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Abstract

This thesis explores aspects on two broad parts of the field of quantum system dy-
namics, namely, the strong interaction between matter and stochastically fluctuating
radiation and the dynamics of open quantum systems. In the first topic, we inves-
tigate atomic transitions under strong driving using squeezed radiation, which is
known to exhibit photon super-bunching properties and explore its effects on double
optical resonance (DOR) in pump and probe setups. Additionally, we study the phe-
nomenon of electron-positron pair creation in presence of stochastic radiation and
explore the possibility of observing a non-linear enhancement of the process in the
multi-photon regime due to photon correlation effects of the radiation. In the second
topic, we analyze various aspects, including qubit correlations in non-Markovian
environments, fidelity of quantum state transfer in the presence of non-Markovian
dissipation, new methods of quantitatively evaluating non-Markovianity in open
quantum systems, the relationship between the Quantum Zeno effect and excep-
tional points in non-Markovian open quantum systems, as well as the phenomenon
of single-resonance autoionization viewed from the perspective of non-Hermitian
physics. This thesis contributes to our understanding of strong driving effects and
the dynamics of open quantum systems, shedding light on fundamental quantum
phenomena and paving the way for future advancements in intriguing areas of ac-
tive research.
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Chapter 1

Introduction

The field of quantum optics has transformed our understanding of light-matter in-
teractions, providing important insights of the interplay between atoms and photons
on the quantum level [1]. Over the years, significant steps have been made in utiliz-
ing the potential of quantum systems for various technological applications, rang-
ing from quantum computing [2] to secure communication protocols [3]. One key
aspect of quantum optics research lies in the investigation of transitions strongly
driven by external radiation, which form the foundation of numerous strong-field
quantum phenomena. Contrary to the case of weak driving, it has been well estab-
lished that in the regime of high laser intensities, interesting non-linear effects come
into play, substantially altering the response of the driven systems [4]. Although
simple models involving monochromatic coherent radiation of zero bandwidth may
capture the basic dynamics of the driven systems, more often than not, the available
radiation sources used in experimental setups are subject to stochastic fluctuations
in phase or/and intensity, that have been shown to leave a significant imprint on the
response of the driven systems [5, 6]. These quantum stochastic properties of electro-
magnetic radiation, embodied in its correlation functions may arguably be viewed
as the "trade mark" of quantum optics and have been a topic of ongoing research
since the pioneering works of R. Glauber in 1963 [7, 8].

Notwithstanding the substantial progress in this field spanning nearly six decades,
several fundamental questions pertaining to the interplay between matter and stochas-
tic radiation have remained unexplored. This knowledge gap has been primarily
attributed to the lack of access to the requisite intensities within experimental se-
tups, as well as the inherent inability to precisely control the statistical properties of
radiation sources employed in these investigations. However, the landscape has un-
dergone a dramatic transformation in recent years with the advent of high-intensity,
short-wavelength sources such as free electron lasers (FELs) [9], along with the de-
velopment of methods enabling effective manipulation of the statistical properties of
generated quantum states of light [10]. Among these generated states of radiation, a
particular class has gathered significant theoretical and experimental attention due
to its important applications in modern quantum technologies, i.e. the "squeezed"
states of radiation [11], which lack any classical analog and, thus, demand descrip-
tion through a quantized field framework. In view of the above groundbreaking ad-
vancements, novel aspects of the strong interaction between matter and stochastic
radiation have once again taken center stage, ultimately paving the way for achieve-
ments in the manipulation and effective control of quantum systems.

Along with the advent of strong field quantum optics in presence of stochastic
radiation, a parallel field was gradually emerging as a cornerstone in the study of
complex quantum phenomena, namely, the field of open quantum system dynamics
[12]. In contrast to idealized closed systems, isolated from external influences, open
quantum systems are inherently entangled with their surroundings, which are often
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characterized by stochasticity, resulting in complex dynamics involving dissipation.
The study of open quantum systems has gained significant attention due to its fun-
damental implications for a wide range of fields, including quantum information
processing [13], condensed matter physics [14], quantum chemistry [15], and quan-
tum biology [16]. Open systems dynamics plays a pivotal role in elucidating the
processes of decoherence, relaxation, dissipation, and noise-induced effects, which
are crucial in determining the stability, coherence, and performance of quantum sys-
tems [17].

In the field of quantum information processing, open quantum systems dynam-
ics poses both challenges and opportunities. On the one hand, environmental in-
teractions can induce detrimental effects such as information loss, reduced fidelity,
and increased susceptibility to errors. On the other hand, effectively controlling
open systems’ dynamics can facilitate novel quantum error correction schemes [18],
enable fault-tolerant quantum computing [19], and pave the way for resilient quan-
tum communication protocols [20]. Over the past decades, a rich theoretical frame-
work has been developed to describe the dynamics of open quantum systems. Tech-
niques such as master equations, quantum trajectories, and non-Markovian dynam-
ics methods have provided powerful tools to capture the interplay between the sys-
tem of interest and its environment [21]. Furthermore, advances in experimental
techniques and technologies have made it possible to probe, manipulate, and engi-
neer open quantum systems, offering important tools for studying and exploiting
their dynamics [22]. Despite remarkable progress, several key challenges and open
questions remain in the field of open quantum systems dynamics. Understanding
the interplay between coherent evolution and environmental interactions is a cen-
tral focus. Exploring the role of non-Markovianity, memory effects, and system-
environment correlations in shaping the dynamics of open systems presents an on-
going research frontier [23, 24]. Additionally, developing robust strategies for con-
trolling and mitigating the detrimental effects of environmental noise on quantum
systems is of great importance for advancing practical applications [25].

The role of this thesis is twofold as it covers and contributes to aspects in both
fields of strong field quantum optics under stochastic radiation and open quantum
system dynamics. As such, the thesis is organized in two main parts. In the first
part we investigate the phenomenon of double optical resonance (DOR) using strong
squeezed radiation that exhibits photon super-bunching properties and compare the
resulting effects with the case of strong driving using radiation initially prepared
in a coherent state. The phenomenon is investigated also under two-photon driv-
ing with fields of various photon statistics, revealing an intricate interplay between
the stochastic character of radiation and the non-linear character of the process. In
addition, we study the phenomenon of electron-positron pair creation in the multi-
photon regime under the presence of stochastic radiation and explore the conditions
of observing a non-linear enhancement of the process attributed to photon corre-
lation effects of the radiation field. In the second part we investigate various sys-
tems consisting of single qubits or chains of interacting qubits that are coupled to
non-Markovian reservoirs and explore aspects such as qubit correlations, fidelity of
quantum state transfer, exceptional points, the Quantum Zeno effect, the evaluation
of non-Markovianity as well as several other facets of open quantum system dynam-
ics. Finally, we explore the phenomenon of single-resonance autoionization viewed
from the perspective of non-Hermitian physics, showing novel effects and opening
up an interesting and fruitful territory for further exploration.
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Part I

Strong transitions driven by
stochastic fields
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Chapter 2

Theoretical Background

2.1 Quantum states of radiation

The study of quantum states of radiation lies at the intersection of quantum mechan-
ics and electromagnetism, and provides insights on the fundamental nature of light
and its interactions with matter. Contrary to classical physics that describes light as
a continuous wave, in quantum theory the light is described in terms of excitations
of the electromagnetic field, called photons, that exhibit both wave-like and particle-
like properties, and their behavior is described by quantum states. Quantum states
of radiation are characterized by their wave function, which describes the proba-
bility distribution of finding a photon in a particular state. In quantum optics, the
most commonly used formalism is the so-called "second quantization" formalism,
which treats the electromagnetic field as an ensemble of harmonic oscillators [26].
The central concept behind "second quantization" is that the electric field can be ex-
pressed as a sum of individual modes, each associated with a specific frequency and
direction of polarization.

The quantum states of radiation most often are expressed in terms of Fock states
or number states, which correspond to different numbers of photons occupying a
particular mode of the electromagnetic field. Those states are usually denoted as |n⟩
and obey the relation

N̂ |n⟩ = n |n⟩ , (2.1)

where N̂ is the photon number operator and n is the number of photons. Fock
states are orthogonal to each other, and they are widely used in quantum optics,
since every quantum state of radiation can be expressed as a superposition of the
former.

One important concept in quantum optics is the creation and annihilation oper-
ators, â† and â, respectively. These operators act on the quantum states and change
the number of photons present in a particular mode. The creation operator adds a
photon to the mode, while the annihilation operator removes a photon, as reflected
by the following equations:

â† |n⟩ =
√

n + 1 |n + 1⟩ , (2.2a)

â |n⟩ =
√

n |n− 1⟩ . (2.2b)

The creation and annihilation operators are non-Hermitian with â† being the Hermi-
tian adjoint of â, and they follow the bosonic commutation relation

[â, â†] = 1. (2.3)

The photon number operator N̂ is expressed in terms of â and â† as N̂ = â† â.
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Quantum states of radiation can also be entangled, a phenomenon that arises
from the inherent correlations between different modes of the electromagnetic field
[27]. Entanglement allows for a variety of non-classical effects such as quantum
teleportation [28], quantum cryptography [3], quantum computing [2], etc. Overall,
the study of different quantum states of radiation is important as it provides the
necessary framework for understanding the behavior of light and its interactions
with matter in its various forms. In what follows, we review the properties of three
main quantum states of radiation that we encounter in most experimental as well as
theoretical works.

2.1.1 Coherent states

The concept of coherent states originated from the pioneering works of Roy J. Glauber
in the 1960s where he introduced these states as the quantum counterparts of clas-
sical states of light [7, 8]. Coherent states exhibit unique properties that make them
particularly useful for describing the dynamics of light fields and their interactions
with matter, especially in fields like laser theory. They possess several desirable
features, including a well-defined phase, a minimum uncertainty product, and the
ability to exhibit interference phenomena similar to classical waves.

Formally, coherent states are eigenstates of the annihilation operator. If we de-
note by |α⟩ such a state, with α ∈ C being its eigenvalue, then by definition we have:

â |α⟩ = α |α⟩ . (2.4)

Coherent states can always be expressed in terms of Fock states via the relation

|α⟩ =
∞

∑
n=0
⟨n|α⟩ |n⟩ . (2.5)

The coefficients ⟨n|α⟩ of this decomposition can be calculated using the definition
(2.4), i.e.

⟨n| â |α⟩ = α ⟨n|α⟩ , (2.6)

and since

⟨n| â |α⟩ = ⟨α| â† |n⟩∗ =
√

n + 1 ⟨α|n + 1⟩∗ =
√

n + 1 ⟨n + 1|α⟩ , (2.7)

we find that
⟨n + 1|α⟩ = α√

n + 1
⟨n|α⟩ , (2.8)

via which, by mathematical induction, we obtain

⟨n|α⟩ = αn
√

n!
⟨0|α⟩ . (2.9)

Substituting back to Eq. (2.5), we get

|α⟩ = ⟨0|α⟩
∞

∑
n=0

αn
√

n!
|n⟩ , (2.10)
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where the multiplicative constant ⟨0|α⟩ can be calculated by requiring |α⟩ to be nor-
malized, i.e.

⟨α|α⟩ = |⟨0|α⟩|2
∞

∑
n=0

|α|2n

n!
= |⟨0|α⟩|2e|α|

2
= 1, (2.11)

through which we find that ⟨0|α⟩ = eiθe−
1
2 |α|

2
, where θ is a real number representing

the phase of the state vector. Therefore, |α⟩ is expressed in terms of Fock states as:

|α⟩ = e−
1
2 |α|

2 ∞

∑
n=0

αn
√

n!
|n⟩ . (2.12)

Formally, coherent states can be also generated by the action of the so-called
displacement operator D̂(α) ≡ e−

1
2 |α|

2
eαâ†−α∗ â on the lowest (ground) energy state of

the harmonic oscillator, |0⟩, since

|α⟩ = e−
1
2 |α|

2 ∞

∑
n=0

αn
√

n!
|n⟩ = e−

1
2 |α|

2 ∞

∑
n=0

(αâ†)n

n!
|0⟩ = e−

1
2 |α|

2
eαâ† |0⟩ = D̂(α) |0⟩ ,

(2.13)
where we used the fact that â |0⟩ = |0⟩ and therefore e−α∗ â |0⟩ = |0⟩. Note that
the displacement operator can be written in three equivalent forms, i.e. D̂(α) =

eαâ†−α∗ â = e−
1
2 |α|

2
eαâ†−α∗ â = e

1
2 |α|

2
e−α∗ â+αâ†

, in which the creation and annihilation
operators appear in what is called symmetric, normal and anti-normal order, re-
spectively.

Using the expansion of a coherent state in terms of Fock sates, we can calculate
the probability to find n photons in the field as:

Pα(n) = ⟨α| Π̂n |α⟩ = e−|a|
2 |a|2n

n!
, (2.14)

where Π̂n is a projection operator defined as Π̂n ≡ |n⟩ ⟨n|. As becomes evident
the probability follows a Poissonian distribution with average photon number n̄ =

∑ nPα(n) = |α|2 and root mean square deviation

∆N =

√
⟨α| â† ââ† â |α⟩ − ⟨α| â† â |α⟩2 =

√
n̄ = |α|. (2.15)

Contrary to Fock states, coherent states are non-orthogonal to each other. It
is straightforward to prove this by considering the scalar product of two coherent
states |α⟩ and |β⟩,

⟨α|β⟩ = e−
1
2 (|α|

2+|β|2)
∞

∑
n=0

(α∗)nβn

n!
= exp

[
α∗β− 1

2
(|α|2 + |β|2)

]
, (2.16)

from which we have that
|⟨α|β⟩|2 = e−|α−β|2 . (2.17)

Since |α− β|2 is never zero for α ̸= β, coherent states are always non-orthogonal to
each other and in that sense, each coherent state "contains" all of the others. Despite
the fact that the set of coherent states is non-orthogonal and overcomplete, it is a
continuous, normalized set that can be used as a basis, and has been proven to be
extremely useful in calculating correlation functions that involve the photon creation
and annihilation operators when used as such [7, 8].
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2.1.2 Chaotic states

Chaotic states of radiation, also known as thermal states, play a fundamental role in
the study of quantum systems. These states are characterized by their high degree
of disorder and randomness, reflecting the behavior of an ensemble of particles or a
large number of quantum modes at thermal equilibrium. In a thermal state the ma-
jority of particles or modes are populating the lower energy levels, while a smaller
fraction occupies higher ones. The chaotic nature of thermal states arises due to the
inherent fluctuations in the occupation of energy levels, resulting in fluctuations in
the emitted or absorbed radiation. Thermal radiation, often referred as black body
radiation, was studied extensively by Max Planck at the beginning of twentieth cen-
tury marking the birth of quantum theory [29].

A chaotic field is by definition in thermal equilibrium with the surrounding en-
vironment at a finite temperature, which we denote by T. Therefore, its state is
necessarily describable in terms of a density operator, which acquires the form:

ρTh =
exp

(
−Ĥ/kBT

)
Tr
[
exp

(
−Ĥ/kBT

)] , (2.18)

where Ĥ is the system Hamiltonian operator and kB is Boltzmann’s constant. For a
single-mode of frequency ω, Eq. (2.18) becomes:

ρTh =
exp

(
−h̄ωâ† â/kBT

)
Tr [exp(−h̄ωâ† â/kBT)]

. (2.19)

The probability to find n photons in the field is

PTh(n) = Tr
(
ρΠ̂n

)
=

e−h̄ωn/kBT

∑n e−h̄ωn/kBT = e−h̄ωn/kBT(1− e−h̄ω/kBT), (2.20)

which can also be written in the form

PTh(n) =
1

1 + n̄

(
n̄

1 + n̄

)n

=
n̄n

(1 + n̄)n+1 , (2.21)

since the mean photon number n̄ is expressed as

n̄ = ∑
n

nPTh(n) =
1

eh̄ω/kBT − 1
. (2.22)

The root mean square deviation of the photon number is given by

∆N =

√
⟨N̂ 2⟩ − ⟨N̂ ⟩2 =

√
n̄2 + n̄, (2.23)

which can be approximated by ∆N ≈ n̄ in the limit of high mean photon numbers
n̄≫ 1.

2.1.3 Squeezed states

Squeezed states of radiation are quantum states that exhibit reduced quantum un-
certainty in one of two physical observables characterized by non-commutative op-
erators, such as amplitude or phase, at the expense of increased uncertainty in the
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conjugate property [11]. This phenomenon is a consequence of the Heisenberg un-
certainty principle, which states that certain pairs of physical properties (like posi-
tion and momentum, or amplitude and phase) cannot be simultaneously measured
with arbitrary precision. The phenomenon of squeezing was first predicted in the
second half of twentieth century and is linked to the presence of quantum fluctua-
tions [30] in the field. Quantum fluctuations are inherent to any quantum system
and arise due to the uncertainty principle. In the case of squeezed states, the fluctu-
ations are manipulated such that they become non-uniform, resulting in squeezing
along a specific property [31].

The squeezed states of radiation find applications across a broad spectrum of
different fields, ranging from quantum optics and quantum information science to
gravitational wave detection [32–34]. These states possess remarkable features that
make them particularly appealing for various technological advancements. For in-
stance, they can be utilized in high-precision interferometry to enhance the mea-
surement accuracy beyond the classical limit imposed by shot noise [35]. or used for
their applications in quantum communication, quantum computing, and quantum
metrology [36].

Squeezed states of radiation field are generated in non-linear processes in which
an electromagnetic field drives a non-linear medium [37]. In such a medium, pairs
of correlated photons of the same frequency are generated. In the interaction picture,
this process can be described by the effective Hamiltonian [38, 39]

Ĥ = ε(â†)2 + ε∗ â2. (2.24)

This Hamiltonian describes how a pump field is down-converted to its sub-harmonics
at half the driving frequency, with the parameter ε containing the amplitude of the
driving field and the second-order susceptibility for the down-conversion. Since
the total Hamiltonian is time-independent, the time evolution operator (also called
squeeze operator) is

Û(t) = exp
(
− iĤt

h̄

)
= exp

(
ζ

2
(â†)

2 − ζ

2

∗
â2
)
≡ Ŝ(ζ), (2.25)

where ζ = − iεt
h̄ is the so-called squeezing parameter, which can also be written as

ζ = reiθ , and the factor of 1
2 was introduced for reasons of mathematical convenience.

The squeezing parameter characterizes the degree of squeezing and depends on the
amplitude of the driving field and the interaction time, i.e. the time that takes for
light to travel via the non-linear medium.

Squeezed vacuum states

The action of the squeeze operator on the vacuum state |0⟩, results to the so-called
squeezed vacuum state denoted by

|ζ⟩ ≡ Ŝ(ζ) |0⟩ . (2.26)

In order to obtain the photon number probability distribution of the squeezed vac-
uum state [38, 39], we decompose |ζ⟩ in the Fock basis,

|ζ⟩ =
∞

∑
n=0

Cn |n⟩, (2.27)
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and seek an expression for the relevant coefficients. Starting with the vacuum state,
which satisfies the relation

â |0⟩ = 0, (2.28)

we multiply by Ŝ(ζ) from the left and use the fact that Ŝ(ζ) is unitary, to obtain

Ŝ(ζ)âŜ†(ζ)Ŝ(ζ) |0⟩ = 0⇔ Ŝ(ζ)âŜ†(ζ) |ζ⟩ = 0. (2.29)

Using the definition of ζ we find that

Ŝ(ζ)âŜ†(ζ) = â cosh r + eiθ â† sinh r. (2.30)

In view of Eq. (2.29), Eq. (2.30) becomes:

(â cosh r + â†eiθ sinh r) |ζ⟩ = 0. (2.31)

By substituting Eq. (2.27) in Eq. (2.31), we obtain a relation for the coefficients Cn:

Cn+1 = −eiθ tanh r(
n

n + 1
)1/2Cn−1, (2.32)

which can be solved recursively, yielding:

C2n = (−1)n(eiθ tanh r)n
[
(2n− 1)!!
(2n)!!

]1/2

C0. (2.33)

If we demand from C2n to satisfy the normalization condition
∞
∑

n=0
|C2n|2 = 1, we

obtain

|C0|2
(

1 +
∞

∑
n=0

[tanhr]2n(2n− 1)!!
(2n)!!

)
= 1, (2.34)

which takes the simple form C0 =
√

cosh r, using the identity

1 +
∞

∑
n=0

zn
(
(2n− 1)!!
(2n)!!

)
= (1− z)−1/2. (2.35)

Finally, in view of the following two identities

(2n)!! = 2nn!, (2.36)

(2n− 1)!! =
1
2n

(2n)!
n!

, (2.37)

one obtains the final expression for the coefficients

C2n = (−1)n
√
(2n)!

2nn!
(eiθ tanh r)n

√
cosh r

. (2.38)

Substitution of Eq. (2.38) back to Eq. (2.27), gives the decomposition of the squeezed
vacuum state in the Fock basis:

|ζ⟩ = 1√
cosh r

∞

∑
n=0

(−1)n
√
(2n)!

2nn!
einθ(tanh r)n |2n⟩ . (2.39)
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The probability of detecting 2n photons in the field is

P2n = |⟨2n | ζ⟩|2 =
(2n)!

22n(n!)2
(tanh r)2n

cosh r
, (2.40)

while the probability of detecting 2n + 1 photons is

P2n+1 = |⟨2n + 1 | ζ⟩|2 = 0. (2.41)

Equations (2.40) and (2.41) indicate that the photon probability distribution of a
squeezed vacuum state is oscillatory, with the probability for all odd photon num-
bers to be zero. The probability can also be expressed in terms of the mean photon

number n̄ =
∞
∑

n=0
P2n(2n) =sinh2r, as:

P2n =
1√

1 + n̄
(2n)!

(n!)222n

(
n̄

1 + n̄

)n

. (2.42)

Squeezed coherent states

A squeezed coherent state (SQCS) is defined as the state resulting upon acting on the
vacuum state with the squeeze operator Ŝ(ζ) followed by the displacement operator
D̂(α), i.e.

|SQCS⟩ ≡ D̂(α)Ŝ(ζ) |0⟩ . (2.43)

The squeeze and displacement operators are given by the relations Ŝ(ζ) = exp
[

ζ
2 â†2 − ζ∗

2 â2
]

and D̂(α) = exp
(
αâ† − α∗ â

)
, respectively, where ζ = reiθ is the complex squeezing

parameter and α = |α|eiϕ is the complex displacement parameter. In terms of the
above parameters, the normally-ordered form of the density operator of a SQCS can
be expressed as [40]:

ρSQCS =
1

cosh r
exp

{
1
2

tanh r
[
e−iθ(â− α)2 + eiθ(â† − α∗)2

]
− (â† − α∗)(â− α)

}
.

(2.44)
The probability of finding n photons in the field is:

PSQCS(n) = Tr
(
ρSQCSΠ̂n

)
= Tr(ρSQCS |n⟩ ⟨n|). (2.45)

Using the relation |n⟩ = (n!)−1/2 dn

dzn |z⟩
∣∣∣
z=0

, where |z⟩ is the un-normalized coherent

state |z⟩ = exp
(
za†) |0⟩, that satisfies ⟨z2|z1⟩ = exp(z1z∗2), we find that

PSQCS(n) =
1
n!

dn

dz∗2
n

dn

dzn
1
⟨z2| ρSQCS |z1⟩z1=z2=0

=
exp(B)
n! cosh r

dn

dz∗2
n

dn

dzn
1

exp
[

Az1 + A∗z∗2 +
tanh r

2

(
e−iθz2

1 + eiθz∗2
2
)]

z1=z2=0

=
tanhn r exp(B)

2nn! cosh r

∣∣∣∣Hn

(
iAeiθ/2
√

2 tanh r

)∣∣∣∣2,

(2.46)

where
A ≡ α∗ − tanh re−iθα, (2.47a)
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B ≡ tanh r
2

(
e−iθα2 + eiθα∗2

)
− |α|2, (2.47b)

and by Hn(x) we denote the nth-degree Hermite polynomial. Using the following
generating function of Hermite polynomials,

Hn(x) =
∂n

∂tn exp
[
2xt− t2]

t=0, (2.48)

the SQCS photon probability distribution can be expressed as

PSQCS(n) =
(tanh r)n

2nn! cosh r
exp

[
tanh r

2

(
e−iθα2 + eiθα∗2

)
− |α|2

]
×
∣∣∣∣Hn

(
eiθ/2α∗ − e−iθ/2α tanh r

−i
√

2 tanh r

)∣∣∣∣2.

(2.49)

By substituting α = |α|eiϕ in Eq. (2.49) and adopting the definition Φ ≡ ϕ− θ/2, one
finally gets:

PSQCS(n) =
(tanh r)n

2nn! cosh r
exp

[
|α|2 cos (2Φ) tanh r− |α|2

] ∣∣∣∣Hn

(
|α|e−iΦ − |α|eiΦ tanh r

−i
√

2 tanh r

)∣∣∣∣2.

(2.50)
The mean photon number of the distribution is given by

n̄ = |α|2 + (sinh r)2, (2.51)

which is independent of Φ, while the photon number variance is given by

(∆n)2 = |α|2
[
e2rcos2Φ + e−2rsin2Φ

]
+ 2(sinh r cosh r)2. (2.52)

2.2 Strong field phenomena

2.2.1 General Description

Quantum optics has witnessed remarkable advancements in recent years. The ad-
vent of intense laser sources, opened up the field of strong field physics, where the
interaction between light and matter becomes inherently non-linear [41] and paved
the way for important applications in the fields of attosecond science [42], precision
spectroscopy [43], and quantum information processing [13].

In the regime of strong field interactions, the electric field of an intense laser
pulse can induce significant modifications in the behavior of atoms, molecules, and
condensed matter systems. The electric field strengths involved are typically on the
order of the atomic field strength, where the ponderomotive potential dominates
over other energy scales. Consequently, the dynamics of electrons and the associ-
ated quantum states are dramatically altered, leading to unique phenomena that are
absent in the weak field regime [44].

One of the most known effects in strong field quantum optics is high-order har-
monic generation (HHG) [45]. HHG refers to the process where atoms or molecules
exposed to intense laser fields emit high-energy photons that are harmonics of the
driving laser frequency [46]. This phenomenon left important impact on the field
of ultra-fast dynamics, as it enabled the generation of coherent bursts of extreme ul-
traviolet (XUV) and soft X-ray radiation with attosecond durations [47]. The ability
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to manipulate and control these attosecond pulses has opened up new possibilities
for investigating electronic dynamics on their natural timescales, probing electronic
structure, and initiating a wide range of time-resolved experiments [48].

Another captivating aspect of strong field phenomena is the exploration of strong-
field ionization (SFI) [49]. When subjected to intense laser fields, atoms and molecules
can be ionized, leading to the creation of free electrons. The ionization process in
strong fields exhibits intriguing characteristics such as above-threshold ionization
[50], tunnel ionization [51], and the generation of electron wave packets with com-
plex quantum interference patterns [52]. Understanding these ionization mecha-
nisms is crucial for various applications, including the development of advanced
imaging techniques [53], the manipulation of chemical reactions [54], and the explo-
ration of attosecond dynamics in complex molecular systems [55].

With the advent of novel light sources, as well as of new theoretical models de-
scribing the intricate interplay between light and matter in the regime of high in-
tensities, the list of strong field phenomena is constantly growing. Besides, HHG
and SFI, another two very popular phenomena in the world of strong fields are the
double optical resonance (DOR) in atomic physics and the electron-positron pair
creation in high-energy physics. To what follows, we review each of them in more
detail, since a basic theoretical understanding of these phenomena is necessary for
the following chapters of the thesis.

2.2.2 Double Optical Resonance

Double resonance refers to a strong field phenomenon observed in pump and probe
setups, and it is essentially based on the phenomenon of AC Stark splitting [56]. The
term optical is often used since the systems of investigation are usually atoms that
emit or absorb photons whose frequencies lie in the optical range.

The pump and probe experimental setups typically involves two synchronized
laser pulses: the pump pulse and the probe pulse [57]. The pump pulse is the initial
pulse that excites the sample under investigation, inducing a change in its physical
properties or electronic structure. This excitation leads to the formation of transient
states or non-equilibrium conditions within the system. Subsequently, the probe
pulse, delayed by a controlled time interval, interacts with the excited sample and
measures the resulting changes in its properties, such as absorption, reflectivity, or
emission. By varying the time delay between the pump and probe pulses, a tem-
poral evolution of the sample’s response can be recorded. Pump-probe experiments
enable the investigation of fundamental processes such as energy relaxation [58],
charge transfer [59], molecular dynamics [60], and phase transitions [61], shedding
light on the underlying mechanisms governing the behavior of complex systems.

If the pump pulse is sufficiently strong, it induces an AC Stark effect in the sys-
tem. AC Stark splitting, also known as the Autler-Townes effect, refers to the modifi-
cation of energy levels in a quantum system induced by the presence of an oscillating
electric field [62]. When atoms or molecules interact with a strong laser field, the en-
ergy levels that were once discrete become modified, leading to the emergence of
new energy states. This effect arises due to the interaction between the electric field
of the laser and the charge distribution within the atom or molecule. The AC Stark
effect is an important consequence of the interaction between light and matter, and
it is closely related to the more well-known phenomenon of the Stark effect, which
describes the energy level shifts induced by static electric fields [63]. While the Stark
effect is observed in the presence of a steady electric field, the AC Stark effect arises
when the electric field is oscillating in time. One of the features of AC Stark splitting
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is the possibility of creating "avoided level crossings" in the energy level diagram of
a quantum system [64]. These avoided crossings occur when two or more energy
levels come close to each other but do not actually cross due to the influence of the
laser field. As a result, new dressed states are formed, which are superpositions
of the original energy states. This effect is the basis of several phenomena and is
utilized for manipulating quantum systems in the atomic level [65].

Considering a two-level system driven by a radiation field of strong intensity,
the splitting of the atomic states involved in the process can be probed either by
the observation of the spectrum of spontaneous emission from the upper state or
through a pump probe arrangement, as described above. In the second case we have
the phenomenon of DOR, in which the splitting is probed through a second weak-
field transition to a third level. To formulate the phenomenon of DOR, we consider
a three-level system in a "Λ-type" configuration, that consists of a ground state, an
excited state as well as a third state that acts as a probe, denoted by |g⟩, |e⟩ and |p⟩,
respectively. The ground state is by definition stable while |p⟩ is considered to be
meta-stable, i.e. it is characterized by a long lifetime. A schematic representation of
the system is depicted in Fig. 2.1(a). The Hamiltonian of the system is [26]

Ĥ = ĤA + V̂ , (2.53)

where ĤA is the atomic Hamiltonian given by

ĤA = h̄ωgσ̂gg + h̄ωeσ̂ee + h̄ωpσ̂pp, (2.54)

with σ̂ii ≡ |i⟩ ⟨i|, (i = g, e, p), while V̂ is the atom-field interaction Hamiltonian given
by

V̂ = −℘⃗ · [E⃗1(t) + E⃗2(t)], (2.55)

with E⃗j(t) = êjEj(t) and Ej(t) = Eje−iωjt + c.c., (j = 1, 2). E1 is assumed to be the
electric field with polarization ê1 and frequency ω1 that drives the |g⟩ ←→ |e⟩ tran-
sition, while E2 is assumed to be the electric field with polarization ê2 and frequency
ω2 that drives the |e⟩ ←→ |p⟩ transition. ℘⃗ is assumed to be the dipole moment
operator of the atom. The state of the system at any time can be written as:

|Ψ(t)⟩ = cg(t) |g⟩+ ce(t) |e⟩+ cp(t) |p⟩ , (2.56)

where ci(t) is the time-dependent amplitude of state |i⟩, (i = g, e, p). In view of the
above relations, the time-dependent Schrödinger equation ih̄ ∂

∂t |Ψ(t)⟩ = Ĥ |Ψ(t)⟩
within the rotating wave approximation (RWA) leads to the following set of equa-
tions:

∂

∂t
cg(t) = −iωgcg(t) + ice(t)Ω1eiω1t, (2.57a)

∂

∂t
ce(t) = −iωece(t) + icg(t)Ω1e−iω1t + icp(t)Ω2e−iω2t, (2.57b)

∂

∂t
cp(t) = −iωpcp(t) + ice(t)Ω2eiω2t, (2.57c)

where Ω1 ≡ ℘geE1/h̄ and Ω2 ≡ ℘epE2/h̄ are the Rabi frequencies of the |g⟩ ←→
|e⟩ and |e⟩ ←→ |p⟩ transitions respectively, and ℘µν ≡ ⟨µ| ℘⃗ · êj |ν⟩ is the dipole
matrix element of the corresponding |µ⟩ ←→ |ν⟩ transition with µ, ν ∈ {g, e, p} and
µ ̸= ν. Note that ℘µνEj is assumed to be real without loss of generality. The set of
Eqs. (2.57) can be simplified by introducing the transformations cg(t) = c̃g(t)e−iωgt,
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ce(t) = c̃e(t)e−i(ωg+ω1)t and cp(t) = c̃p(t)e−i(ωg+ω1−ω2)t, in view of which we obtain:

∂

∂t
c̃g(t) = iΩ1c̃e(t), (2.58a)

∂

∂t
c̃e(t) = i∆1c̃e(t) + iΩ1c̃g(t) + iΩ2c̃p(t), (2.58b)

∂

∂t
c̃p(t) = i(∆1 − ∆2)c̃p(t) + iΩ2c̃e(t), (2.58c)

where ∆1 ≡ ω1 − ωeg ≡ ω1 − (ωe − ωg) and ∆2 ≡ ω2 − ωep ≡ ω2 − (ωe − ωp) are
the detunings of the |g⟩ ←→ |e⟩ and |e⟩ ←→ |p⟩ transitions, respectively. By solving
numerically the above set of differential equations we obtain the time evolution of
the transformed amplitudes c̃i(t), (i = g, e, p). The population of the probe state |p⟩
can then be easily calculated as:

Pp(t) =
∣∣cp(t)

∣∣2 =
∣∣c̃p(t)

∣∣2 = c̃p(t)c̃∗p(t). (2.59)

In Fig. 2.1(b) we plot the probe state population calculated after an interaction
time T, as a function of ∆2, for various values of Ω1. For simplicity we assume
that the frequency ω1 is resonant with the |g⟩ ←→ |e⟩ transition, i.e. ∆1 = 0. The
probe field is assumed to be much weaker than the field that drives the |g⟩ ←→ |e⟩
transition. As becomes evident, increasing the value of Ω1 eventually leads to the
splitting of the excited state (as well as the ground state) to two states, energetically
separated by h̄Ω1. The splitting is monitored by measuring the population of the
probe state for varying frequencies ω2, i.e. varying detunings ∆2.

FIGURE 2.1: (a) Schematic representation of a "Λ-type" three-level system where the first
transition is driven by a strong radiation field, while the second one by a weak probe field.
(b) Probe state population as a function of ∆2 for ∆1 = 0 and Ω2 = 0.1T−1. T is the
atom-field interaction time. Black line: Ω1 = 2T−1, teal line: Ω1 = 4T−1, orange line:
Ω1 = 8T−1.

2.2.3 Electron-positron pair creation

The spontaneous production of electron-positron pairs in vacuum in the presence of
ultrastrong electromagnetic radiation, is one of the most intriguing non-linear phe-
nomena predicted by Quantum Electrodynamics (QED) theory, which still has not
been confirmed experimentally. The analysis of this strong-field phenomenon was
presented in 1931 in the work of Sauter [66] who was the first to calculate the lead-
ing order expression of the pair creation rate for fields smaller than the critical value
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Ec = me
2c3

eh̄ = 1.32× 1016 V/cm, whereas Schwinger extended his work by calculat-
ing the full result [67]. The critical value Ec is defined as the value of the electric field
such that the spontaneous creation of an e−e+ pair in vacuum, often referred to as
Schwinger mechanism, acquires a sizable rate [67]. Due to the practical impossibility
of creating such an ultrastrong static and homogeneous field in the laboratory, there
was a lot of theoretical activity in the decade of 1970 on the analysis of vacuum pair
creation using time-dependent electric fields [68–75]. However, within the available
optical laser technology at that time, the resulting rate would be far too small to be
experimentally observable, due to insufficient power density necessary for breaking
the vacuum.

The more recent advent of the free-electron laser (FEL), in facilities such as the
European XFEL [76], DESY [77], SLAC [78] and SACLA [79], revived the interest
in this problem over the last twenty years or so [80–94], because FEL’s can pro-
vide strong, tightly focused radiation with energies up to the hard X-rays regime.
At the same time, many authors have in addition explored possible ways to effec-
tively enhance the pair creation yield by using consecutive pulses with time delay
[95], combinations of weak high-frequency and strong low-frequency fields [96–99],
strong fields combined with thermal backgrounds [100], as well as fields with fre-
quency [101] or amplitude [102] modulations. Treatments based on effective elec-
tron and positron mass models have also received considerable attention the last
few years [103–105]. It is important to note here that most of the studies mentioned
above distinguish pair creation into two regimes depending on the field parameters,
i.e. the tunneling and the multi-photon regime. For a harmonically oscillating field
E(t) = Ecos(ωt), these two regimes are reflected in the value of γ = mecω

eE , which
is the exact analog of the Keldysh parameter in strong-field laser-atom interactions.
In particular, for γ ≪ 1 (high-field, low-frequency limit) e−e+ pairs are mainly cre-
ated via the tunneling effect, whereas for γ ≫ 1 (low-field, high frequency limit)
the pairs are created via multi-photon absorption with the corresponding formulas
resembling a perturbative result. Pair creation in the intermediate regime between
those two, often referred as non-perturbative multi-photon regime, has also been
considered in a number of papers [106–111]. It must always be kept in mind that
the notion of strong non-perturbative regime depends not only on the intensity but
also on the wavelength. For example, infrared radiation of intensity 1014 W/cm2 in-
duces non-perturbative behavior, whereas the same intensity at XUV belongs to the
multi-photon regime [112]. Moreover, in all strong-field laser interactions, there are
no sharp demarcation lines between the multi-photon and tunneling regimes.

Although pair creation via the Schwinger mechanism has not been experimen-
tally observed so far, creation of e−e+ pairs via the so-called Breit-Wheeler mecha-
nism [113] has been reported since the mid 1990s in pioneering experiments at Stan-
ford (SLAC) [114, 115]. In those experiments, a high-energy photon created through
Compton backscattering of optical photons by a 46.6 GeV electron beam, collided
with laser photons of wavelength 527nm to produce electron-positron pairs. The
reported measured signal of 106± 14 positrons were the first data involving the cre-
ation of e−e+ pairs in the laboratory. The theoretical analysis of SLAC’s data was
based on the existing non-perturbative theory of the multi-photon Breit-Wheeler re-
action available at the time [116, 117], whereas further theoretical insights of the
measurements where added many years later [118, 119]. Production of electron-
positron pairs can also be achieved via the Bethe-Heitler mechanism where the pairs
are created by laser radiation in the vicinity of an atomic nucleus [120–122].



2.3. Atomic transitions induced by stochastic radiation 17

2.3 Atomic transitions induced by stochastic radiation

In this section we present the main properties of stochastically fluctuating electro-
magnetic fields and some basic theoretical tools that enable us to account for these
in atomic transitions [5, 6]. In particular, we focus on two well-known models of
stochastically fluctuating fields and explore their strong-driving effects on a two-
level system.

2.3.1 General properties

Consider an atom described by an atomic density matrix operator ρ coupled to a
stochastically fluctuating field of amplitude E(t). The stochastic character of the
field leads to equations of motion which are also stochastic. Therefore these equa-
tions have to be averaged over the field fluctuations. The averaging process for a N-
photon transition leads to atomic-field correlations of the type

〈
E∗N(t1)EN(t2)ρii(t2)

〉
,

that cannot be generally evaluated without first solving the stochastic differential
equations describing the time evolution of the density matrix elements. Note that the
angular brackets denote the averaging over the fluctuations of the radiation field. As
an approximation valid under certain conditions, one could decorrelate the atomic-
field dynamics [123] by taking〈

E∗N(t1)EN(t2)ρii(t2)
〉
=
〈
E∗N(t1)EN(t2)

〉
⟨ρii(t2)⟩ . (2.60)

However, as described below, there are specific models of fluctuating fields where
the decorrelation is mathematically rigorous and does not stand only as an approx-
imation. In what follows, we describe two well-known and mostly used models for
stochastic fields, namely the phase-diffusion and the chaotic field model.

In the phase-diffusion (PD) model the field has non-fluctuating amplitude but its
phase is a Wiener-Levy stochastic process [124]. In this case the nth-order correlation
function of the field is equal to [125]:

⟨E∗(t1)E(t2)...E∗(t2n−1)E(t2n)⟩ =
2n−1

∏
j→odd

〈
E∗(tj)E(tj+1)

〉
, (2.61)

with tj > tj+1.
This represents a stationary Markovian process, with an exponential first-order

correlation function given by [124]:

⟨E∗(t1)E(t2)⟩ =
〈
|E(t)|2

〉
exp

[
−1

2
γL |t1 − t2|

]
, (2.62)

where γL is the bandwidth of the field. The mean value of the field amplitude in
the PD model is zero, i.e. ⟨E(t)⟩ = 0. A short note should be made at this point
regarding the use of the term "Markovian" in the context of stochastically fluctuat-
ing fields. Although, strictly speaking, the term Markovian refers to memoryless
processes, i.e. processes in which for a given time the field has no memory of its
past values (implying a delta-like field correlation function), more often than not,
the term "Markovian" is also used for short memory fluctuating fields. In such case
the memory of the field usually decays exponentially fast as happens for example
in the case of Eq. (2.62). Although the finite memory may, strictly speaking, imply
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a non-Markovian process, it is essentially the relative magnitude between the band-
width of the field and the rates that appear in the context of particular problem,
that determine whether the memory effects of the field play significant role in the
dynamics of a given system. Given the above, in what follows, by using the term
"Markovian" we will be also referring to stochastically fluctuating fields with short
memory and not only for fields described by delta-like field correlation functions.

It has been established [124] that in the case of the phase-diffusion model the
decorrelation of the atom-field dynamics (See Eq. (2.60)) is rigorous without any
approximation. Physically, this is easy to understand, because for a constant am-
plitude, the fluctuations of the phase of the field cannot affect the evolution of the
populations, but only the coherence, i.e. the relative phase of the coefficients repre-
senting the superposition of the states coupled by the field. And it is the correlation
between the time evolution of populations that is factorized in the process of decor-
relation. Formally, the decorrelation is justified due to the statistical independence
of the increments of a Wiener-Levy process.

In the chaotic field model the field undergoes both amplitude and phase fluc-
tuations. Its amplitude is a complex Gaussian stochastic process with its nth-order
correlation function obeying [125]:

⟨E∗(t1)E(t2)...E∗(t2n−1)E(t2n)⟩ = ∑
P

2n−1

∏
j→odd

〈
E∗(tj)E(tP(j+1))

〉
, (2.63)

where the sum is over all possible permutations P, with tj > tj+1. The field am-
plitude is usually written in the form E(t) = Ex(t) + iEy(t), where Ex(t) and Ey(t)
are two independent Gaussian processes with mean values equal to zero. For rea-
sons of analytical simplification, in what follows, we assume the chaotic field to be
Markovian with an exponential first-order correlation function given by Eq. (2.62),
a property not necessarily satisfied by a general chaotic field.

Contrary to the case of the phase diffusion model, the decorrelation of atomic-
field dynamics is not mathematically rigorous for a chaotic field, but stands only as
an approximation, valid in the weak field regime. The relative errors of this approx-
imation have been evaluated in a very interesting recent theoretical work [126, 127]
that also includes systematical methods of describing fluctuating SASE-FEL pulses
driving single Auger resonances.

2.3.2 Two-level system subject to stochastic radiation

In this section we describe a method of finding the time evolution of a two-level
system driven by a stochastically fluctuating field as presented in [5]. We begin
by considering a two-level atom with a ground state |1⟩ and an excited state |2⟩
subject to an electric field of the form E(t) = E(t)eiωt + E∗(t)e−iωt. The complex
field amplitude is generally assumed to undergo fluctuations and can be written in
the form E(t) ≡ |E(t)| eiφ(t) , with |E(t)| and φ(t) the real amplitude and the phase
of the field, respectively. The electric dipole between the two states is µ12 and the
transition frequency is ω21. The equations of motion of the density matrix in the
RWA are

(
d
dt

+ i∆ +
1
2

γ21)σ12(t) =
1
2

iΩR(t)D(t), (2.64)

(
d
dt

+ γ2)D(t) = −γ2 − 2Im[Ω∗R(t)σ12(t)], (2.65)
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where we introduced the slowly varying amplitudes ρii(t) = σii(t), i = 1, 2 and
ρ12(t) = σ12(t)eiωt, and used the property σ11(t) + σ22(t) = 1, implying a closed
system with no population loss. By D(t) ≡ σ22(t)− σ11(t), we denote the population
difference and by ∆ the detuning from the resonance, i.e. ∆ = ω − ω21. γ2 is the
spontaneous decay rate of the excited state, while γ21 the off-diagonal relaxation
that may include decays other than γ2 as for example in the case of elastic collisions.
The Rabi frequency ΩR(t) = 2h̄−1µ12E(t) is stochastic and its mean value will be
denoted by Ω̄R(t) = 2h̄−1µ12E0.

We integrate both equations formally and eliminate σ12(t) to obtain:

D(t) = −1− Re
t∫

0

eγ2(t1−t)dt1

t1∫
0

e(i∆+
1
2 γ21)(t2−t1)Ω∗R(t1)ΩR(t2)D(t2)dt2, (2.66)

under the initial conditions σ11(0) = 1, σ22(0) = 1 and σ12(0) = 0.

Phase-Diffusion field

At first, let us assume that field is described by a phase-diffusion model. The stochas-
tic average of Eq. (2.66) over the fluctuating phase, in view of Eq. (2.62), yields:

⟨D(t)⟩ = −1− Re
t∫

0

eγ2(t1−t)dt1

t1∫
0

e(i∆+
1
2 γ21+γL)(t2−t1)Ω̄2

R(t2) ⟨D(t2)⟩ dt2, (2.67)

where γL the field bandwidth. Taking the Laplace transform on both sides of Eq.
(2.67) yields:

⟨D(s)⟩ = −1
s
− Re

{
Ω̄2

R

(s + γ2)
[
s + i∆ + 1

2 (γ21 + γL)
] ⟨D(s)⟩} , (2.68)

where by ⟨D(s)⟩we denoted the Laplace transform of ⟨D(t)⟩. The steady state value
of the population difference can be evaluated using the final value theorem for the
Laplace transform, namely, lim

s→0
s ⟨D(s)⟩ = ⟨D(t = ∞)⟩ ≡ ⟨D∞⟩. Using this theorem

one obtains:
⟨D⟩PD

∞ = −1/
(1 + S), (2.69)

where S is the saturation parameter given by

S =
(Ω̄2

R/γ2)
1
2 (γ21 + γL)

∆2 + 1
4 (γ21 + γL)

2 (2.70)

In view of the above equation we conclude that the effect of the fluctuating phase
on the dynamics of the two-level system is the addition of the field bandwidth γL to
the atomic linewidth γ21. The averaged population of the second state is given by
the expression

⟨σ22⟩PD
∞ =

1
2 S

1 + S
=

1
4 (γ21 + γL)

2

∆2

1+S0
+ 1

4 (γ21 + γL)
2

1
2 S0

1 + S0
, (2.71)

where S0 is the value of S when the field is exactly on resonance with the |1⟩ ↔ |2⟩
transition. The profile of Eq. (2.71) is Lorentzian with FWHM equal to

√
1 + S0(γ21 +
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γL).

Chaotic field

For chaotic fields the stochastic average of Eq. (2.66) is generally a very challenging
task. As a result, one has to obtain a perturbation series expansion for the correction
to the decorrelation approximation [5]. Only in the case of zero bandwidth the exact
correction can be found.

