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Summary 

In this dissertation a simple multivariate quantile autoregressive model is being used 

to study heterogeneity in the effects of macroeconomic shocks. In the first half we 

present a theoretical base as far as quantile regression is concerned. In the second half, 

we estimate the 𝑉𝐴𝑅𝑄  and perform 𝑄𝐼𝑅𝐹  analysis using a three-variable 

macroeconomic model (with output gap, inflation and Fed Funds rate) for different 

countries that are part of the E.U (Finland, Germany, Greece and Italy), for a set 

period of 20 years (1995𝑞 -2015𝑞 ). We use quantile impulse response functions in 

order to explore dynamic heterogeneity in the response of endogenous variables to 

different shocks. The evaluation of the different quantile paths as the dynamic effects 

for a fixed collection of quantile indexes shows as a result that, some countries have 

the same response in a given shock, some don’t follow the same pattern as others and 

others can have the exact opposite behavior or their own unique response to the shock. 

The reason why these differences in the responses of the different counties occur may 

lay in the unique characteristics of each county’s economic structure. 

Περίληψη 

Σε αυτήν τη διατριβή χρησιμοποιείται ένα απλό πολύ-μεταβλητό ποσοτικό 

αυτοπαλίνδρομο μοντέλο για τη μελέτη της ετερογένειας στις επιπτώσεις των 

μακροοικονομικών αιφνίδιων ταραχών. Στο πρώτο μισό παρουσιάζουμε μια 

θεωρητική βάση όσον αφορά την ποσοτική παλινδρόμηση. Στο δεύτερο μισό, 

εκτιμούμε το VARQ και πραγματοποιούμε ανάλυση QIRF χρησιμοποιώντας ένα 

τριών μεταβλητών μακροοικονομικό μοντέλο (παραγωγικό κενό, πληθωρισμό και 

ποσοστό ομοσπονδιακών κεφαλαίων) για διαφορετικές χώρες που αποτελούν μέρος 

της Ε.Ε. (Φινλανδία, Γερμανία, Ελλάδα και Ιταλία) , για μια καθορισμένη περίοδο 20 

ετών (1995𝑞 -2015𝑞 ). Χρησιμοποιούμε συναρτήσεις ποσοτικής απόκρισης για να 

διερευνήσουμε τη δυναμική ετερογένεια στην απόκριση ενδογενών μεταβλητών σε 

διαφορετικές αιφνίδιες μεταβολές. Η αξιολόγηση των διαφορετικών ποσοτικών 

διαδρομών, που προκύπτουν από μια σταθερή συλλογή ποσοτικών δεικτών, ως 

δυναμικά αποτελέσματα μας δείχνουν συμπερασματικά ότι, ορισμένες χώρες έχουν 

την ίδια απόκριση σε ένα δεδομένο σοκ, μερικές δεν ακολουθούν το ίδιο μοτίβο με 

άλλες και άλλες μπορούν να έχουν ακριβώς αντίθετη συμπεριφορά ή τη δική τους 

μοναδική απάντηση στο σοκ. Ο λόγος για τον οποίο εμφανίζονται αυτές οι διαφορές 
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στις αποκρίσεις των διαφόρων χωρών μπορεί να έγκειται στα μοναδικά 

χαρακτηριστικά της οικονομικής δομής κάθε χώρας.  
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Introduction 

Nowadays an important topic of many research studies, as far as economic activity is 

concerned, is the impact of macroeconomic shocks on the economies, having the 

effect on lower quantiles that is of utmost importance to policymakers understudied. 

The tail risk engulfs uncertainty which is transferred to forecasting thus, assessing the 

uncertainty that surrounds a forecast has the same value as the forecast itself. The 

benefits of the most common uncertainty measures are that, they are simple to 

calculate in most of the cases and their interpretation is simple as well. A static 

specification is a source of them but they mainly derive from recursive model 

estimates. 

 The quantile regression methods can provide us with a framework for robust 

estimation and inference and allow us to explore a variety of forms of conditional 

heterogeneity under less compelling distributional assumptions. The quantile 

regression (𝑄𝑅) is a statistical method for estimating models of conditional quantile 

functions, which offers a systematic strategy for examining how covariates influence 

the location, scale and shape of the entire response distribution, thus, a variety of 

heterogeneity in response dynamics can be seen. 

 The use of a 𝑉𝐴𝑅 model (vector autoregressive) is a very important and good way to 

present the dynamics of macroeconomic data. This method provides us with an 

efficient way to forecast, to describe our data and to study the dynamics in a 

multivariate time series model though the structural inference of this approach. The 

main drawback is the track of average outcomes of the 𝑉𝐴𝑅  models that have 

standard impulse response functions in their linear structure. A model with a constant 

coefficient used in time series is not good enough because, the effects of a succession 

of small and varied shocks on the structure of dynamic economic models can be 

ignored, especially in a case with highly aggregated data series. In addition, these 

models are unable to take into account the asymmetric and heterogeneous dynamic 

responses that are present in various cases. 

 The uncertainty measurements are based on past forecasting errors that are liked to 

root mean squared forecasting errors (𝑅𝑀𝑆𝐹𝐸), or mean absolute errors (𝑀𝐴𝐸). The 

forecasters mainly use these kinds of measures for their forecasts. Although their 

simple calculation and interpretation mechanisms, these models are limited  due to the 
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normality assumption, the lack of being up to date with the data and the most recent 

developments, and the proneness to large outliers.  

Engle and Manganelli (2004) propose a quantile autoregressive framework to model 

value-at-risk where the quantiles follow an autoregressive process. Gourieroux and 

Jasiak (2008) study dynamic additive quantile model. Xiao (2009) proposes quantile 

regression (𝑄𝑅)  with co-integrated time series. Galvao et al. (2013) interpret the 

quantile regression (𝑄𝑅)  time-series framework as modeling the business cycle, 

where high conditional realizations of a distributed lag model correspond to high 

quantiles and low conditional realizations of a distributed lag model correspond to 

low quantiles. Montes-Rojas (2019) develops a reduced form vector directional 

quantile estimator based on the multivariate directional quantiles framework of Hallin 

et al. (2010). 

In our dissertation, we will apply the Montes-Rojas (2019) of the vector 

autoregressive quantile (𝑉𝐴𝑅𝑄) model to contemporary macroeconomics EU data. 

This approach generalizes the quantile autoregressive framework proposed by 

Koenker and Xiao (2006) and Galvao et al. (2013) to the multivariate case. A 

collection of directional quantile models for a fixed orthonormal basis; in which each 

component represents a directional quantile that corresponds to a particular 

endogenous variable, can have a solution by this model. A map from the space of the 

𝜎-field that is generated by the available information at a specific time and a unit ball, 

whose dimension is given by the number of endogenous variables to the space of 

endogenous variables, is described by this model. The heterogeneity in time series can 

by explored by the 𝑉𝐴𝑅𝑄 model, by the estimation of conditional models of each 

endogenous variable conditional an all other contemporaneous endogenous variable 

and set of information available at the time. These conditional models are used to 

construct a simultaneous system of directional quantile regression (𝑄𝑅)  models, 

whose solution is a reduced-form multivariate quantile model. 

 In the first half we will present a theoretical base as far as quantile regression is 

concerned. In the second half, we will estimate the 𝑉𝐴𝑅𝑄 and perform 𝑄𝐼𝑅𝐹 analysis 

using a three-variable macroeconomic model for different countries, with output gap, 

inflation and Fed Funds rate, for a set period. We then will evaluate the effect of a 

standard deviation shock in the government bonds, that is, the fiscal shock, after our 

estimation, using the Cholesky decomposition of Christiano et al. (1996), and explore 
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dynamic heterogeneity applying the 𝑄𝐼𝑅𝐹𝑠 . This new analysis reveals important 

asymmetries and heterogeneity in the response to fiscal shocks in terms of different 

quantile paths of high or low conditional output and inflation. 
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1.1. Mean Regression 

 

Over the years Classic Econometrics has been the answer to many rising questions, 

not only from an economic aspect but from a social aspect as a whole. The results 

though classical regression models have to do with the study of the average in a 

conditional distribution. The main focus of the mean regression is the expectation of a 

variable 𝑌, which is conditional on the values of a set of variables 𝑿, common known 

as the regression function 𝐸(𝑌|𝑿)  (Weisberg, 2005). A function like this restricts on 

a specific location of the 𝑌 conditional distribution. So, the main point of interest is 

the changes in 𝑌 = 𝑦 , 𝑦 , … , 𝑦  observations, with 𝑦  to represent the 𝑖 − 𝑡ℎ 

observation, as𝑋 = 𝑥 , 𝑥 , … , 𝑥  variate, with 𝑥  to represent the 𝑖 − 𝑡ℎ variable that 

change. We have the mean function and the variance function respectfully, that 

consist the simplest form of a linear regression model:  

𝑦 = 𝐸(𝑌|𝑿 = 𝑥 ) = 𝛽 + 𝛽 𝑥   (1.1.1) 

where 𝛽  is the value of 𝐸(𝑌|𝑿 = 𝑥 ) when 𝑥 =  0 and 𝛽  is the rate of change in 

𝐸(𝑌|𝑿 = 𝑥 ) for a given unit of change in 𝑿 and gives us the slope. 

𝑉𝑎𝑟(𝑌 ) = 𝑉𝑎𝑟(𝑌|𝑿 = 𝑥 ) = 𝜎    (1.1.2) 

Eq.1.1.2 is assumed to be constant with 𝜎  >  0. Because of the positive value of the 

variance; 𝜎  >  0, a difference between the observed value of the 𝑖 − 𝑡ℎ response 𝑦  

and the expected value 𝐸 (𝑌|𝑿 = 𝑥 ) is observed. That difference is called a statistical 

error 𝑒  for case  𝑖 defined implicitly by 𝑦  =  𝐸(𝑌|𝑿 =  𝑥 )  + 𝑒  or explicitly by 

𝑒 = 𝑦 − 𝐸(𝑌|𝑿 =  𝑥 ). The parameters that the errors 𝑒   are depended upon are 

commonly unknown in the mean function and there are also not observable. They are 

random variables and correspond to the vertical distance between the point 𝑌  and the 

mean function 𝐸(𝑌|𝑿 =  𝑥 )   (Shewhart & Wilks, 2005). As far as errors are 

concerned, there are two very important assumptions that must be made. Firstly, we 

assume that 𝐸(𝑒 |𝑥 ) = 0 and secondly, we assume that all errors are independent 

with each other, causing the value of the error for one case not to give any 

information about the value of the error for a different case. Also, a general 

assumption that errors follow the normal distribution is needed, though it may not 

always be true. 

After the definition of our model that suits our problem comes the estimation of the 

parameters of that model. There are many methods that can be applied to achieve that 
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purpose and the most common and simple is that of the ordinary least squares (OLS), 

in which we look for the parameters estimates that can minimize our residual sum of 

squares: 

𝑦 = 𝐸(𝑌|𝑋 = 𝑥 ) = 𝛽 + 𝛽 𝑥      (1.1.3) 

Where 𝑦  is the fitted value for case i given by 𝐸(𝑌|𝑋 = 𝑥 ), 𝛽 is the estimator of 𝛽  

and  𝛽  is the estimator of 𝛽 . 

The equation for the statistical errors is: 

𝑒 = 𝑦 − (𝛽 + 𝛽 𝑥 ), 𝑖 =  1, … , 𝑛    (1.1.4) 

The least squares for simple regression depend on averages, sums of squares and sums 

of cross-products. (Weisberg, 2005). We can use the Least Square Criterion, which is 

based on the residuals in order to obtain estimators. Here an inherent asymmetry in 

the response and the predictor in regression problems can be seen through the 

residuals.The values of 𝛽  and 𝛽  that minimize the following function are called 

OLS estimators: 

𝑅𝑆𝑆(𝛽 , 𝛽 ) = ∑ [𝑦 − (𝛽 + 𝛽 𝑥 )]   (1.1.5) 

where, when the evaluation of  (𝛽 , 𝛽 ) is made at 𝛽 , 𝛽 , the 𝑅𝑆𝑆 𝛽 , 𝛽  is called 

the residual sum of squares. 

