough (certainly polynomial), and it should be

efficient to enrich the index with new versions.

{1,2,3} {1,2,7}

{4,5}

{6}

{4,8}

Original Storage graph

{1,1,1} {1,1,5}

{4,1}

{6}

{4,4}

Gapped Representation
(with integers)

{int(1),1,1} {int(1),1,00101}

{int(4),1}

{int(6)}

{int(4),00100}

Gapped Representation
(32 bits for the first id, 

Elias-γ for the rest)

Figure 4.1: A compact representation of POI

Comparing CPOI with IC and CB approach

In Chapter 3 the structure of POI was described. Apart from the description of the

way that this structure stores versions, it was shown that it uses triples’ identifiers instead

of triples themselves, keeping all triples’ strings in a table, in contrast to IC and CB that

store triples’ strings.

The main differentiation of a CPOI is that it uses a gapped representation and special

encodings to represent triples’ identifiers in the storage graph.

4.2 Analytical Comparison of CPOI with plain POI

We shall use T to denote the set of all distinct triples and |T | the cardinality of this

set. The storage graph Υ of a POI is a pair ⟨Γ, stored⟩ where Γ = (N,R) is a directed

acyclic graph and stored is a function from the set of nodes N to the powerset of T .

Each node n of the storage graph of POI holds a set of numeric triple identifiers. Let

use the same symbol n to denote this set (i.e. n.stored) and |n| to refer to its cardinality.

We can keep this set as a list, and suppose this list is sorted in ascending order. This list
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can be considered as a sequence of gaps between triples identifiers, e.g. for the sequence

[32011, 32013, 32014, 32017], the sequence of gaps would be [32011, 2, 1, 3] (of course

the original identifiers can be recomputed through sums over the gaps). This d-gapped

representation as it is commonly known, is very popular in the area of IR [45]. The

list of gapped identifiers can then be compressed using a suitable compression scheme.

Compression is obtained by encoding small values with shorter codes. Special encodings,

such as Elias-γ, δ [12], Golomb-Rice [15], Binary Interpolative Coding [28] and Variable-

byte encoding, are efficient for small integers, as the smaller the integer is the less space

is needed. However, when integers become large, the storage space also becomes large.

For example, and using Elias-γ, the list [32011, 2, 1, 3] can be represented as [32011, 010,

1, 011]). The second, third and forth element of that list are bit sequences. However

notice that the first element of the list is an integer in decimal which could be digitally

encoded with a commonly used 4 byte representation, because we expect to have small

numbers only in gaps, so the first number of the list could be any number. This means

that it would not be beneficial to adopt a special encoding for the first number. So

[32011, 32013, 32014, 32017] is actually represented by the following list of bit sequences

[00000000000000000111110100001011, 010, 1, 011], and this is what we call CPOI. It follows

that the more id numbers are close to each other in every node, the more space saving

can be achieved.

Note that in our approach each id represents an entire triple, in contrast to the related

work of compact RDF triple representations (e.g. x-RDF-3X, HTD representation) where

an id represents a triple’s element (subject, predicate or object).

The Gaps of a Node

For each node n the space required for its representation depends on both |n| and

the way we represent the ids of the triples in n. Regarding the latter let us define the

sum of gaps between consecutive ids, as this determines (approximates) the total size of

ids (and it is independent of any particular encoding scheme). Indeed, such sum of gaps

coincides with the bits required if the unary representation2 is used. Specifically, if n =

2Each positive integer n is represented by n bits, specifically by n - 1 ones followed by one zero (or n - 1 zeros
followed by an one).
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{tr1, ..., tr|n|}, we define:

gaps(n) =

|n|−1∑
i=1

(tri+1 − tri) (4.1)

For example, if n = {1, 4, 8}, then gaps(n) = 3+4 = 7. The smaller the value of gaps(n)

is, the better representation (for n) can be achieved. It is not hard to see that: |n| − 1 ≤

gaps(n) ≤ |T |−1. The minimum value and therefore the best case for gaps(n) is achieved

when the ids are consecutive numbers (e.g. n = {8, 9, 10}). On the other hand, the worst

case for gaps(n) is when n contains ids that cover the entire range of values (hence from 1

to |T |). In that case, gaps(n) equals to |T |−1, as it actually expresses the transition from

1 to |T | and each id covers one step of that transition. For example, if T = {1, ..., 100},

the worst representation for a node n such that |n|=3, leads to gaps(n) = 99 (e.g. both

n = {1, 5, 100} and n = {1, 80, 100} lead to the same value for gaps(n)). It follows from

this observation that if we know the id of the first and the last element of n, then we can

compute gaps(n) without having to use formula (4.1), since it holds:

gaps(n) =

|n|−1∑
i=1

(tri+1 − tri) = tr|n| − tr1 (4.2)

assuming that n = {tr1, ..., tr|n|}.

Furthermore, we could canonicalize the value of gaps(n) in order to be able to estimate

how efficient a representation for a node is. So, for measurements and comparisons we

could use gaps(n)
|n| or gaps(n)

|T | , in order to obtain values that are independent of the number

of elements of any particular node.

The Gaps of all Nodes

We can define the total gaps of all nodes of the storage graph Γ = (N,R) as:

Gaps(N) =
∑
n∈N

gaps(n) (4.3)

In essence, N = {n1, ..., n|N |} is a set of subsets of T .

If all sets of N are pairwise disjoint (i.e. ni ∩ nj = ∅, ∀i ̸= j, i, j ∈ [1, |n|]), then we

can achieve the best assignment of identifiers for every node by assigning consecutive ids

to the triples of every distinct node. Hence:

Gaps(N) ≥
∑
ni∈N

(|ni| − 1) =
∑
ni∈N

|ni| −
∑
ni∈N

1 = |T | − |N |
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On the other hand, the worst assignment in the above case is the one obtained when every

node contains triples (ids) that cover the greatest possible range of values. Specifically,

the first node will contain the triples with ids 1 and |T | (these will be the min and max

ids of that node), and hence, gaps(n1) = |T | − 1 (according to the worst case of a node).

Respectively, the second node will include the triples with ids 2 and |T | − 1 (since every

triple occurs only once), and hence, gaps(n2) = (|T | − 1) − 2 = |T | − 3. We can proceed

analogously for the rest nodes, so the k-th node will contain the triples with ids k and

|T | − (k − 1), and thus gaps(nk) = (|T | − (k − 1)) − k = |T | − (2k − 1). Therefore:

Gaps(N) ≤ (|T | − 1) + (|T | − 3) + ... + (|T | − (2|N | − 1))

=

|N |∑
i=1

(|T | − (2i − 1)) =

|N |∑
i=1

(|T |) −
|N |∑
i=1

(2i − 1)

= |N ||T | − 2

|N |∑
i=1

i + |N |

= |N ||T | − 2
|N |(|N | + 1)

2
+ |N | ⇔

Gaps(N) ≤ |N |(|T | − |N |)

Note that if all sets of N are pairwise disjoint then it always holds that |T | − |N | ≥ 0,

i.e. |T | ≥ |N |, since the maximum number of sets in a partition of a set s, is equal to |s|

(that partition consists of singletons). In the extreme case where |T | = |N | (and thus all

nodes are singletons) the gaps are indeed 0.

Prop. 1 If a storage graph has |N | sets and they are pairwise disjoint, then: |T | − |N | ≤

Gaps(N) ≤ |N |(|T | − |N |).⋄

Let us now discuss the case that leads to the worst reassignment for every node. That

case comes up when N is not a partition of T , and thus there are overlaps between the ids of

several nodes. The worst reassignment occurs when every node contains triples (ids) that

cover the whole range of values. Specifically, for each node ni we have gaps(ni) = |T |− 1.