Let us first consider that the field has zero bandwidth. Note that γL = 0 implies
an infinite correlation time and the field is random with statistics independent of
time. In this case the phase of the field is characterized by a uniform distribution
from 0 to 2π and its real amplitude follows a Rayleigh distribution. Hence, the
stochastic average of the population difference is given by:

⟨D(t)⟩ =
2π∫
0

∞∫
0

2 |ΩR| e
−
(
|ΩR|
Ω̄R

)2

2πΩ̄2
R

D (|ΩR| , φ, t) d |ΩR| dφ. (2.72)

Taking the derivative of both sides of Eq. (2.72) with respect to Ω̄2
R = ⟨Ω∗RΩR⟩ one

finds:

⟨Ω∗RΩRD(t)⟩ = ⟨Ω∗RΩR⟩ ⟨D(t)⟩+ ⟨Ω∗RΩR⟩2
d ⟨D(t)⟩

d ⟨Ω∗RΩR⟩
. (2.73)

Moving the first term of the right-hand side of Eq. (2.73) to left-hand side, we form
the term ⟨Ω∗RΩRδD(t)⟩which represents the correlation between the intensity of the
chaotic field and the fluctuations of the population difference around its mean value,
i.e. δD(t) = D(t)− ⟨D(t)⟩. If we calculate the stochastic average of Eq. (2.66) using
Eq. (2.73), take its Laplace transform and use the Laplace final value theorem as
described in the case of the phase-diffusion model, we find:

S2 d ⟨D⟩CH
∞

dS
+ (1 + S) ⟨D⟩CH

∞ + 1 = 0, (2.74)

where S is given by Eq. (2.70) with γL = 0. Eq. (2.74) is differential and its solution
can be written in the various forms:

⟨D⟩CH
∞ = − e1/S

S

∞∫
1

e−t/S

t
dt ≡ − e1/S

S
E1(1/S) =

∞∫
0

(
−1

1 + S′

)
e−S′/S

S
dS. (2.75)

Eq. (2.75) indicates that the mean value of the population difference of a chaotic field
with zero bandwidth can be calculated by first finding the solution for a coherent
field, i.e. phase-diffusion field with zero bandwidth, and then average the result
over the exponential intensity distribution of the chaotic field.

For S ≪ 1 the asymptotic expansion of E1(1/S) results ⟨D⟩CH
∞ = −

∞
∑

k=0
k!(−S)k

while in the case of the phase-diffusion field we have ⟨D⟩PD
∞ = −

∞
∑

k=0
(−S)k. The two

results agree only to first order perturbation theory. For S ≫ 1 the series expansion
of E1(1/S) leads to the result ⟨D⟩CH

∞ ≃ −(ln S)/S while ⟨D⟩PD
∞ ≃ −1/S. This in-

dicates that the chaotic field is less effective in saturating a single-photon transition
than a coherent field.
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We now consider the more complex case of arbitrary bandwidth, where a non-
perturbative relation between ⟨Ω∗R(t1)ΩR(t2)D(t2)⟩ and ⟨D(t2)⟩ cannot be found
by simply knowing the statistics of the Rabi frequency. For Markovian chaotic fields
with exponential first-order correlation function one can show that ⟨Ω∗R(t1)ΩR(t2)D(t2)⟩ =
exp

[
− 1

2 γL(t1 − t2)
]
⟨Ω∗R(t2)ΩR(t2)D(t2)⟩ but no further progress can be made. How-

ever, using a systematic method presented here, we can develop a perturbation se-
ries of the correlation ⟨Ω∗R(t1)ΩR(t2)D(t2)⟩ that can be summed up to all orders [5].
We begin by writing D(t) = ⟨D(t)⟩+ δD(t), which also implies ⟨δD(t)⟩ = 0. Sub-
stituting this relation back to Eq. (2.66) and taking its stochastic average one finds:

⟨D(t)⟩ = −1− Re
t∫

0

eγ2(t1−t)dt1

t1∫
0

e[(i∆+
1
2 γ21)(t2−t1)]

× [⟨Ω∗R(t1)ΩR(t2)⟩ ⟨D(t2)⟩+ ⟨Ω∗R(t1)ΩR(t2)δD(t2)⟩] dt2.

(2.76)

By subtracting Eq. (2.76) from Eq. (2.66), one finds:

δD(t2) =− Re
t2∫

0

eγ2(t3−t2)dt3

t3∫
0

e[(i∆+
1
2 γ21)(t4−t3)]

× {[Ω∗R(t3)ΩR(t4)− ⟨Ω∗R(t3)ΩR(t4)⟩] ⟨D(t4)⟩
+ [Ω∗R(t3)ΩR(t4)δD(t4)− ⟨Ω∗R(t3)ΩR(t4)δD(t4)⟩]} dt4.

(2.77)

Iterating Eq. (2.77) and substitution of δD(t2) back in Eq. (2.76), leads to the follow-
ing series integral equation:

⟨D(t)⟩ =− 1− Re
t∫

0

eγ2(t1−t)dt1

t1∫
0

e[(i∆+
1
2 γ21)(t2−t1)]dt2

×
{
⟨Ω∗R(t1)ΩR(t2)⟩ ⟨D(t2)⟩ − Re

t2∫
0

eγ2(t3−t2)dt3

t3∫
0

e[(i∆+
1
2 γ21)(t4−t3)]dt4

×
[
⟨Ω∗R(t1)ΩR(t4)⟩ ⟨Ω∗R(t3)ΩR(t2)⟩ ⟨D(t4)⟩ − Re

t4∫
0

eγ2(t5−t4)dt5

t5∫
0

e[(i∆+
1
2 γ21)(t6−t5)]dt6

×
(
⟨Ω∗R(t1)ΩR(t6)⟩ ⟨Ω∗R(t3)ΩR(t4)⟩ ⟨Ω∗R(t5)ΩR(t2)⟩

+ ⟨Ω∗R(t1)ΩR(t4)⟩ ⟨Ω∗R(t3)ΩR(t6)⟩ ⟨Ω∗R(t5)ΩR(t2)⟩

+ ⟨Ω∗R(t1)ΩR(t6)⟩ ⟨Ω∗R(t3)ΩR(t2)⟩ ⟨Ω∗R(t5)ΩR(t4)⟩ ⟨D(t6)⟩ − ...
)]}

.

(2.78)

Since we assumed that the field is Markovian with exponential first order corre-
lation function, the above equation is generally solvable using Laplace transform.
However due to the complexity of Eq. (2.78), one should develop a systematic way
of calculating its Laplace transform. One useful way is to express our equation in
terms of diagrams [128, 129], as depicted in Fig. 2.2. The straight line between
two successive vertices at tj and tj+1 is associated with the factor exp

[
γ2(tj+1 − tj)

]
while the wavy line with the factor 1

2 exp
[(

i∆ + 1
2 γ21

)
(tj+1 − tj)

]
+ c.c. A loop con-

necting two vertices at tj and t′ j, with tj > t′ j and j < j′ is associated with the factor
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Ω̄2
R exp

[
− 1

2 γL(tj − t′ j)
]
. It is important to notice that although Eq. (2.78) may con-

tain intersecting loops, the exponential form of the first-order correlation function
allows us to replace these loops by non-intersecting ones. In example, the part of the
diagram that represents the term ⟨Ω∗R(t1)ΩR(t4)⟩ ⟨Ω∗R(t3)ΩR(t6)⟩ ⟨Ω∗R(t5)ΩR(t2)⟩ can
be replaced equivalently by ⟨Ω∗R(t1)ΩR(t6)⟩ ⟨Ω∗R(t3)ΩR(t4)⟩ ⟨Ω∗R(t5)ΩR(t2)⟩.

FIGURE 2.2: Representation of Eq. (2.78) in terms of diagrams [5].

Taking the Laplace transform of the diagram in Fig. 2.2 and applying the Laplace
frequency-shift theorem we find:

⟨D(s)⟩ = −(1/s)/
[
1 + ∑1 (s)

]
, (2.79)

where

∑1 (s) = Re
Ω̄2

R

(s + γ2)
[
s + i∆ + 1

2 (γ21 + γL)
] ×(1− Re

Ω̄2
R

(s + γ2 + γL)
[
s + i∆ + 1

2 (γ21 + γL)
] + ...

)

≡ Re
Ω̄2

R

(s + γ2)
[
s + i∆ + 1

2 (γ21 + γL)
] 1

1 + ∑2 (s)
,

(2.80)

is the first irreducible function corresponding to the set of diagrams in Eq. (2.78). Eq.
(2.80) also defines ∑2 (s). The recursion relation between the functions ∑i (s) is

∑m (s) =
Sm(s)

1 + ∑m+1 (s)
, (2.81)

with

Sm(s) = Re
(m + 1)Ω̄2

R

2
[
s + γ2 +

1
2 (m− 1)γL

] [
s + i∆ + 1

2 (γ21 + mγL)
] , (2.82)

for m odd, or

Sm(s) = Re
mΩ̄2

R

2
(
s + γ2 +

1
2 mγL

) {
s + i∆ + 1

2 [γ21 + (m− 1) γL]
} , (2.83)
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for m even. The coefficients Sm are called saturation coefficients. The steady state
value of the population difference is given by

⟨D⟩CH
∞ = − 1

1 + ∑1
=

−1
1 + S1

1+ S2
1+...

, (2.84)

where ∑m and Sm are given by Eqs. (2.81), (2.82) and (2.83) by applying s = 0. The
first saturation coefficient S1 is identical to the saturation parameter defined in Eq.
(2.70) for the case of the phase-diffusion field. Therefore the relation ∑1 < S1 implies
the known result, that a chaotic field is always less effective in saturating a single-
photon transition than a phase-diffusion field. If we set γL = 0 in Eq. (2.84) we get
the continued fraction result− e1/S

S E1(1/S) of Eq. (2.75). For non-zero bandwidth Eq.
(2.84) converges and can be suitably truncated and summed to any desired accuracy.

Before closing this section we should note that there also other methods that can
be used to describe the interaction between atoms and stochastic radiation. For ex-
ample, one could use the perturbative method of multi-time cumulants [130] which,
depending on the specific details of the considered problem, may be useful in de-
scribing the interaction between atoms and stochastic fields with Gaussian first-
order correlation functions. However, we should always keep in mind that methods
such as the above are of limit usefulness for non-stationary processes, i.e. processes
with varying mean value or/and variance over time. In such cases, where most
methods are not directly applicable, the problem is usually approached solely via
numerical Monte-Carlo methods.
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Chapter 3

Photon statistics effects in double
optical resonance

A benchmark problem encapsulating the interplay between non-linearity and pho-
ton correlations is the dynamics of a transition between two bound states driven
resonantly by fields with different quantum stochastic properties, such as coherent
state, chaotic (thermal) or squeezed. The dynamics can be probed either by the ob-
servation of the spectrum of spontaneous emission from the upper state or through
a pump probe arrangement, as in DOR, where a second weak-field transition to a
third level serves as a probe.

The case of weak field absorption of a two-level atom by states of various photon
statistics in the narrow bandwidth limit has been studied in great detail [131], as has
the case of strong driving in the context of both resonance fluorescence and DOR [5,
6]. The problems of resonance fluorescence into a squeezed vacuum (SQV) reservoir
[132–140], the calculation of the absorption spectrum in a squeezed state of non-zero
bandwidth [141, 142] and the interaction of a three-level system with a broadband
squeezed vacuum field [143, 144] have also been investigated. In addition to in-
tensity fluctuations, a transition between two discreet states is also sensitive to the
bandwidth of the radiation. The bandwidth is of course part of the stochastic prop-
erties of the field, but not a uniquely quantum feature, as the intensity fluctuations
are in certain sources such as SQV. For coherent and chaotic fields (ChF), which are
amenable to modelling in terms of classical fields, with Gaussian stochastic prop-
erties, this has been treated in considerable detail [5, 6, 145, 146]. The theory of
a single-photon transition, driven strongly by coherent or ChF, including arbitrary
bandwidth, is well understood for both fluorescence and DOR; although experimen-
tally much remains to be explored, especially for driving by ChF. To the best of our
knowledge, no experimental data exist for that case, for which the theory predicts
[5, 6, 145, 146] a rich variety of counter-intuitive effects due to intensity fluctuations
mirrored in the concomitant fluctuations of the Rabi frequency. Given that photon
bunching, inherent in chaotic radiation, is responsible for those effects, would those
effects be more pronounced in the presence of superbunching? In the light of the
recent achievement by Spasibko et al. [147] and Lu Zhang et al. [148, 149], theoreti-
cal predictions to those questions appear to be within experimental reach, which has
served as the principal motivation for this work.

3.1 Squeezed coherent states in single-photon double optical
resonance

As we mentioned in section 2.1.3, a quantum state is referred as "squeezed" if the
variance of one of the quadrature amplitudes of the state is modified in such a way
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that becomes smaller than the respective variance of a vacuum or a coherent state.
Such a state is referred in the bibliography under the term "Squeezed vacuum state"
(SQVS) and "Squeezed coherent state" (SQCS), respectively. Due to Heisenberg’s
uncertainty principle, squeezing always results to the increase of the conjugated
quadrature variance above the variance of vacuum, in the case of a SQVS, and the
variance of a coherent state in the case of a SQCS [38].

The first experimental observation of squeezed light was reported back in 1985
in the pioneering work of Slusher et al. [150] who achieved four-wave-mixing in an
atomic vapor of sodium atoms. Since then, significant advances in the generation
and detection of squeezed light [30] gave the green light for the implementation of
squeezing as a resource in a series of different applications in several fields. Among
these applications, the ones that stand out are related to the reduction of quantum
noise in optical communications [151], the detection of sub-shot-noise phase shifts
[152, 153], the ability to achieve maximum sensitivity in interferometry at lower laser
powers [154] that was implemented in the detection scheme of gravitational waves
[155], the storage of quantum memory [156, 157] necessary for quantum information
tasks, and most recently, the ability for quantum-enhanced microscopy and effective
bio-imaging without the danger of damaging the cell sample [158, 159].

The underlying physical mechanism behind the last application is thoroughly
intriguing since it is based on the effective yield enhancement that one can achieve
by inducing non-linear processes with squeezed radiation. As has been known since
the 1960’s [7, 8] any non-linear light-matter interaction depends on the quantum sta-
tistical properties of the radiation that are embodied in its correlation functions. This
realization naturally led to a series of studies [160–173] on non-linear phenomena
induced by fields that may exhibit photon bunching or superbunching properties
resulting to higher correlation functions than those of a coherent field. The simplest
example illustrating this dependence is the transition from a bound state to a con-
tinuum via the absorption of N photons, i.e. N-photon ionization. The derivation of
the transition probability per unit time for N-photon ionization when all real bound
atomic intermediate states are assumed sufficiently far from resonance [174–177],
indicates that the rate of the process is proportional to an effective N-photon ma-
trix element multiplied by the Nth-order intensity correlation function [7, 8]. And in
view of the dependence of the correlation functions on the stochastic properties of
the radiation, the rate of such a process can be affected dramatically by the intensity
fluctuations of the source [178]. As a prototype example one can take an 11-photon
ionization process induced by thermal radiation whose Nth order intensity correla-
tion function is given by N!× IN , where I is the average intensity, i.e. N! times larger
than the respective correlation function of the coherent field. For N = 11, the N! fac-
tor arising from the strong intensity fluctuations of the chaotic field, gives us an
enormous enhancement of around seven orders of magnitude, that in fact has been
observed experimentally in the past for process of such a high-order [179, 180]. The
situation becomes even more interesting if one considers squeezed radiation, which
under certain values of parameters may exhibit superbunching properties resulting
to correlation functions even larger than those of the chaotic field [181].

The main hindrance in the experimental investigation of such phenomena us-
ing squeezed radiation has been the difficulty of producing stable, high intensity
squeezed sources with controllable stochastic properties in the lab. However, in
view of recent works [182] providing novel methods to overcome experimental dif-
ficulties associated with the generation of squeezed coherent radiation, the study of
some of these effects are timely.

In what follows we investigate the strong driving of a bound-bound transition
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by a radiation field initially prepared in a SQCS [183]. For that matter, we con-
sider a "Λ-type" three-level system where the first transition is driven by a radiation
field initially prepared in a squeezed coherent state, while the second one by a weak
probe field. If the squeezed field is sufficiently strong to cause Stark splitting of the
states it connects, such a splitting can be monitored through the population of the
probe state, as we explored in Section 2.2.1. Since squeezed light in not amenable
to simulation in terms of classical stochastic processes, we adopt a fully quantum
mechanical treatment in terms of the resolvent operator, involving averaging over
the photon number distribution of the SQCS, a method valid in the limit where the
bandwidth of the source is sufficiently smaller than the natural decay of the excited
state.

We begin by considering an atom initially resting in its ground state |g⟩ in the
presence of a quantized radiation field in a two-mode Fock state with n photons in
the first mode with frequency ω1 and m photons in the second mode with frequency
ω2. The atom can absorb one photon from the first mode and move to the excited
state |a⟩, while the latter is coupled to another excited state |b⟩ via the emission
of one of the m photons. The Hamiltonian of the system consists of three parts;
namely, the atomic Hamiltonian ĤA = ∑j h̄ωj |j⟩ ⟨j| (j = g, a, b), the Hamiltonian
of the radiation field ĤR = ∑2

i=1 h̄ωi â†
i âi and the interaction Hamiltonian under the

rotating wave approximation, V̂ = ∑2
i=1 h̄gi

(
σ̂
(i)
+ âi + â†

i σ̂
(i)
−

)
, where h̄ωg, h̄ωa and

h̄ωb are the energies of the atomic states |g⟩, |a⟩ and |b⟩, respectively, g1 and g2
represent the coupling strengths between those states in units of frequency, while âi
and â†

i , (i = 1, 2) are photon annihilation and creation operators, respectively. The
atomic operators σ̂

(i)
+ and σ̂

(i)
− , (i = 1, 2), are the raising and lowering operators,

respectively, given by the relations σ̂
(1)
+ = |a⟩ ⟨g|, σ̂

(1)
− = |g⟩ ⟨a|, σ̂

(2)
+ = |a⟩ ⟨b| and

σ̂
(2)
− = |b⟩ ⟨a|.
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FIGURE 3.1: Schematic presentation of the system at study. A strong radiation field
prepared initially in a squeezed coherent state drives the |g⟩ ↔ |a⟩ transition resulting to a
Stark splitting of both states. This splitting is monitored through the calculation of the
population of state |b⟩ as a function of ∆2, which is assumed to be weakly coupled to state
|a⟩ through a probe field.

The eigenstates of the unperturbed Hamiltonian Ĥ0 ≡ ĤA + ĤR of the com-
pound system "atom + radiation", are |I⟩ = |g⟩ |n⟩1 |m⟩2, |A⟩ = |a⟩ |n− 1⟩1 |m⟩2
and |B⟩ = |b⟩ |n− 1⟩1 |m + 1⟩2, with energies h̄ωI = h̄ωg + nh̄ω1 + mh̄ω2, h̄ωA =
h̄ωa + (n− 1)h̄ω1 + mh̄ω2 and h̄ωB = h̄ωb + (n− 1)h̄ω1 + (m + 1)h̄ω2, respectively.
The detunings from resonance of the two transitions are defined as ∆1 ≡ ω1−ωag ≡
ω1 − (ωa −ωg) and ∆2 ≡ ω2 −ωab ≡ ω2 − (ωa −ωb).
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To account for the spontaneous decay of the excited state |a⟩, we make the sub-
stitution ωA → ω̃A = ωA − i

2 γ, in view of which, our system now becomes open.
Note that this method introduces a decay rate without accounting for the repopu-
lation of the ground state. It is however a good approximation as long as the first
transition is sufficiently strong so that the Rabi frequency Ω1 of the first transition
is sufficiently larger than the decay rate γ. In such a case, the interaction between
the uncoupled states of the compound system |I⟩ and |A⟩, causes a splitting into
doublets energetically separated by h̄Ω1 (Stark splitting). Such a splitting can be
monitored through the calculation of the probe state population (state |b⟩) as a func-
tion of ∆2. Our ultimate goal is the study of the splitting profile in the case where
the |g⟩ ↔ |a⟩ transition is driven by a strong field prepared in a squeezed coherent
state. The switch-over from the initial Fock state to a squeezed coherent state can
be realized through appropriate averaging of the probe state population over the
photon statistics distribution of the squeezed coherent field, as will be described in
detail below. A schematic representation of the system we study is depicted in Fig
3.1.

Our problem is formulated in terms of the resolvent operator, which is the Laplace
transform of the time-evolution operator Û(t) = exp

(
−iĤt

)
. Taking the Laplace

transform with s being the usual Laplace variable and making the change of vari-
ables s = −iz, we obtain the relation Ĝ(z) = (z− Ĥ)−1, where Ĝ(z) is the resolvent
operator [164, 184, 185]. Using the relation Ĥ = Ĥ0 + V̂, it is straightforward to show
that Ĝ(z) obeys the equation Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂Ĝ(z), where Ĝ0(z) ≡ 1

z−Ĥ0 is
the unperturbed resolvent operator. In view of this equation, the matrix elements of
the resolvent operator in the compound system basis, satisfy the equations

(z− h̄ωI)GI I = 1 + VIAGAI , (3.1)

(z− h̄ω̃A)GAI = VAIGI I + VABGBI , (3.2)

(z− h̄ωB)GBI = VBAGAI . (3.3)

Solving for GBI , one obtains:

GBI =
VBAVAI

(z− h̄ωI)(z− h̄ω̃A)(z− h̄ωB)− (z− h̄ωI)|VBA|2 − (z− h̄ωB)|VAI |2
. (3.4)

The matrix elements of the time evolution operator in the compound system basis,
i.e. Uij(t), (i, j = I, A, B) are related to the respective matrix elements of the resolvent
operator through the inverse transform [164]

Uij(t) = −
1

2πi

∫ +∞

−∞
e−ixtGij(x+)dx, (3.5)

where x+ = x + iη, with η → 0+. In order to calculate the integral of Eq. (3.5)
one should first calculate the roots of the third order polynomial appearing in the
denominator of Eq. (3.4). If we denote these three roots by z1, z2 and z3, the resulting
expression is

UBI(t) =VBAVAI

[
exp(−iz1t)

(z1 − z2)(z1 − z3)
+

exp(−iz2t)
(z2 − z1)(z2 − z3)

+
exp(−iz3t)

(z3 − z1)(z3 − z2)

]
.

(3.6)
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The population of the probe state |b⟩ at times t > 0, is given by

Pb(t) = |UBI(t)|2. (3.7)

The population of |b⟩ depends non-linearly on the photon numbers n and m through
the expressions of the compound system energies h̄ωI , h̄ω̃A and h̄ωB, as well as
the matrix elements VAI and VBA that reflect the Rabi frequencies of the |g⟩ ↔ |a⟩
and |a⟩ ↔ |b⟩ transitions, respectively, via the relations 2VAI ≡ h̄Ω1 = h̄g1

√
n and

2VBA ≡ h̄Ω2 = h̄g2
√

m + 1.
We focus on the dependence of Pb(t) on n and t, by adopting the notation Pb(n, t).

The dependence on m is not of particular importance as long as the probe field cou-
pling strength g2 is chosen to be sufficiently smaller than all the other rates that ap-
pear in the problem at hand. To capture the case where the field driving the |g⟩ ↔ |a⟩
is initially prepared in a state other than Fock, one can average the desired quantity
(probe state population in our problem) over the corresponding photon number dis-
tribution of the initial field state. This is a standard method in quantum optics [26].
However, one should note that it is strictly valid in the limit where the field band-
width is much smaller than the natural decay γ. We are particularly interested in the
case where the field driving the first transition is initially prepared in a SQCS.

As shown in section 2.1.3, the photon number probability distribution of a SQCS
is given by

PSQCS(n) =
(tanh r)n

2nn! cosh r
exp

[
|α|2 cos (2Φ) tanh r− |α|2

] ∣∣∣∣Hn

(
|α|e−iΦ − |α|eiΦ tanh r

−i
√

2 tanh r

)∣∣∣∣2.

(3.8)
where Hn(x) is the nth-order Hermite polynomial, Φ ≡ ϕ− θ/2, while φ and θ are
the phases of the displacement and squeezing parameters, respectively, i.e. α =
|α|eiϕ and ζ = reiθ . In Fig. 3.2(a) we plot the photon number distribution of a SQCS
with a squeezing parameter r = 0.5 and compare it to the distribution of a coherent
field (r = 0). As becomes evident, depending on the phase difference Φ, the distribu-
tion deviates from its Poissonian form, by exhibiting Super-Poissonian (red line) or
Sub-Poissonian statistics (teal line). The situation becomes even more interesting for
larger values of r. In Fig. 3.2(b) we plot the photon number distribution of a SQCS
with a squeezing parameter r = 2 for two values of Φ and observe an obvious non-
classical behaviour with vivid oscillations in both cases. These oscillation have been
interpreted in the past by Schleich and Wheeler [186] as resulting from the interfer-
ence of error contours in phase space. In the Φ = 0 case (red line) the distribution is
peaked at n = 0 and the oscillations are much faster compared to the Φ = π/2 case
(teal line) where the distribution is peaked at a slightly higher photon number than
the peak of the Poissonian distribution and the oscillations appear only for photon
numbers larger than the position of the peak. It should be noted that the photon
number distributions of Fig. 3.2 acquire discrete values for each value of the integer
n, but are depicted as continuous since the photon number scale over which they are
plotted is large. To avoid any misconception, there is another form of Eq. (3.8) often
found in bibliography where the distribution is essentially the same but it exhibits
sub-Poissonian statistics for Φ = 0 and super-Poissonian statistics for Φ = π/2.
This is a reflection of whether the SQCS is defined as |SQCS⟩ ≡ D̂(α)Ŝ(ζ) |0⟩ or
|SQCS⟩ ≡ Ŝ(ζ)D̂(α) |0⟩, which are not equal since the operators D̂(α) and Ŝ(ζ) do
not commute. In any case one can go from the one definition to the other through
the relation:

Ŝ(ζ)D̂(α) = D̂(α cosh r + α∗eiθ sinh r)Ŝ(ζ). (3.9)
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FIGURE 3.2: (a) Photon number distribution of a squeezed coherent state with |α|2 = 60
and r = 0.5, compared the respective distribution of a coherent state (r = 0, black line). (b)
Photon number distribution of a squeezed coherent state with |α|2 = 60 and r = 2. In both
panels the red lines correspond to Φ = 0, while the teal lines correspond to Φ = π/2.

Returning back to our problem, we average the population of the probe state |b⟩
over the photon number distribution of Eq. (3.8), according to:

PSQCS
b (t) =

∞

∑
n=1

Pb(n, t)PSQCS(n). (3.10)

In what follows we will be concerned about the behaviour of PSQCS
b (t) as a function

of ∆2 for different parameters of the SQCS, or put otherwise, the effects of various
schemes of squeezing on the resulting Stark splitting profile imprinted on the popu-
lation of the probe state.

Among other parameters, Eq. (3.10) depends also on the time. Therefore, in
order to study the behaviour of the probe state population as a function of ∆2, one
should first make a choice of the interaction time t = T during which the driven
system is exposed to the radiation. In Fig. 3.3(a) we plot PSQCS

b (t) as a function of
the time for various detunings ∆2 and r = 0. Under this choice of parameters, we
notice that the population of the probe state reaches its steady state value at about
t = 25γ−1. Numerical investigations of the behaviour of PSQCS

b (t) as a function of
the time for different combinations of the parameters ∆2, |α|2, r and Φ, revealed
that the choice of t = 30γ−1 ≡ T always guarantees that the system is well within
its steady state regime. Therefore we adopt this choice of time for the calculations
throughout this chapter. In Fig. 3.3(b) we plot PSQCS

b (T) as a function of ∆2 for
various |α|2 and r = 0, parameters corresponding to a coherent state. Note that, as
expected, for r = 0 the distribution does not depend on the choice of Φ. We confirm
that as |α|2 increases and the mean Rabi frequency Ω̄1 = g1 |α| becomes larger than
the spontaneous decay rate γ, the single peak structure (black line) splits into two
peaks forming the well-known Autler-Towns doublet structure [187]. The distance
between the two peaks is equal to the mean Rabi frequency Ω̄1 which is proportional
to the square root of the mean photon number of the coherent state n̄ = |α|2. As long
as Ω̄1 is smaller than γ, the increase of |α|2 will result to power broadening of the
profile [188] until it splits into the doublet.
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FIGURE 3.3: (a) Population of the probe state |b⟩ as a function of the time for various
detunings ∆2. The parameters of the strong field are: |α|2 = 60, r = 0, g1 = 0.7γ and ∆1 = 0.
The vertical dashed line corresponds to the time T = 30γ−1 where the system is well within
its steady state regime. (b) Population of the probe state |b⟩ as a function of ∆2 for various
values of |α|2. The chosen parameters are: r = 0, g1 = 0.7γ, T = 30γ−1 and ∆1 = 0.

Before continuing to the case of strong driving by a SQCS, we should note that
the exact choice of the Rabi frequency of the probe transition is not of direct relevance
to our problem, as long as it is sufficiently weaker than all of the other rates that
appear in the derivation. If this condition is satisfied, then the only effect of changing
the Rabi frequency of the probe will be a linear change in the total population of
the probe state (y-axis) but not in the ratio between individual peaks or widths.
And since our aim is the study of the form of the splitting profile, the exact values
of the probe state population are of no importance. For the same reason we are
not concerned about the possible natural decay of the probe state |b⟩ to some other
unobserved state.

In Fig. 3.4(a) we plot the population of the probe state as a function of ∆2 for
various degrees of squeezing and Φ = 0. The splitting profile shows great sensi-
tivity to the value of the squeezing parameter r, becoming significantly broader as
the latter increases. The physics behind this broadening of the profile is related to
the strong amplitude fluctuations of the field that are translated into fluctuations in
the value of the Rabi frequency of the transition that cause partial smearing of the
doublet structure after taking the average over the SQCS distribution. However, as
seen in Fig. 3.4(b), under the same choice of parameters but with Φ = π/2, the
profile only slightly deviates from the profile exhibited under coherent state driving
(r = 0). An effective way of interpreting this sensitivity on the phase difference Φ
is through the form of the SQCS photon number variance. In particular, the photon
number variance of the SQCS is given by the relation:

(∆n)2 = |α|2
[
e2rcos2Φ + e−2rsin2Φ

]
+ 2(sinh r cosh r)2. (3.11)

For Φ = 0, Eq. (3.11) reduces to (∆n)2 = |α|2e2r + 2(sinh r cosh r)2. In this case it
is straightforward to show that the increase of the squeezing parameter will always
lead to the increase of the variance of the SQCS (inset of Fig. 3.4(a)) and therefore
to the broadening of the total profile after averaging over the SQCS distribution.
However the picture is drastically different if Φ = π/2, where Eq. (3.11) takes
the form (∆n)2 = |α|2e−2r + 2(sinh r cosh r)2. It is easy to check that in this case the
variance is not increasing monotonically as a function of r, but it acquires a minimum
value at a position that depends upon the choice of |α|2. In the considered case
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|α|2 = 60, the minimum is positioned at r = 0.91. The variance remains smaller
than its value at r = 0 (corresponds to a coherent state) up to the position r =
1.53, and becomes larger than that thereafter (inset of Fig. 3.4(b)). Also the value
of the variance in the vicinity of the minimum is not much smaller than its r = 0
value. This behaviour explains why for the squeezing parameters considered in
Fig. 3.4(b), the SQCS splitting profile does not exhibit significant deviations from
the corresponding coherent profile. It also explains why the peaks of the teal and
orange lines corresponding to the values r = 1 and r = 1.5, respectively, appear
larger than the peaks of the black line (coherent field), due to the sub-Poissonian
form of the SQCS photon number distribution.

As r increases, for Φ = 0, the peaks of the splitting profile appear at slightly
smaller detunings than the coherent splitting, contrary to the Φ = π/2 case where
the peaks tend towards higher detunings. This can be attributed to the behaviour
of the mode of the SQCS distribution (most probable value) as a function of r in
each case. In particular, for Φ = 0 the mode of the distribution tends towards the
zero photon number, while for Φ = π/2 it is positioned at photon numbers slightly
higher than |α|2, depending on the value of r. This tendency is also evident in Fig.
3.2. We should note that the peaks of the resulting profile are not separated by the
Rabi frequency corresponding to the mode of the photon number distribution, nor
the Rabi frequency corresponding to its mean photon number, given by the relation
n̄ = |α|2 + (sinh r)2, for every Φ. As will become evident in the next chapter of
the thesis, the exact shape of the resulting profile stems from a complex interplay
between properties of the probe state population function associated with the order
of the process, and the structure of the photon probability distributions of the driving
field. The behaviour of the mode as a function of r and different values of Φ can
however give us good evidence for the expected behaviour of the position of the
peaks.

FIGURE 3.4: (a) Population of the probe state |b⟩ as a function of ∆2 for different degrees of
squeezing and Φ = 0. Inset: Variance of the SQCS according to Equation (2.52) for Φ = 0.
(b) Population of the probe state |b⟩ as a function of ∆2 for different degrees of squeezing
and Φ = π/2. Inset: Variance of the SQCS according to Equation (2.52) for Φ = π/2. In
both panels |α|2 = 60, T = 30γ−1, g1 = 0.7γ and ∆1 = 0. Black lines: r = 0, teal lines: r = 1,
orange lines: r = 1.5 and purple lines: r = 2.

This tendency of the peaks towards slightly higher (absolute) detunings for Φ =
π/2 as r is increased, i.e. the increasing in the frequency distance between the two
peaks, becomes even more evident by inspecting Fig. 3.5(a). In this figure we ex-
amine the resulting profile for very large values of the squeezing parameter corre-
sponding to well beyond the state of the art squeezing. At this point we should



3.1. Squeezed coherent states in single-photon double optical resonance 33

mention that squeezing is most usually measured in the bibliography in terms of the
squeezing factor in dB units. The connection between the squeezing factor R and the
squeezing parameter r used in our work, is given by the relation

R[dB] = −10 log10(e
−2r). (3.12)

Therefore, the extremely large squeezing factor of 20dB reported back in 2016 [189]
corresponds approximately to a squeezing parameter r = 2.3. As becomes evident in
Fig. 3.5(a), under extreme squeezing, the resulting profile is distorted in a rather un-
usual way. The peaks of the profile are positioned at slightly higher detunings from
the respective peak for coherent driving (r = 0) and the total profile is broadened
mainly towards one direction. This effect can be interpreted through the particular
form of the SQCS photon number distribution for Φ = π/2. As seen in Fig. 3.2(b)
the distribution exhibits a large peak at a photon number slightly higher than |α|2,
followed by an oscillatory behaviour for larger photon numbers. As r increases, the
distribution maintains its form qualitatively, but the probability of the mode (most
probable value) of the distribution tends towards larger values, while the ratio of the
probabilities between subsequent peaks of the distribution is decreased. This indi-
cates that as r is increased the weight of the distribution is transferred from its mode
towards the peaks of higher photon numbers, leading also to the increase of the
variance of the distribution. Therefore, the splitting profile after averaging over the
SQCS distribution exhibits smaller peaks but it is more broadened towards higher
(absolute) detunings.

FIGURE 3.5: (a) Population of the probe state |b⟩ as a function of ∆2 for different degrees of
extreme squeezing, Φ = π/2 and |α|2 = 60. Black line: r = 0, teal line: r = 3, orange line:
r = 3.5 and purple line: r = 4. In both panels T = 30γ−1, g1 = 0.7γ and ∆1 = 0. (b)
Population of the probe state |b⟩ as a function of ∆2 for different degrees of squeezing and
|α|2 = 0, corresponding to a squeezed vacuum state. Teal line: r = 1, orange line: r = 1.5
and purple line: r = 2.

Another interesting scenario occurs for |α|2 = 0 but a non-zero squeezing param-
eter. This choice of parameters corresponds to what is widely known as a squeezed
vacuum state (SQVS). The SQVS is defined as |SQVS⟩ ≡ Ŝ(ζ) |0⟩ and its photon
number distribution is given by:

PSQVS(n) =


1√

1 + n̄
(2n)!

(n!)222n

(
n̄

1 + n̄

)n

, n→ even

0, n→ odd
, (3.13)
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where n̄ = (sinh r)2 is the mean photon number of the distribution. As seen from
Eq. 3.13, the SQVS distribution exhibits oscillatory behaviour with zero values for
odd photon numbers. The mode of the distribution is sharply peaked at n = 0 and
its variance is given by the relation (∆n)2 = 2n̄(n̄ + 1). In Fig. 3.5(b) we plot the
population of the probe state when the strong field is initially prepared in a SQVS
and notice that the position of the peaks is rather insensitive to the increasing of
the squeezing parameter, while the width of the peaks are significantly increased, as
one would expect by inspecting the SQVS variance for increasing r. From a physical
viewpoint this sharp increase of the width is due to the superbunching effect in-
herent in squeezed vacuum sources, translated to strong intensity fluctuations that
smear out the profile. Note that the exact shape of the profile also depends on the
choice of the coupling strength g1, which is however chosen to be the same through
all of our calculations (g1 = 0.7γ) providing us the ability for straightforward com-
parison between the profiles of different figures.

FIGURE 3.6: (a) Population of the probe state |b⟩ as a function of ∆2 for various angles Φ.
The squeezed field is detuned from resonance with the |g⟩ ↔ |a⟩ transition by ∆1 = γ. (b)
Population of the probe state |b⟩ as a function of ∆2 for various angles Φ. The squeezed
field is detuned from resonance with the |g⟩ ↔ |a⟩ transition by ∆1 = 3γ. In both panels
|α|2 = 60, T = 30γ−1, g1 = 0.7γ and r = 1.5. Black lines: Φ = 0, teal lines: Φ = π/6, orange
lines: Φ = π/4 and purple lines: Φ = π/2.

Lastly, in Fig. 3.6(a) and Fig. 3.6(b) we consider the case where the squeezed
field is detuned from resonance with the |g⟩ ↔ |a⟩ transition. Similarly to the case
of coherent driving, the profile exhibits an asymmetry with the larger peak appear-
ing at positive detunings for positive ∆1, and vice versa. This asymmetry can be
interpreted in terms of the dressed states of the strong field transition [190]. The
resulting doublets are expressed as linear combinations of the ground and the first
excited state of the atom, with equal weights in the case of exact resonance (∆1=0).
However, as ∆1 is increased, one can show that the upper dressed state of the dou-
blet contains more of the state |a⟩ and less of the ground state, while the opposite is
true for the lower dressed state. In this case the probe state is connected through a
larger dipole moment to the upper state of the doublet than the lower, resulting to an
asymmetry in the splitting profile. The asymmetry is examined for r = 1.5 and vari-
ous values of the phase difference Φ. As Φ is increased, the width of the two peaks
is decreased and the peaks move towards slightly higher detunings (their frequency
distance is increased). The width of each peak also depends on ∆1. Increasing ∆1
results to the decrease of the width of the large peak and the increase of the width of
the smaller one. Finally, we report that the asymmetry ratio (peak-to-peak) does not
remain constant, but it increases with the increase of Φ.
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To summarize, in this section we examined the Autler-Townes splitting profile
resulting from the strong driving of two bound atomic states by a SQCS. The split-
ting was probed through a third state assumed to be weakly coupled to the up-
per bound state in a three-level "Λ-type" system. Since squeezed radiation is not
amenable to modeling in terms of classical stochastic processes, we adopted a fully
quantum mechanical treatment in terms of the resolvent operator and averaged the
population of the probe state over the photon number distribution of the SQCS in the
limit where the bandwidth of the squeezed field is sufficiently smaller than the nat-
ural decay of the excited state. Our results indicate that the resulting splitting profile
is greatly affected by the parameters of the SQCS, i.e. the squeezing parameter r and
its phase difference Φ from the complex displacement parameter. In particular, we
showed that for Φ = 0 the profile becomes significantly broader with the increase
of r, while under the same values of parameters but with Φ = π/2, increasing r up
to 2 results to a profile resembling the one acquired with coherent driving. This de-
gree of squeezing is well-within today’s squeezing capabilities while the intensities
necessary for the observation of single-photon Stark splitting in atomic systems are
more or less of the order of 1 W/cm2 [191, 192]. The case of extreme squeezing was
also investigated, revealing unusual distortions of the splitting profile, as well as the
cases of SQVS driving and off-resonant strong driving resulting to an asymmetric
profile. To the best of our knowledge, the strong driving of a bound-bound atomic
transition by a SQCS has not been experimentally tested yet. Meanwhile, the investi-
gation of finite bandwidth effects on the system remain still an open and interesting
theoretical problem.

3.2 Multi-photon double optical resonance in presence of bunched
and superbunched radiation

As we saw earlier, the most conspicuous effect of intensity fluctuations on a strongly
driven transition is the distortion of the profile of AC Stark splitting. When probed
in double optical resonance as a function of the probe frequency, in the absence of
intensity fluctuations, the profile consists of two peaks separated by the Rabi fre-
quency. But the Rabi frequency itself, is affected by the intensity fluctuations, in a
manner that depends on the order of the transition that couples the two levels and
of course the stochastic properties of the field.

In what follows, we investigate the role of photon bunching and superbunching
in both single-photon and two-photon transitions and apply our theory in realistic
atomic transitions, exploring the effects of the order of the process in the Autler-
Townes splitting profile [191]. In contrast to a single-photon transition, where the
non-linearity sets in upon strong driving, two or more photon strong driving in-
volves a non-linearity imposed on an already non-linear process. It is this "escala-
tion", so to speak, of non-linearity in combination with the stochastic character of
the driving field that introduces new effects in the system. As before, in order to
single-out the role of intensity fluctuations, we have chosen to consider a source of
zero bandwidth. To forestall misinterpretation of that condition, zero bandwidth
here simply implies a source bandwidth sufficiently smaller than the width of the
excited state; a situation which is well within experimental accessibility. Our work
was motivated by the recent groundbreaking work by Spasibko et al. in which they
reported the observation of up to 2 orders of magnitude enhancement in the gener-
ation of optical harmonics due to ultrafast photon-number fluctuations of a bright
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squeezed vacuum source, paving the way for the experimental investigation of the
role of superbunching in multi-photon transitions [147].

A schematic representation of our system is depicted in Fig. 3.7. Contrary to
the system investigated in the previous section, the strongly-driven |g⟩ ←→ |a⟩
transition is now considered to be multi-photon. Since we want to apply our theory
in realistic atomic transitions, the ionization of the excited state |a⟩ is also included.
Our aim is the exploration of the role of photon bunching and super-bunching in
such "doubly" non-linear processes. To that end, the cases of chaotic and squeezed
vacuum field driving are investigated and compared with the case of strong-driving
by a coherent radiation field.

ω1
ω2

|g 

|α 

|b 

Γion

γα Δ1 Δ2

ω1

ω1

FIGURE 3.7: Schematic representation of the system under consideration. The considered
system is the same as the one presented in Fig. 3.1, with the exception that the strong
transition between the states |g⟩ and |a⟩, is considered to be a multi-photon transition. The
cases of bunched and superbunched radiation are investigated. The ionization of state |a⟩ is
also included in the formulation.

The formulation of the problem is exactly the same as in the previous section,
therefore the repetition of the theory in terms of the resolvent operator is unnec-
essary. The only differences are two: The first is that we make the substitution
ωA → ω̃A = ωA − i

2 (γa + Γion) to account for the spontaneous decay γa, as well
as the ionization rate Γion of state |a⟩ via the absorption of an additional photon.
Note that this method of introducing the spontaneous decay is approximate in the
sense that it does not take into account the repopulation of energetically lower lev-
els to which it decays. However, since we focus on a strong transition between |g⟩
and |a⟩, the induced Rabi frequency of that transition is by definition much larger
than the spontaneous decay γa. As a result, the relative error caused by that approx-
imation is practically negligible. The second is that the Rabi frequency of the first
transition is a N-photon effective Rabi frequency and therefore is proportional to√

n(n− 1)...(n− N) ≈ nN for large photon numbers. For that matter we adopt the
notation Ω(N)

1 where N is the order of the process. Ω2 is simply proportional to
√

m,
since it represents a single-photon transition. Note that the matrix element VAI and
VBA are related to the Rabi frequencies Ω(N)

1 and Ω2 via the relations Ω(N)
1 = 2VAI

and Ω2 = 2VBA (h̄ = 1), respectively.
As before, the population of |b⟩ is a function of the time as well as the photon

number of the radiation field modes. The dependence on the photon numbers n
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and m, comes from both, the compound system energies h̄ωI , h̄ω̃A and h̄ωB, as well
as the interaction Hamiltonian matrix elements VAI and VBA. The ionization rate
Γion introduced in the expression of ω̃A, also depends linearly on n. The quantity of
interest in this problem is the population of state |b⟩ given by Pb(t). Since it is solely
its dependence on n and t that matters, we adopt the notation Pb(n, t). If the first
transition is driven strongly, i.e. if Ω(N)

1 ≫ γa, Γion, ∆1, the interaction V between
the uncoupled "atom+field" states |I⟩ and |A⟩, causes a splitting into doublets (Stark
splitting). This splitting is here monitored through the population of state |b⟩ as a
function of ∆2, which is assumed to be coupled to |a⟩weakly, acting thus as a probe.
The first transition is assumed to be on resonance, i.e. ∆1 = 0.

Following the same method as in the previous section, we find Pb(n, t) by as-
suming the radiation field to be initially prepared in a Fock state and then average
over the photon number distributions of desired field states. It should be empha-
sised again that this method, convenient as it may be, is strictly valid in the limit
where the field bandwidth is much smaller than the natural decay of the atomic
states involved in the calculation. Adopting this method, we average Pb(n, t) over
the photon number distributions corresponding to a coherent (Coh) field, a chaotic
field (ChF) and a squeezed vacuum (SV) field state, through the formal expressions:

PCoh
b (t) =

∞

∑
n=1

e−n̄ n̄n

n!
Pb(n, t) (3.14)

PChF
b (t) =

∞

∑
n=1

n̄n

(1 + n̄)n+1 Pb(n, t) (3.15)

PSV
b (t) =

∞

∑
n=1

1√
1 + n̄

(2n)!

(n!)222n

(
n̄

1 + n̄

)n

Pb(2n, t) (3.16)

Note that for an N-photon process all Pb(n < N, t) terms are zero owing to the
presence of VAI in the numerator of Eq. (3.6), and its proportionality to

√
n(n− 1)...(n− N).

The first non-zero term in Eqs. (3.14) and (3.15) is the n = N term. Similarly, in the
summation over the squeezed vacuum photon number distribution, the first non-
zero term is the n = N/2 or n = (N + 1)/2 term, depending on whether N is even
or odd, respectively. The SV photon number distribution contains only even number
of photons and therefore the increment of Pb(n, t) in Eqn. (3.16) is 2n.

In order for the Stark splitting to develop in realistic transitions, we need to con-
sider large mean photon numbers (n̄ ≈ 106 or even much larger, as the order N of the
coupling is increased). This entails a serious numerical task since the averages over
the photon number distributions extend far beyond n̄ and therefore, performing the
summation through increments of n by 1 is computationally futile. One efficient
way to overcome this obstacle, is to scale the problem by multiplying the photon
number n, in the expression of Pb(n, t), by a dimensionless scaling factor [174, 175].
The scaling renders the averaging numerically feasible, so that we can calculate the
population profiles for values of n̄, which correspond realistically to mean photon
numbers around n̄ multiplied by the scaling factor. Owing to the non-linear depen-
dence of Pb(n, t) on n, the connection between realistic and scaled intensities is not
straightforward. A discrepancy of a few percent [175] that may be involved is far
from significant for the effects discussed herein.