 

There are many different ways to find the least squares estimates, one expression of 

them is: 

𝛽 = = 𝑟 = 𝑟 ( )       

(1.1.6) 

𝛽 = 𝑦 − 𝛽 �̅� 

where: 

  �̅� stands for the sample average of 𝑥, derived from ∑  

 𝑦 stands for the sample average of 𝑦, derived from ∑  

 𝑆𝑋𝑋 stands for the sum of squares for the 𝑥’s, derived from ∑(𝑥 − �̅�) =

∑(𝑥 − �̅�)𝑥  

 𝑆𝑌𝑌 stands for the sum of squares for the 𝑦’s, derived from ∑(𝑦 − 𝑦) =

∑(𝑦 − 𝑦)𝑦  

 𝑆𝑋𝑌  stands for  the sum of cross –products, derived from ∑(𝑥 − �̅�)(𝑦 −

𝑦) = ∑(𝑥 − �̅�)𝑦  
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 𝑆𝐷  stands for the sample standard deviation of the 𝑥’s, derived from 
( )

 

 𝑆𝐷  stands for the sample standard deviation of the 𝑦’s, derived from 
( )

 

 𝑟  stands for the sample correlation, derived from 
( )

, where 𝑠  is the 

sample covariance, derived from 
( )

 

Then, if we want to obtain the estimator 𝜎 , we must average the squared residuals, 

under the assumption of uncorrelated errors with zero means and a common variance 

of 𝜎  as follows: 

𝜎 =      (1.1.7) 

where 𝑅𝑆𝑆 = ∑ 𝜎  and 𝑛 − 2  are the degrees of freedom (𝑑𝑓) , where residual 

𝑑𝑓 =number of cases minus the number of parameters in the mean function, so for 

the simple regression we will have residual 𝑑𝑓 = 𝑛 − 2 

 

The variance of the estimators is: 

𝑉𝑎𝑟 𝛽 = 𝜎 , 

𝑉𝑎𝑟 𝛽 = 𝜎 +
̅

    (1.1.8) 

Where SXX is the sum of squares for the x: ∑(𝑥 − �̅�) = ∑(𝑥 − �̅�)𝑥  

The covariance of the two estimates is also given by: 

𝐶𝑜𝑣 𝛽 , 𝛽 = −𝜎
̅

    (1.1.9) 

And the correlation between the estimates is also given by: 

𝜌 𝛽 , 𝛽 =
̅

̅

=
̅

( )
̅

  (1.1.10) 

where 𝑆𝐷  is the sample variance of 𝑥’s, derived from   

The estimates for 𝑉𝑎𝑟 𝛽  and 𝑉𝑎𝑟 𝛽  are acquired by: 

𝑉𝑎𝑟 𝛽 = 𝜎 , 

𝑉𝑎𝑟 𝛽 = 𝜎 +
̅

    (1.1.11) 

And the square root of an estimated variance is given by: 

𝑠𝑒 𝛽 = 𝑉𝑎𝑟 𝛽      (1.1.12) 

Where 𝑠𝑒 is the standard error. 
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All the above functions are required for the analysis of the variance in which we can 

compare the fit of two or more mean functions for the same set of data. If we have a 

fitting the mean function: 

𝐸(𝑌|𝑋 = 𝑥) = 𝛽    (1.1.13) 

We can say that this function is the same for all the values of X. If we can fit with this 

mean function we can find the best parallel to the horizontal axis of x. With the help 

of the OLS estimate we can have: 

𝐸(𝑌│𝑋) = 𝛽      (1.1.14) 

Where 𝛽 is the value of 𝛽  that minimizes the  ∑(𝑦 − 𝛽 )  so we have: 

𝛽 = 𝑦     (1.1.15) 

And the residual sum of squares is: 

∑ 𝑦 − 𝛽 = ∑(𝑦 − 𝑦) = 𝑆𝑌𝑌   (1.1.16) 

With 𝑛 − 1 df(degrees of freedom)  

 

There are many categories of mean functions that can solve different problems. If we 

proceed with the multiple linear regression model we will have: 

𝑌 = 𝐸(𝑌|𝑿 =  𝑥 )  =  𝛽 + 𝛽 𝑥  +  … + 𝛽 𝑥  (1.1.17) 

There is value in the study of the least squares criterion that is obtained based on the 

residuals. The residuals reflect the inherent asymmetry in the roles of the response and 

the predictor in regression problems. By applying the 𝑂𝐿𝑆 method we can find the 

estimators and the values that minimize our function. The estimator for the variance is 

obtained by averaging the squared residuals. Here, an assumption that the errors are 

uncorrelated random variables with zero means and common variance of 𝜎 , is 

required. We can use the estimated mean function in order to obtain the values of the 

response for given values of the predictor. We must revise the residuals in order to 

verify if there is any failure of assumptions.  

 

We can have polynomials problems with curved mean functions that can sometimes 

be included in a multiple linear regression model by adding polynomial terms in the 

predictor variables: 

E(Y|X =𝑥 ) = β0+β1x +  β2x
2   (1.1.18) 

Here X is smooth but not straight. This quadratic mean function can be used then the 

mean is expected to have a minimum of a maximum in the range of the predictor, or 
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when the mean function is curve but does not have neither a minimum nor a 

maximum within the range of the predictor. A general form of a polynomial function 

is: 

𝐸(𝑌|𝑿 = 𝑥  )  =  𝛽 + 𝛽 𝑥 +   𝛽 𝑥  +  … + 𝛽 𝑥   (1.1.19) 

 There can be interactions and other combinations of predictors, like the existence of a 

mass index that has many variables. There we can find joint effects of two or more 

variables. Furthermore, we have dummy variables and factors; a categorical predictor 

with more than one level. These factors accompany the linear regression model with 

the form of a dummy variable. A predictor like this can require several dummy 

variables. We must state here that a regression with m predictors could combine to 

give fewer than m terms or may require more than m terms. The interpretation of a 

value of a parameter that is estimated can depend on other terms in the mean function 

and can also change if these terms are replaced by a linear combination of theirs. So it 

is not always a good thing to have too many terms in a regression model that are not 

statistically important. The square of the correlation in a summary graph can be 

interpreted by R2, in a multiple linear regression. But for a non-linear regression we 

must define the square of the correlation between the response and the fitted values to 

be R2 and then use a summary graph in order to figure out if R2 is useful or not.  A 

non linear regression model can be described as below: 

𝐸(𝑌|𝑿 = 𝑥 )  =  𝛼  +  𝛼  (1 –  𝑒𝑥𝑝 ( − 𝛼 𝑥 )) (1.1.20) 

Where 𝛼1, 𝛼2, 𝛼3 are the parameters we want to estimate and 𝑥  is the predictor. The 

mean function is a non linear combination of parameters that makes eq.1.1.6 a non 

linear mean function.  

If we use collinear predictors we can be leaded to variable estimated coefficients that 

are unacceptable when we compare them to problems with no co linearity. (Shewhart 

& Wilks, 2005) If we have   𝑝 > 2 then the variance of the j-th coefficient is: 

Var(𝛽 ) = −    (1.1.21) 

Where  is the 𝑗 − 𝑡ℎ variance inflation factor. If we keep 𝑆𝑋 𝑋  constant and take 

the 𝑋  that make the 𝑅 =  0 , an increase in variance caused by the correlation 

between the predictors and co linearity is represented by the variance inflation factor. 

Linear regression with variable selection is not the only approach to the problem of 
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modeling a response as a function of a very large number of terms or predictors. 

(Shewhart & Wilks, 2005).  

In general all generalized linear regression models have a distribution of a response 

𝑌 and a given set of terms 𝑋 that is distributed according to a form of exponential 

distribution. Moreover, a linear combination of 𝛽𝑋  is used to represent that the 

response Y is depending on a term X though this combination. The mean E(Y|X = 𝑥 ) 

= 𝜇(𝛽𝑋)  for some kernel mean function is 𝜇 . For the multiple linear regression 

model 𝜇 is the identity function, and for a logistic regression model 𝜇 is the logistic 

function. (Shewhart & Wilks, 2005). 
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1.2. Quantile Regression 

Quantile regression is a tool that can provide us with the power to analyze the whole 

conditional distribution of a response variable in terms of a set of explanatory 

variables, rather than confining us to the analysis of only the average, as is done in 

classical mean regression. Quantile regression has a unique feature that is able to deal 

with a variety of distributions and is able to eliminate dependence upon the normality 

assumptions, as well, setting all the problems that mean regression has to a more 

realistic and up to date framework. It takes the mean regression approach and extends 

it by lifting up the confinements of the specific location of the Y conditional 

distribution. With the quantile regression we can study the conditional distribution of 

Y on X anywhere, as far as the location of the distribution is concerned, having that 

way a global view of the interrelations between Y and X.  Quantile regression was 

introduced by Koenker and Basset in 1978 as an extension of classical least squares 

estimation of conditional mean models to conditional quantile functions (Davino, 

Furno, & Vistocco, 2014). Quantile regression generalizes univariate quantiles for 

conditional distribution. If we want to define a quantile function we must first explain 

the relation between the mean and the median of a distribution. The asymmetry is 

defined by the comparison between mean and median as centers of a random variable 

distribution. If we accept that Y is a generic random variable with its mean to be the 

centre c of the distribution which minimizes the squared sum of deviations, we have 

the solution of a minimization problem as follows: 

𝜇= 𝑎𝑟𝑔𝑚𝑖𝑛  𝐸(𝑌 − 𝑐) .       (1.2.1) 

The median minimizes the absolute sum of deviations, so in our minimization 

problem we have: 

𝑀  = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐸|𝑌 − 𝑐|.       (1.2.2) 

If then we use a sample observations we can obtain that samples estimators  

�̂� and 𝑀e for such centers. 

The univariate quantiles are defined as specific locations of the distribution. The θ-th 

quantile is the value y that 𝑃(𝑌 ≤  𝑦)  =  𝜃. If we take the cumulative distribution 

function: 

𝐹  (𝑦)  =  𝐹(𝑦)  =  𝑃 (𝑌 ≤  𝑦)      (1.2.3) 

we can define the quantile function as its reverse: 

𝑄  (𝜃)  =  𝑄 (𝜃) = 𝐹  (θ) =  𝑖𝑛𝑓 {𝑦: 𝐹(𝑦) >  𝜃} , 𝑓𝑜𝑟 𝜃 ∈  [0, 1] (1.2.4) 
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If 𝐹 (. ) is strictly increasing and continuous, then 𝐹  (𝜃) is the unique real number y 

such as that 𝐹(𝑦)  =  𝜃 (Gilchrist, 2000). 

There are three distinct quantiles that are being used the most of the times in a 

quantile regression analysis;  𝜃 =  { 0.25, 0.5, 0.75 }. These quantiles can be the centre 

of a distribution, minimizing the weighted absolute sum of deviations (Davino, Furno, 

& Vistocco, 2014). If we want to define the θ-th quantile we can proceed as follow: 

𝑞  =𝑎𝑟𝑔𝑚𝑖𝑛 E [𝜚  (𝑌 − 𝑐)]    (1.2.5) 

Where 𝜚  (.) is the loss function that follows: 

𝜚  (𝑦)  =  [𝜃 –  𝐼(𝑦 <  0)]𝑦 

= [(1 –  𝜃)𝐼(𝑦 ≤  𝑐)  +  𝜃𝐼(𝑦 >  𝑐)]|𝑦| 

A loss function like this is an asymmetric absolute loss function, in other worlds it is a 

weighted sum of absolute deviations, where a (1 -θ) weight is assigned to the negative 

deviation and a θ weight is assigned for the positive deviation. 

