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1. Historical Introduction

The concept of symmetry inspired many philosophers , artists and math-
ematicians from the ancient times. In each field , there are different kinds
of definitions of symmetry. Although, balance and harmony are synonymous
to the word symmetry , in mathematics there is another definition; object
is invariant to any varius transformations .The significance of symmetry in
physics can be seen in all of the fundamental theories. A great example is
the spacetime symmetries of Einstein , according to which the laws of nature
are described by equations that are invariant under Lorentz transformations
or internal symmetries such as the approximate SU(2) isospin symmetry .
Later on, symmetry became a part of the Standard Model of particle physics;
a theory that describes the three of the four fundamental forces and their
interactions with elementary particles. This theory is governed by some spe-
cific kinds of symmetries called gauge symmetries. Electromagnetism and
the Strong force that described in the standard model (Q.E.D , Q.C.D) were
consistent to the experiments with great accuracy. However, the symmetry
of the weak force could not allow non-zero mass for the W± and Z bosons,
the quanta of weak interactions . Experiments showed that there must be
massive particles responsible for the weak interactions with significantly large
masses. The physics of superconductors played a crucial role to solve the mys-
tery of massive gauge bosons. Within a superconductor the electromagnetic
field becomes a massive field. In other words , the photon acquires non-zero
mass. This is caused by the so-called spontaneously symmetry breaking ;
the gauge symmetry that the equations of electrodynamics have is not valid
by the ground state of the superconductor. Three notable research groups
worked to find out the exact mechanism that under symmetry breaking could
give mass terms for the W±, Z bosons. Brout and Englert in Belgium , Higgs
in Scotland and Kibble with Guraluik and Hagen in London. In 1964, they
found independently the symmetry breaking mechanism, widely known as the
Brout-Englert-Higgs Mechanicm. According to the mechanism, the initially
massless gauge boson of a theory with gauge symmetry, can acquire mass if
this symmetry is spontaneously broken by the ground state of the system.
Going through the symmetry breaking path, Weinberg in 1967 and Salam
in 1968 independently formulated the Electroweak theory. This theory was
able to make accurate predictions for the W±, Z bosons, in agreement with
experiments. It turned out that the Universe is like a giant superconductor
; within it the weak interactions bosons cannot be massless. Empty space is
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filled with the Higgs field which upon quantization gives rise to a new par-
ticle, the Higgs Boson. The experimental evidence for the existence of the
Higgs boson was crucial for the acceptance of the theory. There were also
some others models for the explanation of gauge bosons masses. Multi-Higgs
models,extra dimension and brane world models had their own description
instead of the Brout-Englert-Higgs mechanism. Finally, in 2012 a particle
very much like the Higgs Boson was discovered in the Large Hadron Collider
(L.H.C). As Frank Wilczek posted in 2013 ” Theories with complex dynam-
ics for the explanation of W , Z masses seem les credible, as simplicity and
minimalism carry the day.” .This ”minimalism triumphant ” will go further.
Perhaps, Higgs boson research will be able to contribute to cosmological and
particle physics problems, yet unsolved.

2. Symmetries

To understand the concept of symmetry breaking of Brout-Englert-Higgs
mechanism, some background is needed. Some group theory basics, gauge
symmetries and their corresponding bosons will be discussed.

2.1 Group Theory basics

A group G is a set of elements a, b, c, ... with a law of multiplication (·),
according to which a · b is another element of G .The multiplication satisfies
the following conditions:

1) Associative law: for all a, b, c, ... that are elements of G:

a · (b · c) = (a · b) · c

2) Unit element : G contains an element called identity element I, such that
for every element a of the group;

a · I = I · a = a

3) Existence of inverse : for every element a of G there is an element a−1

such that:

a · a−1 = a−1 · a = I
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A n-dimensional representation of a group G is a mapping M of G into a
set of operators acting on a n-dimensional linear vector space V which pre-
serves the group multiplication law; for every element a, b of G the mapping
M satisfies: M(a)M(b) = M(a · b).