Note that this case can occur only if the intersection of all nodes n ∈ N is greater or

equal than 2. Consequently: Gaps(N) ≤ |N |(|T | − 1) = |N ||T | − |N |. On the other

hand, the case that could lead to the best reassignment if overlaps exist, occurs when the

intersection between two nodes consists of triples with consecutive ids. Indeed in the first

58



node those ids should be at the beginning of the list, while in the second they should be at

the end. For instance, consider four nodes: n1 = {1, 2, 3}, n2 = {2, 3, 4}, n3 = {3, 4, 5, 6},

n4 = {5, 6, 7}. In that case, we can achieve consecutive ids that differ by one, hence:

Gaps(N) ≥
|N |∑
i=1

(|ni| − 1) =

|N |∑
i=1

|ni| − |N |

We conclude that in the case that there are overlaps among the nodes’ contents then:

Prop. 2 If a storage graph has |N | sets and there are overlaps then:
∑|N |

i=1 |ni| − |N | ≤

Gaps(N) ≤ |N ||T | − |N |. ⋄

Table 4.1 summarizes the above bounds for Gaps(N). Note that the above are the

lower/upper bounds of all possible N that can emerge, having |T | distinct triples and |N |

nodes. However, for a particular graph N this lower bound may not be the greatest lower

bound, and the upper bound may not be the least upper bound.

Gaps(N)
Case Lower Bound Upper Bound
N is a partition of T |T | − |N | |N |(|T | − |N |)
N is not a partition of T

∑|N |
i=1 |ni| − |N | |N ||T | − |N |

Table 4.1: Upper and Lower Bounds for Gaps(N)

4.2.1 Gaps and Storage Space

If we consider that the first id of every node is represented as a normal integer of four

bytes and the successive (gapped) ids are coded using unary codes, then the storage space

required measured in bits, and denoted by SpaceCPOI(N), is:

SpaceCPOI(N) = 32 ∗ |N | + Gaps(N) (4.4)

Without a gapped and unary encoded representation, the required space by a 32-bit

representation is:

SpacePOI(N) = 32 ∗
|N |∑
i=1

|ni| (4.5)

We can write equation (4.5) also as:

SpacePOI(N) = 32 ∗ (|N | +
|N |∑
i=1

(|ni| − 1))

= 32 ∗ |N | + 32 ∗
|N |∑
i=1

(|ni| − 1)
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We can now express the condition under which CPOI requires less space than POI as:

SpaceCPOI(N) < SpacePOI(N) ⇔

32 ∗ |N | + Gaps(N) < 32 ∗ |N | + 32 ∗
|N |∑
i=1

(|ni| − 1) ⇔

Gaps(N) < 32 ∗
|N |∑
i=1

(|ni| − 1) (4.6)

Prop. 3 If Gaps(N) is at most 32 times more than the lower bound of Gaps(N), i.e. if

Gaps(N) < 32 ∗
∑|N |

i=1(|ni| − 1), then CPOI saves space. ⋄

By combining Prop. 2 and Prop. 3, it follows that we gain with a CPOI if the upper

bound of Gaps(N) according to Prop. 2 is less than the right hand of the condition of

Prop. 3 (which guarantees gain), i.e. if : right of Prop. 3 > right of Prop. 2 ⇔

32 ∗
|N |∑
i=1

(|ni| − 1) > |N ||T | − |N | ⇔

32 ∗
|N |∑
i=1

|ni| − 32 ∗ |N | − |N ||T | + |N | > 0 ⇔

32 ∗
|N |∑
i=1

|ni| − |N | ∗ (|T | + 31) > 0

By expressing
∑|N |

i=1 |ni| as |N | ∗ avg(|ni|), where avg(|ni|) is the average number of

elements of a node, we can write: 32∗|N |∗avg(|ni|)−|N |∗(|T |+31) > 0 ⇔ 32∗avg(|ni|) >

|T |+ 31. The above says that we can always save space with a CPOI when the number of

distinct triples is not greater than 32 times the average number of elements of a node.

Prop. 4 If the number of distinct triples is not greater than 32 times the average number

of elements of a node, then CPOI saves space. ⋄

Note that since Prop. 4 is based on the extreme case where we have the worst case for

Gaps(N), it specifies sufficient (not necessary) condition. This means that we can still

gain with a CPOI even if the condition of Prop. 4 does not hold.

4.2.1.1 Uniform Codes for Ids

Instead of using four bytes per integer, or adopting a gapped and specially encoded

representation, we could use a uniform representation of ⌈log2 |T |⌉ bits for each id.
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Obviously this leads to space savings. For example, if |T | = 106 then instead of 32

bits, we could use log2 106 = 20 bits. Hence, we can achieve compression ratio of
20∗

∑|N|
i=1 |ni|

32∗
∑|N|

i=1 |ni|
100% = 20

32
100% ≃ 60%, i.e. the compressed space is around 60% of the orig-

inal space. Hereafter, we will denote the space required by the above representation as

SpaceCPOIU
(N), where the ‘U’ comes from uniform. It follows that:

SpaceCPOIU
(N) =

|N |∑
i=1

|ni| ∗ ⌈log2 |T |⌉ (4.7)

CPOI requires less space than CPOIu when:

32 ∗ |N | + Gaps(N) ≤
|N |∑
i=1

|ni| ∗ ⌈log2 |T |⌉ ⇔

Gaps(N) ≤
|N |∑
i=1

|ni| ∗ ⌈log2 |T |⌉ − 32 ∗ |N |

Prop. 5 CPOI requires less apace than CPOIU , iff Gaps(N) ≤
∑|N |

i=1 |ni| ∗ ⌈log2 |T |⌉ − 32 ∗

|N |. ⋄

Note that in uniform representation the number of required bits is definite for a specific

T , while in unary representation that depends on the assignment of triples’ ids, and on

the value of Gaps(N). However we should note that the uniform representation is not

very practical (for the problem at hand) due to the limitation of the number of integers

that it can encode. The insertion of new versions with brand-new triples would require

changing all triple identifiers and consequently the contents of all nodes. Instead, 32-bits

or special encodings can be used indisputably when coding integers whose upper-bound

cannot be determined beforehand (assuming |T | is less than 4,3 billions, i.e. |T | < 232).

We can compare CPOI and CPOIu also wrt the worst/best case of CPOI (as expressed in

Prop. 2 and equations (4.4) and (4.7)), i.e. in a way that does not require knowledge of

Gaps(N). In particular, the worst case of unary is better than uniform encoding, when:

32 ∗ |N | + |N | ∗ |T | − |N | ≤
|N |∑
i=1

|ni| ∗ ⌈log2 |T |⌉ ⇔

|N |∑
i=1

|ni| ∗ ⌈log2 |T |⌉ ≥ |N | ∗ (|T | + 31) ⇔
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avg(|ni|) ∗ ⌈log2 |T |⌉ ≥ |T | + 31 (4.8)

It follows that unary representation is better than uniform when we have high average

node size and small |T |, i.e. large overlapping.