If now we have a discrete variable Y with a probability distribution like: 

𝑓(𝑦)  =  𝑃(𝑌 =  𝑦), then the minimization problem on our hands becomes: 

𝑞 = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐸 [𝑞 (𝑌 − 𝑐)] 

= 𝑎𝑟𝑔𝑚𝑖𝑛 {(1 –  𝜃) ∑ |𝑦 − 𝑐|𝑓(𝑦) + θ∑ |𝑦 − 𝑐|𝑓(𝑦)}. 

We can use the same criterion in the case of a continuous random variable substituting 

summation with integrals: 

𝑞  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑐 𝐸 [𝑞 (𝑌 − 𝑐)] 

= 𝑎𝑟𝑔𝑚𝑖𝑛  {(1 –  𝜃) ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑(𝑦) + θ ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑(𝑦)} 

Here 𝑓(𝑦)  is the probability density function of 𝑌 . We can obtain the sample 

estimator 𝑞θ for θ ∈ [0, 1] using the sample information from the above formula. 

Moreover, we can obtain the median solution defined in eq.1.2.2 for θ = 0,5. (Davino, 

Furno, & Vistocco, 2014). 

The formulation of univariate quantiles can be used as the solutions of the 

minimization problem according to the Koenker. (Koenker & Xiao, Quantile 

autoregression, 2006). The main assumption is that Y is a continuous random variable, 

thus the expected value of the absolute sum of deviations from a given center c can be 

split into two terms, as follows: 

𝐸|𝑌 –  𝑐|  = ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑𝑥
∈ℝ

 

=∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑𝑦 + ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑𝑦 
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=∫ |𝑐 − 𝑦|𝑓(𝑦)𝑑𝑦 + ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑𝑦 

Since the absolute value is a convex function, if we take the differential E|Y – c| with 

respect to c and set the partial derivatives to zero, we will have the solution for the 

minimum: 

 𝐸|𝑌 –  𝑐|  =  0 

This solution can be obtained by applying the derivatives and integrating per as part: 

{(𝑐 –  𝑦) 𝑓(𝑦) |  + ∫ |𝑐 − 𝑦|𝑓(𝑦)𝑑𝑦} + 

{(𝑦 –  𝑐) 𝑓(𝑦) |  + ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑𝑦} = 0 

With the follow restrain in mind that: lim → 𝑓(𝑥) = lim → 𝑓(𝑥) =  0 

If we want to well define the probability density function we will have to use the 

following integrand restricts in y=c; where E|Y-c| is minimized. 

{ (𝑐 − 𝑦)𝑓(𝑦)

   

|y=c + ∫ 𝑓(𝑦)𝑑𝑦} + {(𝑦 − 𝑐)𝑓(𝑦)

   

|y=c – ∫ 𝑓(𝑦)𝑑𝑦} 

If we then use the cumulative distribution function from eq.1.2.3 we can have a 

reduced form of the above function as: 

𝐹(𝑐) – [1 –  𝐹(𝑐)]  =  0 

Leading to: 

2𝐹(𝑐) –  1 =  0 ⇒  𝐹(𝑐)  =  
1

2
 ⇒ 𝑐 =  𝑀𝑒 

So, the solution of the minimization problem from eq.1.2.2 is the median. The 

solution above does not change by multiplying the two components of 𝐸|𝑌 –  𝑐| by a 

constant 𝜃 and (1 –  𝜃) respectively. Allowing us to formulate the same problem for 

the generic θ quantile. If we use the same strategy for eq.1.2.5 we have: 

 𝐸[𝜌𝜃(𝑌 − 𝑐)] = {(1 –  𝜃) ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑(𝑦)  + 𝜃 ∫ |𝑦 − 𝑐|𝑓(𝑦)𝑑(𝑦)} 

If we repeat the argument above, we will have: 

 𝐸[𝜌𝜃(𝑌 − 𝑐)]  = (1 –  𝜃)𝐹(𝑐) –  𝜃(1 − 𝐹(𝑐))  =  0 

And the qθ will be the solution of the minimization problem as: 

𝐹(𝑐) –  𝜃𝐹(𝑐) –  𝜃 +  𝜃𝐹(𝑐)  =  0 ⇒  𝐹(𝑐)  =  𝜃 ⇒  𝑐 =  𝑞  . (Davino, Furno, & 

Vistocco, 2014) 

We now can use the quantile regressions for the solutions of the minimization 

problems as we have denoted the Y as a response variable and X as a set of predictor 
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variables. This idea of the unconditional mean, as the minimizer of eq.1.2.1 can be 

extended to the estimation of the conditional mean function. Before we proceed with 

the multivariable quantile impulse response function, an introduction of the simplest 

model is mandatory. That will be a model with a quantitative response variable and a 

dummy predictor variable. This way we can see the differences in the response 

variable between two groups as determined by a dichotomous predictor variable. Take 

for example the price of a certain good in a country and compare the distribution of 

this good’s price between the two groups of domestic and foreign company 

manufacturers for this specific good. The dummy variable will be the origin, which 

will take a unit value for foreign goods and zero value for domestic goods, and will be 

used as regressor. If we compare the dot plots of the two groups and emphasize in the 

differences that may have not in their means, which will be similar, but the tails of the 

distribution of the extreme quantiles that reside there, we will then have to compare 

the two datasets in the Q-Q plot, which will allow as to represent the quantiles of the 

first dataset an a x-axis versus the second datasets quantiles on the y-axis, along with 

a 45 degree reference line. If the two datasets share a common distribution, the points 

should fall along the reference line. If the points fall under the line, the corresponding 

set shows a shorter tail in that part of the distribution. Then exact opposite happens 

when the points fall above the reference line; a longer tail is shown in that part of the 

distribution. In a Q-Q plot the presentation offers the same information as a density 

plot, thus allowing us to deduct information that has to do with the shape, the shifts in 

location and in the scale, the present of outliers and differences in tail behavior. The 

Q-Q plot doesn’t require any tuning, like a kernel width which is required in a density 

plot. As far as the model is concerned, we have the classical least square regression: 

𝑃𝑟𝚤𝑐𝑒  = 𝛽0 + 𝛽1 Origin 

That is like the mean comparison between the two groups of domestic and foreign 

manufactured products, which can provide us with the same results as the classical 

two sample t- test in case of interference. The estimation foe the quantile regression 

model is: 

𝑃𝑟𝚤𝑐𝑒θ  = 𝛽0 (θ)+ 𝛽1 (θ)Origin   (1.2.6) 

This model permits us to obtain an estimation of the Price quantities for the two 

groups of goods, for different values of θ ∈ [0,1] . If we use the hypothesis that 
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domestic = 0 and foreign = 1 for the Origin indicator variable in eq.1.2.6 then we have 

for the domestic: 

𝑃𝑟𝚤𝑐𝑒θ  = 𝛽0 (θ)+ 𝛽1 (θ) x 0 =  𝛽0 (θ) 

And for the foreign: 

𝑃𝑟𝚤𝑐𝑒θ  = 𝛽0 (θ)+ 𝛽1 (θ) x 1 =  𝛽0 (θ) + 𝛽1 (θ) 

The 𝛽0 (𝜃) provides us the estimation of the conditional θ quantile of the price for the 

domestic goods and the 𝛽 0 (𝜃) + 𝛽 1 (𝜃)  provides us with the estimation of the 

conditional θ quantile of the price of the foreign goods. By varying the 𝜃 in the [0,1] 

interval, the set of estimated intercepts offers an estimate of the price distribution for 

the domestic goods. As far as the foreign goods are concerned, the price is obtained 

though the sum of the sets of intercepts and slopes for the different 𝜃. After that we 

have to construct the density and the 𝑄 − 𝑄 𝑝𝑙𝑜𝑡 perceptively in order to observe the 

coefficients correspondence to the differential of values of 𝜃 in order to describe the 

price distribution conditional on the two levels of the Origin variable. In this setting, 

such conditional distributions represent the estimation of the price distribution for the 

two different groups of goods computed using the predictor indicator variable. 

The quantile regression is an extension of the classical estimation of conditional mean 

models to conditional quantile functions that provides us with the power to estimate 

the conditional quantiles of the distribution of a response variable 𝑌 in function of a 

set 𝑿 of predictor variables. In a case of a generalized linear regression the quantile 

regression model for a given conditional quantile 𝜃 is: 

Qθ (𝑌|𝑿)  =  𝑿𝛽(𝜃) 

Where 0 <  𝜃 <  1 and 𝑄  (. |. ) is the conditional quantile function for the 𝜃 − 𝑡ℎ 

quantile. We can interpret the parameter estimates in quantile regression model the 

same way we interpret any other linear models, as rates of change. Thus, the 𝛽 (𝜃) 

coefficient of a quantile regression model can be interpreted as the rate of change of 

the 𝜃 − 𝑡ℎ quantile of the dependent variable distribution per unit change in value of 

the 𝑖 − 𝑡ℎ regressor: 

𝛽 (𝜃)  = 
( |𝑿)

 

The results can be graphical represented and inspected. A typical graphical 

representation of quantile regression coefficients can permit us to observe the 

different behaviors of the coefficients with respect to the different quantiles. (Koenker 

& Xiao, Quantile autoregression, 2006). Using the same rules of OLS regression, a 
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categorical explanatory variable can also be included in the model by setting them as 

dummy variables except for one that is excluded and operates as the reference 

category in the interpretation of the results. (Scott, 1997)  

As stated above, we can extend our view point on the whole conditional distribution 

of the response function by utilizing the quantile regression model. The idea of that 

the mean and the quantiles are specific centers of a distribution that can minimize a 

squared sum of deviations and a weighted absolute sum of deviations respectively, 

can be generalized to the regression in order  to estimate conditional mean and 

conditional quantiles. Two groups determined by a dummy regressor can be compared 

by a simple linear regression model with a quantitative response variable and a 

dummy regressor that allows us to compare the mean and the quantiles between them. 

The parameter estimates in linear models are interpretable as rates of changes, both in 

classical regression and quantile regression, in the same way. The location, scale, and 

shape shift information on the conditional distribution of a response variable can by 

provided by the quantile regression. The quantile regression, allows us to approximate 

the whole distribution of a response variable conditional, on the values of a set of 

regressor. (Davino, Furno, & Vistocco, 2014). 
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1.3. Quantiles in Time Series 

 

As noted above, with quantile regression we can estimate models of conditional 

quantile functions that can give us various systematic strategies for the examination of 

the influence that the covariates have upon the location, shape and scale of a response 

distribution as a whole, by studying the various heterogeneity that can been found in 

response dynamics. (Galvao, Montes-Rojas, & Park, 2013). A quantile autoregressive 

distributed lag model QADL can describe the asymmetric dynamics in time series by 

exposing the importance of the heterogeneity in lagged regressors and exogenous 

covariates. A QADL model has a stationary process because of the use of quantile 

regression in standard linear time series context, that model the conditional quantile 

function as linear and to be depended on past values of the dependable variable, rather 

than modeling themselves as an autoregressive process. The work with time series can 

provide us with estimations of the conditional quantile functions of a particular 

variable along time, such as GDP, consumption, index numbers, output gap, inflation 

and Fed Funds rates. We can define the different phases of a business cycle as the 

conditional quantiles at a given time. There, the definition will depend on the height 

of the quantiles of the conditional distribution. For high quantiles of the conditional 

distribution the price returns will correspond to increasing prices and for low quantiles 

of the conditional distribution the price returns will correspond to periods of 

decreasing price. The same interpretation can also be used for value at risk, 

consumption growth, output gap, inflation and Fed Funds rates applications. We can 

define an autoregressive distributed lag model as: 

𝑌  = 𝜇 + ∑ 𝛼jyt-j + ∑ �́�t-l𝜗l + 𝜀t   (1.3.1) 

