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Abstract

The last two decades have marked a rapid and significant growth of the Artificial
Intelligence field. Deep learning using artificial neural networks became an essen-
tial tool for a vast number of applications fields. The structure of deep learning
relies on basic concepts from several mathematical fields, such as linear algebra,
calculus, optimization, statistics. This thesis is an introduction to the mathe-
matical background of deep learning. In particular we focus on the optimization
algorithm widely used, namely the stochastic gradient descent. We study and
compare the behaviour of different variants of this algorithm under various cir-
cumstances and summarize their strengths and weaknesses. The goal of this thesis
is to provide the reader with the knowledge to comprehend the training procedure
of a neural network.
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Chapter 1

Introduction

Artificial Intelligence(AI) is the capability of a machine to imitate intelligent hu-
man behaviour. AI is accomplished by studying how humans learn, decide and
work while trying to solve a problem. Outcomes of this study is used as a basis of
developing intelligent software and systems. Today’s artificial intelligence is pow-
erful and easily accessible. AI has the ability to transform industries and opens
up a world of new possibilities.

To achieve Artificial Intelligence we utilize a tool called Machine Learning. Ma-
chine learning is a subset of Artificial Intelligence that provides computers with
the ability to learn without being explicitly programmed. In contrast with its huge
capabilities, machine learning has some limitations. A subset of machine learning
called deep learning enables us to overcome them.

Deep learning is a way to extract useful patterns from data in an automated way,
with as little human effort involve as possible, hence the automated. The main
difference between deep learning and machine learning is the ability to remove the
human costly inefficient effort from the whole process, [17]. Deep learning gets us
closer to the raw data, without the need of human involvement. Therefore, the
automated extraction of features allows us to work with larger datasets. Later
in this thesis we will show that with the optimization of neural networks we can
achieve that. There are tools easily accessible like TensorFlow [13] and PyTorch
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[9], which provide us with the resources needed to implement deep learning. The
hard part of deep learning and artificial intelligence in general, is to ask the right
questions in order to get useful data. Due to the digitization of information we
have the ability to access data easily in a distributed fashion across the world.
As a result, all kinds of problems have now a digital form, which they can be
accessed by learning algorithms. We live in a time where we have the hardware
that enables the efficient and effective large-scale execution of these algorithms.
Deep learning has a vast range of applications, from object detection [18], natural
language processing [12] and speech recognition [15] to medical diagnosis [3] and
drug discovery [6].

The structure of this thesis is organized as follow. In the first part, an introduction
to the mathematical background of deep learning is given, in order to define the
basic principles that occur during the optimization of the neural networks. This
process is described qualitatively and a method for the optimization called gra-
dient descent is introduced along with the numerical methods that were used for
approaching this process. Afterwards, a number of gradient descent algorithms
is presented, with each approaching the optimization process in a different way.
In the last part, we compared the gradient descent algorithms and discuss the
numerical results.
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Chapter 2

Mathematical formulation of the
problem

2.1 Artificial Neural Network

The majority of deep learning methods use neural networks, as a result of which
deep learning models described as deep neural networks. The word deep frequently
applies to the number of hidden layers in the neural network. A neural network
can be shallow, implies that it contains only one hidden layer, while deep neural
networks contain two or more hidden layers as shown in Figure 2.1.

The structure of neural networks consists of the input layer (this layer supplies
the information into the system), the hidden layers (execute the calculations and
pass the results to the output layer) and the output layer(this layer presents us
the information identified by the network).

The idea behind deep learning is to build algorithms that can mimic brain. The
artificial neural network implements multiple application of a basic function, called
activation function. The main purpose of that function is to imitate the action of
the biological neuron, by deciding whether the neuron should fire or not. There
are three types of activation functions, binary step functions, linear activation
functions and non linear activation functions. Only non linear activation functions
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Figure 2.1: Deep Neural Network General Form

have the ability to allow backpropagation because they have a derivative function
which is related to the inputs. There is a variety of non linear activation functions
such as Sigmoid, Tanh and ReLU [8].

The sigmoid function is one of the most commonly used activation functions

σ(x) =
1

1 + e−x
, (2.1)

which takes values between 0 and 1 and its graph is depicted in Figure 2.2. The
value 1 indicates the neuron is active(fired) while 0 indicates neuron inactivity. It
has a smooth gradient and its derivative can be expressed in terms of the function
itself :

σ′(x) = (
1

1 + e−x
)′ =

e−x

(1 + e−x)2
=

1− 1 + e−x

(1 + e−x)2
= −(

1

1 + e−x
)
2

+
1

(1 + e−x)

= −(σ(x))2 + σ(x) =⇒ σ′(x) = σ(x)(1− σ(x)).

The shape and location of the curve can be modified by changing the argument to
z = Wx + b, where W(weight) controls the steepness of the function and b(bias)
is the displacement in x-direction as shown in Figure 2.2.
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Figure 2.2: Sigmoid function with shifted and scaled input

Figure 2.3: Single neuron

Every neuron takes a set of X values as an input and calculate a y value as
an output. Each neuron has its own set of parameters, mostly mentioned as W
(vector of weights) and b (bias) which change through the learning process. In
every iteration the neuron computes a weighted average of the X values, relying
on its current weights and adds bias. At last, the computation of that result
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through the activation function gives us the output.

y = σ(z) = σ(
∑
j

WjXj + b).

The process we just described is presented in Figure 2.3.

The next step is to observe a single layer. We bring together all the outputs from
the neurons belonging to the specific layer into a vector called a[i] (a comes from
activation) where i is the index of the layer. Now, W takes the shape of a ni×ni−1
matrix and b the shape of a ni×1 vector, where ni is the number of neurons of the
layer i and ni−1 the number of neurons of the layer i−1. For instance, in Figure 2.1
the layer l has nl neurons, while layer l−1 has nl−1 neurons. Therefore, a[l] ∈ Rnl×1

and a[l−1] ∈ Rnl−1×1. Since, z ∈ Rm, σ(z) : Rm → Rm then, W [l] ∈ Rnl×nl−1 and
b[l] ∈ Rnl . Moreover, the output of a single neuron and a single layer takes the
form of equation (2.2) and (2.3) respectively,

(σ(z[l]))j = σ(z
[l]
j ) = σ

(
nl−1∑
i=1

W
[l]
ji a

[l−1]
i + b

[l]
j

)
, (2.2)

a[l] = σ(z[l]) = σ
(
W [l]a[l−1] + b[l]

)
. (2.3)

2.2 Cost Function

The cost function measures the error between the values predicted by the model
and the actual values. In simple terms, it displays how well the model is perform-
ing. Cost function maps that error into a real number. If our data set consists of
N points (xi ∈ Rn1) and each point has its own target output(y(xi) ∈ RnL), then
the cost function takes the form of equation (2.4), where a[L] is the output from
the last layer:

cost =
1

N

N∑
i=1

1

2

(
‖y(xi)− a[L](xi)‖2

)2
. (2.4)

The optimization problem we are facing is to find the appropriate weights and
biases to minimize the cost function, (2.4). If we collect all the parameters(weights
and biases) into a single vector p ∈ Rv, where v is the number of parameters, then
cost : Rv → R.
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2.3 Gradient Descent

The procedure of the cost function minimization is called learning. To achieve
that, we use the gradient descent method. Gradient descent is a first order iterative
optimization algorithm and it’s used widely in machine learning for minimizing the
cost function. If the current value of the cost function is cost(p), to find the local
minimum of the function we need to choose p+∆p such that cost(p)≥cost(p+∆p).
Suppose, that ∆p is very small, then the second and higher order terms of the
Taylor series expansion are ignored. Therefore,

cost(p+ ∆p)≈cost(p) +
v∑
i=1

dcost(p)

dpi
∆pi =⇒

cost(p+ ∆p)≈cost(p) +∇cost(p)T∆p.

