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Chapter 1: Introduction 

 

A colloid is a substance in which microscopically dispersed insoluble particles are 

suspended throughout another substance. When colloids are suspended in a medium, 

they form a suspension. The term suspension refers to mixtures where the colloids 

size are less than the dispersed phase particles. On the other hand when the colloids 

size is greater than the dispersed phase particles, then the term dispersion is used. Size 

range deviates from 𝑛𝑚 (10−9m) to mm  (10−6m). The mass of the colloid ought to 

be significantly larger than the mass of the suspending fluid molecules, this is critical 

so that the suspending medium can be considered continuum on the length scale and 

time scale of colloidal motion. Moreover, the upper size limit makes sure that thermal 

forces are still of importance, while the gravitational forces are not able to remove 

particles from the dispersion. 

Brownian motion theory:  The theory of Brownian motion was elucidated separately 

by Albert Einstein and by Marian von Smoluchowski. The equation can relate the 

mean square displacement of the colloidal particle, with the time allowed for 

diffusion:  

lim
𝑡→ ∞

〈(𝛥𝑟(𝑡))2〉 = 6𝐷𝑡 

Where the D coefficient is the Einstein- Smoluchowski diffusivity. It was calculated 

by Sutherland and Einstein separately. For a spherical shaped colloid, we have:  

𝐷0 =
𝐾𝐵𝑇

6𝜋𝜂𝑅
 

Which is known as the Stokes-Einstein-Sutherland equation. 

Perrin observed the random diffusion of individual particles and showed that their 

Brownian motions are just large scale manifestations of the thermal motions of atoms. 

The experiments he did, verified that the equipartition of energy is obeyed by the 

particles. The average kinetic energy of each particle is  
3

2
𝐾𝐵𝑇 , where 

𝐾𝐵  Boltzmann’s constant is and T is temperature. All the states of atomic systems: 

gas, liquid, crystal, alloy and glass have analogues in Colloidal systems. 
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Colloidal systems mimic the behavior of atoms and as a result, they have special 

properties that allow experiments which would be difficult or even impossible to be 

done in atomic systems [2]. 

Colloidal interactions: When there are many particles, interactions arise between 

colloids, while the types of interactions are via surface, depletion, dispersion and 

hydrodynamic forces, with the difference being the source of the interactions.  

When induced disturbance in the fluid flow field occurs by the presence of a particle, 

hydrodynamic interactions arise. In addition, surface forces are being introduced if the 

colloidal particles are in close proximity where the surfaces might be also charged by 

Ion absorption or in the case of grafted polymers.   

Given potential of interaction Φ(r) which is a function of the distance r between the 

particle centers, we can calculate the force by derivation: 

𝐹(𝑟) =  − 
𝑑Φ(r)

𝑑𝑟
 

Molecules and atoms interact by dispersion forces as seen also in colloidal particles. 

Dispersion forces result from the polarization caused by the electron cloud of one 

atom with the fluctuating cloud of another.  

The London-Van der Waals force between the particles actually consists the total 

effect of the fluctuating polarization. In the simplest case, the force between two 

homogenous plates in close approach, the dispersion potential of the interaction has 

the form of:  

𝛷𝑑(ℎ)

𝑎𝑟𝑒𝑎
= −

𝐴

12𝜋ℎ2  (Per area of plate) 

Where h is the distance between the particle surfaces, coefficient A is the hamaker 

constant. It is a function of the suspending medium and the type of material of the 

particles. The coefficient range is between  (30 ∗ 10−20) J for gold particles in water, 

to  (10−20)  J or less, for inorganic and polymeric particles. 

If the surfaces touch, the dispersion potential is going to minus infinity, this suggests 

cold-wielding of the particles and, indeed, the Hamaker constant can be estimated 

from the work of adhesion.  



- 4 - 
 

For real particle systems, surface roughness, absorbed or chemically bound ions and 

solvent molecules on the surface affect particle aggregation. 

Chapter 2: Background 

2.1 Hard spheres model:  

Hard spheres are used in the statistical theories of fluids and solids together, as model 

particles. They are impenetrable spheres that cannot overlap in space, while at the 

same time the strong repulsion that atoms and spherical molecules experience in very 

close distances is mimicked by them. These systems can be studied by computer 

dynamics simulation and experiments. Colloidal hard spheres are an ideal scenario of 

microscopic particles moving in a medium through Brownian motion and interacting 

with an infinite repulsive potential when they touch. 

    

Figure 2.1.1: hard sphere particles of radius R potential is depicted, with center to 

center separation r.  

The potential V(r) is ∞ when 0<r<2R and 0 when r>2R, where R is the particle 

radius. Only entropy is considered to determine phase behavior, since there are no 

enthalpic interactions. We can thus characterize this system by the number density of 

the particles alone. This is expressed in colloid volume fraction φ:  

  

𝜑 =
4

3
𝜋𝑅3

𝑁

𝑉
 

Van der waals attractive forces may cause colloidal particles to aggregate irreversibly. 

This attraction has long range in order to be able to affect particles in the size of 

colloids. The strength of the resulting attractive potential is proportional to the 

refractive index mismatch between the solvent and the particle that could be as much 
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as many times that of the thermal energy. For this reason it is important that the 

colloids are stabilized in order to prevent aggregation.  

Steric stabilization is the method used to stabilize the colloidal particles we used in 

this work. Polymer chains are grafted on the surface of colloidal particles, so that 

when two particles approach their chains both penetrate each other with the resulting 

entropy to be sufficiently lowered. As a result, a strong repulsion emerges between 

the two polymer layers and prevents the particles from getting close. With the correct 

grafting density and length of the polymer chains, the resulting potential is a good 

approximation of that of the hard spheres.  

Hard spheres phase diagram: Hard spheres exhibit a liquid phase at volume 

fractions below of 49.4% where the given space to the particles is big enough for 

them to diffuse freely and explore the whole volume available. By increasing the 

volume fraction further the liquid and crystal coexist and between 49.4% and 54.5 %. 

The fully crystalline phase exists from 54.5% to 58%. Upon further incretion, the 

glass state is reached between 58% and 64%. Hard spheres cannot overlap, as a result 

the maximum packing in an ordered state is 74%, while in the case of an amorphous 

random close packed structure the maximum packing fraction is  𝜑𝑅𝐶𝑃 = 0.64 .  