Where 𝑡 =  (1, … , 𝑛),  yt is the response variable, yt-j is the lag of the response 

variable, xt is a dim(x)-dimensional vector of covariates, 𝜀t is the innovation. While 𝛼 

and 𝜗 are some unknown functions [0, 1] → ℝ that we want to estimate. The main 

focus of this model is the short run dynamic structure. (Galvao, Montes-Rojas, & Park, 

2013). The heterogeneity that can be found in the impact of the shocks in a given time 

series cannot be described with an efficient way by the least squares models, but a 

QADL model can describe them in a better way. The 𝜃 th conditional quantile 

function of yt can be written as: 

Q𝑦 (𝜃|ℑ ) = 𝜇(𝜃) + ∑ 𝛼 (𝜃)𝑦  + ∑ 𝑥΄ 𝜗 (𝜃) (1.3.2) 
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Where ℑ  is the 𝜎-field generated by {ys, xs, s≤ 𝑡}. This is a quantile autoregressive 

distributed lag model of order p and q (QADL (p, q)). A requirement for this model is 

that Q𝑦 (𝜃|ℑ ) to be a monotone increasing in 𝜃 for all ℑ , so we can write it as: 

Q𝑦 (𝜃|ℑ ) = 𝑧΄ 𝛽(𝜃)        (1.3.3) 

Where zt=(1, yt-1, … , yt-pxt, … , xt-q)΄ 

and  𝛽(𝜃) = (μ(θ), α1(θ), …, αp(θ), 𝜗΄ (θ), …, 𝜗΄ (𝜃))΄ 

It is required that Q𝑦 (𝜃|ℑ ) to be a monotonic function in 𝜃 in a specific region of 

the  ℑ  space. The estimated conditional quantile function 𝑄𝑦 (𝜃|ℑ ) = 𝑧΄ 𝛽(𝜃) is 

ensured to be monotone in a𝜃 at zt = 𝑧̅. (Koenker & Xiao, Quantile autoregression, 

2006). But, the monotonicity in 𝜃 is not a given for other values of z. Moreover, 

because of the usage of a linear model there will be a crossing far away from𝑧̅, but it 

is not something unusual as one can find a linear reparametrization of the model that 

does exhibit co-monotonicity over some specific space as Koenker and Xiao (2006) 

mention. The estimation procedure is based on a standard linear quantile regression. 

The selection of an appropriate model is done with the help of the BIC criterion; due 

to the great importance of the choice of the parameters p and q hold. This criterion is 

based on the Asymmetric Laplace Distribution. As the median the BIC criterion is 

used as described below: 

BIC = nlog 𝜎 + 
( )×  ( )

log 𝑛   (1.3.4) 

Where 𝜎 = n-1∑ |𝑦 − 𝑧΄ 𝛽(1 2⁄ )| (Galvao, Montes-Rojas, & Park, 2013) 

General hypotheses tests on the vector 𝛽(𝜃)  can be done by Wald type tests as 

(Galvao, Montes-Rojas, & Park, 2009) describe. That way we can test for equality of 

many slope coefficients across several quantiles.  
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1.4. Multivariate Quantiles in Time Series (VAR) 

 

In contrast with the case in which we have only one variable in the quantile function 

and a specific model, in the multivariable case there is no unique definition about the 

multivariable quantile function. Borrowing the Monte-Rojas (2007) analysis, we can 

consider an m-dimensional process Yθ = (Υ1θ, …, Υmθ)
T and that  for all θ∈ {0,1, … } 

and Yθ ∈  Ỿ  ⊆  ℝm . Then, we can assume that we have k × 1vector of covariates Xθ 

∈  ℝ k.. If we exploit the covariates generated by the σ-field given by { Ys : 𝑠 <

 𝜃 }and all the information available at time t, and take all of them into account, we 

find ourselves with a VARQ quantile model. For an autoregressive model of order p, 

Xθ-1 = (𝑌 , …, 𝑌 )T  and 𝑘 =  𝑚𝑝. We can index VARQ models according to the 

lag order, 𝑉𝐴𝑅𝑄(𝑝). 

We set 𝜃 =  (𝜃 , … , 𝜃 ) as an index of the ℝm space, having that be an element of 

the open unit ball in ℝm , deprived of the origin Tm = {z ∈  ℝm : 0 <  ‖𝑧‖  <  1}. We 

let ‖. ‖ be the Euclidean norm. A reduced form vector directional quantile (VDQ) 

model is: 

Q𝑦  (θ|Xt-1 = xt-1) = B (θ)xt-1 + A(θ)                 (1.4.1) 

Here Q is an 𝑚 × 1 vector which corresponds to the multivariate quantiles of the m 

random variables. B (θ) = (B1(θ), …, Bm (θt)) is an 𝑚 × 𝑘 matrix of coefficients with 

Bj (θ) for each 𝑗 ∈ {1, … , 𝑚}, 𝑘 × 1 vector coefficients of the j-th element in Y. 𝐴(𝜃) is 

an 𝑚 × 1 vector coefficients. If we set B. h(θ) = B1 h(θ), …, B.mh(θ)) as the h-lag 

coefficients for all the  endogenous variables models, for ℎ =  1, … , 𝑝, we will have 

𝑄 as a map 𝑋 × 𝑇m ⟶ Ỿ. The VDQ applied to an autoregressive model is then the 

VARQ model that Monte-Rojas proposes. (Montes-Rojas, 2019) 

In order to operate in a time series he defines the lag polynomials 𝐵(𝜃, 𝐿). L is the lag 

operator leading to: 

 

𝐵(𝜃)𝛸  = 𝐵(𝜃, 𝐿)𝛶  = ∑ 𝐵. k(𝜃)𝐿 𝑌  

and 

𝑄𝑦  (𝜃|𝑥 )  =  𝐵(𝜃, 𝐿)𝑦  +  𝐴(𝜃)      (1.4.2) 

here yt denotes the value of Yt to be used in the equation. In order to construct the 

VARQ model he defines Q𝑦  (θ|xt-1) : = {q1(θ|xt-1), … qm(θ|xt-1)}
T from the system of 

equations below: 
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q1(θ|xt-1) : = c1(θ1)
T q-1(θ|xt-1) + b1(θ1)

T xt-1 + α1(θ1) 

⁞       ∶ =                 ⁞            +            ⁞       +       ⁞  (1.4.3) 

qm(θ|xt-1) : = cm(θm)T q-m(θ|xt-1) + bm(θm)T xt-1 + αm(θm) 

{cj(θj)  }  is the vector of dimension (𝑚 − 1) × 1 , {bj(θj)  }  is the vector of 

dimension 𝑘 × 1, {αj(θj) }  are scalars, {qj(θ|xt-1) } is the individual time series 

quantile regression model of each Yjt ; j component, on all the others Y-jt ; - j 

components. Xt  is the lags where all the components are simultaneously evaluated at 

Q(θ|xt-1). These directional quantiles are used for a fix orthonormal basis and the 

𝑉𝐴𝑅𝑄  estimator is a fixed point solution to a system of equations. (Hallin, 

Paindaveine, & Šiman, 2010). 

We can define a 𝑉𝐴𝑅𝑄 model as: 

Q𝑦  (θ|xt-1) = {Im – C(θ)}-1 {b(θ)xt-1 + α(θ)} : = B(θ)xt-1 + A(θ) (1.4.4) 

Im is the m-dimensional identity matrix, 𝐵(𝜃) ∶ = {Im – C(θ)}-1 b(θ), A(θ) : = {Im – 

C(θ)}-1 α(θ). For eq1.4.4 to be constructed we must consider that C(θ) : = {C1(θ1), … , 

Cm(θm)}T to be a matrix based on eq1.4.3 of 𝑚 × 𝑚 dimensions. And that in that 

matrix the {Cj(θj)} 𝑚 × 1-dimensional vectors  contain all the  elements of the 

𝑚 − 1  vector coefficients {cj(θj)  } that have a 0 in the corresponding j-th 

component. And finally that, b(θ) = { b1(θ1), … , bm(θm) }T to be a 𝑚 × 𝑘 matrix and 

α(θ) = {α1(θ1), … , αm(θm)}T to be a 𝑚 × 1 vector. For a fixed θ, the number of 

parameters to be estimated is that of a structural mean based VAR model. (Montes-

Rojas, 2019). 

The multivariate random variables conditional on the past can be described by a 

𝑉𝐴𝑅𝑄 model by way of modeling the simultaneous responses. The conditional 

performance of the 𝑗 − 𝑡ℎ endogenous variable conditional on the values of the others 

and the available past information can be described by θj quantile model, for each of 

the 𝑗  equations. The individual contribution of every endogenous variable in the 

system after considering the effect of all the others can be represented by the 𝜃. A 

quantile autoregressive distributed lag model can be corresponded by an individual 

equation. (Galvao, Montes-Rojas, & Park, 2013). A simultaneous solution of all 

equations for a fixed collection of individual univariate quantile indexes by 𝜃 can be a 

𝑉𝐴𝑅𝑄  model, which corresponds to a reduced form of a 𝑉𝐴𝑅  model that is a 

functional in 𝜃. The 𝑉𝐴𝑅𝑄 model is constructed for stationary processes, but the unit 
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root process can be detected if we look at their dynamic behavior. (Koenker & Xiao, 

Quantile autoregression, 2006) 

We saw how Monte-Rojas defines a 𝑉𝐴𝑅𝑄 model. But a 𝑉𝐴𝑅𝑄 model defines one 

period ahead forecasting for the entire distribution of 𝑌 ,  if we have all the 

information available to us in time 𝑡, as shown below: 

Q𝑦  (θ|xt) = QYt+1 (θ|{yt, yt-1, … , yt-p}) : = B(θ,L)yt+1 + A(θ) (1.4.5) 

If we take all the information available at time 𝑡 we can define the one period ahead 

forecast as Q1(θ|xt) = Q𝑦  (𝜃|𝑥 ). 

For two periods ahead forecast the indexes becomes 𝑡 + 2 at quantiles 𝜃 . That will 

depend on the response from the past which is at 𝑡 + 1 and the implicit quantile 𝜃 . In 

turn this will depend on both quantiles (𝜃 , 𝜃 ) . That way we have given the 

definition of a two period quantile path, where a potential path of the system of 

endogenous variables is corresponding with the collection of indexes: 

Q2{( θ1 ,θ2)|xt} : = Q2 [θ2|{ Q1( θ1|xt). yt, … ,yt-p+1}]  (1.4.6) 

For a 𝑉𝐴𝑅𝑄(1) model this will be: 

Q2{( θ1 ,θ2)|xt} : = B(θ2)B(θ1)xt + B(θ2)A(θ1) + A(θ2) (1.4.7) 

In general the h-periods ahead forecast can be written as a function of the forecast of 

the previous quantiles: 

Qh{( θh , … , θ1)|xt} : = B(θh,L)Qk{( θh , … , θ1)|xt} + A(θh)  (1.4.8) 

Where Qh(.|.) = yt-k if Lk(t + h) ≤ 𝑡 and ( θh , … , θ1), 𝑘 =  1, … , ℎ − 1 is the 𝑘-

periods quantile path. So, in a more general form we have the framework for 

forecasting different quantile paths: 

Qh{( θh , … , θ1)|xt} = {∏ 𝐵(θk)}xt + ∑ {∏ 𝐵(θj)}A(θk) + A(θh).(1.4.9) 

If we want to evaluate the future values on the conditional median values of the 

endogenous variables we can proceed with a canonical case of this forecast that fixes 

𝜃  =  (0.5, … , 0.5) for all 𝑖 =  1, … , ℎ. the estimates that derive from this procedure 

are similar with the estimates that derive from a mean based 𝑉𝐴𝑅 forecast in general. 