(2.5)

Consequently, from equation (2.5) the key to decrease the value of the cost function
is to select properly ∆p such that ∇cost(p)T∆p is as negative as possible. To
achieve that we use the Cauchy-Schwarz inequality,

|∇cost(p)T∆p|≤‖∇cost(p)‖2‖∆p‖2 =⇒ (2.6)

−‖∇cost(p)‖2‖∆p‖2≤∇cost(p)T∆p≤‖∇cost(p)‖2‖∆p‖2. (2.7)

From equation (2.7) it is obvious that for ∆p = −∇cost(p) we have the desired
result. This observation enable us to construct the algorithm called steepest descent
method. We start with an initial guess p0 of the parameters we want to optimize
and then iterate according to:

pi+1 = pi − η∇cost(pi), (2.8)

where,

Cxi =
1

2
(‖y(xi)−a[L](xi)‖2)2, (2.9)

∇cost(p) =
1

N

N∑
i=1

∇Cxi(p). (2.10)

For an appropriate step-size η (learning rate), the sequence cost(p0)≥cost(p1)≥...
converges to a local minimum.
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To detect the local minimum of a function through the gradient descent, one takes
steps proportional to the negative of the gradient of the function at the current
point as shown in Figure 2.4(right). A disadvantage of gradient descent is the
fact that throughout the learning process the algorithm can get trapped in a local
minimum of the cost function and never make it to the global minimum, see Figure
2.4(right), except for the convex cost functions.

Figure 2.4: Left: The Gradient Descent process in 1D. Right : Graph of the
non-convex function f(x) = x4 + 7x3 + 5x2 − 17x+ 12

The Python code Listing 6.1 in Section 6.1 shows how the gradient descent algo-
rithm works on the non-convex function displayed in Figure 2.4(right). The initial
guess of the x value determines at what local minimum the algorithm will con-
verge. For instance, for x > −1 the negative gradient would have let us to a local
minimum, while if we had started at the left side the negative gradient would have
let us to the global minimum.

2.4 Back Propagation

The purpose of back propagation is to calculate the partial derivatives of the cost
function with respect to any weight (W ) and bias (b). By taking a fixed training
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point the equation (2.9) takes the form,

C =
1

2
(‖y−a[L]‖2)2 =

1

2

∑
j

(yj−a[L]j )2. (2.11)

Because of the fact that x is a fixed training point then y is also a fixed parameter.
Consequently, C is a function of the output activations (a[L]). In order to pro-
ceed through the back propagation fundamental equations we need to introduce
the Hadamard product notation. Specifically, suppose that the vectors v and u

are of the same dimension. Hence, the notation v�u indicates the elementwise
multiplication product of the two vectors corresponding components. Then the
components of v�u are exactly (v�u)i = viui. For instance,[

a

b

]
�

[
c

d

]
=

[
ac

bd

]

Furthermore, the quantity δ[l]∈Rnl is referred to as the error of the lth layer. Thus,
δ
[l]
j is called the error of the jth neuron of the lth layer and is defined by

δ
[l]
j =

∂C

∂z
[l]
j

, (2.12)

where,

z
[l]
j =

nl−1∑
i=1

W
[l]
ji a

[l−1]
i + b

[l]
j , (2.13)

from (2.2). Back propagation with the help of chain rule will provide us a method
to calculate the error δ[l]j and link it with ∂C

∂b
[l]
j

and ∂C

∂w
[l]
jk

.

Lemma 1. The four fundamental equations of back propagation are given by

δ[L] =σ′(z[L])�(a[L] − y), (2.14)

δ[l] =σ′(z[l])�(W [l+1])
T
δ[l+1], for 2 ≤ l ≤ L− 1, (2.15)

∂C

∂b
[l]
j

= δ
[l]
j , for 2 ≤ l ≤ L, (2.16)

∂C

∂W
[l]
jk

= δ
[l]
j a

[l−1]
k , for 2 ≤ l ≤ L. (2.17)
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Proof. We start with (2.14), which provides us an expression for the output error
δL. By applying the chain rule in the relation (2.12) with l = L we have

δ
[L]
j =

∂C

∂z
[L]
j

=

nL∑
k=1

∂C

∂a
[L]
k

∂a
[L]
k

∂z
[L]
j

=

nL∑
k=1

∂C

∂σ(z
[L]
k )

∂σ(z
[L]
k )

∂z
[L]
j

. (2.18)

Since σ(z
[L]
k ) depends on z[L]j only when k = j, then (2.18) takes the form

δ
[L]
j =

∂C

∂σ(z
[L]
j )

∂σ(z
[L]
j )

∂z
[L]
j

. (2.19)

Moreover, from (2.11),

∂C

∂a
[L]
j

=
∂

∂a
[L]
j

nL∑
k=1

1

2
(yk−a[L]k )2 = −(yj−a[L]j ) = (a

[L]
j − yj) (2.20)

Therefore, combining (2.19) and (2.20), we obtain

δ
[L]
j =

∂C

∂σ(z
[L]
j )

∂σ(z
[L]
j )

∂z
[L]
j

= (a
[L]
j − yj)

∂σ(z
[L]
j )

∂z
[L]
j

= (a
[L]
j − yj)σ′(z

[L]
j )

which is (2.14), in componentwise form. Furthermore, (2.15) provides a relation
for δ[l] in terms of δ[l+1]. In order to achieve that, we apply the chain rule and use
(2.12), to get

δ
[l]
j =

∂C

∂z
[l]
j

=

nl+1∑
k=1

∂C

∂z
[l+1]
k

∂z
[l+1]
k

∂z
[l]
j

=

nl+1∑
k=1

δ
[l+1]
k

∂z
[l+1]
k

∂z
[l]
j

=

nl+1∑
k=1

∂z
[l+1]
k

∂z
[l]
j

δ
[l+1]
k

(2.21)

To determine ∂z
[l+1]
k

∂z
[l]
j

, we keep in mind that

z
[l+1]
k =

nl∑
i=1

W
[l+1]
ki a

[l]
i + b

[l+1]
k =

nl∑
i=1

W
[l+1]
ki σ(z

[l]
i ) + b

[l+1]
k . (2.22)

Thus, by differentiating we obtain,

∂z
[l+1]
k

∂z
[l]
j

= W
[l+1]
kj σ′(z

[l]
j ) = σ′(z

[l]
j )W

[l+1]
kj . (2.23)
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From (2.21) and (2.23) we obtain

δ
[l]
j =

nl+1∑
k=1

σ′(z
[l]
j )W

[l+1]
kj δ

[l+1]
k , (2.24)

which is the componentwise form of (2.15). Similarly, to prove (2.16) we apply the
chain rule

∂C

∂b
[l]
j

=
∂C

∂z
[l]
j

∂z
[l]
j

∂b
[l]
j

= δ
[l]
j

∂z
[l]
j

∂b
[l]
j

, (2.25)

where z[l]j = (W [l]σ(z[l−1]))j + b
[l]
j . So, since z[l−1] does not depend on b[l]j

∂z
[l]
j

∂b
[l]
j

= 1. (2.26)

Substituting (2.26) back into (2.25) we obtain

∂C

∂b
[l]
j

= δ
[l]
j ,

which is (2.16) written in componentwise form.

At last, we use again the chain rule and the definition (2.12) to show (2.17),

∂C

∂w
[l]
ji

=

nl∑
k=1

∂C

∂z
[l]
k

∂z
[l]
k

∂w
[l]
ji

=

nl∑
k=1

δ
[l]
k

∂z
[l]
k

∂w
[l]
ji

(2.27)

where the sum is over all neurons of the lth layer. Recall that by definition z[l]k =∑nl

i=1W
[l]
ki a

[l]
i + b

[l]
k . Obviously, z[l]k depends only on w

[l]
ji when k = j and vanishes

when k 6=j. Consequently, we have

∂z
[l]
j

∂w
[l]
ji

= a
[l]
i . (2.28)

Substituting (2.28) back into (2.27) we have

∂C

∂w
[l]
ji

= δ
[l]
j

∂z
[l]
j

∂w
[l]
ji

= δ
[l]
j a

[l]
i ,

which completes the proof of the Lemma.
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To summarise, the above four equations provide us with an algorithm to compute
the partial derivatives ∂C

∂w
[l]
ji

and ∂C

∂b
[l]
j

. At first, if we set the corresponding activation

a[1] for the input layer, then equation (2.3) feed forward through the network to
calculate a[L]. Furthermore, commencing from the last layer, from relation (2.14)
we compute δ[L]. Moreover, from (2.15) we are able to calculate δ[l] backwards
from the (L− 1)th layer to the second layer. Finally, using (2.16) and (2.17) we
compute the partial derivatives. The backward movement through the network
is the reason why it is called back propagation. With the aim of eliminating
Hadamard product from the equations, we present a diagonal matrix D[l]∈Rnl×nl

where, D[l]
ii = σ′(z

[l]
i ). Thus, the equations (2.14) and (2.15) take the form of (2.29)

and (2.30) respectively

δ[L] = D[L](a[L] − y), (2.29)

δ[l] = D[l](W [l+1])
T
δ[l+1]. (2.30)

Recall that the back propagation algorithm calculates the gradient of cost function
for a fixed point x. Hence, the gradient of the cost function for the whole training
set is the mean of the individual gradients over all training points,

Cxi =
1

2
(‖y(xi)−a[L](xi)‖2)2,

∇cost(p) =
1

N

N∑
i=1

∇Cxi(p).