A simple example of a group is the Cyclic group Cn ; the symmetry group
of rotations of a regular polygon with n directed sides. The group

elements are rotations through an angle 2πr
n

(r = 0, 1, .., n − 1) about
an axis through the center. This is a finite group; has a finite number of
elements. However, the case of rotations through an arbitrary angle is more
interesting. The continuous groups, the so-called Lie groups, have the ap-
propriate structure to make infinitesimal transformations using infinitesimal
generators of the group. The generators form a structure known as Lie alge-
bra. For example, the angular momentum operators Ji satisfying the com-
mutation relations [Ji, Jj] = iεijkJk .The angular momentum operators are
the generators of the rotation group SO(3) and the commutation relations
form the Lie algebra.

The generators of a group can be defined by infinitesimal transformations.
Let U(θ) be the group element corresponding to the parameter θ and I the
identity element corresponding to θ = 0 . Then U(δθ) can be expressed as:

U(δθ) =I+iδθiTi

The matrices

Ti ≡ −i (
∂U
∂θi)θ=0 , i = 1, ..., N

are the generators of the group in the given matrix representation. The
group elements can be written in terms of the generators Ti in the exponential
form

U(θ) = eiθiTi

which comes from the multiplication of infinite number of infinitesimal
transformations.

3



2.2 Symmetry Transformations

A transformation that leaves our physical system unchanged is called
symmetry transformation. In the context of field theories, the lagrangian of
the system is invariant under symmetry transformations.

2.2.1 Global Symmetry
Suppose a transformation

ψ −→ eiαTψ (2.1)

with α being spacetime independent. If the lagrangian of a system is invariant
under (2.1) then it has a global symmetry; every point in space transforms
according to the same parameter α. For example, the Dirac lagrangian has
the form:

LD = ψ̄iγµ∂µψ −mψ̄ψ

It is trivial that it is invariant under transformations such us (2.1).

2.2.2 Gauge Symmetry

Now we suppose the transformation (2.1) but now with spacetime depen-
dence on α ; α = α(x). Now, for every point x there is a different parameter
α(x) on the transformation. A theory that is invariant under that transfor-
mation has the so-called gauge symmetry. In the case of global symmetry
it is easy to see if a theory is invariant. However, due to the spacetime
dependence of α(x) the ordinary derivatives of a lagrangian cannot respect
the gauge symmetry and a new type of derivative is needed ; the covariant
derivative.
For simplicity we consider the U(1) gauge transformation which has the
form:

ψ −→ eiα(x)ψ (2.2)

4



The reason that the ordinary derivative is problematic with the gauge in-
variance is that ψ(x) and ψ(x + ε) transform differently under (2.2) so the
derivative of ψ(x) in the direction of the vector nµ which is defined as

nµ∂µψ = limε−→0
1
ε
[ψ(x+ εν)− ψ(x)] (2.3)

has complicated transformation law and it must be modified in order
to make sure that the lagrangian can become gauge invariant. The new
derivative will rise by introducing a scalar quantity U(y, x) that depends on
two points while U(y, y) = 1 for zero seperation. This quantity transforms
as:

U(y, x) −→ eiα(y)U(y, x)e−ia(x) (2.4)

We can require that U(y, x) to be a pure phase U(y, x) = eiφ(y,x). Also,
from (2.4) it follows that ψ(y) and U(y, x)ψ(x) have the same transformation
law:

U(y, x)ψ(x) −→ eiα(y)U(y, x)ψ(x) (2.5)

Thus, we can define the so-called covariant derivative as:

nµDµψ = limε−→0
1
ε
[ψ(x+ εn)− U(x+ εn)ψ(x)] (2.6)

From (2.5) it is clear that ψ(x+ εn) and U(x+ εn, x)ψ(x) transform with
the same way, so it is meaningful to subtract them.