In order to ensure the connection of our calculations with transitions in actual
physical systems, it is important to obtain the connection between number of pho-
tons in the quantized radiation field and photon fluxes in laser pulses employed in
experiments. As a calibration for our scaled parameters, we have chosen as systems
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of reference the atoms of Cesium for single-photon driving and Lithium for two-
photon driving. Our choice is based on earlier work [177] in which we have shown
that the validity of that calibration extends beyond the specific reference systems.
In that task, we need to obtain the expressions connecting Ω̄(N)

1 and Γ̄ion (mean Rabi
frequency and mean ionization rate) to n̄, pertaining to the 6s→ 7p and 2s→ 4s tran-
sitions in Cs and Li, respectively, including the ionization channels. Note that we do
not need to calculate the exact value of the matrix element connecting |a⟩ to |b⟩ (7p
to 7s in Cs and 4s to 3p in Li), since |b⟩ serves as a probe (weak coupling). Therefore
we simply need a value for Ω̄2 connecting the two excited resonances, compatible
with weak coupling. Given that the averaging does not include summation with re-
spect to m, one may always choose the proper m, which means adjusting the probe
laser intensity, so as to obtain the desired weak Rabi frequency Ω̄2, irrespective of
the value of the atomic matrix element.

The relations that connect Ω̄(N)
1 and Γ̄ion to intensity can be found by calculat-

ing the corresponding atomic parameters [193–197]. Then, it is only the connection
between the intensity and the mean photon number that is needed, in order to ob-
tain them as a function of the latter. An approximate connection between the two is
given by n̄ = 8π3c2

ω2
F

γL
[164], where γL is the bandwidth of the source, ω its frequency,

and F is the photon flux, connected to the intensity via the relation F = I/Nh̄ω,
with N being the order of the process. Note that with this definition of F, the photon
flux is expressed in terms of N-tuples of photons, which means pairs of photons for
two-photon driving, accounting for the fact that an N-photon transition can be com-
pleted only through the absorption/emission of N photons. It is simply a logistically
convenient normalization of the number of photons driving the transition. We shall
nevertheless continue using the term flux for F, as defined above. The approxima-
tion inherent in the equation connecting n̄ to F is such that it does not account for
the exact line shape of the source. It is, however, sufficient for our purposes of this
work, as it provides a relation between n̄ and F to within more or less a factor of 2.
As pointed out at the outset, for the averaging over the photon distributions to be
valid, the bandwidth of the source should be much smaller than the natural decay
of state |a⟩. We have therefore chosen, for both transitions, a bandwidth 100 times
smaller than γa. The resulting parameters used for the 6s → 7p (7s probe) transi-
tion in Cs are: ωg = 0, ωa = 2.698eV, ωb = 2.298eV, ∆1 = 0, γa = 0.82× 107Hz,

Ω̄(1)
1 = 1.884× 104

√
n̄ Hz, Γ̄ion = 1.181× 10−7n̄ Hz, γL = 0.82× 105 Hz, while for

the 2s → 4s (3p probe) transition in Li are: ωg = 0, ωa = 4.372eV, ωb = 3.835eV,

γa = 1.78 × 107Hz, ∆1 = 0, Ω̄(2)
1 = 11.225 × 10−7n̄ Hz, Γ̄ion = 3.09 × 10−7n̄ Hz,

γL = 1.78× 105 Hz. In both transitions the Rabi frequency connecting the excited
state to the probe state is chosen to be equal to the spontaneous decay of the former.
The effective two-photon dipole matrix element for the transition was calculated us-
ing the values of the single-photon dipole moments between allowed transitions in
Li, via the relation [196] µ

(2)
ga = ∑l

µglµla
ωla+ω1

. Using now the aforementioned relation
between the intensity and the mean photon number we obtain the expression for Ω̄1
as a function of n̄.

A few explanatory remarks may be useful at this point. First, the inclusion of
the ionization channels in both systems is dictated by the fact that zero detuning
from resonance of the first transition (∆1 = 0) implies that ω1 = 2.698 eV in Cs and
ω1 = 2.186 eV in Li. Since the ionization thresholds lie at 3.894 eV and 5.392 eV in Cs
and Li, respectively, the absorption of an additional photon of the first mode, while
the atom is at the excited state |a⟩, leads to ionization in both cases.

Second, the possible complication due to the fine structure splitting of the 7p
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state in Cs needs to be examined. Since we are working with a bandwidth much
smaller than the fine structure splitting of the P line, which lies in the THz range,
the spectral resolution of the source allows us to resolve such a splitting. In that
case, a complete theoretical description should include both J = 1/2 and J = 3/2
states. However, since we tune exactly on resonance (∆1 = 0) with one of the states
of the doublet (for example the J = 1/2 state), the effect of the neighbouring state is
negligible and can be safely neglected, provided the Rabi frequency is much smaller
than the fine structure splitting; a condition fully satisfied in our calculations. Simi-
larly, the fine structure splitting of the 3p probe state in Li does not affect our results,
since we consider detunings ∆2 in the vicinity of 108 Hz, much smaller than the fine
structure splitting of the line.

Third, it should be noted that the description of the 2s → 4s transition in Li, in
terms of an effective two-photon Rabi frequency is, in general, not straightforward
since the states between the 2s and 4s may introduce additional complications to
the system. Our description is valid as long as the first photon in the two-photon
process is sufficiently far from resonance with the nearest intermediate state. In our
case the first photon with energy ω1 = 2.186 eV is detuned by ∆2p = 0.338 eV ≃ 81
THz from the 2p resonance in Li, which is sufficiently larger than the values of the
scaled two-photon Rabi frequency we consider, which are in the vicinity of 108 Hz,
ensuring thus the validity of our parametrization.

Finally, we should note that by calculating the population of the probe state at
a time t = T, (referred to as interaction time) using the formalism of section II is
approximately equivalent to calculating the probe state population under a square
pulse of the same duration T. It is moreover well known that the difference of results
under a square pulse from those under, say, a Gaussian of the same effective duration
is of order 2. The only constrain on the duration is that it must not be so short
that its Fourier bandwidth violates the small bandwidth condition adopted at the
outset. In any case, extremely short pulses of a few cycles, such as those employed
in strong field laser-matter physics [198], are Fourier limited without any stochastic
fluctuations and therefore of no relevance to the matter of this chapter. Otherwise,
the longer the pulse, the more signal will be collected, until of course the initial
state is depleted, which is beyond typical experimental conditions of relevance to
our calculations. The values of T employed in our illustrative calculations have
been chosen so as to correspond to typical experimental conditions pertaining to
the effects discussed herein.

In Fig. 3.8 we present the population of the probe state as a function of ∆2, for
the case of the |g⟩ ↔ |a⟩ transition driven on resonance (∆1 = 0) by single photon
coupling. It has been calculated for initial radiation fields with different quantum
stochastic properties (i.e. coherent-solid black lines, chaotic-dashed teal lines and
squeezed vacuum-dotted orange lines). For the comparison to be meaningful the
average photon number n̄ is the same for all field states. In the regime of intensities
corresponding to Rabi frequencies comparable to, or only a few times larger than
the natural width of the upper state (Fig. 3.8(a)), increasing the intensity leads to the
broadening of the profile (power broadening) [188], until it eventually splits into two
peaks, exhibiting the profile of the well known Autler-Towns doublet [187], evident
for all three initial field states (Fig. 3.8(b)). For the sake of calibration, we note that
for the transition 6s→7p in Cs and the time of interaction assumed for Fig. 3.8,
the splitting would begin becoming noticeable around I ≈ 0.17 W/cm2; which is
reasonable for a single-photon transition.
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FIGURE 3.8: Single-photon Stark splitting modeled with Cesium parameters. The
calculation is carried out for various types of radiation fields: coherent (solid black line),
chaotic (dashed teal line) and squeezed vacuum (dotted orange line). The values of the
relevant parameters used are: detuning from the first resonance ∆1 = 0, interaction time
T = 10−7 sec, laser bandwidth γL = 0.82× 105 Hz, scaling factor = 4× 106, corresponding
to the intensity: (a) I = 0.086 W/cm2, (b) I = 0.43 W/cm2, (c) I = 0.86 W/cm2, (d) I = 1.29
W/cm2.

For a coherent field state, the splitting is equal to the mean Rabi frequency Ω̄1 of
the driven single-photon transition, while for a ChF state, with increasing intensity,
it tends to the value of Ω̄1/

√
2, in agreement with earlier work [5, 6, 145, 146]. For

an initial (bright) SV field state, as shown in Figs. 3.8(b) to 3.8(d), the splitting turns
out to be even smaller than the one for chaotic field, at the same average intensity.
In addition, both the chaotic and the SV fields induce a smearing out of the profile,
as compared to that for the coherent field. This smearing stems from the strong
amplitude fluctuations, entailing fluctuations of the Rabi frequency and therefore
partial smearing of the doublet structure [199]. Physically, it is a consequence of the
fact that, during the Rabi oscillations, two successive transitions between the two
states are driven by intensities whose values have undergone a random change. A
measure of that randomness is reflected in the values of the intensity correlations
functions characterizing the field. Thus, in accordance with that physical picture,
the smearing turns out to be more pronounced for the SV as compared to that for the
ChF, compatible with the so-called superbunching of SV; a term implying intensity
fluctuations stronger than those of the ChF. Therefore, in general, the behavior of
a single-photon bound-bound transition driven strongly by a SV field is in overall
agreement with expectations based on the combination of the results of previous
studies for the ChF [5, 6, 145, 146] and the superbunching properties of the squeezed
radiation. The differences in the behavior depicted in Fig. 3.8 from those earlier
results turn out to be of a quantitative but not qualitative degree.

The situation changes drastically when a strongly driven two-photon transition
is examined, as illustrated with the results shown in Fig. 3.9. For weak to moder-
ate driving field strengths, again a gradual (power) broadening [200] appears (Fig.
3.9(a)), developing eventually into a doublet. Under stronger driving, however, at
least two glaring surprises stand out. First, in contrast to the single-photon case,
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with increasing intensity, the splitting present under driving by a coherent state, is
totally absent under driving by chaotic or squeezed vacuum fields, giving rise to
a single peak (Fig. 3.9(b)). Second, the width of that peak is significantly smaller
than the average Rabi frequency. Moreover, inspection of Fig. 3.9(d) reveals that
the width of the peak for SV driving, if anything tends to be smaller than the one
for ChF driving; a rather unexpected feature since SV undergoes stronger fluctua-
tions, in the sense that its intensity correlation functions are larger [30, 39, 147]. This
counter-intuitive effect persists for even higher intensities, corresponding to mean
Rabi frequencies many times larger than the spontaneous decay of the excited state
(Figs. 3.9(c) and 3.9(d)).
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FIGURE 3.9: Two-photon Stark splitting modeled with Lithium parameters. The calculation
is carried for various types of radiation fields: coherent (solid black line), chaotic (dashed
teal line) and squeezed vacuum (dotted orange line). The values of the relevant parameters
used are: detuning from the first resonance ∆1 = 0, interaction time T = 10−7 sec, laser
bandwidth γL = 1.78× 105 Hz, scaling factor = 1013, corresponding to the intensity: (a)
I = 0.49× 106 W/cm2, (b) I = 2.47× 106 W/cm2, (c) I = 4.95× 106 W/cm2, (d)
I = 7.43× 106 W/cm2.

Its interpretation defies straightforward extrapolation from the physical picture
for single- to two-photon transition. As detailed in the next subsection, the unex-
pected profile for two-photon driving results from a combination of the structure of
the photon number distributions and certain features of the probe state population,
associated with the order of the process. The apparent difference from earlier pre-
dictions [5, 6, 145] has to do more with the scheme of observation of the splitting
than with the underlying physical picture. It does nevertheless point to an intricate
interplay between the non-linearity of the transition itself and that induced by the
strong driving; hence our term "compounded non-linearity".

3.2.1 Two-photon transition strongly driven by chaotic and squeezed vac-
uum radiation: The absence of splitting

Theory has demonstrated the absence of Stark splitting under strong two-photon
driving by ChF and SV fields, but the single-peaked profile is much narrower than
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the Rabi frequency. This result was unexpected for at least two reasons: (a) Since
both of those sources involve strong intensity fluctuations, entailing strong fluctua-
tions of the non-linear Rabi frequency, on physical grounds, one would have thought
that the profile would be broadened by the fluctuating Rabi frequency. (b) Earlier
calculations [5, 6, 145] for the case of driving by a ChF had supported that interpre-
tation. In this subsection, we elaborate on the interpretation of the results presented
above.

As will become evident, this counter-intuitive phenomenon results from the in-
terplay between properties of the probe state population function associated with
the order of the process, and the structure of the photon probability distributions of
the driving fields. For the sake of contrast, we provide here calculations for single-
photon driving as well.

0 1 2 3-1-2

C
s 

7s
 s

ta
te

 p
op

ul
at

io
n

0.00

0.02

0.04

0.06

P
ho

to
n 

nu
m

be
r 

n

0

10

20

30

40

-3
Δ2 (108 Hz)

FIGURE 3.10: Probe state population under single-photon driving. Population of the 7s
probe state of Cs as a function of the detuning from resonance, ∆2, and the photon number
of the first mode, n. The quantity we plot is the population of the probe state Pb(n, T) before
averaging it over the photon probability distributions according to Eqs. (3.14)-(3.16). The
values of the relevant parameters used are: detuning from the first resonance ∆1 = 0 and
interaction time T = 10−7 sec.

In Figs. 3.10 and 3.11 we plot the probe state population for single-photon and
two-photon driving, respectively, as a function of ∆2 and the photon number n. Note
that the population of the probe state is here calculated before averaging over the
photon probability distributions given by Eqs. (3.14)-(3.16), with the results corre-
sponding to the case where the external driving field is initially prepared in a num-
ber (Fock) state.

The comparison between Figs. 3.10 and 3.11 reveals two main differences/features
of the resulting profile, that are associated with the order of each process:

(I) In Fig. 3.11, under two-photon driving, the splitting of the profile for increas-
ing photon numbers is larger and occurs much earlier than the respective splitting
of the profile in Fig. 3.10 under single-photon driving. This effect is expected since
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the splitting is equal to the Rabi frequency which grows as
√

n and
√

n(n− 1) ≈ n
(for large n) in the single-photon and two-photon cases, respectively.

(II) The population of the probe state for two-photon driving decreases much
faster with increasing photon numbers, in comparison to single-photon driving.
Even though for two-photon driving the probe state population may overall be
slightly higher than the population for single-photon driving (see colour bars in 2D
graphs), the population in the latter case remains almost constant for increasing n.
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FIGURE 3.11: Probe state population under two-photon driving. Population of the 3p probe
state of Li as a function of the detuning from resonance, ∆2, and the photon number of the
first mode, n. The quantity we plot is the population of the probe state Pb(n, T) before
averaging it over the photon probability distributions according to Eqs. (3.14)-(3.16). The
values of the relevant parameters used are: detuning from the first resonance ∆1 = 0 and
interaction time T = 10−7 sec.

Averaging over a photon probability distribution translates into performing a
sum of all Pb(n, t) terms, for n up to infinity, with each term weighted by the photon
number probability distribution of the driving radiation field. For example, for the
radiation field in a coherent state we have:

Pcoh
b (t) =

∞

∑
n=1

pcoh(n)Pb(n, t) = pcoh(1)Pb(1, t) + pcoh(2)Pb(2, t) + ... (3.17)

With that in mind, the results depicted in Figs. 3.10 and 3.11 can be thought as
the consequence of summing (superimposing) different stripes of the 2D plots with
each stripe corresponding to a different photon number n, weighted according to
the corresponding photon number probability of the field distribution.

In view of the above, the structure of the distribution is expected to play a ma-
jor role in determining the resulting profile after averaging. The coherent photon
number probability follows a Poissonian distribution centered always at n̄ with root
mean square deviation ∆n =

√
n̄. Conversely, the distributions of the ChF and SV

fields are drastically different, because for every n we have pChF(n) > pChF(n + 1)
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and pSV(2n) > pSV(2n + 2) (note that the SV probability for odd photon numbers is
zero). Also for a given n̄, both ChF and SV distributions exhibit much longer tails of
values larger than those of the coherent state distribution (see Fig. 3.12).

For both, single- and two-photon driving, averaging over the coherent state dis-
tribution, the resulting profile stems from a superposition dominated by the stripes
with photon numbers that fall more or less within the range n̄± 2∆n = n± 2

√
n̄, i.e.

the range of photon numbers in which the Poissonian differs substantially from zero.
Let us, for example, consider the case with n̄ = 20, depicted in Fig. 3.12. The stripes
of Figs. 3.10 and 3.11 falling within the range of n̄± 2∆n do exhibit splitting. As a
consequence, their superimposition will result to a profile with noticeable splitting,
i.e. the stripes of neighbouring photon numbers are superimposing constructively
with weights giving rise to a finite width of the total profile. Keep in mind that
the connection with realistic photon numbers is obtained via multiplication by the
relevant scaling factor.
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FIGURE 3.12: Photon probability distributions of the coherent1, chaotic2 and squeezed
vacuum3 radiation fields for mean photon number n̄ = 20.

The situation with the SV and ChF distributions is, however, quite different, be-
cause now the contributions (weights) of low photon number stripes are always
more significant than those of larger n, irrespective of the value of n̄. One might
then expect that in both, the single- and the two-photon, cases no splitting would
appear, since the profile would be dominated by stripes corresponding to relatively
low photon numbers, for which no noticeable splitting is expected. Yet, there is a
striking difference between the profiles for the two cases, which should be expected
in view of the properties (I) and (II) discussed above. Owing to the combination
of (I) and (II), for single-photon photon driving, the stripes of neighboring photon
numbers are increasingly similar to each other for increasing photon numbers. In
contrast, the respective stripes for the two-photon case exhibit rapid variations, in
both the magnitude of the splitting as well as the values of the probe state popu-
lation. These properties in combination with the long tails of the ChF and SV field
distributions conspire to the following situation: In the single-photon case, even if
the weights of the low photon number stripes are larger, as n increases, the higher
photon number stripes are becoming increasingly similar (see Fig. 4) leading to a
constructive superimposition that results to a profile with noticeable splitting. This
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constructive superimposition is minimized for very large n because the ChF and SV
field distributions, depending on the choice of n̄, are approaching zero. Of course the
contribution of the low photon number stripes (that are not exhibiting Stark split-
ting) is always there, leading to a filled out profile in the vicinity of ∆2 = 0 (see
Fig. 3.10 for comparison with the coherent field profile). Conversely, this construc-
tive phenomenon cannot persist in the two-photon case where, with increasing n,
the splitting is constantly increasing, whereas the probe state population is decreas-
ing very rapidly. In that case, after averaging, the low photon number stripes (no-
splitting stripes) have the dominant contribution resulting to a smeared out profile
always peaked at ∆2 = 0.

It should now be evident that this complex compounded non-linearity phenomenon
arises from the interplay between the order of the process (reflected in properties (I)
and (II) of the probe state population profile) and the strong driving by ChF and
SV fields, whose distributions have long tails, satisfying the conditions pChF(n) >
pChF(n + 1) and pSV(2n) > pSV(2n + 2).

To sum up, in undertaking this work, we aimed at extending previous work [5, 6,
145] so that, in view of recent experimental advances [147], effects that had remained
in the realm of theory could at last be explored experimentally in order to shed light
into the theoretical models. The underlying physical picture according to earlier
work was that the intensity fluctuations inherent in the chaotic field, imprinted on
the Rabi frequency would smear out the splitting. And since squeezed vacuum ra-
diation exhibits stronger fluctuations, the smearing of the splitting ought to be more
pronounced. That smearing had been documented theoretically for single-photon
driving by a chaotic field, with supporting evidence that, under driving by two or
more photons, the double-peak profile would be overshadowed by a broad profile.
Physically, that made sense because, beyond single-photon driving, the Rabi fre-
quency is proportional to an intensity correlation function of second or higher order,
which entails enhancement owing to bunching, as discussed previously. Yet, our
results revealed a more nuanced situation, whose interpretation required a detailed
examination of the probing of the splitting.

Under single-photon driving by a classical or coherent state field, the structure
of the AC splitting profile, whether observed through fluorescence (to the initial or a
third state) or through double resonance, exhibits similar features reflecting the Rabi
frequency. The only qualitative difference is that, in resonance fluoresence there are
three peaks, with the side peaks separated by two times the Rabi frequency of the
strong transition, whereas in double resonance or fluorescence to a third state, there
are two peaks separated by one time this Rabi frequency. This is expected to be
valid, even under two or more photon driving, in compatibility with our results. It
is also be valid if the driving field undergoes only phase fluctuations. The situation,
however, changes drastically under driving by fields undergoing intensity fluctua-
tions. As documented in this section, an intricate interplay between population of
the upper state by the strong stochastic field and depopulation by the weak (free
of fluctuations) probe field, introduces a sensitivity to the detailed structure of the
photon number distribution; with the consequence of a single peak much narrower
than the Rabi frequency. Even more surprisingly, that single peak under driving
by SV radiation, if anything, tends to be narrower than the one under driving by a
chaotic field, whose fluctuations are "weaker" than those of SV. As for resonance flu-
orescence (which means decay to the initial state), in a two-level system driven by a
two-photon transition, it entails spontaneous two-photon decay; a hopelessly weak
process. The behavior of AC Stark splitting in fluorescence to a third state, which is
possible and observable, should be in overall compatibility with our findings. We
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should note that, nevertheless, formal models of AC Stark splitting in two-photon
resonance fluorescence driven by fields without stochastic fluctuations have been
published [201–203], but without quantitative connection to any specific physical
system.

Finally, we should not close this section without drawing attention to a route
towards the exploration of these effects at wavelengths beyond the optical range.
The recent explosive development of FEL (Free Electron Lasers) short wavelength
sources, extending up to hard X-rays, offers the immediate possibility of experimen-
tal investigation of strongly driven two-photon transitions at XUV wavelengths; say,
at photon energies up to about 150 eV. At those wavelengths, transitions involving
subvalence electrons lead to Auger decay. SASE-FEL sources are known to exhibit
stochastic behavior [204, 205] similar to that of the chaotic field. The effect of that be-
havior on an Auger resonance strongly driven by a single photon transition, probed
through double resonance, has been studied theoretically [126], with results that
mirror earlier theoretical findings in the optical range [5, 6]. However, more recent
state of the art advances [206] at the Fermi FEL have demonstrated the possibility
of manipulating the stochastic properties of the FEL through seeding with coher-
ent radiation. We would therefore suggest that, using that source with controllable
seeding, offers the possibility of strong two-photon driving of an Auger resonance.
The uniqueness of such a project lies in the combination of controllable stochastic
properties with two-photon strong driving, in an entirely new wavelength range in-
volving subvalence electrons. True, it cannot involve SV radiation, but as we have
stressed throughout this section, much remains to be done experimentally even for
chaotic radiation; with the additional novelty of a two-photon driven Auger reso-
nance. Still, to start with, even the experimental investigation of single-photon driv-
ing of an Auger resonance by stochastic radiation, represents unknown territory.
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Chapter 4

Photon statistics effects in
multi-photon Schwinger pair
production

As described in section 2.2.3, the advent of the free-electron laser (FEL) revived
the interest in the problem of electron-positron pair creation in vacuum, since FEL
sources provide strong, tightly focused radiation with energies up to the hard X-ray
regime. Given the huge theoretical activity over the past few years on the topic of
vacuum pair creation using ultrastrong radiation [207, 208], it is the purpose of this
chapter to introduce and explore an aspect that seems to have escaped attention un-
til now. That is the possibility of enhancement of the Schwinger mechanism owing
to the intrinsic stochastic fluctuations of FEL sources, and if possible, to explore the
range of intensities over which such enhancement could be expected to be signifi-
cant.

4.1 Possibility of multi-photon enhancement under strong
FEL radiation

The stochastic properties of self-amplified spontaneous emission (SASE) FEL sources
have been documented quite extensively through theoretical [126, 127, 209, 210] as
well as experimental studies [204, 206, 211–213]. Briefly, their stochastic properties
are akin to those of chaotic (thermal) radiation [7, 8]. The feature of that radiation of
direct relevance to our considerations is the strong intensity fluctuations, presently
in the near sub-fs time scale, implying spiky behavior during the pulse, which is
known to affect the yield of processes whose rate depends on the intensity in a non-
linear fashion [126, 127, 179, 180].

Before embarking on the formal and computational details, it would be helpful to
establish the qualitative context of the problem at hand. In any arrangement involv-
ing a laser for the observation of pair creation, that laser will necessarily be pulsed.
The particular temporal shape is of secondary importance but the pulse duration,
as characterized by the full width at half maximum (FWHM), would be of decisive
importance. To clarify the reason for its importance we need to consider the various
time scales at play in the underlying physical process. One of those time scales is the
transition time (TT), which is the time within which the photons must be absorbed
for the process to be completed. The initial state is the vacuum with the final state
being the continuum of the pair e−e+. The energy gap that the absorption of the
photons must bridge for the pair to be created is 1.022MeV. There are no real inter-
mediate states within the gap. The process has to proceed via virtual intermediate
states of the continuum which energetically lie 1.022MeV above the initial state. Let
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us take, for example, the case of 10 photon absorption which would require photons
of energy a bit more than 0.1MeV, which is also the energy of the first virtual state.
Its wavefunction consists of a linear superposition of all continuum states. Its "life-
time" is the inverse of its detuning from the nearest state with allowed transition,
which in this case is the continuum threshold detuned by about 0.9MeV. This corre-
sponds to a lifetime of about 4× 10−6 f s. Obviously the process must be completed
within that time. Put otherwise, the other photons must arrive before the virtual
state ceases to exist. The laser pulse duration provides the second time scale, the in-
teraction time (IT), by which we mean the time interval during which the fields are
present to induce pair creation. For the time being and possibly the near future, the
pulse duration of any conceivable laser at any wavelength will be orders of magni-
tude longer than the above TT. Therefore, the IT can be assumed to be much longer
than the TT. If we are to contemplate a short wavelength laser in the X-ray range,
even for photon energy of say 10keV, the field period (the third time scale) is about
4× 10−4 f s, two orders of magnitude longer than the TT. For all practical purposes,
at present the pulse duration of an X-ray FEL cannot be expected to be much shorter
than 0.1− 1 f s. In the light of the above time scales, it should be clear that the TT
is so short compared to the other time scales that pair creation in the presence of a
laser is essentially an instantaneous process.

Let us now examine what exactly happens during a pulse. Assume that the in-
tensity is such that at the peak of the pulse γ ≪ 1 which entails tunneling (see
section 2.2.3). As the pulse rises and falls, however, it goes through ranges of inten-
sity for which γ ≫ 1 where multi-photon transition dominates and which actually
is more efficient [70–72, 87]. This means that under the reality of a pulse, in the end
the pairs produced will have been created via multi-photon absorption, as well as
tunneling around the peak of the pulse. If the temporal pulse shape is smooth, say a
Gaussian, all we need is to integrate the pair production over the pulse shape. If on
the other hand the pulse is not smooth but the intensity undergoes stochastic fluc-
tuations, integration over a pulse shape is impossible. In that case, we need to work
with averaging over the stochastic fluctuations. If the equations governing the rate
of the process depend on the laser intensity non-linearly, the averaging does not lead
to the replacement of the instantaneous intensity by the average intensity, as would
have been the case for a linear dependence. It does instead lead to a more complex
dependence, the form of which depends on the stochastic properties of the source
and the type of non-linearity. The possible relevance of that issue stems from a well
established precedence in the long history of multi-photon processes in atomic sys-
tems. As mentioned in chapter 3, it is known that the rate of an N-photon process,
far from resonance with real intermediate states, depends on the Nth order intensity
correlation function [5, 6, 179, 180]. And since correlation functions depend on the
stochastic properties of the radiation, the rate of even the simplest non-linear process
such as the above can be affected dramatically by intensity fluctuations. If we con-
sider, for example, an 11-photon process induced by thermal radiation whose Nth
order intensity correlation function is given by N!× IN , where I is the average in-
tensity, that process would be enhanced by a factor of about 107, as compared to the
same process under a smooth pulse without the fluctuations of the thermal source.
That is an example of a relatively simple non-linearity, in that the dependence on
intensity is proportional to a single correlation function, which reduces to a power
of the intensity for a smooth pulse.

The situation becomes much more complex when for a smooth pulse the rate is
a complicated function of the intensity, as that entails the dependence of the rate on
a complicated function of a stochastic variable. In that case, it is far from evident
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whether averaging over the fluctuations will lead to enhancement of the rate. One
might expect that in the regime of multi-photon dominance in the rate, there may
be some enhancement, the details of which are examined in the sections that follow.
A helpful physical picture provides some insight into the role of intensity fluctua-
tions, if we note that intensity fluctuations such as those of thermal radiation imply
random spikes of intensity during the pulse. Some of those spikes will have a peak
intensity much higher than the peak of the average intensity. Since a non-linear func-
tion of the intensity involves high powers of the instantaneous values, spikes with
intensity higher than the average will tend to enhance disproportionally the high
powers of the function. In the case of a process depending on a single power of the
intensity, the enhancement caused by spikes is obvious. To summarise our basic ar-
gument, the time scales entering pair production mediated by laser radiation satisfy
the conditions for the influence of intensity fluctuations on the rate of the process.

The case of short wavelength FEL is of particular interest in that context, because
as already noted above, typical FEL’s are known to exhibit strong intensity fluctua-
tions very similar to those of thermal (chaotic) radiation. Although, in principle, the
effect of fluctuations can be analyzed mathematically for any photon frequency, in
this work we restrict our analysis to very short wavelength FEL sources of photon
energies above the 10keV range. For the time being, pulse durations of FEL’s are at
best in the fs range, with plans underway towards sub-femtosecond pulses. Even
if we were to assume pulse duration of 1 attosecond, in the photon energy range
of 10− 100keV such a pulse would span tens of cycles, which makes it much larger
than the TT. If the pulse undergoes intensity fluctuations, the relative time scales al-
low their influence on the rate of pair creation. It bears repeating that whether the
result is enhancement of the rate, remains to be explored through the quantitative
analysis in the sections that follow.

Aside from the theoretical ideas on the possible role of intensity fluctuations in
pair creation, our motivation for this work was inspired by known results in multi-
photon ionization of atoms, where enhancement of the order of N! has been ob-
served a long time ago, in processes of order as high as N = 11 [179, 180]. In atoms,
in addition to the initial ground state and the ionization potential, there are infinitely
many real intermediate states which can happen to be in near resonance with the
absorption of a number of photons smaller than N. When the order of the overall
process is, let us say 10, at most 2 but most often 1 real intermediate states can be
in near resonance to a degree that can violate the overall non-resonant condition.
In that case, the enhancement will be slightly lower than N!, but still quite signif-
icant, as large as for example a factor 107 observed in [179, 180]. Curiously, there
is one atomic system whose ionization bears an uncanny similarity with pair cre-
ation. That is the negative ion of hydrogen whose binding energy is 0.754eV. It has
a ground state and a continuum, without any real intermediate states. Although at
much lower photon energies, its multi-photon ionization (technically called detach-
ment) has been studied theoretically as well as experimentally [214–216]. There is
on the other hand a crucial difference between multi-photon break up of an atom
or molecule and pair creation in vacuum. The interaction region in laser-atom inter-
actions contains a finite number of atoms. As a result, even unlimited intensity will
not help beyond the point of complete ionization of the species in the interaction vol-
ume. And this can happen even before the pulse reaches its peak [217]. Vacuum on
the other hand is an infinite sea from which pairs can be created as long as there are
photons present. It is therefore reasonable to expect that, at least in the multi-photon
regime of γ≫ 1 an enhancement of the order of N! would be obtained.
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4.2 Conservation laws and the standing wave hypothesis

Electromagnetic fields can be characterized using a gauge and Lorentz invariant
approach in terms of the electromagnetic field strength tensor Fµν and its dual,
F̃µν = 1

2 ϵµναβFαβ (ϵµναβ is the rank-four Levi-Civita tensor), as:

F =
1
4

FµνFµν = −1
2
(E⃗2 − B⃗2), (4.1a)

G =
1
4

Fµν F̃µν = cE⃗ · B⃗. (4.1b)

It is generally known that e−e+ pair creation cannot occur either in the light-like field
of a plane monochromatic wave, which is always characterized by F = 0 = G, or in
a field characterized by F > 0 and G = 0, corresponding to a pure magnetic field.
On the other hand, pair creation can occur in fields described by F < 0 and G = 0.
Brezin and Itzykson were the first to calculate the pair production rate by a spa-
tially uniform periodic electric field [69], stating that such a field could by realised
by proper optical focusing of laser beams in the laboratory. In view of some concern
about pair production using this method [218], it was argued that another more ef-
fective method of realising such a field would be via the creation of a standing wave
formed by the superposition of two counter-propagating coherent laser beams of the
same wavelength λ [70–72, 74, 75, 88, 106]. In this idealized scenario pair production
can occur in an antinode of the standing wave at lengths l ≪ λ, such that the spatial
inhomogeneities of the field can be neglected to a good approximation. Extensions
that take into account the temporal behavior of the resulting laser pulse [219] as well
as spatial inhomogeneities [220] have also been considered, while a detailed analysis
of the Schwinger pair creation using counter-propagating laser pulses can be found
in the paper by G. R. Mocken et al. [107]. We should also note that pair production
can occur in plasma-like media as has been discussed in a series of papers by H. K.
Avetissian et al. [221, 222].

Following the lines of previous works based on the conceptual experiment of
pair creation by an idealized standing wave, we generalize part of the problem by
including the presence of amplitude (intensity) fluctuations in the initial beams and
show that such fluctuations could eventually lead to large enhancement of the cre-
ated pairs. Specifically, we focus on the study of pair creation resulting from a
standing wave formed by the interference of two counter-propagating FEL beams
of the same wavelength that undergo amplitude fluctuations, i.e. beams of the form
E (1)t cos(ωt− k · r) and E (2)t cos(ωt + k · r), where the index "t" denotes the stochastic
character of the amplitudes and k is the beam wavevector. In this scenario, the re-
sulting field is equal to (E (1)t + E (2)t )cos(ωt)cos(k · r) + (E (1)t −E

(2)
t )sin(ωt)sin(k · r).

Adopting the approximation k · r ≪ 1, which is based on the assumption that pair
creation occurs at lengths smaller than the wavelength of the beams [102], the re-
sulting field is, to a good approximation, a standing wave of the form Etcos(ωt),
where Et = E (1)t + E (2)t . In particular, we consider the case in which both E (1)t and
E (2)t undergo Gaussian amplitude fluctuations, corresponding to those of an ideal
chaotic state. In that case, the first-order intensity correlation function G̃1 of the re-
sulting field is two times the first-order intensity correlation function of the chaotic
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field Gchao
1 , since:

G̃1 ≡ ⟨E∗t Et′⟩ =
〈(
E (1)t

∗
+ E (2)t

∗) (
E (1)t′ + E (2)t′

)〉
=
〈
E (1)t

∗
E (1)t′ + E (1)t

∗
E (2)t′ + E (2)t

∗
E (1)t′ + E (2)t

∗
E (2)t′

〉
=
〈
E (1)t

∗
E (1)t′

〉
+
〈
E (2)t

∗
E (2)t′

〉
= 2Gchao

1 ,

(4.2)

given the fact that no amplitude correlation exists between the two beams. It is
straightforward to show that this result persists even for correlations functions of
arbitrary order. Therefore, for the Nth-order (normal-ordered) intensity correlation
function of the resulting field we can prove that

G̃N = 2Gchao
N . (4.3)

The effects of this result on pair creation are discussed in the next section. A brief
clarification should be made at this point regarding the connection with FEL ra-
diation: As is generally known, apart from amplitude fluctuations, FEL radiation
does also exhibit fluctuations in phase [126, 127, 207], making the standing wave
hypothesis even more challenging to realise experimentally. The reason we do not
include this type of fluctuations in the formulation is twofold: First, the problem of
vacuum e−e+ pair creation in the presence of fields that undergo fluctuations both
in amplitude and phase is considerably more complex, while the tools that have
been developed for treating analogous problems in atomic transitions [5, 6, 146] are
not directly applicable to the problem at hand. Second, the inclusion of phase fluc-
tuations resulting to a finite field bandwidth is not expected to notably affect the
measured signal of created pairs, since the process of pair creation, when operating
in the multi-photon regime, is ultimately an N-photon escape process, involving no
intermediate resonances. And in this case the role of field bandwidth is essentially
irrelevant. Therefore, in what follows we are interested solely in examining how the
presence of fluctuations in the amplitude of the resulting standing wave may affect
the total number of created pairs [223].

4.3 Multi-photon enhancement of vacuum e−e+ pair creation

A few years after the paper of Brezin and Itzykson [69], Popov extended their work
using the imaginary time method [224] and determined more accurately the pre-
exponential factor in the expression of the rate of vacuum pair creation. For the de-
tails of this derivation we refer the reader to [70–72, 85–87]. Assuming a monochro-
matic laser field of the form Ecos(ωt) focused down to the diffraction limit, Popov
obtained the following expressions for the number of e−e+ created pairs in the γ≪ 1
and γ≫ 1 limits, corresponding to the tunneling and multi-photon regimes, respec-
tively:

N(E) = 2−3/2N4
0

(
E
Ec

)5/2

× exp

−πEc

E

1− 1

2N0
2
(
E
Ec

)2


(ωτ

2π

)
, γ≪ 1,

(4.4a)

N(E) ≈ 2πN3/2
0

(
8Ec

N0eE

)−2N0 (ωτ

2π

)
, γ≫ 1, (4.4b)
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where E is the amplitude of the electric field, Ec = me
2c3

eh̄ = 1.32× 1016 V/cm is the
critical electric field value calculated by Schwinger [67], τ is the interaction time and
N0 = 2mc2

h̄ω is the minimum number of photons needed for vacuum pair creation to
occur at a given frequency. Comparison between Eqs. (4.4a) and (4.4b) reveals that
pair creation in the multi-photon regime is far more effective than pair creation in the
tunneling regime due to the exponential suppression of the latter for E < Ec. Given
that the electric field amplitude is proportional to the square root of the intensity,
Eqs. (4.4a) and (4.4b) can also be written in the form:

N(I) = 2−3/2N4
0

(
I
Ic

)5/4

× exp

−π

√
Ic

I

1− 1

2N0
2
(

I
Ic

)
(ωτ

2π

)
, γ≪ 1,

(4.5a)

N(I) ≈ 2πN3/2
0

(
8

N0e

)−2N0
(

I
Ic

)N0 (ωτ

2π

)
, γ≫ 1, (4.5b)

where e is the Euler’s constant, I is the intensity of the electric field and Ic = 4.65×
1029 W/cm2 is the intensity corresponding to Ec.

As also noted in the chapter 2, one of the key results in quantum optics when
working under the zero bandwidth approximation is that the effects of any type of
radiation field on a transition can be captured by first solving a problem assuming
a harmonically oscillating field of constant amplitude (Ecos(ωt)) and then average
over the intensity distribution corresponding to the radiation field considered [5].
We use this method to calculate the number of pairs created by the amplitude fluc-
tuating standing wave field considered in the previous subsection.

Inspection of Eq. (4.5) reveals that the number of pairs created for γ ≫ 1 is pro-
portional to the intensity to the power of N0, i.e. the N0-th order intensity correlation
function of the harmonically oscillating field of constant amplitude, as expected for
a multi-photon transition that involves no intermediate resonances. Given that: (i)
all the information about the effects of the coherence properties of a considered field
on such a multi-photon transition is contained in its intensity correlation function,
(ii) the N-th order intensity correlation function of the standing wave field resulting
from the interference of the two counter-propagating beams with Gaussian ampli-
tude fluctuations is twice that of the chaotic field as shown in the previous section

and (iii) the intensity distribution of the chaotic field is p(I′) = e−
I′
I

I , where I is the
mean intensity, it is straightforward to argue that the resulting number of e−e+ pairs
created by such a standing wave field, in the zero bandwidth approximation, is:

Ñ(I) = 2
∫ ∞

0
N
(

I′
) e−

I′
I

I
dI′, (4.6)

where the factor of 2 is direct consequence of Eq. (4.3).
Using now the expressions for the number of created pairs in each regime, one

can show that in the limit of zero intensities, the number of e−e+ pairs created by
such a field is 2N0! times larger than the respective number of pairs created in the
case of a harmonically oscillating of constant amplitude, i.e.

lim
I→0+

Ñ(I)
N(I)

= 2N0!, (4.7)
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where N0 is the minimum number of photons participating in the process. The de-
tails of this calculation is presented in Appendix A. Note that since γ is inversely
proportional to the square root of the intensity and the integral over the intensity
in Eq. (4.6) extends from zero up to infinity, we split the integration into two parts;
namely from 0 to Ib (multi-photon regime) and from Ib up to infinity (tunneling
regime), where Ib is the intensity corresponding to γ = 1. We should note that this
method is not generally valid for arbitrary intensities since (i) there practically exists
no sharp boundary between these two regimes and (ii) the considered formulas of
Eqs. (4.5a) and (4.5b) give only an approximate expression of the number of created
pairs in the γ ∼ 1 regime in which they are joined in order of magnitude as N0 de-
creases. However, in what follows we will limit our discussion to intensities lower
than I = 0.01Ic. In this case the considered approximation is expected to give a good
estimation of the total number of created pairs and the reason behind this has to do

with the specific form of the intensity distribution p(I′) = e−
I′
I

I as a function of I′

for different values of I. In particular, p(I′) is decreasing for increasing I′ but this
occurs faster for smaller values of I. And even in the maximum considered case of
I = 0.01Ic, due to the exponential factor, the contribution of the terms with about
I′ ≥ 0.02Ic is already small. This has two consequences: Firstly, the integral corre-

sponding to the tunneling regime, i.e. 2
∫ ∞

Ib
N (I′) e−

I′
I

I dI′ does not give a substantial
contribution to the total number of created pairs Ñ. This is due to the fact that the
boundary intensity corresponding to γ = 1, which can be expressed as Ib = 4

N2
0

Ic,
is already larger than 0.02Ic for all N0 up to 14, resulting to the suppression of the
number of pairs due to the exponentially decaying factor. Therefore the main contri-
bution to the total number of pairs generally arises from the multi-photon integral

2
∫ Ib

0 N (I′) e−
I′
I

I dI′. Secondly, as far as the multi-photon integral is concerned, even
if Eq. (4.5b) gives only an order of magnitude approximation of the created pairs
as we approach the γ ∼ 1 regime, or in other words the intensity boundary Ib, if
the considered number of photons participating in the process is approximately up
to 14, the terms in the vicinity of the non-perturbative multi-photon regime (γ ∼ 1)
have relatively smaller weights and do not contribute significantly to the resulting
number of created pairs Ñ. In view of the above, we limit our discussion to photon
orders up to about N0 = 14 and to intensities up to about I = 0.01Ic in order to en-
sure the validity of our approximation. Note that for arbitrary intensities and orders
N0 one cannot use this approach to the problem at hand.

Using this method, one can prove the validity of Eq. (4.7) in the zero field limit,
regardless of the exact choice of the boundary (this is due to the consequence of
taking the limit I → 0+ as discussed in Appendix A).

Eq. (4.7) is a direct consequence of the proportionality of the number of created
pairs to the intensity correlation function of the field, which for a chaotic field is
N0! larger than the respective correlation function of the coherent field. Of course in
the limit of zero intensities the number of created pairs is practically zero, therefore
the presence of such an enhancement factor does not seem to be useful. However,
numerical calculations of the created pairs number ratio as a function of the intensity
using Eq. (4.6), reveal that this enhancement factor persists over a large intensity
window which depends on the order of the process, extending up to the strong field
regime (Fig. 4.1).

In Fig. 4.1 we plot the ratio of the number of e−e+ pairs created by the field re-
sulting from the collision of two counter-propagating FEL beams that undergo am-
plitude fluctuations with Gaussian statistics over the number of e−e+ pairs created
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by a harmonically oscillating field, for various orders N0. Fixing N0 in each consid-
ered case implies that the two kinds of beams have the same energy when the ratio
Ñ/N is calculated. As seen, there exists a large intensity plateau over which the
ratio remains equal to the expected value 2N0! of the zero field limit. The range of
the intensity plateau strongly depends on the order of the process N0, as it decreases
while N0 is increased. The deviation from the 2N0! factor is attributed to the pres-
ence of tunnelling whose role becomes increasingly important with the increase of
intensity. In other words, in an imaginable scenario where there was no tunnelling
regime present in the problem at hand and the number of created pairs were given
by Eq. (4.5b) for every intensity, it would be easy to show that after averaging the
enhancement factor 2N0! would persist for any given intensity. Given that the en-
hancement factor, depending on the minimum number of photons participating in
the process, can reach very high values, it is our purpose on this section to examine
whether and under which combination of parameters such an enhancement could
be utilized to experimentally observe the Schwinger vacuum pair creation under the
considered configuration.
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FIGURE 4.1: Ratio of the number of e−e+ pairs created by a field that results from the
collision of two counter-propagating FEL beams that undergo Gaussian amplitude
fluctuations over the number of e−e+ pairs created by a harmonically oscillating field of the
form Ecos(ωt). The ratio is plotted as a function of the intensity for different values of N0.
The range of the intensity plateau over which the ratio remains equal to predicted low field
value 2N0! is increasingly larger for smaller values of N0. The values of N0 used are: N0 = 8
(solid line), N0 = 10 (dashed line), N0 = 12 (dotted line) and N0 = 14 (dash-dotted line).

Given that the parameter γ is expressed in terms of the intensity as γ = h̄ω
mc2

√
Ic
I

and that the minimum number of photons participating in the process is N0 = 2mc2

h̄ω ,
we can write that:

γ =
2

N0

√
Ic

I
. (4.8)

According to Eq. (4.8), γ is inversely proportional to the order of the process N0.
Let us for example examine the case of N0 = 14, corresponding to the photon en-
ergy h̄ω = 73keV. In this case the enhancement factor Ñ/N reaches the maximum
value 2N0!= 1.74× 1011 and persists for intensities up to I ∼= 0.001Ic (see Fig. 4.1).
However, even if the enhancement factor seems very large, for intensities around
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I ∼= 0.001Ic the number of created pairs by an harmonically oscillating field is of the
order of 10−15 (for an interaction time τ = 50 f s), therefore an enhancement factor
of the order of 1011 does not lead to an observable number of pairs. In this case one
could try to increase the intensity in order to create more pairs. However, the draw-
back in this case would be that, for the intensities such that the number of created
pairs is measurable, according to Eq. (4.8), the parameter γ would be such that pair
creation would gradually approach the tunneling regime. On the other hand, using
a much lower photon number, say N0 = 5, the maximum enhancement factor would
be only 2N0!= 240 and the corresponding energy of the photons needed to observe
the process would be extremely high (h̄ω ≈ 204keV).

FIGURE 4.2: Number of e−e+ pairs created by a field that results from the collision of two
counter-propagating FEL beams that undergo Gaussian amplitude fluctuations (solid line),
compared to the respective number of pairs created by a harmonically oscillating field of
the form Ecos(ωt) (dotted line). The parameters used are: minimum number of photons
N0 = 10 and interaction time τ = 50 f s. The vertical axis is presented in logarithmic scale
and the dashed line corresponds to the intensity such that Ñ = 1.

In view of the above, we consider an intermediate scenario where N0 = 10, cor-
responding to photon energies h̄ω ≈ 102keV. The threshold of 100keV photons,
even seemingly high, is expected to be reached in the near future based on recent
studies on technical design plans and simulations confirming the possibility of ob-
taining such high-energy FEL photons in the European XFEL facilities [225, 226]. In
addition to this, several years ago, works on multi-photon ionization experiments in
atomic systems with chaotic radiation have reported the observation of the expected
non-linear multi-photon enhancement for processes of such a high-order [179, 180].
Therefore it seems legitimate to investigate the case of pair creation via the absorp-
tion of 10 photons.

As can be seen in Fig. 4.1, for a 10-photon process, a maximum enhancement
factor of 2N0!= 7.26× 106, for intensities up to I ∼= 0.0028Ic can be expected. In Fig.
4.2 we plot the actual number of the created e−e+ pairs as a function of the inten-
sity, both for the harmonically oscillating field of the form Ecos(ωt) (dotted line),
as well as for the field resulting from the collision of two counter-propagating FEL
beams that undergo amplitude fluctuations with Gaussian statistics (solid line). The
calculation has assumed interaction time of τ = 50 f s, but one can easily obtain the
resulting number of pairs for any interaction time, owing to the linear dependence
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of N(I) and Ñ(I) on τ. As is evident in Fig. 4.2, the number of pairs created using
a field of the form Ecos(ωt) is very low for intensities below the critical intensity
Ic. However, by taking advantage of the large enhancement factor for N0 = 10, Ñ
becomes sufficiently large to be experimentally detectable at lower intensities. The
intensity at which Ñ = 1 (dashed line), is approximately I ∼= 0.0026Ic and according
to Eq. 4.8 corresponds to γ ∼= 3.9. This intensity may become even lower as long as
one can achieve larger interaction times τ. Intensities of that magnitude are likely to
be available in the future in FEL facilities such as the European XFEL [225, 226] or
the SULF in China [227].