 

Figure 2.1.2: phase diagram of hard spheres 

 

Metastable glasses: Colloidal suspensions are slow to reach equilibrium from a 

metastable state. The time that particles need in order to reach equilibrium is given as 

the relaxation time  𝑡𝐵 , which is the time it takes for a particle to move a distance 

equal to it’s radius through Brownian motion. The relaxation time depends on the 

radius of the particle cubed (R3). However, the hard sphere colloids in disordered 

suspensions above 58% volume fraction, become tightly trapped or caged, by their 

neighboring particles and are unable to move enough space for a crystallizing state to 

exist. Instead of a crystal long-lived amorphous states are obtained that are called 

colloidal glasses.    
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2.2 Rheology: 

 Rheology from Greek ῥέω, "flow" and -λoγία, -logia, "study of") is the study of the 

flow of matter. The term rheology was established by Eugene Bingham, a professor at 

Lafayette College in 1920. The inspiration of the term was due to the phrase of 

Heraclitus, «τα πάντα ρει» which means “everything flows”. Rheological 

measurements are applied in substances which have a complex molecular structure, 

such as suspensions, muds, suspensions, polymers and colloids. Theoretical aspects of 

rheology are the relation between the internal structure and the flow/deformation 

behavior of the material. 

The disciplines of elasticity and fluid mechanics cannot be described fully from 

classical theories, while rheology is principally concerned with the extension of these. 

Materials flow when they are subjected to stress. Different kinds of stresses exist and 

materials respond to them in different ways. For example there is torsional stress and 

shear stress. Furthermore, theoretical rheology is primarily concerned with forces 

associated with flow, external applied stresses and resulting internal strains. 

 

Regarding the Rheological measurements, the aim was to show how the storage 

modulus G΄ and the loss Modulus G΄΄ develop in relation to varying strain and 

frequency. The storage modulus G’ describes the elastic, whereas the loss modulus 

G’’ describes the viscous properties of the material respectively. The complex 

modulus G* consists of both moduli with this relationship G*=G’+i*G’’. 

Furthermore, Dynamic time sweeps were measured keeping a constant frequency and 

strain, in order to collect the Fourier transform signal and Echo peaks. 

The applications are vast and some of them are substances which have a complex 

microstructure, like suspensions, polymers, colloids, bodily fluids (blood) and other 

biological materials.  
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Rheometric measurements:  

There are two types of rheometers, the ones that create a specific stress field (stress 

controlled rheometers) or deformation (strain controlled rheometers) to the sample. 

Both instruments can be operated in steady flow or oscillatory flow, in both shear and 

extension. The problem when working with commercial rheometers is that 

experimental data is hard to reproduce, since geometries differ from the simple shear 

geometry provided. For the solution of this issue, experimental rheologists decided to 

turn to rotating geometries. Some examples are cone plate and parallel plate 

geometries. The main difference between the two geometries is that in parallel plates 

the strain field is not homogenous and the velocity varies, whereas in the cone and 

plate the strain field is homogenous and the velocity has the same value everywhere. 

This is an important attribute of the rheometers, since when nonlinear measurements 

take place the validity of the response relies strongly on the assumption that the whole 

sample can respond uniformly to applied strain. For linear measurements this 

assumption is true even when we are using a parallel plate geometry. In our 

experiments a cone and plate geometry was used, since nonlinear measurements were 

performed. 

 

Figure 2.2.1: Illustration of cone and plate (left) and parallel plate (right) geometries 

used in experimental rheology. [17]  
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Dynamic measurements 

Oscillatory shear:  a sinusoidal strain with anglular frequency ω is applied to the 

sample 

𝛾(𝑡) =  𝛾0𝑠𝑖𝑛(𝜔𝑡) 

This kind of deformations can be achieved in a cone and plate geometry with a 

rotating bottom-plate about its axis. If the strain amplitude 𝛾0  is small enough that 

the fluid structure is not disturbed so much by the effect of deformation, then the 

stress measured during the oscillatory deformation is controlled by the rates of 

spontaneous rearrangements.  

The viscoelastic response can be explored, with varying frequency on different 

timescales. If the material is a perfectly elastic solid, then it obeys Hooke’s Law  

𝜎(𝑡) = 𝐺𝛾(𝑡) = 𝐺𝛾0𝑠𝑖𝑛(𝜔𝑡) 

Whereas, for a Newtonian liquid the stress will be related to shear rate through 

Newtons Law:  

𝜎(𝑡) = 𝜂
𝑑𝛾(𝑡)

𝑑𝑡
= 𝜂𝛾0𝜔𝑐𝑜𝑠(𝜔𝑡) 

The stress in a Newtonian liquid is out of phase with the strain by π/2 since it is 

expressed as a Cosine, while it still oscillates with the same angular frequency ω.  

A small amplitude deformation that is proportional to the amplitude of the applied 

strain 𝛾0  produces the shear stress σ(t) and it is itself varying sinusoidally with time. 

The total sinusoidally varying stress can be represented as:  

 

𝜎(𝑡) =  𝛾0[𝐺′(𝜔) sin(𝜔𝑡) + 𝐺′′(𝜔) cos(𝜔𝑡)] 

 

Where G΄ is the storage modulus and G΄΄ is the loss modulus. The storage of elastic 

energy is represented with the storage modulus, while the viscous dissipation of that 

energy is represented with the loss modulus. When G΄ > G΄΄ the materials has a solid-

like behavior, but when G΄΄ > G΄ the material has liquid-like behavior.  
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Peclet Number  

The Peclet number is introduced in order to quantify the effect of shear on a material. 

By normalizing the Dynamic frequency sweep and Dynamic strain sweep access is 

gained to the different Peclet regimes available Pe=γtB, where 𝑡𝐵 =
6𝜋𝜂𝑠𝑅3 

𝐾𝐵𝑇
 is the 

Brownian relaxation time, which is the time a particle needs to do a distance equal to 

it’s radius. As noted before there are two rearrangement mechanisms in Colloidal 

systems under oscillatory shear 1) Brownian motion at low Peclet regime 2) Shear 

induced collision at high Peclet regime, and both at intermediate Peclet regime. The 

relaxation time is inherent for the two particle sizes that are being used in our 

experiments. (tB=1.1 s for big particles R=358nm, and tB=0.05 s for small particles 

R=137nm), thus in order to access different Peclet regimes  frequency needs to be 

altered. For Peω <<1 Brownian motion dominates, for 0,1<Peω<1 both mechanisms 

are active and for Peω >>1 Shear induced collision dominates. With the small 

particles (R=137nm) the low and intermediate Peclet regimes are being explored, 

while with the big particles (R=358nm) the intermediate and high Peclet regimes are 

being accessed. In the case of oscillatory shear measurements Pe’=ωtB is defined, 

which contemplates to the relevant frequency of oscillatory shear compared to the 

Brownian time scale. Pe’ describes if the frequency is comparable or faster than 

Brownian motion. 

