University of Crete

Computer Science Department

Efficient Faceted Exploration Services for Big
Volumes of Information

Nikos Armenatzoglou

Master’s Thesis

Heraklion, 26 March 2010

[TANEIIIXTHMIO KPHTHX
Y XOAH OETIKOQN KAI TEXNOAOTIKOQN EIITXTHMOQN
TMHMA EINIYTHMHY. TITIOAOTTETON

Anodotixy Trootregn Asttovpyiwy IloAuvdidoTtotng
IThonynong oe Mevydiouvg ‘Oyxoug ITAnpogopiov
Epyoaota tou unofrfdnxe aro tov
Nuworoo A. Apuevatloyiov

¢ UEQIXT| EXTARIPWOT] TV ATUTACEWY YLoL TNV ATOXTNOM)

METAIITTXIAKOYT AHIAQMATOY EIAIKETYHY

Yuyypagéas:

Nucdhaoc Apuevatloyhov, Tufua Entotiune Troloylotoy

Ewonyntu Emitpony):

Iwdvvne TCitlixag, Enixovpog Kadnyntic, Exdntng

Anuitenc Ihe€ovodxne, Kadnyntic , Méhog

Lenyodene Avtwviou, Kadnyntic, Mélog

Aexth;:

[Tdvog Toayavide, Kodnyntic
ITpbedpoc Emtponic Metantuytaxcy Lmoudoy

Hedhewo, 26 Maptiou 2010

Efficient Faceted Exploration Services for Big Volumes of

Information

Nick Armenatzoglou
Master’s Thesis

Computer Science Department, University of Crete

Abstract

Although most information needs have exploratory nature, current web search engines
do not support these needs sufficiently. The objective of this thesis is the development
of effective and efficient services for fulfilling such needs. Specifically, this thesis proposes
the extension of the ”traditional” interaction scheme (query-and-ranked answer) with
exploration services based on dynamic faceted taxonomies.

The advantages of this interaction scheme is that it bridges the gap between query-
ing and browsing, it provides an overview of the information space and gives the user
the ability to reduce in a flexible and efficient manner the size of the information space
according to his interests.

To support this model over a Web Search Engine (WSE), we studied various archi-
tectures and implementation approaches and subsequently we designed and implemented
a general purpose API and a Web-based GUI interface. Furthermore, we examined sev-
eral methods for exploiting the metadata that are available at the index of a WSE plus
those that can be dynamically generated (e.g. from applying real-time clustering results
techniques or other data mining techniques).

The above techniques have been applied and evaluated over the Mitos WSE, making
it the first WSE that supports this model. The performance of the proposed techniques
was evaluated experimentally, while various variants of the model (regarding the choice
of facets) were evaluated by users comparatively. The evaluation showed that users can
directly use this model of interaction (no need for training) and that they are quite

effective.

Finally, the thesis proposes and analyzes an advanced method for scaling up these
services, so that to enable real-time exploration of billion-sized information spaces. More
precisely, it proposes an approach that allows computing the zoom points without having
to perform any operation on the object-base at browsing time. The proposed technique is
based on CTCA (Compound Term Composition Algebra), special indices and algorithms.
The above techniques have been applied to a range of large data sets and we compare
it with the existing techniques. The analytic study showed that current methods cannot
scale to billion-sized collections. The experimental evaluation showed that the proposed

approach is efficient enough for such magnitudes.

Supervisor: Yannis Tzitzikas

Assistant Professor

Anodotixy) Trootregn Asttovpyiwy IloAuvdidoTtotng
IThonynong oe Mevydiouvg ‘Oyxoug IIAnpogopiev

Nixoc Apuevatloyhou
Mertamtuylond Epyoaoia

Tunua Enotiunc Troloyiotey, avemotiuo Kentne

ITeptAndm

Av xaL ol TEQLECOTEPEC TANPOYORLAXES AVAYXES €Y 0LV ECEQELVNTIXG YAPAXTTPA, Ol O
uepvég pnyavég avalftnong tou Iotol Bev Tic XaAUTTOUY ENaPX®S. XTdY0¢ TN Epyasiog
elvo 1) aVATTUEY) ATOTEAECUATIXOY XL ATODOTIXWY UTNPECIWY YA TNHY XAVOTOINGCT| TETOLWY
OVULYXWY. DUYXEXQUEVOL TEOTEIVETAL 1) EMEXTAOT TOU XANEPWUEVOU TEOTOU OAANAETIDEI-
ong (Uno@oh’] NG EMEQWTNONG %o ETLOTEOPT| dtaBardutouévmy AMOTENEOUETOV) UE uTNEECiEC
eZePEUVNOTG PUCIOUEVES GTO UTOBELYUO TWV TOAUDIAGTATWY DUVOXGOY TAEVOULOY.

To mheovextAuato auTo) TOU UOVTEROU AAANAETIOpUONG ElVaL OTL YEQUEWVEL TO YAoUX
UeTaY NS TPOoBaoTC UECW EQWOTACEWY Xl TPOoBAoTC UECW TAOTYTOTS, TApEYEL ETOTTELN
TOU TANPOQOELUXOV XAl ETITEENEL OTO YPAOTY VoL UELWOEL YN YORA X EUYENOTA TOV TATIPO-
PoRLAXO YWEO EVOLUPELOVTOG.

[Mo vy utooTheln aUToU Tou WOVTEAOU OTNV avalhTNOY OTOV I6TO, UEAETHUNXOY Xou
a&LoAoY Uy OLAPOPES UPYLTEXTOVIXES X0l TPOTIOL UAOTOINGNG Xl XATOTLY OYEDLAGTNAE %ol
vhomotinxe éva APL, xon yio Staduetuoxevtows| yeapux | dienagy| yevixol oxonol. Eriong
ueheTOnxay ol TpoéToL a€0TOINOTG TWY UETAOESOUEVGY TOU DLAJETEL TO EVPETHPLO UG U1 O
viic avalATnomg, xome Xt TwY BUVOIXE TOEAYOUEV®DY UETUBESOUEVGDY (TT.)Y. WS ATOTEAETUA
TEYVIXWY OUAOOTOINCTG TEAYUATIXOU YEOVOU T GAAGY TEYVIXGY £EOPUENS n)\npoq)opiocg).

To mapamdve epapudoTnxay xou atohoyfinxay otn unyovr avalritnons Mitog xodi-
OTWYTOC TNV, TNV TeO TN unyovi avalitnone mov utootnellet autd to yovtého. Ot emdooelg
allohoY Uy TEWRUUATIXG, EVG OLAPOPES TARUAAAYES TOU HOVTEAOU (xupie we mpog ™y
emhoyh Twv dlootdoewy Thofynone) afiohoyiinxay cuyxpetixd and yerotec. H aZiohdyrnon
®xoT€BEEE OTL Evag AmAOS YEHOTNG TN Unyavhc avalhTnong evxola Unogel va yenolonote

TV CUYXEXQUIEVT] AELTOLEYIXOTNTA XAl VAL PTUCEL 6TO ETYUUNTO ATOTEAEGUAL.

7

Télog, mpoteivovTtan xou avaAbovTon TEONYUEVOL TPOTOL XAUAXWONS TWY UTNEECLOY WOTE
VoL XATAOTEL EQLXTH 1) TAOHYNOT) O TEAYUATIXO YPOVO ATMAVTIACEWY TNS TIENS TOU 10%. Suy-
AEXQWIEVA, TEOTEIVETOL O UTOAOYIOUOC TV ONUEIWY ECTIAOUOU UE WA TEOCEYYLON 1) omoia
OEV OmOLTEL UTOAOYIOUOUG ETL TV EURETNPLIOUEVWY AVTIXEWEVKDY XUTA TN Didpxela TG e&e-
eebvnone. H mpocéyyiorn auth Baoileton otnv dhyeBpa CTCA xou oe edind oyedraouéva
eupeThpta xat ahyoplduoug. Ol Topamdve TEYVIXES EQUOUOCTNXAY GE UEYAIAOUS OYXOUS TAY-
C0QORIWY %ot cUYXEiINXAY e TIC UTdpyouces Teyvixéc. H avahutinr uehétn €detle OTL xoquLd
AmO TIG UTAPYOUGES TEYVLXES OEV UTOPEL VO EQUOUOCTEL GE UEYIAOUS GYXOUS TANROPORLMYV.
H meipopotint| alohdynor €0eile OTL 1) CUYXEXPIEVT TROCEYYLOT EfVaL AEXETE ATOBOTIXT| VLo

TETOLOU UEYEVOUC OYXOU TANPOPOPLOYV.

Enéntng Kadnyntig: [dvvng TCtlxag
Enixoupog Kadnyntic

Euyopiotieg

Ye auté To oruelo Ya ek va euyaploThow VepUd Tov ETOTTY Uou Enixoupo xadnynty
% Twdvvn TCtlixa yior ™) oMY xahy| ouvepyaoio yag xaddg xot Ylo TNV OUCLAGTIXY TOU
x)o07ynom xo cuUPBolr oTny oloxhpwor authg g epyaciog. Méoa and aut n cuvep-
yaoio x€pdtoa Tdpa TOAS xar o€ dapopeTixd exineda. ‘Onote axololinca Tig cuUBouléc
XU TO CUCTNUATIXO TEOTO doUAelag Tou elya TOA) xaAd anoteléopata. Erniong, Yo Alela
VO TOV EUYUPLOTACL YLoL OAES TIC ELXALPIEC TOU oL €dwoe Uéow Tou Tavemotnuiou Kertne
xu Tou Ivotitodtou IIAnpogopinric Tou Iopduatog Teyvoroyiog xou "Epeuvag.

Emumiéov, Yo fleka va euyaplothiow toug xadnyntés x. Anurten [IieCovodnn xou x.
Tenyoen Aviwviou vy) mpoduuios TOUC VoL GUUPETAOYOUY OTNV ECETACTIXY EMITROTY TNG
METUMTUY LTS MoV gpyaciog xadadg xon Yl Ti¢ E0TOYES TUPATNRNOEL TOUC.

Oua fjTory TapdANdn LoU VoL Uy EUYAELOTHOW TOUS GIAOUS XAl GUUPOLTNTES POV TOU EXAVILY
auUTO To SldoTnua oA euydptoto (Uepinés @opéc ue Tn Poreta paxric/ovioxt). Idwitepa Yo
el va evyaptothow Tto Iavaywntn, to dvvn xow to Nixo yia 10 ypdvo xon Tic Topatr-
PYOELC TOUG OTY) TPOETOWAGILA TG TaPoLGtaoTC.

Téhog, Do Hlela va euyaploThon Toug Yovelc pou Avéotn xar Mogla xon tny adep@r| uou

Mapia (vou, éyouv To (810 dvoua) Yo TRV aydmn Toue.

Contents

Table of Contents

List of Figures

1

2

Introduction

1.1 Background - History
1.1.1 Objects’ Indexing
1.1.2 FDT .. oo

1.2 Advantages of Dynamic Taxonomies

1.3 Contributions

1.4 Organization of the thesis

Faceted Exploration Model

2.1 A Model for Facet-based Exploration

2.1.1 Top Element

2.1.2 Zoom-in
2.1.3 Zoom-out
2.1.4 Zoom-Side
2.1.5 Presentation and Ranking of Zoom-in points
2.1.6 Restriction of a Materialized Faceted Taxonomy
217 Synopsis

2.2 Related Approaches

xi

3 Architectures and Related Work 19

3.1

3.2

3.3

FDT Interaction & Computational Requirements 19

3.1.1 A State-based Interaction Method 20

3.1.1.1 States 20

3.1.1.2 State Visualization 20

3.1.1.3 State Transition, 21

3.1.2 General Evaluation Approaches 22

Data Structures & Algorithms oL 23

3.2.1 Notations 23

3.2.2 Storage Policieso 24

3.2.2.1 Data Structureso 26

3.2.3 Algorithms and Complexity 26

3.23.1 FEV; & V; Computation 26

3.2.3.2 Zoom-out points Computation 29

3.2.3.3 Count Information 30

3.2.3.4 Conclusions of the Analysis 30

Possible Architectures 32

3.3.1 (MEM) Architecture 32

3.3.2 (DB) Architecture 34
3.3.2.1 From the Relational to the Faceted Data Model: Method-

ological Comments 35

3.3.2.2 On SQL implementation 37

3.3.2.3 Direct and Indirect Narrower/Broader terms of a term . . 38

3.3.2.4 Maximal Incomparable Terms of a Term 39

3.3.2.5 Direct and Indirect Narrower/Broader terms of a set of

terms . .. oL 39
3.3.2.6 Model Interpretations 40
3.3.2.7 Object Descriptions 42
3.3.2.8 Complete Descriptions 42
3329 V; & EV; Computation 44

i

3.3.2.10 Zoom-out points Computation 46

3.3.2.11 Count Information 47

3.4 Faceted Exploration User Interfaces 47
3.5 FDT in Commercial Web-sites, 53
3.5.1 Commercial Faceted Metadata Search Engines 53
3.5.2 XFML e 54

4 fleXplorer & Applications 57
4.1 fleXplorer API 57
4.1.1 Specifications 57
4.1.1.1 Class Diagrams 59

4.1.2 An Example of Using the APT 60
4.1.3 Desktop-based Client 68
4.1.4 Experimental Evaluation 68

4.2 Application on a Web Search Engine 71
421 Mitos WSE. 71

4.3
4.4

4.2.2 Exploratory web searching with dynamic taxonomies and results
clustering 73

4.2.2.1 Coupling Static and Dynamically-mined Metadata for Ex-

ploration oL 76

4.2.2.2 Incremental Algorithm for Exploration 7
4.2.2.3 Implementation 7
4.2.2.4 Experimental Results 79
4.2.2.5 Evaluation of Usability 81

4.2.3 Exploratory web searching with Entity Mining 85
EO User Service Next Generation Project (EO USNG) 87
Experimental Results on DB-R Architecture 87
4.4.1 (DB-R) With No Hierarchically Organized Values 88
4.4.2 (DB-R) With Hierarchically Organized Values 88

4.4.3 (DB-R) With Hierarchically Organized Values (Bigger Data Set) . . 91

il

5 Extensions For Scalability 93

5.1 A Global-scale Exploration Scenario 93
5.2 Interaction Scheme for Large Collections 95
52.1 CTCA-based Approach 97
5.2.1.1 V; & EV; Computation 97

5.2.1.2 A short introduction to CTCA 98

5.2.1.3 Compound term validity and CTCA 100

5.2.1.4 Mining a CTCA expression 102

5.2.1.5 Approximating Zoom Point Count Information 102

5.2.1.6 Optimizations 103

5.2.1.7 Related Work on Labeling Schemes 106

5.2.2 TLOI-based Approach 107
5.2.2.1 Indices for Storing the Interpretations 107

5.2.2.2 Indices for storing the taxonomies 109

5.2.2.3 Zoom-in points Computation 110

5224 TLOI Advantages 111

5.2.2.5 TLOIl on DAG and Multiple Classification 111

5.2.3 Changes over Materialized Faceted Taxonomy 112
5231 CTCA Updates 113

5.2.3.2 TLOI Updates 113

5.3 Ewvaluation 114
5.3.1 Analytical Evaluation. 115
5.3.2 Computation of I: Time Perspective 116
5.3.3 CTCA Validity Checking 118
5.3.3.1 Estimation of CTCA Parameters Plurality 118

5.3.3.2 isValid Experiments Without Optimizations 119

5.3.3.3 isValid Experiments With Optimizations 120

6 Conclusion and Future Work 123

v

7 Appendix
7.1 Proofs

vi

List of Tables

2.1
2.2

3.1
3.2
3.3

4.1
4.2

4.3
4.4
4.5

4.6
4.7
4.8
4.9

Basic notions and notations

Interaction notions and notations L.

Zoom-in points Computation” Complexities
Automatic Hierarchy Creation Examples

Faceted Metadata Search Engines in commercial sites

Table of Symbols
Top-C' Integration Timings for non-Incremental and Incremental Algo-
rithms (inseconds) L
User Evaluation Tasks
User Evaluation Form
User Satisfaction, Preference and Completeness percentage results per In-
terface L
Number of User Queries and Clicks (as recorded in the log)
User Satisfaction and Preference percentages per Interface (per task)
Partial database schema of Mitos.