A few further comments regarding the assumptions underlying this work are
in order at this point. The derivation of Eqs. (4.4a) and (4.4b) for the number of
created pairs provided by Popov are based on the assumption that the number of
pairs are calculated in a volume equal to ∆V = λ3. This assumption can of course
be revised by multiplying the resulting equations with the proper scaling factors.
Note that one does not need to focus the radiation field down to the diffraction limit
(which for high energy photons becomes increasingly difficult) in order to achieve
the desired field intensity, as long as there is adequate power to balance the effect
of less tight focusing. Moreover, even if the calculations are based on the standing
wave hypothesis, extended in a way that includes the stochastic character of the
amplitudes of the individual beams, it is obvious that ones does not need a standing
wave in order to observe the non-linear multi-photon enhancement in pair creation
induced by the fluctuating fields. However, the adoption of this hypothesis is useful
in view of the additional factor of 2 that one obtains in the resulting numbr of created
pairs, based on Eq. (4.3). One could of course approach the problem from a solely
numerical perspective, by using the quantum Vlasov equations along the lines of
the work of I. Sitiwaldi and Bai-Song Xie [207], in combination with a Gaussian
stochastic modulation of the amplitude, using Monte Carlo techniques. However,
this method would not provide any additional insight to the present work as far as
the non-linear multi-photon enhancement factor is concerned. Finally, as described
in the previous section, our calculations involve the notion of an intensity boundary
between the multi-photon and the tunneling regime, necessary in order to perform
the integration in Eq. (4.6). Even though a sharp boundary does not really exist
between these two regimes, splitting Eq. (4.6) into two integrals and calculating
them separately using Eqs. (4.5a) and (4.5b) is expected to give a good estimate of
the expected number of created pairs for N0 = 10 and for intensities up to I = 0.01Ic,
as discussed in the previous section.

In the light of our results, it appears that the role of intensity fluctuations in
enhancing non-linear strong field phenomena may be exploited advantageously in
Schwinger pair production, Our results, based as they are on approaches in the ex-
isting literature, may also be used in combination with other methods aiming at
enhancing the yield of pair creation. To the best of our knowledge, the problem has
so far been explored only theoretically. The stumbling block towards experimental
verification has been the availability of appropriate laser sources. This is particularly
crucial for FEL sources which, however, are still under constant development. The
source ideally suited for the experimental exploration of our predictions would be
a SASE FEL with photon energy range around 100 keV. As mentioned before, the
possibility of developing FEL’s in that photon energy range has been addressed in
quite recent theoretical studies [225, 226]. Considering the fact that about 40 years
ago an X-ray laser was viewed as science fiction, in view of the rapid development
of hard X-ray FEL’s within the last 15 years or so, the availability in the near future of
an FEL in the above photon energy range would not seem too optimistic. Be that as



4.3. Multi-photon enhancement of vacuum e−e+ pair creation 57

it may, intensity fluctuations are apt to play an intriguing role in pair creation under
FEL radiation, if other issues related to focusing etc. can be addressed.
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Part II

Open quantum systems’ dynamics
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Chapter 5

Theoretical Background

5.1 Markovian and non-Markovian processes

5.1.1 General Description

The study of open quantum system’s dynamics is largely based on the understand-
ing of the concept of stochastic processes, i.e. processes describing the evolution
in time of a random phenomenon. Stochastic processes are divided in two big
categories, namely the Markovian and the non-Markovian processes. Traditional
Markovian processes assume that the present state of a system depends solely on its
immediate past, independent of the entire history leading up to that point. However,
many real-world phenomena exhibit intricate temporal dependencies that cannot be
adequately captured by the simplifying assumption of memoryless transitions. This
has given rise to the study of non-Markovian processes, which account for the in-
fluence of past events and the persistence of memory. Non-Markovian processes
opened up ways to explore complex dynamics, and they are present across many
phenomena in various fields of physics [24]. In this chapter, we provide a general
introductory description of the Markovian and non-Markovian processes and some
of their basic properties [12].

First, let us introduce the concept of a dynamical map [12]. Consider a compound
system that consists of two parts denoted by S and B, standing for "System" and
"Bath", respectively. In most cases, the system S is characterized by just a few degrees
of freedom, in contrast to the bath, which is often assumed to be much larger than
S and, more often than not, is effectively described by infinite degrees of freedom.
Suppose that at t = 0 the compound system is prepared at an uncorrelated product
state of the form ρ(0) = ρS(0)⊗ ρB, where ρS(0) is the density matrix describing the
initial state of system S, and ρB is the density matrix describing a reference state of
the bath (a thermal equilibrium state in example). The change of the reduced system
S from the initial state to the state at some time t > 0, is described by the following
transformation:

ρS(0) 7→ ρS(t) = V̂(t)ρS(0) ≡ TrB Û(t, 0)[ρS(0)⊗ ρB]Û†(t, 0), (5.1)

where Û(t, 0) is the time-evolution operator of the compound system and TrB de-
notes the partial trace over the degrees of freedom of the environment B. If we
regard the reference state ρB and the final time t to be fixed, Eq. (5.1) defines a map
from the space of density matrices, denoted by S(ĤS), where ĤS is the Hamiltonian
of the system S, into itself, i.e.

V̂(t) : S(ĤS) 7→ S(ĤS), (5.2)



62 Chapter 5. Theoretical Background

which is called "dynamical map" and is characterized completely in terms of opera-
tors pertaining to the Hilbert space of S. If we decompose the density matrix of B in
an orthonormal basis |φα⟩ of ĤB, i.e.

ρB = ∑
α

λα |φα⟩ ⟨φα| , (5.3)

where λα are non-negative real numbers satisfying ∑α λα = 1, then Eq. (5.1), yields:

V̂(t)ρS = ∑
α,β

Ŵαβ(t)ρSŴ†
αβ(t), (5.4)

where the operators Ŵαβ(t) are defined as

Ŵαβ(t) =
√

λβ ⟨φα| Û(t, 0)
∣∣φβ

〉
. (5.5)

and they satisfy the condition

∑
α,β

Ŵ†
αβ(t)Ŵαβ(t) = ÎS, (5.6)

where ÎS is the identity operator acting on S. Using the above equation, it is straight-
forward to show that

TrS[V̂(t)ρS] = TrS(ρS) = 1. (5.7)

Hence, we conclude that a dynamical map V̂(t) represents a completely positive
and trace-preserving quantum operation. If we allow t to vary, we get a family of
dynamical maps, {V̂(t)|t ≥ 0}, with V(0) being the identity map, that describes
the whole time evolution of the open system. If the characteristic time scales over
which the reservoir correlation functions decay are very small, to the point where
it is justified to neglect memory effects in the reduced system dynamics, then the
process is Markovian. The Markovian case is formalized in terms of the following
dynamical map property:

V̂(t1)V̂(t2) = V̂(t1 + t2), t1, t2 ≥ 0. (5.8)

Given a family of dynamical maps, {V̂(t)|t ≥ 0}, there exists a linear map L, which
allows to express V̂(t) in the exponential form:

V̂(t) = e(L̂t), (5.9)

in view of which one can obtain the following first-order differential equation de-
scribing the dynamics of the reduced system:

d
dt

ρS(t) = L̂ρS(t). (5.10)

Note that L̂ is a superoperator acting upon ρS(t), often called Liouville superopera-
tor. By starting from this equation, one can derive the so-called Markovian quantum
master equation, found in every open quantum systems’ textbook [12], which reads:

d
dt

ρS(t) = L̂ρS(t) = −i[Ĥ, ρS] +
N2−1

∑
k=1

γk

(
AkρS A†

k −
1
2

A†
k AkρS −

1
2

ρS A†
k Ak

)
.

(5.11)
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In the above equation, Ĥ is the Hamiltonian of the system, γk is the relaxation rate of
the kth decay channel of the open system, that is expressed in terms of the correlation
functions of the environment, N is the dimension of the Hilbert spaceHS, and Ak are
the so-called Lindblad operators that describe the interaction of the subsystem with
the environment. The Lindblad operators may acquire various forms, depending on
the particular model considered under study. We should note that the derivation of
Eq. (5.11) is based on two important approximations, namely, the Markov approxi-
mation which implies that the spectral density of the environment is slowly varying
as a function of the frequency in the vicinity of the system’s resonances, and the Born
approximation which implies a weak coupling between B and S.

Although, Eq. (5.11) is generally successful in predicting the time evolution of
the system in the Markovian limit, more often than not, the environments involved
in realistic open quantum systems are not characterized by smooth spectral densities
and therefore non-Markovian features come into play, resulting in a more complex
dynamical behaviour of the system. In what follows we review two well-known
techniques which allow the systematic description of non-Markovian dynamics of
open systems, namely, the Nakajima-Zwanzig method and the time-convolutionless
projection operator method [12].

5.1.2 The Nakajima-Zwanzig method

Let us consider a system S coupled to an environment B. The dynamics of the com-
pound system (S + B) are described by a Hamiltonian of the form

Ĥ = Ĥ0 + αĤI , (5.12)

where Ĥ0 describes the time evolution of the uncoupled compound system, ĤI is
the interaction Hamiltonian, and α is a dimensionless expansion parameter. The
dynamics of the density matrix of the compound system, ρ(t), in the interaction
representation, are given by the following equation of motion (h̄ = 1):

∂

∂t
ρ(t) = −iα[ĤI(t), ρ(t)] ≡ αL̂ρ(t), (5.13)

where by L̂ we denote the Liouville superoperator, and ĤI(t) is the interaction pic-
ture representation of the interaction Hamiltonian, defined by

ĤI(t) = exp
(
iĤ0t

)
ĤI exp

(
−iĤ0t

)
. (5.14)

Our purpose is the derivation of an exact master equation describing the dynamics
of ρS. For that matter, it is convenient to define a superoperator P̂ , that acts on ρ as
follows:

ρ 7→ P̂ρ = TrB(ρ)⊗ ρB ≡ ρS ⊗ ρB, (5.15)

where ρB is some fixed state of the environment. Accordingly, we define a comple-
mentary super-operator Q̂ as:

Q̂ρ = ρ− P̂ρ. (5.16)

The superoperators P̂ and Q̂ are maps in the state space of the compound system
Hilbert space Ĥ = ĤS ⊗ ĤB and the obey the following properties:

P̂ + Q̂ = Î , (5.17a)

P̂2 = P̂ , (5.17b)
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Q̂2 = Q̂, (5.17c)

P̂Q̂ = Q̂P̂ = 0, (5.17d)

where Î is the identity operator. By acting with the projection operators P̂ and Q̂ in
Eq. (5.13), the following coupled differential equations are obtained:

∂

∂t
P̂ρ(t) = P̂ ∂

∂t
ρ(t) = αP̂ L̂(t)ρ(t), (5.18a)

∂

∂t
Q̂ρ(t) = Q̂ ∂

∂t
ρ(t) = αQ̂L̂(t)ρ(t). (5.18b)

By inserting the identity operator Î = P̂ + Q̂ between L̂(t) and ρ(t), the above set
of equations can be also written as:

∂

∂t
P̂ρ(t) = αP̂ L̂(t)P̂ρ(t) + αP̂ L̂(t)Q̂ρ(t), (5.19a)

∂

∂t
Q̂ρ(t) = αQ̂L̂(t)P̂ρ(t) + αQ̂L̂(t)Q̂ρ(t). (5.19b)

Formal integration of Eq. (5.19b) yields:

Q̂ρ(t) = Ĝ(t, t0)Q̂ρ(t0) + α
∫ t

t0

dsĜ(t, s)Q̂L̂(s)P̂ρ(s), (5.20)

where t0 is some arbitrary initial time, and Ĝ(t, s) is a propagator defined by the
following equation:

Ĝ(t, s) ≡ T̂← exp
[

α
∫ t

t0

ds′Q̂L̂(s′)
]

. (5.21)

T̂← is a chronological time ordering operator that orders any product of superop-
erators such that their time arguments increase from right to left. Note that the
propagator Ĝ(t, s) satisfies the following differential equation:

∂

∂t
Ĝ(t, s) = αQ̂L̂(t)Ĝ(t, s), (5.22)

with the initial condition
Ĝ(s, s) = Î . (5.23)

Substitution of Eq. (5.20) back to Eq. (5.19a), yields:

∂

∂t
P̂ρ(t) =αP̂ L̂(t)Ĝ(t, t0)Q̂ρ(t0) + αP̂ L̂(t)P̂ρ(t)

+ α2
∫ t

t0

dsP̂ L̂(t)Ĝ(t, s)Q̂L̂(s)P̂ρ(s).
(5.24)

Eq. (5.24) is known as the Nakajima-Zwanzig equation. The integral term in the
right-hand side of Eq. (5.24) depends on the past history of the system in the time
interval [t0, t], hence Eq. (5.24) captures non-Markovian features in the dynamics of
the open system. The main drawback of the Nakajima-Zwanzig method is that Eq.
(5.24) may be very difficult to solve for specific systems. In this case perturbation
expansions are necessary in order to capture aspects of the open system dynamics.
Usually Eq. (5.24) is expanded in terms of the coupling constant α, i.e. in powers
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of the interaction Hamiltonian, or in time. In some cases it might also be conve-
nient to perform the perturbation expansion for the Laplace transform of ρS(t) in the
Schrödinger picture.

5.1.3 The time-convolutionless projection operator method

In those cases where the Nakajima-Zwanzig equation show practical disadvantages
due to its complexity, a method developed by Shibata et al. [228–230] may be appli-
cable, which provides a technique of finding a systematic expansion of the dynamics
of the system of interest in terms of its coupling strength to the environment. This
method is called "the time-convolutionless projection operator method" and its aim
is to eliminate the dependence of the time evolution of the density matrix on the
history of the system, and therefore to provide the derivation an exact master equa-
tion which is local in time [12]. Following the definitions introduced in the previous
section, the density matrix ρ(s) appearing in the right-hand side of Eq. (5.20) is now
replaced by the relation:

ρ(s) = Ĝ(t, s)(P̂ + Q̂)ρ(t), (5.25)

where Ĝ(t, s) is now the backward propagator of the composite system, defined as:

Ĝ(t, s) ≡ T̂→ exp
[
−α

∫ t

s
ds′L̂(s′)

]
, (5.26)

with T̂→ indicating antichronological time-ordering. In view of Eq. (5.25), Eq. (5.20)
can be written as:

Q̂ρ(t) = Ĝ(t, t0)Q̂ρ(t0) + α
∫ t

t0

dsĜ(t, s)Q̂L̂(s)P̂ Ĝ(t, s)(P̂ + Q̂)ρ(t). (5.27)

The above equation can be further written as:

[1− Σ̂(t)]Q̂ρ(t) = Ĝ(t, t0)Q̂ρ(t0) + Σ̂(t)P̂ρ(t), (5.28)

by introducing the superoperator

Σ̂(t) ≡ α
∫ t

t0

dsĜ(t, s)Q̂L̂(s)P̂ Ĝ(t, s), (5.29)

that satisfies the properties Σ̂(t0) = 0 and Σ̂(t)
∣∣
α=0 = 0. The factor [1 − Σ̂(t)] in

Eq. (5.28) may be inverted for small α or in any case for small t− t0, resulting to the
following equation:

Q̂ρ(t) = [1− Σ̂(t)]−1Σ̂(t)P̂ρ(t) + [1− Σ̂(t)]−1Ĝ(t, t0)Q̂ρ(t0). (5.30)

Eq. (5.30) implies that the value of Q̂ρ(t) at time t is determined by the value of
P̂ρ(t) at time t and the initial condition Q̂ρ(t0). The advantage of this equation is
that the dependence of the history of evolution (which appears in Eq. (5.24)) has
now been removed by introducing Ĝ(t, s). However, it must always be kept in mind
that (5.30) is only valid for weak couplings and/or for small values of t − t0. We
now substitute Eq. (5.24) back to Eq. (5.19a) and find the exact time-convolutionless
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(TCL) master equation,

∂

∂t
P̂ρ(t) = K̂(t)P̂ρ(t) + M̂(t)Q̂ρ(t0), (5.31)

where we defined the time-local superoperator K̂(t) (TCL generator) as:

K̂(t) ≡ αP̂ L̂(t)[1− Σ̂(t)]−1P̂ , (5.32)

and the inhomogeneity superoperator M̂(t) as:

M̂(t) = αP̂ L̂(t)[1− Σ̂(t)]−1Ĝ(t, t0)Q̂. (5.33)

The TCL master equation, given by Eq. (5.31), is exact and local in time. The su-
peroperators K̂(t) and M̂(t) are generally complicated objects, however they are
usually expanded in powers of the coupling strength α, ultimately allowing one to
find approximate solutions of Eq. (5.31) [12].

5.2 Elements of quantum information

Quantum information theory is a rather new field of physics that provides ways
of manipulating information at the quantum level. It encompasses the principles
of quantum mechanics to exploit quantum phenomena such as superposition and
entanglement for information processing tasks. Quantum information processing
holds great promise for advancements in various fields, including cryptography [3],
computation [231], and communication [20]. However, the realization of practical
quantum technologies faces significant challenges due to the unavoidable interac-
tion between quantum systems and their surrounding environments. This is where
the field of open quantum systems comes into play, aiming to understand and con-
trol the detrimental effects of noise and decoherence on quantum information [232].
By studying the dynamics of quantum systems coupled to their environment, open
quantum systems theory provides tools for characterizing, modeling, and control-
ling the interactions that hinder the preservation and manipulation of quantum in-
formation [233]. The field investigates topics such as quantum error correction [18],
quantum control [234], and quantum measurements in the presence of noise and
decoherence [235]. Additionally, it explores novel approaches for protecting quan-
tum information against environmental effects through the design of fault-tolerant
quantum codes [236] and the implementation of error mitigation strategies [237].

In this section we aim at providing a brief overview of the phenomenon of quan-
tum entanglement, as well as the phenomenon of quantum state transfer, as they the
form the basis of understanding the topics discussed in the following chapters of the
thesis.

5.2.1 Quantum entanglement

The study of quantum correlations represents lies at the heart of quantum infor-
mation science, revealing properties that distinguish quantum systems from classi-
cal ones. An important benchmark in the exploration of quantum correlations was
the seminal work of Einstein, Podolsky, and Rosen (EPR) in 1935, which challenged
the completeness of quantum mechanics by highlighting the existence of entangled
states that exhibited seemingly non-local correlations [238]. This profound insight
led to the development of Bell’s theorem in 1964, which mathematically formalized
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the notion that no local realistic theory could reproduce all the predictions of quan-
tum mechanics [239]. Bell’s theorem spurred intensive experimental efforts to test
the violation of Bell inequalities and confirm the existence of non-local correlations,
culminating in the groundbreaking experiments conducted by Alain Aspect and his
colleagues in the 1980s [240]. These experiments provided evidence for the entan-
glement of distant quantum systems, solidifying the foundations of quantum corre-
lations and opening up the potential of utilizing them in quantum technologies.

The exploration of quantum correlations has not been limited to entanglement
alone. Over the years, several quantum correlations have been explored, such as
quantum discord or quantum steering. Quantum discord, captures the quantum-
ness of correlations beyond entanglement, encompassing situations where quantum
systems possess non-classical correlations that cannot be explained by classical prob-
abilistic models [241]. Quantum steering, on the other hand, investigates the possi-
bility of one party steering the state of another party’s system through local mea-
surements [242]. These forms of quantum correlations are crucial for tasks such as
quantum communication, quantum computation, and quantum sensing.

In this section we review the basic properties of quantum entanglement, which
is the most known among all quantum correlations, and illustrate its connection to
the phenomenon of quantum decoherence. In order to understand the phenomenon
of quantum entanglement, let us first consider a multipartite system consisting of
n subsystems [243]. According to the classical description, the total state space of
the system is the Cartesian product of the spaces of the n subsystems. However,
according to quantum theory, the total Hilbert space H is a tensor product of the
subsystem spacesHl , (l = 1, . . . , n), i.e. H = ⊗n

l=1Hl . In this case, the superposition
principle allows us to write the total state of the compound system in the form

|Ψ⟩ = ∑
i1,...,in

ci1,...,in |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ , (5.34)

which obviously cannot be described in general as a product of the states of the
individual subsystems. This suggests that is generally impossible to assign a single
state vector to any one of the n subsystems. In this case, |Ψ⟩ is called an "entangled
state". Entanglement, contrary to classical superposition, allows us to construct an
exponentially large superposition with only a linear amount of physical resources.

Let us now consider a simple system consisting of a pair of qubits (i.e. two-level
systems) A and B prepared in the entangled state [26]

|ψ⟩ = α
∣∣∣0A
〉 ∣∣∣0B

〉
+ β

∣∣∣1A
〉 ∣∣∣1B

〉
, (5.35)

where α, β ∈ C. The probability of detecting the two-qubit system in state
∣∣0A〉 ∣∣0B〉

is |α|2, while the probability of detecting it in state
∣∣1A〉 ∣∣1B〉 is |β|2. An important

inherent property of the entangled state |ψ⟩ is that, if we measure the state of one of
the two qubits, for example qubit B, and we find it in one of the states

∣∣0B〉 or
∣∣1B〉,

then the act of measurement instantly prepares qubit A in the state
∣∣0A〉 or

∣∣1A〉,
respectively. Therefore, the expectation value ⟨Â⟩ of an operator Â that acts only
on qubit A is given by ⟨Â⟩ =

〈
0A
∣∣ Â ∣∣0A〉 if qubit B is measured and found in state∣∣0B〉, and ⟨Â⟩ =

〈
1A
∣∣ Â ∣∣1A〉 if B is found in state

∣∣1B〉. The expectation value of Â,
irrespective of any measurement on qubit B is given by:

⟨Â⟩ = ⟨ψ| Â |ψ⟩ = |α|2
〈

0A
∣∣∣ Â ∣∣∣0A

〉
+ |β|2

〈
1A
∣∣∣ Â ∣∣∣1A

〉
= Tr

(
ρAÂ

)
, (5.36)
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where
ρA = |α|2

∣∣∣0A
〉 〈

0A
∣∣∣+ |β|2 ∣∣∣1A

〉 〈
1A
∣∣∣ , (5.37)

is the reduced density operator of qubit A, resulting after tracing the degrees of
freedom of qubit B out of the total density operator of the system, ρ = |ψ⟩ ⟨ψ|. Note
that the mixed state given by Eq. (5.37) differs from the single qubit pure state |φ⟩ =
α
∣∣0A〉+ β

∣∣1A〉, which leads to

σA = |φ⟩ ⟨φ| = |α|2
∣∣∣0A
〉 〈

0A
∣∣∣+ |β|2 ∣∣∣1A

〉 〈
1A
∣∣∣+ αβ∗

∣∣∣0A
〉 〈

1A
∣∣∣+ α∗β

∣∣∣1A
〉 〈

0A
∣∣∣ .

(5.38)
As becomes evident, in the mixed state the non-diagonal elements of the density op-
erator, also known as coherences, are zero, contrary to the non-diagonal elements of
the pure state density operator that are given by

〈
0A
∣∣ σA

∣∣1A〉 = αβ∗ and
〈
1A
∣∣ σA

∣∣0A〉 =
α∗β. This suggests that the act of entangling two systems and discarding the infor-
mation pertaining to one of them, results in the loss of coherence of the remaining
system. This phenomenon is called decoherence and it is the main challenge of quan-
tum computing and quantum information processing, as maintaining coherence is
crucial for performing quantum operations and preserving quantum states.

There exist many measures of entanglement in the literature. Among them, one
that stands out due to its practicality is the measure of concurrence introduced by
Wooters in 1998 [244]. Mathematically, the concurrence is defined as follows:

C = max(λ1 − λ2 − λ3 − λ4, 0) (5.39)

where λ1, λ2, λ3, and λ4 are the square roots of the eigenvalues of the matrix ρρ̃,
arranged in decreasing order. ρ is the density matrix representing the quantum state
of the two qubits, ρ̃ is defined as ρ̃ ≡ (σy ⊗ σy)ρ∗(σy ⊗ σy) and σy is the Pauli-Y
matrix. Τhe concurrence measures the "twistiness" or the degree of entanglement
between the two qubits. The larger the concurrence value, the more entangled the
qubits are.

5.2.2 Quantum state transfer

Quantum state transfer refers to the process of transmitting the quantum state of a
system from one location to another without physically moving the particles that
encode the quantum information [245]. It is perhaps one of the most important con-
cepts in the field of quantum information and plays a crucial role in the development
of quantum communication and quantum computing.

In classical systems, information can be easily transferred by copying and trans-
mitting the state of a physical system. However, in the quantum regime, the situa-
tion is different due to the no-cloning theorem, according to which it is impossible to
make an identical copy of an unknown quantum state [246]. Quantum state transfer
overcomes this limitation by utilizing quantum entanglement and quantum coher-
ence as resources of transmitting quantum information. There are different methods
and protocols for quantum state transfer, depending on the physical system being
used. Some common approaches include using photons in optical systems [247,
248], trapped ions [249], superconducting circuits [250–252], or spin qubits in solid-
state systems [253, 254]. In general, the process of quantum state transfer involves
preparing an initial quantum state at one location, typically called the sender or the
source. Then, through the use of entanglement and quantum gates, the information
is encoded onto a quantum system and transmitted to the receiving location, also
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known as the receiver. At the receiver, the encoded quantum state is successfully
transferred and can be extracted for further processing or measurement.

Quantum state transfer is a fundamental concept for various applications in
quantum information processing. It enables the transmission of quantum informa-
tion between different quantum devices, forming the basis for quantum communi-
cation networks and distributed quantum computing [255]. By achieving efficient
and reliable quantum state transfer, we can realize long-distance quantum commu-
nication [256], secure quantum cryptography [257], and large-scale quantum com-
putation [258, 259].

The desirable goal in quantum communication is to achieve state transfer with
as high fidelity as possible. Perfect state transfer refers to a specific ideal scenario
in quantum state transfer where the quantum state is transmitted from the source
to the destination with perfect fidelity, without any loss or distortion of information
[260]. In other words, the quantum state arrives at the destination unchanged and
in its entirety. In what follows we briefly present three of the most known protocols
for perfect state transfer as presented in [261].

We begin by considering a spin chain consisting of N spins, whose dynamics is
described by the Hamiltonian

Ĥ =
1
2

N

∑
j=1

hjσ̂
z
j −

1
2

N−1

∑
j=1

Jj(σ̂
x
j σ̂x

j+1 + σ̂
y
j σ̂

y
j+1 + ∆σ̂z

j σ̂z
j+1). (5.40)

Here hj plays the role of the "magnetic field", determining the energy separation
between the spin-up and spin-down states, Jj is the nearest-neighbor spin-spin cou-
pling which in general is assumed to be time-dependent, ∆ is the anisotropy pa-
rameter and σ̂

x,y,z
j are the Pauli spin operators. In what follows we set ∆ = 0, and

therefore, the Hamiltonian given by Eq. (5.40) reduces to that of the XX spin chain
model which is isomorphic to the Hubbard Hamiltonian for spinless fermions or
hard-core bossons [262]:

Ĥ =
N

∑
j=1

hj â†
j âj −

N−1

∑
j=1

Jj(â†
j âj+1 + â†

j+1 âj), (5.41)

where âj and â†
j are the particle annihilation and creation operators at site j with

energy hj, respectively, and Jj is the tunneling coupling between adjacent sites.
Consider now an arbitrary singe-qubit state of the form |ψ⟩ = α |0⟩+ β |1⟩. Our

objective is the transfer of this state between the two ends of the spin chain. Let us
assume that initially all spins are prepared in their ground state |↓⟩j ≡ |0⟩j and at t =
0 the first spin is excited to the state |ψ⟩1 (the subscript 1 implies the site of the spin).
Perfect state transfer is accomplished if at some well-defined time tout the last spin
of the chain is found in state |ψ⟩N , up to a fixed phase factor. For the purposes of our
problem we only need to consider the single-excitation subspace of the total Hilbert
space, since the Hamiltonian of Eq. (5.40) (or of Eq. (5.41)) preserves the number
of particle excitations. If |0⟩ ≡ ∏N

j=1 |0⟩j and |j⟩ ≡ σ̂+
j |0⟩ (â†

j |0⟩), then the initial
state of the chain, i.e. |Ψ⟩in = α |0⟩+ β |1⟩, evolves in time as |Ψ(t)⟩ = Û(t) |Ψ⟩in =

α |0⟩ + β ∑N
j=1 Aj(t) |j⟩, where Û(t) = T̂ exp

[
1
ih̄

∫ t
0 Ĥ(t′)dt′

]
is the time evolution

operator, T̂ is the time-ordering operator and Aj(t) ≡ ⟨j| Û(t) |1⟩. Formally, perfect
state transfer is achieved if in a well-defined time t = tout, |AN(tout)| = 1, provided
that the phase of the amplitude AN , φ = arg(AN) is fixed and known, i.e. φ = φ0,
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and therefore can be amended.
The performance of a state transfer protocol is usually quantified in terms of the

transfer fidelity Fψ = ⟨ψ| ρN |ψ⟩, where ρN ≡ Tr�N (|Ψ⟩ ⟨Ψ|) = (1−|β|2|AN |2) |0⟩ ⟨0|+
|β|2|AN |2 |1⟩ ⟨1| + αβ∗A∗N |0⟩ ⟨1| + α∗βAN |1⟩ ⟨0| is the reduced density operator of
the Nth site of the chain. Substituting ρN in the expression of Fψ, we find that
Fψ = |α|2 + |β|2(1− 2|α|2)|AN |2 + 2|α|2|β|2|AN | cos φ. Averaging over all possible
|ψ⟩ and after compensating for φ0, we find the following expression for the mean
transfer fidelity F [263]:

F =
1
2
+
|AN |2

6
+
|AN | cos(φ− φ0)

3
. (5.42)

Note that for a completely random phase φ and |AN | = 1, the fidelity acquires the
classical value F = 2/3, while for |AN | = 0, we find that F = 1/2, implying a
totally random guess of the qubit state |0⟩ or |1⟩.

Let us now briefly present three of the most known protocols for perfect state
transfer in spin chains described by Eq. (5.40) (or Eq. (5.41)) [261]. For what follows
we set hj = 0∀j ∈ [1, N] and we assume that the individual couplings Jj can be fully
controlled and are subject to the constraint Jj ≤ Jmax ≡ max(Jj).

The first protocol is based on applying a sequence of SWAP operations imple-
mented by π pulses between pairs of neighboring spin sites. We initially assume that
all couplings Jj are set to zero, and then switch on J1 for time t1 = π/(2J1), then J2 for
time t2 = π/(2J2), etc. until we reach on the Nth site of the chain. At the end of each
interval the corresponding state amplitude is Aj(tj−1) = −i sin

(
Jj−1tj−1

)
Aj−1(tj−2) =

(−i)j−1, (j = 2, . . . , N). If every coupling strength Jj can be pulsed to its maxi-
mal value Jmax and there are N − 1 steps, the total transfer time is tout = (N −
1)π/(2Jmax) ≃ (π/2)(N/Jmax), for N ≫ 1, and the final state amplitude is AN(tout) =
(−i)N−1.

The second protocol we consider is "static" in the sense that during the transfer
the couplings strengths Jj remain fixed. However, even in this case, to initiate and
to terminate (at time tout the transfer process, at least J1 and JN−1 should be quickly
switched on and off, respectively. This protocol is known as the spin-coupling pro-
tocol and requires the spin-spin coupling strengths to follow the relation [264–268]

Jj = J0

√
(N − j)j, j = 1, . . . , N. (5.43)

This particular couplings configuration suggests that the strongest coupling is in
the center of the chain at j = N/2, for N even, or at j = (N ± 1)/2 for N odd,
with values JN/2 = 1

2 J0N ≡ Jmax and J(N±1)/2 = 1
2 J0
√

N2 − 1 ≃ Jmax (N ≫ 1),
respectively. Interestingly, among the infinitely many possible static protocols for
perfect state transfer [260], the spin-coupling protocol was proved to be optimal in
terms of its fast transfer time [269]. If the spin-spin coupling strengths Jj follow Eq.
(5.43), it is easy to show that the energy spectrum is equidistant and is given the
relation λk = 2J0k− J0(N + 1), (k = 1, . . . , N), while Aj(t) is given by

Aj(t) =
(

N − 1
j− 1

)1/2

[−i sin(J0t)]j−1cos(J0t)N−j, (5.44)

implying perfect periodic oscillations between the two ends of the chain. At the time
t = tout = π/(2J0), the amplitude of the final state is AN(t) = [−i sin(J0tout)]N−1 =
(−i)N−1. The transfer time may also be expressed in terms of Jmax as tout = (π/4)(N/Jmax),
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which shows that is two times shorter than the respective transfer time in the SWAP
protocol presented above.

The third and final protocol we consider here is the so-called adiabatic state trans-
fer protocol which is based on introducing slowly varying couplings Jj to achieve
the transfer of the excitation between the two ends of the chain [270, 271]. Let us
assume that N is odd and that the couplings Jj can be manipulated independently.
The eigenstate of the Hamiltonian given by Eq. (5.40) (or Eq. (5.41)) in the single-
excitation subspace, is:∣∣∣Ψ(0)

〉
=

1√
N0

[J2 J4 . . . JN−1 |1⟩+(−1)J1 J4 . . . JN−1 |3⟩+ · · ·+(−1)J J1 J3 . . . JN−2 |N⟩],

(5.45)
where J ≡ 1

2 (N − 1) and N0 ≡ (J2 J4 . . . JN−1)
2 + · · ·+ (J1 J3 . . . JN−2)

2. The eigen-
state given by Eq. (5.45) is conventionally called coherent population trapping or
dark state [272, 273] and its corresponding eigenvalue is λ(0) = 0. As becomes ev-
ident, the amplitude of the initial state, A1, is proportional to the product of all the
even-numbered couplings, while the amplitude of the final state, AN , is proportional
to the product of all the odd-numbered couplings. This result suggest that, if we first
switch on all the even-numbered couplings and then switch them off adiabatically
while we gradually switch on then odd-numbered couplings, the state system will
gradually rotate from |1⟩ to |N⟩. Assuming that the even and odd "families" of cou-
plings are described by common shape functions, i.e. J2, J4, . . . , JN−1 = Jeven(t) and
J1, J3, . . . , JN−2 = Jodd(t), the amplitudes A1(t) and AN(t) would be given by the
relations

A1(t) =
[Jeven(t)]J√
N0(t)

, (5.46a)

AN(t) = (−1)J
[Jodd(t)]J√
N0(t)

, (5.46b)

where N0(t) ≡ ∑Jn=0[Jodd(t)]2n[Jeven(t)]2(J−n). Therefore, by applying first the Jeven
followed by the Jodd couplings, partially overlapping in time, we can achieve per-
fect state transfer. At the time t = tout the amplitude of the final state would be
AN(tout) = (−1)J , that is, |AN(tout)| = 1, with φ0 = (−π)(N − 1)/2 (mod 2π).

Before closing this section we should note that, although perfect state transfer
can be achieved via many protocols [260], with the above three being the most well-
known in the community, in realistic situations, the inevitable noise introduced due
to several experimental imperfections leads to diagonal or off-diagonal disorder in
the chain that may affect substantially the performance of every protocol. To that
end, several studies have investigated the problem of state transfer in presence of
disorder, providing a comparison of the performance of many protocols under noisy
conditions [261, 274–277].

5.3 The quantum Zeno effect

The quantum Zeno effect (QZE) is a phenomenon in quantum mechanics that was
named after the ancient Greek philosopher Zeno of Elea. In its simplest form, the
quantum Zeno effect describes the suppression or slowing down of certain quantum
processes due to frequent measurements or observations. The phenomenon is based
on the fact that when a measurement is made on a quantum system, its wavefunc-
tion collapses into one of the possible eigenstates of the measuring quantity. In that
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sense, if a quantum system is observed frequently and continuously, its wavefunc-
tion is constantly collapsing, preventing it from evolving and undergoing certain
transitions. This repeated measurement essentially freezes the system in its initial
state and prevents it from reaching other states or undergoing certain quantum pro-
cesses. It is as if the system is "protected" from evolving by the act of measurement.
In this section we provide a brief overview of the quantum Zeno effect [278] as its de-
scription is essential for understanding the work presented in some of the following
chapters.

It is well-known that the evolution of a unstable quantum system is characterized
by three regimes: a short-time region in which the decay is quadratic, an interme-
diate region in which the decay follows the usual exponential law, and a long-time
region in which the decay is governed by a power law [279–281]. The quadratic re-
gion is an intrinsic feature of the quantum evolution of any given state at very short
times under the Schrödinger equation. For this to become clear, let us consider an ar-
bitrary initial state |ψ0⟩ ≡ |ψ(t = 0)⟩ of a quantum system that evolves according to
a Hamiltonian H̄ [278]. The "survival" amplitude A(t) and the probability p(t) that
the system has "survived" in its initial state after some time t are given by (h̄ = 1):

A(t) = ⟨ψ0|ψ(t)⟩ = ⟨ψ0| e−iĤt |ψ0⟩ , (5.47)

p(t) = |A(t)|2 =
∣∣∣⟨ψ0| e−iĤt |ψ0⟩

∣∣∣2. (5.48)

After some very short time δt, the system has evolved according to the Schrödinger
equation as:

|ψ(δt)⟩ = e−iĤδt |ψ0⟩ = |ψ0⟩ − iĤ |ψ0⟩ δt− 1
2
Ĥ2 |ψ0⟩ (δt)2 +O[(δt)3]

≡ |ψ0⟩+ |δψ⟩ ,
(5.49)

where the last equation defines |δψ⟩. Substituting the above expression back to Eqs.
(5.47) and (5.48), we find that:

A(δt) = 1− i⟨Ĥ⟩0δt− 1
2
⟨Ĥ2⟩0(δt)2 (5.50)

and

p(δt) = 1− (δt)2

τ2
Z

+O[(δt)4] (5.51)

where ⟨. . . ⟩0 ≡ ⟨ψ0| . . . |ψ0⟩ and

τ−2
Z ≡ ⟨Ĥ2⟩0 − ⟨Ĥ⟩20 (5.52)

defines the so-called "Zeno time" [280, 281]. The term Zeno was first used by Misra
and Sudarshan in 1977 [282], who named the initial quadratic evolution region of
any system as Zeno region, since in this region one could slow down (or eventually
stop) the evolution of the system. In this sense, the "frozen" system reminds us
of the paradox of Zeno’s arrow that never reaches its target. Note that Eq. (5.51)
was derived from Eq. (5.50) using the fact that ⟨Ĥ⟩0 is real which is an obvious
consequence of the fact the Ĥ is a Hermitian matrix. As Eq. (5.51) suggests, the
survival probability for short times evolves quadratically away from unity.

Let us now explore how the act of frequent measurements on the system can
slow down its quantum evolution [278]. The most famous and familiar formulation
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of the QZE involves Von Neumann measurements, represented by one-dimensional
projectors [283]. We assume that N projective measurements are performed, one
after each time interval τ = t/N, in order to check whether the system lies in its
initial state |ψ0⟩. The corresponding projective measurement operator in such case
is |ψ0⟩ ⟨ψ0|. According to quantum mechanics, after each measurement the state
of the system is projected back to |ψ0⟩ and starts a new evolution according to the
Schrödinger equation. The survival probability after N measurements, i.e. at the
final time t = Nτ, is expressed as

p(N)(t) = p(τ)N = p(t/N)N . (5.53)

Using Eq. (5.51), the above equation can be written as

p(N)(t) ≃
[
1− (t/NτZ)

2]N
, (5.54)

which for large N can be roughly approximated by

p(N)(t) ≈ exp
[
−t2/(Nτ2

Z)
]
. (5.55)

It is now easy to see that in the N → ∞ limit (infinitely frequent measurements), the
survival probability tends to unity, therefore the evolution is halted and the system
remains "frozen" in its initial state. Note that the survival probability after N pulsed
measurement (t = Nτ) is interpolated by an exponential law

p(N)(t) = p(τ)N = exp[N log p(τ)] = exp(−γeff(τ)t), (5.56)

with an effective decay rate

γeff(τ) ≡ −
1
τ

log p(τ). (5.57)

For τ → 0, i.e. N → ∞, we have p(τ) ≃ exp
(
−τ/τ2

Z
)
, and therefore

γeff(τ) ≃ τ/τ2
Z, τ → 0. (5.58)

So far we explored the QZE by considering the act of frequent von Neumann
measurements on the system as a way to hinder its evolution. However, the QZE
can also be exploited by considering a passive coupling between the system and a
measuring apparatus, in which case the dynamics of the system can effectively be
described by a non-Hermitian Hamiltonian. Let us first consider a two-level system
undergoing Rabi oscillations between its two states [278]. The interaction Hamilto-
nian (interaction between the two levels) reads:

Ĥint = Ωσ̂1 = Ω(|+⟩ ⟨−|+ |−⟩ ⟨+|) =
(

0 Ω
Ω 0

)
, (5.59)

where Ω is assumed to be a real number, σ̂j, (j = 1, 2, 3) are the Pauli matrices, and

|+⟩ =
(

1
0

)
, |−⟩ =

(
0
1

)
, (5.60)
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are the eigenstates of σ̂3. In what follows we assume that system initially lies in the
|+⟩ state, i.e.

|ψ0⟩ = |+⟩ =
(

1
0

)
. (5.61)

Let us now include a measuring apparatus that is coupled with one of the two levels
of the two-level system, for example the lower level. In this case, the dynamics of
the two-level system can effectively be described by a non-Hermitian Hamiltonian
of the form:

Ĥeff
int =

(
0 Ω
Ω −i2V

)
(5.62)

This Hamiltonian describes the population oscillations between the two levels of
the system but at same time describes the loss of population from the lower state
due to the coupling with the apparatus. Note that in the derivation of the effective
Hamiltonian of Eq. (5.62), the Born-Markov approximation was applied (see section
5.1.1). In contrast to previous case where no apparatus was present, the Hamiltonian
now is non-Hermitian and therefore probabilities are not conserved. Elementary
algebra (and properties of SU(2)) yield [278] (h̄ = 1):

e−iHeff
intt = e−Vt

[
cosh(Gt)− i

h⃗ · σ̂
G

sinh(Gt)

]
, (5.63)

where h⃗ ≡ (Ω, 0, iV)T and G ≡
√

V2 −Ω2. The survival amplitude A(t) assuming
that the initial state of the system is given by Eq. (5.61), reads

A(t) = ⟨ψ0| e−iHeff
intt |ψ0⟩ = e−Vt

[
cosh(Gt) +

V
G

sinh(Gt)
]

=
1
2

(
1 +

V
G

)
e−(V−G)t +

1
2

(
1− V

G

)
e−(V+G)t.

(5.64)

Using the above equation, and its expansion in the parameter Ω/V for large V,
one can show that the survival probability is proportional to the factor exp

(
−Ω2

V t
)

,

which leads to an effective decay rate of the form γeff(V) = Ω2/V. The appearance
of the coupling V in the denominator of the exponent, and hence in the denomina-
tor of the effective decay rate may seem counter-intuitive at first glance. It suggests
that the depletion of the initial state |+⟩ is slower as V increases. The reason behind
this counter-intuitive phenomenon is the QZE. A larger V entails a more "effective"
measurement of the initial state, leading eventually to the halting of the decay in the
V → ∞ limit. Contrary to the previous investigated scenario where active measure-
ments were performed at very short intervals, here the measurements are attributed
to a passive coupling and therefore they can be viewed as "continuous". Note that
since the apparatus is coupled to the lower state |−⟩, in order to see the QZE one
must prepare the initial state of the system to the state |+⟩ (or in some superposition
involving |+⟩). If the system was initially prepared in |−⟩, increasing the coupling
V would result to faster depletion of the initial state.

5.4 Single-qubit coupled to an external environment

In this section we provide a formulation that enables us to describe the dynamics of
a single-qubit system coupled to an external environment that is characterized by an
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FIGURE 5.1: Schematic representation of a single-qubit coupled to an external environment
with a coupling strength g.

arbitrary spectral density. This formulation, although simple, constitutes the basis
for the extension of our studies to even more complex systems involving a larger
number qubits or environments, as the ones investigated in the following chapters
of the thesis.

Consider a two-level system (qubit) coupled with an environment (reservoir)
with spectral density J(ω). The coupling strength is denoted by g and without loss
of generality we assume that it is a real number. A schematic representation of the
system is depicted in Fig. 5.1. The Hamiltonian of the compound system (qubit +
reservoir) consists of three parts, i.e. the qubit Hamiltonian ĤS, the bosonic environ-
ment Hamiltonian ĤE, and the interaction Hamiltonian ĤI , describing the interac-
tion between the two subsystems (h̄ = 1):

Ĥ = ĤS + ĤE + ĤI , (5.65a)

ĤS = ωg |g⟩ ⟨g|+ ωe |e⟩ ⟨e| , (5.65b)

ĤE = ∑
λ

ωλ âE†
λ âE

λ, (5.65c)

ĤI = ∑
λ

g (ωλ)
(

âE
λσ̂+ + âE†

λ σ̂−
)

, (5.65d)

where ωg and ωe are the energies of the ground and excited state of the qubit, re-
spectively, ωλ is the energy of the λth mode of the environment, σ̂+ = |e⟩ ⟨g| and
σ̂− = |g⟩ ⟨e|, are the qubit raising and lowering operators, respectively, while âE

λ and
âE†

λ are the bosonic annihilation and creation operators of the environment.
The wavefunction of the compound system reads:

|Ψ(t)⟩ = c(t) |ψQ⟩+ ∑
λ

cE
λ(t)

∣∣∣ψE
λ

〉
, (5.66)

where,
|ψQ⟩ ≡ |e⟩ |0⟩E , (5.67a)

∣∣∣ψE
λ

〉
≡ |g⟩ |00 . . . 01λ0 . . . 00⟩E . (5.67b)

The time-dependent Schrödinger equation after adoption of the amplitude transfor-
mations c(t) = e−iωet c̃(t) and cE

λ(t) = e−i(ωg+ωλ)t c̃E
λ(t), leads to the following set of
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equations:
dc̃(t)

dt
= −i ∑

λ

g (ωλ) e−i∆λt c̃E
λ(t), (5.68a)

dc̃E
λ(t)
dt

= −ig (ωλ) e+i∆λt c̃(t), (5.68b)

where ∆λ ≡ ωλ − (ωe − ωg) ≡ ωλ − ωeg is the detuning between the energy of the
λth mode of the environment and the excitation energy of qubit. Formal integration
of Eq. (5.68b) under the initial condition c̃E

λ(0) = 0 and substitution back to Eq.
(5.68a), yields:

dc̃(t)
dt

= −
∫ t

0
∑
λ

[g (ωλ)]
2 e−i∆λ(t−t′) c̃(t′)dt′. (5.69)

We can now replace the sum over all the modes of the environment by a frequency
integral, according to the relation ∑λ [g(ωλ)]

2 →
∫

dω J(ω), where J(ω) is the spec-
tral density of the environment, leading to:

dc̃(t)
dt

= −
∫ t

0
R
(
t− t′

)
c̃(t′)dt′, (5.70)

where R(t) is defined via

R(t) ≡
∫ ∞

0
J(ω)e−i∆tdω. (5.71)

and ∆ ≡ ω−ωeg. Taking the Laplace transform of Eq. (5.70) assuming that the qubit
is initially at its excited state, i.e. c(0) = c̃(0) = 1, we get:

sF(s) = 1− B(s)F(s) (5.72)

where F(s) is the Laplace transform of the tilde amplitude c̃(t) and B(s) is the
Laplace transform of R(t). Solving Eq. (5.72) for F(s) leads to:

F(s) =
1

s + B(s)
(5.73)

The time dependence of c̃(t) can be obtained by taking the inverse Laplace trans-
form of F(s), which can be calculated after specification of J(ω), calculation of the
function R(t) and its Laplace transform B(s). The advantage of this method is that it
does not make any restriction on the form of J(ω) and therefore it enables the study
of various type of external reservoirs. In the special case of Markovian reservoirs,
B(s) is by definition a slowly varying function of s and it can be roughly approxi-
mated by a constant whose real part represents the decay rate to the environment
and its imaginary part an energy shift of the qubit energy [26]. For other types of
environmental spectral densities, the calculation of the functions R(t) and B(s) is
necessary in order to find the inverse Laplace transform of F(s). The specifics of
these calculations for various types of non-Markovian reservoirs is presented in Ap-
pendix B.