2.4 Rheology of Hard spheres:  

Rheological measurements on hard spheres have been done in the past, mostly with 

polydisperse samples, so that complications due to shear induced crystallization 

would not occur [7], [8]. With increasing φ, the particles become increasingly crowded 

by their neighbors, and structural relaxation of the particles slows dramatically, while 

a liquid undergoes shorter timescales for structural relaxation than a glass because of 

the particles free motion. As the volume fraction of the glass transition is approached 

the sample relaxes much more slowly. As a consequence, they can transmit forces like 

a solid (increased G’). Large-scale collective motion of particles result in structural 

relaxation, and the range of these events increase closer to the glass transition. In 

chapter 4 DSS curves are introduced for both particle sizes, where, for comparison 

purposes the storage and loss moduli, G’ and G’’, were normalized by thermal energy 

while on the same time frequency was normalized by the Brownian relaxation time, 
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(Peω=ωtB) in figure 4.1.1. In the glass regime PMMA hard spheres show solid-like 

response with G’>G’’, a weak increase of G’ with increasing frequency and a G’’ 

minimum [9], [10].    

2.5 Lissajous–Bowditch plots: 

The onset of a nonlinear stress response to oscillatory shear can be visualized by 

Lissajous plots, in which the intracycle stress is shown either as a function of strain or 

strain rate in order to highlight the the elastic and viscous parts of the system 

response, respectively. Stress and strain are in phase for elastic materials, where stress 

(y axis) is maximum when strain (x axis) is maximum also. As a result, this leads into 

a straight line on this plot, in case of linear elastic materials. On the other hand, they 

are out of phase (π/2) for viscous materials (liquids), where maximum stress is 

obtained when the strain rate is maximum. This behavior leads in a circular Lissajous 

plot, if the fluid is linear viscous or Newtonian. In the case of a viscoelastic materials, 

with a phase lag of 0<δ<π/2, the Lissajous plot is elliptical [13]. All these material 

behaviors are visualized in figure 2.5.1. Any deviation from the elliptical shape, 

indicates the presence of higher harmonic contributions. As the strain is increased, the 

onset of nonlinearity in the material’s response is clear by observation of the distorted 

Lissajous plots that appear more open. At the same time the elastic stresses 

progressively deviate from linearity with increasing strain, revealing a rich material 

response with thinning/hardening contributions depending on the frequency and 

particle size. The elastic modulus is represented by the tangent slope at zero strain, 

and the slope of the secant at maximum strain. At maximum strain the secant is not 

equal to the semimajor axis of the ellipse, except in the case we are studying a purely 

elastic solid. On the other hand, the slope of the semimajor axis of the ellipse 

represents the magnitude of the complex modulus [1].     
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Figure 2.5.1: Stress versus strain during a cycle for different materials [13]. 

2.6 Fourier transform: 

The phase difference between strain and various harmonics of stress can be different. 

As a consequence, amplitude and phase of each harmonic are independent 

characteristics of the material. The linear regime is confirmed by FT analysis, which 

shows only a contribution from the fundamental harmonic in the stress response. The 

non-linearity can be quantified through FT analysis, where there is a strong 

contribution from higher odd harmonics. It should be noted that even harmonics are 

virtually zero suggesting the absence of wall slip and shear banding. [12]  

2.7 Light scattering Echo: 

Rheology can explain the behavior of colloids under shear, yet only simulations can 

elucidate the physical origin of the system. While light scattering echo can also help in 

gaining a better understanding of the system experimentally in that sense. Light scattering 

echo is the combination of rheology and light scattering, aiming in obtaining the diffusion 

speckle pattern of particles under shear. Echo-DWS [6], [14], [15] is based on light multiply 

scattered by turbid samples. Upon application of oscillatory shear changes in the time 

autocorrelation function of the scattered light are exploited to determine shear-induce 

particle dynamics with repeating echoes that are visible on the system period multiples 

(mT)[16]. The correlation function  √𝑔(2) − 1 = exp (−
1

6
𝑛𝑘2〈𝛥𝑟2〉)  where n is the 

number of times the beam is scattered by the sample (we assume two here) and 𝑘 =
2𝜋

𝜆
 the 

waveguide, always start from value 1 (initial state) where 100% correlation is attained. If 

the system responds elastically, the particles return to their initial position after an integer 
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time of oscillation periods hence the correlation function returns to 1. On the other hand 

through shear plastic rearrangements are introduced to the system resulting in values of 

the correlation function less than 1. There are two kinds of mechanisms that can introduce 

rearrangements to the particles: 1) Brownian Motion 2) Shear induced Collision.                     

In chapter 2 the idea of Peclet number was introduced, in order to distinguish these two 

yielding mechanisms. To recap, In the region of low Peclet: (Pe<<1) Brownian motion 

dominates, whereas in the regime of high Peclet: (Pe>1) shear collision dominates. 

However, on intermediate Peclet (0,1<Pe<1) both mechanisms co-exist. In addition the 

correlation function becomes: √𝑔(2) − 1 = exp (−
1

6
𝑛𝑘2[〈𝛥𝑟2〉𝐵 + 〈𝛥𝑟2〉𝑆]) , where  

〈𝛥𝑟2〉𝐵 are the rearrangements induced by Brownian motion and 〈𝛥𝑟2〉𝑆 the 

rearrangements induced by shear. 

 Small (R=137nm) and big particles(R=358nm) are utilized in our experiments, so that 

access is gained to all Peclet regimes, since relaxation time 𝑡𝐵  cannot be altered. Echoes 

are visible with up to 30% strain (2Hz frequency in big particles R=358nm).The relative 

first echo decreases with increasing strain amplitude and after approximately 2-3% the 

non-linear behavior of our system can be clearly shown, as well as from FT analysis. LS 

Echo gives us a more convincing explanation of the physical picture of colloidal particles, 

while on shear. Brownian motion introduces less abrupt rearrangements compared to 

shear induced collision.  

By normalizing the echo peak height with the first strain we measured (0.5 or 1 %), all the 

Brownian motion contributions were successfully extracted and therefore it was clear how 

the mechanism of shear collision is related to plastic rearrangements. The short-Brownian 

diffusion was visible in smaller timescales, through the fast drop of the correlation 

function. Also the inverse of half of the half width of the first echo peak was calculated, 

which shows an increasing trend with increasing frequency and a decreasing trend with 

increasing strain (peaks get narrower with increasing strain). 
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Chapter 3: Experimental techniques and details: 

3.1 Samples:  

Two kinds of hard sphere particles were used, small (asm340, R=137nm) and big 

(asm454, R=358nm). These hard sphere particles consist of polymehtylmethacrylate 

(PMMA) cores that are being sterically stabilized by thin (10nm) chemically grafted 

polymeric layers of poly-12-hydroxystearic acid (PHSA) chains. The particles have 

polydispersity of 12% in order to avoid crystallization by shear. The solvent we used 

is a mixture of bromonapthalene and octadecene (n=1.48) in order to avoid 

evaporation and to approximately match the refractive index of the colloidal particles 

(n=1.497). The refractive index of the solvent and the colloids did not entirely match, 

and as a result the colloidal suspension was turbid and not transparent. 