For small ε we can expand U(x+ εn, x) around the separation of the two
points which corresponds to U = 1 so we have:

U(x+ εn, x) = 1− ieενµAµ(x) +O(ε2) (2.7)

The coefficient of the displacement εnµ is a new vector field Aµ(x) while
e is an arbitrary constant. From the definition (2.6) and the expansion (2.7)
, the covariant derivative takes the form:

Dµψ = ∂µψ(x) + ieAµψ(x) (2.8)

In order to find the transformation law of Dµψ(x) we need the trans-
formation law for the field Aµ. Using (2.7) and (2.4) we find that the field
transforms as:
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Aµ −→ Aµ − 1
e
∂µα(x) (2.9)

From the relations (2.2) and (2.9) it follows that the covariant derivative
transforms as:

Dµψ(x) −→ eiα(x)Dµψ(x) (2.10)

The covariant derivative transforms with same way as the ψ(x) under the
gauge transformation.

An important thing to notice is that the existence of the field Aµ is
inevitable for the construction of gauge invariant derivative terms in a la-
grangian. Thus, the field Aµ comes from a local phase rotation symmetry i.e
by requiring gauge U(1) symmetry. For example, the electromagnetic theory
is invariant under gauge U(1) and Aµ corresponds to the photon. Also, a
kinetic energy term of the field Aµ that is gauge invariant can be found and
is the well-known (Fµν)

2. Lastly, the gauge invariance idea that discussed for
the gauge U(1) is the same for any other group. Again, some vector fields
must be occur, in order to fix a suitable covariant derivative.

3. Spontaneous Symmetry Breaking
In this section the Goldstone theorem will be discussed. According to the

theorem, if an initial global continuous symmetry is violated by the ground
state (vacuum) of the system, a massless scalar field will occur; there is a
massless Goldstone boson for every independent broken symmetry. Before
that statement, the linear sigma model is a great example to start with.

3.1 The linear sigma model
The lagrangian of this model involves a set ofN real scalar fields φi(x) i =

1, ..., N and has the form

L = 1
2
(∂µφ

i)2 + 1
2
µ2(φi)2 − λ

4
[(φi)2] (3.1)

where the V is the mexian hat potential defined as:

V (φ) = −1
2
µ2(φi)2 + λ

4
[(φi)2] (3.2)

The lagrangian is invariant under the transformation
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φ(i) −→ Rijφj (3.3)

for any orthogonal matrix R. The R matrices are the group elements of
the O(N) group ; the rotation group in N dimensions. The potential V is
minimized for any φi0 that satisfies

φi0 = µ2

λ
(3.4)

as it follows from the action of ∂
∂φi

on V (φi). The quantity

(φi0)2 = (φ1
0)2 + ...+ (φN0 )2 = µ2

λ
(3.5)

is the length of the vector φ0.Its direction is arbitrary: There is an (N- 1)
dimensional ”sphere” (or ”circle”) that contains all the possible equivalent
vacuum states, so the ground state is degenerate. Thus, we can choose
coordinates so that φ0 points in the N th direction

φ0 = (0, ..., v) , v = µ√
λ

. (3.6)

We take small fluctuations around the vacuum i.e define a set of shifted
fields;

φi(x) = (πk(x), v + σ(x)) for k = 1, ..., N − 1 (3.7)

By substituting the shifted fields into, it follows the lagrangian in terms
of π(x) and σ(x) fields;

L = 1
2
(∂µπ

k)2 + 1
2
(∂µσ)2 − 1

2
(2µ2)σ2 + higher orders (3.8)

This lagrangian describes a massive field σ and a set of (N − 1) massless
π fields. A way to visualize that is to imagine a (N1) dimensional sphere
embodied in N dimensional space. Rotations on the surface of the sphere cor-
respond to the (N1) massless π fields, while radial fluctuations correspond to
the massive σ field.The (N1) directions on the sphere are equivalent. Thus,
the original O(N) symmetry is hidden , leaving the subgroup O(N − 1) as
an unbroken symmetry.
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3.2 The Goldstone Theorem

Consider a theory with scalar fields φα(x).The lagrangian of this theory
will be of the form:

L = (derivative terms)− V (φ) (3.9)

Suppose that φα is a constant field that minimizes the potential V i.e
( ∂V
∂φα

)φα0 = 0 (3.10)
The mass matrix comes by the expansion of V around this minimum:

V (φ) = V (φ0) + 1
2
(φ− φ0)a(φ− φ0)b( ∂2V

∂φa∂φb
)φ0 + ... (3.11)

The coefficient of the quadratic term is a symmetric matrix with eigen-
values equal to the masses of the fields:

m2
ab = ( ∂2V

∂φa∂φb
)φ0 (3.12)

Since φ0 corresponds to minimum, the eigenvalues cannot be negative.
According to the Goldstone Theorem, every continuous symmetry of the
lagrangian that is not a symmetry of φ0 , leads to a zero eigenvalue of the
mass matrix.
In order to prove the theorem, we consider a general continuous symmetry
transformation, which has the form

φα −→ φα + g∆α(φ) (3.13)

where g is an infinitesimal parameter and ∆α(φ) a function of φ’s. We
specialize to constant fields so the derivative terms can be ignored. Then,
the potential V alone must be invariant under the transformation (3.13).This
condition can be written as:

V (φα) = V (φα + α∆α(φ)) or ∂V (φ)
∂φα

∆α(φ) = 0 (3.14)

By differentiating (3.14) with respect to φβ and setting φ = φ0 we have:

(∂∆α

∂φβ
)φ0(

∂V
∂φα

)φ0 + ∆α(φ0)( ∂2V
∂φa∂φb

)φ0 = 0 (3.15)
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Since φ0 corresponds to minimum , the first term in (3.15) vanishes so
the second term must be zero. If the transformation (3.13) is a symmetry
of the ground state, then ∆α(φ0) = 0 and the relation is trivial.However,if
the symmetry is spontaneously broken by the vacuum, then ∆α(φ0) 6= 0.In
this case, ∆α(φ0) is the vector with zero mass eigenvalue i.e it corresponds
to massless field , so the Goldstone theorem has proved.

One thing to notice is the relation between ∆α and the generator of the
transformation (3.13).The group element is written as:

R = eigiT
i

(3.16)

Then, the element for infinitesimal transformation is

R = I + igiT
i (3.17)

where T i is the generator that coreponds to the parameter gi. The trans-
formation goes like this:

φ′ −→ Uφ = (1 + gT)φ (3.18)

which leads to:

δφ = igT (3.19)

It follows that ∆α(φ0) ∼ Tφ0. Then we have:

m(Tφ0) = 0 (3.20)

Thus , the generator acts on φ0 and gives the direction of the massless
field.
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4. The Brout-Englert-Higgs Mechanism

The whole idea of the Goldstone theorem can be applied to theories with
gauge symmetry. In this case, the gauge bosons can become massive parti-
cles by ”eating” a Goldstone boson. The mechanism, by which spontaneous
symmetry breaking generates a mass for a gauge boson is known as the
Higgs mechanism. The basic application is the description of weak inter-
actions. Experimentally, the W and Z bosons were found to have large
masses, in contrast with the theory. The problem solved by the Glashow-
Weinberg-Salam theory of weak interactions, which is an application of the
Higgs mechanism to the gauge SU(2)×U(1) and finding results in agreement
with the experimental data.

4.1 The Higgs Mechanism

First, two basic examples of the mechanism must be disqussed.

4.1.1 Abelian Example

Consider a complex scalar field φ coupled to the electromagnetic field and
to itself. The lagrangian of the system is gauge invariant:

L = −1
4
(Fµν)

2 ‖Dµφ‖2 − V (φ) (4.1)

The field φ and Aµ transform as

φ(x) −→ eiα(x)φ(x) (4.2)
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Aµ −→ Aµ − 1
e
∂µα(x) (4.3)

while the covariant derivative Dµ is:

Dµ = ∂µ + ieAµ (4.4)

The potential is the well-known mexican hat potential:

V (φ) = −µ2φ∗φ+ λ
2
(φ∗φ)2 (4.5)

we take ∂V
∂φ∗

we find the minimum of the potential as:

‖φ0‖2 = µ2

λ
(4.6)

