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Summary
In this dissertation a simple multivariate quantile autoregressive model is being used
to study heterogeneity in the effects of macroeconomic shocks. In the first half we
present a theoretical base as far as quantile regression is concerned. In the second half,
we estimate the VARQ and perform QIRF analysis using a three-variable
macroeconomic model (with output gap, inflation and Fed Funds rate) for different
countries that are part of the E.U (Finland, Germany, Greece and Italy), for a set
period of 20 years (1995g,-2015q,). We use quantile impulse response functions in
order to explore dynamic heterogeneity in the response of endogenous variables to
different shocks. The evaluation of the different quantile paths as the dynamic effects
for a fixed collection of quantile indexes shows as a result that, some countries have
the same response in a given shock, some don’t follow the same pattern as others and
others can have the exact opposite behavior or their own unique response to the shock.
The reason why these differences in the responses of the different counties occur may

lay in the unique characteristics of each county’s economic structure.

IHepiinyn
Ye oavtqv Tt OowrpPn ypnowomoteitar €vo amAd  TOAV-UETOPANTO TOGOTIKO
OLTOTTOAMVOPOIO HOVTEAD YO0 TN UEAETN TNG ETEPOYEVELNG OTIC EMUTTOCELS TMV
LLOKPOOIKOVOUIKMY  oOVIOI®V  TOpOY®V. XT0 TPOTO GO Tapovcstalovpe o
Bewpntikry Pdon 6coV a@opd TNV TOGOTIKN TOAWVOPOUNCMN. Xt0 Oe0TEPO GO,
extipovpe 10 VARQ xou mpaypatororovpe oavaivon QIRF ypnowonoidvag éva
TPIOV UETOPANTAOV HAKPOOIKOVOUIKO HOVTELD (Tapaymyikd Kevo, mAnOwpiopd kot
TOGOOTO OLOCTOVOLIKADV KEPUAAIWDV) Y10l SIUPOPETIKEG YDPEG TOV OMOTEAOLV LEPOG
¢ E.E. (®wAiavdia, I'eppavia, EALGSa kot [taia) , yio po kaBopiopévn mepiodo 20
etov (1995¢,-2015q4). XpnNoLOTOOVHE GLVOPTNGELS TOGOTIKNG ATOKPIONG Y10, VO
OlEPEVVINGOVLE TN SUVOLLIKY| ETEPOYEVELD GTNV OTOKPICT EVOOYEVAOV UETAPANTOV GE
SwpopeTikég aupvioteg petaforés. H allohdynon tov SpopeTIKOV TOCOTIKMV
SOPOU®Y, TOL TPOKLATOVV OO M. OTABEPT] GUAAOYN TOGOTIKAV OEIKTMV, O
SUVOLIKG OTOTEAEGHOTO LOG OElYVOVV GUUTEPOGLOTIKG OTL, OPIGUEVEG YDOPES EXOLV
Vv 1010 amoKplon o€ Eva 0EOOUEVO GOK, LEPIKEG 0eV aKoAoVBOLV To 1010 poTifo pe
GAAEG KO BAAEC UTOPOLV VO £X0VV OKPIP®G avtifeTn cvumEPLPOPA 1 TN SIKN TOVG

HOVOSIKT amdvinon oto 6ok. O Adyog yio Tov omoio epeavifoviol auTég ot d1popPES
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OTIG OMOKPICES TV OlPOP®V YOPOV UTOoPeEl Vo EYKETOL OTOL  LOVOAOIKA

YOPOKTNPLOTIKA TNG OIKOVOLUKNG OOUNG KAOE yMDPOg.
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Introduction
Nowadays an important topic of many research studies, as far as economic activity is
concerned, is the impact of macroeconomic shocks on the economies, having the
effect on lower quantiles that is of utmost importance to policymakers understudied.
The tail risk engulfs uncertainty which is transferred to forecasting thus, assessing the
uncertainty that surrounds a forecast has the same value as the forecast itself. The
benefits of the most common uncertainty measures are that, they are simple to
calculate in most of the cases and their interpretation is simple as well. A static
specification is a source of them but they mainly derive from recursive model
estimates.
The quantile regression methods can provide us with a framework for robust
estimation and inference and allow us to explore a variety of forms of conditional
heterogeneity under less compelling distributional assumptions. The quantile
regression (QR) is a statistical method for estimating models of conditional quantile
functions, which offers a systematic strategy for examining how covariates influence
the location, scale and shape of the entire response distribution, thus, a variety of
heterogeneity in response dynamics can be seen.
The use of a VAR model (vector autoregressive) is a very important and good way to
present the dynamics of macroeconomic data. This method provides us with an
efficient way to forecast, to describe our data and to study the dynamics in a
multivariate time series model though the structural inference of this approach. The
main drawback is the track of average outcomes of the VAR models that have
standard impulse response functions in their linear structure. A model with a constant
coefficient used in time series is not good enough because, the effects of a succession
of small and varied shocks on the structure of dynamic economic models can be
ignored, especially in a case with highly aggregated data series. In addition, these
models are unable to take into account the asymmetric and heterogeneous dynamic
responses that are present in various cases.
The uncertainty measurements are based on past forecasting errors that are liked to
root mean squared forecasting errors (RMSFE), or mean absolute errors (MAE). The
forecasters mainly use these kinds of measures for their forecasts. Although their

simple calculation and interpretation mechanisms, these models are limited due to the
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normality assumption, the lack of being up to date with the data and the most recent
developments, and the proneness to large outliers.

Engle and Manganelli (2004) propose a quantile autoregressive framework to model
value-at-risk where the quantiles follow an autoregressive process. Gourieroux and
Jasiak (2008) study dynamic additive quantile model. Xiao (2009) proposes quantile
regression (QR) with co-integrated time series. Galvao et al. (2013) interpret the
quantile regression (QR) time-series framework as modeling the business cycle,
where high conditional realizations of a distributed lag model correspond to high
quantiles and low conditional realizations of a distributed lag model correspond to
low quantiles. Montes-Rojas (2019) develops a reduced form vector directional
quantile estimator based on the multivariate directional quantiles framework of Hallin
et al. (2010).

In our dissertation, we will apply the Montes-Rojas (2019) of the vector
autoregressive quantile (VARQ) model to contemporary macroeconomics EU data.
This approach generalizes the quantile autoregressive framework proposed by
Koenker and Xiao (2006) and Galvao et al. (2013) to the multivariate case. A
collection of directional quantile models for a fixed orthonormal basis; in which each
component represents a directional quantile that corresponds to a particular
endogenous variable, can have a solution by this model. A map from the space of the
o-field that is generated by the available information at a specific time and a unit ball,
whose dimension is given by the number of endogenous variables to the space of
endogenous variables, is described by this model. The heterogeneity in time series can
by explored by the VARQ model, by the estimation of conditional models of each
endogenous variable conditional an all other contemporaneous endogenous variable
and set of information available at the time. These conditional models are used to
construct a simultaneous system of directional quantile regression (QR) models,
whose solution is a reduced-form multivariate quantile model.

In the first half we will present a theoretical base as far as quantile regression is
concerned. In the second half, we will estimate the VARQ and perform QIRF analysis
using a three-variable macroeconomic model for different countries, with output gap,
inflation and Fed Funds rate, for a set period. We then will evaluate the effect of a
standard deviation shock in the government bonds, that is, the fiscal shock, after our

estimation, using the Cholesky decomposition of Christiano ef al. (1996), and explore
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dynamic heterogeneity applying the QIRFs. This new analysis reveals important
asymmetries and heterogeneity in the response to fiscal shocks in terms of different

quantile paths of high or low conditional output and inflation.
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1.1. Mean Regression

Over the years Classic Econometrics has been the answer to many rising questions,
not only from an economic aspect but from a social aspect as a whole. The results
though classical regression models have to do with the study of the average in a
conditional distribution. The main focus of the mean regression is the expectation of a
variable Y, which is conditional on the values of a set of variables X, common known
as the regression function E(Y|X) (Weisberg, 2005). A function like this restricts on
a specific location of the Y conditional distribution. So, the main point of interest is
the changes in Y =y;,y,,...,, observations, with y; to represent the i — th
observation, asX = x4, x,, ..., X,, variate, with x; to represent the i — th variable that
change. We have the mean function and the variance function respectfully, that
consist the simplest form of a linear regression model:

i =E(Y|X = x)) = Bo + Brx (L.L1)
where 5, is the value of E(Y|X = x;) when x = 0 and f; is the rate of change in
E(Y|X = x;) for a given unit of change in X and gives us the slope.

Var(Y;)) = Var(Y|X = x;) = o2 (1.1.2)
Eq.1.1.2 is assumed to be constant with 62 > 0. Because of the positive value of the

2 > 0, a difference between the observed value of the i — th response y;

variance;
and the expected value E (Y|X = x;) is observed. That difference is called a statistical
error e; for case i defined implicitly by y; = E(Y|X = x;) + e; or explicitly by
e; =y; — E(Y|X = x;). The parameters that the errors e; are depended upon are
commonly unknown in the mean function and there are also not observable. They are
random variables and correspond to the vertical distance between the point ¥; and the
mean function E(Y|X = x;) (Shewhart & Wilks, 2005). As far as errors are
concerned, there are two very important assumptions that must be made. Firstly, we
assume that E(e;|x;) = 0 and secondly, we assume that all errors are independent
with each other, causing the value of the error for one case not to give any
information about the value of the error for a different case. Also, a general
assumption that errors follow the normal distribution is needed, though it may not
always be true.