Solvents Refractive index Boiling point 

Bromonapthalene 1.6494 280 𝐶𝑜 

Octadecene 1.4441 317 𝐶𝑜 

 

Table:  Bromonapthalene and octadecene solvents properties 

 

3.2 sample preparation: 

Before preparing the specific volume fractions used, the cleaning process was 

followed. Firstly, the mixture of solvents are being prepared and then it is added to the 

colloidal powder in order to create the suspension. Secondly, the suspension is mixed 

in the vortex and then it is being centrifuged leading to phase separation. Ultimately, 

the excess solvent is being thrown away, and the whole process is repeated seven 

times. After the cleaning process, sample dilution followed until the desirable volume 

fraction was reached: 0.61 and 0.63 for small particles (R=137nm) and 0.61 for big 

particles (R=358nm). 
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3.3 Rheometer specification:  

An ARES (TA) strain controlled rheometer was used for all measurements.                         

The rheometer’s torque range is 0.004-10 𝑔𝑟 ∙ 𝑐𝑚 with the first transduced and         

0.04-100𝑔𝑟 ∙ 𝑐𝑚 with the second [14]. Moreover, for our experiment, it was decided to 

use a homemade cone and plate geometry (Echocone: cone angle=0.04 rad, 

diameter=40 mm), where the plate is made of glass since it was used for light 

scattering experiments (LS Echo). A steel spherical solvent trap was used to ensure 

minimum solvent evaporation during the experiment. In order to ensure 

reproducibility of measurements, a constant temperature of 20 ℃ was kept 

3.4 Rheological measurements and experimental protocol: 

An experimental protocol was followed with regard to data validity. Before 

conducting any measurements a dynamic strain sweep with decreasing strain was 

performed in the range of 100%-0.5% (Rejuvenation) thus destroying (erasing) any 

structural memory that the system could have due to stress from loading the sample or 

from previous experiments. Between the rejuvenation and each measurement a 

constant waiting time of five minutes was kept. Furthermore, the measurements 

performed were:                                     

1) Dynamic frequency sweep tests (DFS), where the strain is constant in the linear 

regime (γο =1%) and the measurement of G’ and G’’ takes place.                                                          

2) Dynamic strain sweeps at frequencies of 0.2-2 Hz measuring G’ and G’’ with 

varying strain, while the frequency is constant.   

3) Dynamic time sweeps (DTS), where G’ and G’’ is being measured at a constant 

strain and frequency. 
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3.5 Echo configuration: An air cooled tube of He-Ne laser of wave-length (𝝀 =

𝟔𝟑𝟑 𝒏𝒎) that is operating at 25mW was used, in order to illuminate the sample. 

Crossed polarizers are used, so that the incident beam will be eliminated, when 

measuring the correlation function, thus taking only the scattering beam contribution 

of the colloidal particles into account. When light is scattered from the sample 

backscattering occurs and it is captured by the detector which is located above. After 

that the photomultiplier, multiplies the scattered light intensity and as a consequence 

individual photons can be detected even when the incident flux of light is very low. 

Then the light patterns are being converted into electric signal, which are being 

correlated by the correlator. 

The most important configuration options are: The echo width, which actually 

changes the time space where the echo peaks appear. The sample time, which is the 

average time of photons that are being captured, the Echo points, where the number 

of points in every echo is specified. The only restriction is the channel capacity that is 

frankly the available data slots which can be monitored, so that more data points go 

into a specific region of the echo. Another important factor that we can manipulate is 

the correction factor, which gives us the opportunity to fix the error induced by the 

correlator clock in long times of correlation, thus fixing the last peaks position. 

Another configuration option is the ratio of points around base line to initial decay. 

For bigger ratio values, more points are acquired around the base of the echoes as 

opposed to the initial decay of the correlation function due to short-time Brownian 

motion.  

 

Figure 3.5.1: LS Echo setup schematic [17]. 
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Chapter 4: Results and Discussion 

4.1 Rheology of hard sphere glasses: 

Linear Rheology: In general, Dynamic frequency sweep tests were performed for 

determining the storage (G’) and loss (G’’) modulus as seen in figure 4.1.1. The 

frequency sweeps were performed with 1% strain for all the samples, while the 

volume fraction is almost matched. Waiting time before performing measurements is 

6000tB for small particles and 273 tB for big particles. In order to determine the linear 

regime, Dynamic strain sweep measurements were performed for φ=0.61 volume 

fraction. In figures 4.1.2 and 4.1.3 both particles show an increased storage modulus 

G’ with increasing frequency, while the novel loss modulus minimum which is 

characteristic of colloidal gels and glasses is observed. The characteristic time for a 

particle to explore it’s cage is related to the minimum of G’’. In small particles G’ and 

G’’ values are much higher than in big particles, because there is a direct 

proportionality to the thermal energy𝐾𝐵𝑇.  

Non-Linear Rheology: Two different frequencies were applied 2Hz and 0.2Hz. For 

the small particles (R=137nm) the linear regime extends from 0.5% to 1.34% strain as 

seen in figure 4.1.2, wherein for the big particles(R=358nm) in figure 4.1.3 the linear 

regime extends from 0.5% to 1% strain. Additionally in both cases shear thinning 

behavior is observed, where G’ decreases and G’’ increases at the same time showing 

the material’s pronounced viscous behavior.  

For the small particles and 0.2Hz frequency  the G’’ double peak is observed, as a 

result of the two rearrangement mechanisms found in colloidal system under 

oscillatory shear 1) Brownian motion assisted cage escape on low Peclet and 2) Shear 

induced collision at high Peclet . The two peaks signify maximum energy dissipation 

during the two yielding mechanisms, which is attributed to cage breaking from 

thermal motion and through particle collisions respectively [3]. Moreover, big particles 

show an anisotropic structure under, that exhibits an interesting hysteresis under strain 

reversal. With this kind of structural “memory”, a characteristic stress drop is 

observed after strain reversal through The Lissajous plots, shown in chapter 4.2. 
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Figure 4.1.1:  Normalized Dynamic frequency sweep for PMMA Colloidal hard spheres of 

Radius R=137nm and R=358nm.  
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Figure 4.1.2: Dynamic strain sweep with 2Hz frequency (left),0,2Hz (right)  for PMMA 

Colloidal hard spheres of Radius R=358nm.  
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Small particles (R=137nm) 

Dynamic strain sweep 
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Figure 4.1.3: Dynamic strain sweep with 2Hz frequency (left),0,2Hz (right)  for PMMA 

Colloidal hard spheres of Radius R=137nm. 
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4.2 Lissajous-Bowdich Plots: 

Big particles (R=358nm) 
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Big particles (R=358nm) can reveal the transition from the low peclet rectangular 

shape Lissajous plot that shows both elastic and plastic responses, until the high 

Peclet regime to the ellipsoid with a double concave distortion shape that is attributed 

to the reduction of stress, which is also shown with Fourier analysis on the next 

chapter.  