From all the possible ground states of (6) we choose the vacuum expec-
tation value to be:

φ0 = µ√
λ

(4.7)

By taking small fluctuations arround the vacuum (7) we have the shifted
fields:

φ(x) = φ0 + 1√
2
(ϕ1(x) + iϕ2(x)) (4.8)

By plugging (4.8) into the potential V we have the potential in terms of
the shifted fields:

V (φ) = −1
2
µ4 + µ2φ2

1 + non quadratic terms (4.9)

In (4.9) the field φ2 has no mass term while φ1 aquiring mass:

m2
φ1

= 2µ2 (4.10)

The kinetic energy term of the lagrangian, after using the field (4.8),
becomes:

‖Dµφ‖2 = 1
2
∂µφ

2
1 + 1

2
∂µφ

2
2 + e2φ2

0AµA
µ +
√

2eφ0Aµ∂
µφ2 + ... (4.11)

The third term is the mass term of Aµ field, i.e the photon mass term:

m2
Aµ = 2e2φ2

0 (4.12)
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From (4.12) it follows that the gauge boson has non-zero mass when the
vacuum expectation value of φ0 is nonvanishing.

So far, we have mass terms for φ1 and Aµ while φ2 is massless. The
Goldstone boson here corresponds to φ2. However, we can use a gauge fixing
called Unitary gauge which can eliminate the goldstone boson when it does
not appear as an independent physical particle. Using the gauge symmetry
according to (4.2) and (4.3) we can choose α(x) in a way that φ(x) becomes
a real field, so φ2 is removed.

Finally, we have a real scalar field φ so the lagrangian becomes:

L = −1
4
(Fµν)

2 + (Dµφ)2 − V (φ) (4.13)

By expanding the covariant derivative we end up with the lagrangian

L = −1
4
(Fµν)

2 + (∂µφ)2 + e2φ2AµA
µ − V (φ) (4.14)

that leads to massive photon for non-zero vacuum expectation value.

4.1.2 Non-Abelian Example

The example is about the SU(2) gauge symmetry. We suppose a field φ
that transforms as a spinor under SU(2). The generators are the half the
Pauli matrices so the covariant derivative takes the form:

Dµφ = (∂µ − igAaµT a)φ (4.15) with T a = σa

2

Here we introduced three boson fields, one for each generator of SU(2).
The lagrangian is as usual

L = ‖Dµφ‖2 − V (φ) +D.T (4.16)

where D.T is a dynamical term for the boson fields that respects the
gauge SU(2) symmetry. The potential V is:

V (φ) = −µ2φ†φ+ λ(φ†φ)2 (4.17)

The potential has the degenerate minima:
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φ†φ = µ2

2λ
= v2

2
(4.18) , v = µ√

λ

From all of the equivalnet ground states of (4.18) we can choose one of
them:

φ0 = 1√
2

(4.19)

The gauge boson masses comes from the kinetic term while using the
vacuum expectation value (4.19). We want the quadratic terms of the boson
fields Aaµ . In the vacuum, we have :

Dµφ0 = −igAaµT a
(

0
v√
2

)
(4.20)

so it follows that:

(Dµφ0)† = igAaµ
(

0 v√
2

)
T a (4.21)

Then, we find the kinetic term:

‖Dµφ‖2 = 1
2
g2AaµA

bµ
(

0 v
)
T aT b

(
0
v

)
+ ... (4.22)

We have for for the anticommutator of the generators the well-known
relation of the Pauli matrices that leads to:

T aT b + T bT a = 1
2
δab (4.23)

By using (4.23) we have:

‖Dµφ‖2 = 1
4
g2AaµA

aµv2 − 1
2
g2AaµA

bµ
(

0 v
)
T bT a

(
0
v

)

and by using the relation (T a)2 = 1
4

we end up with the mass term
”1

8
g2v2AaµA

aµ”. Thus, the three gauge bosons will have masses:

mAµ = gv
2

(4.24)
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The three bosons are massive fields. This means that the three generators
of SU(2) are broken under the effect of the vacuum.