Database schema of small synthetic dataset

4.10 Database schema of large synthetic dataset.

5.1
5.2
2.3
5.4

Global Web Scenario
Basic notions and notations00
Comparison table according Global Index Scenario

18V alid execution times without optimizations

vil

viii

List of Figures

1.1
1.2
1.3

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Faceted Taxonomies UL, 2
Parametric Search oo 5
FSEs 6
Example of a Materialized Faceted Taxonomy 10

Examples of side zoom-in conditions (a) faceted taxonomies, (b) a non-tree

taxonomy (i.e. DAG) and (c) multiple classification. With black are the

current zoom-in points and with grey the side ones 13
Example of a Restricted Materialized Faceted Taxonomy 16
Visualization Modes Example L. 21
Extensions Comparison: Simple example 25
A simple MFT o0 33
Storage indices according to [5] 33
Storage indices according to [38] 35
Constructing Complete Descriptions 43
Flamenco User Interface 48
E-government portal with dynamic taxonomies 49
/facet User Interfaceo 49
Museum Finland User Interface 50
Fathumb User Interface, 51
Veturi User Interface 52
DBLP User Interface o 52
XFML file example 54

1X

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1
5.2
5.3
0.4
3.5
2.6
5.7
2.8

fleXplorer Class Diagram 61

Terms’ Package Class Diagram 62
Terminologies’ Package Class Diagram 63
Taxonomies’ Package Class Diagram 64
Facets’ Package Class Diagram 65
Faceted Taxonomies’ Package Class Diagram 65
Materialized Faceted Taxonomies’ Package Class Diagram 66
Desktop-based Client: Welcome Screen 69
Desktop-based Client: Facets and Objects Loading 69
Desktop-based Client: Faceted Exploration UT 70
Time to load results to fleXplorer 70
Time to compute zoom-in points 71
Mitos & fleXplorer Sequence Diagram 72
Mitos user interface: Interpretations, Descriptions 73
Mitos user interface: Focus L. 74
Modified Faceted Exploration Ul according user’s preferences 74
Screenshot of Mitos WSEo 78
Steps (a)-(c) of running scenario oL 80
Faceted Taxonomies and Entity Mining 86
ESA-USNG User Interface 87
Experimental Results on DBMS 88
Experimental results on synthetic databases. 90
Product and minus-product operation example 99
Self-plus-product operation exampleo 99
Labeling algorithm over the Faceted Taxonomy 104
Indices for storing P parameter L. 105
Indices for storing N parameter, 106
DDC labeling algorithm over the Faceted Taxonomy 107
Store Indices 109
TLOI vs Object-extended Agrawal’s Labeling 110

5.9 TLOI on DAG 112

5.10 TLOIl with multiple classification 113
511 I(ctw) Measures oo vt 117
5.12 isValid execution times with terms labeling optimization 121

x1

xii

Chapter 1

Introduction

Nowadays, the size of the available information in digital format is extremely huge. Ac-
cording Netcraft' the Web (until April 2009) contains 232 million web sites and according
to [19], the public indexable Web contained 11.5 billion pages on 2005. Additionally, there
are a lot of digital libraries which are not yet published to the Internet. This extremely
fast rate of the digital information grow is caused to the people which can continuously
put information onto the Internet.

Every day, there are millions of users that perform a request to a web search engine
or others who browse web catalogues in order to find the information needed. There are
two different information access modes: querying and browsing. We could say that query
services are either too simplistic (e.g. free text queries), or too sophisticated (e.g. SQL
queries, or Semantic Web Queries). On the other hand, web catalogues which provide
browsing services, are either too simplistic (e.g. plain Web links) or very application
specific (dynamic pages derived by specific application programs).

Faceted exploration services have recently gained a lot of attention among researchers
and have been used in various application domains (for more see [39, 24, 22, 27, 29, 44,
17]. In brief, FSE (Faceted Search Engines) can switch easily between searching and
browsing and allow users to see exactly the options that are available at any time for
restricting their focus. The aim of a faceted metadata search engine is to provide guided

exploration and information thinning services in order to guide the user to reach his goal.

Thttp://news.netcraft.com/archives/web_server_survey.html

By clustering

b forth (27)

ics bmi (33)

B lab (30)

» projects (24)

b hiornedical informatics
laboratory (21)

» publications {12}
ics hei (11)

» forth ics members (9)
» chealth (5)

b oicscarv (4)

REST (3917)

faCe By domain

B gr (4017)

-

zoom
point

~o
2

late
Unknown (1460)
2006 (1376)

2002 (34)
2008 (24)
2004 (18)
2000 (9)
2001 (8)
1990 (4)
1998 (2)

ERCRCRCECHCRCROE: V.Gl

-

By filetype

b text/himl (3087)

¥ application/pdf (895)
»

appiication/vnd ms-powerpaint (27)
¥ application/mswong, (8)

count

By language
b Latin-1 (Europe, Latin America,
Carbbean, Canada, Africa) (1664)
b Lnknown (1209)

b Greek (1130)

» any (UTF-B) (14)

s

By clustering

b forth (82)

b news (56)

b ics news (54)
b lectures (46)
systems (14)
isl (12}
information (3)
b acthities (3)

¥ heraklion (5)

¥ forth ics heraklion (S)
b data (4)

b ics ol (3)

REST (339)

By domain
ar (439)

By date

gggé gggg 5008, y & 2008 (439)
IS pressed = lure (23]
ensitaa) February (85)

August (29)
September (15)

[

rd

By filetype
b textihtml (362)

> application/pdf (76)

¥ appiication,vnd.ms-powerpoint (1)

s

By language

» Latin-1 [Europe, Latin America,
Caribbean, Canada, Africa) (208)
b Unknown (129}

b Greek (36)

» Any (UTF-8) (13)

Figure 1.1: Faceted Taxonomies Ul

For instance, if we assume that the objects of the domain are indexed by descriptions over
a multidimensional space where each dimension is associated with a taxonomy (hierarchy
of terms/values), then a FSE that supports the interaction paradigm of faceted dynamic
taxonomies (FDT), shows only those terms of the taxonomy of each facet that lead to

non-empty answer sets, and the user can gradually restrict his focus by clicking on such

terms, e.g. see Figure 1.1.

In brief, FSE:

e display the current results in multiple categorization schemes (e.g. based on meta-

data terms, such as size, price or date),

e display categories or values (usually called zoom points) leading to non-empty re-

sults,

e display the count of the indexed objects of each category/value (i.e. the number of

results the user will get if he restricts his focus using that category).

e support a session-based dialog in contrast to the state-less query-and-answer dialog

of WSE.

On the other hand, exploratory searching poses several open questions and challenges
(e.g. see [50]). Onme critical and open problem [48] is how a search engine could quickly
compute (or estimate) the zoom points for every result that matches a particular query
over a large corpus of documents each possibly described by many facets. All performance
measurements that have been reported in related works (e.g. in [59, 43, 5]) are over small
collections of objects (10* to 8 * 10%), and to the best of our knowledge there is not any
system or work that attempts to scale such services (i.e. the computation of zoom points)
for larger collections.

The general objective of this thesis is to study and develop effective and efficient
faceted exploration services which can fulfill the needs of a web search engine user for fast

and efficient information exploration.

1.1 Background - History

This section presents the background/history of objects’ indexing and FDT.

1.1.1 Objects’ Indexing

The categorization of our knowledge occupy the mind of the man from the first time
that he was characterized as ”homo universalis” ?. First of all, Plato (427 BC - 348
BC), in his Statesman dialogue introduces the approach of grouping objects based in
their similar properties (classical categorization). His approach was further explored and
systematized by one of his best students, Aristotle. Aristotle (384 BC - 322 BC) analyzed
the differences between classes and objects and applied Plato’s classical categorization
scheme to the classification of living beings [36].

According Aristotelian classification, categories are discrete entities and should be
mutually exclusive and collectively exhaustive. A category is characterized by a set of
properties. Finally, any entity of the given classification belongs to one and only one

category. Aristotle’s classification contains some elements which still existed in the twenty

2The term "homo universalis” (Latin for ”universal man” or "man of the world”) is used to describe
a person who is well educated or who excels in a wide variety of subjects or fields.

century.

Many years later, S. R. Ranganathan (1892 - 1972) developed the first major analytico-
synthetic classification system, the Colon classification [37]. Colon classification (CC) is
a system of library classification. Its name comes from the use of colons to separate
categories (or facets). CC uses five primary categories, or facets to further specify the
sorting of a publication collectively called "PMEST”: Personality, Matter (or property),
Energy, Space, Time.

Research groups (1950 - 1970) simplified Ranganathan’s classification scheme: a facet
must represent only one characteristic and suppose that an object can be classified by
only one term of each facet.

Nowadays, multiple classification (i.e. an object can be indexed with more than one

terms from the same facet) is common requirement.

1.1.2 FDT

FDT uses metadata for switching easily between querying and browsing. According to
Wikipedia ®, metadata is information about information: more precisely, it is structured
information about resources. For example, metadata would document data about data
elements or attributes, (name, size, data type, etc) and data about records or data struc-
tures (length, fields, columns, etc) and data about data (where it is located, how it is
associated, ownership, etc.). Metadata may include descriptive information about the
context, quality and condition, or characteristics of the data. So, faceted exploration is
an approach to structured data access.

A traditional approach to structured data access is the parametric search. Parametric
search fits a number of simultaneous criteria (the parameters of the search). For example,
finding a house within one of three neighborhoods, $3-600,000, with at least 3 bedrooms
and 2 baths. Figure 1.2 presents two user interfaces of advanced search from commercial
sites.

However, the parametric search is so user specific and does not allow the browsing

of information space. For this reason, researchers proposed the faceted and dynamic

3http://www.wikipedia.org

© Find the items you're looking for quickly and easily by
using the pull-down menus below.
® First select a category
e Options like size and color will appear.
® Click "Submit’
Advanced SearCh Category: |Kids: Apparel |
Fill in all fields that apply Subcategory: | Baby and Toddler j
Artisll Subcategory: | Todder Grls j
Ti“’l Color: | Show &l j
Label Ahhreviationl Price Range: [§1- 525 j
Label Numherl
UPC Number (first 11 digits) |
cD Tape ¢ ¥inyl ¢ D¥D ¢ 77 Single { ¥HS Yideo {
The more selections made, the fewer items will be
@ returned

Figure 1.2: Parametric Search
taxonomies. Nowadays, FDT are used in several application domains e.g. web portals,
libraries. Figure 1.3 presents the Uls from three commercial web sites, in (a) the Tower
Records 4, in (b) the American Express Travel and Leisure ° and in (c¢) the Beach House
6. According to the Knowledge Architecture Professional Services Group (KAPS Group)
7 69% of e-commerce web sites used faceted navigation, 77% used navigation, 6% used
faceted classification in search but no browse, 17% had both search and browse and 67%

only used single point entry, no progressive filtering, just categories.

1.2 Advantages of Dynamic Taxonomies

Faceted interaction scheme seems to be very quickly understood by end-users as its user
interface is very user-friendly, facets are hierarchical organized and the user has only to
execute zoom operations (select/deselect a zoom point).

Below we enumerate the advantages of dynamic taxonomies as they described in [39]:

e The user is effectively guided to reach his goal: at each stage he has a complete list

of all related concepts (i.e. a complete taxonomic summary of his current focus).
e Transparency: the user is in charge and knows exactly what’s happening.

e Schema design, where a faceted structure leads to minimal and flexible schemata.

4http:/ /www.towerrecords.com/
Shttp://www.travelandleisure.com/index.cfm
Shttp://www.beachhouse.com
"http://www.kapsgroup.com

Refine Search Results

1,162 Matching Titles

View results by...

Advanced Search

Location) (ETTD
By Genre Date
®Elues ® Jazz Topics containing the 103 matching
e Children's ® Latin articles listed on the right... Search All Results I
» Country *B&E g2 Arts and Culture (54)

[ance / Electronica

#Rap / Hip-Hop

g5 Beaches {10}

» Falk # Rock / Pop S s
e Gospel / Christian e Shows £ Movies - Blkln.g (3 6 Matching Results
o International s a1l Styles @ Boating (63 - &1l Results is internet connection [FEMvE]

By Feature
» Boxced Sets

w0ut-of-Print

-EE Casinos and Gambling (1)
-E@Diving (2}
~g@Fishing (1)

Compilati al

* -omel Snn boat = Food and Wine (55)
® |rports #Sound Sample

10 Stack grvailable -EE Golf (1)

» Live Recardings
» New Rel

» Tower Essentials
® Upcoming Releases

-EEHiking and walking {12}
--gaHorseback Riding (1)
~-gaMightlife (16}

Harrow your search

Country

FRENCH WEST INDIES {3) JAMAICA (2)
UMITED STATES 1)

By Price ch ing (33)
w Under $7 wUnder $15 - DD_Dmg
e Under $10 o Under $20 ~E3 5urfing (1)
@@ Swimming (3} ¥eekly Rate
By @@ Winter Sports (2)
® Artist ® Release Year Under $4000 (1} Under $5000 {1} Under $7500 (4
» Label Over $4000 (5} Over $5000 (5} Qver $2500 (20
By Forma.t . . Or narrow by
LD Maxi-Single ®Super Audio CD
D Single ® Used CD
o 0D Audio o inyl Bathrooms, Bedrooms, Sleeps
By

» Music Styles

(a) (b)

Figure 1.3: FSEs

(©)

e Search effectiveness, because dynamic taxonomies have an extremely fast conver-

gence to small result sets.

e Discovery of unexpected relationships between facet’s terms e.g. imagine a collection
of recipes where the most recipes which are classified under the term ”Summer” of
the facet "By Season” are also classified under the term ”Tomatoes” of the facet

"By Ingredients”, so we know that the most foods in summer contain tomato.
e No empty results, by construction.
e Any combination of concepts (AND, OR, NOT) is supported.
e Fasy to accommodate reviews, popularity, etc.

e Simple integration with other retrieval techniques (IR, DB).

Finally, the main advantage of the faceted exploration interaction scheme is the in-
formation thinning after a zoom operation and that user is sure that there is no any

better object than the one that he is about to select. Sacco in [39] shows that 3 zoom

6

operations on terminal concepts are sufficient to reduce a 10,000,000 object information

base described by a taxonomy with 1,000 zoom points to an average of 10 objects.

1.3 Contributions

The main contributions of this thesis are:

e the analytical study of a number of possible architectures that one can follow to
develop a faceted exploration application with respect to the available resources i.e

RAM, and the size of the collection,

e the implementation of a Main Memory API written in Java which provides the core

functionality for implementing the faceted exploration model,

e the usage of the API in various applications e.g. in Mitos web search engine and

European Space Agency web portal,

e the dynamic coupling of results clustering with dynamic faceted taxonomies result-

ing to an effective, flexible and efficient exploration experience, and

e an investigation of various techniques that could be used for advancing the scalability

of such services.

1.4 Organization of the thesis

This thesis is organized as follows:

Chapter 2 introduces a formal model for facet-based exploration services.

Chapter 3 introduces and describes possible architectures for realizing this model and
discusses the related work.

Chapter 4 presents an API for supporting faceted exploration and various applications
that were implemented with experimental results.

Chapter 5 elaborates on techniques for providing faceted exploration services over

terra-sized collections of data.

Chapter 6 summarizes the results of this thesis and identifies topics that are worth

further work and research.

Chapter 2

Faceted Exploration Model

Section 2.1 introduces a formal model for facet-based exploration services, while section

2.2 presents related approaches.

2.1 A Model for Facet-based Exploration

This section introduces a formal model aiming at capturing all key notions appearing
in [41], [55], and [14]. In brief Obj is a set of objects, T is a set of terms that may be
hierarchically organized, the elements of Obj can be described with respect to one or more
aspects (facets), while the description of an object with respect to one facet consists of as-
signing to the object one or more terms from the taxonomy that corresponds to that facet.
Table 2.1 defines formally and introduces notations for terms, terminologies, taxonomies,
faceted taxonomies, interpretations, descriptions and materialized faceted taxonomies (for
details refer to [55, 53]).

An example of a materialized faceted taxonomy, i.e. a faceted taxonomy consisting of
four facets and accompanied by a set of object indexes, is shown in Figure 2.1.

Each facet F; is associated with a name (a String) and a taxonomy. The same tax-
onomy may be associated with more than one facets (for instance, for indexing flights
we may have two facets, named ”from” and "to”, associated with the same taxonomy
”Location”). However, by prefixing the name of each term with the facet name, we may

assume that all facet terminologies are disjoint (as stated in Table 2.1).

9

Faceted Taxonomy

Facetl Facet2 Facet3 Facet4
byFrom ‘ byTo byDate byPrice
Europe, Europe, 9/15/2008
N 30,150]
Italy, Greece; Italy, Greece, 12/ 4/A2008 3
0

ZBN
/\ /\ /\ /\ 6/11/%2008l [?0’91‘)] (4% 70l

Rome; Milan, Athens; Crete; Rome, Milan, Athens, Crete, Ea

i S i NN o

-
e
Malp%salun%gl‘ Chania, Irakli&L Malpensa, Linitez Chania, Ir%(liu2 144?_008
N e g

Tz

Flightl —-— —

Flight2
Flight3 ===-~=

D(Flight1) = {Malpensa,, Iraklio,, 3/14/2008,, [30,90],}
D(Flight2) = {Iraklio,, Linate,, 6/11/2008,, [50,55] }
D(Flight3) = {Linate,, Chania,, 12/4/2008,, [40,150],}

Figure 2.1: Example of a Materialized Faceted Taxonomy

For our purposes, we need to adopt a minimal query language. A query is a compound
term s (i.e. a conjunction of terms) and its answer is the set of objects I(s) (as defined
in Table 2.1). Of course, boolean expressions and more complex query operators can be
straightforwardly supported.