Progressively larger intracycle non-linearities accompany the non-linear response, as 

indicated both by the Lissajous plots here and Fourier transform in the chapter 4.3. 

Moreover, small particles (R=137nm) show a transition on Lissajous plots from a 

linear visco-elastic behavior (regular elliptical shape) to low strains, to a distorted 

parallelogram pattern which indicates the elastic to plastic response.[3] 

 

4.3 Fourier transform:  

 

 

 

 

 

 

 

 

 

Figure 4.3.1: Third harmonic response of PMMA colloidal spheres of 0.61 volume fraction 

versus strain amplitude for all frequencies applied and radius of R=358nm (left) and for 

R=137nm (right).   

FT analysis is shown in figure 4.3.1 for 61% volume fraction in both particle sizes, 

where the higher harmonic contributions relative to the fundamental I3/I1 , are plotted 

versus the applied strain for both particle sizes. In the linear regime at 0.5% only the 

fundamental harmonic is contributing to the stress response. At higher strains the 

higher odd harmonic contributions become significant, due to the increased stress non 

linearity. It is clear that in both cases, lower frequencies have a larger amplitude of 

non-linearity, which starts around γο=2-3% for both particle sizes. Additionally, a 
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more gradual increase is observed for the small particles, while for the big particles it 

is abrupt on γο=15% for both frequencies. With further increase of γο a drop is 

witnessed for the big particles at 30% for 2Hz frequency and at 25% for 0.2Hz until 

50% and 100% respectively, in contrast with the small particles where an increasing 

trend is still contemplated until 100% for 2Hz frequency and 500% for 0.2Hz. Clearly 

for the big particles a more anisotropic particle cage is formed due to fewer particle 

collisions, thus allowing flow with less stress compared to the small particles where 

Brownian motion relaxes shear-induced structural anisotropy more efficiently, leading 

to an increasing stress response.[3] 

4.4 Light scattering echo: 

Dynamic strain sweep 
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Figure 4.4a: Normalized  Dynamic strain sweep for 2Hz and 0.5Hz  frequency for PMMA 

Colloidal hard spheres of Radius R=137nm and volume fraction φ=0.63 
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Figure 4.4b: Normalized  Dynamic strain sweep for 2Hz and 0.5Hz  frequency for PMMA 

Colloidal hard spheres of Radius R=358nm and volume fraction φ=0.61 



- 23 - 
 

 

1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000

0

1

t(s)

g
(2

) (m
T

)-
1

 

 

1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000

0

1

 

t(s)

g
(2

) (m
T

)-
1

 

 

 

Figure 4.4.0: Time autocorrelation function of a linear (2Hz 0.5% strain) {left} and a non-

linear (2Hz 15% strain) {right} measurement for small particles (R=137nm) of 61% volume 

fraction. 

The time autocorrelation function exhibits echoes in multiples of the oscillation 

period, as noted in chapter 2.7 in order to monitor the elastic and plastic behavior of 

the colloidal particles. The volume fraction is set to 61%.On the left of figure 4.4.0 for 

frequency of 2Hz and 0.5% strain the system responds elastically since even in long 

timescales, it exhibits the same echoes indicating no structural changes, almost like a 

solid material. Wherein for 2Hz and 15% strain the non-linear behavior is clear, due 

to the almost complete disappearance of the echoes in long timescales indicating that 

the material is starting to respond like a liquid. Moreover, it has to be noted that even 

the first echo peak is decorralated in the latter case, showing that irreversible 

rearrangements occur even at short timescales when the material is a fluid. 
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Figure 4.4.1: Light scattering echo peak height fitted with an exponential decay function for 

all strains applied with frequency of 2Hz (left) and 0.5Hz(right)on PMMA Colloidal hard 

spheres of Radius R=137nm and volume fraction of φ=0.63.   
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Figure 4.4.2: Light scattering echo peak height fitted with an exponential decay function  for 

all strains applied with frequency of 2Hz (left) and 0.5Hz(right)on PMMA Colloidal hard 

spheres of Radius R=358nm and volume fraction of φ=0.61.   

The stretched exponential was fitted for both systems:   𝑦 = 𝐴 ∗ 𝑒
(−

𝑥

𝑡𝛽
)

𝛽

+ 𝐶   , where 

A is the amplitude tβ is the relaxation time, β is the stretching exponent ( 0≤ 𝛽 ≤ 1)   

and C is the offset. In the linear regime, for both systems the height of the first echo is 

virtually independent of the strain amplitude (γο =1%). In figure 4.4.1 for small 

particles, a higher timescale was available until 50 seconds, however in figure 4.4.2 

for big particles a timescale of only 10 seconds was reached for 2Hz frequency and 20 

seconds for 0.5Hz since echo peaks disappeared at larger times.  Above the amplitude 

of 1% in the Non-linear regime, the echo height significantly decreases with γο , 
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following a stretched exponential decrease with a dramatic change around γο=8.5% 

and γο=7.5% in 2Hz and 0.5Hz frequency respectively for the small Particles in figure 

4.4.1 and around γο=5% in 2Hz and 0.5Hz in figure 4.4.2 for the big particles. The 

peaks completely disappear at 15% for the small particles in both frequencies and for 

the big particles at 30% and 18% for 2Hz and 0.5Hz respectively.                                            

 

 

 

 

 

 

 

 

 

 

 Figure 4.4.3:  First  echo for all strains applied with frequency of 2Hz(left) and 0.5Hz (right) 

on PMMA Colloidal hard spheres of Radius R=137nm and volume fraction φ=0.63.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.4:  First  echo for all strains applied with frequency of 2Hz(left) and 0.5Hz (right) 

on PMMA Colloidal hard spheres of Radius R=358nm and volume fraction φ=0.61. 

The amplitude of the first echo decreases rapidly with increasing strain as was also 

observed in figures 4.4.1 and 4.4.2, showing the shear induced irreversible particle 
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4.4.3 for 2Hz and 0.5Hz frequency respectively for the small particles (R=137nm) and 

around γο=5% in figure 4.4.3 2Hz and 0.5Hz for the big particles (R=358nm).Also it 

is noted that, the echo width is decreasing with increasing strain showing the 

pronounced viscous behavior due to the fact that echo width is proportional to the 

shear relaxation time. 