Now, we are at a point where we are able to construct an iterative method to
minimize the value of the cost function. Listing 6.2 in Section 6.2 presents a
pseudocode which illustrates this process.

2.5 Simple Deep learning implementation

In this section we utilize the tools we gained from the previous sections in this
chapter, to train a neural network for a simple use of deep learning [4]. As shown
in Figure 2.5 we have ten labeled points. The points are split in two groups, group
A displayed with circles and group B displayed with triangles. Our goal is to create
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Figure 2.5: Labeled data points in R2

a model which can predict if a point in R2 belongs either in group A or in group
B. The characterization of the two groups will be presented later in this section.

To construct that model we will use the Neural Network in Figure 2.6. Figure 2.6
depicts a Neural Network with 3 layers. The input layer (layer 1) consists of two
neurons because of the fact that our data set points belongs in R2, therefore, they
have two components. We recall from (2.3) that W [l] ∈ Rnl×nl−1 , b[l] ∈ Rnl×1 and
a[l] ∈ Rnl×1. The second layer has six neurons, thus a[1] ∈ R2×1, W [2] ∈ R6×2 and
b[2] ∈ R6×1. Consequently, the output from layer 2 has the form

a[1] = x

a[2] = σ(z[2]) = σ(W [2]a[1] + b[2]) ∈ R6×1

Furthermore, the output layer (layer 3) has 2 neurons. Following the same pro-
cedure, the weights and biases of the 3rd layer take the shape of W [3] ∈ R2×6 and
b[3] ∈ R2×1 respectively. Hence, the output of the network has the form of equation
(2.31).

F (x) = a[3] = a[L]

F (x) = σ(z[3]) = σ(W [3]a[2] + b[3])

F (x) = σ(W [3]σ(W [2]a[1] + b[2]) + b[3]) ∈ R2×1

(2.31)
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Figure 2.6: A Neural Network with one hidden layer

The number of parameters of the neural network shown in Figure 2.6 are 32.
Therefore, the function F (x) : R2 → R2 of the relation (2.31) except from the
input value x is also defined in terms of those 32 parameters. With the purpose
of using the cost function (2.4) we have to set target output (y(xi)) for each input
data point (xi). Thus, the target output for data points of group A is [0, 1]T and
the target output for data points of group B is [1, 0]T .

Hence, for every new data point which F (x) is close to the vector [0, 1]T we cate-
gorize it in group A and for each new data point which F (x) is close to the vector
[1, 0]T we categorize it in group B. Consequently, if the function F (x) satisfies the
inequality F1(x) < F2(x) then, the new data point belongs in group A and if it
satisfies the inequality F1(x) > F2(x) then, the new data point belongs in group
B.

The relations that we have extracted above, allow us to execute the pseudocode
mentioned at the end of the previous section. Listing 6.3 in Section 6.3 demon-
strates a simple application of the neural network training of the data set shown in
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Figure 2.5 using the gradient descent algorithm and the back propagation method.

Figure 2.7 shows the behaviour of the cost function during the learning process.
The value of the cost function started close to 5 and throughout the procedure it
plummeted to 10−2.

Figure 2.7: The graph above demonstrates the behaviour of the cost function
throughout the learning process
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Chapter 3

An overview of gradient descent
optimization algorithms

3.1 Variations of the basic algorithm

There are three variants of gradient descent algorithm. The major difference be-
tween those three is the amount of data they use for each update of the parameters
and in particular, to compute the gradient of the cost function. We compromise
by making an exchange between the accuracy and the computational cost [14].

3.1.1 Batch gradient descent

Batch gradient descent or Vanilla gradient descent is when on every iteration we
sum up the gradient of the cost function for each sample of the training set and
then compute the mean of those individual gradients. Hence, for every update we
have used the entire training set:
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pi+1 = pi − η∇cost(pi),

Cxi =
1

2
(‖y(xi)−a[L](xi)‖2)2,

∇cost(p) =
1

N

N∑
i=1

∇Cxi(p).

The code implementation takes the form:

for i in range ( epochs ) :
Gradient=compute_gradient ( cost_funct ion , parameters , data_points )
parameters=parameters − l ea rn ing_rate ∗ Gradient

There are advantages and dis-advantages in this approach which are now highlight.

• The main advantages

– Computational efficiency: This technique is less computationally
demanding as all of computer resources are not used to process a single
sample but the entire training set.

– Stable convergence: It has less oscillations and noisy steps in the
direction of the minimum because of the fact that we use the whole
training set rather than a single sample to update the parameters. Fur-
thermore, it is guaranteed to converge to the global minimum if the cost
function is convex and to a local minimum if the cost function is not
convex.

• The main disadvantages

– Slower learning: The learning process of the Batch gradient descent
is slow since the entire training set is used to perform an update of the
parameters.

– Local minimums: Throughout the learning process we can get trapped
in a local minimum of the cost function and never make it to the global
minimum. In view of the fact that we lack the noisy steps that will help
us escape the local minimum and reach our goal, the global minimum.
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3.1.2 Stochastic gradient descent

Stochastic gradient descent performs an update of the parameters for each sample
of the training set rather than using all the samples. Suppose that our training
set holds N samples. We shuffle our training set and perform N updates, one
for every individual sample. When we do that, we complete an epoch. Therefore,
learning occurs for every sample:

pi+1 = pi − η∇cost(pi, xk, yk)

Stochastic gradient descent in code takes the shape of:

for i in range ( epochs ) :
np . random . s h u f f l e ( data )
for j in range (N) :

Gradient=compute_gradient ( cost_funct ion , parameters , sample )
parameters=parameters − l ea rn ing_rate ∗ Gradient

• The main advantages

– Escape from local minimum: As a result of the frequent updates,
the steps taken in the direction of the cost function minimum have
oscillations which can help us avoiding local minima of the cost function.

– Faster learning: It can converge faster due to the frequent updates
and its computational speed.

• The main disadvantages

– Computationally expensive: Stochastic gradient is far more com-
putationally expensive than the batch gradient descent due to using all
the resources for processing one sample at a time.

– Inability to remain at the global minimum: The algorithm is
unable to remain at the global minimum of the cost function due to the
noisiness of the process.
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3.1.3 Mini batch gradient descent

Mini batch gradient descent is a mixture of stochastic gradient descent and batch
gradient descent. Frequently, is mentioned as the default method to apply the
gradient descent algorithm to deep neural networks, as it combines the advantages
of the previous two algorithms. Mini batch introduces a new hyper-parameter
m, where the term hyper-parameter is defined as the parameter that has to be
chosen manually before training. We shuffle and separate the training set into
mini batches of size m and cycle through every mini batch in a random order. The
performing over all the mini batches is referred to as an epoch like in the stochastic
gradient descent. Hence learning occurs for each mini batch of size m:

pi+1 = pi − η∇cost(pi, xk:k+m, yk:k+m)

Mini batch gradient descent in code takes the shape of:

for i in range ( epochs ) :
np . random . s h u f f l e ( data )
for j in range (N/m) :
Gradient=compute_gradient ( cost_funct ion , parameters , batch_m)
parameters=parameters − l ea rn ing_rate ∗ Gradient

• The main advantages

– Computational efficiency: In contrast with the stochastic gradient
descent, we use all the resources to process a mini batch of samples
rather than a single sample to perform an update.

– Faster learning: We perform updates more often than the batch gra-
dient descent, hence the network learns faster.

– Stable convergence: As a result of the fact that we compute an
average of the cost function gradient over m samples, that leads to less
noise.

• The main disadvantages

– New parameter: Compared with the previous two algorithms, mini
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batch gradient descent has an additional hyper-parameter, the param-
eter m. The mini batch size could play a crucial role in the learning
process. As a result of that is very important to find the proper m for
the network.