The other way around, the best case of unary is worse than uniform encoding, and

therefore uniform is certainly better than unary representation, when:

32 ∗ |N | +
|N |∑
i=1

|ni| − |N | ≥
|N |∑
i=1

|ni| ∗ ⌈log2 |T |⌉ ⇔

31 ∗ |N | ≥
|N |∑
i=1

|ni| ∗ (⌈log2 |T |⌉ − 1) ⇔

avg(|ni|) ∗ (⌈log2 |T |⌉ − 1) ≤ 31 (4.9)

Version Insertion Algorithms

The insertion algorithms are the same used in plain POI. The only alteration to the

initial steps is the use of encoded lists instead of sets for the contents of the nodes.

Specifically, when the contents of a node are retrieved (i.e. step 9 of Insert POIp Insertion

Algorithm), firstly the list is decompressed and then we obtain the set of triples ids of

that node. Correspondingly, when the content of a node is set (i.e. step 24 of Insert

POIp), firstly that content (set of triples’ ids) is converted to a compressed list and then

it is stored to the node.

Synopsis

The analytical comparison presented in this section identified conditions that guaran-

tee space savings. Table 4.2 summarizes the occupied space for each compression method.

Figure 4.2 illustrates the conditions under which one choice is certainly better (requires

less space) than another. Notice that we can check whether some conditions hold or not

(specifically those in Prop. 4 and equations (4.8) and (4.9)), even if we have a plain

POI, i.e. without the need of a gapped representation. On the other hand the conditions

that refer to Gaps(N) require having a gapped representation and the value of Gaps(N)

depends on the way identifiers have been assigned. However we can have space savings

even if the above conditions are not met, since the conditions rely on lower and upper
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bounds. This motivates the experimental evaluation of Section ??, where we attempt to

compare assignment approaches (aiming at approaching the lower bound of Gaps(N)),

and investigate the amount of space saving that we can achieve.

Encoding Storage Space for Nodes

POI 32 ∗
∑|N|

i=1 |ni|
CPOI 32 ∗ |N | + Gaps(N)

CPOIu
∑|N|

i=1 |ni| ∗ ⌈log2 |T |⌉

Table 4.2: Space (in bits) by the nodes of each compression method

CPOI 
certainly better than 

POI

CPOI 
certainly better than 

CPOIU

CPOIU
certainly better than 

CPOI

Prop. 4

Prop. 3

Eq. (8)

Prop. 5

Eq. (9)
condition evaluation
does not require a gap 
representation

condition evaluation 
requires a gap 
representation

if true
then it 
also holds

if true
then it 
also holds

Figure 4.2: Synopsis of analytical results

4.3 Assignment Policies

The previous section provided lower and upper bounds, for Gaps(N), and used them

for identifying sufficient conditions that lead to compression, assuming the unary en-

coding. Our objective here is to find an assignment of ids that gives a small value for

Gaps(N). We need a method that takes as input the storage graph of POI and reassign

the ids of triples so that each node to contain ids close to each other. Moreover, that

method should be also efficient in time.

Below we discuss a number of approaches:

• DEFAULT (id assigned at the first appearance of triple). According to this

policy, each triple is assigned an id, the first time that it appears in one version, and it

gets the smallest available integer. Obviously, this assignment does not depend on the

structure of POI.

• Node Size. We order the nodes of the storage graph by their size (i.e. |ni|) and then we

assign ids to their triples starting either from the larger nodes, or from the smaller nodes.

If we start from the larger nodes then these nodes are favored, so we can expect gains for

them. An alternative approach is to start assigning identifiers starting from the smaller

nodes. The motivation is that a small node can ”waste” more bits per id, than a large node
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Distinct Contents
v1: {1,2,3,4,5,9}
v2: {1,2,4,6,7,8,9}
v3: {1,2,6,9}
v4: {1,5,9}
v5: {1,3,9}

{1, 5, 9} {1, 3, 9}

{2, 4}

{1, 2, 6, 9}

{4, 7, 8}

Structure of POI
v3

v2

v5
v4
v1

{1, 5, 9} {1, 3, 9}

{2, 4}

{1, 2, 6, 9}

{4, 7, 8}

Storage Graph of POI

{1, 4, 4} {1, 2, 6}

{2, 2}

{1, 1, 4, 3}

{4, 3, 1}
Underlined Ids (with elias-γ encoding) occupy: 
5+5+3+5+1+5+3+3+3+1 = 34 bits

Gapped Representation 
(with integers)

1 = 20 + 0 = 1 elias-γ
2 = 21 + 0 = 010
3 = 21 + 1 = 011
4 = 22 + 0 = 00100
5 = 22 + 1 = 00101
6 = 22 + 2 = 00110

Figure 4.3: Storage graph of POI without and with a gapped representation

in a ”bad” assignment. Specifically, consider two nodes ni and nj such that |ni| < |nj|

We can define the ”bits per id of a node n” as follows: bpi(n) = |gaps(n)|
|n| . The worst (i.e.

space consuming) case is bpi(n) = |T |−1|
|n| . It follows that worst(bpi(nj)) < worst(bpi(ni))

and this is the motivation for starting from small nodes. Obviously, nodes with size equal

to 1, do not benefit from a gapped representation, therefore we assign identifiers to their

triples at the end. In conclusion, each policy (from large or small nodes) has its own pros

and cons.

Figure 4.3 illustrates an example that we will use to explain each one of the assignment

approaches. Specifically, it shows the distinct contents of 5 versions and the corresponding

graph of POI before and after the adoption of a gapped representation. Figure 4.4 depicts

the procedure of reassignment by Size.

• Triple Frequency. For each triple in T we count the number of nodes that contain

it and then we order the triples according to this number, getting a list of the form: ⟨

appearing k times ⟩, ⟨ appearing k− 1 times ⟩, . . . , ⟨ appearing 1 time ⟩. Then we assign

ids starting from the most frequently occurring triples, aiming at achieving consecutive

(or close) ids in several nodes. If we want to reduce the maximum gap between an id and

the rest ids, then it is beneficial to assign to that id the value |T |/2, since the max gap

in that case is |T |/2. The ids that can give the maximum gaps (with the rest), are those
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Sg after the reassignment Gapped Representation 
(with integers)

Assignment by Size
Ordering nodes by a descending order

{1, 4, 5} {1, 4, 6}

{2, 7}

{1, 2, 3, 4}

{7, 8, 9}
{1, 3, 1} {1, 3, 2}

{2, 5}

{1, 1, 1, 1}

{7, 1, 1}

OldId 1 2 6 9 5 3 4 7 8 
NewId 1 2 3 4 5 6 7 8 9

Underlined Ids (with elias-γ encoding) 
occupy: 3+1+3+3+1+1+1+5+1+1 = 20 bits

1

4

3

2
5

{1, 5, 9} {1, 3, 9}

{2, 4}

{1, 2, 6, 9}

{4, 7, 8}

Figure 4.4: Assignment by Size

in the ends of the interval, i.e. 1 and |T |. So one reasonable approach would be to start

giving ids to the frequent triples starting by |T |/2 and then continue using ids based on

their absolute distance from |T |/2 (e.g. if |T |/2 = 50, then consume ids in the following

order 50,51,49,52,48, and so on). It follows that the least occurring triples will get ids

close to 1 or |T |. Moreover, note that a triple with f=1 does not affect other nodes than

the one it appears in, so we do not have to be concerned about the ids of triples with

f = 1 (i.e. no overlapping issues as they appear only in one node). Furthermore, we

can exploit the fact that the triples in each frequency list are grouped so that those of

the same node are adjacent, in order to achieve consecutive ids for the unique triples of

almost every node (this method guarantees consecutive ids for the unique triples of every

node).

Finally, if we consider that the distribution of the triples in nodes follows a power-law,

then the expected size of the list with f=1 is much bigger than the sizes of the other lists.