As interaction is of prominent importance, now we define formally the notions needed
for describing interaction. Any subset of T is a possible focus. For reasons of minimality,
we shall hereafter consider foci that are redundancy free. A focus ctz (i.e. ctz C T)
is redundancy free if ctx = minimal<(ctx). For example, ctx = {Greece, Athens} is
not redundancy free because minimal<(ctr) = {Athens}. The content of a focus ctzx,
is the set of objects I(ctx). We could also refine this notion and distinguish the shallow
content I (ctx), from the deep content I(ctz). In our example, I(byFrom.Italy) = (), while

I(byFrom.Italy) = {Flightl, Flight3}.

2.1.1 Top Element

Each facet ¢ independently to its structure (flat or hierarchically organized) has an unique
auxiliary element T;, which is the top element of the taxonomy (7;, <) i.e. T; = maz<(T;).
T, is used for keeping the heads of each facet hierarchy. Furthermore, for a focus ctz,

if ctz; = (), then we will assume that ctz; = T,. The figures which depict facet hierarchies

10

[MATERIALIZED FACETED TAXONOMIES

[Name [Notation [Definition

terminology T a set of terms (can capture categorical/numeric
values)

subsumption < a partial order (reflexive, transitive and antisym-
metric)

taxonomy (7,<) T is a terminology, < a subsumption relation over
T

broaders of t BT(t) {t'|t<t'}

narrowers of t NT() {t'|t <t}

t and its broaders B*(t) {tyu BT (1)

t and its narrowers N*(t) {tJUNT(?)

direct broaders of t B(t) minimal< (BT (t))

direct narrowers of t N(t) mazimal < (NT(t))

faceted taxonomy F=A{F1,...Fx} | F; =(T:,<;), for i =1,..,k and all T; are dis-
joint

compound term over T s any subset of 7 (i.e., any element of P(T))

compound ordering < s<s' s=<s ifVt' es’Itesst. t <t

broaders of s BT (s) {s' e P(T)|s=<s}

narrowers of s NT(s) {s' € P(T) | s <s}

direct broaders of s B(s) manimal < (BT (s))

direct narrowers of s N(s) mazimal < (NT(s))

object domain Obj any denumerable set of objects

interpretation of T 1 any function I : T — 200

materialized (F,I) F is a faceted taxonomy {Fi, ..., Fy},

faceted tazonomy I is an interpretation of 7= {J,_y 4 T:

Top element of faset i T, T; = mazimal<(T;)

ordering of interpretations Icr I(t) C1'(t) for cach t € T

model of (T, <) 1 the minimal model that is greater than I

induced by I I(t) =u{I{t") |t <t}

extension of s I(s), I(s) I(s)=n{ I(t) |t € s} and

in I and in T I(s)=n{1I(t)]|t€ s}

Description of o wrt I Dy (o) Di(o)={teT|loclI(t)}

Description of o wrt [Dj(o)=Di(o) | Di(o)={teT |oclI(t)}=
Di(0) = Usep; (o) ({t} U B* (1))

Description of a set of ob- Di(A) Dr(A) =UpecaDi(0)

jects A wrt I

Table 2.1: Basic notions and notations

do not show the top element, it can be inferred.

2.1.2 Zoom-in

Now we will introduce elements allowing the refinement of a focus.
introduce the notion of zoom-in points. A zoom-in point is actually a term that indicates
where the user could zoom in. When building a GUI, an area is usually dedicated to each

facet and the zoom-in points with respect to a facet F; are actually those terms of 7; that

should be shown in that area.

Given a focus ctx, we can define its projection to a facet Fj, denoted by ctz;, as follows
ctr; = ctx N'T;. Now we will define the (immediate) zoom-in points with respect to a

particular facet F;. Consider a focus ctz and suppose that ctx; # 0. The candidate

11

To this end we

zoom-in points with respect to F;, denoted by C'Z;(ctx), are defined as:
CZ;(ctx) = N(ctz;)

The above definition can also be applied in cases where |ctx;| > 1, assuming that N is
defined also for a set of terms S. Specifically, if S C T then we can define N(S) =
Ues N (t).

From the candidate zoom-in points we now filter out those that yield an empty content.

The (good or useful) zoom-in points are defined as:
Zi(ctz) = {t € CZ(ctx) | I(ctz) N I(t) # 0}.

So Z;(ctx) comprises the terms of 7; that should be shown in the GUI area dedicated to

facet F; if the user focus is ctx. For example, assuming the example of Figure 2.1, we

have:
Z1({Greecey, Italya }) {Crete,}
Zs({Greecey, Italya}) {Milany}
Z3({Greecey, Italys}) {6/11/2008}
Zy({Greecey, Italys}) {[30,150]}
Z1({Italy,,Cretea}) {Milan,}
Zy({Italy,,Cretes}) = {Iraklios, Chanias}

When the user selects a zoom-in point ¢, then the current focus is updated, i.e. ctx’ =
ctx U{t} (specifically, ctx’ = minimal<(ctz U{t})). Subsequently, all new zoom-in points

are computed and presented.

2.1.3 Zoom-out

The user can also zoom out by deselecting any term ¢ of the corresponding focus. In that
case t is replaced by its direct broader term(s) i.e. by B(t). In general the replacement of
t by any t' € B*(t), or even the removal of ¢ (without any replacement), can be considered

as a zoom-out operation®.

!Note that if the taxonomy is a DAG then the replacement of a term t by two or more terms such
that all of them subsume ¢, is also a zoom-out operation.

12

(Facetl) (Facet2) (Facetl) (Facetl)

o

(a) (b) (c)

Figure 2.2: Examples of side zoom-in conditions (a) faceted taxonomies, (b) a non-tree
taxonomy (i.e. DAG) and (c¢) multiple classification. With black are the current zoom-in
points and with grey the side ones

2.1.4 Zoom-Side

Now we introduce another kind of zoom-in points. This kind of points is useful for
taxonomy-based sources that satisfy at least one of the following conditions:
(a) comprise more than one taxonomy (i.e. they are faceted taxonomies),
(b) comprise a taxonomy that is not a tree (e.g. it is a DAG),
(¢) multiple classification (i.e. an object can be indexed with more than one terms from
the same facet) is allowed with respect to at least one facet.

Figure 2.2 highlights the corresponding conditions. In all cases we assume that if user
selects the black term then the grey term will be a zoom-side point. As we can see, in all
conditions the black and the grey terms are incomparable with respect to the < and the

intersection of their extension is not empty, so their union can belong to a valid ctx.

Definition 1 From a materialized faceted taxonomy M = (F,I) we can define a sym-

metric binary relation = over T (i.e. =C T?2), called extensionally related, as follows
t=t i I()NI{E) # 0 and ¢t/

where t||t’ means that ¢ and ¢’ are incomparable with respect to < (i.e. neither ¢ < ¢ nor

v <t).

We can now define the zoom-side points w.r.t. a facet F;, denoted by RZ;(ctx), as
follows:

RZ;(ctx) = maximal - ({t € T; | I(t) N I(ctz) # 0 and t|ctz;})

13

In our running example of Figure 2.1 we have RZ ({Milan,, Iraklioy,[30,90]4}) =
{]40,70]4}. Note that if objects are indexed by at most one term from a facet F; and
F; is a tree, then RZ;(ctx) = @ for any ctz (e.g. in our running example we have

RZ\({Milan,}) = 0 and RZy({Iraklios}) = 0).

2.1.5 Presentation and Ranking of Zoom-in points

Each zoom-in point ¢ is usually accompanied by a number that indicates the number
of objects that will be obtained if the user selects that zoom-in point. Specifically that
number equals the cardinality of the set I(ctx) N I(t) = I(ctx U {t}), which is certainly
greater than zero (if t € Z;(ctx) or t € RZ;(ctx)).

The zoom-in points can be ranked according to various criteria like, number of results if
selected, user preferences, popularity, usage workload, etc. Such ranking can be exploited
for determining the order by which the zoom-in points are displayed in the screen, or
even filtered out. Complimentarily, other criteria can also be employed to suppress the
visibility of some points. For instance, we may hide those zoom-in points leading to
contexts with content size below a predefined threshold, or we may decide to present only

the top-K zoom-in points for each facet.

2.1.6 Restriction of a Materialized Faceted Taxonomy

As faceted exploration can be combined easily with other access methods (e.g. information
retrieval queries, structured queries, or application-specific queries), the user could start
interacting not only by selecting some terms (i.e. by specifying a focus), but through a
set of objects, e.g. the objects returned by a full text query. To this end in this section
we introduce a notion useful for capturing such scenarios.

Let M = (F,I) be a materialized faceted taxonomy. Let A be a subset of Obj
(A C Obj) which could be the result of an arbitrary access method. Below we will define
the restriction of M on A, hereafter denoted by (F,I)a.

The restriction of M on A, i.e. (F,I)a, is again a materialized faceted taxonomy, and

let us write (F,I)ja = (F',1'). It comprises a restriction of the interpretation function /

14

and a restriction of the faceted taxonomy F. The later is the reduced tazonomy.
The interpretation I’ is an interpretation that is smaller than I, denoted by I’ C I,
meaning the I'(t) C I(t) for each ¢ € T. In particular, I’ is defined as follows:

Vte T, I'(t)=I(t)NA

So the range of I’ is the powerset of A (and not the powerset of Obj as it is for I).
It is not hard to see that from a given interpretation I, we can define a descriptive

function, denoted by D; (o) as follows:
Yo € Obj, Di(o)={teT |oecl(t)}

and the vice versa (i.e. from a descriptive function D we can define an interpretation I).
The domain of the function Dj is the set Obj. We can restrict the domain of Dy on A,
i.e. we can define the function D4 (where Dj4 denotes the restriction of the domain of
D; on A). Tt is equivalent to say that the interpretation I’ of the restriction of M on A,
is the interpretation obtained by the descriptive function Dy 4.

Now the reduced taxonomy F' comprises a terminology 77 (7' C T) and a subsumption
<’ defined as follows

T ={teT |It)NA#0}
and <'=< | 1.
Equivalently,
T’ = U,eaB1(D;(0))

i.e. it comprises those terms that are associated with the objects in A plus all broader

terms of these terms. We could denote this terminology by 77 4.

Definition 2 The restriction of a materialized faceted taxonomy M = (F,I) over a set
of objects A, denoted by (F,)4, is again a materialized faceted taxonomy, comprising
a reduced taxonomy with terminology 7' = {t € T | I(t) N A # (}} and an interpretation
I’ such that I'(t) = I(t) N A for each t € T.

For example, let M = (F,I) be the materialized faceted taxonomy of Figure 2.1. If
A = {Flightl, Flight2} then the restriction of M on A, i.e. (F,I)|{piight1,Fiight2} 15 shown

in Figure 2.3.

15

Faceted Taxonomy

Facet1 Facet2 Facet3 Facetd
byFrom byTo byDate byPrice
Europe4 Eurape; 9/15/2008
30,150
Italy4 Greeceq Italy, Greece; 12/4/2008 []
S ,\ /\ s / [30,90] | [40,70]
Rome; JMilan4| Athensq \Cretey Romej Milang, Athensz \Cretes 6/11/2008 ;rw/

-mn=

\ ~ yd i
Malpensa, \Linate; Chaniaq |Iraklio;] Malpensa}, Linate, \Chaniag \ Iraklios | \3/1 3008 [50,55]
T, LS i o =

< P P
- -
~ - g
< P B =
. e
-

Flight1 ——-—
Flight2

D(Flight1) = {Malpensa,, Iraklio,, 3/14/2008,, [30,90],}
D(Flight2) = {Iraklio, Linate,, 6/11/2008, [50,55],}

Figure 2.3: Example of a Restricted Materialized Faceted Taxonomy

2.1.7 Synopsis

Table 2.2 (taken from [39]) synopsizes and provides equivalent definitions.

2.2 Related Approaches

There are other very closely related approaches to the faceted exploration services and
dynamic taxonomies which are also discussed in [40]. In this Section we report, describe
and compare some of these approaches.

Formal Concept Analysis (FCA) [16] and dynamic taxonomies are closely related.
As DTs are based on dynamic computations, they can tackle better dynamic collections
where objects are added and deleted. In contrast, the FCA concept lattice is a static,
precomputed structure that cannot easily accommodate variations in the database (apart
from for incremental object insertion [31]). So FCA techniques seem more suitable for
data analysis of static collections rather than for dynamic collections.

OLAP (On-Line Analytical Processing) techniques are mainly useful in cases of nu-

merically valued facets [7]. For instance OLAP techniques like cubes could save time

16

[Name [Notation [Definition]

focus ctx any subset of T such that ctz = minimal(ctx)
focus projection on a facet ctx; ctr; =ctx N'T;
)
Kinds of zoom points | Notation | Definition(s)
w.r.t. a facet ¢ while be-
ing at ctx
zoom points AZ;(ctx) ={teT;| I(ctx)NI(t) # 0}
zoom-in points Zj (ctzx) = AZ;(ctx) N Nt (ctz;)
immediate zoom-in points Zi(ctx) = m(mimal(Z;L (ctx))
= AZ;(ctz) N N(ctx;)
zoom-side points ZRj'(ct:p) = AZ;(ctx) \ ({ctz;} U NT(ctz;) U Bt (ctx;))
tmmediate zoom-side ZR;(ctx) = mazximal(ZRT (ctz))
points
Restriction over an ob- | Notation | Definition(s)
ject set
restricted object set A any subset of Obj
reduced interpretation I I't)=I(t)N A
reduced terminology T ={teT|I'({) #0}
={teT|It)NnA#0}
= UOGAB+ (DI(O))

Table 2.2: Interaction notions and notations

however their construction costs time and thus are not very appropriate for dynamic
collections as one would have to recompute them (although incremental maintenance is
possible in certain cases). Certainly the adoption of cubes is not appropriate for facets
that are computed during query answering e.g. for the facet that is derived by applying
content-based clustering on the top-L document of the query answer (as in the case of
Mitos). For the same reason, such techniques cannot be applied in cases of dynamically
(e.g. user-specified) facets. Finally, OLAP techniques are not very flexible if objects are
indexed with more than one terms from a facet (which is however a typical requirement of

faceted classification and search). [5] discusses the relation of faceted exploration services

with OLAP.

17

18

Chapter 3

Architectures and Related Work

7 ApiAda efvar) tdon va gtdoer kavévas tov dAdo mov tov Uavudle
1 ka1 va tov Eemapdoel, xYowpls va awoldvetar pOovo av o dAdog tov Eemeprder”

Apiototéhne (384 p.Q. - 322 p.Q.)

This chapter is organized as follows. Section 3.1 presents the FDT interaction scheme
by describing all possible states and the transitions between them. Section 3.2 elaborates
on the storage policies that one can follow and discusses various algorithmic and imple-
mentation approaches regarding the realization of the exploration services. Section 3.3
presents a number of possible general architectures regarding how main and secondary
memory is used. Furthermore, it discuses special index structures which have been pro-
posed. Section 3.4 presents several web-based faceted exploration implementations and
concentrates on user interfaces. Finally, Section 3.5 lists a number of faceted metadata
search engines and presents an open XML specification for defining and sharing faceted

classification schemes that has been proposed.

3.1 FDT Interaction & Computational Requirements

This section describes the FDT interaction scheme by presenting the possible states be-
tween client and server communication and the transitions between them. Moreover, it
presents the two basic visualization modes for depicting a materialized faceted taxonomy.

Finally, it discusses the main approaches for computing the zoom-in/out/side points.

19

3.1.1 A State-based Interaction Method

FDT interaction paradigm can be described as a state-based interaction scheme between
a client (e.g. user) who wants to search and browse, and a server providing these services.
Below we describe all possible states of this interaction scheme and the transitions between

them.

3.1.1.1 States

Let ST denote the set of all states. A state st € ST is described by a pair (A, ctz) where A
is a set of objectsi.e. A C Obj, and ctz is a set of termsi.e. ctx C T, ctx = minimal<(ctz)
which should satisfy the following constraints: () C A C I(ctz) C Obj. If the user reaches
a state restricted by a set of terms ctx (and not by any other external access method
is used), then it will hold A = I(ctz). On the other hand, if the user reaches a state
restricted by a set of objects A e.g. A has been provided by an external access method
like an answer to a query in a WSE, and after that the user further restricts his scope by
clicking on a set of terms ctx, then it will hold A C I(ctx).

In the sequel, we will refer to the A as st.A and to the ctx as st.ctx.