4.2 The G-W-S Theory of weak interactions

4.2.1 The gauge bosons masses

The theory gives a unified description of weak and electromagnetic inter-
cations, in which the massless photon corresponds to a particular combina-
tion of symmetry generators that remain unbroken.

We begin with a theory with SU(2) gauge symmetry.In order to break
the symmetry spontaneously, we introduce a scalar field in the spinor repre-
sentation of SU(2). Like the non-abelian example we have:

Dµφ = (∂µ − igAαµTα)φ (4.15)

The theory leads to a system with no massless gauge bosons. For that
reason, we introduce an additional U(1) gauge symmetry. Now the gauge
transformation is:

φ −→ eia
αTαei

β
2 φ , Tα = σα

2
(4.25)

The vacuum expectation value has the form (like the non-abelian exam-
ple):

φ0 = 1√
2

(
0
v

)
(4.26)

The transformation (4.25) for α1 = α2 = 0, α3 = β gives:

φ0 −→ e
iβ
2

 e
iβ
2 0

0 e
−iβ
2

 1√
2

(
0
v

)
= 1√

2

(
0
v

)
= φ0 (4.27)

We conclude that vacuum is invariant and for that reason we expect mass-
less gauge boson that corresponds to this combination of generators. There
are three more bosons, which will acquire mass with the Higgs mechanism.
As usual, the gauge boson masses will rise from the kinetic term ‖Dµφ‖2 eval-
uated at the vasuum expectation value of the scalar field. The SU(2)×U(1)Y
has the generators, according to the transformation (4.25):
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Tα = σα

2
and Y = I

2
(4.28)

Thus the covariant derivative becomes:

Dµφ = (∂µ − igAαµTα − i1
2
g′Bµ)φ (4.29)

where Aalphaµ and Bµ are the gauge bosons correspond to SU(2) and U(1)

respectively. We compute ‖Dµφ‖2 for the vacuum expectation value. The
term of our interest, that will lead to the masses of gauge bosons, is:

L′ = 1
2
v2

4
[g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2] (4.30)

It was well-known from the experiments that the real particles are the
W+, W−, Z0 and the photon Aµ.Thus, from the fields A1

µ and A2
µ we intro-

duce two new fields:

W±
µ = 1√

2
(A1

µ ∓ iA2
µ) (4.31)

We do the same for the remaining fields Aµ3 and Bµ

Z0
µ = 1√

g2+g′2
(gA3

µ − g′Bµ) (4.32)

and since the photon is massless:

Aµ = 1√
g2+g′2

(g′A3
µ + gBµ) (4.33)

Using the above definitions of the new fields we end up with the mass
terms of the bosons:

mW = gv
2

, mZ =
√
g2 + g′2 v

2
,mA = 0 (4.34)

Now we rewrite the covariant derivative in terms of the new fields, includ-
ing explicitly the generator of the U(1)Y . In order to achive this, we seperate
T 3 from T 1, T 2 and define the operators T± :

T± = T 1 ± iT 2 or T± = 1
2
(σ1 ± iσ2) = σ± (4.35)

At the end we find the covariant derivative as:

15



Dµ =

∂µ−i g√2
(W+

µ T
+ +W−

µ T
−)−i 1√

g2+g′2
Zµ(g2T 3−g′2Y )−i gg′√

g2+g′2
Aµ(T 3 +Y )

(4.36)

In the last term of (4.36) the field Aµ couples to (T 3 + Y ). If we look
again the transformation (4.25) in the case of α1 = α2 = 0, α3 = β and
take the infinitesimal transformation we have:

U = (1 + iβσ3

2
)(1 + iβI

2
) = 1 + iβ(T 3 + Y ) (4.37)

From (4.37) immediately follows that (T 3 + Y ) generates the symmetry
operation that corresponds to the vacuum state φ0. Thus there is a remain-
ing U(1)EM symmetry. The remaining generator corresponds to the electric
charge quantum number.