Considering all the above, we start the assignment from the list of triples with f=1 and

id = 1. When we have consumed the half of that list, we continue the assignment with

the most frequently occurring triples. The rest lists follow (according to their frequency)

and at the end we assign the remaining half of triples with f=1.
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Figure 4.5 shows the procedure of reassignment by Frequency. We first create the

frequency lists and then we start assignment from the list with f=1 until the half of that

list (in our example we will consume three triples). We continue assignment with the

most freuquent triples (i.e. triples appearing in three nodes, in two nodes and finally the

remaining two triples of the first list). Thereafter, we update our storage graph with the

new ids. The resulting gapped representation needs less space for its storage than the

initial graph.

This reassignment is more expensive than the previous ones since it requires computing

the frequency of all triples.

Sg after the reassignment Gapped Representation 
(with integers)

Assignment by Frequency

in3: 1,9
in2: 2,4
in1: 5,3,6,7,8

Frequency Lists

{1, 4, 5} {2, 4, 5}

{6, 7}

{3, 4, 5, 6}

{7, 8, 9}
{1, 3, 1} {2, 2, 1}

{6, 1}

{3, 1, 1, 1}

{7, 1, 1}

Start assigning 
until: 3

2

5 =




OldId 5 3 6 1 9 2 4 7 8 
NewId 1 2 3 4 5 6 7 8 9

Underlined Ids (with elias-γ encoding) 
occupy: 3+1+3+1+1+1+1+1+1+1 = 14 bits

Figure 4.5: Assignment by Frequency

• Storage Graph. Another approach is to exploit the structure of the storage graph.

Specifically, we can traverse the storage graph and assign ids by the order we encounter

nodes. Let’s first make some remarks regarding the storage graph: (a) If two nodes

are connected (i.e. one is a direct or indirect child of the other) then they certainly

have disjoint content. This means that overlaps can occur between nodes which are not

connected (and clearly nodes of the same level fall into this category). (b) Each node of

the storage graph is pointed to by at least one version. Since the contents of the versions

that a node represents is equal to the triples stored at that node plus in all father nodes
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of that node, the maximal nodes of the storage graph, i.e. those which have no father(s),

store all the triples of the versions they represent. It follows, that if the variance of

the version contents’ sizes is small, then the maximal nodes are expected to store more

triples than the nodes which are not maximal. Based on the above observations, one

approach is to traverse the storage graph in a Breadth-First Search (BFS) manner,

i.e. to start from high level nodes and then to descend. In this way it is expected that

we will encounter larger nodes at the beginning and such nodes can (is not impossible

to) overlap. Alternatively, and with the same motivation as Node size small, we could

adopt a reverse BFS policy. In comparison to Node Size policy, the storage graph-based

policies have the following benefit: successive (during the assignment) nodes have higher

probability to has overlaps. Figure 4.5 depicts the procedure of reassignment by BFS.

Sg after the reassignment Gapped Representation 
(with integers)

Assignment by Position (BFS)
Ordering nodes by a breadth-first traversal

{1, 2, 3} {1, 3, 4}

{5, 7}

{1, 3, 5, 6}

{7, 8, 9}
{1, 1, 1} {2, 2, 1}

{5, 2}

{1, 2, 2, 1}

{7, 1, 1}

OldId 1 5 9 3 2 6 4 7 8 
NewId 1 2 3 4 5 6 7 8 9

Underlined Ids (with elias-γ encoding) 
occupy: 1+1+2+1+2+2+1+2+1+1 = 14 bits

3

5

2

1
4

{1, 5, 9} {1, 3, 9}

{2, 4}

{1, 2, 6, 9}

{4, 7, 8}

Figure 4.6: Assignment by BFS

With respect to computational cost, apart from Frequency, the rest reassignment poli-

cies do not require any preprocessing, and are very fast (roughly each method requires

traversing the storage graph once).
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4.3.1 Discussion

The assignment problem can be considered as an optimization problem. This case is

approached by clustering. In essence, a clustering algorithm, such as k-means algorithm,

aims to minimize the distances between relative objects.

4.4 CPOI and real world applications

CPOI can be exploited by several modern applications that require versioning services.

Specifically, in those that have large storage space requirements and changes emerge

frequently. For instance, in GO (that it is been updated daily) we could adopt a CPOI

(for secondary memory storage) to store all versions. In that case, when a user requests

for a specific version, we retrieve and return the whole content of that version. Also, in

e-learning systems, where several users wish to be able to collaborate using parallel tracks

in their tasks, a CPOI for main memory storage could be also adopted. In general, CPOI

is an index aiming at reducing the overall space needed to store a large amount of data,

and it is even more beneficial in cases that there are versions with subset-related content.
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Chapter 5

Experimental Evaluation

5.1 Synthetic Datasets

To evaluate the above policies in large datasets we generated and used synthetic

datasets. We have to note that related works mainly report results over synthetic datasets

or over real datasets which are not versioned. The only exception is [23] which reports

some results over 62 versions of GO (Gene Ontology). Moreover real versioned datasets

usually form a chain of versions (not parallel tracks), and chains cannot be used for eval-

uating the potential of POI for space saving over multiple independent evolution tracks.

For these reasons we decided to use synthetic datasets. We used three kinds of synthetic

datasets.

Dat1. Using the synthetic KB generator described in [42], we created a dataset (Dat1)

consisting of 1000 versions, each having 10,000 triples on average, where the size of each

triple is 100 bytes (a typical triple size). The version generation method is illustrated in

Figure 5.1. As in real case scenarios, a new version is commonly produced by modifying

an existing version. In order to generate the content of a new version, we first choose

at random a parent version and then we either add or delete triples from the parent

contents. The difference in triples with respect to the parent content is 10%, i.e. 1000

triples. We have an additional parameter d that defines the probability to choose triple

additions (so with probability 1−d we subtract triples). In this respect, we create versions

whose contents are either supersets or subsets of the contents of existing versions. We

experimented with d in the range of [0.5, 0.9] (we ignored values smaller than 0.5 as
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subtractions usually do not exceed additions). For additions, we assumed that the 25% of

the additional triples are triples which already exist in the KB (in the content of a different

than the parent version), while the rest 75% are brand new triples. This is motivated by

the fact that in a versioning system it is more rare to re-add a triple which exists in an

old version and was removed in one of the subsequent versions, than to add new triples.

Notice that as d increases, more new triples are created and less are deleted (so the total

number of distinct triples increases).