– Local minima: Stable error gradient can lead us to a local minimum
and in contrast with the stochastic gradient descent we do not have the
noise that will assist us escape.

3.2 Gradient descent algorithms

The previous methods face some difficulties with the local minima and the speed
of learning. The most critical parameter defined above is the learning rate. Some
of the following algorithms try to set a different approach to the learning rate, by
adapting it during the learning process and provide an alternative way of updating
the parameters.

3.2.1 Gradient descent and ravines

Figure 3.1(a) depicts a surface where area A is shallow and area B is steep. The
optimal would be if we take large steps when we are in area A and small steps in
area B because of the fact that a flat surface may indicate that the optimum is far
from reaching. Instead, gradient descent method updates are proportional to the
gradient magnitude. Hence, the algorithm has large step size when it has a big
gradient and the equivalent for small step size. An approach to solve that problem
is to modify the learning rate (η) according to the gradient. On the other hand,
Figure 3.1(b) display a tougher issue, where we have different slopes in several
directions. The situation where the slope in one direction is steepest than the
others is defined as a ravine. The appropriate approach would be to adapt the
learning rate in every direction. However, is impossible due to the definition of
the gradient descent, which is to follow the direction of the minimum, since by
adjusting the learning rate the direction of the step may be changed [16].
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Figure 3.1: a) depicts a surface with different slopes in different areas and b)
depicts a surface with slopes in different directions

3.2.2 Momentum

One of Gradient descent variants main difficulty is when they face ravines. Ravines
are usually near local minima. In this situation the algorithm oscillates as shown in
Figure 3.2(a) across the ravine rather than along the ravine towards the optimum,
thus, the learning process slows down. Figure 3.2(b) displays how momentum
[10] method overcomes this issue by accelerating the gradients towards the right
direction,

vi+1 = γvi + η∇cost(pi), pi+1 = pi − vi+1

The γ term belongs in [0, 1] and frequently set in a value close to 0.9. The momen-
tum constant γ controls the decay of the velocity vector v, and values closer to 1

lead to higher velocities. The momentum term diminishes updates in the dimen-
sions where the gradients direction alters and it amplifies them in the directions
where the direction of the gradients remains the same.
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Figure 3.2: Gradient descent method behaviour in a ravine

3.2.3 Nesterov accelerated gradient (NAG)

NAG differs slightly from the momentum method. The main difference between
these two algorithms is the computation of the gradient [7].

vi+1 = γvi + η∇cost(pi − γvi), pi+1 = pi − vi+1

Momentum calculates the gradient prior applying the velocity, while NAG cal-
culates the gradient after applying the velocity. This disparity enables NAG to
modify v in a faster and more robust way. The fundamental thought behind the
Nesterov accelerated gradient is that when the parameters vector p is at position
i, then the first term of the momentum update is about to push p by γv. Hence,
we use pi − γvi as an approximation of the parameters next position. Therefore,
instead of computing the gradient with respect to pi like momentum does, we use
the approximation pi − γvi to calculate the gradient. Figure 3.3 shows that with
Nesterov accelerated gradient rather than computing the gradient at the current
position, it instead uses the approximate future position to calculate the gradient.
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Figure 3.3: One iteration of momentum method (left) and one iteration of Nesterov
accelerated gradient method (right)

3.2.4 Adagrad

The common hyper-parameter for all gradient descent algorithms is the learning
rate (η). Unfortunately, it is very hard to find its optimal value. As a result of the
fact that if we set it very small the learning process would be slow and it will take
considerable time to reach an acceptable cost function. On the other hand, if we
set it too large, there is a possibility that the parameters will run throughout the
cost function and they may be unable to reach a tolerable cost. If our parameter
vector p ∈ Rn, then we are facing a non-convex cost function in Rn, which could
get us different sensitivity on each dimension.

The Adagrad algorithm [2] attempts to cope with that problem by adjusting the
magnitude of the learning rate in each dimension. Thus, the Adagrad componen-
twise parameter update takes the form of:

pi+1,j = pi,j −
η√

Gi,jj + ε
gi,j, (3.1)

where η is the learning rate constant, ε is a small quantity that prevents the
division by 0, gi is the gradient of the cost function at the time step i which we
can compute with the equation:

gi = ∇cost(pi), gi,j = ∇cost(pi,j),

and Gi denote a d × d diagonal matrix with (j, j) entry given by the sum of the
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squares of the gradients with respect to pj in the time step i.

Gi,jj =
i∑

k=1

(gk,j)
2.

Therefore, using the Hadamard product in (3.1) gives

pi+1 = pi −
η√

Gi + ε
�gi.

Adagrad major disadvantage is that the learning rate diminishes pretty fast due
to the accumulation of the cost function gradients since the launch of the training.
Hence, there comes a time that the model is unable to acquire additional knowledge
because the learning rate value is close to zero. This issue is mitigated by the
following algorithms.

3.2.5 RMSprop

Root mean square prop or RMSprop is an adaptive learning rate method that at-
tempts to upgrade the Adagrad algorithm. Rather than amass the sum of the past
squared gradients in the denominator like Adagrad, RMSprop expresses the sum
of the past squared gradients as a decaying average of these gradients. Identical
to momentum, this decaying average is the exponential moving average of current
and previous gradients.

pi+1 = pi −
η√

E[g2]i + ε
gi,

where,
√
E[g2]i + ε is defined as the root mean squared (RMS) error. Therefore,

pi+1 = pi −
η

RMS[g]i
gi

with,
E[g2]i = γE[g2]i−1 + (1− γ)g2i .

3.2.6 Adadelta

Adadelta as well as RMSprop seek to remedy the aggressive diminish of the Ada-
grad learning rate. The difference between these two algorithms is that Adadelta
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eliminates the application of the learning rate term η. We recall that the Stochastic
gradient descent update in terms of ∆p has the form:

∆pi = −ηgi,

pi+1 = pi + ∆pi.

Therefore the RMSprop update may be rearranged as

∆pi = − η

RMS[g]i
gi,

pi+1 = pi + ∆pi.

The authors in [19] detected a missmatch in Stochastic gradient descent, Momen-
tum, Adagrad and RMSprop units. They attempted to modified the RMSprop
update in an effort to match the units of the parameters. In order to achieve that
they replaced the learning rate term (η) in the numerator. Since, ∆p at the current
time step is unknown, the exponentially decaying average RMS over the previous
∆p provides us with an approximation for ∆p at the current time step.

∆pi = −RMS[∆p]i−1
RMS[g]i

gi

pi+1 = pi + ∆pi

where,
E[∆p2]i = γE[∆p2]i−1 + (1− γ)∆p2i

RMS[∆p]i =
√
E[∆p2]i + ε

3.2.7 Adam

Adaptive moment estimation or Adam is a combination of Momentum and RM-
Sprop [5]. This method uses estimates of first and second moments of the gradients
to calculate adaptive learning rates for each parameter. Where, the ith moment of
a random variable X is the expected value of that variable in the ith power

mi = E[X i].

We assume that the gradient of the cost function is a random variable due to
the fact that it is often computed in a random mini batch of data. Therefore, the
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first moment (E[g]i) is the mean and the second moment (E[g2]i) is the uncentered
variance, because of the fact that we do not subtract the mean through the variance
computation. Adam utilizes exponentially moving averages of past gradients (mi)
and of past squared gradients (vi), to estimate the first and second moment of the
gradients respectively

mi = β1mi−1 + (1− β1)gi,

vi = β2vi−1 + (1− β2)g2i .
Since, mi and vi are initialized as vectors of zeros, they are biased towards zero.
In order to address that issue the estimators take the following form:

m̂i =
mi

1− βi1
,

v̂i =
vi

1− βi2
.

Finally, we obtain the Adam update rule:

pi+1 = pi −
η√
v̂i + ε

m̂i.

3.2.8 AdaMax

AdaMax is a variant of Adam algorithm derived from the infinity norm. The Adam
update rule term vi, scales the gradients of each individual parameter inversely
proportional to a `2 norm of their past (vi−1) and current (g2i ) gradients.

vi = β2vi−1 + (1− β2)|gi|2.

The authors of the AdaMax method [5] generalize the `2 update rule to a `t based
update rule.

vi = βt2vi−1 + (1− βt2)|gi|t,

vi = (1− βt2)
i∑

j=1

β
t(i−j)
2 |gi|t.