3.1.1.2 State Visualization

While the user is at a state st = (A, ctzx), he is given a visualization of the restricted
materialized faceted taxonomy on A, i.e. a visualization of (F,I) 4. There are two visu-
alization modes: SVM and EVM. The basic difference between the two modes is the set
of terms that will be computed and presented in the UI during the interaction. In more

detail:

e SVM (Simple Visualization Mode)
For each facet 7 the set of terms of the restriction of 7; on A which will be computed
and shown are defined as: Vj(st) = B*(st.ctz;) U Z;(st.ctx) U RZ;(st.ctx), where the
first set is the broader terms, the second the immediate zoom-in points, and the

third the immediate zoom-side points.

20

a(1)
b(1)
d@1)
e(1)
SVM
a(3) i
b(1) click(b)
e(3)
| EVM Ha(1)
\/ /| 260
Hda)
He(1)
(a) (b) (d)

Figure 3.1: Visualization Modes Example

e EVM (Extended Visualization Mode)
For each facet i the set of terms which will be computed are: EV;(st) = T where
7. is the restriction of 7; on A (remember section 2.1.6). During the interaction,
EVM will show the V;(st), while it allows the expansion of each zoom-in point by

showing the narrower zoom-in points i.e. EV(st).

Figure 3.1(a) depicts a facet from a materialized taxonomy and how the objects of
the collection are classified under facet’s terms. Furthermore, Figure 3.1(b) shows the
browsing structure that have been provided at the GUI layer at the current state without
taking into consideration the visualization mode. Let us now assume that the user clicks
on b and we want to compute the zoom-in and side points. Figure 3.1(c) sketches the
terms that will be computed in each visualization mode, while Figure 3.1(d) shows the

browsing structures.

3.1.1.3 State Transition

The user can change states using two operations: (i) feed(A), where) C A C Obj and
(ii) click(t), where t € V(st) or t € EV(st) depending on the visualization mode where
V(st) = Ule Vi(st), EV(st) = Ule EV;(st) and k is the number of the facets of the

21

materialized faceted taxonomy. Let st’ = next(st,op) denotes the next state if the user is

on the state st and will execute the operation op. This is defined as follows:

e Operation click(t)
It describes the zoom operation. When the user selects/presses a zoom point ¢, then
an operation click(t) will be executed. Specifically, if st = (A, ctx) and op = click(t),
then st’ = next(st,click(t)) = (A, ctz’) such that ctx’ = minimal<(ctz U {t}) and
A= AN I(cta').

e Operation feed(A)
As we have already described in section 2.1.6, we can restrict a materialized faceted
taxonomy M on a subset A C Obj and produce the (F,I)j4. A user can restrict the
M on A by executing the feed(A) operation. In more detail, if st = (A, ctz) and
op = feed(A’), then st' = next(st, feed(A')) = (A, cta’) such that ctz’ = |JI_, T;.

3.1.2 General Evaluation Approaches

Independently to the visualization modes, two are the main approaches for computing

the zoom-in/out/side points:

o Fxtension Intersection-based approach

In this case, the computations are based on the extension of the terms, and

e Description-based approach
Here, the computations are based on the descriptions of the objects which belong

to A.

In order to understand the difference between the two approaches, we will show how
the E'V; for a facet ¢ can be computed using each one computation approach separately.

The EV; with respect to the Eztension Intersection-based approach will be all the
terms t € 7; such that there are objects which belong to A and are also classified under ¢
i.e EVi(st)={t € T; | st. AN I(t) # (0}. On the other hand, in case of Description-based
approach they will be all the terms ¢ € 7; such that they describe an object 0o € A i.e.
EVi(st) ={t € D(o) | o0 € st.A}.

22

3.2 Data Structures & Algorithms

In this section we elaborate on the storage policies that one can follow. Furthermore, we
present various algorithms for computing the zoom-in/out/side points taking into account
the storage policies, the evaluation approaches and the visualization methods. Moreover,

we sketch their complexity and we compare them.

3.2.1 Notations
Below we assume a materialized faceted taxonomy M.

e (C): the average number of terms that are (directly) assigned to an object o €
Obj, ie. Cy = avgoeonj(|D(0)]). For instance, if we have one taxonomy and
mandatory single classification then Cj; = 1. If we have k facets and mandatory

single classification with respect to each one of them, then Cy; = k.

e d(t): the depth of a term ¢ € T. According to the section 2.1.1, each facet i has a
top element T; for keeping the heads of facet’s hierarchy. So, if the facet is tree-
structured, then d(t) is the length of the path from ¢ to the T,. In case of DAG,
d(t) is the length of the longest path that starts from ¢ and ends to the T;.

o d,,,: the average depth of terms in the faceted taxonomy, i.e. dgyy = avgier(d(t)).

® dyavg: the average depth of terms that are directly used in object descriptions in
M, ie. dyag = avGiep(ob))(d(t)). Notice that here we do not take into account
how many objects are associated with each term. If we would like to also take that
into account then, we could define the cumulative average depth of terms that are

directly used in object descriptions:

ZoGObj ZtGD(o) d(t)

dM,cow =
! ZaEObj ZtED(o) 1

and we could also refine djs cqvq,; analogously.

e B,,,: the average number of direct children that a term has. Analogously By ;.

e P,,,: the average number of parents that a term has. Analogously Py ;-

23

o [,,,: the average number of objects which are directly described by a term i.e.

I . |Obj‘*C}\4
avg ‘T' .

° favg: the average number of objects which are described by a term i.e. fcwg =

‘Objl*cﬂ/f*dl\f,avg
Tl '

3.2.2 Storage Policies

In this section we describe the basic approaches one can follow for storing a materialized
faceted taxonomy.

One space minimal approach is to keep stored only the reflexive and transitive reduc-
tion of the taxonomies and only the I (or equivalently D). An alternative, at the other
extreme, approach is to store redundant (inferred) data for speeding up some computa-
tions (e.g. as it is done in [5, 38]). Specifically, we could keep stored the entire < of the
taxonomies involved (i.e. all transitively induced relationships). Furthermore, we could
keep stored the I(t) for every t € T (or equivalently the Dy for each o € Obj). In general,
we should note that policies which store inferred data apart from being more memory
consuming (and thus less scalable), are more expensive to maintain if changes occur.

Let’s quantify the space overhead of such policies.

e overhead of I wrt I
Let |I| denote the space required for storing I i.e. [I| =, .+ |I(t)|. Moreover, we
know that an object o € Obj is classified under C'y; terms and we assume that each
object is mandatorily classified under at least one term from each facet. So, it is

obvious that |I]| = |Obj| * Cyy.

If we have stored the set I(t),Vt € T, each object o € I(t) should also be stored
to the extension of all ¥ € BT(t). In other words, each object o € Obj will be
additionally classified under dyy 4,y terms. So, it is clear that |I| = dpy auq*|I|, Wwhere
[I| = >,c7 [1(t)|. For example, let us assume that we have the materialized faceted
taxonomy presented in Figure 3.2. The materialized faceted taxonomy contains one
facet which describes three objects (|Obj| = 3). In this case, |I| = 3, |I| = 7,

dM avg = % and Cyr = 1. So, |I] is dpsav, times larger than |I].

24

Figure 3.2: Extensions Comparison: Simple example

Here we have to mention that we do not store the I(T;) for a facet i.

Notice that the overhead of storing Dy instead of Dy, is exactly the same.

e overhead of < wrt <"

As we have already defined, <" denotes the reflexive and transitive reduction of <.

The number of relationships of <" is at most @. This value is obtained when
(T,<") is a bipartite graph, whose ‘—;” nodes are connected with all other @ nodes.

On the other hand the number of relationships of < is at most $|7(|7T| — 1) [45].

Alternatively, if dg,, is the average depth of terms in (7, <), then storing < requires

storing d,,, — 1 times more relationships than <".

We will define the storage policy as a pair (X,Y") where X is < or <" and Y is [or
I or D or D. In general, we can say that the storage policies which can be followed are
all possible combinations between X,Y. However, in case that we have stored the I(t)
or D(t) where t € T, there is no reason for storing the <, as we do not need to compute
and scan NT(t). On the other hand, in case we have stored the I or D and the <", the
cost of computing the zoom-in points will be high as we additionally need to compute the
narrower terms of . So, in this thesis we elaborate on the below storage policies taking

into consideration the evaluation approaches presented in section 3.1.2:

e Fxtension Intersection-Based
Minimal Storage Policy: (I, <)
Maximal Storage Policy: (I, <")

25

e Description-Based
Minimal Storage Policy: (D, <)
Maximal Storage Policy: (D, <")

3.2.2.1 Data Structures

We can store the extension of a term ¢ (I(t) or I(t)), or the A in hash-based indices.
Subsequently, the cost for checking whether an object o € A belongs to I(t) i.e. o €
I(t) (or the opposite), will be the cost of a lookup operation, so it takes constant time.
Consequently, if we have to compute the I(t) N A, the cost will be min(|A|, I,y,), while
in case of I(t) N A, it will be min(|Al, Io,y). Furthermore, in case of union e.g. I(t) U A4,
the complexities will be the same as we do not want the union contains duplicate values.
The algorithm for computing the union will be: we first add to the union v the maximum
in size set mx (max = I(t) or mx = A, taking into account their cardinalities). Let mn
denotes the minimum in size set. Then for each object o € mn we check whether o € mux,
if no then we add it to w. This operation is the same for computing the I(t) U A.

As regards the storage of the < or <", we can store the relationships between the
terms as sets. In more detail, if we have decided to store the <" then Vt € T we will store
the sets N(t) and B(t). On the other hand, in case of <, Vt € T we will store the sets
B*(t) and N*(t). Finally, we will denote the cost of the union of two sets of terms as 7},

while the cost of intersection as Th.

3.2.3 Algorithms and Complexity

Here we discuss various algorithmic and implementation approaches regarding the real-
ization of the exploration services, and we sketch and compare their complexities. The
objective of this analysis is to identify good (efficient) evaluation plans taking into account

the visualization modes, the general evaluation approaches and the storage policies.

3.2.3.1 FEV; & V; Computation

Let st denotes the current interaction state. Below we present algorithms for the EV;

& V; computation. In case of EVM we need to compute the EV;(st) = T’ for a facet

26

i. On the other hand, in SVM, V;(st) = B*(st.ctx;) U Z;(st.ctx) U RZ;(st.ctz), so we
need to compute the immediate zoom-in and side points, and then take the union with
the broader terms. According to the definition of the zoom-side points in chapter 2:
RZi(st) = mazimal<({t € T; | I(t) N st.A # Qand t|st.ctz;}). Let us denote the
maximal incomparable terms of ¢ € T; as Inc;(t). They will be only the brothers of ¢ and
all the brothers of its ancestors i.e. Inc;(t) = {t' € N(B*(t))}/{t} *. As the number of
the Inc;(t) is dependent on the structure of the hierarchy we denote the |Inc;(st.ctx;)| as

a constant c.

e EVM Approach

— FEzxtension Intersection-based Approach

x Minimal Storage Policy (I, <)
To compute the EV; for a facet i i.e. EV;(st) we have Vt € 7; to compute
the I'(t) = I(t) N st.A. If I'(t) # 0 then we add the set of terms B*(t)
to the EVi(st) i.e. EVi(st) = {t' € B*(t) | I(t) Nst.A# 0, t € T;}. The
overall cost of this approach will be the cost of taking | 7| intersections with
the st.A, then (in the worst case) to compute V¢t € T the set B*(t) and
finally to take the union of all B*(t). As we have already described, the
cost of taking an intersection of I with st.A will be min(|A|, l,,y) while
the cost of computing the set B*(t) for a term ¢ € T will be constant
as we have stored Vt € T the BT (t). So, the overall complexity will be
|T| *« min(|A|, Luwg) + (|T] — 1) * T0,.

* Mazimal Storage Policy (I, <")
In this case, V¢ € T, we have to compute the I'(t) = I(t)Nst.A. If I'(t) # ()
then t € EVj(st) i.e. EVi(st) ={t € T; | I(t)Nst.A+#D}. So, the overall
cost is | T| * min(|A|, Luug)-

— Description-based Approach

x Minimal Storage Policy (D, <)

In case of DAG, we use the T element for each facet, so we can visit paths that visually they do not
have any common ancestor.

27

Here, Yo € st.A we have to get the terms ¢ € D(0), and then to compute
the B*(t). Finally, we have to take the union of all B*(t) i.e EV;(st) = {t’ €
B*(t) | t € D(0),Vo € st.A}. The cost of getting the terms ¢ € D(o0) will
be |A] * %, where £ is the number of facets, as each object will be directly
classified under % terms from each facet. The cost of computing the B*(t)
is constant while the cost of computing the union will be (| 4|92 — 1) % T,.
So, the overall complexity will be |A| x S 4 (JA] « 4 — 1) « T,,.
* Mazximal Storage Policy (D, <")

In this case the zoom-in points will be the terms ¢t € D(st.A). Formally,
EVi(st) = {t € D(0),Vo € st.A}. Also in this case we have to take the
unions of all D(0). The overall cost will be the same as in minimal storage

policy, so |A] x S + (JA| % S — 1)« T,..
e SVM Approach

— Extension Intersection-based Approach

« Minimal Storage Policy (I, <)

In this case, we need to compute Vt € N (st.ctx;)UInc;(st.ctz;) the I'(t) =
I(t) N st.A. If I'(t) # 0 then t € Vi(st). Finally we need to add to
Vi(st) the B*(st.ctx;) i.e Vi(st) = {t € N(st.ctz;) U Inc;(st.ctz;) | 1(t) N
st.A # 0} U B*(st.ctz;). The complexity of this approach will be the
cost of computing the Inc;(st.ctz;) and the I(t) from I(t) and then take
|N(st.ctx;) U Inc;(st.ctx;)| intersections. Moreover, we need to compute
the B*(st.ctx;) and add it to the V;. It is easy to see that |N(st.ctx;)| =
Baug, while the cost for computing the Inc;(st.ctx;) or the B*(st.ctx;)
will be constant as we have stored the < 2. The cost of intersection is
min(|Al, Lwg). The cost of computing the I(¢) will be (dayg — 1) * Loy, as we
have to compute the (Jyey. () I(t'). Consequently, the overall complexity
will be (Bayg + ¢) * (min(|A], Luvg) + (davg — 1) * Lag).

* Mazimal Storage Policy (I, <")

2We do not need transitive closure computations.

28

Here, ¥t € N(st.ctz;) U Inc;(st.ctz;) we have to compute the intersection
I(t)Nst.A and then add to V; the B*(st.ctx;)i.e. Vi(st) = {t € N(st.ctz;)U
Inc(st.ctxy) | I(t)Nst.A # 0} U B*(st.ctz;). As we have stored the <" the
cost of computing the B*(st.ctx;) and Inc;(st.ctz;) will not be constant.
In more detail, the cost of computing the B*(st.ctx;) will be P, * T},
as we need to compute the union of all B(p) where p € P,,,. The cost
of Inc;(st.ctz;) computation will be the cost to compute the N(t), Vi €
B*(st.ctx;). As we have already stored the N(t) V& € T we will not

have any additional cost. So in this case the complexity is (B, + ¢) *

min(| A, Lung) + Pavg * Ty
— Description-based Approach

x Minimal Storage Policy (D, <)
Here, we will use the same technique as in the EVM approach (EVM
approach, Description-based, Minimal Storage Policy). The only difference
is that we need to take the intersection with the N(ctx;) U Inc;(st.ctx;) U
B*(st.ctz;) i.e. Vi(st) = {t' € B*(t) | t € D(0),Vo € st.A} N (N(st.ctz;) U
Inc;(st.ctz;) U B*(st.ctz;)). So the complexity is |A] x % + (|A] * % -
1)« Ty + 1.

* Mazimal Storage Policy (D, <")
Also, in this case we follow the corresponding EVM approach (EVM ap-
proach, Description-based, Maximal Storage Policy) and we take the in-
tersection with N (st.ctx;) U Inc;(st.ctx;) U B*(st.cta;) i.e. Vi(st) = {t €
D(0),Yo € st.A} N (N(st.ctz;) U Inc;(st.ctz;) U B*(st.ctz;)). As we have
already computed, the cost of B*(t) and Inc;(st.ctz;) computation is 2

Paug * T1,. Subsequently, [A|* L + (JA| x S — 1)« T, + Thy + Payg * 0.

3.2.3.2 Zoom-out points Computation

Basically, a zoom-out operation can be executed only after a zoom-in operation as it is
exactly the opposite. In more detail, we can say that when we zoom-out we execute

a click(t') operation where t’ is broader than the term ¢ which was clicked in the last

29

click operation. We can say that the computation of zoom-out points can be done in
constant time as any term which is broader than a zoom-in point will be valid too. This
holds because the objects which are classified under a term ¢, are also classified under the
broader terms of ¢.

In contrast to the above, let us assume that we are in the state st = (A, ctx) and
we have computed the zoom-in or the immediate zoom-in points. Furthermore, imagine
that the user has the ability to zoom-out from the current focus. For instance, if st.A =
stmev.Aﬂf (st.ctx) where st,,., denotes the previous state, the new state st’ with the zoom-
out operation will be st’ = (A, ctz) where A’ = I(st.ctz). In this case, the computation
of the zoom-out points will have the same complexity as the computation of zoom-in

operations, as the st’.A has been changed.