Select randomly an 
existing version and
Add triples

Select randomly an 
existing version and
Delete  triples

From the set of 
existing triples

Brand new
triples

probability d
probability
1-d

25% 75%

Select randomly an 
existing version and
Add triples

Select randomly an 
existing version and
Delete  triples

From the set of 
existing triples

Brand new
triples

probability d
probability
1-d

25% 75%

Figure 5.1: Synthetic dataset generation method for Dat1

Dat2. The Dat1 consists of versions whose contents are proper subset or superset of

the contents of the parent versions. To obtain a more realistic dataset, containing less

⊂ relationships over contents, we created another dataset (Dat2) with a different version

generation method which is illustrated at Figure 5.2. At first, we choose at random an

existing version as a father and then we either only add/delete triples from the parent

content or we make both triple additions and deletions. In the first case, we create versions

whose contents are either subsets or supersets of the contents of existing versions, like

Dat1. We have an additional parameter a that defines the probability to choose the first

case (and 1 − a the second case). We experimented with a=0.3 (so the probability a

version to be proper subset or superset of the parent version is 0.3). In the second case,

we add and delete triples from the parent content. We use parameter x to specify the

proportion of added triples (and 1 − x for the deleted triples). The parameter x ranges

[0.5, 0.9], so 1 − x ranges (0.1, 0.5). We used x = d for the production of the dataset

used in the experiments. The difference in triples with respect to the parent content is

10% at the left branch, and the same holds for the the right branch. This proportion is

represented by the parameter y. For additions, in both cases (i.e. in both a and 1 − a

branches) we assumed that the 25% of the additional triples are triples which already
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Select randomly an 
existing version 
and add triples

Select randomly an 
existing version

From the set of 
existing triples

Add y*x*75% triples 
(brand new triples)

Select randomly an 
existing version 
and delete  triples

Delete y*(1-x) triples

Add y*x*25% triples
(from the set of 
existing triples)

Brand new
triples

1-a

25%

a*(1-d)

75%

a*d

Figure 5.2: Synthetic dataset generation method for Dat2

exist in the KB, while the rest 75% are brand new triples. Dat2 consists of 1000 versions,

each having 10,000 triples on average as well.

The frequency of triples in versions approximates a power law distribution. This hold

for both the frequency of triples in versions, and the frequency of triples in the nodes of

POI. Just indicatively, Figure 5.3 show in log scale the distribution of triples in versions

(left), and in nodes (right) for Dat2 with d = 0.7 where |T | = 531, 500. Notice that if we

exclude the first 10,000 triples the rest 521,500 triples follow a power-law distribution as

their plot in the log scale approximates a straight line.

Figure 5.3: The distribution (in logscale) of triples in versions (left) and in nodes (right) for
Dat2 for d=0.7 (Y: frequency, X: triples)

After feeding these datasets to POI we observed that the storage graph of POI for Dat1

has a large number of edges, while the storage graph for Dat2 has a more flat morphology

with less connections and depth. Specifically, the average depth of the graph for Dat1

(resp. Dat2) in our experiments (and assuming all d values) is 3 - 5.5 (resp. 1.4), while

the max depth for Dat1 (resp. Dat2) is 13 - 14 (resp. 5).

Dat3. Lastly, we created a third synthetic dataset (Dat3) where no version is subset of

71



another, versions share a lot of common triples and the triple frequency follows a power-

law (for being close to real datasets). The above characteristics imply that POI cannot be

effective, as it has the same space requirements as the IC approach. We expect that CPOI

would be much better than IC and we want to estimate how CPOI performs in comparison

with CB approach. Dat3 consists of 1000 versions, each having 10,000 triples on average,

and |T |=400,000. It was produced as follows: at first we compute the frequency of each

distinct triple1, creating a list of the form < tripleId, #versions >. Then we start filling

each version’s content consuming the ids of every list consecutively. Specifically, once

we have inserted one triple in #versions (according to the list), we continue with the

next triple starting insertions from the subsequent version of the one that we added the

previous tripleId last.

5.2 Real Datasets

GO versions. Moreover, we conducted experiments over only a few versions of GO.

We used the RDF/S dumps from the Gene Ontology (GO) project2. This dataset contains

27,640 classes, and 1,359 property instances and uses 126 properties to describe genes. We

used only a few versions, specifically 6 versions (v.16-2-2008, v.25-11-2008, v.24-3-2009,

v.5-5-2009, v.26-5-2009, v.22-9-2009) which are not successive, so a lot of changes exist

between them, and indeed none of them is subset of another. We have to note that if we

had used a higher number of versions, then that would be an advantage for POI.

5.3 Discussion over Datasets

Summarizing the main characteristics of the above datasets we could mention:

Dat1 : Consists of versions whose contents are proper subset or superset of the contents

of the parent versions.

Dat2 : It is the more realistic dataset, as it contains versions that are subset/superset-

related with other versions and versions that are not subset/superset-related with

1Using the formula Freq(tripleId) = ( 100.230
tripleId

)0,6 + 25, thus each triple appears at least to 25 versions.
2www.geneontology.org/
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any other version as well. However, in the later case, they have common triples with

other versions (overlapping among their content).

Dat3 : Consists of versions that share a lot of common triples and no version is subset of

another. This dataset captures the extreme case where POI (and CPOI) graph has a

flat structure, which is the worst case for POI.

GO : Like Dat3, no version is subset/superset of any other version. Also, the versions

that have been used are not successive, so a lot of changes exist between them.

5.3.1 Metrics for Comparing Datasets

Subset Content Density

In order to measure how efficient POI can be in comparison with other strategies with

more correctness, we are taking into account one more parameter that reflects the storage

graph’s form as far as the subset content relationships among versions. We introduce

SubsetContentDensity (SCD) norm, which express the fraction of versions whose content

is subset of other versions’ content. Specifically, we define:

SubsetContentDensity(V ) =
{ (v, v′) ∈ V 2 | v.cont ⊆ v′.cont, v ̸= v′}

|V |(|V | − 1)
(5.1)

Its values range in [0, 1]. We get 0 when there is no version’s content that constitutes

subset of any other version’s content, while we get 1 when all versions have the same

content, so each version’s content constitute subset of every other version’s content. The

intermediate values are the most interesting as we are expecting that as SCD is increasing

so efficient POI turns.

Futhermore, we measured the average depth of the versions and the max depth of the

storage graph’s nodes. The first one is defined as:

AverageDepth =

∑
nodes(number of versions point to this node) ∗ (node depth))

number of versions
(5.2)

We use the above measures to compare the graph form between the datasets (Dat1

and Dat2). The results are shown in Figures 5.4, 5.5. As we can observe, Dat1 generates

a more coherent graph’s structure than Dat2. The graph produced by Dat1 spreads in
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depth in contrast with the graph produced by Dat2, that spreads in depth. This is a

presumable result, as in Dat1 the content of every version is super or subset related with

the content of another version, while in Dat2 that is not the case. Obviously, the above

metrics are referred only to Dat1 and Dat2, as they are meaningless for Dat3 and GO.

00,0010,0020,0030,0040,0050,0060,007

0,5 0,6 0,7 0,8 0,9
SCD

d
Dat1Dat2

Figure 5.4: SCD of Storage Graphs’ for Dat1 and Dat2
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Figure 5.5: AverageDepth (left) and MaxDepth (right) of Storage Graphs’ for Dat1 and Dat2

5.4 Compared Options

For each dataset we compared the following options:

a) plain POI (i.e. no reassignment, 32-bit integer encoding),

b) CPOI DEFAULT (i.e. no reassignment),

c) CPOI after ordering triples randomly (Random),
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d) CPOI after ordering triples wrt node size (Size in descending order and Size Reverse

in ascending order),

e) CPOI after ordering triples wrt their frequency in nodes (Frequency),

f) CPOI after ordering triples wrt their position in the storage graph (BFS and BFS Reverse

for reverse traversal),

g) CPOIu using uniform encoding.

We compared the above options with respect to the following aspects: storage space for

the node contents, total space, and time to assign the identifiers. For CPOI we tested two

encodings: Unary (as it is very close to the analytical results), and Elias-γ. The latter

is better than unary because for an integer n, Elias-γ requires 2⌊log2 n⌋ + 1 bits, while

unary requires n bits. Here we explain briefly how these techniques work.