Moreover, the norms for big t are numerically unstable. Despite that, for t → ∞
the norm illustrate a stable behaviour. Because of that, the authors of the AdaMax
proved that vi with `∞ converges to the following value.

ui = β∞2 vi−1 + (1− β∞2 )|gi|∞,

ui = max(β2vi−1, |gi|).
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We replace vi with ui to prevent the confusion with Adam. Therefore, ui takes the
place of

√
v̂i + ε and yield the AdaMax update rule:

pi+1 = pi −
η

ui
m̂i,

where,
m̂i =

mi

1− βi1
.

3.2.9 Nadam

Nesterov-accelerated adaptive moment estimation or Nadam [1], is a combination
of Nesterov accelerated gradient (NAG) and Adam. We recall that Adam is a
combination of RMSprop and Momentum. The Momentum and NAG update
rules, are the relations (3.2) and (3.3) respectively.

gi = ∇cost(pi),

mi = γmi−1 + ηgi,

pi+1 = pi −mi,

(3.2)

gi = ∇cost(pi − γmi−1),

mi = γmi−1 + ηgi,

pi+1 = pi −mi.

(3.3)

Moreover, in (3.2) we replace the symbol mi in the parameter update with the
definition for mi

pi+1 = pi − (γmi−1 + ηgi), (3.4)

The authors of Nadam modified the NAG update rule, in order to use it instead
of the momentum in the Adam update rule.

gi = ∇cost(pi),

mi = γmi−1 + ηgi,

m̂i = γmi + ηgi,

pi+1 = pi − (γmi + ηgi).

(3.5)

In (3.5) m̂i consists of the gradient at the current time step (ηgi) in addition to
the momentum vector at the current time step (γmi). Thus, in the NAG update
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rule (3.5) we use the current momentum vector to update the parameters, instead
of the previous momentum vector as in the momentum update rule (3.4). Now,
we recall the Adam update rule

mi = β1mi−1 + (1− β1)gi,

m̂i =
mi

1− βi1
,

pi+1 = pi −
η√
v̂i + ε

m̂i,

(3.6)

which may be rearranged as

pi+1 = pi −
η√
v̂i + ε

(
mi

1− βi1
),

pi+1 = pi −
η√
v̂i + ε

(
β1mi−1 + (1− β1)gi

1− βi1
),

pi+1 = pi −
η√
v̂i + ε

(
β1mi−1

1− βi1
+

(1− β1)gi
1− βi1

).

(3.7)

We note that βi1 ≈ βi−11 because of the fact that β1 value is close to 1. Thus,
mi−1

1−βi
1
≈ mi−1

1−βi−1
1

, which is equal to m̂i−1. Hence,

pi+1 = pi −
η√
v̂i + ε

(β1m̂i−1 +
(1− β1)gi

1− βi1
). (3.8)

Finally, to obtain the Nadam update rule we apply the NAG update rule in (3.8)
simply by converting the bias corrected estimate momentum vector from m̂i−1 to
m̂i

pi+1 = pi −
η√
v̂i + ε

(β1m̂i +
(1− β1)gi

1− βi1
).

In Table 3.1 we summarize the gradient descent algorithms and the components
they act upon. Furthermore, in Table 3.2 we present typical values of the param-
eters involved in these variations of the gradient descent algorithm.
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Algorithm Learning Rate Gradient

Momentum
NAG

Adagrad
RMSprop
Adadelta
Adam

AdaMax
Nadam

Table 3.1: Gradient descent algorithms and the components they act upon

Algorithm
Default Hyper-Parameter Values
η γ ε β1 β2

Momentum 0.01 0.9

NAG 0.01 0.9

Adagrad 0.01 10−7

RMSprop 0.001 0.9 10−6

Adadelta 0.95 10−6

Adam 0.001 10−8 0.9 0.999

AdaMax 0.002 0.9 0.999

Nadam 0.002 10−7 0.9 0.999

Table 3.2: Proposed default hyper-parameter values for each gradient descent
algorithm
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Chapter 4

A comparison of gradient descent
algorithms

4.1 Numerical Results

The objective of this chapter is to display the numerical results of a comparative
study of the aforementioned gradient descent optimization algorithms. They were
implemented through the three basic gradient descent variants. These are, the
batch gradient descent, the stochastic gradient descent and the mini-batch gradi-
ent descent. The comparative results were acquired using three different neural
networks, which differed in terms of hidden layers and hidden neurons. Opti-
mization was performed for the problem we discussed in Section 2.5. Numerical
comparison is based on reliability and efficiency, evaluated by the computational
time and the number of iterations required to obtain a certain accuracy level. The
numerical codes were implemented in Python, using the time library to execute
the aforementioned task.

4.1.1 Neural Network 1

The six following tables emerged using the neural network shown in Figure 4.1,
which consists of two hidden layers, of two and three neurons each. The Tables
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Figure 4.1: A neural network with four layers

4.1, 4.3 and 4.5 represent the number of iterations needed for the cost function
to achieve the value of 10−3 through the methods of stochastic gradient descent,
batch gradient descent and mini-batch gradient descent respectively. At the first
glance, it is clear that, the RMSprop is the fastest algorithm to reach the requested
cost function value in all three tables. Making the batch gradient descent the first
method to obtain that goal at just 4.23 seconds and 759 iterations. On the other
hand, as it is reasonable, the slowest algorithms of each table are the basic methods.
Furthermore, Adadelta is the second slowest algorithm for the stochastic gradient
descent and mini-batch gradient descent methods, while NAG is the second slowest
algorithm for the batch gradient descent method. Moreover, the Tables 4.2, 4.4
and 4.6 display the accuracy achieved after 5× 105 iterations for each algorithm.
As can be seen, the algorithm that performed the best in all three basic methods is
AdaMax, which managed to reach a value below 10−33 for the cost function. Also,
apart from the basic methods, the algorithms of Momentum, NAG and Adagrad
take the last three places, showing a mild improvement for the batch and mini-
batch gradient descent methods compared with the stochastic gradient descent
method.
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Stochastic Gradient Descent
Tolerance=10−3

Algorithm Iterations Time(s)
Stochastic Gradient 711150 2038.06

Adadelta 130015 443.56

Adagrad 119327 362.77

NAG 72787 216.61

Momentum 72710 216.05

Adam 40592 154.49

Nadam 20601 95.33

AdaMax 10712 47.39

RMSprop 4865 17.29

Table 4.1: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Stochastic gradient descent using the neural network
in Figure 4.1

Stochastic Gradient Descent
Iterations=5× 105

Algorithm Accuracy Time(s)
AdaMax 8.44478× 10−35 1929.41

Adam 1.98911× 10−9 1857.94

Adadelta 2.73713× 10−5 1624.31

Adagrad 1.24239× 10−4 1576.78

Momentum 1.02594× 10−4 1563.54

RMSprop 1.65404× 10−8 1523.25

NAG 1.02986× 10−4 1500.33

Nadam 1.21417× 10−9 1478.25

Stochastic Gradient 1.58721× 10−3 1436.04

Table 4.2: Accuracy each algorithm achieves by optimizing Stochastic gradient
descent using the neural network in Figure 4.1 after 5× 105 iterations
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Batch Gradient Descent
Tolerance=10−3

Algorithm Iterations Time(s)
Batch Gradient 705304 3914.01

NAG 70569 371.62

Momentum 70572 357.45

Adadelta 35293 190.87

AdaMax 6433 35.13

Adam 3257 17.46

Adagrad 2509 13.34

Nadam 2392 12.86

RMSprop 759 4.23

Table 4.3: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Batch gradient descent using the neural network in
Figure 4.1

Batch Gradient Descent
Iterations=5× 105

Algorithm Accuracy Time(s)
AdaMax 1.09075× 10−34 3641.45

Adam 3.11041× 10−9 3406.66

Momentum 9.82960× 10−5 2937.08

Batch Gradient 1.57756× 10−3 2884.64

Nadam 2.03792× 10−9 2823.54

RMSprop 2.43892× 10−8 2734.92

Adadelta 4.55304× 10−5 2720.77

Adagrad 2.71766× 10−6 2676.37

NAG 9.82918× 10−5 2650.60

Table 4.4: Accuracy each algorithm achieves by optimizing Batch gradient descent
using the neural network in Figure 4.1 after 5× 105 iterations
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Mini-Batch Gradient Descent (m = 3)
Tolerance=10−3