In this case each realization is evaluated at the conditional median and the ℎ −periods 

ahead forecast is also constructed by using ℎ − 1, … , 1 values at the median. If this 

procedure generalized for any 𝜃  =  (𝜃, … , 𝜃) for all 𝑖 =  1, … , ℎ, a case with high 

values of 𝜃 will correspond to the persistent occurrence of the 𝜃 conditional quantile 

in all endogenous variables. The same 𝜃 quantile is no necessarily needed for all the 

endogenous variables equations. (Galvao, Montes-Rojas, & Park, 2013). 
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2.1. The 𝑽𝑨𝑹𝑸 model and 𝑸𝑰𝑹𝑭 analysis 

One of the main reasons for the study of 𝑉𝐴𝑅  models are the effects on the 

endogenous variables of a system that occur from a sudden distortion upon the system. 

We study the impulse responses. These exogenous shocks must be uncorrelated with 

each other and they must have economic meaning. Another characteristic of these 

shocks is that they should be exogenous to the other current and lagged endogenous 

variables of a model. Moreover, they should represent either unanticipated 

movements in exogenous variables or clues about future movements in exogenous 

variables. (Ramey, 2016). The measuring shocks on time series models is being done 

by 𝑉𝐴𝑅 models, where a shock refers to a change in the residual of a conditional 

model and identifying exogenous changes in a structural model. But, the multivariable 

quantile does not have a structural model or a residual system in a reduced form as an 

additive model. We have though, a replica of the simultaneous movements in the 

endogenous variables that we notate as 𝜃.  So, a 𝑉𝐴𝑅𝑄  model is a reduced form 

model that is eligible for forecasting and we can do impulse response analysis, after 

the shocks that have been constructed based on a mean based structural 𝑉𝐴𝑅 model. 

If we then compute a counterfactual change 𝛿 ∈ Ỿ ⊆ ℝm in yt, we can evaluate the 

transmission of those shocks in the multivariable distribution of the 𝑚-variate process. 

We can define the 𝐼𝑅𝐹 from the comparison of the multivariate quantiles at 𝑥 : = (yt 

+ δ,yt-1, … , yt-p) with the quantiles at xt  = (yt + yt-1, … , yt-p).  If we have a shock at 

time t, 𝛿 ∈ Ỿ ⊆ ℝm we can define the 𝜃-quantile 𝐼𝑅𝐹 (𝑄𝐼𝑅𝐹) at 𝑡 + 1 as described 

below: 

Qirf1(θ,δ|xt) = Q1(θ |𝑥  ) - Q1(θ |xt ) = Β. 1(θ)δ 

Where Q1 is the one period ahead forecast. 

If we have a two periods ahead 𝐼𝑅𝐹 with 𝑡 + 2 at θ2 quantiles, the quantile path will 

be: 

Qirf2(1){(θ2, θ1)δ|xt} = Q2(θ2, θ1|x
δ
t ) - Q2(θ2, θ1|xt ) 

             (Β. 2(θ2) + Β. 1(θ2) Β. 1(θ1))δ 𝑝 > 1 

       =                      (1.2.1) 

(Β. 1(θ2) Β. 1(θ1)) δ 𝑝 = 1 

This 𝑄𝐼𝑅𝐹  is constructed for different quantile paths, in which each forecast is 

evaluated at a given multivariate quantile index and for a fixed quantile index used for 

the previous endogenous variables forecasts. (Montes-Rojas, 2019). If we integrate 
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out θ1 by using θ1 ~𝑈(0,1)m we could have a two period ahead forecast that may not 

depend on the implicit quantile that is used for the one step forecast: 

Qirf2(θ,δ|xt) = Q2(θ|𝑥  ) - Q2(θ|xt ) 

 

 (Β. 2(θ) + Β. 1(θ) 𝛣. 1)δ 𝑝 > 1 

        =         (1.2.2) 

(Β. 1(θ) 𝛣. 1 δ 𝑝 = 1 

The difference between eq1.2.1 and eq1.2.2 is that eq1.2.1 corresponds to a particular 

path of assumed realizations of the multivariate process and eq1.2.2 focuses on the 

two period ahead distribution for a forecast value of one period ahead. If we 

generalize for h-periods ahead IRFs we will have: 

𝑄𝑖𝑟𝑓 ( ,…, ){(𝜃 , 𝜃 , … , 𝜃 ), 𝛿| } =

𝑄 {( 𝜃 , 𝜃 , … , 𝜃 ), |𝑥 }– 𝑄 {( 𝜃 , 𝜃 , … , 𝜃 ), | } (1.2.3) 

For shock 𝛿 at time 𝑡 and for a given path of multivariate quantiles (𝜃 , 𝜃 , … , 𝜃 ) 

we will also have: 

𝑄𝑖𝑟𝑓 (𝜃, 𝛿|𝑥 )  =  𝑄 (𝜃|𝑥 )  −  𝑄 (𝜃|𝑥 )   (1.2.4) 

The mean based VAR analysis differs from this analysis. Here, the effect on ℎ periods 

ahead is the result of the conditional expectations in the previous periods, by using the 

iterated expectations property.  
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2.2. Data Analysis 

In our analysis we estimate a model with three variables the Output gap, which is 

generated by the first difference of the Hodrick-Prescott1 linear filter with linear trend, 

using the Nominal Gross domestic product, seasonally adjusted2, denoted 𝑦 , the 

inflation rate, which is the log difference of the GDP deflator, seasonally adjusted3, 

denoted 𝜋 , the Fed Funds rate as the fiscal policy instrument corresponds to the first 

difference of the quarterly Government Bonds 4 , denoted 𝑟 . So we have 𝑌 =

(𝑦 , 𝜋 , 𝑟 ). The plots that are described here are shown on Graphs 1.1 to 1.4 and their 

summary statistics report is on Tables 1.1.1 to 1.4.3 for each country. 

  

                                                 
1 Hodrick-Prescott filter has a forward forecasting ability thus it may perceive some economic activities 
as simple trends and not as significant changes, such as the recession of 2008 in Greece.  
2 in Domestic currency, source International Financial Statistics, Metadata by Country, Gross Domestic 
Product and Components selected indicators, IFS 
3  source: International Financial Statistics, Metadata by Country, Gross Domestic Product and 
Components selected indicators, IFS 
4 source: International Financial Statistics, Metadata by Country, Interest Rates selected Indicators, IFS 
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Graph1.1: Series 1995q1-2015q1. Notes: Output gap, inflation rate and interest rate series for Finland

 

Table 1.1.1 Summary statistics for the ser

Variable Obs 

𝑦 81 

𝜋 81 

𝑟 81 

 

𝑦 

𝜋 

𝑟 

Table 1.1.3 

 

𝑦 

𝜋 

𝑟 
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q1. Notes: Output gap, inflation rate and interest rate series for Finland

Summary statistics for the series 1995q1-2015q1 for Finland

Mean Std. Dev Min 

−0,0003178 0,0138842 −0,515775 

0,004436 0,0063623 −0,0111005

−0,001195 0,0032122 −0,0122667

 

Table 1.1.2 Correlations (𝑦 , 𝜋 , 𝑟 ).  

𝑦 𝜋 

1,0000  

0,3302 1,0000 

0,1930 0,0466 

  

Table 1.1.3 Correlations (𝑦 , 𝜋 , 𝑟 ) mean based VAR residuals  

𝑦 𝜋 

1,0000  

0,3208 1,0000 

0,1316 −0,0021 

q1. Notes: Output gap, inflation rate and interest rate series for Finland 

for Finland 

Max 

 0,348388 

0111005 0,0206033 

0122667 0,0083333 

𝑟 

 

 

1,0000 

 

𝑟 

 

 

1,0000 
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Graph1.2: Series 1995q1-2015q1. Notes: Output gap, inflation rate and interest rate series for

 

Table 1.2.1  Summar

Variable Obs 

𝑦 81 

𝜋 81 

𝑟 81 

 

𝑦 

𝜋 

𝑟 

 Table 1.2.3 

 

𝑦 

𝜋 

𝑟 
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q1. Notes: Output gap, inflation rate and interest rate series for

Summary statistics for the series 1995q1-2015q1 for Germany

Mean Std. Dev Min 

−0,002216 0,0083667 −0,0456853

0,0026471 0,0031855 −0,0055431

−0,0008877 0,002927 −0,0083667

 

Table 1.2.2  Correlations (𝑦 , 𝜋 , 𝑟 ).  

𝑦 𝜋 

1,0000  

−0,0207 1,0000 

0,2030 −0,2385 

 

.2.3  Correlations (𝑦 , 𝜋 , 𝑟 ) mean based VAR residuals  

𝑦 𝜋 

1,0000  

0,0589 1,0000 

0,1523 −0,1960 

q1. Notes: Output gap, inflation rate and interest rate series for Germany 

for Germany 

Max 

0456853 0,0210145 

0055431 0,0094304 

0083667 0,0079333 

𝑟 

 

 

1,0000 

 

𝑟 

 

 

1,0000 
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Graph 1.3: Series 1995q1-2015

 

Table 1.3.1. Summar

Variable Obs 

𝑦 80 

𝜋 80 

𝑟 81 

 

𝑦 

𝜋 

𝑟 

Table 1.3.3 

 

𝑦 

𝜋 

𝑟 
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2015q1. Notes: Output gap, inflation rate and interest rate series for Greece

. Summary statistics for the series 1995q1-2015q1 for Greece

Mean Std. Dev Min 

0,0000412 0,0108035 −0,0332788

0,006371 0,0098346 −0,0171075

−0,0012255 0,0155478 −0,0752667

 

Table 1.3.2 Correlations (𝑦 , 𝜋 , 𝑟 ).  

𝑦 𝜋 

1,0000  

0,2835 1,0000 

−0,1522 −0,0257 

 

.3.3 Correlations (𝑦 , 𝜋 , 𝑟 ) mean based VAR residuals  

𝑦 𝜋 

1,0000  

0,2353 1,0000 

−0,1205 0,0068 

q1. Notes: Output gap, inflation rate and interest rate series for Greece 

for Greece 

Max 

0332788 0,0396173 

0171075 0,0289579 

0752667 0,0570667 

𝑟 

 

 

1,0000 

 

𝑟 

 

 

1,0000 
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Graph 1.4: Series 1995q1-2015

 

Table 1.4.1. Summary 
Variable Obs 

𝑦 80 

𝜋 80 

𝑟 81 

 

𝑦 

𝜋 

𝑟 

Table 1.4.3 

 

𝑦 

𝜋 
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2015q1. Notes: Output gap, inflation rate and interest rate series for 

. Summary statistics for the series 1995q1-2015q1 for Italy
Mean Std. Dev Min 

0,0000747 0,0066389 −0,0239279

0,0055292 0,0054386 −0,0071405

−0,0013062 0,0042909 −0,0153333

 

Table 1.4.2 Correlations (𝑦 , 𝜋 , 𝑟 ).  