3.2.3.3 Count Information

In case we follow the Extension Intersection-based approach, we can define the count of a
term ¢ as count(t) = |I(t) N Al, while in case of Description-based as count(t) = tf, 5,1
where ¢ f; p, () is the appearance frequency of t in D;(A).

If we follow the mazimal storage policy independently to the evaluation approach, the
complexity of computing the count of a term ¢ will be constant as we have already made
these computations in order to decide if ¢ is a zoom-in point.

In case of minimal storage policy, if we follow the Extension Intersection-based ap-
proach we need to compute the I() from I(¢) and then take the intersection. We have
already pay this cost only in case of SVM. On the other hand, in case of Description-based
approach, we need to compute how may times the ¢ appears in D;(A).

However, we can avoid these computations by providing the count information of a
term approximately. Section 5.2.1.5 presents a method for providing approximately the

count information of a term in constant time.

3.2.3.4 Conclusions of the Analysis

Table 3.1 presents the complexity of the zoom-in computation taking into account the

storage policies, the visualization methods and the computation approaches.

30

If we follow the Description-based approach, it is obvious that we do not need to follow
a maximal storage policy as the computational costs are almost the same as in case of
manimal storage policy. However, the basic drawback of the minimal storage policy is
that the cost of zoom-in points computation does not include the cost of computing the
count information. To provide the exact count information for each zoom-in point we

need to follow the algorithms which follow the mazimal storage policy.

In the Eaxtension Intersection-based approach, the computation of zoom-in points ac-
cording to the maximal storage policy costs less than the case of minimal, and it also
contains the cost of providing the count information. However, the storage overhead is

bigger.

Finally, we need to specify which evaluation approach is preferable for very large
collections e.g. |Obj| = 10'°. We can see that the complexity of Description-based eval-
uation approach is always proportional to |A|, while in Extension Intersection-based it
is proportional to min(|A|, l.,,) or min(|A|, I,). It is obvious that if A is very large
then the Description-based approach is prohibitive. On the other hand, if A is small,
the Description-based approach seems to be better as it is independent to the size and
structure of the facet hierarchy. Specifically, in cases that we have mandatory single

classification then % =1.

[Storage Policy “ Complexity

EVM
(I1,<) [T|* min(|A], Iavg) + (|T] — 1) * Ty
(I,<7) [T] * min(|A], Tavg)
(D, <) \A|*%+(|A|*%—1)*Tu
(D, <) | Al CM 1 (JA[+ O — 1) + T,

SVM
(I,9) (Bavg + ¢) * (min(|A[, Lavg) + (davg — 1) * Lavg)
(I,<™) (Bavg + ¢) * min(|Al, Iavg) + Pavg * TU
(D,<) |A]* O 4 (JA|+ O — 1)« Ty + Ty
(D,<") |A] * CM 4 (JA|+ M — 1) « T + T + Pavg * Tu

Table 3.1: Zoom-in points Computation’” Complexities

31

3.3 Possible Architectures

Here we distinguish two general architectures regarding how main and secondary memory
is used as we are interested in very large data sets. Each architecture has different

applicability and pos and cons.

3.3.1 (MEM) Architecture

In this architecture all data are kept in Main Memory. As faceted exploration can be
combined easily with other access methods (e.g. information retrieval queries, structured
queries, or application-specific queries), another variation of the (MEM) architecture is
possible: to load in main memory only the answer of each submitted query. Below we
focus on specialized index structures which have been proposed for implementation and
follow the (MEM) architecture.

The implementation described in [5] uses Apache Lucene web search engine library, and
Apache Solr which is an open source enterprize search server based on Lucene that deals
with non-hierarchical facets. In that approach, a taxonomy 7T is a DAG whose nodes
represent facet terms and direct edges denote the specialization (refinement) relations
between them. 7T is stored into a structure called Tazonomy Index. Let assume that we
have the materialized faceted taxonomy of Figure 3.3, the Taxonomy Index which will be
created is shown at Figure 3.4.

The interpretations of terms are stored in a inverted index, i.e for each term ¢, the set
I(t) is kept into a posting list and ¢ is described by its taxonomy path. Another postings
list named DirectIndex stores the description of each object o (having id=oid) w.r.t. to
I, i.e Dy(0), being a list of term ids (tid). Figure 3.4 presents the indices that will be
created for the facet "By Location”.

A more efficient implementation for large information bases is presented in [38]. To
store the interpretation of each term t € T, for each object o € I(t) a tuple De(tid, oid)
is stored, where oid is the id of the object o and tid is the id of the term ¢. In order to
store the De tuples, that work exploits the observation that a term ht at the high levels

of a facet hierarchy will belong to the majority of the descriptions of the objects, while a

32

By Location By Sports

Greece All Sports
los Crete Olympus Sea Sports Winter Sports
) ®on
" /\ /\
| Tl
1Heraklio Lasithi “~._Seaski Windsurfing SnowSki Snowboard
b Tt T _Sas A \
'. RS B N NS Sty
I EPELS el IEREU NE—

Figure 3.3: A simple MFT

Taxonomy Index

n:termid
f: father id

Inverted Index

Facet$Greece: H1, H2, H3, H4, H5
Facet$Greece/los: H1
Facet$Greece/Crete: H2, H3

Facet$Greece/Crete/Heraklio:H3

Facet$Greece/Crete/Lasithi: H2

Facet$Greece/Olympus: H4, H5

Directindex: H1 >[1,.H2>[B,.]; ..o ...
AL

OIDs

Tibs

Figure 3.4: Storage indices according to [5]

33

term It at low levels (e.g. leaves) will belong to few descriptions of objects. So is better to
have different kind of indices for the highest and lowest levels with respect to the storage
overhead.

So, the author proposes the following compression strategy. For the higher levels, he
uses a bitmap of |HT| x |Obj| dimensions where HT is the set of all ht € T w.r.t. <. If
o € I(t) he put 1 in [tid, oid] cell; 0 otherwise. For the lower levels, the author uses an
inverted list where for each term It, an ordered vector with every oid € I(It) is kept (as
in [5]). In order to have a single index for all terms, he uses a pointer array keyed by tid
where if the term at the position ¢ of the table is a highest level term the pointer points to
a specific row of the bitmap, otherwise it points to a specific position of the inverted list.
Figure 3.5 depicts the indices that this approach will create for the example of Figure 3.3
for the facet ” ByLocation”, assuming that HT = {Greece, [os, Crete, Olympus}.

For the taxonomies of facets, [38] uses the below indices:

a father-to-son structure, F'S, which for each ¢t € T it stores N(t) i.e for each tid it

stores the sequence of its sons, ordered by display order.

e a son-to-father structure, SF, which Vt € T it stores the B(t) i.e for each term tid
it stores the set of its fathers in case the hierarchy is a DAG, or its single father if
hierarchy is a tree. This structure allows upwards navigation from a term to the

taxonomy top element.

e a Descendants structure which for each term stores the set of all its descendants,

i.e Vt € T stores the N*(t). and

e an Ancestors structure which for each term it stores the set of all its ancestors, i.e

Vt € T stores the BT (t).

3.3.2 (DB) Architecture

Here we examine the case where all data are stored in a relational database. The mo-

tivation for elaborating on this case is that relational database technology dominates in

34

Pointer Array HL H2 H3 H4 H5

2
. 6\(\@ 1 1 1 1 1
O R 1]oflofof| o]
Greece .// 5 . . 0 0 Bltmap
los '// olojo|1]1
Crete 0//
Olympus |

Ordered Vectors by oid

Heraklio Inverted
Lasithi List
]

|

Figure 3.5: Storage indices according to [38]

business applications. However, we should mention that this approach is feasible only if
we a-priori know the depth of the taxonomies involved or if we adopt recursive SQL.

An implementation which follows this approach is the Flamenco project[59]. It relies
on a relational DBMS (specifically MySQL) and for each object o € Obj it stores D(o)
using tuples at the form (o,t) for each term ¢ € D(0). Flamenco does not store the I of
terms and has to dynamically reconstruct it by taking the union of the I of narrower terms.
When the user selects a zoom-in point, a query is generated using the SQL COUNT (x)
and GROU PBY operators to count the number of objects that fall into each facet term.
Further implementations which are based on RDBMS include i411® and Atomz*.

At first, in section 3.3.2.1 we describe in brief some methodological issues regarding
the application of the faceted exploration paradigm over relational databases. Further-
more, section 3.3.2.2 describes how SQL can be used for enabling information exploration

services.

3.3.2.1 From the Relational to the Faceted Data Model: Methodological

Comments

Suppose that we have a relational database and we want to offer faceted exploration
services for its contents.
One approach would be to define a view containing the attributes that should be

considered as facets. This means that the declarative query language offered by a DBMS

3Source: http://www.id11.com
4Source: http://www.atomz.com

35

can be exploited for defining the desired facets, i.e. those that are appropriate for browsing
by humans. Note that the relational view may comprise attributes coming from different
relations (and its definition may include joins and other transformations). Each object
o € Obj is represented as a tuple, while each attribute of that view is considered as a
facet, and the set of distinct values of these attributes that appear in the tuples of the

view are considered as the terms of that facet.

Of course, the paradigm of faceted exploration can be combined with other existing
methods: e.g. with predefined query forms or with plain SQL query answering. In that
case, faceted exploration can be used to summarize the results of these access methods. It
is not necessary for the faceted view to include all attributes that characterize an object,
or all the attributes that are being exploited by other access methods. It may contain

only those that are appropriate for exploration.

However, some frequently occurring attributes, like ”price”, "weight”, ”dates”, "lo-
cations”, usually have a big number of distinct values (which are not hierarchically or-
ganized). It would be problematic (in terms of usability) to visualize all such values as
candidate zoom-in points. To alleviate this problem, an additional step that aims at
organizing these values hierarchically could be adopted. Such hierarchies can be defined
manually or automatically. For instance, there may already exist appropriate hierarchies
which could be stored in the DB (represented as separate relational tables). Alternatively,
automatic methods for defining hierarchies could be adopted. For instance, [6] describes
methods for creating multi-level taxonomies for attribute values on the fly. In general,
a number of techniques for creating such hierarchies for frequently occurring cases and
needs, could be developed and supported. Some indicative examples are given in Table
3.2. The table also shows how the children of a node (hence the set of its zoom-in points)
could be ordered (the listed choices could be considered as alternative/complementary/op-
tional criteria to the ”default ordering mode” which usually is: order values in descending
order with respect to the number of hits). Apart from such (simple) cases, there is almost

always the trade-off between degree of automation and quality of produced hierarchy.

36

Attribute Possible hierarchies of at- | Ordering of children
tribute values
Prices Intervals of prices According to their value
Dates and Periods Years, months, dates According to their value
e.g. 2008-05-21, 2008-05-22
2008 —
05 —
21
22
Place Names Countries, Regions, Cities, Sub- | Lexicographically
urbs, Streets, Interval of street
numbers,
Web Domains (in general strings | GR — FORTH — ICS — ISL | Lexicographically
formed according to a hierarchi-
cal naming scheme)

Table 3.2: Automatic Hierarchy Creation Examples

3.3.2.2 On SQL implementation

This section describes how SQL can be used for realizing the exploration services. This
is done over a running example that includes an hierarchy that is represented and stored

in the database. Consider the following schema:

Hotel(hId, hName, stars, 1Id)
Location(lid, 1Name, parentlId)

with the following foreign key constraints
Hotel.lid C Location.lid
Location.parentlId C Location.lid
and assume the domain of the attribute stars in the integer interval [1..5].

We can consider this database schema as a materialized faceted taxonomy F =
(Fy, Fs, F}) with three facets corresponding to the attributes (hotel) name, stars and
location respectively. We can define T = 7, U T, U T; where T, comprise the names of
the Hotels , 7T contains those values of [1..5] that occur in the database, and 7, are the
location names in the relation Location.

Let us assume that the terms of F; are hierarchically organized as follows: Crete <

Greece < Europe, and Italy < Europe. For example, the table Location could have

37

the following contents:

Location

1lid | 1Name parentlId

1 Europe | NULL
2 Greece | 1
3 Italy 1
4

Crete 2

Below we will present queries for computing the zoom-in/out/side points according to

the approaches presented in section 3.2.

3.3.2.3 Direct and Indirect Narrower/Broader terms of a term

Let us assume that our materialized faceted taxonomy contains the facet ¢ which is not
hierarchically organized. Subsequently, for every ¢ € 7; we have N(t) = () and N*(¢) = 0.
On the other hand, if the facet 7 is a hierarchy of values then N(t) can be computed with
one selection query, while N (¢) can be computed with a recursive approach. For example,

to compute N(Europeld) we can use the query 11;;4(0parentird=Europera(Location)), i.e.:
SELECT 1id FROM Location WHERE parentlId=Europeld

and we can denote this query by q](\})(EuropeI d).

The direct broader terms of a term, e.g. of Crete, can be computed analogously, by

Hparentl[d (Jlld:Cr‘eteld<Locati0n)) :

SELECT parentlId FROM Location WHERE 1Id=Creteld

and we can denote this query by qg)(Crete[d).

In case we have to compute the indirect narrower /broader terms of a term ¢ e.g. N*(¢)
or BT (t), we need to define the number of the links between the ¢ and its narrower/broader
terms. Let denote it as d. We need this assumption as we need a-priori know the depth
of the hierarchy. It is clear that in case of indirect narrower/broader terms d > 1, while

(d)

in case of direct d = 1. Then gy’ (t) contains the narrower terms of ¢ at exactly d links

(<) distance. Let ¢{{(¢) denote the query template ”SELECT 1id FROM Location WHERE

38

parentlId IN ¢”. Then we can write q](\%)(Europe]d) = q](\})(qﬁ)(Europe]d)). We can

generalize and construct such queries for various values of d as follows:

d 1 d—1
g () = ¥ (g (1))

Analogously we can define the query qgl) (t).

If we want all narrower (resp. broader) terms that can be reached with at most
d links, we just have to change the query q](\})(t) (resp. qg)(t)). Specifically, in that
case q](\}*) (t) should denote the template "SELECT 1id FROM Location WHERE 1lid IN ¢
OR parentId IN t¢”.

Hereafter we can use the notations q](?*)(t) and qj(gd*)(t) to denote such queries.

3.3.2.4 Maximal Incomparable Terms of a Term

As we presented in section 3.2.3.1, we denote the maximal incomparable terms of a term
t as Inc;(t) = {t' € N(B*(t))}/{t}. In this section we present sql queries which compute
the Inc;(st.ctx;). The query in our running example would be:

SELECT 1id

FROM Location

WHERE 1id IN (g\(q\%)(st.ctz;)) MINUS st.cta;)

Here we have to remind that we need to compute the Inc;(st.ctz;) only in case of

Simple Visualization Mode.
3.3.2.5 Direct and Indirect Narrower/Broader terms of a set of terms
Let s a set of terms i.e. s C 7. We can write that

N(S) = UtesN(t)

B(s) = UesB(t)

We can extend the above queries so that to compute these sets by adding a disjunction.

For example N ({Greeceld, Italyld}) can be computed by the query:

1_[lid (Uparentllde{Greeceld,ltalyld} (Location))) Le.:

SELECT 1Id FROM Location WHERE parentlId IN {Greeceld, ItalyId}

39

and we can denote this query by q](\})({Greece] d, Italyld}). Analogously we can define
the query qg)(s).

As in case of the computation of the indirect narrower/broader terms of a term ¢,
we can define the query qﬁ)(s) for computing the narrower set of terms of s at ex-
actly d links (<) distance. Let qx)(s) denote the query template "SELECT 1id FROM
Location WHERE parentlId IN s”. Then we can write q](\?)({Europe[d, Creteld}) =
q](\})(qg\})({EuropeI d,Creteld})). We can generalize and construct such queries for vari-
ous values of d as follows:

d 1 d—1
g (s) = ay (ay " (s))

Analogously we can define a query qgl)(s).

In addition, if we want all narrower (resp. broader) terms that can be reached with
at most d links, we just have to change the query qg\})(s) (resp. qg)(s)). Specifically, in
that case q](\})*(s) should denote the template "SELECT 1id FROM Location WHERE 1id
IN s OR parentId IN s”.

Hereafter we can use the notations q](f,l*)(s) and qgi*)(s) to denote such queries.

3.3.2.6 Model Interpretations

A context ctx is any subset of 7. Suppose that ctx = {t1,...,tx} where ¢; € T; and
each 7; is the domain of a relational attribute A;. For computing I(ctz) we can define a

selection condition, denoted by ¢, defined as:
¢ct:r . (Al :tl)/\/\(Ak:tk)

For example, if ctx = {Sunwing, 4} then ¢, = "hname=Sunwing AND stars = 4. We
can compute [(ctx) using the selection query oy, (Hotel).