Algorithm Iterations Time(s)
Mini-Batch Gradient 704838 2474.19

Adadelta 71319 270.62

NAG 71695 257.93

Momentum 70899 250.61

Adagrad 25008 89.64

Adam 21161 74.97

Nadam 13876 49.13

AdaMax 5782 20.32

RMSprop 1895 6.79

Table 4.5: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Mini-Batch gradient descent using the neural network
in Figure 4.1

Mini-Batch Gradient Descent (m = 3)
Iterations=5× 105

Algorithm Accuracy Time(s)
NAG 9.97117× 10−5 2186.36

AdaMax 7.53399× 10−34 2168.82

Nadam 1.57062× 10−9 2126.13

Mini-Batch Gradient 1.57653× 10−3 1923.97

Adagrad 3.77075× 10−5 1832.39

Adadelta 3.69710× 10−5 1771.98

Adam 2.06351× 10−9 1752.29

RMSprop 2.18096× 10−8 1743.32

Momentum 1.00218× 10−4 1742.57

Table 4.6: Accuracy each algorithm achieves by optimizing Mini-Batch gradient
descent using the neural network in Figure 4.1 after 5× 105 iterations
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Figure 4.2: A neural network with a six neurons hidden layer

The second neural network we used is shown in Figure 4.2 and contains only one
hidden layer, compared to the neural network in Figure 4.1. In the same way
as before, the Tables 4.7, 4.9 and 4.11 illustrate a race between the algorithms
in order to reach the desired accuracy. Again, the RMSprop is the most descent
algorithm, while the algorithms acting upon only on the gradient (Momentum,
NAG) take the last spots. Also, Tables 4.8, 4.10 and 4.12 illustrate that after
5× 105 iterations the algorithm that perform better is the AdaMax. In addition,
same as before, Momentum and NAG are the least reliable algorithms. The neural
network in Figure 4.2 contains 32 parameters, 9 more than the neural network in
Figure 4.1. The number of the parameters is proportional to the computational
cost, but instead of improving the algorithms performance, the numerical results
indicate that they perform the same or even worse compare to the previous neural
network. Consequently, the number of hidden layers plays a more vital role to the
performance of the network than the number of neurons.
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Stochastic Gradient Descent
Tolerance=10−3

Algorithm Iterations Time(s)
Stochastic Gradient 3178639 10567.91

Momentum 334829 1469.91

NAG 335352 1463.18

Adagrad 256014 1227.89

Adadelta 288045 1091.79

Adam 25513 76.20

Nadam 19357 58.42

AdaMax 8132 24.79

RMSprop 5696 20.09

Table 4.7: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Stochastic gradient descent using the neural network
in Figure 4.2

Stochastic Gradient Descent
Iterations=5× 105

Algorithm Accuracy Time(s)
Adagrad 2.82006× 10−4 2440.43

Adadelta 7.23279× 10−4 2386.75

Momentum 6.29698× 10−4 2041.05

Stochastic Gradient 1.29995× 10−2 1572.44

Nadam 8.24029× 10−9 1564.31

AdaMax 2.00121× 10−32 1509.36

Adam 1.24174× 10−8 1488.67

RMSprop 1.02048× 10−7 1457.14

NAG 6.49063× 10−4 1383.23

Table 4.8: Accuracy each algorithm achieves by optimizing Stochastic gradient
descent using the neural network in Figure 4.2 after 5× 105 iterations
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Batch Gradient Descent
Tolerance=10−3

Algorithm Iterations Time(s)
Batch Gradient 3822124 17467.84

NAG 382755 2797.03

Momentum 382817 2563.48

Adadelta 190727 1115.83

AdaMax 9030 53.08

Adagrad 6388 36.87

Adam 6255 34.34

Nadam 5471 32.22

RMSprop 1044 5.81

Table 4.9: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Batch gradient descent using the neural network in
Figure 4.2

Batch Gradient Descent
Iterations=5× 105

Algorithm Accuracy Time(s)
NAG 7.28562× 10−4 3872.95

AdaMax 4.96527× 10−34 3550.16

Adam 1.82539× 10−8 3302.43

Adadelta 3.28114× 10−4 3180.89

RMSprop 1.49884× 10−7 3040.29

Momentum 7.28562× 10−4 3039.78

Adagrad 7.74168× 10−6 3018.01

Nadam 1.76741× 10−8 2842.28

Batch Gradient 1.62925× 10−2 2387.31

Table 4.10: Accuracy each algorithm achieves by optimizing Batch gradient descent
using the neural network in Figure 4.2 after 5× 105 iterations

44



Mini-Batch Gradient Descent (m = 3)
Tolerance=10−3

Algorithm Iterations Time(s)
Mini-Batch Gradient 3818547 14552.97

Momentum 331308 1073.32

NAG 324718 1065.01

Adadelta 174094 639.71

Adagrad 41162 155.37

Adam 16707 60.52

Nadam 13268 50.02

AdaMax 5373 19.60

RMSprop 2289 8.30

Table 4.11: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Mini-Batch gradient descent using the neural network
in Figure 4.2

Mini-Batch Gradient Descent (m = 3)
Iterations=5× 105

Algorithm Accuracy Time(s)
Adagrad 5.83938× 10−5 2297.35

Adadelta 2.98317× 10−4 2285.73

RMSprop 1.24599× 10−7 2241.79

AdaMax 3.97643× 10−33 2233.41

Adam 1.36019× 10−8 2047.73

NAG 6.08158× 10−4 1964.46

Nadam 8.76897× 10−9 1917.39

Momentum 6.11061× 10−4 1861.09

Mini-Batch Gradient 1.64631× 10−2 1826.25

Table 4.12: Accuracy each algorithm achieves by optimizing Mini-Batch gradient
descent using the neural network in Figure 4.2 after 5× 105 iterations
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4.1.3 Neural Network 3
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Figure 4.3: A neural network with a twelve neurons hidden layer

The last neural network we utilize is shown in Figure 4.3. The difference from
the neural network in Figure 4.2 is the number of neurons in the hidden layer.
Like the previous two networks, the algorithm that prevails in the Tables related
to the convergence speed (4.13, 4.15 and 4.17 ) is the RMSprop, while Momen-
tum and NAG are the slowest algorithms. Moreover, once again after 5 × 105

iterations, AdaMax is the most reliable algorithm ,but its accuracy shows a signifi-
cant decrease compare to the previous networks. Furthermore, the neural network
in Figure 4.3 has 62 parameters, almost twice the parameters neural network in
Figure 4.2 has. While we were expecting this to have a positive impact on the algo-
rithms, some of them perform worse than the previous network. It can be clearly
seen that, depending on which of the three gradient descent methods we chose, we
make a trade-off between the accuracy and the computational cost. Taking that
into consideration, the Mini-Batch method seems to be the most reliable.
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Stochastic Gradient Descent
Tolerance=10−3

Algorithm Iterations Time(s)
Stochastic Gradient 3093835 12217.18

Momentum 315148 1691.33

NAG 320733 1511.33

Adadelta 176626 953.61

Adagrad 73544 367.32

Adam 21487 117.02

Nadam 16227 84.04

AdaMax 6861 37.82

RMSprop 4524 20.78

Table 4.13: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Stochastic gradient descent using the neural network
in Figure 4.3

Stochastic Gradient Descent
Iterations=5× 105

Algorithm Accuracy Time(s)
Adam 1.03454× 10−8 3224.27

Nadam 6.91298× 10−9 2876.20

Stochastic Gradient 1.14957× 10−2 2735.02

RMSprop 1.13768× 10−7 2583.66

Adadelta 2.34165× 10−4 2265.17

AdaMax 6.42469× 10−9 2245.44

Adagrad 7.68123× 10−5 1979.66

NAG 5.79956× 10−4 1907.72

Momentum 5.38247× 10−4 1900.26

Table 4.14: Accuracy each algorithm achieves by optimizing Stochastic gradient
descent using the neural network in Figure 4.3 after 5× 105 iterations
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Batch Gradient Descent
Tolerance=10−3

Algorithm Iterations Time(s)
Batch Gradient 3087344 21440.17

Momentum 308760 2092.41

NAG 308771 2082.33

Adadelta 152411 1367.66

AdaMax 22020 187.26

Adagrad 4467 40.99

Adam 5044 40.65

Nadam 3884 32.53

RMSprop 846 6.83

Table 4.15: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Batch gradient descent using the neural network in
Figure 4.3