5.5 Exceptional points in open quantum systems

Open quantum systems are, by definition, quantum-mechanical systems that inter-
act with one or more external systems, usually characterized by large degrees of
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freedom. As such, they are inevitably subject to quantum dissipation and therefore
the information contained in the system is constantly leaking to the larger system(s).
Open quantum systems are often described in terms of non-Hermitian Hamiltoni-
ans, which can be found after tracing out the degrees of freedom of the larger sys-
tem(s). An interesting feature of some of these non-Hermitian Hamiltonians is the
presence of "exceptional points" (EPs), i.e. a special class of degeneracies that occur
in the spectrum of non-Hermitian Hamiltonians [284]. Unlike conventional Her-
mitian systems, which possess a real spectrum, non-Hermitian systems can exhibit
complex eigenvalues. EPs correspond to the specific parameter values where two
or more eigenvalues coalesce, leading to important effects in the system’s dynamics
and response.

At an EP, not only do the eigenvalues merge, but the corresponding eigenvec-
tors become degenerate as well. This nontrivial degeneracy gives rise to exceptional
point phenomena, such as unconventional behavior in the system’s energy levels
and unique quantum phase transitions [285]. Additionally, the eigenvectors asso-
ciated with EPs exhibit interesting topological properties, leading to sensitivity to
external perturbations in the system [286–288]. For Nth order EPs, i.e. EPs that mark
the coalescence of N eigenvalues, the sensitivity in the response of the system to
small perturbations in parameter space has been confirmed to become more pro-
nounced as N is increased [288–290].

Through the seminal works of C. Bender et al. [291–295], an important connec-
tion between the physics of non-Hermitian Hamiltonians and parity-time (PT ) sym-
metry was revealed, as the boundary between the unbroken and broken PT sym-
metry of such Hamiltonians [296, 297] was found to be marked by the presence of
EPs [298–301]. The concept of EPs has been explored in various physical systems, in-
cluding atomic, molecular, and optical (AMO) systems [302–305], photonic systems
[298, 299], condensed matter systems [306–308] as well as systems used in informa-
tion science research [309]. In what follows we explore the physics of exceptional
points in the simplest possible general system, i.e. a two-level system, as presented
in the work of W. D. Heiss in 2012 [310].

We begin by considering a two-level system described by a 2× 2 Hamiltonian of
the form:

Ĥ(λ) = Ĥ0 + λV̂ =

(
ω1 0
0 ω2

)
+ λ

(
ε1 δ1
δ2 ε2

)
, (5.74)

where ωk and εk determine the non-interacting resonance energies of the system,
Ek = ωk + λεk, (k = 1, 2). Due to the non-zero interaction matrix elements δk, the
two levels do not cross but repel each other. We should note that the Hamiltonian
Ĥ(λ) is in general non-Hermitian; it only becomes Hermitian in the special case
where all ωk, εk and λ are real and δ1 = δ∗2 . There exist two special values of λ that
result in the coalescence of the two eigenvalues, namely:

λ1 =
−i(ω1 −ω2)

i(ε1 − ε2) + 2
√

δ1δ2
, (5.75a)

λ2 =
−i(ω1 −ω2)

i(ε1 − ε2)− 2
√

δ1δ2
. (5.75b)
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Those values of λ mark the positions of the two EPs of the system. The eigenergies
of the system in terms of λ for δk ̸= 0, read

E1,2(λ) =
1
2

[
ω1 + ω2 + λ(ε1 + ε2)±

√
(ε1 − ε2)2 + 4δ1δ2

√
(λ− λ1)(λ− λ2)

]
,

(5.76)
and the eigenvalues at the EPs are

E(λ1,2) =
ε1ω2 − ε2ω1 ∓ i

√
δ1δ2(ω1 + ω2)

ε1 − ε2 ∓ 2i
√

δ1δ2
. (5.77)

The corresponding eigenvector (up to a factor) for λ = λ1, is:

|φ1⟩ =
(

+iδ1√
δ1δ2

1

)
, (5.78)

and for λ = λ2,

|φ1⟩ =
(
−iδ1√

δ1δ2

1

)
, (5.79)

while the corresponding left-hand eigenvectors for λ = λ1 and λ = λ2, are

⟨φ̃1| =
(

+iδ2√
δ1δ2

1
)

, (5.80)

and
⟨φ̃2| =

(
−iδ2√

δ1δ2
1
)

, (5.81)

respectively. It is easy to check that the norm ⟨φ̃k|φk⟩ vanishes for k = 1, 2 (self-
orthogonality [311]) and it is that vanishing that enables the reduction of a higher-
dimensional problem to two dimensions in the vicinity of an EP, as discussed in
[312]. We should note that the existence of only one eigenvector with vanishing
norm is based on the fact that the Hamiltonian of the system is not diagonalizable
for λ = λ1 or λ = λ2. For λ = λ1, the Jordan decomposition of the Hamiltonian is:

Ĥ(λ1) = Ŝ
(

E(λ1) 0
0 E(λ1)

)
Ŝ−1 (5.82)

where

Ŝ =

(
iδ1√
δ1δ2

2i
√

δ1δ2−ε1+ε2
(ω1−ω2)δ2

1 0

)
, (5.83)

while similar expressions hold for λ = λ2. Note that the second column of Ŝ is usu-
ally referred to as an associate vector that obeys the equation (Ĥ(λ1)−E(λ1) |ψassoc⟩ =
|φ1⟩. If one (or both) δk is (are) zero then there is level crossing (λ1 = λ2). If only one
among δ1 and δ2 are zero then the Hamiltonian is not diagonalizable at the cross-
ing point, in which case the Jacobian form is non-diagonal and only one eigenvector
exists at the crossing point. However this crossing point is not associated with a
presence of an EP since there is no square root singularity in λ.

At an EP, the square root singularity has been shown to affect also the Green’s
function and the scattering matrix describing a particular problem. For example, in
the system considered above, the Green’s function (and scattering matrix), in addi-
tion to the familiar first-order pole, has also a second-order pole [313]. At λ = λ1 the
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Green’s function reads:

(E− Ĥ(λ1))
−1 =

1
E− E(λ1)

(
1 0
0 1

)
+

i
√

δ1δ2λ1

[E− E(λ1)]2

 1 i
√

δ1
δ2

i
√

δ2
δ1

−1

 (5.84)

with an analogous expression holding for λ = λ2. The first term of Eq. (5.84) re-
sembles the conventional expression at a non-singular point of the spectrum, while
the presence of the second term is a consequence of the singular spectral point and
it can give rise to dramatic effects in the vicinity of the EP [314].

The particular dependence of the eigenvalues of Eq. (5.76) on λ has several phys-
ical consequences, with the main of them being discussed below. First, in the vicin-
ity of an EP, the spectrum is strongly dependent on the interaction parameter. This
is reflected on the fact that the derivative of the eigenvalues and the eigenvectors
with respect to λ diverges at the position of the EP. Second, when λ1 or λ2 is encir-
cled in the complex λ-plane we observe the interchange of the two energy levels,
which is attributed to the complex topology of the intersecting Riemann sheets of
the eigenvalues in the complex λ-plane. Third, we know that at some finite dis-
tance from an EP, there exist two linearly independent eigenvectors|ψ1⟩ and |ψ2⟩, as
well as their left-hand companions ⟨ψ̃1| and ⟨ψ̃2|, normalized according to ⟨ψ̃k|ψk⟩,
(k = 1, 2). However, when we enforce the normalization exactly in the position of
an EP (where ⟨ψ̃k|ψk⟩ vanishes), the component of the eigenvectors tend to infinity
as they are proportional to the factor 1/(λ− λk)

1/4. Encircling of an EP (for example
counterclockwise) results to the generation of the following pattern of normalized
eigenvectors:

|ψ1⟩ → − |ψ2⟩ → − |ψ1⟩ → |ψ2⟩ → |ψ1⟩ , (5.85)

from which the pattern when starting from the state |ψ2⟩ follows accordingly [315,
316]. The fourth root behaviour is reflected on the fact that four rounds are needed
to reach back to the initial state. Finally, when the eigenfunctions |ψ1⟩ and |ψ2⟩ coa-
lesce, they become independent of parameters for δ1 = δ2, and, up to a normalization

factor, assume the form
(
±i
1

)
. The phase difference between the two components,

i.e. π/2, can be different if, for example, we choose δ1 = δ∗2 , in which case time
reversal symmetry is broken.
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Chapter 6

Entanglement dynamics of two
interacting qubits coupled with a
common non-Markovian
environment

In this chapter, we study the steady state entanglement between two qubits inter-
acting asymmetrically with a common non-Markovian reservoir [317]. We explore
the conditions for steady state entanglement maximization, for various initial two-
qubit states, by examining the behaviour of the steady state concurrence (SSC) in
the qubit-reservoir couplings space. We uncover the cases in which SSC is favored
by the asymmetric coupling configuration, demonstrating at the same time its great
sensitivity to the value of the coupling between the two qubits. The phenomenon of
entanglement instability is also predicted in the case where the latter becomes larger
than the couplings between each qubit and the non-Markovian reservoir.

6.1 Overview of the existing literature

Protecting and controlling the quantum correlations generated between individual
quantum systems is one of the major tasks of our century, since such correlations are
the basic resources in quantum information and quantum computing [318]. Among
these quantum correlations, entanglement, which expresses the non-separability of
the quantum state of a compound system, has attracted extensive attention over the
past few years. Even though the achievements on the study of entanglement genera-
tion between individual parts of a compound system have been truly remarkable so
far, the main difficulty of preserving the entanglement in realistic configurations is
associated with the fact that the coupling of such systems to their environment leads
to dissipation and therefore loss of the quantum correlations, most often in times
much shorter than those needed for implementing quantum information tasks.

A key realization in the study of the dynamics of entanglement in open quantum
systems, is that the entanglement between two qubits interacting with two indepen-
dent Markovian environments may reduce to zero after a finite time, despite the
fact that the single-qubit coherence is decaying asymptotically to zero. This phe-
nomenon predicted by Yu and Eberly [319–321], remained known as "entanglement
sudden death" (ESD) and has been also verified experimentally [322, 323]. In the
zero-temperature limit, ESD has been shown to occur for certain classes of initial
two-qubit states [324], while finite temperature models indicate that even for the
rest of those classes of initial states, ESD will eventually occur after a finite time
[325].
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Since the discovery of ESD, a number of studies focused on the role of non-
Markovianity [24] of the surrounding environments on the entanglement dynam-
ics of a system of qubits [326–334]. The main result of these studies, is that non-
Markovian reservoirs may lead to the effect of entanglement revivals for finite times
after the occurrence of ESD, while the inclusion of finite temperature may accelerate
the decay of entanglement and induce ESD even in the non-Markovian regime [335,
336]. At the same time, works on the dynamics of the entanglement between two
qubits coupled to independent structured environments, with the case of photonic
band-gap materials serving as a prototype [337], revealed the possibility of achiev-
ing entanglement trapping and therefore effective hindering of ESD [338, 339].

The situation however may change drastically in the case where the qubits are
interacting with a common reservoir [340–352]. As has been shown in such a config-
uration, there exists a class of initial two-qubit states that eventually lead to non-zero
steady state values of entanglement after a finite time that depends on the relevant
parameters of the system [353]. For the rest of the initial two-qubit states that do
not lead to finite values of entanglement in the steady state of the system, effec-
tive strategies of entanglement preservation based on the Quantum Zeno effect have
been proposed [354]. From the viewpoint of entanglement, a relatively interesting
scenario arises when one considers two qubits coupled asymmetrically to a common
non-Markovian environment [353–357]. Depending on the choice of the initial two-
qubit state, this asymmetry in the coupling strengths between each individual qubit
and the environment has been shown to potentially lead to larger two-qubit concur-
rence values beyond the maximum values obtained in the symmetric coupling case
[353–355], although details on the conditions of observing this enhancement are still
under investigation.

6.2 Theoretical description of the system

Our system consists of two identical interacting qubits coupled asymmetrically to
a common non-Markovian reservoir, as depicted in Fig. 6.1. The Hamiltonian of
the compound system (two qubits + reservoir) consists of three parts, namely the
two-qubit Hamiltonian, ĤS, the Hamiltonian describing the evolution of the envi-
ronment, ĤE and the Hamiltonian of the interaction between the environment and
each individual qubit, ĤI , i.e.

Ĥ = ĤS + ĤE + ĤI , (6.1)

where,

ĤS = ωe

2

∑
i=1
|e⟩i i⟨e|+ ωg

2

∑
i=1
|g⟩i i⟨g|+

J
2
(
σ+

1 σ−2 + σ−1 σ+
2
)

, (6.2a)

ĤE = ∑
λ

ωλa†
λaλ, (6.2b)

ĤI =
2

∑
i=1

∑
λ

gi(ωλ)
(

aλσ+
i + a†

λσ−i

)
. (6.2c)

In the above set of equations, ωg and ωe are the energies (h̄ = 1) of the ground
and the excited state of the identical qubits, respectively, J is the strength of the
qubit-qubit interaction and gi(ωλ), (i = 1, 2), the qubit-environment coupling strength.
The creation and annihilation operators of the λ-mode of the bosonic environment
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𝒥

g1

Non-Markovian
Environment

Qubit 1

g2

Qubit 2

FIGURE 6.1: Schematic representation of the system at study. Two identical interacting
qubits are coupled to a common non-Markovian environment with different coupling
strengths.

are denoted by a†
λ and aλ, respectively, while the qubit raising and lowering opera-

tors are given by σ+
i = |e⟩i i⟨g| and σ−i = |g⟩i i⟨e|, (i = 1, 2).

In the single-excitation case, at any time t > 0, the wavefunction of the com-
pound system can be expressed as a linear superposition of the vectors:

|ψ1⟩ ≡ |e⟩1 |g⟩2 |0⟩E , (6.3a)

|ψ2⟩ ≡ |g⟩1 |e⟩2 |0⟩E , (6.3b)

∣∣∣ψλ
〉
≡ |g⟩1 |g⟩2 |00 . . . 01λ0 . . . 00⟩E , (6.3c)

according to the following expression:

|Ψ(t)⟩ = c1(t) |ψ1⟩+ c2(t) |ψ2⟩+ ∑
λ

cλ(t)
∣∣∣ψλ
〉

. (6.4)

By adopting the amplitude transformation ci(t) = e−i(ωe+ωg)t c̃i(t) , (i = 1, 2) and
cλ(t) = e−i(2ωg+ωλ)t c̃λ(t), one can easily show that the equations of motion of the
tilde amplitudes according to the time-dependent Schrödinger equation, reduce to:

i
dc̃1(t)

dt
=
J
2

c̃2(t) + ∑
λ

g1(ωλ)e−i∆λt c̃λ(t), (6.5a)

i
dc̃2(t)

dt
=
J
2

c̃1(t) + ∑
λ

g2(ωλ)e−i∆λt c̃λ(t), (6.5b)

i
dc̃λ(t)

dt
= g1(ωλ)ei∆λt c̃1(t) + g2(ωλ)ei∆λt c̃2(t), (6.5c)

where ∆λ = ωλ − (ωe −ωg) ≡ ωλ −ωeg. Formal integration of Eq. (6.5c) under the
assumption that c̃(λ)(0) = 0 and substitution back to Eqs. (6.5a) and (6.5b), yields:
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dc̃1(t)
dt

= −i
J
2

c̃2(t)−
∫ t

0
∑
λ

e−i∆λ(t−t′)
{
[g1(ωλ)]

2 c̃1(t′) + g1(ωλ)g2(ωλ)c̃2(t′)
}

dt′,

(6.6a)
dc̃2(t)

dt
= −i

J
2

c̃1(t)−
∫ t

0
∑
λ

e−i∆λ(t−t′)
{
[g2(ωλ)]

2 c̃2(t′) + g1(ωλ)g2(ωλ)c̃1(t′)
}

dt′.

(6.6b)
We now replace the summation over λ by an integration according to ∑λ →∫

dωρ(ω), where ρ(ω) is the density of states (DOS) of the reservoir representing
the physical environment under consideration. In what follows, we explore the case
of a non-Markovian environment, with DOS given by the Lorentzian distribution:

ρ(ω) =
1
π

γ
2

(ω−ωc)
2 + (γ

2 )
2

, (6.7)

where γ and ωc are the width and the peak of the distribution, respectively. The
Lorentzian DOS is widely used in the context of non-Markovian environments due
to its practicality in enabling analytical solutions in systems described by complex
integro-differential equations, as well as its correspondence to many realistic phys-
ical environments. As an example, Eq. (6.7) could correspond to a high finesse
leaky cavity with a damping rate γ, whose mode with frequency ωc is near-resonant
with the qubit energy difference ωeg. The generalization to any type of reservoir is
straightforward by choosing the relevant DOS.

If the coupling strengths gi(ωλ), (i = 1, 2), vary slowly as a function of ωλ in the
vicinity of ωc, then to a good approximation, they can be substituted by their value
at this frequency [337]. In that case, in order to simplify the notation, we adopt the
definitions gi ≡ gi(ωc), i = 1, 2. The resulting equations are:

dc̃1(t)
dt

= −i
J
2

c̃2(t)−
∫ t

0
I
(
t− t′

) [
g2

1 c̃1(t′) + g1g2c̃2(t′)
]

dt′, (6.8a)

dc̃2(t)
dt

= −i
J
2

c̃1(t)−
∫ t

0
I
(
t− t′

) [
g2

2 c̃2(t′) + g1g2c̃1(t′)
]

dt′, (6.8b)

where

I
(
t− t′

)
=
∫ +∞

−∞
ρ(ω)e−i(ω−ωeg)(t−t′)dω =

γ

2π

∫ +∞

−∞

e−i(ω−ωeg)(t−t′)

(ω−ωc)
2 +

(γ
2

)2 dω

= e−i∆c(t−t′)e−
γ
2 (t−t′),

(6.9)

and ∆c ≡ ωc − ωeg. Note that in Eq. (6.9) we extended the lower limit of the inte-
gration over frequency from 0 to −∞. Such an extension is not in general valid for
any kind of DOS; it is however well justified and commonly used in the case of a
Lorentzian DOS with positive peak frequency and width such that the distribution
has practically negligible extension to negative frequencies. In view of Eq. (6.9),
taking the Laplace transform of Eqs. (6.8a) and (6.8b), one obtains:

sF1(s) = c̃1(0)− i
J
2

F2(s)− g2
1Λ(s)F1(s)− g1g2Λ(s)F2(s), (6.10a)

sF2(s) = c̃2(0)− i
J
2

F1(s)− g2
2Λ(s)F2(s)− g1g2Λ(s)F1(s), (6.10b)

where F1(s) and F2(s) are the Laplace transforms of the amplitudes c̃1(t) and c̃2(t),
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respectively, and Λ(s) = 1
s+ γ

2 +i∆c
. Note that c̃i(0) = ci(0), (i = 1, 2). The set of Eqs.

(6.10a) and (6.10b) is now algebraic and can be easily solved for F1(s) and F2(s), the
inverse Laplace of which give us the expressions of c̃1(t) and c̃2(t), respectively.

The quantity of interest is the two-qubit concurrence (see section 5.2.1) given by
the expression [244],

C(t) = 2|c1(t)c∗2(t)| = 2|c̃1(t)c̃∗2(t)|, (6.11)

and in particular its steady state value as a function of the coupling strengths g1 and
g2.

6.3 Two-qubit entanglement dynamics and the phenomenon
of entanglement "instability"

Using Eq. (6.11), in Fig. 6.2 we plot the dynamics of the two-qubit concurrence
for various initial two-qubit states in the non-interacting qubit case (J = 0). In
panel (a) the two qubits are interacting with the non-Markovian environment with
coupling strengths g1/γ = g2/γ = 1. In this arrangement we capture the well-
studied case of the entanglement dynamics in the symmetrical coupling regime
[356]. The entanglement dynamics of the initial two-qubit states |Ψ (0)⟩12 = |e⟩1 |g⟩2
and |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 ± i |g⟩1 |e⟩2) is symmetric with respect to the C(t) = 0.5

straight line, while this value is at the same time the two-qubit concurrence steady
state value if the system is initially prepared in those states. If the two qubits are
initially disentangled, as in the case of the initial state |Ψ (0)⟩12 = |e⟩1 |g⟩2, their
interaction with the non-Markovian reservoir generates entanglement. In the sym-
metric coupling regime considered, the concurrence dynamics of the initial state
|Ψ (0)⟩12 = |g⟩1 |e⟩2 is exactly the same as the respective dynamics of the |Ψ (0)⟩12 =
|e⟩1 |g⟩2 state, since the two qubits are assumed to be identical. On the other hand,
the concurrence resulting from initially preparing the system to the states |Ψ (0)⟩12 =

1√
2
(|e⟩1 |g⟩2 + |g⟩1 |e⟩2) and |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 − |g⟩1 |e⟩2), follows a different

dynamical picture, with the concurrence dropping from 1 to 0 after some finite time
in the case of the former or being preserved to the value of 1 in the case of the latter.

The situation however may change drastically in the case where the two qubits
interact asymmetrically with the non-Markovian environment. In Fig. 6.2(b) we
choose the values g1/γ = 0.6 and g2/γ = 1 for the qubit-environment coupling
strengths. Note that, as mentioned in the caption of Fig. 2, so far we consider the
case of ∆c = 0, i.e. we assume that the energy difference ωeg of the identical qubits
is exactly on resonance with the considered Lorentzian mode of the reservoir. In this
coupling configuration, all of the initial states considered above, result to totally dif-
ferent concurrence dynamics. The coupling asymmetry affects not only the steady
state value of the two-qubit concurrence but also its characteristic oscillations that
are associated with the non-Markovian character of the reservoir, and therefore the
ability of information exchange between the qubits and the reservoir within some fi-
nite time that depends upon the width γ. An interesting effect of this coupling asym-
metry is the possibility of concurrence stabilization to a steady state value larger than
the respective steady state value of the symmetric coupling configuration [353–355],
as also becomes evident by comparing the dynamics of the black line in each panel
of Fig. 6.2.
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FIGURE 6.2: Dynamics of the two-qubit concurrence for various initial two-qubit states.
The two-qubits are assumed to be non-interacting (J = 0). (1) Black line:
|Ψ (0)⟩12 = |e⟩1 |g⟩2, (2) teal line: |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 + |g⟩1 |e⟩2), (3) orange line:

|Ψ (0)⟩12 = 1√
2
(|e⟩1 |g⟩2 − |g⟩1 |e⟩2) , (4) purple line: |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 ± i |g⟩1 |e⟩2).

In panel (a) the couplings of the qubits to the non-Markovian reservoir are g1/γ = 1 and
g2/γ = 1, while in panel (b) g1/γ = 0.6 and g2/γ = 1. In both panels ∆c = 0.

These realisations naturally lead to us to examine the profile of the SSC in the
qubits’ couplings space for various initial two-qubit states. The results for the non-
interacting qubit case are presented in Fig. 6.3. Interestingly, we observe that if the
two qubits are prepared initially in the state |Ψ (0)⟩12 = |e⟩1 |g⟩2 (panel (a)), the
SSC is not favored by the symmetric or the anti-symmetric coupling configuration,
corresponding to the relations g1 = g2 and g1 = −g2, respectively. As becomes
evident, there exists a big region of coupling combinations that result to SSC val-
ues larger than the value of 0.5 obtained with the symmetric and anti-symmetric
configurations, going up to a maximum of 0.65. For the sake of comparison, the
respective SSC pattern for the initial state |Ψ (0)⟩12 = |g⟩1 |e⟩2 can be found in
Fig. 6.5(a). We should note that the reason for considering also negative values
for the qubit-environment couplings is that it occurs in many physical systems that
one or both couplings are negative. For example, when considering two identical
qubits placed in different positions inside a cavity, if the excited mode of the cav-
ity that is near-resonant with the qubit’s transition energy is other than its funda-
mental, then due to the sin dependence of the coupling strength to the qubit posi-
tion, there exist regions of the standing wave mode where the coupling strengths
are negative. By allowing the couplings to acquire negative values as well, we
came across an interesting result in the case where the initial two-qubit state is
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FIGURE 6.3: Steady state value of the two-qubit concurrence as a function of the
qubit-environment couplings g1 and g2, for various initial two-qubit states. The two-qubits
are assumed to be non-interacting (J = 0). Panel (a): |Ψ (0)⟩12 = |e⟩1 |g⟩2, panel (b):
|Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 + |g⟩1 |e⟩2), panel (c): |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 − |g⟩1 |e⟩2) , panel

(d): |Ψ (0)⟩12 = 1√
2
(|e⟩1 |g⟩2 ± i |g⟩1 |e⟩2). In all panels ∆c = 0.

|Ψ (0)⟩12 = 1√
2
(|e⟩1 |g⟩2 + |g⟩1 |e⟩2) (panel (b)). The steady state two-qubit concur-

rence may be zero along the symmetric couplings configuration, however it is max-
imum and equal to 1 along the anti-symmetric configuration and gets decreased as
we move away from this region. On the other hand, if the two-qubits are prepared
in the initial state |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 − |g⟩1 |e⟩2) (panel (c)) the SSC pattern

follows exactly the opposite picture, i.e. it is favored by the symmetric configura-
tion, while it is zero along the anti-symmetric couplings line. The physical reason
behind this effect is the following: In the absence of the interaction between the two
qubits, there exists a sub-radiant two-qubit state |Ψ−⟩ that does not exhibit deco-
herence as well as a super-radiant state |Ψ+⟩, which is orthogonal to |Ψ−⟩. It is
easy to show that, up to a normalization constant, these states are given by the ex-
pressions |Ψ−⟩ = g2 |e⟩1 |g⟩2 − g1 |g⟩1 |e⟩2 and |Ψ+⟩ = g1 |e⟩1 |g⟩2 + g2 |g⟩1 |e⟩2 [353,
354]. In view of the expressions above, in the symmetrical couplings configuration
g1 = g2 the sub-radiant state is |Ψ−⟩ ∝ |e⟩1 |g⟩2 − |g⟩1 |e⟩2 and the super-radiant
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FIGURE 6.4: Steady state value of the two-qubit concurrence as a function of the
qubit-environment couplings g1 and g2, for various initial two-qubit states. The two-qubits
are assumed to be interacting with a coupling strength J /γ = 1. Panel (a):
|Ψ (0)⟩12 = |e⟩1 |g⟩2, panel (b): |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 + |g⟩1 |e⟩2), panel (c):

|Ψ (0)⟩12 = 1√
2
(|e⟩1 |g⟩2 − |g⟩1 |e⟩2) , panel (d): |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 ± i |g⟩1 |e⟩2). In all

panels ∆c = 0.

state is |Ψ+⟩ ∝ |e⟩1 |g⟩2 + |g⟩1 |e⟩2, while in the anti-symmetric couplings configura-
tion g1 = −g2, exactly the opposite occurs. This explains the behaviour of SSC as a
function of g1 and g2 in Figs. 6.3(b) and 6.3(c).

A paradigm of a state that results to a SSC that is favored both by the symmet-
ric and anti-symmetric couplings configuration in the same way (with a maximum
value of 0.5), is the state |Ψ (0)⟩12 = 1√

2
(|e⟩1 |g⟩2 ± i |g⟩1 |e⟩2) (panel (d)). This state

also indicates robustness in its resulting SSC when small deviations from the lines
of these configurations are considered.

The situation however changes drastically if the interaction between the two
qubits is nonzero. In Fig. 6.4 we examine the case of J /γ = 1. Comparing Fig.
6.3 with Fig. 6.4, at least three major differences stand out. First, the resulting SSC
pattern in the g1, g2 space is always favored by the symmetric or anti-symmetric
couplings configuration, irrespective of the initial two-qubit state. The initial state
will only determine the exact values of the SSC along the vicinity of the g1 = g2
and g1 = −g2 lines. Second, the initial states |Ψ (0)⟩12 = |e⟩1 |g⟩2 panel 6.4(a)
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FIGURE 6.5: Steady state value of the two-qubit concurrence as a function of the
qubit-environment couplings g1 and g2 for the initial two-qubit state |Ψ (0)⟩12 = |g⟩1 |e⟩2.
The panels correspond to different values of the qubit-qubit coupling strength J . Panel (a):
J = 0, panel (b): J /γ = 0.2, panel (c): J /γ = 1.5, panel (d): J /γ = 3.5. In all panels
∆c = 0.

and |Ψ (0)⟩12 = 1√
2
(|e⟩1 |g⟩2 ± i |g⟩1 |e⟩2) (panel 6.4(d)) result to exactly the same

SSC as a function of the qubit’s couplings, despite the fact that in the absence of
the qubit-qubit interaction, each state had its characteristic SSC pattern. Although
not presented in Fig. 6.4, the same is true for the SSC pattern of the initial state
|Ψ (0)⟩12 = |g⟩1 |e⟩2. Third and most important, the SSC may be finite along the
symmetric or anti-symmetric couplings configuration lines however it may exhibit
high instability; namely, a slight deviation from the g1 = g2 and g1 = −g2 lines may
result to zero SSC. This phenomenon of entanglement instability does not appear for
any values of the qubit-qubit and qubit-environment couplings. In Fig. 6.5 we exam-
ine the SSC pattern of the initial state |Ψ (0)⟩12 = |g⟩1 |e⟩2 in the qubit-environment
coupling space for increasing values of J . As becomes evident, the region of en-
tanglement instability becomes larger with the increase of J . More precisely, the
results of Fig. 6.5 indicate that the instability occurs for absolute values of g1 and g2
roughly up to the value of J , while the regions of finite SSC along the vicinity of the
symmetric and anti-symmetric couplings configurations get increasingly wider for
absolute values of g1 and g2 larger than J .
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FIGURE 6.6: Effects of the detuning ∆c on the value of the two-qubit steady state
concurrence. In panels (a), (b) and (c) we study the behaviour of the value of the two-qubit
steady state concurrence as a function of the qubit-environment couplings g1 and g2, for
various values of the detuning ∆c and J /γ = 4. Panel (a): ∆c = 0, panel (b): ∆c/γ = 3,
panel (c): ∆c/γ = −3. The initial state of the two-qubit system is |Ψ (0)⟩12 = |g⟩1 |e⟩2. In
panels (d) and (e) we show how the detuning affects the SSC when small perturbations
around the symmetric and anti-symmetric coupling regimes are considered, respectively.
The stability of the SSC in both cases is studied for g1/γ = 0.5. (1) Black line: ∆c = 0, (2)
teal line: ∆c/γ = 3, (3) orange line: ∆c/γ = −3.

These findings expand the asymptotic analysis results of Y. Li et al. [355] who
found that the only conditions for non-zero qubit’s amplitudes in the steady state of
the system are either the absence of the qubit-qubit coupling or the presence of equal
coupling strengths between the reservoir and each qubit. While our results in Fig. 6.3
support the first statement, the results of Fig. 6.4 indicate that there exists a region of
qubit-environment couplings with values slightly deviated from the vicinity of the
symmetric couplings configurations that may result to finite SSC, depending on the
choice of J . We also showed that for certain initial two-qubit states this may be true
only in the vicinity of the symmetric or anti-symmetric couplings lines, while for
other states this can be true in both configurations (see Fig. 6.4). At the same time as
far as the equal couplings argument is concerned, we showed that, although finite,
the SSC may be highly unstable to small deviations from the g1 = g2 or g1 = −g2
lines.

Finally, in Fig. 6.6 we examine the effects of a finite detuning ∆c on the resulting
SSC pattern in the g1, g2 space. The initial state of the two-qubit system is cho-
sen to be |Ψ (0)⟩12 = |g⟩1 |e⟩2 and the value of the qubit-qubit coupling strength is
J /γ = 4. In Fig. 6.6(a) the peak of the Lorentzian reservoir mode coincides with the
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qubit energy difference ωeg, i.e. ∆c = 0, while in Figs. 6.6(b) and 6.6(c) the detunings
∆c/γ = 3 and ∆c/γ = −3 are chosen, respectively. As seen in Fig. 6.6(b), a positive
detuning results to a slightly broadened region of finite SSC along the vicinity of the
symmetric couplings configuration line, as long as the detuning is larger than the
absolute value of the qubit-reservoir couplings. For absolute values of g1, g2 larger
than the detuning ∆c, the region of finite SSC along the vicinity of the symmetric
couplings configuration line tends to shrink. On the other hand, a negative detun-
ing ∆c results to exactly the same effects but along the anti-symmetric configuration
line (see Fig. 6.6(c)). In order to probe the degree of entanglement instability for var-
ious detunings, in Figs. 6.6(d) and 6.6(e) we study the behaviour of the SSC when
small perturbations around the symmetric and anti-symmetric coupling regimes are
considered, respectively. For that reason, we choose a fixed value for one of the
qubit-reservoir couplings, i.e. g1/γ = 0.5 and let the other coupling acquire the
value g2 = g1 + ε (Fig. 6.6(d)) or g2 = −g1 + ε (Fig. 6.6(e)), where ε is a small change
in units of frequency (energy). The SSC is then studied as a function of ε for various
detunings. As becomes evident, a positive detuning ∆c may increase the width of
the resulting curve in the symmetric configuration but it also leads to a decreased
width in the anti-symmetric configuration. At the same time, exactly the opposite
picture holds on for negative detunings. Our results indicate that even if increasing
the detuning can slightly improve the instability, it is ultimately a question of the
precision one could achieve in the control and stability over the qubit-environment
couplings in order to control the resulting SSC for given values of J and ∆c.

To sum up, in this chapter we studied properties of the steady state entangle-
ment between two qubits that interact with a common non-Markovian environ-
ment. We showed that each initial two-qubit state results to a characteristic SSC
pattern in the qubit-environment couplings space, with the maximum value of SSC
occurring along the symmetric, the anti-symmetric or both coupling configuration
lines. In some cases, as for example in the case where the initial two-qubit state is
|Ψ (0)⟩12 = |e⟩1 |g⟩2 or |Ψ (0)⟩12 = |g⟩1 |e⟩2, the SSC may be favored by the choice
of specific asymmetric coupling configurations. We additionally demonstrated the
dramatic effects of the presence of a qubit-qubit interaction in the resulting SSC be-
tween the two qubits, with our results suggesting that in this case the SSC is finite
only along the vicinity of the symmetric or anti-symmetric coupling configuration
lines. It is also shown that, although finite, the SSC is predicted to be highly unstable
as long as the interaction between the two qubits is larger than the couplings be-
tween each qubit and the non-Markovian reservoir; namely, a small deviation from
the symmetric or anti-symmetric configuration could result to zero SSC. From the
viewpoint of entanglement engineering, this result suggests that, if the exact tuning
of the qubit-environment couplings to the symmetric or anti-symmetric configura-
tions is difficult, these couplings should be larger than the qubit-qubit coupling in
order to ensure the observation of finite two-qubit entanglement in the steady state
of the system. The degree of instability was also studied as a function of the detuning
between the peak of the considered Lorentzian mode of the reservoir and the qubits’
transition energy, revealing interesting features that depend upon the parameters of
the problem. In total, our findings complement and extend the interesting work of
Yang Li et al. [355], who in contrast to earlier work have addressed the important
aspect of coupling between the qubits themselves.

The physical realization of the considered system is within current experimental
capabilities. The system can be experimentally realized using quantum dots (QDs)
as qubits, since QDs can be coupled efficiently to optical cavities, [358–361] while
their interaction is controllable by external means, making them an ideal candidate
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for quantum information tasks [362–364]. Alternatively, the system can be realized
using trapped ions efficiently coupled to a mode of an optical resonator, as in the
case of the pioneering work of B. Casabone et al. [365], in which the entanglement
generation between the two ions was investigated. Our results acquire great signifi-
cance in view of the rapid developments in the field of entanglement engineering in
open quantum systems.
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Chapter 7

Arbitrary-length XX spin chains
boundary-driven by
non-Markovian environments

In this chapter we provide a recursive method of calculating the wave function of
an XX spin chain coupled at both ends to non-Markovian reservoirs with arbitrary
spectral density [366]. The method is based on the appropriate handling of the time-
dependent Schrödinger’s equations of motion in Laplace space and leads to closed-
form solutions of the transformed amplitudes for arbitrary chain lengths as well
as arbitrary initial conditions within the single-excitation subspace. Results on the
dynamical as well as state-transfer properties of the system for various combinations
of parameters are also presented. In particular, detailed quantitative comparisons for
Lorentzian and Ohmic reservoirs are illustrated.

7.1 Introduction

One dimensional many-body systems such as quantum spin chains arise in many
contexts throughout quantum information theory as well as condensed matter physics,
due to their versatility as basic resources for the implementation of solid-state de-
vices for quantum computing and quantum communication tasks [367]. Among
these tasks, faithful quantum state transfer [253, 255, 261, 266, 274, 368–370] and
long-distance entanglement [263, 371–375] have been investigated for various spin
chain configurations in great detail throughout the last 20 years or so, with the re-
search on these fields being still active.

In recent years, much interest has arisen in the study of properties of open quan-
tum systems interacting with external environments, whose experimental realiza-
tion inevitably involves decoherence and dissipation. Such systems may consist of
just a pair of qubits, with focus on the effects of the environmental dissipation on the
generated bipartite entanglement [320–325] as discussed in the previous chapter of
the thesis, up to a whole quantum spin chain with focus on state transfer [376–379]
or short- and long-distance correlations [380–383]. Extensions that account for the
non-Markovian character of the surrounding environment have been also made [23,
317, 326, 384–388], revealing interesting effects associated with the memory charac-
ter of the reservoir, which enable the exchange of information between the system
and the environment within finite times.

At the same time, attention has been drawn to a special class of open quantum
systems, i.e. the so-called boundary-driven open quantum systems [389]. These are
quantum systems coupled to external environments at their edges and are usually
studied for their transport [390–393] and thermodynamic properties [394–396]. For
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1D boundary-driven open quantum systems, the different temperature or chemi-
cal potential between the two edge baths will cause a current flow from one bath
to the other, mediated by the quantum system which can reach a non-equilibrium
steady-state (NESS). The study of the transport properties of such systems, focus-
ing on ways of controlling the associated current flows efficiently, seems therefore
promising owing to potential applications in solid-state devices such as diodes or
transistors [397]. On the other hand, the dynamical and quantum state transfer
properties of such systems [398] are also essential from a practical perspective for
the implementation of quantum information tasks.

Among the tools available for the study of open quantum systems, tensor net-
work numerical methods based on matrix product states have proven quite efficient
for the simulation of their dynamical behaviour [399, 400]. The method of matrix
product states can in many cases yield analytical expressions for the expectation
values of observables in the NESS of open quantum systems boundary-driven by
Lindblad operators for Markovian reservoirs [401–404]. Perturbative approaches
[405] as well as approaches based on quantum trajectories using numerical Monte
Carlo techniques [406] have also been explored in great detail.

7.2 Theoretical formulation

Our system consists of an N qubit (spin) chain interacting with two environments
E1 and E2 through its first and last qubit, with coupling strengths g1 and g2, re-
spectively. The interaction between each pair of neighboring qubits in the chain is
denoted by J . A schematic presentation of our system is depicted in Fig. 7.1. The
Hamiltonian of our system Ĥ = ĤS + ĤE + ĤI , consists of three parts; namely, the
Hamiltonian of the XX chain ĤS, the Hamiltonian of the two environments ĤE and
the chain-environments interaction Hamiltonian ĤI , given by the relations (h̄ = 1):

ĤS = ωe

N

∑
i=1
|e⟩i i⟨e|+ ωg

N

∑
i=1
|g⟩i i⟨g|+

N−1

∑
i=1

J
2
(
σ+

i σ−i+1 + σ−i σ+
i+1

)
, (7.1a)

ĤE = ∑
λ

ω1
λaE1

λ

†
aE1

λ + ∑
λ

ω2
λaE2

λ

†
aE2

λ , (7.1b)

ĤI = ∑
λ

g1(ω
1
λ)
(

aE1
λ σ+

1 + aE1
λ

†
σ−1

)
+ ∑

λ

g2(ω
2
λ)
(

aE2
λ σ+

N + aE2
λ

†
σ−N

)
, (7.1c)

where ωg and ωe are, respectively, the energies of the ground and excited state of
each spin (all spins are assumed to be identical), ωi

λ, (i = 1, 2), is the energy of the

λ-mode photon of each environment, a
Ej
λ and a

Ej
λ

†
, (j = 1, 2), are the annihilation and

creation operators of each environment, respectively, and σ+
i = |e⟩i i⟨g| and σ−i =

|g⟩i i⟨e|, (i = 1, . . . , N), are the qubit raising and lowering operators, respectively.
The wavefunction of the compound system (spin chain + environments) in the

single-excitation space is expressed as:

|Ψ(t)⟩ =
N

∑
i=1

ci(t) |ψi⟩+ ∑
λ

cE1
λ (t)

∣∣∣ψE1
λ

〉
+ ∑

λ

cE2
λ (t)

∣∣∣ψE2
λ

〉
, (7.2)

where,
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FIGURE 7.1: Schematic presentation of the system at study. A Heisenberg XX spin chain of
arbitrary length is coupled to non-Markovian reservoirs at its boundaries.

|ψi⟩ = |g⟩1 |g⟩2 . . . |g⟩i−1 |e⟩i |g⟩i+1 . . . |g⟩N |0⟩E1
|0⟩E2

, (7.3a)

∣∣∣ψ1
λ

〉
= |g⟩1 |g⟩2 . . . |g⟩N |00 . . . 01λ0 . . . 00⟩E1

|0⟩E2
, (7.3b)

∣∣ψ2
λ

〉
= |g⟩1 |g⟩2 . . . |g⟩N |0⟩E1

|00 . . . 01λ0 . . . 00⟩E2
. (7.3c)

For our derivation, it is useful to adopt the transformations ci(t) = e−i[ωe+(N−1)ωg]t c̃i(t)

, (i = 1, . . . N), and c
Ej
λ (t) = e−i

(
Nωg+ω

j
λ

)
t c̃

Ej
λ (t), (j = 1, 2), for the qubits’ and en-

vironments’ amplitudes. The equations of motion of the transformed amplitudes,
resulting from the time-dependent Schrödinger equation, are:

i
dc̃1(t)

dt
=
J
2

c̃2(t) + ∑
λ

g1(ω
1
λ)e
−i∆1

λt c̃E1
λ (t), (7.4a)

i
dc̃i(t)

dt
=
J
2
[c̃i−1(t) + c̃i+1(t)] , (i = 2, . . . , N − 1), (7.4b)

i
dc̃N(t)

dt
=
J
2

c̃N−1(t) + ∑
λ

g2(ω
2
λ)e
−i∆2

λt c̃E2
λ (t), (7.4c)

i
dc̃E1

λ (t)
dt

= g1(ω
1
λ)e

i∆1
λt c̃1(t), (7.4d)

i
dc̃E2

λ (t)
dt

= g2(ω
2
λ)e

i∆2
λt c̃2(t), (7.4e)

where ∆j
λ ≡ ω

j
λ− (ωe −ωg) ≡ ω

j
λ−ωeg, (j = 1, 2). Formal integration of Eqs. (7.4d)

and (7.4e), under the assumption that c̃E1
λ (0) = c̃E2

λ (0) = 0, and substitution back to
Eqs. (7.4a) and (7.4c), yields:

dc̃1(t)
dt

= −i
J
2

c̃2(t)−
∫ t

0
∑
λ

e−i∆1
λ(t−t′)

[
g1(ω

1
λ)
]2

c̃1(t′)dt′, (7.5a)

dc̃N(t)
dt

= −i
J
2

c̃N−1(t)−
∫ t

0
∑
λ

e−i∆2
λ(t−t′) [g2(ω

2
λ)
]2

c̃N(t′)dt′. (7.5b)

The summation over all possible modes of each environment can be replaced by
an integration that requires the specification of the environment’s spectral density

Jj(ω
j
λ), according to ∑λ

[
gj(ω

j
λ)
]2
→
∫

dω j Jj(ω
j), (j = 1, 2). In what follows, we
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keep the spectral density of both environments arbitrary. The resulting set of differ-
ential equations then is:

dc̃1(t)
dt

= −i
J
2

c̃2(t)−
∫ t

0
R1(t− t′)c̃1(t′)dt′, (7.6a)

dc̃i(t)
dt

= −i
J
2
[c̃i−1(t) + c̃i+1(t)] , (i = 2, . . . , N − 1), (7.6b)

dc̃N(t)
dt

= −i
J
2

c̃N−1(t)−
∫ t

0
R2(t− t′)c̃N(t′)dt′, (7.6c)

where we have introduced the definition

Rj(t) ≡
∫ ∞

0
Jj(ω

j)e−i(ω j−ωeg)tdω j, (j = 1, 2). (7.7)

Taking now the Laplace transform of the above set of differential equations, and
using the property of the convolution transform, L

[∫ t
0 f (t′)g(t− t′)dt′

]
= F(s)G(s),

where F(s) and G(s) are the Laplace transforms of the functions f (t) and g(t), re-
spectively, we obtain:

sF1(s) = c1(0)− i
J
2

F2(s)− B1(s)F1(s), (7.8a)

sFi(s) = ci(0)− i
J
2
[Fi−1(s) + Fi+1(s)] , (i = 2, . . . , N − 1), (7.8b)

sFN(s) = cN(0)− i
J
2

FN−1(s)− B2(s)FN(s), (7.8c)

where we have used the fact that c̃i(0) = ci(0), since ci(t) = e−i[ωe+(N−1)ωg]t c̃i(t).
In the above system of algebraic equations, Fi(s) is the Laplace transform of c̃i(t),
(i = 1, . . . , N), while Bj(s) is the Laplace transform of the function Rj(t), (j = 1, 2).

The system of Eqs. (7.8) is a set of N algebraic equations that can be solved
recursively as follows: First we solve Eq. (7.8a) for F2(s) and Eq. (7.8b) for Fi+1(s) to
find

F2(s) = (iks)F1(s) + (ik)B1(s)F1(s)− (ik)c1(0), (7.9a)

Fi+1(s) = −Fi−1(s) + (iks)Fi(s)− (ik)cj(0), (i = 2, . . . , N − 1), (7.9b)

where k ≡ 2/J . Using these two relations, we can express each Fi(s) in terms of
F1(s). The first few terms up to F6(s) can be organized as follows:

F2(s) = (iks)F1(s) + (ik)B1(s)F1(s)− (ik)c1(0), (7.10a)

F3(s) =
[
(iks)2 − 1

]
F1(s) + (iks)(ik)B1(s)F1(s)− (ik) [(iks)c1(0) + c2(0)] , (7.10b)

F4(s) =
[
(iks)3 − 2(iks)

]
F1(s) +

[
(iks)2 − 1

]
(ik)B1(s)F1(s)

− (ik)
{ [

(iks)2 − 1
]

c1(0) + (iks)c2(0)− c3(0)
}

,
(7.10c)
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F5(s) =
[
(iks)4 − 3(iks)2 + 1

]
F1(s) +

[
(iks)3 − 2(iks)

]
(ik)B1(s)F1(s)

− (ik)
{ [

(iks)3 − 2(iks)
]

c1(0) +
[
(iks)2 − 1

]
c2(0) + (iks)c3(0) + c4(0)

}
,

(7.10d)

F6(s) =
[
(iks)5 − 4(iks)3 + 3(iks)

]
F1(s) +

[
(iks)4 − 3(iks)2 + 1

]
B1(s)F1(s)

− (ik)
{ [

(iks)4 − 3(iks)2 + 1
]

c1(0) +
[
(iks)3 − 2(iks)

]
c2(0)

+
[
(iks)2 − 1

]
c3(0) + (iks)c4(0) + c5(0)

}
.