0,75 1 2,5 5 7,5 10

0,01

0,1

1

 

 

 

 




P
(T

)/
P

0
(T

)

 2Hz R=137nm 

 0.5Hz R=137nm 

 

Figure 4.4.5: Shear induced decay of relative first echo of all strains applied  of  frequencies 

2Hz and 0,5Hz on  PMMA Colloidal hard spheres of Radius R=137nm (left) and R=358nm 

(right).  
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Figure 4.4.6: Shear induced decay of relative first echo of all strains applied for all volume 

fractions on PMMA Colloidal hard spheres of radius R=137nm 
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From the correlation function, one can extract all the Brownian motion contributions, 

with 
𝑃(𝑇)

𝑃0(𝑇)
=  

𝑃(𝑇)

lim P
𝛾0→0

(𝛵)
≈ exp [−

1

6
𝑁𝑘2〈𝛥𝑟2(𝑡)〉𝑆] normalizing with strain in the limit of 

0% strain (0.5% for small particles 61% volume fraction, 1% for all the rest). In figure 

4.4.6 for both volume fractions of small particles (R=137nm), shear is starting to 

affect around γο= 10-11% for 2Hz and 0.5Hz frequency where an abrupt drop is 

observed, while on 2Hz and 0.5Hz for the big particles in figure 4.4.5 it starts around 

γο= 7.5%. Furthermore, at γο= 15% for small particles and γο= 30% for big particles, 

an abrupt drop is observed in 
𝑃(𝑇)

𝑃0(𝑇)
 and the echo peaks completely disappear since the 

material becomes a fluid. 
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Figure 4.4.7:  Square root of the shear induced mean square displacement as a function of 

strain amplitude for  frequencies 2Hz and 0,5Hz on  PMMA Colloidal hard spheres of Radius 

R=137nm (left) and R=358nm (right). 
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Figure 4.4.8: Square root of the shear induced mean square displacements normalized to the 

particle diameter as a function of strain amplitude  for all volume fractions on PMMA 

Colloidal hard spheres of radius R=137nm. 
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In addition to the shear induced decay of the relative first echo, the particle mean 

square displacement was calculated as well. By using the physical logarithm on 
𝑃(𝑇)

𝑃0(𝑇)
 

we obtain ln (
𝑃(𝑇)

𝑃0(𝑇)
) ≈ ln (exp [−

1

6
𝑁𝑘2〈𝛥𝑟2(𝑡)〉𝑆]) leading to ln (

𝑃(𝑇)

𝑃0(𝑇)
) ≈

[−
1

6
𝑁𝑘2〈𝛥𝑟2(𝑡)〉𝑆]. Finally, it leads to〈𝛥𝑟2(𝑡)〉𝑆 =

ln(
𝑃(𝑇)

𝑃0(𝑇)
)

−
1

6
𝑁𝑘2

. The particle mean 

square displacement directly follows the material microscopic structural changes 

induced by shear in order to get a deeper understanding of this mechanism, In other 

words these rearrangements are directly linked to the decorrelation of the echo peaks. 

Contrary to what was observed on the shear induced decay of the relative first echo in 

figures 4.4.5 and 4.4.6 , for the big particles in figure 4.4.7  lower frequencies induce 

larger rearrangements for γο more than  4%. Also, for the small particles in the same 

figure when γο is up to 8% similar behavior is contemplated. However, at higher γο 

rearrangements for 2Hz frequency become larger than those for 0.5Hz. In contrast to 

what was observed for the volume fraction dependence of small particles in figure 

4.4.8, with the exception of γο =5% larger particle rearrangements are induced for 

higher volume fractions.  
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Figure 4.4.9: Square root of the mean square displacements normalized to the particle 

diameter as a function of strain amplitude  for all volume fractions on PMMA Colloidal hard 

spheres of radius R=137nm. 
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Figure 4.4.10: Square root of the shear induced mean square displacements normalized to 

the particle diameter as a function of strain amplitude  for all volume fractions on PMMA 

Colloidal hard spheres of radius R=137nm. 

This mean square displacement consists of both Brownian motion and shear in contrast with 

the one plotted in figures 4.4.7 and 4.4.8. where only the shear mechanism is contemplated. 

Generally, the mean square displacement increases with increasing γο and time as seen in 

figures 4.4.9 and 4.4.10. Additionally, a gradual increase is observed around 10 seconds for 

both particle sizes and a more abrupt around 30 seconds for the small particles while for the 

big this occurs at 10 seconds. Furthermore, for the small particles a larger mean square 

displacement is observed showing that more irreversible rearrangements take place compared 

to the big particles as seen in in figures 4.4.9 and 4.4.10. 
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Figure 4.4.11: Beta exponent as calculated from fitting the stretched exponential               

(0 ≤ 𝛽 ≤ 1) for small particles (R=137nm) for frequencies of 2Hz and 0.5Hz respectively 

(left), and for big particles (R=358nm) for frequencies of 2Hz and 0.5Hz (right). 

The stretching exponent β is dimensionless and plays the role of a non-equilibrium scaling 

exponent with values ranging from 0,6 to 0,25 as seen in figure 4.4.11. For the small 

particles (R=137nm) and both frequencies there is a decreasing trend with increasing γο until 

the minimum at γο=15%, with the values of beta being somewhat larger for 2Hz. The same 

applies for the big particles (R=358nm) for 2Hz frequency a decrease is contemplated until 

γο=30%. Furthermore, for 0.5Hz an increasing trend is observed until γο=18% with values of 

beta exponent slightly larger than those for 2Hz. The drop of beta with increasing strain 

amplitude indicates a broader spectrum of relaxation times in both systems. 
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Figure 4.4.12: Relaxation time through shear of PMMA hard spheres of radius R=137nm 

and different volume fractions (left) and for radius R=358nm and volume fraction φ=0.61, 

R=137nm and volume fraction φ=0.63 (right).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.13: Inverse relaxation time of PMMA hard spheres of radius R=137nm and 

different volume fractions (left) and for radius R=358nm and volume fraction φ=0.61, 

R=137nm and volume fraction φ=0.63 (right).  

Big particles relax faster than small particles as observed in figure 4.4.12, where for 

the same frequency the time scales are smaller. In the same figure, it is clear that the 

big particles show the same behavior for 0.5Hz as the small particles for 2Hz which 

indicates that they are in the same Peclet regime. Admittedly, with increasing 

frequency both systems relax faster due to shear. Moreover, in figure 4.4.12 the lower 

volume fraction for the small particles relaxes faster than the higher one in agreement 
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with what was observed by the shear induced decay of the relative first echo in figure 

4.4.6. Finally, concerning the inverse of the half width, which is the actually the 

inverse of the relaxation time, the desired linear behavior is observed in figure 4.4.13 

indicating that there was no wall slip or shear banding in our experiments. 