After the definition of our model that suits our problem comes the estimation of the

parameters of that model. There are many methods that can be applied to achieve that
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purpose and the most common and simple is that of the ordinary least squares (OLS),
in which we look for the parameters estimates that can minimize our residual sum of
squares:

% =EYIX =x) = o+ Bix; (1.1.3)
Where ¥, is the fitted value for case i given by E(Y|X = x;), f,is the estimator of 8,
and f, is the estimator of 3.
The equation for the statistical errors is:

e =y — (Bo+ P1xi),i = 1,..,n (1.1.4)
The least squares for simple regression depend on averages, sums of squares and sums
of cross-products. (Weisberg, 2005). We can use the Least Square Criterion, which is
based on the residuals in order to obtain estimators. Here an inherent asymmetry in
the response and the predictor in regression problems can be seen through the
residuals.The values of ff; and f; that minimize the following function are called
OLS estimators:

RSS(Bo, B1) = Tizlyi — (Bo + Bx)]? (1.1.5)
where, when the evaluation of (S, 51) is made at (ﬁo,ﬁl), the RSS(,[?O, ﬁl) is called

the residual sum of squares.

There are many different ways to find the least squares estimates, one expression of

them is:
g SXv _ . Dy _ .. SVVyo
pr = sxx sy, T Ty (SXX)
(1.1.6)
Bo =Yy — p1x
where:

X

» X stands for the sample average of x, derived from ) j

» y stands for the sample average of y, derived from Z%

> SXX stands for the sum of squares for the x’s, derived from Y (x; — X)? =

2(x; — X)x;
> SYY stands for the sum of squares for the y’s, derived from Y.(y; — ¥)? =

i — Yy
» SXY stands for the sum of cross —products, derived from Y (x; — %)(y; —

y) =2(x; — 0)y;
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» SD, stands for the sample standard deviation of the x’s, derived from

» SD,, stands for the sample standard deviation of the y’s, derived from

> Ty, stands for the sample correlation, derived from
(Sstpy)

SXY
(n-1)

sample covariance, derived from

SXX
(n-1)

SYY
(n-1)

where sy, is the

Then, if we want to obtain the estimator 62, we must average the squared residuals,

under the assumption of uncorrelated errors with zero means and a common variance

of a2 as follows:

2 _ RsS
T n-2

o

(1.1.7)

where RSS =Y 67 and n — 2 are the degrees of freedom (df), where residual

df =number of cases minus the number of parameters in the mean function, so for

the simple regression we will have residual df =n — 2

The variance of the estimators is:
5 1
Var(ﬁl) o? e
5 ) = g2 (L4 2
Var(ﬁo) -9 (n + SXX)
Where SXX is the sum of squares for the x: Y. (x; — %)% = Y(x; — x)x;

The covariance of the two estimates is also given by:

Cov(ﬁo,ﬁl) = —0? m

And the correlation between the estimates is also given by:

p(IBOJ ,81) = =

SXX n—1)SD%
SXX J( )SDE | z2

where SD? is the sample variance of x’s, derived from %
The estimates for Var (ﬁo) and Var(,[?l) are acquired by:

Var(B,) = 62 ﬁ

(B = 62 (2 4+ 22

Var(ﬁo) =0 (n + SXX)
And the square root of an estimated variance is given by:

Se(ﬁl) = V’cTr(ﬁAl)
Where se is the standard error.
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All the above functions are required for the analysis of the variance in which we can
compare the fit of two or more mean functions for the same set of data. If we have a
fitting the mean function:

EY|X =x) =, (1.1.13)
We can say that this function is the same for all the values of X. If we can fit with this
mean function we can find the best parallel to the horizontal axis of x. With the help

of the OLS estimate we can have:

EY|X) = By (1.1.14)
Where f,is the value of B, that minimizes the ¥(y; — B,)> so we have:

Bo=7 (1.1.15)
And the residual sum of squares is:

A N2 _
(i —Bo) =T~y =YY (1.1.16)
With n — 1 df(degrees of freedom)

There are many categories of mean functions that can solve different problems. If we
proceed with the multiple linear regression model we will have:

YV=EY|X = x;) = Bo+ L1x1 + . + Bmxm (1.1.17)
There is value in the study of the least squares criterion that is obtained based on the
residuals. The residuals reflect the inherent asymmetry in the roles of the response and
the predictor in regression problems. By applying the OLS method we can find the
estimators and the values that minimize our function. The estimator for the variance is
obtained by averaging the squared residuals. Here, an assumption that the errors are
uncorrelated random variables with zero means and common variance of g2, is
required. We can use the estimated mean function in order to obtain the values of the
response for given values of the predictor. We must revise the residuals in order to

verify if there is any failure of assumptions.

We can have polynomials problems with curved mean functions that can sometimes
be included in a multiple linear regression model by adding polynomial terms in the
predictor variables:

E(Y[X =x;) = BotBix + Pox (1.1.18)
Here X is smooth but not straight. This quadratic mean function can be used then the

mean is expected to have a minimum of a maximum in the range of the predictor, or
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when the mean function is curve but does not have neither a minimum nor a
maximum within the range of the predictor. A general form of a polynomial function
is:

EY|IX=x;) = Bo+P1x + Lox? + ... + Lppx™ (1.1.19)
There can be interactions and other combinations of predictors, like the existence of a
mass index that has many variables. There we can find joint effects of two or more
variables. Furthermore, we have dummy variables and factors; a categorical predictor
with more than one level. These factors accompany the linear regression model with
the form of a dummy variable. A predictor like this can require several dummy
variables. We must state here that a regression with m predictors could combine to
give fewer than m terms or may require more than m terms. The interpretation of a
value of a parameter that is estimated can depend on other terms in the mean function
and can also change if these terms are replaced by a linear combination of theirs. So it
is not always a good thing to have too many terms in a regression model that are not
statistically important. The square of the correlation in a summary graph can be
interpreted by R% in a multiple linear regression. But for a non-linear regression we
must define the square of the correlation between the response and the fitted values to
be R? and then use a summary graph in order to figure out if R? is useful or not. A
non linear regression model can be described as below:

EY|IX =x) = a1 + a; (1-exp(—a3x;)) (1.1.20)

Where ), a», a3 are the parameters we want to estimate and X; is the predictor. The
mean function is a non linear combination of parameters that makes eq.1.1.6 a non
linear mean function.
If we use collinear predictors we can be leaded to variable estimated coefficients that
are unacceptable when we compare them to problems with no co linearity. (Shewhart

& Wilks, 2005) If we have p > 2 then the variance of the j-th coefficient is:

N () _ 1
Var(B) = 5 ~ sx, (1.1.21)
Where 1_1R2 is the j — th variance inflation factor. If we keep SX;X; constant and take

J

the X; that make the Rjz = 0, an increase in variance caused by the correlation

between the predictors and co linearity is represented by the variance inflation factor.

Linear regression with variable selection is not the only approach to the problem of
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modeling a response as a function of a very large number of terms or predictors.
(Shewhart & Wilks, 2005).

In general all generalized linear regression models have a distribution of a response
Y and a given set of terms X that is distributed according to a form of exponential
distribution. Moreover, a linear combination of X is used to represent that the
response Y is depending on a term X though this combination. The mean E(Y|X = x;)
= u(BX) for some kernel mean function is u. For the multiple linear regression
model p is the identity function, and for a logistic regression model u is the logistic

function. (Shewhart & Wilks, 2005).
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1.2. Quantile Regression

Quantile regression is a tool that can provide us with the power to analyze the whole
conditional distribution of a response variable in terms of a set of explanatory
variables, rather than confining us to the analysis of only the average, as is done in
classical mean regression. Quantile regression has a unique feature that is able to deal
with a variety of distributions and is able to eliminate dependence upon the normality
assumptions, as well, setting all the problems that mean regression has to a more
realistic and up to date framework. It takes the mean regression approach and extends
it by lifting up the confinements of the specific location of the Y conditional
distribution. With the quantile regression we can study the conditional distribution of
Y on X anywhere, as far as the location of the distribution is concerned, having that
way a global view of the interrelations between Y and X. Quantile regression was
introduced by Koenker and Basset in 1978 as an extension of classical least squares
estimation of conditional mean models to conditional quantile functions (Davino,
Furno, & Vistocco, 2014). Quantile regression generalizes univariate quantiles for
conditional distribution. If we want to define a quantile function we must first explain
the relation between the mean and the median of a distribution. The asymmetry is
defined by the comparison between mean and median as centers of a random variable
distribution. If we accept that Y is a generic random variable with its mean to be the
centre ¢ of the distribution which minimizes the squared sum of deviations, we have
the solution of a minimization problem as follows:

u=argmin, E(Y — c)?. (1.2.1)
The median minimizes the absolute sum of deviations, so in our minimization
problem we have:

M, = argmin, E|Y — c|. (1.2.2)
If then we use a sample observations we can obtain that samples estimators
[ and M. for such centers.