Unary encoding

A positive integer n is represented by n bits, specifically by n-1 ones followed by one

zero (or n-1 zeros followed by an one). As an example, lets see the encoding for numbers

1-17:

Number Encoding

1 = 0

2 = 10

3 = 110

4 = 1110

5 = 11110

6 = 111110

7 = 1111110

8 = 11111110

9 = 111111110

10 = 1111111110

11 = 11111111110

12 = 111111111110
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13 = 1111111111110

14 = 11111111111110

15 = 111111111111110

16 = 1111111111111110

17 = 11111111111111110

Elias-γ encoding

A number x is represented by a concatenation of two parts:

a. a unary code for 1 + ⌊logx⌋ and

b. a code of ⌊logx⌋ bits that represents the values of x − 2⌊logx⌋ in binary

The encoding for numbers 1-17 are:

Number Encoding

1 = 20 + 0 1

2 = 21 + 0 010

3 = 21 + 1 011

4 = 22 + 0 00100

5 = 22 + 1 00101

6 = 22 + 2 00110

7 = 22 + 3 00111

8 = 23 + 0 0001000

9 = 23 + 1 0001001

10 = 23 + 2 0001010

11 = 23 + 3 0001011

12 = 23 + 4 0001100

13 = 23 + 5 0001101

14 = 23 + 6 0001110

15 = 23 + 7 0001111

16 = 24 + 0 000010000

17 = 24 + 1 000010001
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5.5 Results

We compared the storage space for the nodes’ content of POI, CPOIu, and CPOI with

Unary and Elias-γ encoding. Firstly, we present the results for Dat1 and Dat2 and there-

after for GO and Dat3, as they demonstrate extreme cases for POI.

Results for Dat1 and Dat2

The results for Dat1 (resp. Dat2) are shown in the left (resp. right) part of Figure

5.6. It is evident that in both datasets CPOI with Elias-γ is by far the best compression

method, achieving a 7.5%-8.5% compression ratio. CPOIu comes second achieving only

59%-63% compression ratio. Third comes CPOI with Unary encoding. However, in Dat1

and for the case where d=0.9 (i.e. when we have almost only additions, and thus a lot

of ⊆-relationships) it is fourth, i.e. worse than plain POI. This happens because as d

increases, |T | increases as well, while
∑|N |

i=1 |ni| decreases (because of the subset/superset

relations). Hence, the required space for POI decreases. That does not hold for CPOI, as

it depends only on Gaps(N).

Regarding the d value, since in Dat2 we have less subset/superset relations wrt Dat1,

as d increases, |T | and
∑|N |

i=1 |ni| increases as well, consequently, the required space for

POI increases. Regarding CPOI, its space in Dat2 increases as in Dat1 since it depends on

Gaps(N) and for larger d we have larger |T |.

0,0E+002,0E+064,0E+066,0E+068,0E+061,0E+071,2E+071,4E+07
0.5 0.7 0.9

Bytes
d

Space for the nodes' contents for Dat1

POICPOIuCPOI_unaryCPOI_elias-γ 0,0E+001,0E+072,0E+073,0E+074,0E+075,0E+076,0E+07
0.5 0.7 0.9

Bytes
d

Space for the nodes' contents for Dat2

POICPOIuCPOI_unaryCPOI_elias-γ
Figure 5.6: Space for the nodes’ contents for Dat1 (left) and Dat2 (right) of POI, CPOIu and
CPOI (for Unary and Elias-γ encoding).

Regarding the reassignment policies, Figure 5.7 shows comparative results for Dat1 and

Dat2 using Elias-γ. In both datasets BFS is the best reassignement (with compression

ratio 7.5%-8%), outperforming CPOI DEFAULT. All the others reassignment policies are

outperformed by CPOI but none of them is worse than POI or CPOIu. The left part of

77



Figure 5.9 groups and ranks reassignment policies according to the compression ratio they

achieve for each dataset.

Regarding nodes’ contents, another interesting observation is that a gapped representa-

tion with Elias-γ gives around 20% compression ratio (even with a random id assignment).

A ”good” (i.e. at least not random) assignment (with Elias-γ encoding) gives around 8%

compression ratio (i.e. three times less space) in comparison to the random assignment.

The time required for the reassignment is short for all policies ranging from 4 to 11

secs for Dat1, and from 14 to 46 secs for Dat23. The fastest policy is BFS, while the

slowest is Frequency.
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Figure 5.7: Nodes’s space for Dat1 (left) and Dat2 (right) of CPOI using Elias-γ encoding for
various assignment policies.

Unary Although the Unary is not as good as Elias-γ (as we have seen earlier), we com-

paratively evaluated the reassignment policies also for this encoding since the space re-

quirements of that encoding is what is captured by the analytical results of Section 4.2.

Figure 5.8 show comparative results for Dat1 and Dat2. We observe larger variations in

comparison to Figure 5.7, since Unary encoding better reflects Gap(N) than Elias-γ. We

can see that CPOI DEFAULT outperforms all reassignment policies in these experiments.

Regarding the other policies, in Dat2 BFS is the best, followed by Size Reverse and Fre-

quency, while in Dat1 the above policies are interchanged with each other for different

values of d. In both datasets the worst is Random, followed by Size and BFS Reverse.

The right part of Figure 5.9 groups and ranks the reassignment policies according to the

3The implementation is in Java and all experiments were carried out in main memory of a PC with Pentium(R)
IV 3.40 Ghz, 1,49 GB Ram, and Windows XP.
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compression ratio they achieve for each dataset. We can see that POI outperforms all re-

assignments policies in Dat1, while in Dat2 BFS, Size Reverse and Frequency outperform

POI.

The time for the reassignment for all policies is again slow ranging from 4 to 11 secs

for Dat1 and from 14 to 40 secs for Dat2. The fastest policy is BFS, while the slowest is

Frequency.
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Figure 5.8: Nodes’s space for Dat1 (left) and Dat2 (right) of CPOI using unary encoding for
various assignment policies.
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Figure 5.9: Ranking of reassignment policies wrt their compression ratio for Elias-γ encoding
(left) and unary encoding (right).

Total Space

So far we have compared the space required by the sets of triple ids. To quantify the

overall benefit of using CPOI, we compared the total storage space requirements of IC,

CB, POI, CPOI (Elias-γ and DEFAULT id assignment). We also conducted experiments

over a CB Dictionary (CBD) approach, that in comparison with CB, does not store the
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Figure 5.10: Total space for Dat1 (left) and Dat2 (right) of IC, CB, POI, for various d values
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Total Space for Dat2

CBCBDCCBDPOICPOI
Figure 5.11: Total space for Dat1 (left) and Dat2 (right) without IC, for various d values

entire triples of each delta, but it keeps a mapping of triples with identifiers and stores

only the identifiers (integers) in each delta node. This approach is certainly better than

CB for those triples that occur at least in two deltas. We extended this approach with

experiments over gapped identifiers and variable length encoding. We shall use the term

CCBD (Compact CBD) to refer to it.

The left (resp. right) part of Figure 5.10 shows the space requirements for Dat1 (resp.

Dat2), for various values of d (0.5 - 0.9). Figure 5.11 depicts the same space requirements

without IC approach. We can see that CPOI and CCBD are always better than the other

policies. CCBD slightly outperforms CPOI in both datasets.

The main results can be summarized as follows. Using a CPOI with BFS reassignment

and Elias-γ we can achieve compression ratio of 8% of the size of nodes’ content and about

60% compression ratio over the total size of the graph, while with the adoption of a CCBD

we can achieve 56% - 60% compression ratio (over the total size of the POI graph).

Comparing the total size of CPOI with the other two methods (IC and CB), the former

requires only about 4.3% (4.4%-4.8% for Dat1 and 3.8%-4.3% for Dat2) of the space
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needed for IC and 35.4%-70.9% (40.1%-70.9% for Dat1 and 35.4%-54.8% for Dat2) of the

space needed for CB approach.