 

Comparative plots 

Size dependence: 

50

500

0

3

5

8

10

10
0

10
1

10
2

0,01

0,1

1

 

 

 

 
G

',
G

" 
[P

a
]  G'

 G''

 

 
i3

/i
1

 

 

 

 

 

 




A
m

p
li
tu

d
e

 2Hz R=137nm

 

5

50

0

5

10

15

20

10
0

10
1

0,01

0,1

1

 

 

 

 
G

',
G

" 
[P

a
]  G'

 G''

 

 
i3

/i
1

 

 

 

 

 

 




A
m

p
li
tu

d
e

 2Hz R=358nm

 

 Figure 4.4.14: Comparison of the elastic G’ and viscous G’’ modulus, with the third 

harmonic response and echo amplitude decay for small particles (R=137nm) φ=0.61 

with 2Hz frequency (left) and for big particles (R=358nm) φ=0.61 with 2Hz frequency 

(right). 
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With figure 4.4.14 the size dependence comparison is accomplished. For the small 

particles, G’ is decreasing with increasing strain while G’’ is increasing, starting from 

low values for the third harmonic showing that only the fundamental harmonic is 

present while the echo amplitude has not yet decorralated revealing a solid response. 

The same behavior is contemplated for the big particles also. In addition, for both 

cases the third harmonic increases with increasing strain, showing pronounced non-

linear response as observed also by the decrease of the echo amplitude. Furthermore, 

for the small particles the third harmonic is gradually increasing, whereas for the big 

particles there is a more abrupt increase followed by a steep drop. This phenomenon 

has been explained in detail in section 4.3 of this thesis. By the time that the yielding 

point is reached, the third harmonic is still increasing for the small particles until it’s 

maximum value, wherein for the big particles a drop is observed and the echo 

amplitude has already been fully decorrelated in both cases. It should also be noted 

that small particles yield faster than the bigger particles. After the total decorrelation 

of the echo amplitude the system becomes a liquid as seen from the Dynamic strain 

sweep also. 
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Volume fraction dependence: 
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Figure 4.4.15: Comparison of the elastic G’ and viscous G’’ modulus, with the third 

harmonic response and echo amplitude decay for small particles (R=137nm) with 

2Hz frequency for φ=0.61 (left) and for φ=0.63 (right). 

With figure 4.4.15 the volume fraction dependence for the small particles is 

illustrated. Initially, concerning the rheological response, in the case of higher volume 

fraction the system yields faster. Hence, the yielding process is more abrupt compared 

to the smaller volume fraction where it is a more gradual process. For φ=0.63 a third 

harmonic drop is observed, similar to what was observed for the big particles in figure 

4.4.15 however, this occurs before the yielding point and the echo amplitude is 

starting to dramatically decorrelate at this point. Finally, when the yielding point is 

reached the third harmonic drops to a minimum and the echo amplitude drops to zero.   
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Frequency dependence: 
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Figure 4.4.16: Comparison of the elastic G’ and viscous G’’ modulus, with the third 

harmonic response and echo amplitude decay for small particles (R=137nm) φ=0.63 

with 2Hz frequency (left) and 0.5Hz frequency (right). 

Figure 4.4.16 sheds some light on the frequency dependence of the small particles. 

Firstly, for the 0.5Hz frequency the system yields faster revealing the importance of 

Brownian motion which is dominant on low Peclet for the system’s restructuring. 

Furthermore, the third harmonic is increasing with increasing strain until the yielding 

point where the maximum value is reached. On the other hand, there is a drop for the 

2Hz as shown also in figure 4.4.15. What is more for 0.5Hz frequency when the 

system yields the echo amplitude has almost been fully decorralated, as witnessed for 

the 2Hz also.  
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Figure 4.4.17: Comparison of the elastic G’ and viscous G’’ modulus, with the third 

harmonic response and echo amplitude decay for big particles (R=358nm) φ=0.61 

with 2Hz frequency (left) and 0.5Hz frequency (right). 

 

Figure 4.4.17 points out the frequency dependence of the big particles. Firstly, the 

system yields almost at the same strain, showing that in high Peclet where shear is 

dominant the particles are not affected by frequency as much as with the small 

particles where Brownian motion dominates. Furthermore, for 0.5Hz at the yielding 

point the third harmonic drop does not occur and in contrast with 2Hz a maximum is 

reached. Nevertheless, when the system yields the echo amplitude for both cases 

totally decorrelates.    
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Peclet regime dependence: 

                                Peω = 0.162                                                                  Peω = 0.649                     
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Figure 4.4.18: Comparison of the elastic G’ and viscous G’’ modulus, with the echo 

amplitude decay and beta exponent for small particles (R=137nm) φ=0.63 with 0.5Hz 

frequency (left) and 2Hz frequency (right). 
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 Peω = 2.95                                                                     Peω = 11.74 
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Figure 4.4.19: Comparison of the elastic G’ and viscous G’’ modulus, with the echo 

amplitude decay and beta exponent for big particles (R=358nm) φ=0.61 with 0.5Hz 

frequency (left) and 2Hz frequency (right). 

 

The three different Peclet regimes (Peω=ωtB) can be observed in figures 4.4.18 and 

4.4.19, starting from low Peclet (Peω =0.162) where Brownian motion dominates, 

going to intermediate peclet (Peω =0.649 and Peω =2.95) where both mechanisms 

coexist and are comparable, with Brownian motion being significant for the first case 

(Peω =0.649), and shear induced collision for the second case (2.95), until the high 

Peclet regime is reached where shear induced collision dominates (Peω = 11.74). The 

yielding point (G’=G’’) is observed in higher strain amplitude with increasing Peclet, 
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showing the different nature of Brownian motion yielding and shear induced collision 

yielding. Moreover, for every Peclet regime the echo amplitude is almost constant for 

the linear measurements showing solid-like behavior with reversible particle 

rearrangements, whereas with increasing strain amplitude for the non-linear 

measurements a liquid like behavior is contemplated with irreversible particle 

rearrangements until the yielding point where the system becomes fully fluidized and 

system correlation is lost. Furthermore, the beta exponent ranges between 0.6-0.25 

and a gradual decreasing trend is observed for all Peclet regimes with the exception of 

high Peclet regime where the decrease is more abrupt.                        
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Figure 4.4.20: Light scattering echo peak height with time  for 0.5Hz (open symbol) and 

2Hz (Closed symbol) frequency, for small particles R=137 (left) and big particles (right) 

 

In both particle sizes, almost the same amplitudes are observed for the same applied 

strain amplitude until 5%. For larger strain amplitude there is a difference between the 

two frequencies, with 2Hz showing a bigger decrease in the correlation function. As a 

result, this means that frequency does not affect the drop of the correlation function as 

much as strain amplitude does until 5% strain. For larger strain amplitude even more 

irreversible rearrangements are induced for 2Hz frequency showing more pronounced 

non-linear effects for larger Peclet regime. Under these circumstances strain 

amplitude is mostly responsible for the irreversible particle rearrangements, while 

frequency affects only in higher Peclet regime as manifested by figure 4.4.20.  
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Figure 4.4.21: Average relaxation time with strain amplitude for small particles 

R=137nm (left) and big particles (right), for 2Hz and 0.5Hz frequency. 