Batch Gradient Descent
Iterations=5× 105

Algorithm Accuracy Time(s)
Adam 1.15351× 10−8 5068.83

RMSprop 1.23825× 10−7 4958.70

AdaMax 3.25996× 10−10 4544.40

Adagrad 5.53320× 10−6 4279.17

Adadelta 2.51489× 10−4 4204.81

Nadam 7.62408× 10−9 3940.99

Batch Gradient 1.15511× 10−2 3873.48

Momentum 5.64308× 10−4 3719.04

NAG 5.64351× 10−4 3528.93

Table 4.16: Accuracy each algorithm achieves by optimizing Batch gradient descent
using the neural network in Figure 4.3 after 5× 105 iterations
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Mini-Batch Gradient Descent (m = 3)
Tolerance=10−3

Algorithm Iterations Time(s)
Mini-Batch Gradient 3084494 14550.75

Momentum 306620 2253.78

NAG 307190 2041.29

Adadelta 179383 918.25

Adagrad 30817 234.41

Adam 15357 109.78

Nadam 12559 104.49

AdaMax 6007 50.24

RMSprop 1988 10.73

Table 4.17: Number of iterations needed to reach the accuracy of 10−3 for each
algorithm by optimizing the Batch gradient descent using the neural network in
Figure 4.3

Mini-Batch Gradient Descent (m = 3)
Iterations=5× 105

Algorithm Accuracy Time(s)
Adam 1.15634× 10−8 2808.75

Adadelta 2.58372× 10−4 2729.45

Nadam 7.86205× 10−9 2705.95

AdaMax 4.70701× 10−9 2693.65

NAG 5.60687× 10−4 2618.59

RMSprop 1.16606× 10−7 2564.99

Mini-Batch Gradient 1.15549× 10−2 2556.35

Adagrad 1.74143× 10−5 2437.54

Momentum 5.59736× 10−4 2028.79

Table 4.18: Accuracy each algorithm achieves by optimizing Mini-Batch gradient
descent using the neural network in Figure 4.3 after 5× 105 iterations
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4.2 Visualization of the gradient descent algorithms

The following animations from Alec Radford [11] illustrate the behaviour of the
algorithms under certain circumstances. Unfortunately, the Adam algorithm and
its variants (Nadam, AdaMax) are missing. The animation in Figure 4.5 depicts
how the algorithms interact with the Beale’s lost function. As a result of the
large initial gradient, the algorithms based on the gradient are unstable at first.
While, the algorithms that act upon the learning rate managed to handle the large
gradient with more stability. Furthermore, the animation in Figure 4.4 reveals the
behaviour of the algorithms when they face a long valley. Momentum and NAG
oscillate until they finally break symmetry, while Stochastic gradient descent did
not manage to escape. On the other hand, Adagrad, Adadelta and RMSprop
immediately break symmetry and directed towards the negative slope. Finally,
the animation in Figure 4.6 shows a saddle point, which as we defined above is
a point where the curvature along different direction has different signs. The
behaviour of the algorithms is similar to the previous animation. Momentum and
NAG like to investigate the area before finding the right path, while RMSprop,
Adagrad and Adadelta quickly proceed.

50



Figure 4.4: Algorithms iterative progress from top left to bottom right frame on a
"long valley"
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Figure 4.5: Algorithms iterative progress from top left to bottom right frame on
Beale’s function surface contours
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Figure 4.6: Algorithms iterative progress from top left to bottom right frame on a
saddle point
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Chapter 5

Conclusions

The goal of this thesis is to present a detailed theoretical framework that de-
scribes the structure of deep learning. Specifically, a mathematical formulation for
the gradient descent optimization method through back propagation using neural
networks is given.

Furthermore, we have examined the three variants of the gradient descent method,
from which the mini-batch method seems to be the most reliable. In addition, we
have looked a number of gradient descent methods. Which, some of them act upon
the gradient like momentum and NAG, some of them act upon the learning rate
like Adagrad and RMSprop, and some of them act upon both like Adam.

Before drawing any conclusions we have to note an important observation. The
gradient descent optimization algorithms are executed with one constant set of
parameters for all three networks. An experienced user trying to approach a
solution step by step, will definitely be able to tune the parameters depending
on the model and the data, and could, thus, achieve better results.

To summarize the most important conclusions, we distinguish between the gradient
descent optimization algorithms we introduced in Chapter 3. The conclusions are
drawn from the numerical results obtained in Section 4.1. The numerical results
indicate that the algorithms perform better in the neural network shown in Figure
4.1, while the number of the parameters is not proportional with the performance
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of the algorithms. Finally, the adaptive learning rate methods outperform the
adaptive gradient ones.
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Chapter 6

Appendices

6.1 Appendix 1

Listing 6.1 applies the gradient descent method using a Python code. The f func-
tion calculates the value of the function we want to minimize at a given point
x. While, df computes the derivative of that function. Finally, we acquire the
minimum by following the negative slope with the gradient descent function .

import numpy as np
def f ( x ) :

return x∗∗4 + 7∗x∗∗3 + 5∗x∗∗2 −17∗x +12
def df ( x ) : # ca l c u l a t e the d e r i v a t i v e o f f ( x )

return 4∗x∗∗3 + 21∗x∗∗2 + 10∗x −17
def gradient_descent ( x i ) :

s t ep_s i ze=1
eta =0.01 # lea rn ing ra t e
TOL=1e−10 # pre c i s i on o f the a l gor i thm
n=0
n i t e r=1e4 #maximum number o f i t e r a t i o n s
while s t ep_s i ze > TOL and n<n i t e r :

xc=xi− eta ∗df ( x i ) # grad i en t descen t i t e r a t i o n
s t ep_s i ze=abs ( xi−xc ) # ca l c u l a t e the s t ep s i z e
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x i=xc
n+=1 #counts the i t e r a t i o n s
print "number␣ o f ␣ i t e r a t i o n s ␣%i " %n
print " the ␣ cur rent ␣ value ␣ o f ␣X␣ i s ␣%.3 f " %xc

return f ( xc ) , xc

x i=f loat (raw_input( " i n i t i a l ␣ va lue ␣ o f ␣x : " ) )
minimum , xmin=gradient_descent ( x i )
print"The␣ l o c a l ␣minimum␣ i s " , "%.3 f "%minimum ,
print"and␣ occurs ␣ at " , "%.3 f "%xmin

Listing 6.1: Python example of Gradient Descent

6.2 Appendix 2

Listing 6.2 illustrate a pseudocode that implements a gradient descent algorithm
utilizing the back propagation method. Suppose that our training set consists of N
training points. First, we start by defining the number of iterations (niter). Then,
we use back propagation to compute the partial derivatives of the parameters for
each data point. Furthermore, we add them together, in order to calculate the
mean of every partial derivative over the whole training set. Finally, we update
the parameters.

For k=1 up t i l l n i t e r
For i=1 up t i l l N
xi = a[1]

For l=2 up t i l l L
z[l] = W [l]a[l−1] + b[l]

a[1] = σ(z[l])

D[l] = diag(σ′(z[l]))

δ[L] = D[L](a[L] − y(xi))

For l=L−1 down to 2
δ[l] = D[l](W [l+1])T δ[l+1]

For l=2 up t i l l L
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dW [l] = dW [l] + δ[l](a[l−1])T

db[l] = db[l] + δ[l]

For l=2 up t i l l L
W [l] = W [l] − η

N
dW [l]

b[l] = b[l] − η
N
db[l]

Listing 6.2: Gradient descent pseudocode

6.3 Appendix 3

The following Python code implements the pseudocode in Listing 6.2 on the ex-
ample shown in Section 2.5. Listing 6.3 includes four functions. Activate function
evaluate a[L] using the sigmoid function from a forward pass through the network,
calculating a[1], a[2] and a[3] in that order. Furthermore, dactivate function com-
pute the diagonal matrix D[l] for each layer which allows us to avoid Hadamard
product notation. Then, the cost function is called at every iteration to super-
vise the procedure, by displaying its value on the screen. At last, netlearning
function contains the gradient descent algorithm. We commence by setting the
input data and the target output for each point. Next, the Numpy random library
sets an initial value for the parameters in the closed interval [−2, 2], in order to
advance through the learning process using the gradient descent method and the
back propagation algorithm.