Q = T 3 + Y (4.38)

We identify the coefficient of the electromagnetic interaction as the charge
e:

e = gg′

sqrtg2+g′2
(4.38)

The weak mixing angle or Weinberg angle θW is defined by the transfor-
mation that takes us from the basis (A3, B) to (Z0, A). This transformation
is just a rotatoin of angle θW :(

Z0

A

)
=

(
cosθW −sinθw
sinθw cosθW

)(
A3

B

)
(4.39)

Thus, θW can be expressed in terms of the couplings g (weak isospin) and
g’(weak hypercharge) as:

cosθW = g√
g2+g′2

, sinθW = g′√
g2+g′2

, g = e
sinθW

(4.40)

From the relations (4.40) and (4.34) we have the relation between the
masses:

mW = mZcosθW (4.41)
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Lastly, the final form of the covariant derivative using (4.40) and (4.38)
becomes:

Dµ = ∂µ − i g√2
(W+

µ T
+ +W−

µ T
−)− i g

cosθW
Zµ(T 3 − sin2θWQ)− ieAµQ

(4.42)

In brief, the initial SU(2) × U(1) gauge symmetry is broken by the vac-
uum φ0. That leads to the mass terms of three gauge bosons. The fourth
boson remained massless due to the U(1)EM unbroken generator Q which
corresponds to the electric charge quantum number. The connection with
reality comes with the definition of the new fields in a way that agrees with
the experiments i.e the massive W±, Z0 and the massless photon.

4.2.2 The one-familly fermion masses

The lagrangian that describes fermions is the Dirac lagrangian with ψ
being the so-called Dirac field:

LD = ψ̄(iγµ∂µ −m)ψ (4.43)

The Dirac field can be expressed in terms of a left and a right part ψL,
ψR. The left-handed fermions are assigned to doublets of SU(2), while the
right-handed are singlets under SU(2). The two parts couple differently to a
gauge field since they belong to different representations of the gauge group.
Since the right-handed fields are singlets they have:

T 3 = 0 , Q = Y for right-handed (4.44)

The one-familly contains the eletron and its neutrino e−, νe and the top
and down quarks u, d. Each one of these have a left-handed part and a
right-handed part. We assume that neutrino is massless so it has only a
left-handed part to form an SU(2) doublet togrther with the electron.

The left-handed parts are:

EL =

(
νe
e−

)
QL =

(
u
d

)
(4.45)
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After the discussion above, a mass term like the following

∆L = −me(ēLeR + ēReL) (4.46)

does not respect the SU(2) × U(1) gauge symmetry which GWS theory
requires. The eL and eR are ”living” in a different representation of SU(2)
and they have different U(1)Y charges.

The solution to this problem is again a mechanism of spontaneous sym-
metry breaking. A scalar field φ has a vacuum expectation value like in the
case of GWS model:

φ0 = 1√
2

(
0
v

)
(4.26)

The field φ is a spinor under SU(2) with U(!)Y charge Y = 1
2

since it is
neutral electrically charged. Now we can write an acceptable mass term for
the fermions using the scalar field φ.

For the electron we have the gauge invariant term

Le = −λeĒLφeR + h.c (4.47)

where λe is a new dimensionless coupling constant. The term is gauge
SU(2) invariant since ĒL and φ are doublets, while eR is singlet under SU(2).
It is also U(1) gauge invariant, thus the term respects the SU(2)×U(1) gauge
symmetry. By plugging in the vacuum expectation value (4.26) we end up
with the electron mass term:

Le = − 1√
2
λevēLeR + hc+ ... (4.48)

It follows that the electron mass is given by:

me = 1√
2
λev (4.49)

The mass terms for the u, d quarks also come form invariant terms, a
little more complicated than the electon’s term since in the previous case we
assume that neutrino νe is massless. However, the final mass terms, after
evaluating in vasuum expectation value, are simmilar to the electron’s:

Lq = − 1√
2
λdvd̄LdR −− 1√

2
λuvūLuR (4.50)
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Putting all together we end up with the masses of the one-familly:

me = 1√
2
λev mu = 1√

2
λuv md = 1√

2
λdv (4.51)

One thing to notice is that the masses are proportional to v, but we know
eperimentally that the electron is much lighter than the vector bosons of
weak interactions. The up and down quarks are much lighter too. The λ
coupling constants can be determined in a way that there is agreement with
experiments. The GWS model cannot explain why the electron is so much
lighter than W and Z.