(7.10e)

Careful inspection of the above system of equations reveals that Fi(s), follows a pat-
tern of the form:

Fi(s) = Ai(s)F1(s) + Ai−1(s)(ik)B1(s)F1(s)− (ik)
i−1

∑
n=1

Ai−n(s)cn(0), (i = 2, . . . , N),

(7.11)
where Ai(s) obeys the relation:

Am+2(s) = (iks)Am+1(s)− Am(s), (m = 1, . . . , N), (7.12)

with A1(s) = 1 and A2(s) = iks. The mth term of this sequence is given by:

Am(s) =

[
(iks) + i

√
k2s2 + 4

]m
−
[
(iks)− i

√
k2s2 + 4

]m

2mi
√

k2s2 + 4
, (m = 1, . . . , N). (7.13)

Taking Eq. (7.11) for i = N − 1 and i = N, we obtain:

FN−1(s) = AN−1(s)F1(s) + AN−2(s)(ik)B1(s)F1(s)− (ik)
N−2

∑
m=1

AN−1−m(s)cm(0),

(7.14)

FN(s) = AN(s)F1(s) + AN−1(s)(ik)B1(s)F1(s)− (ik)
N−1

∑
m=1

AN−m(s)cm(0). (7.15)

Substituting Eqs. (7.14) and (7.15) back into Eq. (7.8c) and using the relation
∑N−1

m=1 AN−m(s)cm(0) = ∑N−2
m=1 AN−m(s)cm(0) + A1(s)cN−1(0), we can, after some

straightforward algebraic manipulations, find that F1(s) is given by:

F1(s) =
ikcN(0)−k2[s+B2(s)]A1(s)cN−1(0)+(ik)∑N−2

m=1

{
ik[s+B2(s)]AN−m(s)−AN−1−m(s)

}
cm(0)

ik[s+B2(s)]AN(s)−
{

1+k2B1(s)[s+B2(s)]
}

AN−1(s)−ikB1(s)AN−2(s)
.

(7.16)
The inverse Laplace transform of Eq. (7.16) provides the time evolution of the am-
plitude c̃1(t). The rest of the amplitudes are given by the inverse Laplace transforms
of Fi(s), (i = 2, . . . , N), which are recursively related to F1(s) through Eq. (7.11).

The analytical method we have developed above allows us to obtain the time
evolution of the amplitude of any spin, for an arbitrary number of sites as well as for
arbitrary initial conditions, within the single-excitation subspace, by simply calcu-
lating the inversion integral of the corresponding Laplace transform. Through our
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method, the number of sites N has become an arbitrary and easily modifiable pa-
rameter entering expression (7.16). The inversion integral can be readily calculated
numerically (or even analytically in some cases), after specification of the spectral
density of each environment, necessary for the calculation of the Laplace transforms
Bj(s) of the functions Rj(t).

7.3 Dynamical and state transfer properties of XX spin chains
boundary-driven by non-Markovian environments

7.3.1 Lorentzian environments

As a first example, we consider the case of an XX chain boundary-driven by two
non-Markovian reservoirs with Lorentzian spectral densities, given by:

Jj(ω
j) =

g2
j

π

γj
2(

ω j −ω
j
c

)2
+ (

γj
2 )

2
, (j = 1, 2), (7.17)

where gj are the coupling strengths between the edge spins and the boundary reser-

voirs in units of frequency, while γj and ω
j
c, (j = 1, 2), are the widths and the peak

frequencies of each distribution, respectively.
As shown in Appendix B, the functions Rj(t) and Bj(s), for Lorentzian spectral

densities, are given by the expressions

Rj(t) = g2
j e−i∆j

cte−
γj
2 t, (j = 1, 2), (7.18)

and

Bj(s) =
g2

j

s + γj
2 + i∆j

c
, (j = 1, 2). (7.19)

Using the expression of Bj(s), (j = 1, 2), we can easily obtain the time evolution
of the amplitudes c̃i(t), i, . . . , N, using Eqns. (7.11), (7.13) and (7.16). Note that in all
of our calculations, we express all couplings entering the formalism in units of the
nearest neighbor coupling strength J . Thus in our figures, time is measured in the
dimensionless units J t.
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FIGURE 7.2: Dynamics of the populations of the first qubit (black line), Nth qubit (teal line)
and channel qubits (orange line) for c1(0) = 1, N = 5, γ1 = γ2 = 0.02J , ∆1

c = ∆2
c = 0 and

(a) g1 = g2 = 0.3J , (b) g1 = g2 = 1.5J . In panels (c) and (d) we show the long-time
dynamics of the sum of all qubit populations in the spin chain for g1 = g2 = 0.3J and
g1 = g2 = 1.5J , respectively.

In Fig. 7.2(a) we study the dynamics of the populations of the edge as well as
the intermediate spins in the g1, g2 < J case for c1(0) = 1. For the intermediate
qubits, we adopt the term "channel qubits" , which is frequently used in quantum
information protocols and represents the sum of the populations of all except the 2
edge qubits. The corresponding occupation probability is PCh(t) = ∑N−1

i=2 |ci(t)|2 =

∑N−1
i=2 |c̃i(t)|2. Since the coupling between the qubits is larger than the couplings be-

tween the edge spins and the reservoirs, we observe oscillations in the edge and
channel qubit populations, associated with the spreading of the initial excitation
throughout the whole chain. Eventually, the population will be lost due to the envi-
ronmental dissipation. This can be seen through the long-time dynamical picture of
the sum of all qubit populations, as in Fig. 7.2(c). On the the other hand, in the case
where g1, g2 > J , as examined in Fig. 7.2(b), since the initial excitation is on the first
qubit, the population is essentially "trapped", albeit not permanently, between the
first qubit and environment 1, with only a small portion of the population leaking to
the channel. In this case the exact value of g2 is of little relevance since the popula-
tion of the Nth site at any time t is practically negligible. As seen in Fig. 7.2(d), the
strong coupling between the first qubit and the reservoir causes the total population
to be lost through the reservoir much faster than in the previous case.

Although, as discussed above, the strong coupling between the environment and
the edge qubits may result to population trapping (Fig. 7.2(b)), if the chain length is
small (up to 5 qubits or so), the long-time dynamics of the chain reveal an oscillatory
population transfer between the two edges of the chain (Fig. 7.3) along with the
dissipation to the reservoirs. In that case, the population of the N− 2 channel qubits
remains low for any time t (see inset of Figs. 7.3(a), 7.3(b) and 7.3(c)). This effect is
attributed to the fact that, despite the trapping of the population that occurs between
the edge qubits and the reservoirs, there is always part of the population that travels
through the chain and reaches from its one end of to the other. This effect ceases
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FIGURE 7.3: Long-time dynamics of the populations P1(t), PN(t), PCh(t) (inset) as well as
their sum, for spin chains of small length and c1(0) = 1, γ1 = γ2 = 0.01J , g1 = g2 = 1.8J ,
∆1

c = ∆2
c =0. Panels (a) and (d): N = 3, panels (b) and (e): N = 4, panels (c) and (f): N = 5.

to occur for spin chains of longer length since there may be not enough oscillations
between the two edges of the chain before total loss of population to the reservoirs
takes place. As seen in Fig. 7.3, the frequency of these oscillation is highly sensitive
to N, decreasing as the latter increases.

In Fig. 7.4 we examine the long-time dynamics of the total population for chains
with odd number of sites and initial excitation on the centre of the chain, i.e. c(N+1)/2(0) =
1. In Figs. 7.2(c) and 7.2(d) we observed that, if the initial excitation is on the first
qubit, the total population of the chain decays much faster for increasing values of
g1. This of course is also true for cN(0) = 1 and increasing values of g2, which is also
obvious from symmetry arguments. However, as seen in Fig. 7.4(a), if the initial
excitation is on the centre of the chain, increasing the magnitude of the couplings
between the edge spins and the corresponding environment leads to the completely
opposite effect, namely a much slower decay of the total population in the long-time
dynamics picture. Such an effect occurs only as long as the boundary couplings are
larger than the coupling between the qubits J . In the opposite regime, the increase
of the boundary couplings (to values still less than J ) results to faster decay of the
total population to the reservoirs. These results indicate that, for large boundary
couplings, the evolution of the edge spins tends to freeze, alluding to a quantum
Zeno effect, leading thus to an effective hindering of the total decay to the reser-
voirs trough them. The phenomenon at hand is analyzed in more depth in the next
chapter of the thesis. This hindering of the decay becomes even more pronounced
for increasing chain lengths (Fig. 7.4(b)), which physically can be attributed to the
increased number of pathways for the evolution of the initial excitation throughout
the whole chain and therefore the smaller likelihood for the population to reach the
edge spins and be lost to the reservoirs.

It may be useful at this point to note that the dissipation of the total popula-
tion to the reservoirs can also be slowed down by choosing the detunings ∆1

c and
∆2

c larger than the boundary coupling constants. In that regime of parameters, the
dominant modes of the Lorentzian spectral densities of the boundary reservoirs are
off-resonant with the qubit frequency and do therefore damp the system less. That
might be argued to be obvious. Be that as it may, the statement is valid only in
the context of non-Markovian reservoirs. Because the spectral density of a non-
Markovian reservoir must at some frequency exhibit a more or less pronounced
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FIGURE 7.4: Long-time dynamics of the sum of all qubit populations in the spin chain with
the initial excitation being on the central qubit c(N+1)/2(0) = 1 and γ1 = γ2 = 0.02J ,
∆1

c = ∆2
c = 0, (a) N = 5 and (b) N = 11. Black line: g1 = g2 = J , teal line: g1 = g2 = 2J

and orange line: g1 = g2 = 3J .

peak, as it must depart from the slowly varying, smooth spectral density which is
necessary for the Markovian approximation. It could therefore be viewed as yet
another feature of non-Markovian behavior.

It is also important to note that the effect in which the increased coupling con-
stants between the edge spins and the environments act like a barrier and protect the
total population of the chain from decaying to the latter, do not necessary require an
initial excitation in the centre of the chain. This is just one among the choices of pos-
sible initial conditions where this phenomenon occurs. The general rule is that the
initial excitation should be anywhere but the edge spins, in order to avoid the trap-
ping of the population between the edge spins and their corresponding reservoirs, as
was the case in Fig. 7.2(b). For example, the increase of g1 and g2 for a chain system
initially prepared in the state 1√

N−2 ∑N−1
i=2 |ψi⟩, will result to the same phenomenon

occurring in Fig. 7.4. The details behind this phenomenon is investigated in more
detail in chapter 9.

In Fig. 7.5, we study the state transfer properties between the two edge spins of
the chain, in terms of the average-state fidelity [245]

F (t) = 1
2
+
|cN(t)|2

6
+
|cN(t)|

3
, (7.20)
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FIGURE 7.5: (a) Dynamics of the average-state fidelity of state transfer between the two
edges of the spin chain for N = 10 and (b) Maximum average fidelity as a function of the
number of spin sites N. In both panels γ1 = γ2 = 0.5J , ∆1

c = ∆2
c = 0 and black line/dots:

g1 = g2 = 0, teal line/dots: g1 = g2 = 0.1J and orange line/dots: g1 = g2 = 0.3J .

which involves an average over all possible sender-qubit states. In Fig. 5(a) we show
the dynamics of the average-state fidelity for a spin chain with N = 10 sites, for dif-
ferent values of the boundary couplings g1 and g2. As becomes evident, the first peak
of the average-state fidelity is very sensitive to the boundary couplings, decreasing
as their values increase. At the same time subsequent peaks in time tend to increase
their maximum value. The position of the first peak, indicating the transfer time is
slightly decreased by increasing the boundary couplings, however larger values of
the latter lead to non-faithful state transfer in general. In Fig. 7.5(b) we examine the
behaviour of the maximum value of the average-state fidelity as a function of the
number of spin sites for chain length up to 40 sites. As N increases, the maximum
average-state fidelity tends towards lower values that depend also on the values of
the boundary couplings of the edge spins with the reservoirs. Our results qualita-
tively agree with a similar study by Feng-Hua Ren et al. [398], where they study
the state transfer properties of the same system using the dephasing and dissipation
models in terms of the quantum state diffusion approach.
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7.3.2 Ohmic environments

As a second example, we consider the case of boundary reservoirs characterized by
Ohmic spectral densities [21, 407], according to the relation:

Jj(ω
j) = Njg2

j ω
j
c

(
ω j

ω
j
c

)Sj

exp

(
−ω j

ω
j
c

)
, (j = 1, 2), (7.21)

where gj are qubit-environment coupling constants in units of frequency, ω
j
c are the

so-called Ohmic cut-off frequencies and Sj, (j = 1, 2), are the Ohmic parameters,
characterizing whether the spectrum of the reservoirs is sub-Ohmic (S < 1), Ohmic
(S = 1) or super-Ohmic (S > 1). Nj is a normalization constant given by the rela-
tion Nj =

1(
ω

j
c

)2
Γ(1+Sj)

, where Γ(z) is the gamma function. Note that, unlike much

of the literature, in our use of Ohmic spectral densities we found it necessary to in-
clude the normalization factor Nj which renders meaningful the comparison with
the Lorentzian spectral density, as discussed in the next section of the thesis.

Again, as detailed in Appendix B, the functions Rj(t) and Bj(s), for Ohmic spec-
tral densities, are given by the expressions

Rj(t) = g2
j eiωegt

(
iω j

ct + 1
)−1−Sj

, (j = 1, 2). (7.22)

and

Bj(s) = −g2
j

i1−Sj

ω
j
c

e−iKj(s)
[
Kj(s)

]Sj Γ
(
−Sj,−iKj(s)

)
, (j = 1, 2), (7.23)

where Kj(s) ≡
(
s− iωeg

)
/ω

j
c, (j = 1, 2) and Γ(a, z) is the incomplete gamma func-

tion. In the special case where Sj are integers, it is useful to use the incomplete
gamma function property

Γ(−n, z) =
1
n!

[
e−z

zn

n−1

∑
k=0

(−1)k(n− k− 1)!zk + (−1)nΓ (0, z)

]
, (7.24)

which holds for integer n, in order to express Bj(s) in terms of Γ(0,−iKj(s)). Us-
ing Eq. (7.23), as in the Lorentzian environments’ case, we can easily calculate the
Laplace inversion numerically and find the time evolution of the amplitudes c̃i(t),
i, . . . , N.

In Fig. 7.6 we study the dynamics of the sum of all qubit populations in the chain
for various parameters of the Ohmic reservoirs. The dynamics of this quantity pro-
vide us straightforward information of how fast the initial excitation gets lost in the
two environments. As Fig. 7.6(a) indicates, by increasing the Ohmic parameters Sj,
j = 1, 2 of the reservoirs, the sum of populations decays more slowly, indicating a
slower decay of the single excitation to the environments. Physically, this effect is
attributed to the fact that by increasing Sj, the spectral density distribution of the
environments is mainly peaked in the vicinity of modes whose frequency is larger
than the qubit frequency ωeg = J (see inset of Fig. 7.6(b)), and therefore by being off-
resonant with the qubit frequency, they damp the system less. A similar behaviour
is observed in Fig. 7.6(b), where the dynamics are shown as function of the cut-off
frequencies, for Ohmic type of environments (Sj=1). Since for Ohmic distributions
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FIGURE 7.6: Dynamics of the sum of all qubit populations in a N = 6 qubit chain,
boundary driven by reservoirs characterized by Ohmic spectral densities. The parameters
used in panel (a) are ω1

c = ω2
c = J , black line: S1 = S2 = 1, teal line: S1 = S2 = 2, orange

line: S1 = S2 = 3, while in panel (b), S1 = S2 = 1, black line: ω1
c = ω2

c = 0.5J , teal line:
ω1

c = ω2
c = 1.0J and orange line: ω1

c = ω2
c = 1.5J . In both panels, g1 = g2 = 0.3J and

ωeg = J and c1(0) = 1. The inset in panel (b) shows the Ohmic spectral density as a
function of ωλ for various Ohmic parameters S (S = 1: solid line, S = 2: dotted line and
S = 3: dashed line) and g = 0.3J (coupling strength), ωc = J (dotted vertical line).

the peak of the distribution coincides with the cut-off frequency ω
j
c, (j = 1, 2), in-

crease of the cut-off frequencies results to distributions whose modes extend mainly
beyond ωeg, resulting to a slower decay to the boundary environments. Note that in
general, for arbitrary Ohmic parameters, the Ohmic distributions are always peaked
at the frequencies ω

j
λ = Sjω

j
c, (j = 1, 2). The characteristic oscillations observed in

both panels of Fig. 7.6 are indicative of the non-Markovian character of the Ohmic
boundary reservoirs, enabling the exchange of population between them and the
spin chain within finite times.

In Fig. 7.7(a) we examine the dynamics of the populations of the edge as well
as the channel qubits of the chain for Ohmic boundary reservoirs (Sj=1, (j = 1, 2))
in the weak boundary couplings regime g1, g2 < J . The initial single-excitation
is on the first qubit (c1(0) = 1). The dynamics indicate oscillations between the
populations of the chain damped by the two Ohmic environments. The situation
however may change drastically in the strong boundary couplings regime g1, g2 >
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FIGURE 7.7: (a) Dynamics of the populations of the first qubit (black line), Nth qubit (teal
line) and channel qubits (orange line) for c1(0) = 1, N = 6, ωeg = J , ω1

c = ω2
c = J ,

S1 = S2 = 1 and g1 = g2 = 0.3J . (b) Same as in panel (a) but for g1 = g2 = 1.4J . (c)
Dynamics of the population P1(t) for various values of the environmental Ohmic
parameters and c1(0) = 1, N = 6, ωeg = J , ω1

c = ω2
c = J , g1 = g2 = 1.4J . Black line:

S1 = S2 = 0.5, teal line: S1 = S2 = 1.5 and orange line: S1 = S2 = 3.0. (d) Dynamics of the
population P1(t) for various values of the number of qubit sites and c1(0) = 1, ωeg = J ,
ω1

c = ω2
c = J , S1 = S2 = 2.0, g1 = g2 = 1.4J . Black line: N = 4, teal line: N = 8, orange

line: N = 12. In the insets of panels (b), (c) and (d) we show the long-time dynamics of the
population P1(t).

J , as shown in Fig.7.7(b). In this case the dynamics of the population P1(t) indicate
a long-time stability behaviour around a finite value for times much larger than any
other time scale of the system. Note that further increase of the boundary coupling
constants will not result to the increase of this long-time stability value. Still, as
seen in Fig. 7.7(c), this value is highly affected by the Ohmic parameters of the
environments (more specifically by the Ohmic parameter of the first environment
which is the one that communicates with the first qubit). In general, increase of the
Ohmic parameters results to more complex behaviour as indicated by the orange
line of Fig. 7.7(c). In the long-time dynamics picture, the population of the first
qubit exhibits an oscillatory behaviour with a frequency that depends on the Ohmic
parameter of its boundary reservoir. These non-coherent oscillations become faster
for super-Ohmic reservoirs and are essentially an effect associated with the non-
Markovianity of the boundary reservoirs that drive the chain, since they indicate
population exchanges between the chain and the latter for very long times. Another
parameter that affects considerably this oscillatory behaviour is the number of qubit
sites. In Fig. 7.7(d) we plot the dynamics of P1(t) for a chain of various number of
qubit sites N, boundary-driven by super-Ohmic environments with Sj=2, (j = 1, 2).
For a small number of qubit sites, the long-time dynamics in the inset of Fig. 7.7(d)
indicate a long-living coherent oscillatory behaviour (black line) while for chains
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that consist of larger number of qubits, the population of the first qubit exhibit small
non-coherent oscillations around a stabilized value (orange line). Our results are
just a first glimpse on the richness of the effects one may expect from the boundary-
driving of chains with Ohmic type of reservoirs.

7.3.3 Comparing Lorentzian to Ohmic environments

So far we have separately studied the cases of boundary-driven chains by reservoirs
with Lorentzian and Ohmic spectral densities. As is evident throughout our formal-
ism, the dynamics of the chain, when the boundary reservoirs are characterized by
a Lorentzian spectral density, do not depend directly on the qubit frequency ωeg,
but on the detuning ∆c between the latter and the peak frequency of the Lorentzian.
Therefore the specification of ∆c along with the rest of the Lorentzian and spin chain
parameters is sufficient for calculating the wavefunction of the chain. However, this
is not the case for Ohmic boundary reservoirs, where in order to calculate aspects of
the chain dynamics, one must specify the qubit frequency ωeg as well as all of the rest
of the Ohmic spectral density parameters (i.e. cut-off frequency and Ohmic param-
eter). This direct dependence on the qubit frequency is reflected on the particular
form of Bj(s) for Ohmic boundary reservoirs according to Eq. (7.23). In all of our
calculations involving Ohmic boundary reservoirs, in the regime of the parameters
we have explored, all couplings are not significantly larger than the qubit frequency
or the cut-off frequencies ω

j
c, (j = 1, 2).

In Fig. 7.8, we provide a comparative evaluation of the effect of the two spectral
densities. In Fig. 7.8(a), we have chosen both distributions to be peaked exactly on
resonance with the qubit frequency ωeg = 3J . Although the freedom in the choice
of the parameters of each distribution, results to many possible lineshapes of their
spectral densities, the general tendency for typical parameters of the two distribu-
tions is that Ohmic distributions are usually wider than Lorentzian distributions. In
Fig. 7.8(b) we use the distributions of Fig. 7.8(a) as spectral densities of the boundary
reservoirs and study the dynamics of the sum of all qubit populations in a N = 7
chain for various values of the boundary couplings gj, (j = 1, 2), and initial excita-
tion in the center of the chain. The solid lines correspond to Lorentzian boundary
reservoirs while the dashed lines correspond to Ohmic. As also argued in the dis-
cussion of Fig. 7.4, since the initial excitation is not on the edge qubits of the chain
and the boundary couplings are larger than the qubit-qubit coupling J , increasing
the values of gj, (j = 1, 2), results to slower dissipation of the total excitation in
the environments. Comparison between the solid (Lorentzian) and dashed (Ohmic)
lines, reveals two major differences: First, the dynamics of the total population in
the boundary-driven chain by Lorentzian reservoirs is more sensitive to the increase
of the boundary couplings compared to the Ohmic-driven chain. Moreover, for the
particular combination of parameters chosen, the total excitation in the chain tends
to live longer in Lorentzian-driven chains compared to Ohmic-driven ones, which
can be attributed to the much broader profile of the Ohmic spectral density com-
pared to the Lorentzian one. Second, it is evident that the dynamics of the sum of all
qubit populations exhibit more vivid oscillations in the Lorentzian case compared
to the Ohmic one. Such oscillations are indicative of the non-Markovian character
of the boundary-reservoirs and therefore the exchange of populations between the
chain and the reservoirs within finite times. Even if both types of reservoirs are
non-Markovian, the Ohmic spectral density of Fig. 7.8(a) tends to be substantially
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FIGURE 7.8: (a) Spectral density of a Lorentzian distribution with peak frequency ωc = 3J ,
width γ = 0.65J and g = J (solid line) compared with an Ohmic distribution with Ohmic
parameter S = 3, cut-off frequency ωc = J and g = J (dashed line). (b) Dynamics of the
sum of all qubit populations in a N = 7 chain and initial excitation in the center of the chain
(c(N+1)/2(0) = 1), for various coupling strengths between the boundary reservoirs and the
edge qubits. Black line: g1 = g2 = J , teal line: g1 = g2 = 2J and orange line:
g1 = g2 = 3J . The solid lines corresponds to Lorentzian boundary reservoirs, while the
dashed lines correspond to Ohmic. The rest of the parameters (except the coupling
strengths) correspond to the parameters of panel (a). The qubit frequency is chosen to be
resonant with the peak frequency of the two distributions, namely ωeg = 3J .

flatter than the Lorentzian spectral density, resembling thus a Markovian-like envi-
ronment for which no significant oscillations are expected between the chain and its
boundaries.

Finally, before concluding, we should note that the dynamics of the average-
state fidelity of the state transfer between the edges of a chain boundary-driven by
Ohmic reservoirs, display a behaviour more or less qualitatively similar to the corre-
sponding average-state fidelity dynamics of a boundary-driven chain by Lorentzian
reservoirs, shown in Fig. 7.5.

To sum up, in this chapter we presented a formalism for the systematic way of
calculating the wavefunction of an arbitrary length XX spin chain, boundary-driven
by non-Markovian environments of arbitrary spectral density. The theory was cast
in terms of Schrödinger’s equations of motion, within the single-excitation subspace,
and leads to closed form solutions for the Laplace transforms of the amplitudes, for
arbitrary initial conditions, using a recursive method. The inversion integrals can
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be easily calculated numerically (or even analytically in some cases), upon speci-
fication of the spectral density of each environment. The calculation of the wave-
function of the chain within the single-excitation subspace enables the study of a
number of interesting properties of the system. As an illustration of the potential of
the approach, we have considered Lorentzian and Ohmic spectral densities for the
boundary environments and studied aspects of the dynamical, as well as of the state
transfer properties of the system. Our results demonstrate the memory effects of
the non-Markovian environments. The concomitant information exchange between
the latter and the spin chain, give rise to a plethora of interesting effects such as
population trapping, oscillations between the populations of the edge spins or the
protection of the spin populations against dissipation, for increased values of the
boundary couplings.

One aspect of our results that turns out to be revealing and somewhat surpris-
ing has to do with the comparative analysis of the dynamics of the chain under two
quite different reservoirs; namely Lorentzian and Ohmic. We adopt the general no-
tion that any reservoir, with spectral density not smoothly and slowly varying as a
function of energy (frequency), within an extended range around the resonance with
the qubit, is non-Markovian. This entails some degree of memory, which in turn im-
plies that the loss into the reservoir would not be monotonic. In much of the work
and approaches on non-Markovian reservoirs, it is the Lorentzian that has served as
a typical illustration. Physically, that behavior should be expected for a Lorentzian
spectral density as it exhibits a well-defined peak. But so does an Ohmic, as well as
a superohmic spectral density. However, our direct quantitative comparison of the
effect of a Lorentzian spectral density versus that of a superohmic, reveals effects of
an almost qualitative difference between the two; the effect of the superohmic re-
sembles an almost Markovian-like reservoir, which implies a much lower degree of
non-Markovianity. This concrete example complements earlier general formulations
of measures of non-Markovian behavior [408].

Our work was motivated by the rapidly growing interest in the field of boundary-
driven open quantum systems and in particular the need for the development of the
necessary analytical or numerical tools for the study of their properties. The results
provide the background for a number of extensions, such as accounting for differ-
ent spin chain configurations, as well as the theoretical description of the system,
within our formal development, beyond the single-excitation. It would in addition
be interesting to investigate whether the behavior for long times of the edge qubits,
which communicate directly with the boundary reservoirs (Fig. 7.7), could be useful
in the survival of long-distance quantum correlations, for chains consisting of large
number of qubit sites, boundary-driven by Ohmic reservoirs. It should, however, be
kept in mind that, from the standpoint of state transfer and quantum information
processing, the single-excitation scheme is sufficient. Nevertheless, from the stand-
point of statistical mechanics properties of spin chains connected to non-Markovian
environments, extension of the approach beyond the single-excitation subspace is
necessary, although this represents a compelling and much challenging task within
the context of our formalism.

Extension of our work to different spin chain configurations would provide fur-
ther insight into the dynamics of systems boundary driven by non-Markovian envi-
ronments. On that issue, our approach avails itself to the evaluation of the degree
of non-Markovianity of various spectral densities. In the present chapter, by com-
paring the effects of Lorentzian to Ohmic environments, as manifested in the time
evolution of the system and the concomitant dissipation, we have noted some qual-
itative features attributable to non-Markovianity. There are, however, quantitative
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measures of non-Markovianity, as discussed for example in [408]. Given that there
are more than one relevant measures [409], it is the purpose of the next chapter to
explore those aspects in the context of our formalism and provide a quantitative
tool of evaluating non-Markovianity in open quantum systems damped by various
non-Markovian reservoirs.
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Chapter 8

Non-Markovianity in the time
evolution of open quantum
systems assessed by means of
quantum state distance

In the previous chapter we studied the dynamical and state transfer properties of
an arbitrary length spin XX chain driven by non-Markovian reservoirs at both ends.
Through a formulation in terms of the wave-function, combined with Laplace trans-
form, we were able to obtain results for chains of arbitrary length, i.e. number
of sites, and for environments characterized by different spectral densities such as
Lorentzian and Ohmic. Guided by the behaviour of the excitation dynamics, we
effectively assessed the qualitative differences of the system from that driven by a
Markovian reservoir which is known to entail monotonic decay. That assessment, in-
direct as it was, can only be considered qualitative, although it did provide a glimpse
of the similarities between these two non-Markovian cases. Yet, there are a number
of technical measures aiming at a quantitative assessment of the difference between
the states of a quantum system, as it evolves under coupling to different external
causes; in this case reservoirs. The difference between the evolution under a given
reservoir from that under a Markovian one, should therefore provide a quantitative
measure for what, following standard terminology [408, 410], we shall refer to as
non-Markovianity” (NM). The term degree of Markovianity (DM) can also be found
in the literature, meant to indicate the similarity to the evolution under a Markovian
reservoir. Although we have modelled the reservoirs in terms of an infinite collec-
tion of bosons, less common but essentially equivalent possible modelling in terms
of fermions can be found in the literature [411]. By its nature, our system consists of
fermions which could also be handled via the Jordan-Wigner transformation [262,
412]. The route we have chosen has been dictated by simplicity and usefulness in
state transfer problems.

8.1 General description of our methodology

Having examined much of the existing literature on the issue, we have come to the
realization that our scheme provides excellent territory for the quantitative study
of non-Markovianity. The relevant literature is vast, ranging from general formal
considerations [413–418] to examples in small specific systems [419–422], including
methods for the estimation of NM using machine learning tools [423]. The advan-
tage of our system stems from the combination of a realistic arrangement of an XX
chain of mutually interacting qubits, with a reservoir of arbitrary spectral density
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coupled to one end. In the previous chapter of the thesis, we had considered a chain
coupled to reservoirs at both ends. Although the present quantitative study could
as easily address that arrangement, since our objective is the comparative study of
non-Markovian reservoirs, we have chosen to consider the same system with only
one end qubit coupled to a variety of reservoirs, so as to focus on the role of the
reservoir. We calculate first the time evolution of the system under each reservoir,
one of which is Markovian. In the second step, we calculate the difference of the
state of the system evolved under a given non-Markovian reservoir from the state
evolved under the Markovian one. The time evolution of that difference is what we
refer to as the NM of the given reservoir.

We have chosen to address the issue in terms of perhaps the most direct notion,
namely the quantum state distance (QSD). A variety of measures appropriate as
tools for our task have been proposed over the years [409, 424]. Their objective is the
quantification of the difference between two different quantum states of a system,
which is of fundamental importance in quantum information processing [425, 426],
state transfer being a case in point [398]. The most common quantity pertaining to
that issue is the Fidelity (F), for which there are various expressions in the literature
[427–429]. It is meant to characterize the similarity or difference between the density
matrices representing the two states. Obviously it is related to the notion of distance
between two quantum states, which explains why the formulation of some distance
measures involve one of the F expressions. There is no unique expression or value
for F, which is also the case for the QSD. In some sense, it may be matter of taste or
perhaps usefulness in a particular context which value of F or QSD is adopted.

Our stated objective then is the quantitative evaluation and calibration of non-
Markovianity of several non-Markovian reservoirs by means of QSD [430]. In view
of the diversity of expressions for the QSD, inevitably an additional component has
been injected into our task, namely, the comparative analysis of various QSD mea-
sures. Specifically, since the NM does depend on the particular QSD measure, it is
important to know whether and to what extend the classification of various reser-
voirs in terms of NM is independent of the QSD measure employed. And this com-
pletes the road map of this chapter.

In the following section, we review various QSD measures, their properties and
the modifications necessary in order to accommodate issues pertaining to open sys-
tems. In section 8.3 we describe the theoretical approach to our problem in terms of
the time-dependent Schrödinger’s equations of motion in Laplace space, from which
one can obtain even closed form solutions for the judiciously transformed ampli-
tudes, for chains of arbitrary length, as well as arbitrary initial conditions, within
the single-excitation subspace. Using the amplitudes of the chain sites, we construct
the density matrices necessary for the calculation of the various QSD measures. Fi-
nally, we present the results of our study and provide an overview as well as some
concluding remarks related to our work.

8.2 Brief summary and necessary modifications of QSD mea-
sures

Before embarking on the discussion of QSD measures, a significant clarification re-
lated to our approach and treatment is necessary. As discussed in the next sec-
tion, the time evolution of the system is formulated in terms of the time-dependent
Schrödinger equation, from which we obtain the amplitudes of the wave-function
of the system as a function of time, after having eliminated the degrees of freedom
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of the reservoir. The time-dependent amplitudes are then combined to obtain the
reduced density operator of the system which is needed in all expressions of QSD.
The advantage of this approach is that it is applicable for any form of reservoir,
sidestepping thus the need for a master equation which is not generally available,
especially for non-Markovian reservoirs. There is, however, a price paid for this ad-
vantage. The resulting density operator describes only the excitation, because the
populations of the ground states have been discarded in the process of eliminating
the continuum of the reservoir. In other words, we retain only one part of the entire
Hilbert space of the compound system. Inclusion of those infinite in number terms is
computationally impossible, as it would entail keeping track of the degrees of free-
dom of the reservoir. The implication for the system density operator is that its trace
eventually decays to zero. The situation is analogous to the treatment of the decay of
a discrete state coupled to a continuum [26, 184], except that here we deal with the
excitation of a chain. Thus in a real sense, the reduced density operator describes the
time evolution of the excitation which as expected, in the long time limit disappears
into the reservoir. Our study aims at examining the role of the form of a reservoir in
that time evolution.

In books and papers, more often than not, expressions for F or QSD are assumed,
either tacitly or explicitly, to involve density operators of trace equal to unity. How-
ever, since in our approach, the trace of the reduced density operator decays, the
expression for the QSD needs to be modified accordingly.

To illustrate the issue, let us consider the most common and straightforward QSD
measure, referred to as the trace distance. It is defined by

DT ≡
1
2

Tr |ρ− σ|, (8.1)

where |A|, for a matrix A, stands for
√

A† A which stands for the positive definite
square root of the matrix under the radical symbol, with A† being the Hermitian
adjoint of A. Although slight variations of the definition of the square root of a
matrix can be found in the literature, we adopt the one most commonly found in
the literature on quantum information [431]. Applying the above definition to the
expression for the trace distance, we obtain

DT =
1
2

Tr
√
(ρ†ρ + σ†σ− ρ†σ− σ†ρ). (8.2)

Since the density operators under the radical are Hermitian, the expression for the
trace distance shown in Eq. (8.2) reduces to

DT =
1
2

Tr (ρ− σ) , (8.3)

which is one of the possible square roots. It so happens that the trace of that root
is identically zero for matrices normalized to unity. However, in our case the traces
of the density operators are time-dependent, decaying to zero in the long time limit.
Consequently the trace distance is also time-dependent in a fashion depending on
the relevant reservoirs, as calculated through Eq. (8.2).

Let us consider now another expression for QSD, namely the Hellinger measure
DH, defined as

D2
H ≡ Tr

(√
ρ−
√

σ
)2

, (8.4)



114
Chapter 8. Non-Markovianity in the time evolution of open quantum systems

assessed by means of quantum state distance

which upon expanding the square becomes

D2
H = Tr ρ + Tr σ− 2 Tr

(√
ρ
√

σ
)

, (8.5)

where the invariance of the trace under cyclic permutation of the factors has been
used. If the density operators are and remain normalized to unity, Eq. (8.5) reduces
to D2

H = 2
[
1− Tr

(√
ρ
√

σ
)]

, leading to the expression

DH =
√

2
[
1− Tr

(√
ρ
√

σ
)]1/2

, (8.6)

for the Hellinger distance measure, which typically is the expression cited for this
QSD measure. However, in order to account for our case, following Eq. (8.5), we
have:

DH =
[
Tr ρ + Tr σ− 2 Tr

(√
ρ
√

σ
)]1/2

. (8.7)

If the density operators tend to zero as t → ∞, in that limit, Eq. (8.7) correctly
yields zero for the distance between the two states, as they both decay. On the other
hand, Eq. (8.6) would lead to the value

√
2 which on physical grounds, is at best

problematic, as it does not account for the decay of the traces of the density opera-
tors.

There is one more measure that we employ in our calculations. It is known as the
Bures distance measure, usually denoted by DB. Since it is typically defined in terms
of one of the expressions for F, we list below the three most common expressions,
labelled for our convenience F1, F2 and F3. They are:

F1 (ρ, σ) =

(
Tr
√√

ρσ
√

ρ

)2

, (8.8a)

F2 (ρ, σ) = Tr
√√

ρσ
√

ρ =
√

F1 (ρ, σ), (8.8b)

F3 (ρ, σ) = Tr (ρσ) . (8.8c)

The Bures QSD is usually defined as D2
B (ρ, σ) ≡ 2

[
1−

√
F1 (ρ, σ)

]
, which, in view

of Eq. (8.8b) above, can be simply written as

D2
B (ρ, σ) = 2 [1− F2 (ρ, σ)] , (8.9)

from which we obtain

DB (ρ, σ) =
√

2
[

1− Tr
√√

ρσ
√

ρ

]1/2

. (8.10)

Again, this expression is valid as long as the traces of both density operators remain
equal to one, because if in any distance measure we set ρ = σ, we should obtain
zero. This condition is satisfied as long as Tr ρ = Tr σ = 1 for all times. But if the
traces decay to zero, for the case ρ = σ we would obtain the nonphysical value

√
2.

This contradiction is amended if the above expression is modified as shown in the
following equation:

DB (ρ, σ) =
√

2
[

1
2
(Tr ρ + Tr σ)− Tr

√√
ρσ
√

ρ

]1/2

. (8.11)
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This is the expression we are using for the Bures QSD in this chapter. In the long time
limit and in the presence of dissipation, the modified Bures distance tends to zero as
it should. Part of our investigation addresses the rate with which the various QSD
measures tend to their final value. We are in addition interested in the consistency
of the character of NM obtained by different measures. For whatever it is worth, it
seems to us that one could as well define a QSD measure through an extension of
Eq. (8.9), by inserting any of the expressions for F.

8.3 Theoretical formulation

As discussed in section 8.2, all expressions for QSD measures involve the density
matrices ρ and σ of the quantum states whose distance is to be calculated. In gen-
eral, the temporal evolution of the density matrix of a system coupled to an external
environment is given by the solution of a master equation, obtained after tracing
out the environmental degrees of freedom from the density matrix of the compound
system (system + environment) [26]. Despite the ongoing progress in the deriva-
tion of closed form expressions for master equations of quantum systems coupled
to non-Markovian reservoirs [228, 432–435], such expressions are usually obtained
for special cases of environmental spectral densities under certain approximations
and often are too complicated to be handled even numerically. Consequently, an
attempt to quantify the degree of non-Markovianity in systems coupled to environ-
ments with a variety of possible spectral densities using numerical solutions of the
respective master equations would be pointless -if possible at all- for certain forms
of environmental spectral densities, such as those studied in this work.

To address this difficulty, we have developed an approach enabling the calcula-
tion of the amplitudes of the wavefunction of the open system, from which we then
construct its density matrix. This formulation has been described in detail in the pre-
vious chapter of the thesis, where it was used to calculate aspects of the dynamics of
a XX chain boundary-driven by non-Markovian environments. As demonstrated be-
low, one of the advantages of this approach is its applicability to any possible form
of environmental spectral density, as well as an arbitrary number of qubits in the
chain.

The system under consideration consists of N identical qubits in a one-dimensional
configuration coupled to each other via a nearest-neighbor coupling J . The Nth

qubit of the chain is coupled, via a coupling strength g, to an external environ-
ment of an arbitrary spectral density J(ω). Our goal is to assess the degree of non-
Markovianity of that system by means of the QSD between its density matrix and
the density matrix of the same system of N qubits, with the Nth qubit coupled to a
Markovian environment. The Markovian environment is known to induce a shift of
the energy of the last qubit, as well as a decay [26]. We neglect the shift, as it is of no
significance in the issue of dissipation and denote the decay by γM. The problem is
studied using several QSD measures, for various forms of non-Markovian spectral
densities J(ω). Hereafter, we denote the density matrix of the Markovian open sys-
tem by σ(t) and the density matrix of the non-Markovian open system by ρ(t). A
schematic presentation of the systems under study and our methodology is depicted
in Fig. 8.1.

The Hamiltonian of the compound systemH = HS +HE +HI , consists of three
parts; namely, the Hamiltonian of the XX chain HS, the Hamiltonian of the envi-
ronment coupled to Nth (last) qubit of the chain HE, and the chain-environment
interaction HamiltonianHI , given by the relations (h̄ = 1):
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FIGURE 8.1: Schematic representation of the system at study and our methodology. A chain
of an arbitrary number of coupled qubits is interacting with an external reservoir at its one
end. The system is studied for two different cases of external reservoirs, namely for a
Markovian and a non-Markovian reservoir with spectral density J(ω). Through our
methodology we calculate the qubit amplitudes in the single-excitation subspace via which
we construct the density matrix of the chain for each case. The QSD between the two
density matrices is then calculated using various measures, allowing us to assess the degree
of non-Markovianity of the system for different types of spectral densities J(ω).

HS = ωe

N

∑
i=1
|e⟩i i⟨e|+ ωg

N

∑
i=1
|g⟩i i⟨g|+

N−1

∑
i=1

J
2
(
σ+

i σ−i+1 + σ−i σ+
i+1

)
, (8.12a)

HE = ∑
λ

ωλaE
λ

†
aE

λ, (8.12b)

HI = ∑
λ

g(ωλ)
(

aE
λσ+

N + aE
λ

†
σ−N

)
, (8.12c)

where ωg and ωe are, respectively, the energies of the ground and excited state of
each spin (all of which are assumed identical), ωλ is the energy of the λ-mode of the
environment consisting of an infinite number of bosons, aE

λ and aE
λ

†, are the bosonic
annihilation and creation operators of the environment, and σ+

i = |e⟩i i⟨g| and σ−i =
|g⟩i i⟨e|, i = 1, . . . , N are the qubit raising and lowering operators, respectively.

The wavefunction of the compound system in the single-excitation space is ex-
pressed as:

|Ψ(t)⟩ =
N

∑
i=1

ci(t) |ψi⟩+ ∑
λ

cE
λ(t)

∣∣∣ψE
λ

〉
, (8.13)

where,

|ψi⟩ ≡ |g⟩1 |g⟩2 . . . |g⟩i−1 |e⟩i |g⟩i+1 . . . |g⟩N |0⟩E , (8.14a)

and ∣∣∣ψE
λ

〉
≡ |g⟩1 |g⟩2 . . . |g⟩N |00 . . . 01λ0 . . . 00⟩E . (8.14b)
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8.3.1 Markovian system: construction of σ(t)

As already noted above, a Markovian environment (i.e. an environment with slowly
varying spectral density) interacting with a two-level quantum system (qubit) within
the Born approximation, induces a shift as well as a decay in the energy of the latter.
Formally, this result is obtained by tracing the environmental degrees of freedom out
of the density matrix of the compound system, a procedure found in many quantum
optics and open quantum systems textbooks [12, 26]. In our problem, the Markovian
environment will only affect the energy of the last qubit (Nth qubit) of the chain. Ne-
glecting the shift and keeping the decay rate γM, the time dependent Schrödinger
equation (TDSE) for the chain amplitudes reads:

i
dci(t)

dt
=
[
ωe + (N − 1)ωg

]
ci(t) +

J
2
[ci−1(t) + ci+1(t)] , i = 1, . . . , N − 1,

(8.15a)

i
dcN(t)

dt
=
[
ωe + (N − 1)ωg − i

γM

2

]
cN(t) +

J
2

cN−1(t) (8.15b)

where, in order to compress notation in our equations, we allowed i to run from
1 to N − 1 in Eq. (8.15a), noting that ci−1(t) = 0 for i = 1, because qubit 1 is cou-
pled only to qubit 2. To simplify the set of Eqs. (8.15), it is useful to introduce
the amplitude transformations ci(t) = e−i[ωe+(N−1)ωg]t c̃i(t), i = 1, . . . , N − 1 and
cN(t) = e−i[ωe+(N−1)ωg−i γM

2 ]t c̃N(t), in terms of which the equations become:

dc̃i(t)
dt

= −i
J
2
[c̃i−1(t) + c̃i+1(t)] , i = 1, . . . , N − 1, (8.16a)

dc̃N(t)
dt

= −i
J
2

e
γM

2 t c̃N−1(t) (8.16b)

where, as above, c̃i−1(t) = 0 for i = 1. The above set of N coupled linear differential
equations can be readily solved numerically to yield the time dependence of the
tilde amplitudes of the chain sites. The density matrix σ(t) of the chain can then be
constructed in terms of the site amplitudes as shown in the following equation:

σ(t) =
N

∑
i,j

ci(t)c∗j (t) |ψi⟩
〈
ψj
∣∣ (8.17)

8.3.2 Non-Markovian system (construction of ρ(t))

The construction of ρ(t), i.e. the density matrix of the chain with the last qubit inter-
acting with a non-Markovian reservoir, is a subtler task because the memory effects
of the reservoir make the equation of the last qubit amplitude more complicated. In
the previous chapter of the thesis, we examined the dynamics of XX chain bound-
ary driven by non-Markovian reservoirs. On the basis of the approach developed
therein, as applied to the present system, we outline here the basic procedure to ob-
tain the amplitudes of the chain sites. In order to discriminate the amplitudes from
those of the Markovian damped chain, we denote them by c′i(t), i = 1, . . . N.

Adopting the amplitude transformations c′i(t) = e−i[ωe+(N−1)ωg]t c̃′i(t) , i = 1, . . . N

and c′λ
E(t) = e−i(Nωg+ωλ)t c̃

′E
λ (t), the time-dependent Schrödinger’s equation yields:

i
dc̃′i(t)

dt
=
J
2
[
c̃′i−1(t) + c̃′i+1(t)

]
, i = 1, . . . , N − 1, (8.18a)
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i
dc̃′N(t)

dt
=
J
2

c̃′N−1(t) + ∑
λ

g(ωλ)e−i∆λt c̃
′E
λ (t), (8.18b)

i
dc̃
′E
λ (t)
dt

= g(ωλ)ei∆λt c̃′N(t), (8.18c)

where ∆λ ≡ ωλ − (ωe − ωg) ≡ ωλ − ωeg and c̃′i−1(t) = 0 for i = 1. Formal integra-
tion of Eq. (8.18c), under the initial condition c̃

′E
λ (0) = 0, and substitution into Eq.

(8.18b), yields:

dc̃′N(t)
dt

= −i
J
2

c̃′N−1(t)−
∫ t

0
∑
λ

e−i∆λ(t−t′) [g(ωλ)]
2 c̃′N(t

′)dt′. (8.19)

The summation over the environmental modes is at this point replaced by an in-
tegration which requires the specification of the environment’s spectral density J(ω),
according to the relation ∑λ [g(ωλ)]

2 →
∫

dω J(ω). The resulting set of differential
equations then becomes:

dc̃′i(t)
dt

= −i
J
2
[
c̃′i−1(t) + c̃′i+1(t)

]
, i = 1, . . . , N − 1, (8.20a)

dc̃′N(t)
dt

= −i
J
2

c̃′N−1(t)−
∫ t

0
R(t− t′)c̃′N(t

′)dt′, (8.20b)

where
R(t) ≡

∫ ∞

0
J(ω)e−i(ω−ωeg)tdω. (8.21)

The second term in Eq. (8.20b) reflects the possibility for the excitation to be trans-
ferred from the Nth qubit to the non-Markovian reservoir and vice versa.