Regarding the total size of CCBD with the other two methods (IC and CB), the for-

mer requires only about 4.3% (4.4%-4.8% for Dat1 and 3.7%-4.2% for Dat2) of the space

needed for IC and 34.1%-70.7% (39.8%-70.7% for Dat1 and 34.1%-52.9% for Dat2) of the

space needed for CB approach. Comparing the total size of CCBD with CPOI, the former

requires about 96.3% - 99.8% (99.1% - 99.8% for Dat1 and 96.3% - 96.5% for Dat2).

Results for GO and Dat3

The results for GO regarding the storage space of nodes are shown in Figure 5.12

(left). We observe that unary and Elias-γ encodings offer significant gains. Regarding

the reassignment policies Figure 5.12 (right) shows comparative results using Elias-γ and

encodings. Now Figure 5.13 shows the total storage space. The first observation is that

POI is better than IC. This is due to the storage gains achieved by keeping triple ids (in

POI) instead of triple strings (in IC). POI is better than CB even if the graph is flat. So

does CBD. CPOI and CCBD are better approaches (CCBD slightly outperforms CPOI).

0,0E+005,0E+051,0E+061,5E+062,0E+062,5E+063,0E+063,5E+064,0E+064,5E+065,0E+06

POI CPOIu CPOI_unary CPOI_elias-γ
Bytes

Space for the nodes' contents for GO

0,0E+005,0E+041,0E+051,5E+052,0E+052,5E+053,0E+05
Elias-γ Unary

Bytes
CPOI CPOI_Size CPOI_Size_Rev CPOI_RandomCPOI_Frequency CPOI_BFS CPOI_BFS_Rev

Figure 5.12: Nodes’ space in GO.
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IC CB CBD CCBD POI CPOI
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CB CBD CCBD POI CPOI
Bytes

Total Space for GO

Figure 5.13: Total storage space in GO with IC (left) and without (right).
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Figure 5.14: Nodes’ space in Dat3.
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Figure 5.15: Total storage space in Dat3 with IC (left) and without (right).

The results for Dat3 for the nodes’ space are shown in the left part of Figure 5.14,

while comparative results using Elias-γ and unary encodings are shown in the right part.

CPOI outperforms POI as we expected. CPOI with Elias-γ gives the best compression ratio,

i.e. 3.5%. CPOIu comes second achieving 59.4% compression ratio, while CPOI with Unary

encoding achieves 63% compression ratio. Regarding the reassignment policies, the best

reassignement is Size Rev for unary and Size for Elias-γ (with compression ratio 62% and

3.3% respectively). Size, Size Rev and BFS Rev outperform CPOI DEFAULT. The other

reassignment policies are outperformed by CPOI DEFAULT, but none of them is worse

than POI or CPOIu.

Regarding the total storage space the results are shown in Figure 5.15. POI and CBD

are much better than both IC and CB (as they store each distinct triple once), while CB is

slightly worse than IC. CPOI and CCBD are even better approaches with CCBD to slightly

outperform CPOI. We conclude that even if no version is subset of another, and we have

a significant number of versions, then CPOI and CCBD are significantly better than the CB

approach.
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Regarding the comparison of POI (and CPOI) with CBD (and CCBD), in CBD the cost to

reconstruct the contents of a version is history dependent (and may more expensive than

POI), and POI offers faster subset checking. On the other hand the addition of a version

in CBD can be faster than POI since there is no need for checks to determine its placement

in the storage graph. In general we can say that the price to pay, in comparison to IC and

CB, is slower additions of new versions and the adoption of gapped and encoded identifiers

makes them slower. Although the insertion algorithm of POI exploits the structure and

semantics of the storage graph, its plain version sometimes requires 100 seconds for the

addition of a version. However, the variation with cache which has been proposed (in

[42]), reuses results of set union operations, and leads to an average insertion time less

than one second. Specifically, the average insertion time for Dat1 (resp. Dat2) was 0.3-0.8

sec (resp. 0.8-1 sec). The gapped and encoded identifiers incur only a small overhead,

specifically in our experiments for Dat1 (resp. Dat2) the insertion time was 0.8-2.4 sec

(resp. 3.2-4.4 sec).

5.5.1 Summary of compression ratios

Table 5.1 (resp. Table 5.2) summarizes the compression ratios of CPOI4 (resp. CBD)

for each dataset in comparison with the rest policies.

Compression
Ratio

CPOI
IC

CPOI
CB

CPOI
CBD

CPOI
CCBD

CPOI
POI

CPOI R
CPOI

Realistic
Dat1 4.4% - 4.8% 40.1% - 70.9% 93.1% - 95.5% 100.2% - 100.9% 77.2% - 90.6% 99.9% - 100%
Dat2 3.8% - 4.3% 35.4% - 54.8% 95.4% - 98% 103.6% - 103.8% 58.1% - 61.5% 99.7% - 99.8%

Anti-correlated
6 GO
versions

34.4% 66.5% 94.7% 100.2% 89.9% 100%

Dat3 4% 4% 50.7% 100% 50.7% 99.8%

Table 5.1: Compression ratios of CPOI in comparison with the rest policies

4CPOI R refers to the best reassignment for each dataset.
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Compression
Ratio

CCBD
IC

CCBD
CB

CCBD
CBD

CCBD
POI

CCBD
CPOI

CCBD
CPOI R

Realistic
Dat1 4.4% - 4.8% 39.8% - 70.7% 92.2% - 95.3% 76.5% - 90.4% 99.1% - 99.8% 99.2% - 99.8%
Dat2 3.7% - 4.2% 34.1% - 52.9% 91.9% - 94.6% 56% - 59.4% 96.3% - 96.5% 96.6% - 96.7%

Anti-correlated
6 GO
versions

34.4% 66.4% 94.5% 89.7% 99.8% 99.8%

Dat3 4% 4% 50.7% 50.7% 100% 100.2%

Table 5.2: Compression ratios of CBD in comparison with the rest policies

5.5.2 Experimental Results vs Analytical Results

Regarding Dat1 and Dat2 and with respect to the analytical comparison presented in

Section 4.2, the conditions that do not require computing Gaps(N), i.e. those in Prop.

4 and equations (4.8) and (4.9), are not satisfied, hence by looking at the features of our

datasets (|ni|, |T |, avg|ni|) we cannot conclude which approach guarantees space benefits.

Referring to the conditions that require a gap representation (i.e. those in Prop. 3

and Prop. 5), by considering the DEFAULT reassignment, Prop. 3 holds for Dat1 for all

d ∈ [0.5 − 0.7], while for Dat2 for d ∈ [0.5 − 0.9]. Prop. 5 does not hold for any value of

d neither for Dat1 nor for Dat2. Regarding the other reassignment policies Prop. 3 holds

for Dat2 for BFS, Frequency and Size Rev, while for Size and BFS Rev it holds only for

d = 0.5. These results agree with the experimental results.

Regarding GO the conditions that do not require computing Gaps(N), i.e. those in

Prop. 4 and equation (4.8) hold, so CPOI always guarantee space savings over both POI

and CPOIu. Consequently, the conditions that require the Gaps(N) value, i.e. Prop. 3

and 5, hold too.

As far as Dat3 the conditions that do not require computing Gaps(N), are not satisfied.