The univariate quantiles are defined as specific locations of the distribution. The 8-th
quantile is the value y that P(Y < y) = 6. If we take the cumulative distribution
function:

Fr(y) = F) = P(Y < y) (1.2.3)

we can define the quantile function as its reverse:

Qv (6) = Q(O)=F"' (0)= inf {y: F(y) > 6} ,for 6 € [0,1] (1.2.4)
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If F () is strictly increasing and continuous, then F~* (0) is the unique real number y
such as that F(y) = 6 (Gilchrist, 2000).
There are three distinct quantiles that are being used the most of the times in a
quantile regression analysis; 8 = {0.25,0.5,0.75 }. These quantiles can be the centre
of a distribution, minimizing the weighted absolute sum of deviations (Davino, Furno,
& Vistocco, 2014). If we want to define the 6-th quantile we can proceed as follow:

qe =argmin E [pg (Y — ¢)] (1.2.5)
Where gy (.) is the loss function that follows:

00 ) = [0-1(y < 0)]y
=[1-60)Iy < c) + 6I(y > o]l
A loss function like this is an asymmetric absolute loss function, in other worlds it is a
weighted sum of absolute deviations, where a (1 -0) weight is assigned to the negative
deviation and a 0 weight is assigned for the positive deviation.
If now we have a discrete variable Y with a probability distribution like:
f(y) = P(Y = y), then the minimization problem on our hands becomes:
qo=argmin  E [qo(Y — )]
= argming{(1 - 0) Xy<ly — clf(¥) + 0Zy>cly —clf ()}
We can use the same criterion in the case of a continuous random variable substituting
summation with integrals:

qe = argminc E [qo(Y — c)]

= argmine {(1- 0) [ ly = clf0)dm) +6 [ Iy = clf 3)d()}

Here f(y) is the probability density function of Y. We can obtain the sample
estimator §g for 0 € [0, 1] using the sample information from the above formula.
Moreover, we can obtain the median solution defined in eq.1.2.2 for 6 = 0,5. (Davino,
Furno, & Vistocco, 2014).

The formulation of univariate quantiles can be used as the solutions of the
minimization problem according to the Koenker. (Koenker & Xiao, Quantile
autoregression, 2006). The main assumption is that Y is a continuous random variable,
thus the expected value of the absolute sum of deviations from a given center ¢ can be

split into two terms, as follows:
E|Y - c| = [, gly —clf()dx

=[, <y —clfOdy + [ _ Iy —clf (»)dy
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=[,<lc = yIfOdy + [ . Iy —clf ()dy
Since the absolute value is a convex function, if we take the differential E|Y — c| with
respect to ¢ and set the partial derivatives to zero, we will have the solution for the
minimum:
]
a E |Y - Cl =0

This solution can be obtained by applying the derivatives and integrating per as part:

{c-NfO) e+

y
(- O IE= + [, oy —clf3dy} =0

With the follow restrain in mind that: lim,,_o, f(x) =limy_ ;s f(x) = 0

e e = YIf )y} +

If we want to well define the probability density function we will have to use the

following integrand restricts in y=c; where E|Y-c| is minimized.

{Ce=DfO) =t [, SOV} +{G = D) Iy~ [, . f ey}

=0 when y=0 =0 when y=0
If we then use the cumulative distribution function from eq.1.2.3 we can have a
reduced form of the above function as:

F(c)-[1-F(c)] =0
Leading to:
2F(c)-1 =0= F(c) = % =c = Me

So, the solution of the minimization problem from eq.1.2.2 is the median. The
solution above does not change by multiplying the two components of E|Y - c| by a

constant 8 and (1 - @) respectively. Allowing us to formulate the same problem for

the generic 0 quantile. If we use the same strategy for eq.1.2.5 we have:

2 E[p8(Y — O] == {(1- 6) [°_ly = clf)d) +6 [ly - clf»)d)}
If we repeat the argument above, we will have:
Z E[po(Y — )] =(1- 8)F(c)- 81 —F(c)) = 0
And the qg will be the solution of the minimization problem as:
F(c)- 0F(c)- 68 + 0F(c) = 0 = F(c) = 6 > ¢ = q¢ . (Davino, Furno, &
Vistocco, 2014)

We now can use the quantile regressions for the solutions of the minimization

problems as we have denoted the Y as a response variable and X as a set of predictor
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variables. This idea of the unconditional mean, as the minimizer of eq.1.2.1 can be
extended to the estimation of the conditional mean function. Before we proceed with
the multivariable quantile impulse response function, an introduction of the simplest
model is mandatory. That will be a model with a quantitative response variable and a
dummy predictor variable. This way we can see the differences in the response
variable between two groups as determined by a dichotomous predictor variable. Take
for example the price of a certain good in a country and compare the distribution of
this good’s price between the two groups of domestic and foreign company
manufacturers for this specific good. The dummy variable will be the origin, which
will take a unit value for foreign goods and zero value for domestic goods, and will be
used as regressor. If we compare the dot plots of the two groups and emphasize in the
differences that may have not in their means, which will be similar, but the tails of the
distribution of the extreme quantiles that reside there, we will then have to compare
the two datasets in the Q-Q plot, which will allow as to represent the quantiles of the
first dataset an a x-axis versus the second datasets quantiles on the y-axis, along with
a 45 degree reference line. If the two datasets share a common distribution, the points
should fall along the reference line. If the points fall under the line, the corresponding
set shows a shorter tail in that part of the distribution. Then exact opposite happens
when the points fall above the reference line; a longer tail is shown in that part of the
distribution. In a Q-Q plot the presentation offers the same information as a density
plot, thus allowing us to deduct information that has to do with the shape, the shifts in
location and in the scale, the present of outliers and differences in tail behavior. The
Q-Q plot doesn’t require any tuning, like a kernel width which is required in a density
plot. As far as the model is concerned, we have the classical least square regression:
Price =B+ B, Origin

That is like the mean comparison between the two groups of domestic and foreign
manufactured products, which can provide us with the same results as the classical
two sample t- test in case of interference. The estimation foe the quantile regression
model is:

Pricey = o (0)+ B, ()Origin (1.2.6)
This model permits us to obtain an estimation of the Price quantities for the two

groups of goods, for different values of 6 € [0,1]. If we use the hypothesis that
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domestic = 0 and foreign = 1 for the Origin indicator variable in eq.1.2.6 then we have
for the domestic:
Pricey =B (0)+ 1 (0) x 0= B (6)
And for the foreign:
Pricey =B 0+ B1 (0) x 1= B0 (0) + B (6)
The B (6) provides us the estimation of the conditional 6 quantile of the price for the
domestic goods and the B, (8) + £ (0) provides us with the estimation of the
conditional 6 quantile of the price of the foreign goods. By varying the 6 in the [0,1]
interval, the set of estimated intercepts offers an estimate of the price distribution for
the domestic goods. As far as the foreign goods are concerned, the price is obtained
though the sum of the sets of intercepts and slopes for the different 8. After that we
have to construct the density and the Q — Q plot perceptively in order to observe the
coefficients correspondence to the differential of values of 6 in order to describe the
price distribution conditional on the two levels of the Origin variable. In this setting,
such conditional distributions represent the estimation of the price distribution for the
two different groups of goods computed using the predictor indicator variable.
The quantile regression is an extension of the classical estimation of conditional mean
models to conditional quantile functions that provides us with the power to estimate
the conditional quantiles of the distribution of a response variable Y in function of a
set X of predictor variables. In a case of a generalized linear regression the quantile
regression model for a given conditional quantile 6 is:
Qo (Y|X) = XB(6)
Where 0 < 8 < 1and Qg (.|.) is the conditional quantile function for the 8 — th
quantile. We can interpret the parameter estimates in quantile regression model the
same way we interpret any other linear models, as rates of change. Thus, the 3;(8)
coefficient of a quantile regression model can be interpreted as the rate of change of
the & — th quantile of the dependent variable distribution per unit change in value of

the i — th regressor:
_0Q6(Y|X)

pi6) =25
The results can be graphical represented and inspected. A typical graphical
representation of quantile regression coefficients can permit us to observe the
different behaviors of the coefficients with respect to the different quantiles. (Koenker

& Xiao, Quantile autoregression, 2006). Using the same rules of OLS regression, a
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categorical explanatory variable can also be included in the model by setting them as
dummy variables except for one that is excluded and operates as the reference
category in the interpretation of the results. (Scott, 1997)

As stated above, we can extend our view point on the whole conditional distribution
of the response function by utilizing the quantile regression model. The idea of that
the mean and the quantiles are specific centers of a distribution that can minimize a
squared sum of deviations and a weighted absolute sum of deviations respectively,
can be generalized to the regression in order to estimate conditional mean and
conditional quantiles. Two groups determined by a dummy regressor can be compared
by a simple linear regression model with a quantitative response variable and a
dummy regressor that allows us to compare the mean and the quantiles between them.
The parameter estimates in linear models are interpretable as rates of changes, both in
classical regression and quantile regression, in the same way. The location, scale, and
shape shift information on the conditional distribution of a response variable can by
provided by the quantile regression. The quantile regression, allows us to approximate
the whole distribution of a response variable conditional, on the values of a set of

regressor. (Davino, Furno, & Vistocco, 2014).
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1.3. Quantiles in Time Series

As noted above, with quantile regression we can estimate models of conditional
quantile functions that can give us various systematic strategies for the examination of
the influence that the covariates have upon the location, shape and scale of a response
distribution as a whole, by studying the various heterogeneity that can been found in
response dynamics. (Galvao, Montes-Rojas, & Park, 2013). A quantile autoregressive
distributed lag model QADL can describe the asymmetric dynamics in time series by
exposing the importance of the heterogeneity in lagged regressors and exogenous
covariates. A QADL model has a stationary process because of the use of quantile
regression in standard linear time series context, that model the conditional quantile
function as linear and to be depended on past values of the dependable variable, rather
than modeling themselves as an autoregressive process. The work with time series can
provide us with estimations of the conditional quantile functions of a particular
variable along time, such as GDP, consumption, index numbers, output gap, inflation
and Fed Funds rates. We can define the different phases of a business cycle as the
conditional quantiles at a given time. There, the definition will depend on the height
of the quantiles of the conditional distribution. For high quantiles of the conditional
distribution the price returns will correspond to increasing prices and for low quantiles
of the conditional distribution the price returns will correspond to periods of
decreasing price. The same interpretation can also be used for value at risk,
consumption growth, output gap, inflation and Fed Funds rates applications. We can
define an autoregressive distributed lag model as:

Y, = pu+ 30 aiyi+ Do Xud + & (1.3.1)
Where t = (1,...,n), yi is the response variable, y.j is the lag of the response
variable, x; is a dim(x)-dimensional vector of covariates, &; is the innovation. While a
and ¥ are some unknown functions [0, 1] — R that we want to estimate. The main
focus of this model is the short run dynamic structure. (Galvao, Montes-Rojas, & Park,
2013). The heterogeneity that can be found in the impact of the shocks in a given time
series cannot be described with an efficient way by the least squares models, but a
QADL model can describe them in a better way. The 6th conditional quantile

function of y; can be written as:

Qy(813e) = u(8) + X7_; aj(0)ye—j + Xl oxeg9r(8)  (132)
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Where 3, is the o-field generated by {ys, Xs, s< t}. This is a quantile autoregressive
distributed lag model of order p and q (QADL (p, q)). A requirement for this model is
that Qy,(0|3;) to be a monotone increasing in 8 for all J;, so we can write it as:
Qye(613¢) = 2:B(6) (1.3.3)
Where z=(1, yi1, ... » YepXts -+ » Xteq)
and B(8) = (W®), ai(0), ..., ay(0), 9(0), ..., 19(;(9))'

It is required that Qy;(0|3;) to be a monotonic function in € in a specific region of
the 3, space. The estimated conditional quantile function Qy,(8|3,) = z,£(0) is
ensured to be monotone in af at z, = Z. (Koenker & Xiao, Quantile autoregression,
2006). But, the monotonicity in 6 is not a given for other values of z. Moreover,
because of the usage of a linear model there will be a crossing far away fromz, but it
is not something unusual as one can find a linear reparametrization of the model that
does exhibit co-monotonicity over some specific space as Koenker and Xiao (2006)
mention. The estimation procedure is based on a standard linear quantile regression.
The selection of an appropriate model is done with the help of the BIC criterion; due
to the great importance of the choice of the parameters p and q hold. This criterion is
based on the Asymmetric Laplace Distribution. As the median the BIC criterion is

used as described below:

BIC =nlogd + 1+p+(1+?Xdim ) logn (1.3.4)

Where 6 =n"'Y |y, — z,8(1/2)| (Galvao, Montes-Rojas, & Park, 2013)
General hypotheses tests on the vector f(6) can be done by Wald type tests as
(Galvao, Montes-Rojas, & Park, 2009) describe. That way we can test for equality of

many slope coefficients across several quantiles.
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1.4. Multivariate Quantiles in Time Series (VAR)

In contrast with the case in which we have only one variable in the quantile function
and a specific model, in the multivariable case there is no unique definition about the
multivariable quantile function. Borrowing the Monte-Rojas (2007) analysis, we can
consider an m-dimensional process Yo= (Y, ..., Yme)T and that for all 6€ {0,1, ...}
and Yo € ¥ € R™. Then, we can assume that we have k X 1vector of covariates Xg
e R". If we exploit the covariates generated by the o-field given by { Y :s <
0 }and all the information available at time t, and take all of them into account, we
find ourselves with a VARQ quantile model. For an autoregressive model of order p,
Xo1=Yg_qs o YeT_p)T and k = mp. We can index VARQ models according to the
lag order, VARQ (p).
We set@ = (64, ...,0,,) as an index of the R™ space, having that be an element of
the open unit ball in R™ , deprived of the origin T" = {z€ R™:0 < ||z|]| < 1}. We
let ||. || be the Euclidean norm. A reduced form vector directional quantile (VDQ)
model is:

Qy: (0]1Xt1 =Xe1) = B (0)x¢.1 + A(D) (1.4.1)
Here Q is an m X 1 vector which corresponds to the multivariate quantiles of the m
random variables. B (0) = (B1(0), ..., By (6¢) is an m X k matrix of coefficients with
B; (0) for each j € {1, ..., m}, k X 1 vector coefficients of the j-th element in Y. A(0) is
an m X 1 vector coefficients. If we set B, n(0) = B; 1(0), ..., Bun(0)) as the h-lag
coefficients for all the endogenous variables models, forh = 1,... ,p, we will have
QasamapX XT" — ¥. The VDQ applied to an autoregressive model is then the
VARQ model that Monte-Rojas proposes. (Montes-Rojas, 2019)
In order to operate in a time series he defines the lag polynomials B(6, L). L is the lag

operator leading to:

B(6)X;—, =B(6,L)Y; =Yk_, B «(O)L*Y,
and
Qy: (Blx—1) = B(6, L)y, + A(6) (1.4.2)
here y; denotes the value of Y, to be used in the equation. In order to construct the
VARQ model he defines Qy; (0)xi.1) : = {q1(0]Xc1), ... qm(O]xc1)} " from the system of

equations below:
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Ai(Bfxe1) : = c1(81)" g1(Blxer) + bi(8)" xer + au(61)
: P = + P4+ (1.4.3)
An(8fxc1) = Cn(Om)" Gn(BIXe1) + bin(Bin) " Xet + Gan(Brn)
{ci(0) }Z, is the vector of dimension (m —1) x 1, {b;j(0;) };2, is the vector of
dimension k X 1, {a;(6;) }]-“;1 are scalars, {q;j(0[x1) }j‘r;lis the individual time series
quantile regression model of each Yj ; j component, on all the others Y ; - j
components. X; is the lags where all the components are simultaneously evaluated at
Q(0[x¢.1). These directional quantiles are used for a fix orthonormal basis and the
VARQ estimator is a fixed point solution to a system of equations. (Hallin,
Paindaveine, & Siman, 2010).
We can define a VARQ model as:
Qye (Bxi1) = {In — C(0)} " {b(O)x1 + a(0)} : = B(O)xit + A(B)  (1.4.4)
I,p is the m-dimensional identity matrix, B(0) : = {I, — C(0)}" b(8), A(0) : = {I, —
C(0)}" a(0). For eql.4.4 to be constructed we must consider that C(0) : = {C(0)), ...,
cm(em)}T to be a matrix based on eql.4.3 of m X m dimensions. And that in that

matrix the {Cj(0;)};2;m X 1-dimensional vectors contain all the elements of the
m — 1 vector coefficients {c;(0;) }jrﬂl that have a 0 in the corresponding j-th

component. And finally that, b(0) = { by(0)), ... , bu(8m) }' to be am X k matrix and
a(0) = {a1(0)), ... , om(Om)}' to be am X 1 vector. For a fixed 0, the number of
parameters to be estimated is that of a structural mean based VAR model. (Montes-
Rojas, 2019).

The multivariate random variables conditional on the past can be described by a
VARQ model by way of modeling the simultaneous responses. The conditional
performance of the j — th endogenous variable conditional on the values of the others
and the available past information can be described by 0; quantile model, for each of
the j equations. The individual contribution of every endogenous variable in the
system after considering the effect of all the others can be represented by the 6. A
quantile autoregressive distributed lag model can be corresponded by an individual
equation. (Galvao, Montes-Rojas, & Park, 2013). A simultaneous solution of all
equations for a fixed collection of individual univariate quantile indexes by 6 can be a
VARQ model, which corresponds to a reduced form of a VAR model that is a

functional in 8. The VARQ model is constructed for stationary processes, but the unit
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root process can be detected if we look at their dynamic behavior. (Koenker & Xiao,
Quantile autoregression, 2006)
We saw how Monte-Rojas defines a VARQ model. But a VARQ model defines one
period ahead forecasting for the entire distribution of Y;,4, if we have all the
information available to us in time t, as shown below:

Qye+1 (Bx0) = QY (O{ye, Yeet, -, Yip}) : = B(O, L)y T A(B)  (1.4.5)
If we take all the information available at time ¢ we can define the one period ahead
forecast as Q(0[x¢) = QY41 (O]x¢)-
For two periods ahead forecast the indexes becomes t + 2 at quantiles 6,. That will
depend on the response from the past which is at t + 1 and the implicit quantile 6;. In
turn this will depend on both quantiles (6,,6;). That way we have given the
definition of a two period quantile path, where a potential path of the system of
endogenous variables is corresponding with the collection of indexes:

Q2{( 01 ,02)[x¢} = Q2 [B2/{ Qu( O1[X0). Yo, - ,Yipr1}] (1.4.6)
For a VARQ(1) model this will be:
Q21( 01 ,02)[x(} : = B(62)B(01)x, + B(62)A(01) + A(62) (1.4.7)

In general the h-periods ahead forecast can be written as a function of the forecast of
the previous quantiles:

Qu{(On, ..., 00X} : =B(On,L)Q{(On, ..., 01)xc} + A(On) (1.4.8)
Where Qu(.]) = yux if L(t + hy<tand (O, , ..., 0)),k = 1,..,h— 1is the k-
periods quantile path. So, in a more general form we have the framework for
forecasting different quantile paths:
Qu{(On, ..., O = {Tk=y BODIx + XRZ1 {TTjzken BODFA®L) + A(B).(1.4.9)
If we want to evaluate the future values on the conditional median values of the
endogenous variables we can proceed with a canonical case of this forecast that fixes
6; = (0.5,...,0.5) foralli = 1,...,h. the estimates that derive from this procedure
are similar with the estimates that derive from a mean based VAR forecast in general.
In this case each realization is evaluated at the conditional median and the h —periods
ahead forecast is also constructed by using h — 1, ... , 1 values at the median. If this
procedure generalized for any 6; = (6,...,0) foralli = 1,...,h, a case with high
values of 8 will correspond to the persistent occurrence of the 8 conditional quantile
in all endogenous variables. The same 0 quantile is no necessarily needed for all the

endogenous variables equations. (Galvao, Montes-Rojas, & Park, 2013).
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2.1. The VARQ model and QIRF analysis

One of the main reasons for the study of VAR models are the effects on the
endogenous variables of a system that occur from a sudden distortion upon the system.
We study the impulse responses. These exogenous shocks must be uncorrelated with
each other and they must have economic meaning. Another characteristic of these
shocks is that they should be exogenous to the other current and lagged endogenous
variables of a model. Moreover, they should represent either unanticipated
movements in exogenous variables or clues about future movements in exogenous
variables. (Ramey, 2016). The measuring shocks on time series models is being done
by VAR models, where a shock refers to a change in the residual of a conditional
model and identifying exogenous changes in a structural model. But, the multivariable
quantile does not have a structural model or a residual system in a reduced form as an
additive model. We have though, a replica of the simultaneous movements in the
endogenous variables that we notate as 8. So, a VARQ model is a reduced form
model that is eligible for forecasting and we can do impulse response analysis, after
the shocks that have been constructed based on a mean based structural VAR model.
If we then compute a counterfactual change § € Y € R™ in y,, we can evaluate the
transmission of those shocks in the multivariable distribution of the m-variate process.
We can define the IRF from the comparison of the multivariate quantiles at x: = (y;
+ 0,Ye1, ... , Yi-p) With the quantiles at x; = (y; + ye.1, ... , yi-p). If we have a shock at
time t, § €Y € R™ we can define the 6-quantile IRF (QIRF) att + 1 as described
below:
Qirfi(0,5x) = Qi(6 [x¢ ) - Qi(0 [x ) =B 1(6)3
Where Q; is the one period ahead forecast.
If we have a two periods ahead IRF with t + 2 at 0, quantiles, the quantile path will
be:
Qirfan) {(02, 01)3[x(} = Qa(02, 01[x% ) - Qa(02, O1x; )
(B.2(62) + B.1(62) B.1(81))dp > 1
= (1.2.1)
(B.1(0)B.1(®B1))dp =1
This QIRF is constructed for different quantile paths, in which each forecast is
evaluated at a given multivariate quantile index and for a fixed quantile index used for

the previous endogenous variables forecasts. (Montes-Rojas, 2019). If we integrate
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out 0, by using 6, ~U(0,1)™ we could have a two period ahead forecast that may not

depend on the implicit quantile that is used for the one step forecast:

Qirfy(0,3/x) = Qa(Blx? ) - Qa(B]x:)

(B.2(0) +B.1(6) B.1)d p > 1
= (1.2.2)
(B.1(®)B.15p=1
The difference between eql.2.1 and eql.2.2 is that eql.2.1 corresponds to a particular
path of assumed realizations of the multivariate process and eql.2.2 focuses on the
two period ahead distribution for a forecast value of one period ahead. If we

generalize for h-periods ahead IRFs we will have:
Qirfrnen-1,.,0)1(On, Op-1, ., 01), 617} =
Qn{(On, Op1, - ,01), 1% 3= Qu{(On, Oy, ..., 61), 17} (1.2.3)

For shock & at time t and for a given path of multivariate quantiles (8, 0,_1, ... ,61)
we will also have:

Qirfu(6,81x0) = Qu(01x7) — Qn(6lxy) (1.2.4)
The mean based VAR analysis differs from this analysis. Here, the effect on h periods
ahead is the result of the conditional expectations in the previous periods, by using the

iterated expectations property.
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2.2. Data Analysis
In our analysis we estimate a model with three variables the Output gap, which is
generated by the first difference of the Hodrick-Prescott' linear filter with linear trend,
using the Nominal Gross domestic product, seasonally adjusted®, denoted y,, the
inflation rate, which is the log difference of the GDP deflator, seasonally adjusted”,
denoted m;, the Fed Funds rate as the fiscal policy instrument corresponds to the first
difference of the quarterly Government Bonds®, denoted r,. So we have Y, =
(y¢, e, 7). The plots that are described here are shown on Graphs 1.1 to 1.4 and their

summary statistics report is on Tables 1.1.1 to 1.4.3 for each country.

' Hodrick-Prescott filter has a forward forecasting ability thus it may perceive some economic activities
as simple trends and not as significant changes, such as the recession of 2008 in Greece.

* in Domestic currency, source International Financial Statistics, Metadata by Country, Gross Domestic
Product and Components selected indicators, IFS

? source: International Financial Statistics, Metadata by Country, Gross Domestic Product and
Components selected indicators, IFS

4 source: International Financial Statistics, Metadata by Country, Interest Rates selected Indicators, IFS
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Graphl.1: Series 1995q1-2015q1. Notes: Output gap, inflation rate and interest rate series for Finland

Table 1.1.1 Summary statistics for the series 1995q1-2015q1 for Finland

Variable Obs Mean Std. Dev Min Max
y 81 —0,0003178 0,0138842 —0,515775 0,348388
T 81 0,004436 0,0063623 —0,0111005 0,0206033
r 81 —0,001195 0,0032122 —0,0122667 0,0083333

Table 1.1.2 Correlations (y;, 7;,13).

y T r
y 1,0000
™ 0,3302 1,0000
r 0,1930 0,0466 1,0000

Table 1.1.3 Correlations (y;, 7, ;) mean based VAR residuals

y T r
y 1,0000
n 0,3208 1,0000
r 0,1316 —0,0021 1,0000
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Graph1.2: Series 1995q1-2015q1. Notes: Output gap, inflation rate and interest rate series for Germany

Table 1.2.1 Summary statistics for the series 1995q1-2015q1 for Germany

Variable Obs Mean Std. Dev Min Max
y 81 —0,002216 0,0083667 —0,0456853 0,0210145
T 81 0,0026471 0,0031855 —0,0055431 0,0094304
r 81 —0,0008877 0,002927 —0,0083667 0,0079333

Table 1.2.2 Correlations (y¢, 7Ty, 7¢)-

y s T
y 1,0000
T —0,0207 1,0000
r 0,2030 —0,2385 1,0000

Table 1.2.3 Correlations (y;, 7;, ;) mean based VAR residuals

y s r
y 1,0000
T 0,0589 1,0000
r 0,1523 —0,1960 1,0000
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Graph 1.3: Series 1995q1-2015q1. Notes: Output gap, inflation rate and interest rate series for Greece

Table 1.3.1. Summary statistics for the series 1995q1-2015q1 for Greece

Variable Obs
y 80
T 80
r 81
y
T
r

Mean

0,0000412
0,006371

—0,0012255

Std. Dev

0,0108035
0,0098346

0,0155478

Table 1.3.2 Correlations (y;, 7y, 7).

y
1,0000
0,2835

—0,1522

I

1,0000

—0,0257

Min

—0,0332788

—0,0171075

—0,0752667

Table 1.3.3 Correlations (y;, ,, ;) mean based VAR residuals
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—0,1205

T

1,0000

0,0068
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0,0396173
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Graph 1.4: Series 1995q1-2015q1. Notes: Output gap, inflation rate and interest rate series for Italy

Variable

Table 1.4.1. Summary statistics for the series 1995q1-2015q1 for Italy

Obs Mean Std. Dev Min

80 0,0000747 0,0066389 —0,0239279
80 0,0055292 0,0054386 —0,0071405
81 —0,0013062 0,0042909 —0,0153333

Table 1.4.2 Correlations (y;, s, 7).