import numpy as np
import matp lo t l i b . pyplot as p l t
np . random . seed (5000)
#compute the co s t f unc t i on
def co s t (w2 ,w3 , b2 , b3 ) :

x1=np . array ( [ 0 . 1 , 0 . 3 , 0 . 1 , 0 . 6 , 0 . 4 , 0 . 6 , 0 . 5 , 0 . 9 , 0 . 4 , 0 . 7 ] )
x2=np . array ( [ 0 . 1 , 0 . 4 , 0 . 5 , 0 . 9 , 0 . 2 , 0 . 3 , 0 . 6 , 0 . 2 , 0 . 4 , 0 . 6 ] )
y=np . array ( [ [ 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 ] ] )
co s tvec=np . z e r o s ( ( 1 0 , 1 ) )
for i in range ( 1 0 ) :

x= np . array ( [ [ x1 [ i ] ] , [ x2 [ i ] ] ] )
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a2=ac t i v a t e (x ,w2 , b2 )
a3=ac t i v a t e ( a2 ,w3 , b3 )
co s tvec [ i ]=np . l i n a l g . norm ( ( y [ : , i ] . reshape (2 , 1 ) −a3 ) , 2 )

return ( 1 . / 1 0 . ) ∗ ( 1 . / 2 . ) ∗ ( np . l i n a l g . norm( costvec , 2 ) )∗∗2
#t ra i n i n g o f the a l gor i thm
def ne t l e a rn i ng ( epochs ) :

#se t the data po in t s and the t a r g e t ou tpu t s
x1=np . array ( [ 0 . 1 , 0 . 3 , 0 . 1 , 0 . 6 , 0 . 4 , 0 . 6 , 0 . 5 , 0 . 9 , 0 . 4 , 0 . 7 ] )
x2=np . array ( [ 0 . 1 , 0 . 4 , 0 . 5 , 0 . 9 , 0 . 2 , 0 . 3 , 0 . 6 , 0 . 2 , 0 . 4 , 0 . 6 ] )
y=np . array ( [ [ 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 ] ] )
#se t random i n i t i a l v a l u e s f o r the parameters
w2=0.5∗np . random . uniform ( −2 ,2 , (6 ,2))
w3=0.5∗np . random . uniform ( −2 ,2 , (2 ,6))
b2=0.5∗np . random . uniform ( −2 ,2 , (6 ,1))
b3=0.5∗np . random . uniform ( −2 ,2 , (2 ,1))
eta =0.05 #se t the l e a rn ing ra t e va lue
#save the va lue o f the co s t f unc t i on f o r each i t e r a t i o n
saveco s t=np . z e r o s ( ( n i t e r , 1 ) )
n=0 #i t e r a t i o n counter
while n<epochs :

# ca l u l a t e the p a r t i a l d e r i v a t i v e s wi th back propagat ion
w2d=np . z e r o s ( ( 6 , 2 ) )
w3d=np . z e r o s ( ( 2 , 6 ) )
b2d=np . z e r o s ( ( 6 , 1 ) )
b3d=np . z e r o s ( ( 2 , 1 ) )
for k in range ( 1 0 ) :

x= np . array ( [ [ x1 [ k ] ] , [ x2 [ k ] ] ] )
a2=ac t i v a t e (x ,w2 , b2 )
a3=ac t i v a t e ( a2 ,w3 , b3 )
de l t a3=np . dot ( dac t i va t e ( a3 ) , ( a3−y [ : , k ] . reshape ( 2 , 1 ) ) )
de l t a2=np . dot ( dac t i va t e ( a2 ) , np . dot (w3 .T, de l t a3 ) )
w2d+=np . dot ( de l ta2 , x .T)
w3d+=np . dot ( de l ta3 , a2 .T)
b2d+=de l ta2
b3d+=de l ta3
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# perform an update o f the parameters wi th g rad i en t descen t
w2=w2−eta ∗ ( 1 . / 1 0 . ) ∗w2d
w3=w3−eta ∗ ( 1 . / 1 0 . ) ∗w3d
b2=b2−eta ∗ ( 1 . / 1 0 . ) ∗ b2d
b3=b3−eta ∗ ( 1 . / 1 0 . ) ∗ b3d
newcost=cos t (w2 ,w3 , b2 , b3 )
saveco s t [ n]=newcost
n+=1
print newcost #d i s p l a y the co s t f unc t i on on the screen

return saveco s t
#compute the sigmoid func t i on
def a c t i v a t e (x ,w, b ) :

z=np . dot (w, x ) + b
s=z . shape [ 0 ]
y=np . z e r o s ( ( s , 1 ) )
for i in range ( s ) :
y [ i ]=1./(1 .+np . exp(−z [ i ] ) )

return y
#compute the D matrix
def dac t i va t e ( a ) :

s=a . shape [ 0 ]
y=np . z e r o s ( s )
for i in range ( s ) :

y [ i ]=a [ i ]∗(1 .0− a [ i ] )
D=np . diag (y )
return D

epochs=int (1 e6 )# number o f epochs
#p l o t the co s t f unc t i on − i t e r a t i o n s graph
p l t . p l o t ( range ( epochs ) , n e t l e a rn i ng ( epochs ) )
p l t . t i t l e ( ’ Batch␣ grad i en t ␣ descent ’ )
p l t . y l ab e l ( ’ Value␣ o f ␣ co s t ␣ func t i on ’ )
p l t . x l ab e l ( ’ I t e r a t i o n ␣Number ’ )
p l t . y s c a l e ( ’ l og ’ )
p l t . l egend ( )
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p l t . show ( )

Listing 6.3: Python implementation of network training

61



Chapter 7

Bibliography

[1] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research, 12(Jul):2121–2159, 2011.

[3] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron
Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo
Larochelle. Brain tumor segmentation with deep neural networks. Medical
image analysis, 35:18–31, 2017.

[4] Catherine F. Higham and Desmond J. Higham. Deep learning: An introduc-
tion for applied mathematicians, 2018.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[6] Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation
for drug discovery. arXiv preprint arXiv:1709.03741, 2017.

[7] Yurii E Nesterov. A method for solving the convex programming problem
with convergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269,
pages 543–547, 1983.

62



[8] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Mar-
shall. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378, 2018.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc., 2019.

[10] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

[11] Alec Radford. Visualizing Optimization Algorithms, 2014. https://imgur.

com/a/Hqolp.

[12] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI
Blog, 1(8):9, 2019.

[13] Bharath Ramsundar and Reza Bosagh Zadeh. TensorFlow for Deep Learning:
From Linear Regression to Reinforcement Learning. O’Reilly Media, Inc., 1st
edition, 2018.

[14] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[15] George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel
Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran,
Michael Picheny, Lynn-Li Lim, et al. English conversational telephone speech
recognition by humans and machines. arXiv preprint arXiv:1703.02136, 2017.

63

https://imgur.com/a/Hqolp
https://imgur.com/a/Hqolp


[16] Richard Sutton. Two problems with back propagation and other steepest
descent learning procedures for networks. In Proceedings of the Eighth Annual
Conference of the Cognitive Science Society, 1986, pages 823–832, 1986.

[17] Hans-Dieter Wehle. Machine learning, deep learning, and ai: What’s the
difference? In International Conference on Data scientist innovation day,
Bruxelles, Belgium, 2017.

[18] Nicholas Westlake, Hongping Cai, and Peter Hall. Detecting people in artwork
with cnns. In European Conference on Computer Vision, pages 825–841.
Springer, 2016.

[19] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

64


	List of Figures
	Introduction
	Mathematical formulation of the problem
	Artificial Neural Network
	Cost Function
	Gradient Descent
	Back Propagation
	Simple Deep learning implementation 

	An overview of gradient descent optimization algorithms
	Variations of the basic algorithm
	Batch gradient descent
	Stochastic gradient descent
	Mini batch gradient descent

	Gradient descent algorithms
	Gradient descent and ravines
	Momentum
	Nesterov accelerated gradient (NAG)
	Adagrad
	RMSprop
	Adadelta
	Adam
	AdaMax
	Nadam


	A comparison of gradient descent algorithms 
	Numerical Results
	Neural Network 1
	Neural Network 2
	Neural Network 3

	Visualization of the gradient descent algorithms

	Conclusions
	Appendices
	Appendix 1
	Appendix 2
	Appendix 3

	Bibliography