Analogously we can construct selection conditions for terms corresponding to location
ids. However, if a term corresponds to a location name, e.g. if ctz = {Crete}, then we
need a query that includes a join, specifically the query oj,ame=crete(Hotel 1 Location)

corresponding to the SQL query:

SELECT * FROM Hotel, Location WHERE lname="Crete" AND

Hotel.lid = Location.lid

40

Furthermore, we will use ¢, to denote the corresponding selection condition that concerns
facet F; only. So, to compute I(t) where ¢t € T, we can use the query o4, (Hotel). For example,
if ¢ = 3 the query will be:

SELECT =
FROM Hotels
WHERE stars=3

Consider now a term t that is part of a taxonomy with depth d. In this case we can write:
It =U{ I{l) |t <t} =U{ I(t') | ' € N@)(t)}

where N(#)(t),t € T contains the ¢ and all its narrower terms at exactly d links (<) distance.

To compute I(t), e.g. I(Europeld), we can use the query:

7"-hld,hName,stars,lId(I_IOtels ™M Hotels.lId=Location.lId RI)

where R, = (dx)

UliquN (Europel D) (Locatzon)

or
SELECT =*
FROM Hotels
WHERE 1id IN ¢\¢")(EuropelD)
For more than one terms we have to use conjunction. For example to compute
I({Europeld, 3stars}) we can use the query:
let Ry = 0stars—3(Hotels) and
Ry

(%) Location) we have

= Tlideq (EuropeID)(
ThidhName,stars,i1d(Ra P Hotels.1Id=Location.lId Fy) 1.€.:

SELECT =

FROM Hotels

WHERE stars =3 AND 1id IN ¢\ (EuropelD)

Here we have to mention that the order of AND operations leaves space for optimization.
For example, if we firstly write the case stars = 3, we will execute the R, only RX times, where
RX denotes the cardinality of the result set if we execute the R, query. On the other hand, if
they have the opposite order it will be executed Fcount(*)(H otels) times.

To sum up, if ctx = {t1,...,tx} where t; € 7; and all 7; are hierarchically organized with

41

maximum depth d, then I(ctz) can be computed with a query that has as condition
¢(ctx) = /\ A; IN q](V*) (t;)
i=1

3.3.2.7 Object Descriptions

We can define the description of an object oid with respect to a facet F; as follows: D;(oid) = {t €
Ti| o€ I(t)}. It can be computed by a projection on a selection query 114, (0i4—0id(R)) = ¢i(0).
For example, Dy (h2) can be computed by the query gr(h2) = ”select lid from hotels where
hid=h2".

We can define the complete description of an object oid wrt a facet F; as follows: D;(oid) =
BT (D;(0)). For example for a hotel h1 located in Crete we have Dy (h1) = {Crete, Greece, Europe}.
If the maximum depth is d then the complete description can be computed by the query

qgl*)((]rete). Specifically by the query q%d*) (qi(h1)).

3.3.2.8 Complete Descriptions

As we have already described, we can compute the D;(0),0 € Obj or the I(t),t € T by using
specific forms of queries. However, these computations can be used in the minimal storage policy
where the D, I are stored. In case we want to follow the mazimal storage policy we need to
construct the complete descriptions of the objects. Then the queries will be simpler and faster.
Below, we will present the queries for constructing the complete descriptions.

To begin with, let us assume that we have a database with the same relational schema as
in our running example and we add some hotels. The tuples of the tables are shown in Figure
3.6(a). To create the complete descriptions we need to create an additional table for each domain
which is hierarchically organized. In our example, we need to create a table for the location. The
new table will have two domains which will be both primary keys, hid and lid. Then for each
hotel, we need to add one tuple with the id of the hotel and the id of hotel’s specific location and
a tuple for each broader location. Figure 3.6(b) depicts the table CompleteDescriptions which
contains the complete descriptions of the hotels for the domain location. For example, for the
hotel Minoan Palace which is located in Crete, three tuples will be created: (4,1) for Europe,
(4,2) for Greece and (4,4) for Crete.

We can create the complete descriptions for an object o € Obj with the following way. Let us

assume that we need to compute the complete descriptions of the Minoan Palace hotel. First,

42

Location
lid | Iname | parentld

1 | Europe Null CompleteDescriptions
2 | Greece 1 hid lid
3 Italy 1 1 1
4 | Crete 2 > 1
Hotel 2 2
hid hname stars | lid 3 1
1 Relax 3 1 3 3
2 Poseidon 4 2 4 1
3 Colosseum 5 3 4 2
4 | Minoan Palace 4 4 4 4

(@) (b)

Figure 3.6: Constructing Complete Descriptions

we need to compute all the broader locations of the hotel. We can do it by computing the
Locs = qggd*) (qr(4)). Then for each location ! which belongs to the result of the query Locs we
can create an insert query which will have the following form:

INSERT INTO CompleteDescriptions(hid,lid)

VALUES (4, D

Also we have the ability to construct the complete descriptions of all objects for the location
domain by executing a query with the following form:
INSERT INTO CompleteDescriptions(hid,lid)
VALUES (hid, ¢\ (q1.(hid)))

Now, we can compute the I(t) and D(o) faster. For example the query for computing the
I(Europeld) would be:
SELECT hid
FROM CompleteDescriptions

WHERE [id = FEuropeld

On the other hand, the query for computing the Dy (4) would be:
SELECT 1id
FROM CompleteDescriptions
WHERE hid = 4

43

3.3.2.9 V; & EV; Computation

As in section 3.2.3.1, to compute the V;, E'V; we have to take into account the storage policy
(minimal or mazximal), the visualization mode (EVM or SVM) and the evaluation approach
(Extension Intersection-based or Description-based). Furthermore, in (DB) architecture we have
to decide where the computations of intersection and unions will be executed. In more detail,
we have two possible approaches. In the first approach, all computations are executed by SQL
queries. A second approach would be to execute queries which compute the D, I, I, D, then we
get the result sets and finally we execute the intersections and unions in main memory. In this
thesis we elaborate on the first approach.

Let st denotes the current interaction state. We will not give any detail about flat facets
as the queries for computing the zoom-in points are somewhat trivial (use of DISTINCT and
GROUP BY operators). Below we present queries for the zoom-in points computation in hi-
erarchically organized domains. So, we want to compute the zoom-in points for the Location
facet. The st.A has to be computed in each interaction state, as we have not stored it in main

memory. In the sequel, we use the notation st.A but we have to mention that it is a sub-select

query.
e EVM Approach

— FEaxtension Intersection-based Approach

« Minimal Storage Policy (I, <)
In this case EV;(st) = {t' € B*(t) | I(t)Nst.A# 0, t € T;}. Query:
SELECT DISTINCT(Location.lname)
FROM Location
WHERE Location.lid IN ¢\9")(st.ct;) AND
(SELECT COUNT(*) FROM Hotel WHERE Hotel.lid=Location.lid

INTERSECT st.A) > O

* Mazximal Storage Policy (I,<")
In this case, EVi(st) = {t € T; | I(t) N st.A # 0}. Query:
SELECT DISTINCT(Location.lname)
FROM Location

WHERE

44

(SELECT COUNT(*) FROM CompleteDescription WHERE 1id = Location.lid

INTERSECT st.A) > O
— Description-based Approach

« Minimal Storage Policy (D, <)
Here, EV;(st) = {t' € B*(t) | t € D(0),Vo € st.A}. Query:
SELECT DISTINCT(Location.lname)
FROM Location
WHERE Location.lid IN ¢\i*)(SELECT DISTINCT(1id) FROM Hotel

where hid IN st.4)

* Mazimal Storage Policy (D, <")
In this case, EV;(st) = {t € D(0),Vo € st.A}. Query:
SELECT DISTINCT(Location.lname)
FROM Location, CompleteDescription
WHERE CompleteDescription.hid IN st.A AND

CompleteDescription.lid = Location.lid
e SVM Approach

— Extension Intersection-based Approach

x Minimal Storage Policy (I, <)
In this case, Vj(st) = {t € N(st.ctz;) U Inc;(st.ctx;) | I(t) N st.A # 0} U
B*(st.ctx;). Query:
SELECT DISTINCT(Location.lname)
FROM Location
WHERE Location.lid IN (((¢\Y(st.ctz;) OR (q\V(¢\% (st.cta;)) MINUS st.ctz;))
AND

(SELECT COUNT(*) FROM Hotel WHERE Hotel.lid in q](\cfl*)(Location.lid)

INTERSECT st.A) > 0) OR ¢\ (st.ctz;))
* Mazimal Storage Policy (I,<")
Here, V;(st) = {t € N(st.ctz;) U Inc;(st.ctx;) | I(t) Nst.A # 0} U B*(st.ctz;).

Query:
SELECT DISTINCT(Location.lname)

45

FROM Location

WHERE Location.lid IN (((¢\V(st.ctz;)) OR (¢ (¢\% (st.cta;)) MINUS st.ctz;))
AND

(SELECT COUNT(*) FROM CompleteDescription WHERE 1id = Location.lid

INTERSECT st.A) > 0) OR g\ (st.ctz;)))

— Description-based Approach

« Minimal Storage Policy (D, <)
Here, Vj(st) = {t' € B*(t) | t € D(0),Yo € st.A} N (N(st.ctx;) U Inc;(st.ctz;) U
B*(st.ctx;)). Query:
SELECT DISTINCT(Location.lname)
FROM Hotel, Location
WHERE Hotel.hid IN st.A AND Location.lid IN
qgl*)(qL(Hotel.hid))
INTERSECT
SELECT lname FROM Location WHERE

1id IN (g (st.ctz;) OR (q\P (q\¥) (st.cta;)) MINUS st.ctz;) OR ¢\i"(st.ctz;)))

* Mazimal Storage Policy (D, <")
In this case, Vi(st) = {t € D(o),Yo € st.A} N (N(st.ctz;) U Inc;(st.ctz;) U
B*(st.ctx;)). Query:
SELECT DISTINCT(Location.lname)
FROM Location, CompleteDescription
WHERE CompleteDescription.hid IN st.A AND
CompleteDescription.lid = Location.lid
INTERSECT
SELECT lname FROM Location WHERE

1id IV (¢\V(st.ctz;) OR (g (% (st.cta;)) MINUS st.ctz;) OR ¢\7)(st.ctz;)))

3.3.2.10 Zoom-out points Computation

According to the section 3.2.3.2, we need to compute the zoom-out points only when we need

to zoom-out from the current focus. In this case, as he have already described, we can execute

46

the same queries as in the zoom-in points computation.

3.3.2.11 Count Information

In case we follow the maximal storage policy, to provide count information for a zoom-in point
we only need to add the count(x) function in the query. For example, in case of EVM, mazimal
storage policy and Ezxtension Intersection-based evaluation approach the query would be:
SELECT DISTINCT(Location.lname) ,COUNT (%)

FROM Location

WHERE

(SELECT COUNT(*) FROM CompleteDescription WHERE 1id = Location.lid

INTERSECT st.A) > O GROUP BY Location.lname

3.4 Faceted Exploration User Interfaces

Faceted and dynamic taxonomies are used more and more nowadays in a plethora of application
domains, and recently also in general purpose Web search engines®. There are already several
applications of faceted metadata search in e-commerce (e.g. ebay), library and bibliographic
portals (e.g. DBLP), museum portals (e.g. MuseumFinland [23]), mobile phone browsers (e.g.
FaThumb[24]), yellow pages portals (e.g. Veturi [27]). There are also some attempts to apply
this interaction paradigm over Semantic Web (e.g. [21, 29, 32]), as well as over general purpose
web search engines (e.g. Google Base), and interaction frameworks (e.g. mSpace[44]). Below
we will discuss some user interfaces from various implementations.

The Flamenco interface permits users to navigate by selecting from multiple facets [59]. The
information base is specific and contains art, architecture, and tobacco documents. Additionally,
It provides an additional service that gives user the ability to see the description of an object.
When user put the pointer of his mouse over an object 0 s.t. o € I(ctz) then the terms t € Dy(0)
are highlighted. In Figure 3.7 the displayed images have been filtered by specifying values for
two facets (Materials and Structure Types). The matching images are grouped by subcategories
of the Materials facet”s selected Building Materials category.

Sacco in [42] proposes faceted exploration interaction scheme for government e-services which

are available to citizens. The information base of such services is so complex and the usage of

Se.g. Google Base (http://base.google.com/)

47

° Refine your results further within these |Materials = building materials g| startover
categonas:

|Structure Types > architectural elements » circulation]|

Peaple {aroup)
architect {+1), author (1), historical figure (1) _ .
Search | © allitems & within current rasults

Locations
Africs (1), Asia (2), Morth &merica (7), Westem 21 items (grouped by materials) e ungrouped iterm
Europe (4)
Structure Types: all > architectural elements > masonty ¢
circulation {group) 3
stairs (21) . .

P=l]
Materials: 21l = building materials k:i /
masonry (4), shingle (), stonewark (g), tile () I | .

| 1
Periods {group ?;ﬁ el | |
17 218th G (2), 19th Century (1), 20th Pohjola Building Pahjola Building Theorie ot la pr... Trinity Church
Cenlury (11), lslamic-Hegira, 622 CE (1), Halsinki Halginki Boston
Modem (3) Gesellius, Lindg, Geselius, Lindg,.. Richardsan, Henr..,

Styles (grou)
Adican (4), Asian (3), European (+4), lelamic (), ~ -Shingle 4
Marth Amencan (7)

View Types [groun)
decorative elaments (+), exleror details (2), axlerior

vizws (5, interior views (g)

Concepts
in the ans (7, religious (1)

Pl o %

Hopps House Happs Hause Wnght House
P Ross Ross Ross Dak Park
Building INa_"‘“ 19"'_”21() Vignal (4 Mayback, Bemard... Maybeck, Bernard... Maybeck, Bamard... Wiright, Frank LI
Lasa Batlin | Casanovas (1), ignal (1),

Grasl Timbabwe (), Guell Park (2), Hopps

Housz (3}, Jehangir Mahal (), Pahjola Building {, _Stonework 8
Qazizadeh Rumi (2-Cupola Mauselzumi (4),

Figure 3.7: Flamenco User Interface

Theotie et la practique de la coupe des pierres (1),

Trinity Church (#), mare,

the specific interaction scheme make it easier. Figure 3.8 depicts the e-government portal which
classifies all e-government information in 7 facets.

An other application domain of dynamic taxonomies is the Semantic Web. Searching for a
specific information in Semantic Web is not easy as data have heterogenous character. /facet is
a browser for Semantic Web developers as an instant interface to their complete dataset [21]. It
gives user the ability to navigate through facets and make zoom operations based on properties.
Additionally, /facet browser can handle any RDF'S dataset without any additional configuration.
Figure 3.9 shows /facet user interface.

At the same domain, MuseumFinland publishes heterogeneous museum collections on the
Semantic Web [23]. It shares a set of ontologies and makes its rich collection semantically
interoperable. The portal provides faceted exploration services over these collections (see Figure
3.10).