y T
1,0000

0,3808 1,0000
0,1905 —0,0453

Table 1.4.3 Correlations (y;, m;, 7;) mean based VAR residuals

y T
1,0000
0,4227 1,0000
0,2087 —0,0174
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Graph 2.1 for Finland: The VARQ coefficients are for T, € {0.05,0.10,...,0.95} ,
7, € {0.05,0.10, ...,0.95}, 7, € {0.05,0.10, ...,0.95} and 7,, = 0.50. Notes: In this Graph we can see
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output,
which is the bylr in the horizontal axis and the inflation which is the bplr in the vertical axis. The
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles
show the VARQ coefficients withz,, = 0.05,7, € {0.05,0.10, ...,0.95},7,. = 0.50. The lines with the
small squares show the VARQ coefficients withz, = 0.50,t, € {0.05,0.10, ..., 0.95},7,, = 0.50. The
lines with the small diamonds show the VARQ coefficients
witht, = 0.95,7, € {0.05,0.10, ...,0.95},7,, = 0.50. The lines with the large triangles show the
VARQ coefficients with 7,, € {0.05,0.10, ...,0.95}, 7, = 0.05, 7,, = 0.50. The lines with the large
squares show the VARQ coefficients with 7,, € {0.05,0.10, ..., 0.95}, 7, = 0.50 , 7, = 0.50 and the
lines with the large diamonds show the VARQ coefficients with 7, € {0.05,0.10, ...,0.95}, 7, = 0.95,
7, = 0.50
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Graph 2.2 for Germany: The VARQ coefficients are for 7, € {0.05,0.10, ..,0.95} |
7, € {0.05,0.10, ..., 0.95}, 7, € {0.05,0.10, ..., 0.95} and 7, = 0.50. Notes: In this Graph we can see
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output,
which is the bylr in the horizontal axis and the inflation which is the bplr in the vertical axis. The
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles
show the VARQ coefficients witht, = 0.05,t,; € {0.05,0.10, ..., 0.95},7,, = 0.50. The lines with the
small squares show the VARQ coefficients withz, = 0.50,t, € {0.05,0.10, ..., 0.95},7,, = 0.50. The
lines with the small diamonds show the VARQ coefficients
withz, = 0.95 ,7, € {0.05,0.10, ...,0.95},7, = 0.50. The lines with the large triangles show the
VARQ coefficients with 7, € {0.05,0.10, ...,0.95}, 7, = 0.05, 7,, = 0.50. The lines with the large
squares show the VARQ coefficients with 7, € {0.05,0.10, ...,0.95}, 7, = 0.50 , 7, = 0.50 and the
lines with the large diamonds show the VARQ coefficients with 7,, € {0.05,0.10, ..., 0.95}, 7, = 0.95,
7, = 0.50
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Graph 2.3 for Greece: The VARQ coefficients are for 7, € {0.05,0.10,..., 0.95} ,
7, € {0.05,0.10, ..., 0.95}, 7, € {0.05,0.10, ..., 0.95} and 7, = 0.50. Notes: In this Graph we can see
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output,
which is the bylr in the horizontal axis and the inflation which is the bplr in the vertical axis. The
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles
show the VARQ coefficients withz,, = 0.05,7, € {0.05,0.10, ...,0.95},7,. = 0.50. The lines with the
small squares show the VARQ coefficients withz,, = 0.50,t, € {0.05,0.10, ..., 0.95},7,, = 0.50. The
lines with the small diamonds show the VARQ coefficients
witht,, = 0.95 ,7,; € {0.05,0.10, ...,0.95},7, = 0.50. The lines with the large triangles show the
VARQ coefficients with 7,, € {0.05,0.10, ...,0.95}, 7, = 0.05, 7,, = 0.50. The lines with the large
squares show the VARQ coefficients with 7,, € {0.05,0.10, ...,0.95}, 7, = 0.50 , 7, = 0.50 and the
lines with the large diamonds show the VARQ coefficients with 7, € {0.05,0.10, ...,0.95}, 7, = 0.95,
7, = 0.50
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Graph 2.4 for [Italy: The VARQ coefficients are for 7, € {0.05,0.10, ...,0.95} ,
7, € {0.05,0.10, ..., 0.95}, 7, € {0.05,0.10, ..., 0.95} and 7, = 0.50. Notes: In this Graph we can see
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output,
which is the bylr in the horizontal axis and the inflation which is the bplr in the vertical axis. The
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles
show the VARQ coefficients witht, = 0.05,t, € {0.05,0.10, ..., 0.95},7,, = 0.50. The lines with the
small squares show the VARQ coefficients witht,, = 0.50 ,7, € {0.05,0.10, ...,0.95},7, = 0.50. The
lines with the small diamonds show the VARQ coefficients
withz, = 0.95 ,7, € {0.05,0.10, ...,0.95},7, = 0.50. The lines with the large triangles show the
VARQ coefficients with 7, € {0.05,0.10, ...,0.95}, 7, = 0.05, 7,, = 0.50. The lines with the large
squares show the VARQ coefficients with 7, € {0.05,0.10, ...,0.95}, 7, = 0.50 , 7, = 0.50 and the
lines with the large diamonds show the VARQ coefficients with 7,, € {0.05,0.10, ..., 0.95}, 7, = 0.95,
7, = 0.50
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Graphs 2.1 to 2.4 show the effect of a unit change in r keeping (y, ) unchanged, on
the coefficientsB(y)1 (Ty, T, Tr), denoted as bplr in the graph and B(y,)1(Ty, Tr, Tr)
denoted as bylr in the graph. We include least squares (OLS) estimate given by a
regression model of y; and m; on (y,_q,ms_q,7¢—1) . We hypothesize different
scenarios witht,, € {0.05,0.10,...,0.95}, 7, € {0.05,0.10,...,0.95} and 7, = 0.50
for which we make evaluations of the effect of a unit change in r. Also, Graphs 2.1 to
2.4 show in general heterogeneity as far as output and inflation is concerned and their
reactions to a change in the interest rate. As a general conclusion from these Graphs,
the OLS and the median effects are small while the highest effects are derived from
low 7, and 7, quantiles.

But in more details, we can see in Finland that follows this rule having the highest
effects to correspond to low 7, and 7, quantiles, almost identical with Greece’s and
Italy’s behavior, with the later to have an upward tendency for all the indicators as
well as the highest OLS and median effects of the four countries. In Germany the
highest effects correspond to medium 17, and 7, quantiles while the lowest effects
correspond to low 7, and 7, quantiles.

Moving forward, we make IRFs following the Cholesky identification procedure
(Eichenbaum, Christiano, & Evans, 1996) and having the same assumptions as
(Montes-Rojas, 2019); we use the residuals from the VAR model assuming that r has
no simultaneous effect on y and w. That  has an effect on r but no effect on y. And
that y affects both m and r. As an economic interpretation that means that shocks to
the Fed Funds rate probably has no simultaneous effect on the other economic
variables. Furthermore, we make an evaluation upon the effect of the shock in r,
calculated as the standard deviation of this structural shock, on output gap and
inflation, which are being standardized by the standard deviation of their
corresponding structural shocks. (Montes-Rojas, 2019).

In general we can conclude that the mean effects are more powerful than the median

ones (see also the appendix tables 1.1 to 1.4).
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QIRF (for Finland)
Output gap (Graph 3.1.1)

o s 1r'10 1s zo
‘ IRF OLS @& — — — — — qQy=0_50
.......... ay—0.10 S
Inflation (Graph 3.1.2)
o s 10 15 20
h
IRF OLS @& — — — — - qQy=0.50
qy=0_.10 — — — — qy=0.90 ‘
Accumulated QIRF (for Finland)
Output gap (Graph 3.1.3)
- o s 10 15 =0
h
‘ accum IRF OLS & — — — — — Qw=0_.50
qQy=0_.10 — — — = qQy=0.90
Inflation (Graph 3.1.4)
- o 5 10 15 20
‘ — accum IRF OLS  — — — — — Qy=0.50
e gw=0_.10 — — — = qgqwyw=0.90

Graphs 3.1.1 to 3.1.4 for Finland: QIRF for different 7,. Notes: QIRF on output gap and inflation of a
standard deviation shock in 7, for 7, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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QIRF (for Germany)
Output gap (Graph 3.2.1) &3.2.2
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Graphs 3.2.1 to 3.2.4 for Germany: QIRF for different 7,,. Notes: QIRF on output gap and inflation of a
standard deviation shock in 7, for 7, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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QIRF (for Greece)
Output gap (Graph 3.3.1)
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Graphs 3.3.1 to 3.3.4 for Greece: QIRF for different 7,. Notes: QIRF on output gap and inflation of a
standard deviation shock in 7, for 7, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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QIREF (for Italy)
Output gap (Graph 3.4.1)
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Graphs 3.4.1 to 3.4.4 for Italy: QIRF for different 7,,. Notes: QIRF on output gap and inflation of a
standard deviation shock in 7; for ,, € {0.10,0.50, 0.90}, 7, = 0.50 and 7, = 0.50
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Graphs 3.1.1 to 3.4.4 and 4.1.1 to 4.4.4 plots the QIRF of the r shock on output gap
and inflation dynamics for the VAR-OLS model and for indexes 7 = (7,1, =
0.5,7, = 0.5) with 7, = 0.10, 0.50,0.90 for the former and 7 = (z, = 0.5,7,, 7, =
0.5) with 7, = 0.10,0.50,0.90. The potential response of y and m if the VARQ
model is evaluated at fixed t for all h = 1,2,...,20 is represented by the quantile
curves. For example in Graphs 3.1.1 to 3.4.4 there is a case that 7, = 0.10
corresponds to the simulation of what would be the response of output and inflation to
a change only in the interest rate if output response were to remain at the bottom 10%
conditional quantile. This could correspond to an extreme event like an unusual
depression as it is known that persistent low quantiles could be related with such kind
of events. Furthermore, the case with the 7, = 0.90 correspond to a case of output
response always is in the upper 10% quantile, which is connected with an
extraordinary growth compared to the estimation samples in each case in general.
Moreover, in Graphs 4.1.1 to 4.4.4 we analyze the case of persistent conditional high

(t, = 0.90) or low(t, = 0.10) inflation for each country respectively.
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QIRF (for Finland)
Output gap (Graph 4.1.1)
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Graphs 4.1.1 to 4.1.4 for Finland: QIRF for different 7,,. Notes: QIRF on output gap and inflation of a
standard deviation shock in r; for 7,, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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QIRF (for Germany)
Output gap (Graph 4.2.1)
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Graphs 4.2.1 to 4.2.4 for Germany: QIRF for different 7,,. Notes: QIRF on output gap and inflation of a
standard deviation shock in r; for 7,, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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QIRF (for Greece)
Output gap (Graph 4.3.1)
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Graphs 4.3.1 to 4.3.4 for Greece: QIRF for different 7,,. Notes: QIRF on output gap and inflation of a
standard deviation shock in r; for 7,, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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QIREF (for Italy)
Output gap (Graph 4.4.1)
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Graphs 4.4.1 to 4.4.4 for Italy: QIRF for different 7,,. Notes: QIRF on output gap and inflation of a
standard deviation shock in r; for 7,, € {0.10,0.50,0.90}, 7, = 0.50 and 7, = 0.50
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As far as Finland is concerned, for output gap both responses are very similar and
positive, but we cannot say the same for inflation.