𝑦 𝜋 

1,0000  

0,3808 1,0000 

0,1905 −0,0453 

 

.4.3 Correlations (𝑦 , 𝜋 , 𝑟 ) mean based VAR residuals 

𝑦 𝜋 

1,0000  

0,4227 1,0000 

0,2087 −0,0174 

q1. Notes: Output gap, inflation rate and interest rate series for Italy 

for Italy 
Max 

0239279 0,0118604 

0071405 0,023252 

0153333 0,0112 

𝑟 

 

 

1,0000 

𝑟 

 

 

1,0000 
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Graph 2.1 for Finland: The VARQ coefficients are 
𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 ∈
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on ou
which is the 𝑏𝑦𝑙𝑟 in the horizontal axis and the inflation which is the 
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
show the VARQ coefficients with
small squares show the VARQ coefficients 
lines with the small 
with 𝜏 = 0.95 , 𝜏 ∈ {0.05,0.10

VARQ coefficients with 𝜏 ∈

squares show the VARQ coefficients with 
lines with the large diamonds show  the VARQ coefficients with 
𝜏 = 0.50 
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: The VARQ coefficients are for 𝜏 ∈ {0.05

∈ {0.05,0.10, … , 0.95} 𝑎𝑛𝑑 𝜏 = 0.50. Notes: In this Graph we can see 
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on ou

in the horizontal axis and the inflation which is the 𝑏𝑝𝑙𝑟 in the vertical axis. The 
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 

with𝜏 = 0.05 ,𝜏 ∈ {0.05,0.10, … , 0.95},𝜏 = 0.50. The lines with the 
VARQ coefficients with𝜏 = 0.50 ,𝜏 ∈ {0.05,0.10, … , 0.95

lines with the small diamonds show the VARQ coefficients 
10, … , 0.95} , 𝜏 = 0.50 . The lines with the large triangles 

{0.05,0.10, … , 0.95}, 𝜏 = 0.05 , 𝜏 = 0.50. The lines with the large 
VARQ coefficients with 𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 = 0.50 , 

show  the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … ,

  

05,0.10, … , 0.95} , 
Notes: In this Graph we can see 

the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 
in the vertical axis. The 

vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
. The lines with the 
95},𝜏 = 0.50. The 

VARQ coefficients 
. The lines with the large triangles show the 

The lines with the large 
, 𝜏 = 0.50 and the 

, 0.95}, 𝜏 = 0.95 , 
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Graph 2.2 for Germany: The VARQ coefficients are for
𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 ∈
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 
which is the 𝑏𝑦𝑙𝑟 in the horizontal axis and the inflation which is the 
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
show the VARQ coefficients with
small squares show the VARQ coefficients with
lines with the small diamonds show the VARQ coefficients 
with 𝜏 = 0.95 , 𝜏 ∈ {0.05,0.10

VARQ coefficients with 𝜏 ∈

squares show the VARQ coefficients with 
lines with the large diamonds show  the VARQ coefficients with 
𝜏 = 0.50 
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: The VARQ coefficients are for 𝜏 ∈ {0.05

∈ {0.05,0.10, … , 0.95} 𝑎𝑛𝑑 𝜏 = 0.50. Notes: In this Graph we can see 
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 

in the horizontal axis and the inflation which is the 𝑏𝑝𝑙𝑟 in the vertical axis. The 
cal and the horizontal lines show the mean based VAR effects. The lines with the small triangles 

coefficients with𝜏 = 0.05 ,𝜏 ∈ {0.05,0.10, … , 0.95},𝜏 = 0.50. The lines with the 
small squares show the VARQ coefficients with𝜏 = 0.50 ,𝜏 ∈ {0.05,0.10, … , 0.95

lines with the small diamonds show the VARQ coefficients 
10, … , 0.95} , 𝜏 = 0.50 . The lines with the large triangles show the 

{0.05,0.10, … , 0.95}, 𝜏 = 0.05 , 𝜏 = 0.50. The lines with the large 
show the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 = 0.50 , 

show  the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … ,

05,0.10, … , 0.95} , 
. Notes: In this Graph we can see 

the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 
in the vertical axis. The 

cal and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
. The lines with the 
95},𝜏 = 0.50. The 

lines with the small diamonds show the VARQ coefficients 
. The lines with the large triangles show the 

The lines with the large 
, 𝜏 = 0.50 and the 

, 0.95}, 𝜏 = 0.95 , 
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Graph 2.3 for Greece: The VARQ coefficients are for
𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 ∈
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate
which is the 𝑏𝑦𝑙𝑟 in the horizontal axis and the inflation which is the 
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
show the VARQ coefficients with
small squares show the VARQ coefficients with
lines with the small diamonds show the VARQ coefficients 
with 𝜏 = 0.95 , 𝜏 ∈ {0.05,0.10

VARQ coefficients with 𝜏 ∈

squares show the VARQ coefficients with 
lines with the large diamonds show  the VARQ coefficients with 
𝜏 = 0.50 
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: The VARQ coefficients are for 𝜏 ∈ {0.05

∈ {0.05,0.10, … , 0.95} 𝑎𝑛𝑑 𝜏 = 0.50. Notes: In this Graph we can see 
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate

in the horizontal axis and the inflation which is the 𝑏𝑝𝑙𝑟 in the vertical axis. The 
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 

coefficients with𝜏 = 0.05 ,𝜏 ∈ {0.05,0.10, … , 0.95},𝜏 = 0.50. The lines with the 
small squares show the VARQ coefficients with𝜏 = 0.50 ,𝜏 ∈ {0.05,0.10, … , 0.95

lines with the small diamonds show the VARQ coefficients 
10, … , 0.95} , 𝜏 = 0.50 . The lines with the large triangles show the 

{0.05,0.10, … , 0.95}, 𝜏 = 0.05 , 𝜏 = 0.50. The lines with the large 
show the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 = 0.50 , 

show  the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … ,

05,0.10, … , 0.95} , 
. Notes: In this Graph we can see 

the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 
in the vertical axis. The 

vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
. The lines with the 
95},𝜏 = 0.50. The 

lines with the small diamonds show the VARQ coefficients 
. The lines with the large triangles show the 

The lines with the large 
, 𝜏 = 0.50 and the 

, 0.95}, 𝜏 = 0.95 , 
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Graph 2.4 for Italy: The VARQ coefficients are for
𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 ∈
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 
which is the 𝑏𝑦𝑙𝑟 in the horizontal axis and the inflation which is the 
vertical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
show the VARQ coefficients with
small squares show the VARQ coefficients with
lines with the small diamonds show the VARQ coefficients 
with 𝜏 = 0.95 , 𝜏 ∈ {0.05,0.10

VARQ coefficients with 𝜏 ∈

squares show the VARQ coefficients with 
lines with the large diamonds show  the VARQ coefficients with 
𝜏 = 0.50 
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: The VARQ coefficients are for 𝜏 ∈ {0.05

∈ {0.05,0.10, … , 0.95} 𝑎𝑛𝑑 𝜏 = 0.50. Notes: In this Graph we can see 
the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 

in the horizontal axis and the inflation which is the 𝑏𝑝𝑙𝑟 in the vertical axis. The 
ical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 

coefficients with𝜏 = 0.05 ,𝜏 ∈ {0.05,0.10, … , 0.95},𝜏 = 0.50. The lines with the 
small squares show the VARQ coefficients with𝜏 = 0.50 ,𝜏 ∈ {0.05,0.10, … , 0.95

lines with the small diamonds show the VARQ coefficients 
10, … , 0.95} , 𝜏 = 0.50 . The lines with the large triangles show the 

{0.05,0.10, … , 0.95}, 𝜏 = 0.05 , 𝜏 = 0.50. The lines with the large 
show the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … , 0.95}, 𝜏 = 0.50 , 

show  the VARQ coefficients with 𝜏 ∈ {0.05,0.10, … ,

  

05,0.10, … , 0.95} , 
. Notes: In this Graph we can see 

the heterogeneity in the effect of the QR coefficients of a lagged change in the interest rate on output, 
in the vertical axis. The 

ical and the horizontal lines show the mean based VAR effects. The lines with the small triangles 
. The lines with the 
95},𝜏 = 0.50. The 

lines with the small diamonds show the VARQ coefficients 
. The lines with the large triangles show the 

The lines with the large 
, 𝜏 = 0.50 and the 

, 0.95}, 𝜏 = 0.95 , 
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Graphs 2.1 to 2.4 show the effect of a unit change in 𝑟 keeping (𝑦, 𝜋) unchanged, on 

the coefficients𝐵( ) (𝜏 , 𝜏 , 𝜏 ), denoted as 𝑏𝑝𝑙𝑟 in the graph and  𝐵( ) (𝜏 , 𝜏 , 𝜏 ) 

denoted as 𝑏𝑦𝑙𝑟 in the graph. We include least squares (OLS) estimate given by a 

regression model of 𝑦  and 𝜋  on (𝑦 , 𝜋 , 𝑟 ) . We hypothesize different 

scenarios with𝜏 ∈ {0.05,0.10, … , 0.95},  𝜏 ∈ {0.05,0.10, … , 0.95}   and 𝜏 = 0.50 

for which we make evaluations of the effect of a unit change in 𝑟. Also, Graphs 2.1 to 

2.4 show in general heterogeneity as far as output and inflation is concerned and their 

reactions to a change in the interest rate. As a general conclusion from these Graphs, 

the OLS and the median effects are small while the highest effects are derived from 

low 𝜏  and 𝜏  quantiles. 

 But in more details, we can see in Finland that follows this rule having the highest 

effects to correspond to low 𝜏  and 𝜏  quantiles, almost identical with Greece’s and 

Italy’s behavior, with the later to have an upward tendency for all the indicators as 

well as the highest OLS and median effects of the four countries. In Germany the 

highest effects correspond to medium  𝜏  and 𝜏  quantiles while the lowest effects 

correspond to low  𝜏  and 𝜏  quantiles. 

Moving forward, we make IRFs following the Cholesky identification procedure 

(Eichenbaum, Christiano, & Evans, 1996) and having the same assumptions as 

(Montes-Rojas, 2019); we use the residuals from the VAR model assuming that 𝑟 has 

no simultaneous effect on 𝑦 and 𝜋. That 𝜋 has an effect on 𝑟 but no effect on 𝑦. And 

that 𝑦 affects both 𝜋 and 𝑟. As an economic interpretation that means that shocks to 

the Fed Funds rate probably has no simultaneous effect on the other economic 

variables. Furthermore, we make an evaluation upon the effect of the shock in 𝑟, 

calculated as the standard deviation of this structural shock, on output gap and 

inflation, which are being standardized by the standard deviation of their 

corresponding structural shocks. (Montes-Rojas, 2019). 

In general we can conclude that the mean effects are more powerful than the median 

ones (see also the appendix tables 1.1 to 1.4). 
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QIRF (for Finland) 

Output gap (Graph 3.1.1) 

Inflation (Graph 3.1.2) 

Accumulated QIRF (for Finland) 

Output gap (Graph 3.1.3) 

   Inflation (Graph 3.1.4) 

 
Graphs 3.1.1 to 3.1.4 for Finland: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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QIRF (for Germany) 

Output gap (Graph 3.2.1) &3.2.2  

Inflation (Graph 3.2.2) 

 

Accumulated QIRF (for Germany) 

Output gap (Graph 3.2.3)  

Inflation (Graph 3.2.4) 

 
Graphs 3.2.1 to 3.2.4 for Germany: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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QIRF (for Greece) 

Output gap (Graph 3.3.1)  

Inflation (Graph 3.3.2 ) 

 

 

Accumulated QIRF (for Greece) 

Output gap (Graph 3.3.3)  

Inflation (Graph 3.3.4 )

 
Graphs 3.3.1 to 3.3.4 for Greece: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 



[Πληκτρολογήστε κείμενο] 
 

QIRF (for Italy) 

Output gap (Graph 3.4.1)  

    

Inflation (Graph 3.4.2) 

 

 

Accumulated QIRF (for Italy) 

Output gap (Graph 3.4.3)  

 Inflation (Graph 3.4.4)   

 
Graphs 3.4.1 to 3.4.4 for Italy: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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Graphs 3.1.1 to 3.4.4 and 4.1.1 to 4.4.4 plots the QIRF of the 𝑟 shock on output gap 

and inflation dynamics for the VAR-OLS model and for indexes 𝜏 = (𝜏𝑦, 𝜏𝜋 =

0.5, 𝜏 = 0.5)  with 𝜏 = 0.10, 0.50, 0.90 for the former and 𝜏 = (𝜏𝑦 = 0.5, 𝜏𝜋, 𝜏 =

0.5)  with 𝜏𝜋 = 0.10, 0.50, 0.90 . The potential response of 𝑦  and 𝜋  if the VARQ 

model is evaluated at fixed 𝜏  for all ℎ = 1,2, … ,20  is represented by the quantile 

curves. For example in Graphs 3.1.1 to 3.4.4 there is a case that 𝜏 = 0.10 

corresponds to the simulation of what would be the response of output and inflation to 

a change only in the interest rate if output response were to remain at the bottom 10% 

conditional quantile. This could correspond to an extreme event like an unusual 

depression as it is known that persistent low quantiles could be related with such kind 

of events. Furthermore, the case with the 𝜏 = 0.90 correspond  to a case of output 

response always is in the upper 10% quantile, which is connected with an 

extraordinary growth compared to the estimation samples in each case in general. 