Fathumb is a novel approach for supporting faceted exploration services on hierarchical
metadata from a mobile phone [24]. Figure 3.11(a) shows the user interface of Fathumb where
Yellow Pages listings are described by 6 of 8 available facets e.g. category, distance, location,

hours, price and ratings. Facets favorites and shortcut are inactive as their count information

48

SERVICES LIFE EVENTS WHERE ARE YoU NCITIZENSHIP SPECIAL RIGHTS WPROFILE

Income taxes (20) Hawing a child (12) offline senice (75) abroad (15) [talian (500 Waomen (35) Sex (539)
Job gearch services (3) Studying (359) online sewvice (373) Raly (524) EL (480) Senior citizens (B7) Age (535)
Social security “Working (B7) guide (@3) extra-EL (58) Handicapped (B5) Education
contributions {12) Transportation {(43) Relationships (43) (539)
Personal documents (7) Housing (30)
Car registration (4) Family (55)
Application for building Paying taxes (57)
FrEEE (2 Gaing abraad (1)
g;;laralmn to the police Health (&0}
Public libraries @) Ef ()

Paolice (35)

Certificates (40) X
Enrollment in higher Leisure and culture (44)

education / university (7) Helping others (12)
Change of address (4) Retiring (15}
Health related serices (B0)

Figure 3.8: E-government portal with dynamic taxonomies

eoe MultimediaN E-Culture Facet Browsing (=]
Select Type - |Select Facets for: Work search facets of Wo

Contributor ¥ Coverage ¥ Creatorv Formaty Subject and Keywords v Title w

¥ vra:VisualResource |

Creator X | Date X | Material. Medium X

v vp:Subject
» aat:Subject

1867 u m aatoll paint m
1]

¥ ulan:Subject 1873 > aatwater-base paint 1]
ulan:Person 1 1875 1]
1875-1876 EI“:
1877-1878 ﬂ',‘.
<< complete tree << all nodes << all nodes << complete tree

Constraints
ulan:Person birthPlace = Provence-Cote d'Azur x
ec:Work Creator = Cézanne, Paul x

Results grouped by Creator v

ulan:Cézanne, Paul (123)

The Abduction 51l Life wilh Apples Sl Life wilh Flowe ... Apples and Oranges [P ...
Cézanna, Paul 1000 Cézanna, Paul 1000 Cézanne, Paul 1000 Cazanne, Paul 1000
1840 1850 1860 1870 1880 1890 1900

'Cmml—"—.—m’.—.—.—.'—’m.—ﬂﬂfm.—m

Impressionist ':
FOSE‘IW&SS}OHE{

Figure 3.9: /facet User Interface

49

HELSINK] %
INSTITUTE FOR
INFORMATION — e -
TECHNOLOGY - Suomen museot semanttisessa wel UsIVERSITY F HELSINKE
Unsi hakiu | Okjeet | Miyéi kaildd kategoriat | Tietoa ohjelmasta | MuseoSwomi-palaute
Sanahalou: [Fee] Ot Hakuehdot

telestilileasitvovalineet (219),
kansanlaskinnan tyovahneet (1),
luokittelemattomat tyovakineet (36),

ma&wlm_ _ova_li]nt(i‘)_, mem' walmeet (1),

pilkkomis ja_hrenontanusvalineet (4),
kdirjostusvalineet (9), metsatyovalineet (4),

tyckalut (22)
materiaalt (241)
henkilt (%), naotemerkit (2), kebrapun, kuosali (MBA kebrunlavta, kehripuy, rukinlapa (ECM 100 1) sneldde,
smitykset (38) ST4527 50) leuezzel, knosali (NBA visttinanhumppio,
) ST5060 26 warttinapyera (MEA

hekils (54), .

yritykset (3)

suonirauta sucneniskentarauta
(ECM 2711 1)

“Eurocsps (71)

harrastus- ja kansalasstoirinta (4),
kohteells tehtavat tomenpiteet (17),

maatalous ja_karjanhoito (2),

toimyeiden yleiset prosesst (2),

elkeinot (3), valmistustekikat (175) i

Espoon kaupmgarmsson lcokoslmat (5%, napplkoukkunapinskoudey ietkamlabds, palohosatpalohosat hontdasta VBA
Eansalismuseon kolockmat (193), (ECM 3594 264) komsiohihna (NBA ECM 614 1) ST4135 166)
Lahden kaupunsinmuse on keokoelmat (507 ST74522 32)

Figure 3.10: Museum Finland User Interface

50

1 Thai & Vietnamese _Ealb-iq-“_r.. 1 Thai & Vietnamese [(206)63 4- 52 1 Thai & Vietnamese (2066

1000 Friends Oflas (206 1000 Friends OfWlas (206)3 1000 Friends Oflas [20¢
101 Audo Sales [208); 101 Lt Sales 101 futo Sales
101 Deli & Grocery M (42 101 Deli &Grocery b (425 10t Rvenue Gym

1031 Adwantage 206 1031 Exchange Coord [425)363-6460 1200 Bistro & Lounge [206]320.1200

Category | Distance Location Seatle East Side Ballard | Beacon Hill | Capitol Hil
(3BT7Z) (38773) [34506) tEa3d; (14412) (631) (150%) (2BB1)
Dowsrtowwn | | Fremont
[2542) (1761)
Hours Price Rating Magnulia Queen Anne Unnrersmr
(3BT7Z) (5182) (5182) (606) (1952) 476)
| Location | Return to Top Seattle | ldurltoTnp
l { | l | [
1 2 |53 Il 2 3 | 2| mal
45| | 4|5|EI & 5| 6 |
788 B0 EoE 7] 8] 9] 7| EoE| EoE|

Figure 3.11: Fathumb User Interface

is zero. To zoom in a facet you have just to select the relative button from mobile’s keyword.
In Figure 3.9(a) user selects the facet location. Figure 3.9(b) shows the zoom-in points of the
location facet. User has the ability to zoom-in or go back to his previous selection (zoom-out)

or return to top in order to select an other facet (see at the bottom of mobile screen in Figure
3.9(b),(c))-

An other faceted exploration system on Yellow pages described in [27]. The yellow pages
service portal Veturi contains some 220,000 real-world services. The user interface of Veturi is
based on on-the-fly semantic autocompletion of keywords into categories, made possible by the
use of AJAXS techniques. Figure 3.12 depicts the search interface of the Veturi portal where a
user trying to find out where he can buy rye bread in Helsinki. He has already selected Helsinki

as the locale for the services he requires and he is in the process of describing the actual service.

Finally, a faceted exploration interface that use more and more the academic community
is the Faceted DBLP7. User can search publications by author or venue and the answer of his
query are loaded to the faceted search system. Faceted search engine provides 4 facets: venue,

author, year, publication type. Figure 3.13 depicts Faceted DBLP interface.

6 Asynchronous Javascript And XML
"http://dblp.13s.de/?q=&newQuery=yes&resTableName=query_result9prpDC

51

i Veturi - Alykas palveluhaku F

Kuluttaja O | Tuottaja O | | Mita? fruis O | | Prosessi|buy 0l | Paikka [Helsinki o
Fe-: 3 @-a ' Helsinki[Helsinki, Helsinki]
Helsinki) toimija: elif, organisaati R e e e] (30428)
Puhelinlakimies Andritz Oy Arkkitehtuuritoimisto livana valtlo (2175/18200) q : (768/5082) isto Katetuotto
= = B0 thmisen valmistama =3 omistuksen-, §
Oy Elatusvelvollisten Liitto ry Master-Rahoitus Oy Kuva] tuotos, tuote (979/9449) (hallinnonsiirtaminen =snnus Oy A & S Virtual
Systems Oy A & T Direct Oy Ab A & Top-Siivous Oy ANE & tuote (660/7837) 3| (B;'SEMJ don Oy Rasalas Kustannus
B =
/ Rasalas-Instituutti Oy Aallon Tilitoimisto Oy Aalto Iris D ¥ — 1 . rahoittaminen stot Aalto-Setdld Mikko
Lakiasiaintoimisto Aamulehti A-Antti Tmi| Aapiskukko A kulutusmenot N (EACE)
—————————— (660/7837) Jyaihtotapahtuma
B f liiketoimi (380/3804)

Lapinlahti : Elintarvikkeet ja o
Lapinlahden taimitarha Alusocsuuskunta Promilk Driving : juomat (77/543) 7t liiketapahtumalbuy] zn Kotiliha Autoilija
Vaaninen Unto Viherpalvelu HortoSavo Oy Vihertaimet F | B CElintarvikkeet | EENEIY vakka S-Market Veturi VAK

= — = (77/543) Uyertaileminen (3141602
Lapinlahti Oy Kello ja Kulta Jyrkkdnen Vanhustentukiry : Oviljatuotteet = B0 sisaldntuottaminen Lapinlahden Tili
Oy Lapinlahden Yrityspalvelu Eliisa Juutinen Tilitoimisto | jaleipa ¢ | -kehittaminen, kielen et

= E KRI[ruis] kéantdminen (433/2920)
Mikkonen Teboil Teknopuu Hottinen Oy Telatalo Rénka | (42/354) 10 =] opastaminen, [it O lloinen Viivi
; : H 1 Liha (KR hallinnon hoitaminen

Ky Taidevalimo Kurantti Oy R ERRLE J

Figure 3.12: Veturi User Interface

©DBLP: Joseph Sifal
File Edit View Go Bockmarks Took Help
b = - " P -
o -t - B) @) [. informatic.uni-trer e~ ey/db/indices ar tres/s/Sfakis Joseph. html
Getting Started [GrooglePublication pdf... Y Latest Headlines || Agent_Grid_cluster_fin... [about:blank

v
Joseph Sifakis
List of publications from the DBLP Bibliopraphy Server - EAQ Facets and more with Compl ch
Coauthor Index - Ask others: ACM DLGuids - CiteSeer - CSB - Google - MSN - Yahoo autharjosephsifakis
Home Page
2007 Refins by AUTHOR
87 EE Taceues Combaz, Jean-Claude Fernandez, Joseph Sifakis, Loic Strus: Using Speed Diagrams for Symbolic Quality M IPDP3 2007, Susanne Graf (15)
18 Serzio Tovine (14)
96 [EE |Ananda Basu, Laurent Mounier, Marc Poulhiés, Jacques Pulow, Joseph Sifakis: Using BIP for Modeling and Verification of Networked Systems| | Jregor Goliler (10)
A Case Study on TiyOS-based WNetworks. MCA 2007 257-260 Hawier Micolln (10)
95 [EE (Gregor GeBler, Susanne Graf, Mila E. Maister-Cederbaum, Monitz Martens, Joseph Sifakis: An Approach to Modelling and Vertication of [tmore)
Component Based Systems. SOFSEM (1) 2007 295-308 Refine by VENUE
2006 CAV (6)
94 [EE [Thomas 4 Henzinger, Joseph Sifakis: The Embedded Systems Design Challenge. FM 2006: 1-15 ICALP (4)
Inf. Comput. TANDC)
93 [EE Toseph Sifalis: WPDRTS keynote: component-based construction of smbedded systems. IPDPS 2006 i“ft CI‘;‘;“ "Atcm (3‘; “
ctaTnf (.)
92 EE MMarc Poulhits, Jaceues Pulou, Christophe Rippert, Toseph Sifakis: A Methodology and Supporting Tools for the Development of [more]
Coup Based Bmbedded Systems. Monterey Worlcshop 2006 75-96 —
91 [EE |Greger Gébler, Susanne Graf. Mila E. Maister-Cederbaum, Moritz Martens, Joseph Sifakis: Ensuring Properties of Interaction Systems Refine by TEAR
Program Analysis and Compilation 2006; 201-224 1982 (8)
90 [EE [Ananda Basu, Marius Bozga, Joseph Sifakis: Modeling Heterogeneous Real-time Components in BIP. SEFM 2006: 3-12 1891 (6)
o0 1992 (5)
= 2005 (8)
85 BrunoB Toseph Sifakis: Embedded Systems Design: The ARTIST Roadmap for Rescarch and Development Springer 2005 [more] v

Daone

Figure 3.13: DBLP User Interface

52

3.5 FDT in Commercial Web-sites

Section 3.5.1 presents a number of commercial faceted metadata search engines while section

3.5.2 describes an open XML specification for defining and sharing faceted classification schemes.

3.5.1 Commercial Faceted Metadata Search Engines

Table 3.3 lists a number of faceted metadata search engines and for each one of them some

commercial sites in which they are used.

Metadata Used in commer- | Support Support over Support | I/O Formats Other supported
Search Engines cial sites of of DBMS of re- features
Zoom- | count mote
in infor- sources
Points | ma-
tion
Knowledge Non Com- | Yes Yes No Yes rule-base au-
Processors® mercial: toclassifier for
tiziano.di.unito.it, XML sources,
erare.di.unito.it integrated 1R
component
CAMELIS personal data Yes Yes No Yes CSV, JPEG, | automatic and
(URLs) | MP3, BIBTEX manual classifi-
cation, querying
by examples, ex-
port of playlists
and slideshows
i411 ElectionsOntario.on Yas Yes Yes Yes HTML, XML, | Predefined tax-
DeTele- PDF, DOC, | onomies and
foongids.nl, PPT, XLS, ... categories, com-
iLocal.net pressed on-disk
storage.
Mercado Blockbuster.com, | Yes Yes Yes Yes Integrates with
Sears.com, external per-
USOPNet.com, sonalization
officemax.com systems.
Siderean Sea- Indiana Edu- | Yes Yes Yes Yes XML, RDF, | Predefined tax-
mark cational Clear- RSS, flat files. onomies and
inghouse, For- categories, uses
tunoff.com, RDF an inter-
Environmental- mediate storage
HealthNews.org format.
Endeca TowerRecords.com|, Yes Yes Yes Yes XML and | Predefined tax-
BarnesAnd- database im- | onomies and cat-
Noble.com, ports egories
Spiegel.com,
Cabot-Corp.com
Solr Repubblica.it, Yes Yes Yes Yes HTML, OpenOf- | It uses the
StubHub.com, fice, DOC, XLS, | Lucene Search
Archive.com, PPT, IMAP, | Library and
Chowhound.com, RTF, PDF, etc. extend it.
CNet.com
Google Base base.google.com Yes No No Yes PDF, XLS,
TXT, HTML,
RTF, WPD,
ASCII, XML

Table 3.3: Faceted Metadata Search Engines in commercial sites

53

<?xml version="1.0" ?>

<xfml version="1.0" url="http://domain.com/xfml/map1.xml" language="en-us">
<facet id="from">By From</facet>
<topic id="eu" facetid="from"><name>Europe</name></topic>
<topic id="it" facetid="from" parentTopicid="eu"><name>Italy</name></topic>
<topic id="gr" facetid="from" parentTopicid="eu"><name>Greece</name></topic>
<topic id="ro" facetid="from" parentT opicid="it"><name>Rome</name></topic>
<topic id="mi" facetid="from" parentTopicid="it"><name>Milan</name></topic>
<topic id="ma" facetid="from" parentTopicid="mi'><name>Malpensa</name></topic>
<topic id="li" facetid="from" parentT opicid="mi"><name>Linate</name></topic>
<topic id="at" facetid="from" parentTopicid="gr"><name>Athens</name></topic>
<topic id="cr" facetid="from" parentTopicid="gr"><name>Crete</name></topic>
<topic id="ch" facetid="from" parentTopicid="cr"><name>Chania</name></topic>
<topic id="ir" facetid="from" parentTopicid="cr"><name>Iraklio</name></topic>
<facet id="to">By To</facet>

<page url="http:/flight1.com/">
<tite>Flightl</title>
<description>Flight 1 from Malpensa to Heraklion</description>
<occurrence topicid="ma" />
</page>
</xfml>

Figure 3.14: XFML file example

3.5.2 XFML

eXchangeable Faceted Metadata Language (XFML) is an open XML specification for defining
and sharing faceted classification schemes [2]. It provides a simple format to share classification
and indexing data. The building blocks of a faceted hierarchy in XFML are facets and concepts
(or topics). A facet is the top node of each tree. The nodes in the tree are called topics. XFML
can define multiple hierarchies, and each hierarchy is a facet.

The <facet id="from”>By From< /facet> tag denotes the facet with name ” By From” while
the <topic id="it” facetid="from” parentTopicid="eu”><name>Italy< /name>< /topic> tag
denotes the term Italy € Tpyrrom as facetid property defines the facet that term belongs and
Italy € N(Europe) as parent Topicid parameter denotes his parent. The <page> tag denotes an
object while <occurence> tags denote the Dj(0). Figure 3.14 depicts the materialized faceted
taxonomy of our running example expressed in XFML.

There are not a lot of tools that support this standard. Drupal® is a content management

system which gives user the ability to export XFML. Facetmap'® lets you import and browse

9http://www.drupal.com
Whttp:/ /www.facetmap.com

54

XFML files, and Taxomita'! is an authoring tool built around XFML.

Hhttp://www.taxomita.com

35

56

Chapter 4

fleXplorer & Applications

9/ 4 7 7 7 7 7

Ooa e tn Aoyikn Ppiokes owotd, avtd epdpiooe ta kar atn npdén.
y ’ 7 7 ’)
Ooa Oev mpénar va kdveis, olte va ta orépreoal.

Iooxpdne (436 n.X. - 338 n.X.)

This chapter presents and describes an API for providing faceted exploration services. Fur-
thermore, it presents various implemented applications and experimental results. In more de-
tails, Section 4.1presents fleXplorer , a main memory API for supporting faceted exploration.
Section 4.2 and 4.3 present two applications of fleXplorer on web search engines. Finally, 4.4

reports experimental results on DB-R architecture.

4.1 fleXplorer API

fleXplorer isa main memory API for providing faceted exploration services [56]. fleXplorer fol-
lows the minimal storage approach (I, <), supports both EVM and SVM visualization modes,
and Extension Intersection-based computational approach. Moreover, it supports both click(t)

and feed(A) operations.

4.1.1 Specifications

fleXplorer allows managing (creating, deleting, modifying) terms, taxonomies, facets and
object descriptions. It supports both finite and infinite terminologies (e.g. numerically-valued

attributes). In addition it supports explicitly and intentionally defined taxonomies. Examples

o7

of the former include classification schemes and thesauri, while examples of the latter include
hierarchically organized intervals (based on the cover relation).

The implementation is in Java, so the predefined ordering of built-in types (e.g. of int,
float, String), as well as the customized ordering defined for user-defined Java classes (e.g.
through the comparable interface) is exploited. To allow intentionally defined partially or-
dered domains, a partiallyComparable interface has been introduced and can be used by the
developer. The framework also supports parametric types. Subsequently, regarding internal
architecture, for each term ¢ € 7, fleXplorer stores the I(¢) and the N(t).