The 7, = 0.90 output quantile path effects for both output and inflation although
they start having positive curse, after the 5t period they come close to zero after that,
leaving an in general positive but low and stable accumulated result. This determines
that a dynamic path of extraordinary growth would not be affected by changes in the
interest rate except from the short run period of this growth.

The 7,, = 0.10 output quantile path follows a positive and persistent effect on both
output and on inflation, especially on output gap where the cumulative effect is by far
the largest from all the countries in our analysis. So if Finland’s economy were to stay
in a state of permanent recession, as given by persistent realizations in the lower 10"
conditional quantile in output gap, increasing the interest rate by 1 standard deviation
would increase the output by about 1,4 standard deviation in the long run as compared
to the value if the interest rate would not be changed.

When computing the same graphs for different fixed values of 7, we observe
considerable differences between the cases for high and low inflation quantile paths.
Although that in the case for 7, = 0.90 we have the same behavior of stability after
the 5™ period, we can see that there is a negative starting effect followed by a positive
effect and then we have the stability, as far as inflation is concerned with a positive
accumulated resold. On the other hand, as far as output gap is concerned, we can see a
big positive starting effect in the short run that stabilizes thereafter, with positive
accumulated results. When we use the 7, = 0.10 we have a big negative starting

spike on inflation that leads on a negative accumulated result of about -0,2.

Continuing with Germany, for output gap both responses are very similar and positive,
and for inflation the responses are very similar but negative.

The 7, = 0.90 output quantile path effects are positive for output gap but negative
for inflation. The 7,, = 0.10 output quantile path follows a persistence effect which is
positive for the output gap and negative for the inflation as shown in the accumulated
results.

When computing the same graphs for different fixed values of 7,, we observe
differences between the cases for output gap and inflation quantile paths, with the

results of the low quantiles 7,, = 0.10 to be bigger than the effects of the high
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quantiles 7, = 0.90, as far as inflation is concerned. In the case for 7, = 0.90 we
have negative results leading to negative accumulated effects on inflation in contrast
with the positive effects on output gap with the same quantile path. The same
principal applies to the results in the case forz, = 0.10; with a negative effect on

inflation and positive ones on the output gap.

As far as Greece in concerned, we can see some interesting results. For output gap the
responses have some fluctuation as well as in the inflation, leading to negative results.
For 7, =0.90 output quantile path effects are negative in general despite the
fluctuation on a positive curse on both output gap and inflation. These rises are too
small and are also depicted on the accumulated results. The 7,, = 0.10 output quantile
path although negative is smoother for the output gap and has no fluctuations for
inflation.

When computing the same graphs for different fixed values of 7, we observe
considerable differences between the cases for high and low inflation quantile paths,
for inflation while the effects on the output gap are negative. In the case for 7, = 0.90
we have negative results for the output gap a s well as inflation and the accumulated
results are very negative. On the other hand, for 7, = 0.10 output gap we can see

negative but smaller results compared to the 7, = 0.90 for output gap. But the results
for inflation are positive, although they have only % of the power of the negative

effects on inflation compared to the case of 7, = 0.90.

Finally for Italy we have the most impressive results.

The 7, = 0.90 output quantile path effects are close to zero and for the output gap

and slightly negative for the inflation resulting to overall slightly negative
accumulated effects. But the 7, = 0.10 output quantile path follows a very negative
and persistent path for output gap leading to big negative effects and for inflation
despite some fluctuations the negative effects prevail that of the positive ones, as
shown on the accumulated results.

In the case for 7, = 0.90 we can see overall negative effects on both inflation and
output gap. On the other hand, in the case for 7, = 0.10, we can see positive effects

on both output gap and inflation which result to positive cumulative effects.
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The models thus conclude that there is potential asymmetry in the dynamic
propagation of shocks. We can see that high and low quantiles associated with more
persistence and larger in general effects of a given fiscal shock. These simple linear
models that use different quantile paths can be used for the evaluation of extreme
events despite the fact that we lack the observations to evaluate correctly a structural
change. In general QR models are used to evaluate heterogeneous effects that have
derived from unobserved factors. So, omitted variables can result in having different
quantile paths. In a case of a country such as Italy, low quantiles combined with a
positive shock on the interest rate can have as a result the attraction of foreign capital
and can generate a positive impact on output with idle productive capacity. (Montes-

Rojas, 2019)
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Tables 2.1 to 2.4 show the dynamic stability of all different specifications for the
respected countries.

Table 2.1: VAR system stability for Finland

Model Eiegnl Eiegn2 Eiegn3

VAR-OLS 0,316 0,173 0,126
VARQ(ty=0,5 , tp=0,1 , tr=0,5 0,013 0,300 0,300
VARQ(ty=0,1, tp=0,5 , tr=0,5 0,141 0,429 0,429
VARQ(ty=0,5 , tp=0,5 , tr=0,5 0,110 0,237 0,126
VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,220 0,234 0,140
VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,282 0,365 0,156

Table 2.2: VAR system stability for Germany

Model Eiegnl Eiegn2 Eiegn3

VAR-OLS 0,294 0,149 0,149
VARQ(ty=0,5 , tp=0,1, tr=0,5 0,038 0,213 0,213
VARQ(ty=0,1, tp=0,5, tr=0,5 0,026 0,267 0,267
VARQ(ty=0,5 , tp=0,5 , tr=0,5 0,191 0,109 0,191
VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,245 0,128 0,245
VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,215 0,227 0,227

Table 2.3: VAR system stability for Greece

Model Eiegnl Eiegn2 Eiegn3

VAR-OLS 0,086 0,181 0,553
VARQ(ty=0,5, tp=0,1, tr=0,5 0,151 0,107 0,405
VARQ(ty=0,1, tp=0,5, tr=0,5 0,366 0,168 0,222
VARQ(ty=0,5, tp=0,5 , tr=0,5 0,374 0,020 0,189
VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,356 0,186 0,186
VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,440 0,186 0,379

Table 2.4: VAR system stability for Italy

Model Eiegnl Eiegn2 Eiegn3

VAR-OLS 0,048 0,524 0,370
VARQ(ty=0,5, tp=0,1 , tr=0,5 0,483 0,597 0,462
VARQ(ty=0,1, tp=0,5, tr=0,5 0,452 0,634 0,452
VARQ(ty=0,5, tp=0,5 , tr=0,5 0,404 0,015 0,597
VARQ(ty=0,5, tp=0,9 , tr=0,5 0,227 0,598 0,227
VARQ(ty=0,9 , tp=0,5, tr=0,5 0,393 0,393 0,282
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All the Eigen-values modules are inside the unit circle for all countries. In none of the
countries’ cases the system is close to the unit root, as a result we are going to have
stationary behavior in the QIRF for all these cases.

Starting our QIRF analysis we can see that mean based OLS and median responses
show similar dynamic behavior in both inflation cases as well as output gap cases but

with the mean effects to be larger than the median ones in general.

The following tables 3.1 and 3.2 correspond to the summary of the effects on the

cases of persistent conditional high(z,, = 0.90) or low(7, = 0.10) output gap and on

the cases of persistent conditional high(z, = 0.90) or low(z, = 0.10) inflation for

each country respectively
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Table 3.1: summary effects

Bl << >

On output gap Positive Positive Negative-Close to 0 Negative

On inflation Positive Negative Negative Generally-Negative

On output gap Positive Positive Negative-Close to 0 Negative
. _ _ Negative with
On inflation Positive Negative Negative )
fluctuations
On output gap Positive Positive Generally-Negative  Positive -Close to 0

Positive Negative Generally-Negative  Negative-Close to 0

. . Negative with
On output gap Positive Positive ) Close to 0
fluctuations

. _ Negative with _
On inflation Positive Negative ) Negative
fluctuations
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Table 3.2: summary effects

<>

Positive with

On output gap Positive Positive Negative )
fluctuations

_ i . Positive with
On inflation Negative Negative Positive

On output gap Positive Positive Negative

fluctuations

Positive with
fluctuations

Positive with

On inflation Negative Negative Positive )
fluctuations
On output gap Positive Positive Negative Negative

Positive with ) . .
On inflation Negative Negative Negative

fluctuations
On output gap Positive Positive Negative Negative

Positive with

On inflation fluctuations-Close to Negative Negative Negative

0
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Epilogue

Though this attempt of construction IRFs using multivariate semi-parametric
directional quantiles we can explore various dynamic heterogeneities in the potential
effects of a shock into the future performance of series.

As a result we can see that some countries have the same response in a given shock,
for example Finland and Germany have the same response on output gap when a
shock applied on both low and high quantiles. On the other hand, some countries like
Greece and Italy don’t follow the same pattern as others. Other counties can have the
exact opposite behavior like Greece and Finland, or their own unique response to the
shock like Italy which behavior doesn’t much any of the previous countries. The
reason why these differences in the responses of the different counties occur may lay
in the unique characteristics of each county’s economic structure.