Taking the Laplace transform of Eqs. (8.20) and following the procedure pre-
sented in the previous chapter of the thesis, we find that the Laplace transform F1(s)
of the tilde amplitude c̃′1(t) is given by the expression:

F1(s) =
ikc′N(0)−k2[s+B(s)]A1(s)c′N−1(0)+(ik)∑N−2

m=1

{
ik[s+B(s)]AN−m(s)−AN−1−m(s)

}
c′m(0)

ik[s+B(s)]AN(s)−[1+s+B(s)]AN−1(s)
.

(8.22)
where k ≡ 2

J , B(s) is the Laplace transform of the function R(t) and Am(s) is given
by the following expression:

Am(s) ≡

[
(iks) + i

√
k2s2 + 4

]m
−
[
(iks)− i

√
k2s2 + 4

]m

2mi
√

k2s2 + 4
, m = 1, . . . , N. (8.23)

The Laplace transforms Fi(s) of the remaining qubit amplitudes are connected to
F1(s) via the relation:

Fi(s) = Ai(s)F1(s)− (ik)
i−1

∑
n=1

Ai−n(s)c′n(0), i = 2, . . . , N, (8.24)

where we used the fact that c̃′i(0) = c′i(0) for every i = 1, . . . , N. The effectiveness of
this method rests on the fact that it allows the derivation of closed form expressions
for the Laplace transforms of the tilde amplitudes for an arbitrary number of qubits
N, an arbitrary spectral density J(ω) for the environment that interacts with the
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Nth qubit of the chain, as well as arbitrary initial conditions. The Laplace inversion
integrals can be readily calculated numerically (or even analytically in some cases)
upon specification of these parameters to yield the tilde amplitudes of the chain sites,
in terms of which we can calculate c′i(t), i = 1, . . . , N, and thus construct the density
matrix for the chain via the relation:

ρ(t) =
N

∑
i,j

c′i(t)c
′
j
∗
(t) |ψi⟩

〈
ψj
∣∣ (8.25)

By construction, the density operators given by Eqs. (8.17) and (8.25) are Hermi-
tian, with a time-dependence that leads to a decaying trace, for reasons discussed in
section 8.2. Specific types of non-Markovian reservoirs, such as Lorentzian [21, 317],
Lorentzian squared [436] and Ohmic [407, 437] are employed in order to assess the
effect of non-Markovianity οn the chain in each case. The analytical derivations of
the functions R(t) and B(s) for these types of reservoirs are given in Appendix B.

8.4 Quantitative evaluation of non-Markovianity for various
non-Markovian reservoirs

The stated objective of this section is the quantitative assessment of NM of non-
Markovian reservoirs in a realistic context provided by a spin chain. As outlined
in the previous sections, we have chosen to assess NM in terms of QSD measures
between the state of the chain coupled to various reservoirs. An obviously suit-
able for the purpose quantity is the QSD between the density operator of the chain
evolved under a Markovian from that evolved under a non-Markovian reservoir.
From a physical standpoint, it stands to reason that the larger the values of the QSD,
irrespective of the measure under consideration, the less Markovian the system’s
evolution will be, which means more pronounced non-Markovianity. Given that
reservoirs by definition involve certain parameters, characterising their properties,
in addition to the system-reservoir coupling constant, a decision has to be made
as to the choice of parameters that make the value of QSD most meaningful. It is
rather obvious that a direct comparison between, for example, an evolution under
a Markovian reservoir with damping rate γM and a Lorentzian one with arbitrarily
chosen parameters g, γ and ∆c would be pointless. We suggest that, for the compar-
ison to be meaningful, a feature common to the effect of all reservoirs entering the
comparison should be adopted. With that in mind, we note that for all reservoirs the
excitation of all qubits will eventually decay to zero. Since initially the excitation is
in the first qubit, without claim to uniqueness, we have chosen the parameters of the
various reservoirs such that the half life of the excitation of the first qubit is approx-
imately the same to its half life under a Markovian reservoir with a given γM. This
convention leaves a freedom on the choice of the parameter g, which expresses the
coupling strength between the last qubit of the chain and the non-Markovian reser-
voir, and consequently it regulates the frequency of population exchange between
the two. In both the single-qubit as well as the many-qubit cases, and for all non-
Markovian reservoirs considered, we fix the parameter g at the value g = 1, i.e. we
measure all parameters in units of g. Note that the parameters that determine the
lifetime of the excitation in the chain are chosen such that the period of population
oscillations between the last qubit and the reservoir is smaller than this lifetime.
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8.4.1 Single qubit

We begin our analysis by considering the simplest case of a single qubit coupled to
a variety of non-Markovian reservoirs. These results serve as a point of reference
in the comparative analysis of the interplay between non-Markovianity and qubit-
qubit interaction, as reflected in the evolution of the QSD measures as a function of
the time.
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FIGURE 8.2: Dynamics of the excitation survival probability of a single qubit coupled to
various types of reservoirs: (a) Markovian reservoir with γM = 0.01, (b) Lorentzian
reservoir with g = 1, γ = 0.03 and ∆c = 0, (c) Lorentzian squared reservoir with g = 1,
γ = 0.3 and ∆c = 0, (d) Ohmic reservoir with g = 1, S = 1.5, ωc = 8 and qubit frequency
ωeg = 10.

In Fig. 8.2 we plot the time dynamics of the single qubit excitation survival
probability for various types of reservoirs. In particular, we examine the cases of
Markovian, Lorentzian, Lorentzian squared and Ohmic reservoirs, with the param-
eters of each non-Markovian reservoir chosen as described above. The Lorentzian
and Lorentzian squared spectral densities result in general to fast oscillations in the
single-qubit survival of excitation dynamics, indicating the exchange of the exci-
tation between the qubit and the environment within finite times. The high fre-
quency of these oscillations is attributed to a large coupling strength g compared to
the Lorentzian and Lorentzian-squared widths γ. As g is decreased the frequency
of oscillations tends also to decrease. Note that the Markovian limit would be cap-
tured by increasing γ but at the same time keeping the ratio g2/γ constant. The
Ohmic spectral distribution tends in general to be much broader than the Lorentzian
and Lorentzian squared distributions, leading to a qubit excitation survival proba-
bility that resembles more the respective survival probability of the excitation for the
Markovian case.

The QSD measures between the Markovian-damped single-qubit system and the
non-Markovian ones are presented in Fig. 8.3. In all three of the non-Markovian
reservoirs under consideration, the coupling strength g between the single-qubit and
the reservoir has been kept the same. As expected, all QSD measures are zero for
t = 0, as well as in the long time limit, as there is practically no excitation left in the
open system.
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FIGURE 8.3: QSD measures between the Markovian-damped and the
non-Markovian-damped system using various types of non-Markovian reservoirs in the
single-qubit case. The types of reservoirs chosen and their parameters are: Markovian
reservoir with γM = 0.01, Lorentzian reservoir with g = 1, γ = 0.03 and ∆c = 0, Lorentzian
squared reservoir with g = 1, γ = 0.3 and ∆c = 0, Ohmic reservoir with g = 1, S = 1.5,
ωc = 8 and qubit frequency ωeg = 10. (a) Markovian-Lorentzian Trace Distance, (b)
Markovian-Lorentzian-squared Trace Distance, (c) Markovian-Ohmic Trace Distance, (d)
Markovian-Lorentzian Hellinger Distance, (e) Markovian-Lorentzian-squared Hellinger
Distance, (f) Markovian-Ohmic Hellinger Distance, (g) Markovian-Lorentzian Bures
Distance, (h) Markovian-Lorentzian-squared Bures Distance, (i) Markovian-Ohmic Bures
Distance.

We focus first on the comparison of the degrees of non-Markovianity, for dif-
ferent types of non-Markovian reservoirs, resulting from the same QSD measure.
The trace distance between the Markovian and the Lorentzian damped system (Fig.
8.3(a)) exhibits rapid oscillations between two bounds, whose values change over
time. The upper bound is initially at its maximum value and over time decreases to
zero, whereas the lower bound initially increases, reaches a maximum, after which it
decreases merging with the upper bound, tending eventually to zero for long times.
The dynamics of the trace distance between the Markovian and the Lorentzian-
squared damped system (Fig. 8.3(b)) also exhibit rapid oscillations, following a trend
similar to the Markovian-Lorentzian case, with the exception that the lower bound
can be zero within finite times, indicating that, at those instants, the Lorentzian-
squared damped system resembles the Markovian-damped one. The oscillations in
both Figs. 8.3(a) and 8.3(b) are indicative of the fast excitation exchange between
the qubit and the non-Markovian reservoirs. In Fig. 8.3(c) we plot the trace distance
between the Markovian-damped and the Ohmic-damped qubit state as a function
of time. Clearly, the behaviour of the trace distance dynamics in this case differs
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substantially from the dynamics of the Markovian-Lorentzian and the Markovian-
Lorentzian-squared cases, in that it does not exhibit any oscillations, reaches a max-
imum after some finite time before decreasing, with the overall values of the trace
distance remaining much smaller than the respective values in panels (a) and (b) of
Fig. 8.3. We may therefore safely conclude that, under the prescribed conditions on
parameters, the Ohmic-damped single qubit system displays the lowest character of
NM.

In addition to the trace distance, we have calculated QSD’s in terms of two
other relevant measures, namely the Hellinger and Bures measures, with the re-
sults shown in Fig. 8.3. The overall behavior bears significant similarity to that of
the trace distance, with some non-negligible quantitative differences. Note that all
Markovian-Lorentzian and Markovian-Lorentzian-squared QSD measures tend to
zero as we tune the Lorentzian and Lorentzian-squared parameters to the Markovian
limit. In Fig. 8.3, the oscillations reflecting the exchange of excitation between qubit
and reservoir are still present in both measures for the Markovian-Lorentzian and
Markovian-Lorentzian-squared cases, whereas they are absent for the Markovian-
Ohmic one. However both of these measures produce generally slower decrease
of the QSD from the respective trace distance measure. For example, in terms of
the trace distance, the value of the QSD between Lorentzian and Markovian in the
vicinity of t = 100 hovers around 0.15, whereas the Hellinger and Bures measures
indicate values around a mean of 0.4. Moreover, the oscillations of the QSD for the
Markovian obtained from these two measures are damped much more slowly than
the oscillations in the trace distance. The Ohmic case seems to follow the same trend,
in that these two measures produce larger values for the QSD and a much slower
evolution towards the expected value of 0. In summary, for all three non-Markovian
reservoirs in the single qubit case, the trace distance is found to show faster decay of
non-Markovianity than the Hellinger and Bures measures do. It is also worth noting
that, despite the non-trivial formal difference of the expressions for the Hellinger
and Bures QSD (Eqs. (8.7) and (8.11)), they lead to practically the same dynamics,
indicating the same NM effect.

8.4.2 Five mutually interacting qubits

The merit of our approach rests with the possibility to obtain straightforwardly the
Laplace transforms of the qubits tilde state amplitudes for an arbitrary number of
qubits N, because N appears in our equations as a modifiable parameter. Having
calibrated the measures of QSD in characterising non-Markovianity in the simplest
set-up of a single qubit, in this section we explore the role of non-Markovianity in
the more realistic situation of a chain involving qubit-qubit interaction. For a con-
crete quantitative analysis, we have chosen five qubits in an XX chain with nearest
neighbor coupling J . The calculation follows the approach presented in section 8.3,
with the initial excitation in qubit 1 and the last qubit 5 coupled to the reservoir. The
question now is how the non-Markovianity of the reservoir affects the exchange of
excitation between the qubits, as manifested in the evolution of QSD between the
Markovian and the various non-Markovian reservoirs.

In a set-up of this type, the crucial parameter is J , as it controls the communi-
cation between qubits, which typically is the dominant aspect in applications. In
order to remain within a realistic scenario, we have chosen the Markovian damping
rate γM much smaller than J , keeping the choice of the parameters of the non-
Markovian reservoirs as in the previous section, so that the initial excitation of the
first qubit decays on a time scale approximately the same for all reservoirs. At first,
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FIGURE 8.4: Dynamics of the excitation survival probability of the first qubit of a chain
consisting of N = 5 qubits with qubit-qubit coupling J = 1. The initial excitation is chosen
to be on the first qubit while the last qubit of the chain is coupled to various types of
reservoirs: (a) Markovian reservoir with γM = 0.01, (b) Lorentzian reservoir with g = 1,
γ = 0.03 and ∆c = 0, (c) Lorentzian squared reservoir with g = 1, γ = 0.3 and ∆c = 0, (d)
Ohmic reservoir with g = 1, S = 1.5, ωc = 8 and qubit frequency ωeg = 10.

we calculate the time evolution of the excitation probability of the first qubit for all
of the reservoirs under consideration, with the results shown in Fig. 8.4. The glaring
difference between the single-qubit dynamics in Fig. 8.2 and the N = 5 dynamics of
the first qubit excitation in Fig. 8.4, is the appearance of oscillations in the dynamics
of the latter, indicating the exchange of population between the qubits of the chain.
In the cases of Lorentzian and Lorentzian squared reservoirs, such oscillations are
superimposed on the oscillations between the last qubit and the reservoir, resulting
to the characteristic oscillatory dynamics of P1(t) depicted in Figs. 8.4(b) and 8.4(c).
For the Markovian case (Fig. 8.4(a)) the oscillations are due solely to the coupling
between the qubits, because as we have seen in the case of the single qubit (Fig.
8.2(a)) the Markovian damping is monotonic. Again, for the Ohmic-damped case,
the dynamics of the first qubit population (Fig. 8.4(d)) bears strong similarity to the
Markovian-damped chain, with a rather unexpected exception, in that the oscilla-
tions are found to collapse abruptly after a finite time, a behaviour that has been
also reported in previous works involving qubits coupled to Ohmic reservoirs [366,
438].

We consider now the dynamics of the QSD measures exploring the non-Markovianity
of the three reservoirs in the context of a chain of N = 5 interacting qubits, with the
results shown in Fig. 8.5. First we note that the time scales of decay for all QSD
measures are longer than the respective time scales in the single-qubit case of Fig.
8.3. This behaviour was to be expected, since the excitation is now spread over the
whole chain and naturally it takes more time to be lost in the reservoir. At the same
time, the values of the QSD measures are in general larger than the respective values
of Fig. 8.3, indicating that the NM of the open system is affected by the number of
qubits in the chain. The Markovian-Lorentzian and Markovian-Lorentzian-squared
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FIGURE 8.5: QSD measures between the Markovian-damped and the
non-Markovian-damped system using various types of non-Markovian reservoirs for the
case of N = 5 qubits with qubit-qubit coupling J = 1. The types of reservoirs chosen and
their parameters are: Markovian reservoir with γM = 0.01, Lorentzian reservoir with g = 1,
γ = 0.03 and ∆c = 0, Lorentzian squared reservoir with g = 1, γ = 0.3 and ∆c = 0, Ohmic
reservoir with g = 1, S = 1.5, ωc = 8 and qubit frequency ωeg = 10. (a)
Markovian-Lorentzian Trace Distance, (b) Markovian-Lorentzian-squared Trace Distance,
(c) Markovian-Ohmic Trace Distance, (d) Markovian-Lorentzian Hellinger Distance, (e)
Markovian-Lorentzian-squared Hellinger Distance, (f) Markovian-Ohmic Hellinger
Distance, (g) Markovian-Lorentzian Bures Distance, (h) Markovian-Lorentzian-squared
Bures Distance, (i) Markovian-Ohmic Bures Distance. In the inset of panel (f) we show the
dynamics of the probability of finding the excitation in the Ohmic environment for the case
of N = 5 qubits. The time window where the probability dynamics abruptly become
oscillatory coincides with the time window where the Markovian-Ohmic QSD measures
follow the same behaviour.

QSD measures are seen to display an overall similar behaviour. This similarity re-
quires some clarification, as it is a bit misleading. Recall that the values of the param-
eters for the Lorentzian and Lorentzian-squared spectral densities have been chosen
according to the criterion explained in the discussion of Fig. 8.1. As a consequence,
the comparison is not between a Lorentzian and its square. However, in detailed
calculations we have found that an open system damped by a Lorentzian squared
reservoir would display much larger NM character compared to the same system
damped by a Lorentzian with the same parameters (g, γ and ∆c). In fact, under those
conditions, the excitation throughout the chain for the Lorentzian squared case re-
mains constant for a time so long that it practically resembles a steady state for the
timescales considered in our work. All QSD measures we examined (Trace distance,
Hellinger distance and Bures distance) exhibit dynamics following the same trend,
although the exact distance values may differ in general between different measures.
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As clearly seen in Fig. 8.5, the Hellinger and Bures distances display minor differ-
ences in their dynamical behaviour for all of the reservoirs studied.

A rather interesting phenomenon appears in the dynamical behaviour of the
QSD measures in the case of the Ohmic-damped chain. In contrast to the single-
qubit case, the interplay between qubit-qubit and qubit- Ohmic reservoir interac-
tions gives rise to an intricate behavior in the dynamics for all of the Markovian-
Ohmic QSD measures considered. The dynamics are initially smooth for all QSD
measures with the distance being zero at t = 0 and slowly increasing afterwards.
However, there is a time when they suddenly change and exhibit rapid oscillations.
These rapid oscillations appear only in a time window which is the same for all QSD
measures considered. Beyond that time window, the dynamics are smoothed out
with the distance slowly decaying back to zero. The time window of that sudden
modification of the behaviour of the QSD measures coincides with the time window
within which the total probability of finding the excitation in the Ohmic reservoir,
exhibits similar behaviour (see inset of Fig. 8.5(f)). Changes in the dynamical be-
haviour of the system can be also observed through abrupt changes in the dynam-
ics of the qubit excitations of the chain, as also reported in [366]. In summary, the
qubit-qubit interaction is found to enhance the NM obtained in all QSD measures.
Conversely, this may be interpreted as an enhancement of the excitation storage in
the chain due to the non-Markovian character of the reservoir.

To sum up, the work in this chapter was undertaken with the purpose of eval-
uating the NM of some typical non-Markovian reservoirs, by means of the most
common QSD measures, some of which required a slight modification owing to the
character of the density operators involved. In order to offer an analysis connected
with a realistic system typical in quantum information processing, we chose an XX
chain of interacting qubits with a reservoir connected to one end of the chain. QSD
measures require the density matrices of the systems under consideration. Since
non-Markovian reservoirs do not in general lend themselves to descriptions in terms
of a master equation, we employed an approach developed in chapter 7, based on
the solution of the Schrödinger equation, in which the amplitudes of the excitation
of the sites as a function of time are obtained by means of Laplace transform. With
those amplitudes in hand we construct the density matrix of the system which is
necessary for the calculation of the desired QSD measure.

As a measure of NM we have chosen the distance of the quantum state of our sys-
tem as evolved under a given non-Markovian reservoir from the state evolved under
a Markovian one. A meaningful comparison required the judicious choice of the pa-
rameters entering the expressions of the spectral densities of the reservoirs involved
in each QSD calculation. Given the flexibility of our approach as to the number of
qubits it can handle, we studied first the case of a single-qubit coupled to a reservoir,
so as to have a frame for the evaluation of the interplay between qubit-qubit interac-
tion and qubit-reservoir. The results from the single qubit analysis showed that the
Hellinger and Bures measures indicated slightly higher character of NM for all three
reservoirs than the trace distance measure did. On the other hand, all three mea-
sures have indicated significantly lower character of NM for the Ohmic reservoir, in
comparison to the Lorentzian or Lorentzian squared. Moreover, the absence of any
noticeable back-flow of excitation from the Ohmic reservoir to the qubit suggests
that the Ohmic reservoir behaves practically in a Markovian fashion.

As noted in section 8.4, the Lorentzian and Lorentzian squared reservoirs, on the
basis of all three measures, were found to exhibit essentially the same character of
NM. This might seem counter intuitive, because inspection of the relevant formal
expressions in the appendix suggests that the squared Lorentzian is more peaked
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than the Lorentzian with the same parameters, which would imply a higher char-
acter of NM. However, the Lorentzian squared employed in all of our comparative
calculations (Figs. 8.2-8.5) was not the square of the accompanying Lorentzian, ow-
ing to the adjustment of the parameters explained in section 8.4. If we calculate
the evolution of the qubit excitation dynamics and evaluate the character of NM for
a Lorentzian and a Lorentzian squared spectral density characterized by the same
parameters (g, γ and ∆c), we do indeed find more back-flow and higher NM char-
acter for the Lorentzian squared, which brings up an interesting issue in reservoir
engineering. If in any open system subjected to dissipation through a Lorentzian
reservoir, it were possible to modify the reservoir to the square of the Lorentzian,
dissipation would slow down significantly. Our consideration of the Lorentzian
squared spectral density is not a mere mathematical exercise. It was inspired by
the observation of non-Lorentzian line shapes [436, 439], including the Lorentzian
squared, albeit in different physical context.

The results for the case of five interacting qubits chain bear similarities to as
well as differences from the single-qubit case. The similarity is seen in the NM by
the three QSD measures which produce more or less similar values, with the value
of the trace distance somewhat lower than the values of the Hellinger and Bures
measures. In other words, the three measures provide mutually compatible results.
However, the measures of the NM for all three reservoirs for the chain are notice-
ably higher than those for the single-qubit. Moreover, for the Ohmic reservoir, the
QSD obtained by all three measures is not only quantitatively but even qualitatively
different from that of the single qubit. The smooth dynamics obtained in the single
qubit case, is in this case interrupted by a region of abrupt oscillations, within a cer-
tain time window in which the dynamics of the probability of finding the excitation
in the Ohmic environment was found to exhibit the same behaviour. However, the
stunning difference between the single and five qubit cases lies in the retention of
population distributed among the interacting qubits and the much slower decay of
the excitation for all of the reservoirs in the latter case, which is compatible with
the consistently higher measures of NM reported in our work. It can then be ar-
gued that the exchange of excitation between the qubits slows down the dissipation
which implies that the larger the number of the qubit the slower the loss into the
reservoir. Perhaps the most significant message conveyed by the comparison of the
single-qubit and chain of interacting qubits results is that the NM is not independent
of the quantum system in the context of which it is evaluated.

In closing, we believe that the appropriate modifications of the QSD measures,
that extend their use to non-trace-preserving processes and the detailed analysis
of their applicability to a qubit chain system, have revealed subtle aspects of non-
Markovianity. Extension of our approach and analysis to other open systems can
be expected to offer new insights into the performance of protocols pertaining to
quantum information technology tasks as well as to the statistical mechanics of spin
chains. Even for the single chain coupled to non-Markovian reservoirs, issues such
as the dynamics of entanglement, and the NM beyond single excitation represent
potentially fruitful territory for exploration.
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Chapter 9

Coalescence of non-Markovian
dissipation, quantum Zeno effect,
and non-Hermitian physics in a
simple realistic quantum system

In chapter 7 we developed a theoretical framework in terms of the time-dependent
Schrödinger equation, which provided analytical closed-form solutions of the Laplace
transforms of the amplitudes of an XX qubit chain, enabling the study of various
cases of environmental spectral densities. In this chapter we apply this formulation
in a simple case consisting of two qubits, one of which is coupled to an external
reservoir, but focus on different aspects of the system, namely, dynamical aspects as-
sociated with the presence of exceptional points and their connection to the quantum
Zeno effect (QZE) [440].

As we described in section 5.5, diagonalization of the effective Hamiltonian de-
scribing an open quantum system is the usual method of tracking its exceptional
points (EPs). Although, such a method is successful for tracking EPs in Markovian
systems, it may be problematic in non-Markovian systems where a closed expres-
sion of the effective Hamiltonian describing the open system may not exist. In this
chapter we provide an alternative method of tracking EPs in open quantum sys-
tems, using an experimentally measurable quantity, namely the effective decay rate
of a qubit. Moreover we investigate the link between the peaked structure of the ef-
fective decay rate of the qubit that interacts indirectly with the environment, and the
onset of the QZE, revealing the connections between the latter and the presence of
exceptional points. Our treatment and results reveal an intricate interplay between
non-Markovian dynamics, the QZE and non-Hermitian physics.

9.1 Introduction

As argued in chapter 7, the dissipative dynamics of open quantum systems coupled
to non-Markovian reservoirs is a multifaceted field of fundamental, as well as practi-
cal importance [23, 24] that pertain to a broad class of problems, ranging from quan-
tum information processing to non-equilibrium statistical mechanics. The effective
Hamiltonian describing an open quantum system is by necessity non-Hermitian,
which brings up its possible connection with non-Hermitian physics [293], excep-
tional points [310] and related questions, in that field of wide-ranging interest and
activity. In both of those fields and from different angles, the QZE has been found
to be a major participant. Having initially entered physics as a curiosity, it has been
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found to play an uncanny role in the protection against dissipation [441, 442]. Al-
though research in each one of the above three fields has been active for many years,
the synergy of phenomena related to those fields does not seem to have been no-
ticed, let alone explored. The work presented in chapter 7 on quantum dissipation
in non-Markovian environments has steered us to a type of problem in which that
synergy has been found to be astonishingly revelatory. The treatment of that prob-
lem and its consequences is the purpose of the present chapter. Before embarking on
the discussion of formulation, computation and results, we need to provide a brief
outline of the background and past activity in related works.

As far as the QZE is concerned, a number of studies have pointed out the po-
tential role of the QZE in the protection of quantum information between correlated
qubits [354, 443–445]. The results suggest that repeated projective measurements on
a system of entangled qubits can lead to the preservation of entanglement, indepen-
dently of the state in which the system is initially encoded. This effect appears when
the state of the system evolves in a multidimensional sub-space, usually referred to
as the Zeno subspace [281, 446]. Although fast repeated projective measurements
directly on the system may freeze its evolution, this method may be somewhat re-
strictive for the implementation of quantum information processing tasks, where
additional operations on the system may be necessary. An alternative approach re-
lies on "indirect" measurements, where the apparatus does not act directly on the
system, but detects a signal mediated by some field with which it interacts [447].
That work has, however, given rise to serious reservations as to the possibility of the
occurrence of the QZE in such configurations [448–452]. On the other hand, as also
discussed in section 5.3, it has been demonstrated that the QZE does not necessar-
ily require projective measurements, as it may also be induced through continuous
strong couplings [453–457].

In recent work [458], W. Wu and H.-Q. Lin have investigated the QZE in dissipa-
tive systems beyond the Markov, the rotating-wave and the perturbative approxima-
tions, in the context of a spin-boson model which describes the interaction between
a spin system and a bosonic bath. Their study suggested that the non-Markovian
character of the bath may be favorable for the accessibility of the QZE in such sys-
tems, as it may prolong the quantum Zeno time and lead to multiple Zeno-anti-Zeno
crossover phenomena.

At the same time, the transitions to the quantum Zeno regime have been recently
shown to be linked with the PT symmetry breaking of the non-Hermitian Hamil-
tonian which describes the open quantum system [459–463]. As detailed in section
5.5, the boundary between the unbroken and broken PT symmetry of a Hamilto-
nian describing an open quantum system [296, 297] is marked by the presence of
exceptional points [298–301] where two or more eigenvalues coalesce, while their
corresponding eigenvectors become parallel. It has also been demonstrated that the
onset of the QZE is marked by a cascade of transitions in the system dynamics, as
the strength of a continuous partial measurement on the open system is increased
[464].

Tracking of EPs in open quantum systems is of crucial importance, since the sys-
tem appears to exhibit enhanced sensitivity in their vicinity [286–288]. Although in
open Markovian systems, tracking EPs through diagonalization of the correspond-
ing effective Hamiltonian is a rather easy theoretical task, that method is rather
problematic in non-Markovian systems, for which it may not even be possible to
construct an effective Hamiltonian describing the open system. In that case, alter-
native methods capable of tracking EPs indirectly, without the need of finding the
eigenvalues of the open system, should be sought, which served as a motivation for
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this work. Based on a comparative analysis with the case of a Markovian reservoir,
for which the system is diagonalizable, in what follows we argue that the effective
decay rate may be used as a quantity of reference for tracking the onset of the QZE
in an non-Markovian open quantum system, as well as its EPs.

9.2 Description of the system under consideration

Our system consists of two non-identical qubits and an environment characterized
by a specific spectral density J (ω). The two qubits are interacting with a coupling
strength J while the environment is interacting with the second qubit with a cou-
pling strength g. Without loss of generality, we assume that the coupling strengths
J and g are real numbers. A schematic representation of our system is depicted in
Fig. 9.1.

The Hamiltonian of our system Ĥ = ĤS + ĤE + ĤI consists of three parts;
namely, the Hamiltonian ĤS which describes our system of qubits and their mu-
tual interaction, the Hamiltonian of the bosonic environment ĤE and the interaction
Hamiltonian ĤI which describes the interaction between the second qubit and the
environment. These three Hamiltonian terms are given by the expressions (h̄ = 1):

ĤS = ωg |g⟩1 1⟨g|+ ωe |e⟩1 1⟨e|+ ω′g |g⟩2 2⟨g|+ ω′e |e⟩2 2⟨e|+ J
(
σ̂+

1 σ̂−2 + σ̂−1 σ̂+
2
)

,
(9.1a)

ĤE = ∑
λ

ωλ âE†
λ âE

λ, (9.1b)

ĤI = ∑
λ

g (ωλ)
(

âE
λσ̂+

2 + âE†
λ σ̂−2

)
, (9.1c)

where ωg and ωe are the energies of the ground and excited state of first qubit, re-
spectively, ω′g and ω′e are the energies of the ground and excited state of second qubit,
respectively, ωλ is the energy of the λth mode of the environment, σ̂+

j = |e⟩j j⟨g| and
σ̂−j = |g⟩j j⟨e|, j = 1, 2, are the qubit raising and lowering operators, respectively,
while âE

λ and âE†
λ are the quantum annihilation and creation operators of the envi-

ronment.
The wavefunction of the whole system in the single-excitation space can be ex-

pressed as

|Ψ(t)⟩ = c1(t) |ψ1⟩+ c2(t) |ψ2⟩+ ∑
λ

cE
λ(t)

∣∣∣ψE
λ

〉
, (9.2)

where,

|ψ1⟩ = |e⟩1 |g⟩2 |0⟩E , (9.3a)

|ψ2⟩ = |g⟩1 |e⟩2 |0⟩E , (9.3b)

∣∣∣ψE
λ

〉
= |g⟩1 |g⟩2 |00 . . . 01λ0 . . . 00⟩E . (9.3c)

By adopting the following transformations for the qubit and environment am-
plitudes; namely, c1(t) = e−i(ω′g+ωe)t c̃1(t), c2(t) = e−i(ωg+ω′e)t c̃2(t) and cE

λ(t) =
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FIGURE 9.1: Schematic representation of the system at study. Two non-identical qubits are
interacting with a coupling strength J , while one of them is also coupled to an external
environment E via a coupling g.

e−i(ωg+ω′g+ωλ)t c̃E
λ(t), using the time-dependent Schrödinger equation (TDSE) leads

to the following equations of motion of the tilde amplitudes:

dc̃1(t)
dt

= −iJ c̃2(t)e−iεt, (9.4a)

dc̃2(t)
dt

= −iJ c̃1(t)e+iεt − i ∑
λ

g (ωλ) e−i∆λt c̃E
λ(t), (9.4b)

dc̃E
λ(t)
dt

= −ig (ωλ) e+i∆λt c̃2(t), (9.4c)

where ε ≡ (ω′e − ω′g) − (ωe − ωg) ≡ ω′eg − ωeg is the difference between the two
qubit energies and ∆λ ≡ ωλ − (ω′e − ω′g) ≡ ωλ − ω′eg is the detuning between the
energy of the λth mode of the environment and the excitation energy of the second
qubit.

By following the exact same procedure as the one described in chapter 7 (elimina-
tion of the continuum, substitution of the summation over k by integration, Laplace
transform of resluting equations), we readily obtain

sF1(s) = c1(0)− iJ F2(s + iε), (9.5a)

sF2(s) = c2(0)− iJ F1(s− iε)− B(s)F2(s), (9.5b)

where F1(s) and F2(s) are the Laplace transforms of the tilde amplitudes c̃1(t) and
c̃2(t), respectively, while B(s) is the Laplace transform of R(t), defined again as:

R(t) ≡
∫ ∞

0
J(ω)e−i(ω−ω′eg)tdω. (9.6)

Note that we also used the fact that the tilde amplitudes are equal to the amplitudes
at t = 0. Although the set of Eqs. (9.5) can be solved for arbitrary initial conditions,
for the purposes of our study we focus on the expression of F1(s) for initial excitation
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on the first qubit, i.e. c1(0) = 1 and c2(0) = 0. In that case, we can easily show that
F1(s) is given by the following expression:

F1(s) =
1

s + J 2

s+iε+B(s+iε)

. (9.7)

Before proceeding with the calculation of the inversion integral, to obtain the
time dependence of c̃1(t), we need to specify the spectral density function of the
environment, so that we can derive R(t) according to Eq. (9.6) and hence the expres-
sion of its Laplace transform B(s). Special cases of environments with Markovian,
Lorentzian or Ohmic spectral densities are studied in what follows, revealing the
regions of parameters that affect the onset of the quantum Zeno regime. As also
noted before, the derivation of the functions R(t) and B(s) for various types of non-
Markovian reservoirs is provided in Appendix B.

It is important to note that our formalism can be used to explore much more
complex systems, involving arbitrary number of qubits and/or environments. A
rather interesting result arises if we consider a system in which the qubit 1 of Fig.
9.1 does not interact directly with only one qubit (qubit 2) but with an arbitrary
number of qubits N, each one of which is coupled to its own environment. Using our
formulation we can show that, if all of the qubits are identical and the surrounding
environments are characterized by the same spectral density, the Laplace transform
of the tilde amplitude of the first qubit is given by:

F1(s) =
1

s + NJ 2

s+B(s)

. (9.8)

This equation is essentially the same with Eq. (9.7) for ε = 0 (identical qubits), with
the exception of a factor of N multiplying J 2, where N is the number of qubits
interacting with qubit 1. In other words, the system consisting of a qubit (qubit 1)
interacting with N qubits that communicate with N respective environments with
identical spectral densities can be effectively considered equivalent to a two-qubit +
one environment system (Fig. 9.1) with a "collective coupling"

√
NJ between the

two qubits.
On the other hand, if all of the N qubits that interact with qubit 1 are communi-

cating with a common environment, it is straightforward to show that F1(s) acquires
the form:

F1(s) =
1

s + NJ 2

s+NB(s)

, (9.9)

where the factor of N now multiplies both J 2 and B(s).

9.3 Exceptional points and the onset of the quantum Zeno
regime

9.3.1 Markovian environment

The coupling of a system to a reservoir, within the Born (weak coupling) approxi-
mation is Markovian, if in addition the spectral density of the reservoir, as a func-
tion of energy, is smooth and slowly varying, in the extended vicinity of the system
transition energy. A formulation in terms of a Lindblad master equation, for the
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time evolution of the reduced density operator of the system, leads to a set of lin-
ear differential equations. In those equations the diagonal matrix elements involve
damping coefficients proportional to the square of the constant coupling the system
to the reservoir. Whereas, the off-diagonal matrix elements, in the absence of other
dephasing interactions, involve damping constants one half of that for the respec-
tive diagonal matrix element [26]. In fact, in an N-level ladder system, the damping
of an off-diagonal matrix element connecting two decaying levels is one half of the
sum of the respective diagonal damping constants. The spontaneous decay of an ex-
cited atomic state in open space and the loss of a cavity mode coupled to a bosonic
reservoir are two well-known examples. In both cases, the reservoir is bosonic, rep-
resenting the standard model for dissipation in a quantum system. The derivation
and time evolution of the system reduced density operator are standard textbook
material that can be found in any book on quantum optics [26] or quantum electro-
dynamics [465].

In this chapter, we are dealing with two interacting qubits, one of which is cou-
pled to reservoirs of various spectral densities. It can be viewed as a basic com-
ponent of a chain of qubits, in which case the end qubits are often referred to as
boundaries. Our system is generic, in the sense that we do not assume any spe-
cific physical realization of the qubits. They could be quantum dots, two-level cold
atoms, superconducting josephson, etc. The results and predictions of our analysis
would therefore be applicable to a chain of any physical qubit realization. The na-
ture of the coupling constants entering our formulation would then depend on the
realization. The general structure of the equations would, however, be the same.
The relative magnitude of the coupling constants employed in our analysis merits a
comment, as it is of significance. Viewing the two-qubit system as a basic component
of a chain of a vehicle for information transfer [366], the parameter J is of control-
ling importance. It is for that reason that the magnitude of all other parameters is
defined in relation to J .

Although for a Markovian reservoir the dynamics are amenable to a description
in terms of a master equation, for non-Markovian reservoirs such a formulation is
not possible. Given our emphasis on non-Markovian cases, we have developed the
formalism in terms of the amplitudes of the Schrödinger equation, described in the
previous section. From the solutions for the amplitudes, if needed, the correspond-
ing expressions for the density matrix elements are readily constructed.

Returning to the Markovian case, using well known results outlined above, all
we need to do is add to the transition energy of the second qubit the imaginary part
−iγ̃/2, where γ̃ is the decay rate of that qubit, due to the coupling to the Marko-
vian reservoir. It bears repeating that γ̃ is proportional to the square of the coupling
constant g (ωλ), evaluated at the transition energy of the qubit, as dictated by the
delta function in the identity limε→0+

1
x±iε = P 1

x ∓ iπδ(x) employed in the elimina-
tion of the degrees of freedom of the reservoir. There is nothing phenomenological
about this procedure, in which well-known textbook rigorous results are invoked.
Note that since ε ≡ ω′eg − ωeg, the decay term −iγ̃/2 in the transition energy of the
second qubit is also transferred to ε. Making the substitution ε → ε − iγ̃/2 in the
expression of F1(s) for B(s) = 0 (the effects of the Markovian reservoir are taken
into account through the substitution) in Eq. (9.7), we obtain

F1(s) =
s + (γ̃/2 + iε)

s2 + (γ̃/2 + iε)s + J 2 . (9.10)

The Laplace inversion of Eq. (9.10) provides the time evolution of the tilde am-
plitude of qubit 1. An insightful expression can be obtained in the case of identical
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qubits (ε = 0), where the Laplace inversion yields:

c̃1(t) = e−γ̃t/4

[
cos

(
t
4

√
(4J )2 − γ̃2

)

+
γ̃√

(4J )2 − γ̃2
sin
(

t
4

√
(4J )2 − γ̃2

)]
, γ̃ ̸= 4J

(9.11)

and c̃1(t) = e−J t (1 + J t), for γ̃ = 4J . It is interesting to observe that for γ̃ ≪
4J , the tilde amplitude of the first qubit follows an oscillatory behaviour with fre-

quency equal to
√

(4J )2−γ̃2

4 along with an exponential decay. As γ̃ approaches the
value 4J the oscillations tend to disappear, and when γ̃ = 4J , the oscillatory

part

[
cos

(
t
4

√
(4J )2 − γ̃2

)
+ γ̃√

(4J )2−γ̃2
sin
(

t
4

√
(4J )2 − γ̃2

)]
reduces to a form

which is linear on time, i.e. (1 + J t). In the γ̃ ≫ 4J limit, using the identities
cos (ix) = cosh x and sin (ix) = i sinh x, it is straightforward to show that c̃1(t)→ 1.
Although this result may seem counter-intuitive at first glance, it can be interpreted
in terms of the QZE, i.e. a strong coupling between the second qubit and the Marko-
vian environment causes the second qubit to freeze in its ground state, preventing
qubit 1 from transferring population to qubit 2 and hence to the environment. There-
fore the population of the first qubit becomes protected against dissipation. Note
that for this scheme to work, it is crucial not to have an initially populated second
qubit, because in that the case, the part of population of the second qubit would
quickly dissipate due to the strong coupling between the latter and the environment.

Diagonalization of ĤS after the substitution ω′e → ω′e − iγ̃/2 leads to the follow-
ing four eigenvalues:

λ1 = ωg + ω′g, (9.12a)

λ2 = ωe + ω′e − iγ̃/2, (9.12b)

λ3 =
1
2

(
ωg + ω′g + ωe + ω′e − iγ̃/2

)
− 1

4

√
(4J )2 − (γ̃ + 2iε)2, (9.12c)

λ4 =
1
2

(
ωg + ω′g + ωe + ω′e − iγ̃/2

)
+

1
4

√
(4J )2 − (γ̃ + 2iε)2. (9.12d)

Note that since we focus on the single-excitation subspace we only need to con-
sider the eigenvalues λ3 and λ4. Equivalently, if we diagonalized ĤS in the single-
excitation subspace, which would be essentially a 2× 2 matrix, its eigenvalues are
λ3 and λ4.

In Fig. 9.2(a) we plot the imaginary part of the eigenvalues λ3 and λ4 as a func-
tion of γ̃ for various values of the energy difference between the two qubits ε. As
shown, in the case of identical qubits (ε = 0), the imaginary parts of the two eigen-
values coalesce at γ̃ = 4J and they split for γ̃ > 4J . The point γ̃ = 4J is an
exceptional point and marks the boundary between the unbroken and the broken
PT symmetry of the Hamiltonian. At the exceptional point, both the real and the



134
Chapter 9. Coalescence of non-Markovian dissipation, quantum Zeno effect,

and non-Hermitian physics in a simple realistic quantum system

0 2 4 6 8
- 4

- 3

- 2

- 1

0

γ/𝒥

(a)

ε=+0.5𝒥
ε=0-

Im
(λ

3)
/𝒥

, I
m

(λ
4)

/𝒥
Im(λ4)/𝒥
Im(λ3)/𝒥

Exceptional
point

Exceptional
point

(b)

~

~

-ε= 2𝒥

Im
(λ

3)
/𝒥

, I
m

(λ
4)

/𝒥

ε/𝒥

Im(λ3)/𝒥
Im(λ4)/𝒥

0
2

4
6

82

1
0

1
2

3
2
1
0

γ/𝒥~

FIGURE 9.2: (a) Imaginary parts of the eigenvalues λ3 (black) and λ4 (red) as a function of γ̃
for various values of the energy difference between the two qubits ε. Solid line: ε = 0,
dashed line: ε = −2J , dotted line: ε = 0.5J . The vertical dashed line indicates the position
of the exceptional point for ε = 0−, i.e. γ̃ = 4J . (b) Imaginary parts of the eigenvalues λ3
(black) and λ4 (red) in the ε - γ plane.

imaginary parts of λ3 and λ4 coalesce, while the corresponding eigenvectors |ϕ3⟩
and |ϕ4⟩ given by the expressions below, become parallel.

|ϕ3⟩ = |g⟩1 |e⟩2 +
1

2J

[
− (ε− iγ̃/2)− 1

2

√
(4J )2 − (γ̃ + 2iε)2

]
|e⟩1 |g⟩2 , (9.13a)

|ϕ4⟩ = |g⟩1 |e⟩2 +
1

2J

[
− (ε− iγ̃/2) +

1
2

√
(4J )2 − (γ̃ + 2iε)2

]
|e⟩1 |g⟩2 . (9.13b)

For ε ̸= 0, the imaginary parts of λ3 and λ4 are different for any value of γ̃ ̸= 0
and therefore no exceptional point exists in that case. It is interesting to note that
there is an abrupt interchange between the values of Im(λ3) and Im(λ4) as ε ap-
proaches zero. This behaviour can be explained by visualizing these quantities in
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FIGURE 9.3: (a) Population of qubit 1 in the configuration of Fig. 9.1, as a function of the
time for various values of γ̃ and ε = 0. Gray line1: γ̃ = 0.2J , teal line2: γ̃ = 2J , orange
line3: γ̃ = 4J and purple line4: γ̃ = 8J . (b) Time dynamics of the effective decay Γeff using
the same parameters with those of panel (a). (c) Population of qubit 1, as a function of the
time for various values of γ̃ and ε = 5J . Gray line1: γ̃ = 0.3J , teal line2: γ̃ = J , orange
line3: γ̃ = 10J and purple line4: γ̃ = 30J .

the ε - γ̃ plane, as shown in Fig. 9.2(b). This abrupt change is based on the complex
eigenvalue topology of the involved intersecting Riemann sheets across the ε = 0
surface. The particular topology also suggests that the directionality of the motion
in the ε - γ space, when encircling the exceptional point, with starting points on
different Riemann sheets, plays an important role on the final outcome.

In Fig. 9.3(a) we show the time population dynamics of the first qubit of the
configuration depicted in Fig. 9.1. The population dynamics are studied for various
values of γ̃ and ε = 0 (identical qubits). For small values of γ̃ such that γ̃ ≪ 4J
(gray line), the population exhibits damped oscillations indicative of the transfer
of the excitation to the second qubit along with the environmental dissipation. As
γ̃ is increased the oscillations become increasingly damped and less frequent (teal
line), while at the critical coupling γ̃ = 4J where the exceptional point lies, the
oscillations disappear and the population dynamics are given by the expression
P1(t) = e−2J t (1 + J t)2 (orange line). For increasing values of γ̃ the population
retains its non-oscillatory behaviour and becomes increasingly protected against dis-
sipation through the QZE (purple line). In the limit γ̃ ≫ 4J , as also our analytical
study suggests, the population of the first qubit remains essentially frozen in its ini-
tial value. Strictly speaking complete freezing occurs in the limit of infinite γ̃, which
is of only mathematical interest, as it is the range of finite but large values, in the
sense of the above inequality, that are of realistic relevance.

The same conclusions can be deduced by studying the effective decay rate of the
probability P1(t), an important and widely used tool in the context of QZE in open
quantum systems, defined as:

Γeff(t) ≡ −
1
t

ln[P1(t)], (9.14a)

which leads to
P1(t) = e−Γeff(t)t, (9.14b)

indicating a decay rate with a time dependent exponent. In Fig. 9.3(b) we show the
time dynamics of the effective decay rate Γeff(t) using parameters identical to those
of Fig. 9.3(a). Clearly, for γ̃ < 4J , the effective decay rate exhibits peaks associated
with the population oscillations between the two qubits, whose frequency depends
upon γ̃. The time between subsequent peaks increases, as γ̃ is increased, while each
subsequent peak is less pronounced compared to the preceding one. For γ̃ ≥ 4J ,
the effective decay rate does not exhibit any peak, and its value tends to decrease as
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FIGURE 9.4: (a) Effective decay rate for times τ much larger than any other timescale of the
system, as function of γ̃, for various qubit energy differences ε. The vertical dashed line at
γ̃ = 4J indicates the position of the peak for ε = 0. Gray line1: ε = 0, teal line2: ε = 0.5J ,
orange line3: ε = 2.0J and purple line4: ε = 5.0J . (b) Derivative of the effective decay rate
for times τ much larger than any other timescale of the system, with respect to γ̃, as a
function of γ̃. The parameters are the same with those of panel (a).

γ̃ is increased.
However, the situation is quite different if the two qubits are non-identical, as is

the case in Fig. 9.3(c) where ε = 5J . As also Fig. 9.3(c) suggests, we do not expect
any qualitative transition on the system’s response as γ̃ approaches and exceeds the
value γ̃ = 4J . In this case, what determines the dissipation behaviour is the ratio of
ε to γ̃. In other words, as γ̃ is increased the dissipation of P1(t) is also increased. But
if γ̃ becomes sufficiently larger than ε, the picture changes with the population of the
first qubit becoming increasingly robust against dissipation. Again, even for ε ̸= 0,
in the limit where γ̃ is much larger than J and ε, the QZE "freezes" the dynamics of
the second qubit, inducing thus a hindering of the decay of the first qubit population.