5.6 Discussion

5.6.1 Operations over a CPOI

In a versioning system, the main scenario contains additions of versions. Updates or

deletions of existing versions are rare. The addition of a new version can change the

84



structure of the storage graph and thus the contents of some of its nodes. It follows that

the addition of a new version can affect the gains from the assignment/encoding. Let’s

analyze this in more detail. Let n be the set of triples of a new version to be added. If

n ∩ T = ∅ then the storage graph is not affected and the encoding of the new triples can

be optimal. Let now consider the case where n ∩ T ̸= ∅, and let nex denote the existing

triples and nnew the brand new ones, i.e. nex = n ∩ T and nnew = n \ T . If nex can be

expressed as union of nodes that already exist in the graph, and n is not subset of any of

the existing versions, then for nex we do not have to represent any triple, while for nnew we

can use an optimal encoding for them (since they are brand new triples). However, if nex

cannot be expressed as union of nodes that already exist in the graph, then those which

cannot be expressed as union of existing nodes will be represented explicitly using their

current ids. In the general case where n is placed in the internal part of the graph, i.e.

it has fathers and children (or only children), consequently n ⊆ T , then only the contents

of the direct children of n in the graph will be changed. It follows that the addition of

new versions does not significantly affect Gaps(N). This is probably the reason why CPOI

DEFAULT performs well in the experiments, i.e. its performance is very close to the best

(BFS) policy. Note that the DEFAULT assignment, actually simulates a scenario with

additions of versions.

However, and to further reduce space, we can periodically re-assign/encode identifiers

(e.g. using the BFS method that gave the best results in our experiments). This is

analogous to the policy that is usually adopted in the inverted index of an IRS (or WSE);

since the addition of new documents affects the posting lists of the words that occur in

that document, periodically the documents are clustered for assigning close identifiers.

Since clustering is an expensive operation, it is done periodically, or other heuristics (like

the one presented in [35]) are employed to reduce the clustering cost. In our case, the

problem is easier since BFS is not computationally expensive. However, if we consider

CPOI DEFAULT as baseline, then BFS yields a compression ratio in 95%-97% for nodes

contents and in 99.7%-99.9% for the total space. Since the improvement is not significant,

we can conclude that the reassignment is not necessary.
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Chapter 6

Conclusions and Future Work

6.1 Synopsis and Key Contributions

The provision of versioning services over RDF datasets is of significant interest for

several modern applications for achieving, preservation and provenance of the data. In

this thesis we concentrate on this problem by providing versioning services and particularly

archiving of RDF data.

We proposed a compact representation for POI based on gapped representation of

triple identifiers and variable-length identifier encodings. We analyzed the space require-

ments of this representation and identified sufficient conditions that guarantee compres-

sion comparing to plain POI. Subsequently, we conducted a large number of experiments

over various synthetic datasets, and using several methods for assigning identifiers.

We have also seen that even in anti-correlated for POI datasets, CPOI is still better than

the CB approach. Regarding reassignment policies, we noticed that identifier assignment

in a first-in-first-served basis is almost as good as reassignment policies, and from this we

can conclude that identifier reassignment is not necessary.

Apart from RDF, it is not hard to see that CPOI is beneficial for applications that

require keeping several sets (there are several applications of set-valued attributes [37])

and with a significant probability they are ⊆-related. For instance, social networking

systems have to keep information about large numbers of users. CPOI could be exploited

for versioning groups. Since groups usually grow, rather than shrink, a significant number

of versions are expected to be ⊆-related.
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The price to pay is slower insertion times for new versions (in comparison with IC and

CB). However, a version is added only once, therefore CPOI is a beneficial choice for the

intended application scenario.

Since we do not deal with the compression of the table that keeps the distinct triple

strings and their ids, techniques like those proposed in [29] [13], are complementary to

CPOI and if used together will further reduce the overall space.

6.2 Directions for Further Research

Issues that are worth further research include: to elaborate on the problem of exploiting

that structure in order to store a bulk amount of data (in secondary memory), and

to elaborate on reassignment techniques which are based on clustering although such

methods are expected to be significantly computationally more expensive.

Regarding the former, if the storage graph ⟨Γ, stored⟩ of POI does not fit in main

memory, then only Γ could be kept in main memory, while the function stored (i.e. the

stored triples at each node) could be kept in secondary memory.

Figure 6.1 illustrates an example of storing data using secondary memory. We consider

6 knowledge bases (KBs), whose contents are:

a0 = {1, 2, 3, 4, 5},

a1 = {1, 2, 3, 4, 5, 6},

a2 = {1, 2, 3, 4, 7, 8},

b0 = {1, 2, 3},

b1 = {1, 2, 3, 4, 5, 6}, and

b2 = {1, 2, 7},

where 1...8 are triple identifiers.

For instance, a relational DBMS could be used with schema Stored(vid,tid) where

tid is the triple identifier. To retrieve the contents of a version i, Brt(i) is needed to be

computed using Γ and then a disjunctive query will be send to the db (with all ids in

Brt(i)).

The employment of ORBMSs (Object-Relational DBMSs) is beneficial (with respect to
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Nodes Contents

Secondary Memory or DBMS

Figure 6.1: Store data using secondary memory

storage space) as they support set-valued attributes (for instance PostgreSQL supports

array-valued attributes). In that case, stored could be stored in a table with schema

Stored(vid,SetOf(tid)), and this representation is less space consuming. To retrieve

the contents of a version i, again Brt(i) is needed to be computed using Γ and then a

disjunctive query will be send to the DBMS (with all ids in Brt(i)) and the union of the

sets obtained will be taken.

Another approach that could be adopted is to keep the all needed information in an

inverted file. In order to retrieve the contents of a version i, the same procedure needs to

be followed as before. This approach is described briefly in the next Section.

6.2.1 Inverted File Structure

The inverted file is the most popular indexing technique. It is mainly used in Web

indexing1, because it offers fast access to documents based on their content. In general,

this scheme allows users to retrieve documents using words occurring in the documents,

sequences of adjacent words, and statistical ranking techniques. Also, it usually uses com-

pression methods that ensure that the storage requirements are small and that dynamic

update is straightforward. The only assumption that need to be made is that sufficient

main memory is available to support an in-memory vocabulary.

For our indexing scheme we assume that nodes correspond to words, and triples to

documents. For our running example, Figure 6.2 depicts the structure of the inverted file.

1http://en.wikipedia.org/wiki/Web indexing
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Figure 6.2: Pointers and storage graph kept in main memory (left) and inverted file structure
kept in secondary memory (right)

We only need to store in main memory Γ and pointers indicating which node corre-

sponds to each version. Γ consists of the nodes with their relationships and some extra

information for each node, that is the size of the node (number of triples) and the position

of the appropriate record to the posting file.

As far as the files kept in secondary memory, the inverted file structure requires three

files:

• Index File: In essence, it keeps all the information stored in Γ, our vocabulary.

• Posting File: It contains records of the type ⟨tripleId − position⟩, where tripleId

is a triples’ identifier and position is the relevant position to the Triple File. For

each node, all the records in the Posting File are stored consecutive and they are

commonly known as Inverted List (aka Posting List).

• Triple File: It contains records of the type ⟨tripleId− content⟩, where tripleId is

a triple’s identifier and content is the triple itself. These records are considered to

be sorted in ascending order (w.r.t. tripleIds numbers).

In order to retrieve the contents of a version i, we need to compute Brt(i) using Γ and

then a disjunctive query containing all ids in Brt(i) needs to be answered. In particular,

we will firstly retrieve all the tripleIds from the Posting File, and thereafter we will retrieve

the real triples from the Triples File.
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