Although we have used only linear QR models, we can have an evaluation a potential
structural break in a country’s economy due to an extreme or unusual effect or shock.
This is a useful way to forecast future events for which we do not have enough
observational data to analyze by drawing our conclusions and future predictions for
these events based on extreme past events that correspond to different quantile paths

of high or low conditional output and inflation.
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Appendix

Nomenclature
x (lower bold letters): stands for the vectors.
n Subscript: denotes the vector dimension, where the notation x,, is used

X (Upper bold letters): stands for the matrices.

YV V VYV V

n X p Subscript: denotes the matrix dimensions, where the notation X,
is used

T: stands for the transpose operator (xT)

X: stands for random variables

E,(y): stands for the cumulative distribution function

Y Subscript: denotes the variables on which the function is computed

YV V. ¥V V V

F(y): stands for the shortened notation of the above function and is used

when there is no risk of ambiguity

A\

Qy (0): stands for the quantile function

A\

Y Subscript: denotes the variables on which the quantile is computed

A\

Q(0): stands for the shortened notation of the above function and is used
when there is no risk of ambiguity

x;: stands for the i-th vector element

x;: stands for the i-th matrix row

0: stands for the null vector

1: stands for the identity vector

I: stands for the identity matrix

n: stands for the sample size

p: stands for the number of regressors

0: stands for the quantile

k: stands for the number of estimated quantiles

p(0): stands for the quantile regression parameter

£(6): stands for the quantile regression estimate

Qo (y|x) = xB(0) + e: stands for the simple quantile regression model
Qo (v|X) = XB(8) + e: stands for the multiple quantile regression model

pe (¥): stands for the loss or check function

vV V.V V V V V V V V V V V VYV V

y = fo + f1x + e: stands for the simple regression model
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Table 1.1: Details about Finland’s coefficients.

Yy

Percentiles Smallest

% -.0515775 -.0515775

5% -.0217667 -.0472362
10% -.0145565 -.0309543 Obs 81
% -.0064537 -.0237283 Sum of Wgt. 81
50% .0002679 Mean -.0003178
Largest Std. Dev. .0138842

75% .0062149 .0246939
90% .0135659 .0263092 Variance .0001928
95% .0198908 .030159 Skewness -.8001586
99% .0348388 .0348388 Kurtosis 5.948132

pi

Percentiles Smallest

1% -.0111005 -.0111005

5% -.0063355 -.0102191
10% -.004071 -.0098219 Obs 81
25% .0015208 -.00637 Sum of Wgt. 81
50% .0049428 Mean .004436
Largest Std. Dev. .0063623

75% .00824¢67 .0157988
90% .0116707 .0165505 Variance .0000405
95% .0143533 .019914 Skewness -.0930134
99% .0206033 .0206033 Kurtosis 3.303639

r

Percentiles Smallest

1% -.0122667 -.0122667

5% -.0061 -.0073667
10% -.0047667 -.0065813 Obs 81
25% -.0029667 -.0063333 Sum of Wgt. 81
50% -.0015333 Mean -.001195
Largest Std. Dev. .0032122

75% .000627 .0042489
90% .0025667 .0049522 Variance .0000103
95% .003928 .005 Skewness -.0683973
99% .0083333 .0083333 Kurtosis 4.191033
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Table 2.1: Stability condition for Finland
varstable,graph

Eigenvalue stability condition

Eigenvalue Modulus
.320778 + .27624941 .423335
.320778 - .27624941 .423335
-.30646 + .18785481 .359454
-.30646 - .18785481 .359454

1692244 + .20817551 .26828
.1692244 - .20817551 .26828

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.

Graph:5.1: Unit circle for Finland

Roots of the companion matrix

Imaginary
0
|

Real
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sum y pi r,detail

Table 1.2: Details about Germany’s coefficients

Yy

Percentiles Smallest

1% -.0456853 -.0456853

5% -.0103918 -.0166253
10% -.0070307 -.0146042 Obs 81
25% -.0041895 -.013946 Sum of Wgt. 81
50% .0005216 Mean -.0002216
Largest Std. Dev. .0083667

75% .0044287 .0126083
90% .0079487 .0127869 Variance .00007
95% .0104214 .0153034 Skewness -1.807215
99% .0210145 .0210145 Kurtosis 12.50463

pi

Percentiles Smallest

1% -.0055431 -.0055431

5% -.0018644 -.0035584
10% -.0008996 -.0031703 Obs 81
25% .0003642 -.0028311 Sum of Wgt. 81
50% .0024349 Mean .0026471
Largest Std. Dev. .0031855

75% .0049182 .0084455
90% .0069294 .0085118 Variance .0000101
95% .0084326 .0089311 Skewness .0480101
99% .0094304 .0094304 Kurtosis 2.603384

r

Percentiles Smallest

1% -.0083667 -.0083667

5% -.005 -.0076333
10% -.0041333 -.0052333 Obs 81
25% -.0029333 -.005 Sum of Wgt. 81
50% -.0012333 Mean -.0008877
Largest Std. Dev. .002927

75% .0013333 .0038667
90% .0029333 .0046 Variance 8.57e-06
95% .0038333 .0054 Skewness .2509386
99% .0079333 .0079333 Kurtosis 3.289448
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Table 2.2: Stability condition for Germany

varstable, graph

Eigenvalue stability condition

Eigenvalue Modulus
.5663072 .566307
.2027514 .38590421 .435925
.2027514 .38590421 .435925

-.1350349 .24447561 .27929
-.1350349 .24447561 .27929
-.2401043 .240104

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.

Graph:5.2: Unit circle for Germany

Roots of the companion matrix

Imaginary
0
|
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Table 1.3: Details about Greece’s coefficients

sum y pi r,detail

Yy

Percentiles Smallest

1% -.0332788 -.0332788

% -.0147444 -.0182195
10% -.0119883 -.0172766 Obs 80
25% -.0067256 -.0155572 Sum of Wgt. 80
50% -.0010648 Mean .0000412
Largest Std. Dev. .0108035

75% .0049424 .02113
90% .0125328 .0265368 Variance .0001167
95% .018914 .0287479 Skewness .6478869
99% .0396173 .0396173 Kurtosis 5.470269

pi

Percentiles Smallest

1% -.0171075 -.0171075

5% -.0095074 -.0141957
10% -.0069241 -.012314 Obs 80
25% -.0011583 -.010473 Sum of Wgt. 80
50% .0067233 Mean .006371
Largest Std. Dev. .0098346

75% .0125854 .0218087
90% .0197175 .0219433 Variance .0000967
95% .0214501 .0275764 Skewness -.0686368
99% .0289579 .0289579 Kurtosis 2.574734

r

Percentiles Smallest

1% -.0752667 -.0752667

5% -.0173667 -.0502
% -.0142333 -.0254667 Obs 81
25% -.004 -.0239 Sum of Wgt. 81
50% -.0012 Mean -.0012255
Largest Std. Dev. .0155478

75% .0026667 .0242333
90% .0111333 .0249333 Variance .0002417
95% .0206 .03064 Skewness -.8418862
99% .0570667 .0570667 Kurtosis 11.2359
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Table 2.3: Stability condition for Greece

varstable, graph

Eigenvalue stability condition

Eigenvalue Modulus
-.4825746 + .28886331 .562424
-.4825746 - .28886331 .562424

.5195036 + .09656131 .528401
.5195036 - .09656131 .528401
.3811427 + .26227681 .462665
.3811427 - .26227681 .462665

All the eigenvalues 1lie inside the unit circle.
VAR satisfies stability condition.

Graph:5.3: Unit circle for Greece

Roots of the companion matrix

Imaginary
0
|

Real

[[TAnktpoAoynoTe KelNEVO]



sum y pi r,detail

Table 1.4: Details about Italy’s coefficients

Yy

Percentiles Smallest

1% -.0239279 -.0239279

5% -.0099329 -.019395
10% -.0082981 -.0134136 Obs 80
25% -.0038804 -.0102729 Sum of Wgt. 80
50% .0007863 Mean .0000747
Largest Std. Dev. .0066389

75% .00411 .0102661
90% .0085958 .0104967 Variance .0000441
95% .0101435 .0105701 Skewness -.808229
99% .0118604 .0118604 Kurtosis 4.467926

pi

Percentiles Smallest

1% -.0071405 -.0071405

5% -.0011357 -.0059421
0% -.0003599 -.0032746 Obs 80
25% .0018586 -.0011687 Sum of Wgt. 80
50% .0044594 Mean .0055292
Largest Std. Dev. .0054386

75% .0092206 .014884
90% .0121586 .0176021 Variance .0000296
95% .0148514 .0187308 Skewness .5913071
99% .023252 .023252 Kurtosis 3.691316

r

Percentiles Smallest

1% -.0153333 -.0153333

5% -.0089 -.0104
10% -.0067667 -.0091 Obs 81
25% -.0034333 -.009 Sum of Wgt. 81
50% -.0014 Mean -.0013062
Largest Std. Dev. .0042909

75% .0015667 .0064
90% .0031 .0068667 Variance .0000184
95% .0059 .0078 Skewness -.1476238
99% .0112 .0112 Kurtosis 4.167732
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Table 2.4: Stability condition for Italy

varstable, graph

Eigenvalue stability condition

Eigenvalue Modulus
.5577894 .557789
.440582 + .12898421 .459075
.440582 - .12898421 .459075
-.4169255 + .19154091 .458819
-.4169255 - .19154091 .458819
.106957 .106957

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.

Graph:5.4: Unit circle for Italy

Roots of the companion matrix

Imaginary
0
|

Real

[[TAnktpoAoynoTe KelNEVO]