As is also evident from Fig. 9.3(b), in the long-time limit, the effective decay
rate Γeff(t) tends to stabilize to a finite non-zero value. The results of Fig. 9.3(c)
become much clearer if we plot Γeff(τ) as a function of γ̃, where τ is defined to be a
time much larger than any other timescale of the system. This quantity informs us
about the onset of the QZE since it indicates the coupling γ̃ where the decay becomes
maximum and decreases thereafter. As seen in Fig. 9.4(a), for ε = 0 and increasing
γ̃, the decay is also increased until the point γ̃ = 4J where it becomes maximum.
As γ̃ crosses the value 4J there is an abrupt change in the behaviour of the decay
as also suggested by Fig. 9.4(b) where we show the derivative of the effective decay
rate with respect to γ̃. In view of the analysis of Fig. 9.2, the sharp peak at γ̃ = 4J
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does therefore indicate the position of the exceptional point.
On the other hand, for finite ε, i.e. non-identical qubits, although the effective

decay rate calculated at large times also exhibits a maximum, the curve around the
maximum is smooth. In this case, according to Fig. 9.2, we should not expect any
exceptional points at any coupling strength γ̃. For increasing ε, the decay rate as
a function of γ̃ exhibits an increased width, which indicates that it takes a larger
coupling window to cross the maximum and move from regions of increasing dissi-
pation to the quantum Zeno regime, in compatibility with Fig. 9.3(c).

Our results suggest that the onset of the QZE is not -necessarily- associated with
a presence of an exceptional point but with a peaked structure of the effective decay
rate as a function of the coupling strength between the second qubit and the environ-
ment. The presence of an exceptional point on the other hand always indicates an
abrupt phase transition from the anti-Zeno to the Zeno regime and is associated with
a sharp peak of the effective decay rate as a function of γ̃. The link between these
sharp peaks and the presence of EPs has also been pointed out in a recent paper by
P. Kumar et al. [460]. The sharpness of the peak can be easily identified through
discontinuities of the first derivative of the effective decay rate with respect to γ̃ as
in Fig. 9.4(b). Therefore, if the quantity Γeff(τ) could be measured as a function of γ̃
for τ much larger than any other timescale of the system, it could be argued that by
just studying its peak structure, the presence of an EP could be identified. As will
get clear, this method appears to be very useful in cases of systems where explicit
expressions of effective Hamiltonians do not exist and therefore no diagonalization
is possible.

9.3.2 Lorentzian environment

In order to obtain the time dependence of the tilde amplitude c̃1(t) for a Lorentzian
boundary environment, one needs to calculate the function R(t) via Eq. (9.6) for a
Lorentzian spectral density J (ω) and find its Laplace transform B(s), necessary for
the inversion of the Laplace transform F1(s). As shown in Appendix B, the function
B(s) for a Lorentzian spectral density distribution with positive peak frequency and
negligible extension to negative frequencies is:

B(s) =
g2

s + γ
2 + i∆c

, (9.15)

where, g is the coupling strength constant between the second qubit and the en-
vironment, γ is the width of the distribution and ∆c ≡ ωc − ω′eg is the detuning
between the peak frequency ωc of the distribution and the qubit frequency ω′eg of
the second qubit. Substitution of Eq. (9.15) back to Eq. (9.7) leads to an expression
involving a third order polynomial with respect to s in the denominator. Although
the Laplace inversion can be carried out analytically, the resulting expression of c̃1(t)
is too lengthy to be insightful.

In contrast to the previous case of a Markovian spectral density, now it is not pos-
sible to develop an effective Hamiltonian characterizing the open quantum system
by eliminating the reservoir degrees of freedom. This inability is associated with
the non-Markovian character of the Lorentzian spectral density, which enables in-
formation exchange between the system and the environment within finite times.
Therefore an attempt to find the eigenergies of the open system as a probe of its ex-
ceptional points seems ineffectual. Based, however, on the results of the previous
subsection, deduced from the study of the effective decay rate maxima, in compar-
ison to what we know from the spectrum of the non-Hermitian Hamiltonian and
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FIGURE 9.5: (a) Time dynamics of the effective decay rate for ε = 0 (identical qubits) and a
Lorentzian boundary environment with parameters γ = 0.5J , g = J and ∆c = 0. (b) Same
as panel (a) but for g = 1.3J . The vertical dashed line indicates the time up to which the
decay rate oscillations are smooth. (c) Same as panel (a) but for g = 1.41J . (d) Effective
decay rate for times τ much larger than any other timescale of the system, as function of g,
for various Lorentzian widths γ, ε = 0 and ∆c = 0. Gray line1: γ = 0.5J , teal line2: γ = 2J
and orange line3: γ = 4J . (e) Location of the exceptional point gEP as a function of γ for
ε = 0 and ∆c = 0. (f) Effective decay rate for times τ much larger than any other timescale
of the system, as function of g, for various values of the detuning ∆c between the
Lorentzian peak and the qubit frequency of the second qubit. The parameters used are:
ϵ = 0 and γ = 0.5J . Gray line1: ∆c = 0, teal line2: ∆c = 0.5J and orange line3: ∆c = 2.0J .

its exceptional points, we can track the EPs of the system damped by a Lorentzian
reservoir.

In Fig. 9.5(a) we plot the effective decay rate of the first qubit as a function of
the time for ε = 0, γ = 0.5J , ∆c = 0 and g = J . Based on the form of the peaked
structure of Γeff(τ) as a function of g for τ much larger than any other timescale of
the system, we expect an exceptional point at g = 1.41J (see Fig. 9.5(d), gray line).
For g smaller than the position of the exceptional point, which we will denote by
gEP hereafter, the effective decay rate as a function of the time exhibits sharp peaks
indicative of the transfer of populations between the two qubits. Note that, contrary
to the Markovian reservoir case, part of the excitation can now be transferred from
the open system to the environment and vice versa, within finite times. As g is
increased towards the value gEP, the sharp peaks begin to be gradually substituted
by smooth oscillations (Fig. 9.5(b)) up to g = gEP at which point the Γeff(t) dynamics
exhibit only smooth oscillations, as in Fig. 9.5(c). Note that for g ≥ gEP, the system
lies in the region where the QZE starts to inhibit the evolution of the second qubit.
As a result, as g increases, the population of the second qubit becomes increasingly
negligible and the smooth oscillations of the effective decay rate of the first qubit
reflect oscillations directly between the latter and the environment.

In Fig. 9.5(d) we show how the effective decay rate at long times τ behaves as
a function of g for various Lorentzian widths and ε = 0. As expected, on physical
grounds, the decay rate is overall increased as γ increases. At the same time the
sharp peak of the curve which indicates the position of the exceptional point, moves
towards larger g. The dependence between the position of the exceptional point gEP
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FIGURE 9.6: (a) Effective decay rate for times τ much larger than any other timescale of the
system, as function of g, for various energy differences ε between the two qubits, γ = 0.5J
and ∆c = 0 (Lorentzian boundary reservoir). Gray line: ε = 0, teal line: ε = J , orange line:
ε = 3J and purple line: ε = 5J . (b) Derivative of the effective decay rate for times τ much
larger than any other timescale of the system, with respect to g, as a function of g, for
various ε. The values of the parameters are chosen the same as with panel (a). (c) Location
of the exceptional point as a function of ε for γ = 0.5J and ∆c = 0.

and the Lorentzian width γ, is depicted in Fig. 9.5(e). At the same time the maxi-
mum of the curve is also affected by the value of detuning between the Lorentzian
peak and the qubit frequency of the second qubit (Fig. 9.5(f)). In view of the above
results, we can confidently argue that the positions of the exceptional points in the
case of a Lorentzian reservoir show great sensitivity to the values of the Lorentzian
parameters γ and ∆c.

For the results of Fig. 9.5 we have assumed that ε = 0, i.e. the two identical
qubits. In Fig. 9.6 we examine the effects of a non-zero energy difference between
the two qubits on the QZE onset for Lorentzian reservoirs. In Fig. 9.6(a) we plot
the effective decay rate at long times τ as a function of the qubit-environment cou-
pling strength g for various values of ε. As ε is increased, the position of the max-
imum of the curve tends towards larger coupling strengths, as was the case for a
Markovian-damped open system (see Fig. 9.4). There are however two striking dif-
ferences. First, in the Markovian case the value of ε affected significantly the width of
the effective decay curve whereas for Lorentzian reservoirs, the increase of ε results
roughly to a displacement of the curve towards larger g. Second and most impor-
tant, in the Markovian case, for any value of ε, the effective decay rate exhibited a
smooth maximum, except the case ε = 0 where the peak was sharp (see derivative
in Fig. 9.4(b)), and was marked by the presence of an exceptional point. On the other
hand, for a Lorentzian reservoir, the peak of the effective decay rate is sharp for any
value of ε. This result can be verified upon inspection of the discontinuities of the
effective decay rate derivative with respect to g as a function of g for various values
of ε (Fig. 9.6(b)). Therefore, the maxima points of the effective decay rate mark the
existence of exceptional points for any value of ε in the case of a Lorentzian reservoir.
The dependence of the positions of such points as a function of ε is depicted in Fig.
9.6(c).

9.3.3 Ohmic environment

In this subsection, we examine the case of a reservoir characterized by an Ohmic
spectral density [407]. In that case J(ω) is given by:

J(ω) = N g2ωc

(
ω

ωc

)S
exp

(
− ω

ωc

)
, (9.16)
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where ωc is the so-called Ohmic cut-off frequency and S the Ohmic parameter, char-
acterizing whether the spectrum of the reservoir is sub-Ohmic (S < 1), Ohmic (S
= 1) or super-Ohmic (S > 1). N is a normalization constant given by the relation
N = 1

(ωc)
2Γ(1+S)

, where Γ(z) is the gamma function.

The corresponding function B(s) which is the Laplace transform of the function
R(t), as shown in Appendix B, is found to be:

B(s) = −g2 i1−S

ωc
e−iK(s) [K(s)]S Γ (−S ,−iK(s)) , (9.17)

where K(s) ≡
(
s− iωeg

)
/ωc and Γ(a, z) is the incomplete gamma function. Substi-

tution of Eq. (9.17) back to Eq. (9.7) leads to an expression of F1(s) whose inverse
Laplace transform can be calculated numerically to yield the time dependence of
c̃1(t).

In Fig. 9.7 we plot the effective decay rate of the first qubit at long times τ, as a
function of the qubit-reservoir coupling strength g, for various combinations of the
remaining parameters. In Fig. 9.7(a) we examine the effects of varying the Ohmic
parameter S on the behaviour of the effective decay rate profile in the case of iden-
tical qubits (ε = 0). The effective decay rate is now found to exhibit a peak for any
value of S . But it is not sharp, i.e. the first derivative of the effective decay rate with
respect to g, as a function of g, does not exhibit a discontinuity at the position of the
peak. Although this suggests that the QZE occurs for any value of S , it is not accom-
panied by the presence of an EP. The onset of the QZE (position of the maximum)
decreases as the Ohmic parameter is increased. At the same time, the overall decay
rate decreases as S is increased, which can be interpreted in terms of the form of
the Ohmic spectral density distribution as a function of S . In particular, for fixed ωc
and increasing S , the distribution tends to flatten, causing more dominant modes of
the distribution to be off-resonance from the qubit frequency, thus damping the sys-
tem less efficiently. The difference between the effects of the Ohmic and Lorentzian
distributions can be attributed to the fact that the flattening of the distribution and
the position of its peak is controlled by different parameters in the two cases. For
the Lorentzian, they are γ and ∆c (for fixed ωeg), respectively, whereas for an Ohmic
distribution, both of them depend on the Ohmic parameters S and ωc. Note that the
Ohmic distribution exhibits a peak at the frequency Sωc.

In Fig. 9.7(b) we have kept the Ohmic parameter fixed to the value S = 2 and
examined the behaviour of the effective decay rate, as a function of the cut-off fre-
quency of the distribution. The results indicate that the onset of the QZE occurs for
larger qubit-environment couplings g, as the cut-off frequency is increased. Again,
the effective decay rate shows no evidence for the presence of EPs, for any com-
bination of the Ohmic parameters. The values of the decay rate decrease, as ωc is
increased, owing to the flattening of the distribution for fixed S and increasing ωc,
along the lines of interpretation in the previous paragraph.

Finally, in Fig. 9.7(c) we examine the behaviour of the effective decay rate for
various values of the energy difference between the two qubits. Interestingly, con-
trary to the case of identical qubits, when ε ̸= 0, the effective decay rate is maximum
at g = 0 and decreases as g is increased. This result indicates that the system lies in
the QZE regime for any value of g.

To sum up, in this chapter we investigated a method of tracking EPs in non-
Markovian open quantum systems, for which a closed form expression of an effec-
tive Hamiltonian describing the open system may not exist. In that case, the EPs
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FIGURE 9.7: (a) Effective decay rate for times τ much larger than any other timescale of the
system, as function of g, for various Ohmic parameters S , ωc = J , ε = 0 and ωeg = 6J .
Gray line: S = 1, teal line: S = 2, orange line: S = 3. (b) Effective decay rate for times τ
much larger than other timescale of the system, as function of g, for various cut-off
frequencies ωc, S = 2, ε = 0 and ωeg = 6J . Gray line: ωc = J , teal line: ωc = 1.3J , orange
line: ωc = 1.8J . (c) Effective decay rate for times τ much larger than other timescale of the
system, as function of g, for various energy differences ε between the two qubits, S = 2,
ωc = J and ωeg = 6J . Gray line: ε = 0, teal line: ε = 0.5J , orange line: ε = 1.5J .

of the system cannot be found by following the usual procedure of Hamiltonian di-
agonalization, as would have been the case for a quantum system damped by one
or more Markovian reservoirs. Although our theory in this chapter deals with the
simple case of two non-identical qubits, one of which interacts with a reservoir of ar-
bitrary spectral density, our method is readily generalizable to any number of qubits
and reservoirs.

The method is based upon studying the behaviour of the effective decay rate
of the first qubit as a function of the coupling between the environment and the
second qubit. We first studied the case of Markovian damping where the system is
diagonalizable and we compared the effective decay rate analysis with the analysis
in terms of the eigenvalues/eigenergies of the open system. The results indicated
that although a peak of the effective decay rate term is always associated with the
onset of the QZE, if the peak is sharp (i.e. if the first derivative of the effective decay
rate with respect to g, as a function of g exhibits a discontinuity), the system has an
EP at the position of the peak.

We have further examined the cases of reservoirs characterized by Lorentzian, as
well as Ohmic spectral densities. For Lorentzians, we have shown that the system
will always have a single EP, for any combination of the parameters of the spectral
density, i.e. its width and the detuning of its peak from the qubit frequency. The
position of the EP (gEP) has been found to shift towards higher values as γ increases
for fixed ∆c or as ∆c increases for fixed γ. Interestingly, in contrast to the case of
Markovian damping where the EP exists only for identical qubits (ε = 0), for a
Lorentzian reservoir, an EP is always present irrespective of the value of ε. On the
other hand, for reservoirs with an Ohmic spectral density, our results indicate that,
although the system has a critical coupling marking the onset of the QZE (peak of
the effective decay rate curve), this onset is not accompanied by the presence of
an EP (i.e. the peak is not sharp), for any combination of the Ohmic parameters.
The position of this onset was found to move towards smaller values of g, as the
Ohmic parameter S is increased or as the Ohmic cut-off frequency ωc is decreased.
For ε ̸= 0 the effective decay rate is maximum at g = 0, decreasing monotonically
as g is increased. Therefore, in the case of two non-identical qubits and an Ohmic
environment, the system will lie within the QZE regime, for any value of g.

We believe that the significance of our results rests upon the synthesis of EPs in
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and non-Hermitian physics in a simple realistic quantum system

the presence of non-Markovian dissipation. Although both aspects represent prob-
lems of extensive current research activity, their combined effect in the same quan-
tum system has hardly been explored. Yet, the dynamics of open quantum systems
associated with the presence of EPs or/and the regions of the onset of the QZE be-
yond Markovianity is of great significance in a plethora of realistic situations, many
of practical interest. Our method can account for any form of the boundary envi-
ronment’s spectral density and can easily be generalized to open quantum systems
consisting of qubits and environments interacting in more complex arrangements.
The drastic differences in the effective decay rate of the first qubit as a function of g,
between a boundary environment of Lorentzian spectral density from that of Ohmic,
raises the profound question: What are the necessary conditions that an arbitrary
spectral density should satisfy, in order to entail the existence of EPs for certain re-
gions of parameters? Whether these conditions are related to symmetries of the
spectral density profile or other features remains to be examined in future work,
with possibly quite impactful implications. Be that as it may, the contrast between
the effect of a Lorentzian and an Ohmic spectral density on the EPs in our system,
illustrates the resistance of non-Markovian distribution to general classifications.
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Chapter 10

The non-Hermitian landscape of
autoionization

In this final chapter of the thesis we investigate the phenomenon of single-resonance
autoionization viewed from the viewpoint of non-Hermitian physics. We report on
the existence of exceptional points (EPs) and provide analytical expressions for their
positions in parameter space, in terms of the Fano asymmetry parameter. We addi-
tionally propose a reliable method for the experimental determination of EPs, based
solely on information about their ionization probability as a function of the system
parameters. The links between EPs, the maxima of the asymmetric profile and the
effective decay rate of the ground state are investigated in detail. Quantitative nu-
merical examples pertaining to the doubly excited 2s2p(1P) state of Helium confirm
the validity of our formulation and results [466].

10.1 Brief introductory overview

Autoionization (AI) belongs to a broad class of quantum phenomena involving dis-
crete states (resonances) embedded in continua into which they decay. Examples,
among others, are the Breit-Wigner resonance in nuclear physics [467], in particle
physics [468, 469], in photonics [470] and of course in atoms and molecules [471,
472], where the continuum is ionization or even dissociation; hence the term au-
toionization. The literature on autoionization spans a vast range of topics, including
the time-dependent formation of the autoionization profile [473–477], strong driv-
ing of autoionizing resonances (ARs) [478–484], the dynamics of doubly-resonant
autoionization [485, 486], and the effects of phase [487, 488] and statistical fluctua-
tions [130, 489–491] of the laser field on the process.

ARs can be excited by radiation absorption or collisions and are infinite in num-
ber, with the spacing between them decreasing with increasing excitation energy.
Yet, there are cases in which one or more resonances are separated in energy by sig-
nificantly more than their width, qualifying as isolated resonances, with the doubly
excited 2s2p(1P) state of Helium being the prototype of an isolated AR, which con-
tinues revealing novel aspects, as attested by the ongoing streams of papers to this
day [480–484]. It is in addition a perfect example of an open quantum system, with
its dynamics governed by a non-Hermitian effective Hamiltonian. Surprisingly, the
natural connection of AI to non-Hermitian physics, a field in the process of explosive
activity, has escaped attention.

As we described in section 5.5, non-Hermitian physics and its connection to
parity-time (PT ) symmetry, was introduced as an axiomatic theory in the seminal
papers of C. Bender et al. [291–295]. Soon thereafter, it was pointed out that ef-
fective Hamiltonians describing the dynamics of open quantum systems, inevitably
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are non-Hermitian [492]. Several approaches for understanding phenomena related
to quasi-bound states embedded in continua using complex spectral analysis have
been presented in the past, applied to various systems such as two-channel quantum
wires [493, 494], semi-infinite superlattices with embedded impurities [495], discrete
states coupled to continua containing Van Hove singularities at their threshold [496],
as well as systems involving laser-induced population trapping via strong coupling
of ARs in atoms [302].

10.2 Theoretical formulation

We begin by considering an atom whose ground state |g⟩ is coupled to an isolated
autoionizing resonance |a⟩ through a linearly polarized field with frequency ω, as
well as a continuum of states denoted by |E⟩, both coupled to |g⟩ and |a⟩. The
wavefunction of the system at times t ≥ 0 is given by:

|ψ(t)⟩ = cg(t) |g⟩+ ca(t) |a⟩+
∫

dEcE(t) |E⟩ . (10.1)

Introducing the transformations c̃g(t) = cg(t)eiωgt, c̃a(t) = ca(t)ei(ωg+ω)t and c̃E(t) =
cE(t)ei(ωg+ω)t in the time-dependent Schrödinger equation, eliminating as usual the
continuum adiabatically and adopting the rotating-wave approximation, as detailed
in Appendix C, we show that the dynamics of the system under the above condi-
tions, are described by the effective Hamiltonian (h̄ = 1):

Ĥeff ≡

 Sg − i γ
2 Ω̃

(
1− i

q

)
Ω̃
(

1− i
q

)
−∆− i Γ

2

 , (10.2)

where Sg and γ are, respectively, the light-induced shift and the direct into the con-
tinuum ionization rate of the ground state, Γ is the autoionization rate of quasi-
bound state |a⟩, Ω̃ the generalized Rabi frequency of the |g⟩ ←→ |a⟩ transition (see
SM), and q the Fano asymmetry parameter [497], expressing the relative strength
of the direct transition from |g⟩ to the continuum compared to the transition to |a⟩.
∆ ≡ ω − (ωa − Fa − ωg) is the detuning between the frequency of the driving field
and the frequency of the |g⟩ ←→ |a⟩ transition, including the self-energy shift Fa of
|a⟩. Note that the asymmetry parameter is related to the parameters of Ĥeff through
the strict equation q2 = 4Ω2/(γΓ) (See Appendix C). The light-induced shift of the
ground state is hereafter neglected as it is of no relevance to our study. A schematic
representation of our system is depicted in Fig. 10.1.

The effective Hamiltonian of Eq. (10.2) is obviously non-Hermitian, not only
due to the presence of the diagonal decay terms in the energies of the ground state
and |a⟩, but also due to the presence of non-zero imaginary parts in the off-diagonal
terms reflecting the driving of the |g⟩ ←→ |a⟩ transition. Diagonalization of Ĥeff
leads to the following set of eigenvalues:

λ1,2 = −1
2

[
∆ + i

(γ + Γ)
2

]
± 1

4

√
16
(

1− i
q

)2

Ω̃2 − (γ− Γ + 2i∆)2. (10.3)

At first sight, owing to the presence of imaginary parts in the radicands, the spectra
of Ĥeff appear not to exhibit EPs. However, if the detuning is set to ∆ = ∆s ≡
2qγΓ/(Γ− γ), γ ̸= Γ and we eliminate γ via the relation γ = 4Ω2/(q2Γ), we obtain:
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FIGURE 10.1: Schematic representation of the system at study. The ground state |g⟩ of an
atom that is ionized with a rate γ, is coupled to an AR |a⟩ via a linearly polarized field that
drives the |g⟩ ←→ |a⟩ transition with a generalized Rabi frequency Ω̃. The frequency of the
driving field is detuned by ∆ from the energy separation of the two states and the AR
decays into the continuum with an autoionization rate Γ.

λ1,2 =
4Ω̃2qΓ

4Ω̃2 − q2Γ2
− i
(

Ω̃2

q2Γ
+ Γ/4

)

± 1
4q|q|Γ

√
−
(

4Ω̃2 + q2Γ2

4Ω̃2 − q2Γ2

)2 [
16Ω̃4 − 8Ω̃2Γ2q2 (1 + 2q2) + q4Γ4

]
, Ω̃ ̸= |q|Γ

2
(10.4)

Observe now that choosing ∆ = ∆s results to a set of eigenvalues with real rad-
icands. Note that Eq. (10.4) holds for Ω̃ ̸= |q|Γ/2 which is equivalent to γ ̸= Γ.
For Ω̃ = |q|Γ/2, i.e. γ = Γ, the radicand is complex for every value of ∆. The
details of the physical significance of ∆s for our system will become clear later. We
should also note that the value of ∆s resulting to real radicands depend on the in-
tensity of the driving field, which in turn determines the value of Ω̃. The relation

between ∆s and Ω̃ is ∆s(Ω̃)
Γ =

8q
(

Ω̃
Γ

)2

q2−4
(

Ω̃
Γ

)2 , Ω̃ ̸= |q|Γ/2, which results upon substitution

of γ = 4Ω2/(q2Γ) in the expression ∆s ≡ 2qγΓ/(Γ− γ), γ ̸= Γ.
We are interested in the values of the coupling Ω̃ that nullify the radicands of Eq.

(10.4). The radicands become zero when

16Ω̃4 − 8Ω̃2Γ2q2 (1 + 2q2)+ q4Γ4 = 0, (10.5)

and the positive roots of the above equation are

Ω̃±
Γ

=
1
2

(
|q|
√

1 + q2 ± q2
)

. (10.6)

It is easy to verify that for both Ω̃ = Ω̃+ and Ω̃ = Ω̃−, given that ∆ = ∆s, the
eigenvectors of Ĥeff coalesce, respectively, to the states |ψ+⟩ = (−i |g⟩+ |a⟩) /

√
2

and |ψ−⟩ = (i |g⟩+ |a⟩) /
√

2. Therefore the points (Ω̃±, ∆s
±) in parameter space,

where ∆s
± ≡ ∆s(Ω̃±), are EPs of Ĥeff.
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10.3 Exceptional points in single-resonance autoionization

Interestingly, the EPs of the system measured in units of the autoionization width
Γ, depend solely on the asymmetry parameter q, and there are two for any given
value of the latter (Fig. 10.2). Note that the value of q for a given AR is fixed, as it
depends solely upon the corresponding matrix elements of the transitions involved
in the process. In particular, for the process involving the driving of the 1s2(1S)←→
2s2p(1P) transition in Helium and the associated autoionization of the 2s2p(1P) AR,
it is well established that q ≈ −2.79 [490, 498].

FIGURE 10.2: Dependence of the exceptional points (Ω̃±, ∆s
±) on the asymmetry parameter

q. Solid teal line: Ω̃+, dashed teal line: ∆s
+, solid orange line: Ω̃− and dashed orange line:

∆s
−. For each value of q there exist two exceptional points.

Focusing hereafter on that isolated AR, we note that for q = −2.79, accord-
ing to Eq. (10.6) and the relation between ∆s and Ω̃, the theory indicates the ex-
istence of two EPs at the positions (Ω̃−, ∆s

−) = (0.2424Γ,−0.1738Γ) and (Ω̃+, ∆s
+) =

(8.0265Γ, 5.7538Γ) in parameter space. In Fig. 10.3 we plot the real and imaginary
parts of the eigenvalues as a function of Ω̃ and ∆ for q = −2.79 and indeed confirm
the coalescence of the eigenvalues at the above positions in parameter space.

As noted above, tuning ∆ to ∆s is essential in order to ensure that the radicands
appearing in the expressions of the eigenvalues become real. We can get a glimpse on
the physical significance of ∆s in the vicinity of an EP, by solving the time-dependent
Schrödinger equation using the effective Hamiltonian Ĥeff, and plotting the ioniza-
tion probability of the atom (P(t) = 1−

∣∣cg(t)
∣∣2 − |ca(t)|2) as a function of the de-

tuning for Ω̃ = Ω̃− (Fig. 10.4). Note that the ionization probability is calculated
on t = T, where T is the interaction time between the atom and the driving field.
As expected, the ionization profile is asymmetric, transforming gradually to a "win-
dow" profile for sufficiently large interaction times, a phenomenon labelled "time
saturation" in [478], reconfirmed most recently in [482]. Interestingly, the position of
the maximum of the asymmetric profile, denoted by ∆m, which is initially increas-
ing as T increases, eventually stabilizes at ∆s

−, as shown in the inset of Fig. 10.4.
Therefore, for Ω̃ = Ω̃−, ∆s(Ω̃−) ≡ ∆s

− is the detuning which maximizes the ion-
ization probability (to unity) for sufficiently large interaction times, which for the
field intensity considered, translates to T ≈ 20Γ−1 or larger. It is important to note
that this occurs only by tuning the parameters of the system to the exceptional point
(Ω̃−, ∆s

−). For example, if we choose an intensity such that Ω̃ = 0.1Ω̃−, the posi-
tion of the maximum of the asymmetric profile stabilizes to ∆m ≈ −0.195Γ, whereas
∆s(0.1Ω̃−) = −0.0016Γ.
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FIGURE 10.3: (a) Real and (b) imaginary parts of the eigenvalues λ1 (red surface) and λ2
(black surface) as a function of the parameters Ω̃ and ∆, for q = −2.79. The yellow arrows
mark the positions of the exceptional points at (Ω̃, ∆) = (Ω̃−, ∆s

−) = (0.2424Γ,−0.1738Γ)
and (Ω̃, ∆) = (Ω̃+, ∆s

+) = (8.0265Γ, 5.7538Γ), where the real and imaginary parts of the
eigenvalues coalesce.

Although in most cases, the EPs of a system can be explored theoretically through
diagonalization of the relevant effective Hamiltonian, the experimental determina-
tion of EPs most often is quite a challenging task, since in general the eigenenergies
of a Hamiltonian are not amenable experimentally. Therefore one needs to iden-
tify EPs indirectly by studying their footprints on system observables. To that end,
we employ a quantity widely used in the context of the Quantum Zeno effect in
open quantum systems, namely, the effective decay rate of a state [440], defined as
Γj

eff(t) ≡ −
1
t ln[Pj(t)], j = g, a, where Pj(t) =

∣∣cj(t)
∣∣2 is the population of state |j⟩,

j = g, a. The effective decay rate provides information about how the couplings be-
tween a given state and a set of other states or a continuum, modify the time evolu-
tion of that state’s population. It turns out that the effective decay rate of the ground
state, which can be readily determined experimentally, is remarkably sensitive to the
EPs of our system, pinpointing their positions in parameter space.

FIGURE 10.4: Ionization probability as a function of ∆ for various interaction times T,
q = −2.79 and Ω̃ = Ω̃− = 0.2424Γ. The vertical dashed line marks the position of the
detuning ∆s

− = −0.1738Γ. Inset: Position of the peak of the asymmetric profile (∆m) as a
function of the interaction time T (logarithmic scale) for q = −2.79 and Ω̃ = Ω̃−. The
horizontal dotted line marks the position of the detuning ∆s

−.
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FIGURE 10.5: (a) Effective decay rate of the ground state as a function of Ω̃ for q = 2.79 and
∆ = ∆s. The dashed lines mark the positions of the exceptional points at
Ω̃ = Ω̃− = 0.2424Γ and Ω̃ = Ω̃+ = 8.0265Γ. (b) Effective decay rate of the ground state as a
function of Ω̃ and ∆ for q = −2.79. The curved dashed line marks the ∆ = ∆s(Ω̃) curve,
over which the effective decay rate is maximum. An exceptional point lies at the position
(Ω̃, ∆) = (Ω̃−, ∆s

−) = (0.2424Γ,−0.1738Γ).

In Fig. 10.5(a) we plot the effective decay rate of the ground state as a function
of Ω̃ for ∆ = ∆s(Ω̃), which implies setting each time the detuning to a different
value, depending on the value of Ω̃ considered. Note that the effective decay rate
is calculated at an interaction time t = T, which should be sufficiently large for the
rate to be no longer modified with further increase of T. For q = −2.79, the effective
decay rate is stabilized for T ≈ 20Γ−1 or larger, which is the same time scale as the
one discussed in the results of Fig. 4. At such time scales it is easy to show that the
population of |a⟩ is practically negligible. Therefore the effective decay rate of the
ground state is directly related to the measurable ionization probability P(t), because
Γg

eff(t) ≡ −
1
t ln[Pg(t)] ∼= 1

t ln[1− P(t)]. Clearly, the effective decay rate of the ground
sate provides direct evidence for the positions of the EPs of the system (Fig. 10.5(a)),
in agreement with our theoretical predictions based on diagonalization of Ĥeff.
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A short note regarding the experimental detection of the EPs related to the au-
toionization of the Helium 2s2p(1P) AR, is in place at this point. The EP at (Ω̃, ∆) =
(Ω̃−, ∆s

−) = (0.2424Γ,−0.1738Γ) lies in a parameter region that is well within the
current capabilities of synchrotron sources and seeded Free-electron lasers [499, 500]
of short wavelength radiation, sufficient intensity and small bandwidth that can ex-
cite the AR. However, the EP at (Ω̃, ∆) = (Ω̃+, ∆s

+) = (8.0265Γ, 5.7538Γ) would
require a source of high intensity, as it lies in the strong field regime where Ω̃ > Γ
[478]. Although the required intensity, which is estimated to be around 1.3× 1016

W/cm2, is available with current Free-electron laser sources, issues such as intensity
fluctuations [209, 501] known to affect the excitation of ARs [130, 489–491] and large
bandwidth need to be addressed. Their interplay with EPs pose interesting followup
studies.

Finally, in Fig. 10.5(b) we plot the effective decay rate of the ground state as
a function of Ω̃ and ∆ at the vicinity of the EP that lies in the weak field regime.
The effective decay rate maxima lie on the ∆ = ∆s(Ω̃) line (curved dashed line)
over which the eigenvalues have real radicands. At the tip of this maxima curve we
find the weak field EP at the position (Ω̃, ∆) = (Ω̃−, ∆s

−) = (0.2424Γ,−0.1738Γ) in
parameter space.

In summary, we have unveiled the existence of EPs in single-resonance autoion-
ization and provided analytical expressions for their positions in parameter space,
in terms of the Fano asymmetry parameter. We have further demonstrated the con-
nection between EPs and the maxima of the asymmetric ionization profile, through
a numerical study of the 2s2p(1P) resonance in Helium and proposed a reliable
method for the observation of EPs, based solely on information about the ionization
probability as a function of the parameters of the system, well within the capabil-
ities of current radiation sources. Our results lead to further questions related to
the role of pulse shape or field fluctuations in the observation of EPs in autoioniza-
tion, as well as questions related to the influence of neighboring ARs, beyond the
single-resonance autoionization. At the same time, the investigation of potentially
impactful effects related to phase changes associated with the encircling of EPs in the
parameter space of autoionization, based on the complex topology of the Riemann
surfaces in the vicinity of the latter, is a further challenging issue. Overall, our results
offer new insights into the interplay between autoionization and non-Hermitian PT
physics, opening up a novel and potentially fruitful territory for further exploration.
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Appendix A

Photon statistics enhancement of
e−e+ pair production

In this appendix we prove that in the zero intensity limit, the number of e−e+ pairs
created by the standing wave field that results from the collision of two counter-
propagating FEL beams with Gaussian amplitude fluctuations, is 2N0! times larger
than the respective number of pairs created by a field of the form Ecos(ωt), i.e.

lim
I→0+

Ñ(I)
N(I)

= 2N0!, (A.1)

where

Ñ(I) = 2
∫ ∞

0
N
(

I′
) e−

I′
I

I
dI′. (A.2)

The number of e−e+ created by the Ecos(ωt) field in the γ ≪ 1 and γ ≫ 1 limits,
corresponding to the tunneling and multi-photon regimes, respectively, are:

N(I) = 2−3/2N4
0

(
I
Ic

)5/4

× exp

−π

√
Ic

I

1− 1

2N0
2
(

I
Ic

)
(ωτ

2π

)
, γ≪ 1,

(A.3a)

N(I) ≈ 2πN3/2
0

(
8

N0e

)−2N0
(

I
Ic

)N0 (ωτ

2π

)
, γ≫ 1, (A.3b)

where I is the intensity, e is Euler’s constant, Ic = 4.65× 1029 W/cm2 is the intensity
corresponding to Ec and N0 = 2mc2

h̄ω is the minimum number photons needed for
vacuum pair creation to occur at a given frequency.

Since γ is inversely proportional to the square root of the intensity, and the in-
tegration in Eq. (A.2) extends over infinity, we divide the integral into two parts,
corresponding to the multi-photon and the tunneling regimes, respectively. The
intensity boundary between these two regimes (Ib) is set to be the intensity corre-
sponding to γ = 1. Note that, even if practically such a sharp boundary between the
two regimes does not exist, the exact value of this intensity boundary does not need
to be well-defined for the purposes of our proof, since when taking the limit of the
intensity to zero in Eq (A.1), the final result does not depend on its choice.
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In view of the above, we write:

lim
I→0+

Ñ (I)
N (I)

= lim
I→0+

2
∫ ∞

0 N (I′) e−
I′
I

I dI′

N (I)

= 2

 lim
I→0+

∫ Ib
0 N (I′) e−

I′
I dI′

N (I) I
+ lim

I→0+

∫ ∞
Ib

N (I′) e−
I′
I dI′

N (I) I

 .

(A.4)

The two terms in the right-hand side of Eq. (A.4) can now be calculated using Eqs.
(A.3a) and (A.3b) for the number of created pairs in the tunneling and the multi-
photon regime, respectively. Note that, in the limit of zero intensities, the number
of created pairs appearing in the denominator of both terms in Eq. (A.4) is always
given by Eq. (A.3b). By substituting the respective expressions for the number of
created pairs of each regime back in Eq. (A.4), one can show that in the I → 0+ limit,
the second term goes to zero. For the first term we have:

lim
I→0+

∫ Ib
0 N (I′) e−

I′
I dI′

N (I) I
= lim

I→0+

∫ Ib
0 I′N0 e−

I′
I dI′

IN0+1 = lim
I→0+

[
−Γ

(
N0 + 1,

I′

I

)]Ib

0+
=

lim
I→0+

{
lim

I′→0+
Γ
(

N0 + 1,
I′

I

)
− Γ

(
N0 + 1,

Ib

I

)}
,

(A.5)

where Γ(s, x) is the upper incomplete gamma function. The first term in the right-
hand side of Eq. (A.5) is

lim
I→0+

lim
I′→0+

Γ
(

N0 + 1,
I′

I

)
= lim

I→0+
Γ (N0 + 1, 0)

= lim
I→0+

Γ(N0 + 1) = lim
I→0+

N0! = N0!,
(A.6)

while for the second one we can show that it approaches zero by using the asymp-
totic expansion of the upper incomplete gamma function

Γ(s, z) ∼ zs−1e−z ∑
k=0

Γ(s)
Γ(s− k)

z−k, (A.7)

in the I → 0+ limit. Therefore Eq. (A.5) becomes

lim
I→0+

∫ Ia
0 N (I′) e−

I′
I dI′

N (I) I
= N0!, (A.8)

which upon substitution back to Eq. (A.4) finally proves Eq. (A.1):

lim
I→0+

Ñ(I)
N(I)

= 2N0!
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Appendix B

Derivation of the functions R(t)
and B(s) for special types of
non-Markovian reservoirs

In this appendix we provide the analytical derivation of the function

R(t) ≡
∫ ∞

0
J(ω)e−i(ω−ωeg)tdω, (B.1)

and its Laplace transform B(s) for various forms of non-Markovian spectral densi-
ties J(ω).

B.1 Lorentzian spectral density

For reservoirs characterized by Lorentzian spectral densities, J(ω) is given by:

J(ω) =
g2

π

γ
2

(ω−ωc)
2 + (γ

2 )
2

, (B.2)

where g is the qubit-reservoir coupling strength, while γ and ωc is the width and the
peak of the distribution, respectively. An approximation that considerably simplifies
analytically the calculation of the function R(t) is the extension of the lower limit of
the integration over frequency from 0 to −∞. Note that such extension is not in
general valid for any spectral density; it is however well justified in the case of a
Lorentzian with positive peak frequency and width such that the distribution has
practically negligible extension to negative frequencies. The necessary condition for
this approximation is γ ≪ ωc. In this case the frequency integral can be calculated
analytically, yielding:

R(t) = g2e−i∆cte−
γ
2 t, (B.3)

where ∆c ≡ ωc − ωeg. The Laplace transforms of R(t) is then given by the expres-
sion:

B(s) =
g2

s + γ
2 + i∆c

. (B.4)
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non-Markovian reservoirs

B.2 Lorentzian squared spectral density

The Lorentzian squared spectral density is a special case of a broader set of spectral
densities referred as powers of Lorentzian and are given by the form:

J(ω) = g2Nn

(γ
2

)2n−1[
(ω−ωc)

2 + (γ
2 )

2
]n , (B.5)

where Nn is an appropriate normalization factor that depends upon the non-zero
integer n. For n = 1 we capture the case of the Lorentzian spectral density, while for
n = 2 we capture the Lorentzian squared spectral density given by:

J(ω) =
2g2

π

(γ
2

)3[
(ω−ωc)

2 + (γ
2 )

2
]2 , (B.6)

Following the same procedure as with the case of the Lorentzian, we find that the
function R(t) is given by:

R(t) = g2
(

1 +
γt
2

)
e−i∆cte−

γ
2 t. (B.7)

Notice that Eq. (B.7) is the same as Eq. (B.3) with an addition of a multiplication
factor

(
1 + γt

2

)
. The Laplace transform of Eq. (B.7) reads:

B(s) = g2 (s + γ + i∆c)(
s + γ

2 + i∆c
)2 . (B.8)

B.3 Ohmic spectral density

The Ohmic spectral density is given by the expression:

J(ω) = N g2ωc

(
ω

ωc

)S
exp

(
− ω

ωc

)
, (B.9)

where S is the Ohmic parameter, characterizing whether the spectrum of the reser-
voir is sub-Ohmic (S < 1), Ohmic (S = 1) or super-Ohmic (S > 1), ωc is the
Ohmic cut-off frequency and N is a normalization constant given by the relation
N = 1

(ωc)
2Γ(1+S)

, where Γ(z) is the gamma function. Substituting Eq. (B.9) back to

the expression of R(t) and calculation of the frequency integral yields:

R(t) = g2eiωegt (iωct + 1)−1−S . (B.10)

The Laplace transform of R(t) can then be calculated analytically, yielding:

B(s) = −g2 i1−S

ωc
e−iK(s) [K(s)]S Γ (−S ,−iK(s)) , (B.11)

where K(s) ≡
(
s− iωeg

)
/ωc and Γ(a, z) is the incomplete gamma function.
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Appendix C

Derivation of the effective
Hamiltonian Ĥeff

Our system consists of a ground state |g⟩ coupled to an isolated quasi-bound reso-
nance |a⟩ through a linearly polarized field with frequency ω, as well as a contin-
uum of states denoted by |E⟩, coupled both to |g⟩ and |a⟩. The field that drives the
|g⟩ ←→ |a⟩ and |g⟩ ←→ |E⟩ transitions is of the form E(t) = 1

2

[
E e−iωt + E∗eiωt].

The Hamiltonian of the system Ĥ = Ĥ0 + V̂ + D̂ consists of three parts; namely,
the free-atom Hamiltonian Ĥ0 with Ĥ0 |j⟩ = ωj |j⟩, j = g, a, E, the configuration
interaction V̂ that couples the discrete autoionizing resonance to the continuum, as
well as the dipole interaction D̂ that couples both |g⟩ and |a⟩ to the continuum,
given by the relation D̂ = ℘E(t), where ℘ = ℘⃗ · ê is the projection of the electric
dipole moment operator on the polarization direction of the electric field amplitude,
denoted by ê. Note that throughout our calculations we set h̄ = 1.

The wavefunction of the system at times t ≥ 0 is given by:

|ψ(t)⟩ = cg(t) |g⟩+ ca(t) |a⟩+
∫

dEcE(t) |E⟩ (C.1)

The time-dependent Schrödinger equation (TDSE) in view of Eq. (C.1) reduce to the
following set of equations:

i∂tcg(t) = ωgcg(t) +Dgaca(t) +
∫

dEDgEcE(t) (C.2a)

i∂tca(t) = ωaca(t) +D∗gacg(t) +
∫

dEVaEcE(t) (C.2b)

i∂tcE(t) = ωEcE(t) +D∗gEcg(t) + V∗aEca(t) (C.2c)

where we adopted the notation ∂t ≡ ∂
∂t . Introducing the slowly varying amplitudes

according to the transformations c̃g(t) = cg(t)eiωgt, c̃a(t) = ca(t)ei(ωg+ω)t and c̃E(t) =
cE(t)ei(ωg+ω)t, the above set of equations become:

i∂t c̃g(t) = Dgae−iωt c̃a(t) +
∫

dEDgEe−iωt c̃E(t) (C.3a)

i∂t c̃a(t) = (ωa −ωg −ω)c̃a(t) +D∗gaeiωt c̃g(t) +
∫

dEVaE c̃E(t) (C.3b)

i∂t c̃E(t) = (ωE −ωg −ω)c̃E(t) +D∗gEeiωt c̃g(t) + V∗aE c̃a(t) (C.3c)
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We now eliminate the continuum adiabatically by setting ∂t c̃E(t)=0, treating it as
a sink. Under this assumption Eq. (C.3c) leads to:

c̃E(t) =
D∗gEeiωt

ωg + ω−ωE
c̃g(t) +

V∗aE
ωg + ω−ωE

c̃a(t) (C.4)

Substitution of Eq. (C.4) back to Eqs. (C.3a) and (C.3b), yields:

i∂t c̃g(t) = Dgae−iωt c̃a(t)+
∫

dE

∣∣DgE
∣∣2

ωg + ω−ωE
c̃g(t)+

∫
dE
V∗aEDgEe−iωt

ωg + ω−ωE
c̃a(t) (C.5a)

i∂t c̃a(t) =(ωa −ωg −ω)c̃a(t) +
∫

dE
VaED∗gEeiωt

ωg + ω−ωE
c̃g(t)+

D∗gaeiωt c̃g(t) +
∫

dE
|VaE|2

ωg + ω−ωE
c̃a(t)

(C.5b)

By substituting the matrix elements Dga = ℘gaE(t) and DgE = ℘gEE(t) of the dipole
interaction operator in the above set of equations and adopting the rotating-wave ap-
proximation (RWA) which implies the neglection of the fast-oscillating anti-resonant
time-dependent exponentials, we obtain:

i∂t c̃g(t) =
∫

dE

∣∣ΩgE
∣∣2

ωg + ω−ωE
c̃g(t) +

(
Ωga +

∫
dE

V∗aEΩgE

ωg + ω−ωE

)
c̃a(t) (C.6a)

i∂t c̃a(t) =

(
Ω∗ga +

∫
dE

VaEΩ∗gE

ωg + ω−ωE

)
c̃g(t)+

[
(ωa −ωg −ω) +

∫
dE

|VaE|2

ωg + ω−ωE

]
c̃a(t)

(C.6b)
where we have introduced the definitions Ωga ≡ 1

2℘gaE∗ and ΩgE ≡ 1
2℘gEE∗. The

above set of equations is simplified considerably by using the identity

lim
η→0+

1
ωg + ω−ωE + iη

= P
1

ωg + ω−ωE
− iπδ(ωg + ω−ωE) (C.7)

where P denotes the principal value part and δ(x) is the Dirac delta function. In
view of Eq. (C.7), Eqs. (C.6) can ultimately be written as:

i∂t c̃g(t) =
(

Sg − i
γ

2

)
c̃g(t) + Ω̃ga

(
1− i

q

)
c̃a(t) (C.8a)

i∂t c̃a(t) = Ω̃ag

(
1− i

q

)
c̃g(t)−

(
∆ + i

Γ
2

)
c̃a(t) (C.8b)

where Sg ≡ P
∫

dE |ΩgE|2
ωg+ω−ωE

and γ ≡ 2π
∣∣ΩgE

∣∣2∣∣∣
ωE=ωg+ω

are, respectively, the light-

induced shift and the ionization rate of the ground state, whereas Fa ≡ P
∫

dE |VaE|2
ωg+ω−ωE

and Γ ≡ 2π|VaE|2
∣∣∣
ωE=ωg+ω

are, respectively, the self-energy shift and the autoioniza-

tion rate of the state |a⟩. Moreover, Ω̃ga ≡ Ωga +P
∫

dE V∗aEΩgE
ωg+ω−ωE

is the generalized
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Rabi frequency of the |g⟩ ←→ |a⟩ transition, q ≡ Ω̃ga
πΩgEV∗aE

is the Fano asymmetry
parameter and ∆ ≡ ω − (ωa − Fa − ωg) is the detuning between the frequency of
the driving field and the frequency of the |g⟩ ←→ |a⟩ transition, including the self-
energy shift of state |a⟩.

The set of Eqs. (C.8) can be written as:

i∂t

[
c̃g(t)
c̃a(t)

]
= Ĥeff

[
c̃g(t)
c̃a(t)

]
(C.9)

with

Ĥeff ≡

 Sg − i γ
2 Ω̃

(
1− i

q

)
Ω̃
(

1− i
q

)
−∆− i Γ

2

 (C.10)

where in order to simplify notation we have introduced the definition Ω̃ ≡ Ω̃ga.
Ĥeff is the effective Hamiltonian governing the dynamics of our system under the
adiabatic elimination of the continuum and RWA approximations. Combining the
definitions of γ, Γ and Ω̃ given above, we obtain q2 = 4Ω̃2/(γΓ) which is indepen-
dent of intensity and provides a very useful relation between the parameters of the
effective Hamiltonian.
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