The average relaxation time is given by the relationship <τ>=τΓ(1/β)/β , where τ is the 

fitting time (material dependent) , Γ(1/β) is the gamma function , where: 

𝛤(1/𝛽) =  ∫ 𝑥1/𝛽−1𝑒−𝑥∞

0
𝑑𝑥. A decrease in both cases is observed with increasing 

strain amplitude for both particle sizes and both frequencies as contemplated by figure 

4.4.21. For the small particles, the average relaxation time starts from 750 seconds 

dropping to 2 seconds, whereas for the big particles it starts around 50 seconds 

dropping again around 2 seconds. The relaxation time drop is more abrupt for the 

small particles (137nm) compared to the big particles (358nm) which is more gradual, 

this is an indication of a faster system relaxation which is also broader as observed by 

the beta exponent drop in figure 4.4.11.  
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Chapter 5: Conclusions  

 

In this work rheological measurements and LS Echo were performed in order to gain 

a better understanding of the two mechanisms found in repulsive colloidal glasses: 1) 

Brownian motion and 2) Shear induced collision. For this reason two different particle 

sizes were used: small (137nm) and big (358nm) in order to gain access to the 

regimes where each mechanism dominates over the other. To begin from the 

correlation function analysis, a drop in the first echo was observed indicating shear 

induced rearrangements with increasing strain amplitude, while frequency does not 

affect as much. This can also be confirmed from the rheological measurements: 1) 

non-linear behavior of G’ and G’’ 2) increase in the third harmonic and 3) change 

from the linear elliptic shape of the lissajous plots to the parallelogram shape for small 

particles and double concave for big particles. The same behavior was observed even 

when the Brownian contribution was taken out of the correlation function (PT/P0T).  

Starting from the linear regime for φ=0.61 both particles show an increased elastic 

modulus G’ with increasing frequency while at the same time the viscous modulus 

minimum is characteristic of colloidal gels and glasses. The characteristic time a 

particle needs to explore it’s cage is related to the minimum of G’’. For small particles 

G’ and G’’ values are much higher than in big particles, because there is a direct 

proportionality to the thermal energy 𝐾𝐵𝑇. Turning to the non-linear regime in both 

particle sizes shear thinning behavior is observed where G’ decreases and G’’ 

increases at the same time, showing that the system is becoming fluidized. Moreover, 

upon further incretion of strain amplitude the big particle system becomes shear 

thickening which is signified by a gradual G’ increase.  

To illustrate the rheological response furthermore, the Lissajous-Bowdich plots were 

observed where the big particles reveal the transition from the low Peclet rectangular 

shape Lissajous plot that shows both elastic and plastic responses to the high Peclet 

regime where an ellipsoid with a double concave distortion shape is being 

contemplated. For the small particles there is a transition from a linear visco-elastic 

behavior (regular elliptical shape) of low strains, to a distorted parallelogram pattern 

instead. [3] 
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In addition to rheology, Fourier transform quantifies the amplitude of non-linearity by 

introducing the dominant third harmonic. Naturally, for the big particles a more 

anisotropic particle cage is formed due to fewer particle collisions as quantified by the 

sudden drop of the third harmonic, therefore allowing flow with less stress compared 

to the small particles where Brownian motion relaxes shear-induced structural 

anisotropy more efficiently. [3] Above all, for the big particles this response is 

contemplated by the third harmonic drop. 

Furthermore light scattering echo monitors the elastic and plastic behavior of the 

colloidal particles by directly following their motions. All g(2)(mT) – 1 functions show 

an initial decay attributed to the short-time Brownian-dynamics and a decay at longer 

times which is associated to the shear-induced plastic rearrangements of the glass. For 

low strains, the material responds elastically almost like a solid and no significant 

structural rearrangements are observed. On the other hand, for higher strain amplitude 

the material responds like a liquid and irreversible structural rearrangements occur. 

The transition from Brownian activated yielding, where particles under shear with the 

aid of thermal motion escape their cages to the shear induced collision cage breaking 

at higher frequencies is directly linked to the stronger irreversible particle 

rearrangements and decreasing critical yielding strain at lower frequencies.  

Correspondingly, thermal fluctuations evolve in a two-step process in highly 

concentrated suspensions where particles are restricted in cages formed by their 

neighboring particles β relaxation which corresponds to the fast motion of particles 

inside the cage, in contrast with the α relaxation where an extremely slow diffusion at 

longer distances takes place corresponding to cage breakdown [4], [5]. What is more, the 

shear induced decay of the relative first echo can elucidate the particle rearrangements 

due to shear showing pronounced effects above γο=10% for both particle sizes.  

Usually, a reduction in 
𝑃(𝑇)

𝑝0(𝑇)
 can be caused by two factors: 1) a decrease of the non-

ergodic plateau and/or 2) a long-time decay under shear acceleration [16]. In general, 

the higher the applied frequency the faster particles will relax due to the fact that they 

cannot relax with their intrinsic relaxation.  
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Moreover, in order to ensure the validity of our measurements the inverse half width 

at half height of the first echo was introduced (the inverse initial decay rate Γ-1). This 

linear proportionality is observed and besides indicating the absence of wall-slip and 

shear banding effects, it also proves the reproducibility of our experiments. [6] 

Also, from the KWW stretched exponential fit of the correlation function, the average 

relaxation time and beta exponent were calculated giving a deeper insight in the 

system response for both particle size in different Peclet regimes. Not only was a 

decreasing average relaxation time observed with increasing strain amplitude 

indicating that the system relaxes faster, but also the decrease of beta exponent with 

increasing strain amplitude revealed a broader spectrum of relaxation times. What is 

more, the different Peclet regimes available were thoroughly studied with the 

comparative plots in order to highlight the difference between the two known 

mechanisms. Starting from low Peclet (Peω =0.162) where Brownian motion 

dominates and (Peω =0.649) where shear induced collision is somewhat comparable, 

going to intermediate (Peω =2.95) where there is a stronger competition between 

Brownian motion and shear induced collision, until the high Peclet is reached             

(Peω =11.74) where shear induced collision totally dominates.  There is no visible 

difference observed starting from low to high strain amplitude: The correlation 

function decays fully by the time the yielding point is reached (G’=G’’) in the same 

way for all Peclet regimes available. To summarize, this might happen due to the 

slight difference in particle size and frequency applied, leaving an open question as to 

whether even larger particles and frequency applied could highlight the differences 

between the two mechanisms even more.       
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