Moreover, in Graphs 4.1.1 to 4.4.4 we analyze the case of persistent conditional high 

(𝜏𝜋 = 0.90) or low(𝜏𝜋 = 0.10) inflation for each country respectively. 
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QIRF (for Finland) 

Output gap (Graph 4.1.1)  

Inflation (Graph 4.1.2)

 

 

Accumulated QIRF (for Finland) 

Output gap (Graph 4.1.3)   

Inflation (Graph 4.1.4)

 
Graphs 4.1.1 to 4.1.4 for Finland: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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QIRF (for Germany) 

Output gap (Graph 4.2.1) 

Inflation (Graph 4.2.2) 

 

Accumulated QIRF (for Germany) 

Output gap (Graph 4.2.3) 

Inflation (Graph 4.2.4) 

 
Graphs 4.2.1 to 4.2.4 for Germany: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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QIRF (for Greece) 

Output gap (Graph 4.3.1)  

Inflation (Graph 4.3.2) 

 

Accumulated QIRF (for Greece) 

Output gap (Graph 4.3.3) 

Inflation (Graph 4.3.4) 

 
Graphs 4.3.1 to 4.3.4 for Greece: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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QIRF (for Italy) 

Output gap (Graph 4.4.1) 

Inflation (Graph 4.4.2) 

 

Accumulated QIRF (for Italy) 

Output gap (Graph 4.4.3)

Inflation (Graph 4.4.4) 

 
Graphs 4.4.1 to 4.4.4 for Italy: QIRF for different 𝜏 . Notes: QIRF on output gap and inflation of a 

standard deviation shock in 𝑟  for 𝜏 ∈ {0.10,0.50, 0.90}, 𝜏 = 0.50 𝑎𝑛𝑑 𝜏 = 0.50 
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As far as Finland is concerned, for output gap both responses are very similar and 

positive, but we cannot say the same for inflation. 

The  𝜏 = 0.90 output quantile path effects for both output and inflation although 

they start having positive curse, after the 5th period they come close to zero after that, 

leaving an in general positive but low and stable accumulated result. This determines 

that a dynamic path of extraordinary growth would not be affected by changes in the 

interest rate except from the short run period of this growth. 

The 𝜏 = 0.10 output quantile path follows a positive and persistent effect on both 

output and on inflation, especially on output gap where the cumulative effect is by far 

the largest from all the countries in our analysis. So if Finland’s economy were to stay 

in a state of permanent recession, as given by persistent realizations in the lower 10th 

conditional quantile in output gap, increasing the interest rate by 1 standard deviation 

would increase the output by about 1,4 standard deviation in the long run as compared 

to the value if the interest rate would not be changed. 

When computing the same graphs for different fixed values of 𝜏  we observe 

considerable differences between the cases for high and low inflation quantile paths. 

Although that in the case for 𝜏 = 0.90 we have the same behavior of stability after 

the 5th period, we can see that there is a negative starting effect followed by a positive 

effect and then we have the stability, as far as inflation is concerned with a positive 

accumulated resold. On the other hand, as far as output gap is concerned, we can see a 

big positive starting effect in the short run that stabilizes thereafter, with positive 

accumulated results. When we use the 𝜏 = 0.10 we have a big negative starting 

spike on inflation that leads on a negative accumulated result of about -0,2. 

 

Continuing with Germany, for output gap both responses are very similar and positive, 

and for inflation the responses are very similar but negative. 

The  𝜏 = 0.90 output quantile path effects are positive for output gap but negative 

for inflation.  The 𝜏 = 0.10 output quantile path follows a persistence effect which is 

positive for the output gap and negative for the inflation as shown in the accumulated 

results. 

When computing the same graphs for different fixed values of 𝜏  we observe 

differences between the cases for output gap and inflation quantile paths, with the 

results of the low quantiles 𝜏 = 0.10  to be bigger than the effects of the high 
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quantiles 𝜏 = 0.90, as far as inflation is concerned. In the case for 𝜏 = 0.90 we 

have negative results leading to negative accumulated effects on inflation in contrast 

with the positive effects on output gap with the same quantile path. The same 

principal applies to the results in the case for𝜏 = 0.10; with a negative effect on 

inflation and positive ones on the output gap.  

 

As far as Greece in concerned, we can see some interesting results. For output gap the 

responses have some fluctuation as well as in the inflation, leading to negative results. 

For  𝜏 = 0.90  output quantile path effects are negative in general despite the 

fluctuation on a positive curse on both output gap and inflation. These rises are too 

small and are also depicted on the accumulated results. The 𝜏 = 0.10 output quantile 

path although negative is smoother for the output gap and has no fluctuations for 

inflation. 

When computing the same graphs for different fixed values of 𝜏  we observe 

considerable differences between the cases for high and low inflation quantile paths, 

for inflation while the effects on the output gap are negative. In the case for 𝜏 = 0.90 

we have negative results for the output gap a s well as inflation and the accumulated 

results are very negative. On the other hand, for 𝜏 = 0.10 output gap we can see 

negative but smaller results compared to the  𝜏 = 0.90 for output gap. But the results 

for inflation are positive, although they have only  of the power of the negative 

effects on inflation compared to the case of 𝜏 = 0.90. 

 

Finally for Italy we have the most impressive results. 

The  𝜏 = 0.90 output quantile path effects are close to zero and for the output gap 

and slightly negative for the inflation resulting to overall slightly negative 

accumulated effects. But the 𝜏 = 0.10 output quantile path follows a very negative 

and persistent path for output gap leading to big negative effects and for inflation 

despite some fluctuations the negative effects prevail that of the positive ones, as 

shown on the accumulated results. 

In the case for 𝜏 = 0.90 we can see overall negative effects on both inflation and 

output gap. On the other hand, in the case for 𝜏 = 0.10, we can see positive effects 

on both output gap and inflation which result to positive cumulative effects. 
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The models thus conclude that there is potential asymmetry in the dynamic 

propagation of shocks. We can see that high and low quantiles associated with more 

persistence and larger in general effects of a given fiscal shock. These simple linear 

models that use different quantile paths can be used for the evaluation of extreme 

events despite the fact that we lack the observations to evaluate correctly a structural 

change. In general QR models are used to evaluate heterogeneous effects that have 

derived from unobserved factors. So, omitted variables can result in having different 

quantile paths. In a case of a country such as Italy, low quantiles combined with a 

positive shock on the interest rate can have as a result the attraction of foreign capital 

and can generate a positive impact on output with idle productive capacity. (Montes-

Rojas, 2019)  
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Tables 2.1 to 2.4 show the dynamic stability of all different specifications for the 
respected countries. 

Table 2.1: VAR system stability for Finland 

Model Eiegn1 Eiegn2 Eiegn3 

VAR-OLS 0,316 0,173 0,126 

VARQ(ty=0,5 , tp=0,1 , tr=0,5 0,013 0,300 0,300 

VARQ(ty=0,1 , tp=0,5 , tr=0,5 0,141 0,429 0,429 

VARQ(ty=0,5 , tp=0,5 , tr=0,5 0,110 0,237 0,126 

VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,220 0,234 0,140 

VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,282 0,365 0,156 

 

Table 2.2: VAR system stability for Germany 

Model Eiegn1 Eiegn2 Eiegn3 

VAR-OLS 0,294 0,149 0,149 

VARQ(ty=0,5 , tp=0,1 , tr=0,5 0,038 0,213 0,213 

VARQ(ty=0,1 , tp=0,5 , tr=0,5 0,026 0,267 0,267 

VARQ(ty=0,5 , tp=0,5 , tr=0,5 0,191 0,109 0,191 

VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,245 0,128 0,245 

VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,215 0,227 0,227 

 

Table 2.3: VAR system stability for Greece 

Model Eiegn1 Eiegn2 Eiegn3 

VAR-OLS 0,086 0,181 0,553 

VARQ(ty=0,5 , tp=0,1 , tr=0,5 0,151 0,107 0,405 

VARQ(ty=0,1 , tp=0,5 , tr=0,5 0,366 0,168 0,222 

VARQ(ty=0,5 , tp=0,5 , tr=0,5 0,374 0,020 0,189 

VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,356 0,186 0,186 

VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,440 0,186 0,379 

 

Table 2.4: VAR system stability for Italy 

Model Eiegn1 Eiegn2 Eiegn3 

VAR-OLS 0,048 0,524 0,370 

VARQ(ty=0,5 , tp=0,1 , tr=0,5 0,483 0,597 0,462 

VARQ(ty=0,1 , tp=0,5 , tr=0,5 0,452 0,634 0,452 

VARQ(ty=0,5 , tp=0,5 , tr=0,5 0,404 0,015 0,597 

VARQ(ty=0,5 , tp=0,9 , tr=0,5 0,227 0,598 0,227 

VARQ(ty=0,9 , tp=0,5 , tr=0,5 0,393 0,393 0,282 
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All the Eigen-values modules are inside the unit circle for all countries. In none of the 

countries’ cases the system is close to the unit root, as a result we are going to have 

stationary behavior in the QIRF for all these cases.  

Starting our QIRF analysis we can see that mean based OLS and median responses 

show similar dynamic behavior in both inflation cases as well as output gap cases but 

with the mean effects to be larger than the median ones in general. 

 

The following tables 3.1 and 3.2 correspond to the summary of the effects on the 

cases of persistent conditional high(𝜏 = 0.90) or low(𝜏 = 0.10) output gap and on 

the cases of persistent conditional high(𝜏𝜋 = 0.90) or low(𝜏𝜋 = 0.10) inflation for 

each country respectively 

 

  



[Πληκτρολογήστε κείμενο] 
 

Table 3.1: summary effects 

Response of 𝒚 Finland Germany Greece Italy 

Case of low 

quantiles 𝝉𝒚 =

𝟎. 𝟏𝟎 

    

On output gap Positive Positive Negative-Close to 0 Negative 

On inflation Positive Negative Negative Generally-Negative 

Accumulated 

QIRF 
    

On output gap Positive Positive Negative-Close to 0 Negative 

On inflation Positive Negative Negative 
Negative with 

fluctuations 

Case of high 

quantiles 𝝉𝒚 =

𝟎. 𝟗𝟎 

    

On output gap Positive Positive Generally-Negative Positive -Close to 0 

On inflation Positive Negative Generally-Negative Negative-Close to 0 

Accumulated 

QIRF 
    

On output gap Positive Positive 
Negative with 

fluctuations 
Close to 0 

On inflation Positive Negative 
Negative with 

fluctuations 
Negative 

 

  



[Πληκτρολογήστε κείμενο] 
 

Table 3.2: summary effects 

Response of 𝝅 Finland Germany Greece Italy 

Case of low 

quantiles 𝝉𝝅 =

𝟎. 𝟏𝟎 

    

On output gap Positive Positive Negative 
Positive with 

fluctuations 

On inflation Negative Negative Positive 
Positive with 

fluctuations 

Accumulated QIRF     

On output gap Positive Positive Negative 
Positive with 

fluctuations 

On inflation Negative Negative Positive 
Positive with 

fluctuations 

Case of high 

quantiles 𝝉𝝅 =

𝟎. 𝟗𝟎 

    

On output gap Positive Positive Negative Negative 

On inflation 
Positive with 

fluctuations 
Negative Negative Negative 

Accumulated QIRF     

On output gap Positive Positive Negative Negative 

On inflation 

Positive with 

fluctuations-Close to 

0 

Negative Negative Negative 
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Epilogue 

Though this attempt of construction IRFs using multivariate semi-parametric 

directional quantiles we can explore various dynamic heterogeneities in the potential 

effects of a shock into the future performance of series. 