4.2.3 The Higgs Field

The Higgs mechanism is essential in the GWS theory. For small fluc-
tuations arround the vacuum of the scalar field φ, which introduced in the
theory, a new scalar field rises; the Higgs field. The mass term of such a field
will come from the potential V (φ)

V (φ) = −µ2φ†φ+ λ(φ†φ)2 (4.52)

evaluated in the vacuum expectation value φ0:

φ0 = 1√
2

(
0
v

)
, v = (µ

2

λ
)
1
2 (4.53)

Using the unitary gauge discussed in the abelian example the field φ is a
spinor with real componets. The most general complex-valued two compo-
nent spinor can be written us

φ = U(x) 1√
2

(
0

v + h(x)

)
(4.54)

where U(x) is a general gauge SU(2) transformation and h(x) is the real
valued fluctuating field which coresponds to the Higgs field. We can make a
gauge transformation to eliminate U(x) from the lagrangian. A lagrangian
consistent with the vacuum expectation value of φ is:

L = ‖Dµφ‖2 + µ2φ†φ− λ(φ†φ)2 (4.55)

In the unitary gauge, the potential evalueted in the vacuum gives:
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In 2013 , Francois Englert and Peter Higgs received the Nobel Price ”for
the theoritical discovery of a mechanism that contributes to our understand-
ing of the origing of mass of subatomic particles and which recently was
confirmed through the discovery of the predicted fundamental particle , by
the ATLAS and CMS experiments at CERN’s Large Hadron Collider”.

Appendix

Gauge Symmetry

• Starting from the relations (2.6) and (2.7) :

nµDµψ = limε−→0
1
ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)] (2.6)

U(x+ εn, x) = 1− ie · εnµAµ(x) +O(ε2) (2.7)

It follows (2.8) :

nµDµψ = limε−→0
1
ε
[ψ(x+ εn)− ψ(x) + ieεnµAµ(x)ψ(x)]

nµDµψ = nµ∂µψ + inµAµψ ⇒ nµDµψ = nµ(∂µψ + ieAµψ)

Thus:

Dµψ(x) = ∂µψ(x) + ieAµψ(x) (2.8)

• From (2.4) and (2.7) :

U(y, x) −→ eiα(y)U(y, x)e−iα(x) (2.4)

U(x+ εn, x) = 1− ie · εnµAµ(x) +O(ε2) (2.7)

It follows (2.9):
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U(x+ εn, x) −→ eiα(x+εn)U(x+ εn, x)e−α(x)

1− ieεnµAµ −→ ei[α(x+εn)−α(x)](1− ieεnµAµ)

For ε close to zero we can expand :

α(x+ εn) = α(x) + nµε∂µα(x)

Then we have :

1− ieεnµAµ −→ eiεn
µ∂µα(x)(1− ieεnµAµ)

We now expand the exponential since ε is small and we get :

1− ieεnµAµ −→ (1 + iεnµ∂µα(x))(1− ieεnµAµ)

That leads to the final result (2.9) :

Aµ(x) −→ Aµ(x)− 1
e
∂µα(x) (2.9)

• From (2.2) , (2.8) and (2.9) :

ψ −→ eiα(x)ψ (2.2)

Dµψ(x) = ∂µψ(x) + ieAµψ(x) (2.8)

Aµ(x) −→ Aµ(x)− 1
e
∂µα(x) (2.9)

It follows the transformation rule of the covariant derivative :

∂µψ(x) −→ eiα(x)[∂µψ(x) + iψ(x)∂µα(x)]

ieAµψ(x) −→ eia(x)ψ(x)[ieAµ − i∂µα(x)]

Then we end up with (2.10) :

Dµψ(x) −→ eiα(x)Dµψ(x) (2.10)
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