 As a result we can see that some countries have the same response in a given shock, 

for example Finland and Germany have the same response on output gap when a 

shock applied on both low and high quantiles. On the other hand, some countries like 

Greece and Italy don’t follow the same pattern as others. Other counties can have the 

exact opposite behavior like Greece and Finland, or their own unique response to the 

shock like Italy which behavior doesn’t much any of the previous countries. The 

reason why these differences in the responses of the different counties occur may lay 

in the unique characteristics of each county’s economic structure. 

 Although we have used only linear QR models, we can have an evaluation a potential 

structural break in a country’s economy due to an extreme or unusual effect or shock. 

This is a useful way to forecast future events for which we do not have enough 

observational data to analyze by drawing our conclusions and future predictions for 

these events based on extreme past events that correspond to different quantile paths 

of high or low conditional output and inflation. 
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Appendix 

Nomenclature 

 𝒙 (lower bold letters): stands for the vectors. 

 𝑛 Subscript: denotes the vector dimension, where the notation 𝑥  is used 

 𝑿 (Upper bold letters): stands for the matrices. 

 𝑛 ×  𝑝 Subscript: denotes the matrix dimensions, where the notation 𝑋 ×   

is used  

 T: stands for the transpose operator (𝑥 ) 

 X: stands for random variables 

 𝐹 (𝑦): stands for the cumulative distribution function 

 Y Subscript: denotes the variables on which the function is computed 

 𝐹(𝑦): stands for the shortened notation of the above function and is used 

when there is no risk of ambiguity 

 𝑄 (𝜃): stands for the quantile function 

 𝑌 Subscript: denotes the variables on which the quantile is computed 

 𝑄(𝜃): stands for the shortened notation of the above function and is used 

when there is no risk of ambiguity 

 𝑥 : stands for the 𝑖-th vector element 

 𝒙𝒊: stands for the 𝑖-th matrix row 

 0: stands for the null vector 

 1: stands for the identity vector 

 𝐼: stands for the identity matrix 

 𝑛: stands for the sample size 

 𝑝: stands for the number of regressors 

 𝜃: stands for the quantile 

 𝑘: stands for the number of estimated quantiles 

 𝛽(𝜃): stands for the quantile regression parameter 

 𝛽(𝜃): stands for the quantile regression estimate 

 𝑄 (𝑦|𝑥) = 𝑥𝛽(𝜃) + 𝑒: stands for the simple quantile regression model 

 𝑄 (𝑦|𝑋) = 𝑋𝛽(𝜃) + 𝑒: stands for the multiple quantile regression model 

 𝜌 (𝑦): stands for the loss or check function 

 𝑦 = 𝛽 + 𝛽 𝑥 + 𝑒: stands for the simple regression model  
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Table 1.1: Details about Finland’s coefficients.  

99%     .0083333       .0083333       Kurtosis       4.191033
95%      .003928           .005       Skewness      -.0683973
90%     .0025667       .0049522       Variance       .0000103
75%      .000627       .0042489
                        Largest       Std. Dev.      .0032122
50%    -.0015333                      Mean           -.001195

25%    -.0029667      -.0063333       Sum of Wgt.          81
10%    -.0047667      -.0065813       Obs                  81
 5%       -.0061      -.0073667
 1%    -.0122667      -.0122667
      Percentiles      Smallest
                                                             
                              r

99%     .0206033       .0206033       Kurtosis       3.303639
95%     .0143533        .019914       Skewness      -.0930134
90%     .0116707       .0165505       Variance       .0000405
75%     .0082467       .0157988
                        Largest       Std. Dev.      .0063623
50%     .0049428                      Mean            .004436

25%     .0015208        -.00637       Sum of Wgt.          81
10%     -.004071      -.0098219       Obs                  81
 5%    -.0063355      -.0102191
 1%    -.0111005      -.0111005
      Percentiles      Smallest
                                                             
                             pi

99%     .0348388       .0348388       Kurtosis       5.948132
95%     .0198908        .030159       Skewness      -.8001586
90%     .0135659       .0263092       Variance       .0001928
75%     .0062149       .0246939
                        Largest       Std. Dev.      .0138842
50%     .0002679                      Mean          -.0003178

25%    -.0064537      -.0237283       Sum of Wgt.          81
10%    -.0145565      -.0309543       Obs                  81
 5%    -.0217667      -.0472362
 1%    -.0515775      -.0515775
      Percentiles      Smallest
                                                             
                              y



[Πληκτρολογήστε κείμενο] 
 

Table 2.1: Stability condition for Finland 

 

Graph:5.1: Unit circle for Finland 

 

 

 

   VAR satisfies stability condition.
   All the eigenvalues lie inside the unit circle.
                                            
      .1692244 -  .2081755i       .26828    
      .1692244 +  .2081755i       .26828    
       -.30646 -  .1878548i      .359454    
       -.30646 +  .1878548i      .359454    
       .320778 -  .2762494i      .423335    
       .320778 +  .2762494i      .423335    
                                            
           Eigenvalue            Modulus    
                                            
   Eigenvalue stability condition

. varstable,graph
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Table 1.2: Details about Germany’s coefficients 

  

 

99%     .0079333       .0079333       Kurtosis       3.289448
95%     .0038333          .0054       Skewness       .2509386
90%     .0029333          .0046       Variance       8.57e-06
75%     .0013333       .0038667
                        Largest       Std. Dev.       .002927
50%    -.0012333                      Mean          -.0008877

25%    -.0029333          -.005       Sum of Wgt.          81
10%    -.0041333      -.0052333       Obs                  81
 5%        -.005      -.0076333
 1%    -.0083667      -.0083667
      Percentiles      Smallest
                                                             
                              r

99%     .0094304       .0094304       Kurtosis       2.603384
95%     .0084326       .0089311       Skewness       .0480101
90%     .0069294       .0085118       Variance       .0000101
75%     .0049182       .0084455
                        Largest       Std. Dev.      .0031855
50%     .0024349                      Mean           .0026471

25%     .0003642      -.0028311       Sum of Wgt.          81
10%    -.0008996      -.0031703       Obs                  81
 5%    -.0018644      -.0035584
 1%    -.0055431      -.0055431
      Percentiles      Smallest
                                                             
                             pi

99%     .0210145       .0210145       Kurtosis       12.50463
95%     .0104214       .0153034       Skewness      -1.807215
90%     .0079487       .0127869       Variance         .00007
75%     .0044287       .0126083
                        Largest       Std. Dev.      .0083667
50%     .0005216                      Mean          -.0002216

25%    -.0041895       -.013946       Sum of Wgt.          81
10%    -.0070307      -.0146042       Obs                  81
 5%    -.0103918      -.0166253
 1%    -.0456853      -.0456853
      Percentiles      Smallest
                                                             
                              y

. sum y pi r,detail



[Πληκτρολογήστε κείμενο] 
 

Table 2.2: Stability condition for Germany 

 

Graph:5.2: Unit circle for Germany 

 

   VAR satisfies stability condition.
   All the eigenvalues lie inside the unit circle.
                                            
     -.2401043                   .240104    
     -.1350349 -  .2444756i       .27929    
     -.1350349 +  .2444756i       .27929    
      .2027514 -  .3859042i      .435925    
      .2027514 +  .3859042i      .435925    
      .5663072                   .566307    
                                            
           Eigenvalue            Modulus    
                                            
   Eigenvalue stability condition

.    varstable,graph
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Table 1.3: Details about Greece’s coefficients 

  

99%     .0570667       .0570667       Kurtosis        11.2359
95%        .0206          .0364       Skewness      -.8418862
90%     .0111333       .0249333       Variance       .0002417
75%     .0026667       .0242333
                        Largest       Std. Dev.      .0155478
50%       -.0012                      Mean          -.0012255

25%        -.004         -.0239       Sum of Wgt.          81
10%    -.0142333      -.0254667       Obs                  81
 5%    -.0173667         -.0502
 1%    -.0752667      -.0752667
      Percentiles      Smallest
                                                             
                              r

99%     .0289579       .0289579       Kurtosis       2.574734
95%     .0214501       .0275764       Skewness      -.0686368
90%     .0197175       .0219433       Variance       .0000967
75%     .0125854       .0218087
                        Largest       Std. Dev.      .0098346
50%     .0067233                      Mean            .006371

25%    -.0011583       -.010473       Sum of Wgt.          80
10%    -.0069241       -.012314       Obs                  80
 5%    -.0095074      -.0141957
 1%    -.0171075      -.0171075
      Percentiles      Smallest
                                                             
                             pi

99%     .0396173       .0396173       Kurtosis       5.470269
95%      .018914       .0287479       Skewness       .6478869
90%     .0125328       .0265368       Variance       .0001167
75%     .0049424         .02113
                        Largest       Std. Dev.      .0108035
50%    -.0010648                      Mean           .0000412

25%    -.0067256      -.0155572       Sum of Wgt.          80
10%    -.0119883      -.0172766       Obs                  80
 5%    -.0147444      -.0182195
 1%    -.0332788      -.0332788
      Percentiles      Smallest
                                                             
                              y

. sum y pi r,detail



[Πληκτρολογήστε κείμενο] 
 

Table 2.3: Stability condition for Greece 

 

Graph:5.3: Unit circle for Greece 

 

   VAR satisfies stability condition.
   All the eigenvalues lie inside the unit circle.
                                            
      .3811427 -  .2622768i      .462665    
      .3811427 +  .2622768i      .462665    
      .5195036 -  .0965613i      .528401    
      .5195036 +  .0965613i      .528401    
     -.4825746 -  .2888633i      .562424    
     -.4825746 +  .2888633i      .562424    
                                            
           Eigenvalue            Modulus    
                                            
   Eigenvalue stability condition

.    varstable,graph
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Table 1.4: Details about Italy’s coefficients 

 

  

  

99%        .0112          .0112       Kurtosis       4.167732
95%        .0059          .0078       Skewness      -.1476238
90%        .0031       .0068667       Variance       .0000184
75%     .0015667          .0064
                        Largest       Std. Dev.      .0042909
50%       -.0014                      Mean          -.0013062

25%    -.0034333          -.009       Sum of Wgt.          81
10%    -.0067667         -.0091       Obs                  81
 5%       -.0089         -.0104
 1%    -.0153333      -.0153333
      Percentiles      Smallest
                                                             
                              r

99%      .023252        .023252       Kurtosis       3.691316
95%     .0148514       .0187308       Skewness       .5913071
90%     .0121586       .0176021       Variance       .0000296
75%     .0092206        .014884
                        Largest       Std. Dev.      .0054386
50%     .0044594                      Mean           .0055292

25%     .0018586      -.0011687       Sum of Wgt.          80
10%    -.0003599      -.0032746       Obs                  80
 5%    -.0011357      -.0059421
 1%    -.0071405      -.0071405
      Percentiles      Smallest
                                                             
                             pi

99%     .0118604       .0118604       Kurtosis       4.467926
95%     .0101435       .0105701       Skewness       -.808229
90%     .0085958       .0104967       Variance       .0000441
75%       .00411       .0102661
                        Largest       Std. Dev.      .0066389
50%     .0007863                      Mean           .0000747

25%    -.0038804      -.0102729       Sum of Wgt.          80
10%    -.0082981      -.0134136       Obs                  80
 5%    -.0099329       -.019395
 1%    -.0239279      -.0239279
      Percentiles      Smallest
                                                             
                              y

. sum y pi r,detail
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Table 2.4: Stability condition for Italy 

 

Graph:5.4: Unit circle for Italy 

 

   VAR satisfies stability condition.
   All the eigenvalues lie inside the unit circle.
                                            
       .106957                   .106957    
     -.4169255 -  .1915409i      .458819    
     -.4169255 +  .1915409i      .458819    
       .440582 -  .1289842i      .459075    
       .440582 +  .1289842i      .459075    
      .5577894                   .557789    
                                            
           Eigenvalue            Modulus    
                                            
   Eigenvalue stability condition

.    varstable,graph