Regarding, interaction, the framework provides methods for setting (resp. computing) the
focus (resp. zoom-in points). In addition, the framework allows materializing on demand the
relationships of a taxonomy, even if the domain is infinite and intentionally defined (e.g. between
numbers, intervals, etc), as this can accelerate the computation of N (t) at the cost of extra main
memory space (to keep the relationships). Regarding deployment, the framework can be used
either at the server side or at client side, depending on the case. Finally, the results can be loaded
on fleXplorer in 4 different ways: JDBC ResultSet, XML file, TXT file and ResultDocument
(is an Object that have been defined in APT).

In more detail, fleXplorer supports:

e State Transitions

— click(t), by defining term’s name

— click(t), by defining term’s id

— click(t), by defining term’s taxonomy path
— feed(A)

— boolean expressions which allow multiple click(t) operations

e Facets’ Structures

finite and infinite terminologies

— explicitly and intentionally defined taxonomies

intentionally defined partially ordered domains

— DAGs

58

e Loading / Storing

loading objects from JDBC ResultSet

loading objects from XML files
— loading objects from TXT files

— loading objects as ResultDocument (is an Object that has been defined in APT)

loading/storing faceted taxonomies in TXT and XML files under specific format
e Other Functionalities

— checks for redundant relationships
— checks for cycles

— zoom-in points ranking by: (a) count descending, (b) count ascending, (c) alphabet-

ical order descending and (c) alphabetical order ascending

The official website of fleXplorer is: http://www.ics.forth.gr/~tzitzik/flexplorer /index.html

4.1.1.1 Class Diagrams

Figure 4.1 presents the class diagram of the API. The main packages of the API are described
in more details in the Figures 4.2 - 4.7.

APT contains 13 packages. They are described below:

1. Terms: The classes of this package implement the entity Term. The objects are classified

under a Term. A Term in the Ul layer is a zoom point.

2. Terminologies: This package manages the functionality of a facet’s terminology, where

terminology = a list of Terms.
3. Taxonomies: This package implements the relationships between the terms.
4. Facets: A facet has a Taxonomy and a name.
5. FacetedTaxonomies: A faceted taxonomy contains a list of facets.

6. MaterializedFacetedTaxonomies: This package implements the entity: materialized

faceted taxonomy. A materialized faceted taxonomy contains a faceted taxonomy and the

39

—_

11

objects which are classified under the terms of the faceted taxonomy. The classes of this
package provide methods for defining the focus, computing the legal objects with respect

to the focus, computing the new zoom-points and their counts etc.

7. Types: The framework supports parametric types, this package defines these parametric

types.

8. Comparators: This package contains various comparators.

9. IndexesSetting: As we already described in 4.1.1, fleXplorer can load objects with 4

different ways. The classes of this package supports this functionality.

10. Storing: The classes of this package support the storing of a materialized faceted taxon-

omy in txt and xml files.

11. Resources: This package contains a class named Resources. This class contains various

resources for the API such as the global name of the T.
12. Util: It contains various utile classes and methods.

13. BooleanParser: This package contains classes which implement a boolean parser.

4.1.2 An Example of Using the API

In this section we present an example of using the fleXplorer API for constructing a materi-
alized faceted taxonomy that consists of two facets (one flat and one hierarchically organized)

and three classified objects. The example shows two ways for setting the focus.

public class DemoAPIClient {
public DemoAPIClient () {}
public static void main(String [] args) {
// Creates a new materialized faceted tazonomy
MFTMEM materializedTaxonomy = new MFTMEM(” Mitos DB”, Counters.TRUE, ObjectFacet

.YES) ;

//Creates the faceted tazonomy

FT facetedTaxonomy = new FT();

// Filetypes’ Tazonomy

60

class code 7

FacetedTaxonomies

«interfaces
FT

el

-isl_gerder wenumerati...
i Facet=0Order
sl
B

—

«intertaces

1Ter

Terminologies |

MaterizlizedFacetedTaxonomies |

«enumerati...
Object Facet

wenumeratio..

Arc'—-:.conﬁputati

«enumerati...

an Courters

*
~of b archite ctuy r;‘?

=

Ter mimology

Taxonomies

«wenumeratio...
Materialization

wintefaces
I Tazonomy

-\ralidatio%

wenumerati...
Haslists

wenumeratio..
“alidation

BooleanParser

CBool Fkt

" MET Sedalizable
= MFT_MEM
Type:extends FacisType: s .l’”'
|
i IndexesSelny |
CompoundTerm HEEASS '|I Resources
comparability ML ; Docurments|ds Resources
—._D Seffing <]__
«enumerat...
Cormparisarn /§7 & V\
THT Resultset SEnng
-comparabilityﬁ Documerts
inHML InTXT
wtends Face{sType:
i Types e D 3
T T e | Type:extends Comparable=Type= I
f::\, winterfaces BE S |
MWerminelogy =lhpe IrtegerType nteral Type
P
V | Typeextends Co mparab|e<Type>:
1 VR | |
=tinghipe = FacetsType Lirnit
J e e R e [ey I o i
Type:extends FacetsT:
: TR SRS e ype: L Type:extends ComparabledTypebl
e e R e s 1
|
] i T by = e P e e
Dﬁe‘-;ch:ckRel Docurmert Document ds Irterwal
T=xomd my wenumearat...
= CheckRel

Comparators ’.‘J

Y

«interfacas
FPardiziCamoarable

cenumerations
Partial Comparizon

Comparator
StringType Camparator

-eBoalFit \

BooleanExpressionsParser

Comparztor Comaaraior
TerrmCourt Camparator Integer Type Comparstor
«enumeratio... Facets
Actions
! Type extends Face{sType: =
winterfaces | | il
IFaced [d] Facet type
—==sl wenUmeEr.. ZPSorting DateTaxonomy Lilities
IndexType

Figure 4.1: fleXplorer Class Diagram

61

Terms | e e |

| Typeertands FacetsType |
-

Tarm
comparability; Comparison xIterfa ey CompoundTerm
count: int=0 !Term

Tt - 1d: Int

sudindexfat) ; haclean
cleadderes)) | moid
comtainsidexfntl | boalean
getdllinderest) ; Hesh Setsirtegers

#OFT
terms: Hashhiap<Sting ArayList<integers> = new HashMap<Str...

indexes. Hash3et<Integers = new HashSet<int...
walue: Type

setTemid fat) ; void
setTem Valwe (Tyoe) : void
i Sting () : Sking

SetFT(FT) : waid
toStringti : Sting

gethumDiLegalldsHashSet<Integer= : int
getTemidn : int

getTemiialue) : Type

hashCadeg : int

isomparablef): boolean

i
3
-
4
Term 0 ; + CompoundTermint, FT)
Telm?Type Comparizon) SR sl Sl + addTerm(Sting, int): boolean
1€ : + getCounty) int T :
::zggz ::;Cnmpansnn) i etiiexe 0 il sk setdiegae : :zﬁIanrrgnlue‘lt:rr'}ohé:(T:onlrer\apnnundTerm) haalean
Te,m(TE”.n‘T.Wm : gz:nrumoméexesa oy] Hash) : con:amsfracei(thh.ing) : l:o.oiljear‘\
addindexint) : bo?lean + gt OFLeyalkistHack Setaittegers) : int containsTermc: .nng‘.lnj.. oolean
clearindexes)) : woid © getTermig int + remeveTerm(Sting, int): boclzan
containsindesdint): boclean - [O + removeFaceifSting) : void
squalsObject) : boolean S + getSize :int g
gemlwlnnexesp_- HashSeKIn?agerb + nirdexestistEnptyQ - boclean & gelTermS(Sl"rfg) : Auraylist=integers
getComparabiliby) : Comparison + is2Pitiash Seteiriogers) - hovlean + petaliTamal): Haslap Shingi Ayl tiinta gera
getCount)) : int L Reimmas g APoian + geffacetsn: Araylist<Sting
getindeses() : HashSetzintegars e (e e * ogetidg:int
getlegalldstHashSet<Integer=) : HashSet<integers 3 etCourmtgnt) + setld(int) : woid
gethumOfindexes : int i + getFTO:FT
: .
4

P

izindexesListEmpty(l : boolean UL BI]
isZP{HashSetInteger=) : boolean wenumerations
remowvelndexint) : boolean Comparison
setComparabilitComparison) : void

setCountlint) : woid wEOUM»
setTermld(int) : void COMPARABLE
setTermvalue(Type) | woid HOHCOMPARABLE
taString() « String

Figure 4.2: Terms’ Package Class Diagram

Taxonomy<StringType> filetypeTaxonomy = new Taxonomy<StringType>(" Filetypes”,
CheckRel .FALSE, Comparison .NONCOMPARABLE, HasLists .FALSE, ”String”);

// Domains’ Tazonomy

Taxonomy<StringType> domainsTaxonomy = new Taxonomy<StringType>(”Domains” ,

CheckRel .FALSE, Comparison .NONCOMPARABLE, HasLists . TRUE, ” String”);

// Creates the relationships of filetype tazonomy. The facet is flat.
filetypeTaxonomy .setTerm (new StringType(”pdf”));
filetypeTaxonomy .setTerm (new StringType(”doc”));
filetypeTaxonomy .setTerm (new StringType(”txt”));

// Creates the relationships of domains tazonomy. The facet s hierarchically
organized .

domainsTaxonomy .addHead (new StringType(”gr”));

domainsTaxonomy . setRelship (new StringType(”gr”), new StringType(”uoc.gr”));

domainsTaxonomy . setRelship (new StringType(”gr”), new StringType(” forth.gr”));

domainsTaxonomy . setRelship (new StringType(”uoc.gr”) ,new StringType(”csd.uoc.gr”))

domainsTaxonomy . setRelship (new StringType(” forth.gr”) ,new StringType(”ics.forth.
gr”));

// Add tazonomies to facets.

Facet<StringType> facetl = new Facet<StringType>("By filetype”, filetypeTaxonomy ,
IndexType.SIMPLE) ;

62

Terminologies

Terminology

listOfTerms: Collection<Term<FacetsTyper> = neuw AmayList=T...

comparability: Comparizan
seqMumber: int
name: String = new String)

R T T T

Terminologyl)

TerminologyString)

Terminalagy(String, Comparisan)
deletepllindexes) : boolean
setSeqMumbening) : void

getSeqMumben: int

incrieqMumbenint) : waid
decrSeqiumbenint) : woid
setComparabilibdComparizon) @ void
isComparablel): boalean

getComparabilit] : Comparison

clean] : vaid

containsTerm(F acetsType) : boolean
containsTermWithld(int) : boolean
getTermiFacetsType): Term=FacetsTypax
getTerm(Term<FacetsType=): Term=FacetsTypes=
getTermiint): Term=FacetsType=
getTermilfithldiint) : Term«FaceteTypes
getTerminologyl : Collection=Term=FacetsTypes=»
getMamel : String

sizel) @ int

isEmphi) : boolean

remove Term(Term<FacetsTypes): boolean
removeTermiF acetsType) : boolean

remove Termiliithldint) : boolean

remove Termiinl: Term<FacetsType>

setTermiF acetsType) : Term<FacetsTypas
setTerm(F acetsType, int): Term=FacetsType>
setTerm(Term<FacetsTypes): boolean
setMamelString) : void
setTerminologyiCollection=Term=F acetsType==): waid
setTermaCollection=Term=FacetsType=>1: boolean
getTermldiF acetsType) : int
setTermsWaluesCollection=Type=): boolean
toSting() : String

winterfaces
Terminology

S e

delete Allirdexes]) : hoolean

set SegMlumberniat) © void

et SegMumben et

inerSegiiva henfat) © woid

decrSegMumbenint) @ void
setCompambiityCompanison) @ woid
isCompaailel) - hoolear

getCompaability() : Companisor

clean] v

cortains Tem Facets Tyoe) - hoolean
comtains Tem Withid frt) - boolean

et Tem (Facets Nyoe) @ Tem <Facets Tioe=

et Tem (Tem =Faoets Type =) © Tem =Facets Type=
getTem frt) @ Tem <Faceds Tioe =

gped Teme Wit frt) @ Tem <Facets Tipe =

get Femirology] © Collection =Tem =Facets Tipe ==
getiane] @ Shimg

size) int

isEmoty() : hooleam

rearoue Tem (Tem <Fzcets Type =) - hoolean
redroue Tem (Faoets Tyoe) @ hoolesn

rearove fea With & frt) @ boolean

mearoue Tem frd) @ Fem <Facets Tipe=

et Temr (Facets Thoe) o Temr <Faoets Toe =

et Tem (Faeets Type, int) @ Term<FacetsTioe=
zet Temr (Tem =Facets Tyoe =) boolear

sediiznee (Shirg) - vodid

et Temrinolog yiCollection =Tem <Facets Type =) woid
set Temrs{Collection =Tem <Facets Tyoe==) - boolean
et Temid (Facets Tyoe) @it

et Tems ValuesiCollection < Type =] : hoolean
toShing () : Shing

Figure 4.3: Terminologies’ Package Class Diagram

63

Taxonomies

Tearinology
Cloneshie

Taxenamy

name: String = null
checkRel: CheckRel

hasLists: HasLists

type: Gtiing

walidation: Validation

parents: MapsTermsFacetsType>, CollectionsTermsFacetsType»»> = new Hashhap=Ter.
children: MapsTermsFacetsType> CollectionsTermsF acetsTypes>= = new HashiapsTer
topElement: Term<FacetsTypex

R T

+ 4

)

Taxenomy(Taxzanomy<Typas)
Tazanomy)

Taxenomy(String)

Taxenomy(Sting, CheckRel, Comparison, HasLists, Sting)

getTyped : Sting

setType(Sting) : void

setH asListgHasLists) : woid

setTaxanomy(T axonamy<?s) : void

hasListsr) : boslean

sethameString) : woid

gettameq) : String

chedRell) : boolean

setithe hReliCheddel) : void

printDirectChildren(T erm=Type=) : vaid
printDirectParentsT erm= Type =) < void

sefvalidation(Walidation) : vaid

getValidationd : Validation

remaveDirectChild(Term=<F acetsTypa>, TermeF acatsTypes): boolean
remuveDirectP srentT erm<FacelsType>, Temm<F acelsTypes) : boolean
dirertChildrenSize(Term=F acetsType=) : int

containsChild(int, FacetsTyped : boolean

cantainsChildgint, inf) : boalean

cantainsP arent(int, FacetsType) : boalean

cantainsP arent(int, int) : boalean

directP arentsSize(Term=F acetsType») : int

directP arentsSiza(int) : int

directChildrenSizeint) : int

addParent(TemeF acetsTypes, Term<F acelsTypes) : boalean
addParent(int, inf) : boolean

addChild(TermsFacetsType=, Term<FacetsType=) : boolean
addChild(int, int) : boolean

gethumOfRelations) : int

getAlliRelations0 : hiapsTerm<F scetsType= CollectionsTerm<F acetsTyper=>
2ddAIIToP arentsLis Term<F zcetsTypa>, Collzction<Tarm<F acetsTypas=1: boslean
addAlIToChildrenLisi Term<F 2cetsType>, Collection<Tem<F acetsTypas>]: boolean
getTemmid(String) : int

getirectChildren(Term=F acetsType>) ; Collestion=TermFaseisType=>
getbirectChildren(int) : Collestion=Term<F asetsTypes>
getbirectParents(Term=F acetsType) : CollectionsTermsFacetsTypes>
getbirectParentsint) : CollectionsTermsFacetsTypes>
isDirectChild(Term=F acetsTypes, Term=FscetsTypes): boalean
isDirectParant(T erm <F acatsTypes, Term<F acetsTypas) : boslean
getHead): Term<F acetsTypes

getTopElementld) : int

isZP(int, HashgeteInteger) : bonlean

getCountiint, HashSet<integer=) : int

getCount(TermsFacetsType, HashSetsinteger=) : int
getCount{HashSetsinteger) | HashiapsTemmsF acetsTypex, Infegars
getAlllasing) : HashSet<integars

getAllldsTerm+F acetsTypex) : HashSetsintegers
getAIIChildren(Term <F acatsTypes] : AnayList<Term<F acetsTypass
remavealiTheOthe rind exesint) : vaid

removeRelshipGint, int) : boolean

remeveRelship(Teim<FaselsTypes, Teim<FavelsType=1: boslean
getAllFarentsTems<F acetsType=) : AnayLists Term=F acetsType»»
getallF arentstithHierarchy(TermsF acetsTypex) : Hashhiapsinteger, CallectionsTermsF acetsTypes»»
getTemmP athiind) : String

getAllParentsint - CollectionsTermsFacetsTyper»
i=Child(Term<FacetsTypa, Term<F acetsTypes): baolean

isP arent{Tem<F acetsType>, Term=F acetsType=) : boalean
saiRalzhip(Teim=FacatsTypes, Tarm<F acetsType]: boalean
setRelship(F acetsType, int, FacetsType, inf): boolean

setRelship(F acelsType, FacelsType) : Hashtap<Gtring, Integer>
setRelship(int, FacetsType) : int

getChildld(int, FacetsType) : int

isRR(Term=FacetsType>, TermsF acetsTypex): boolzan
isCycle(Term<F acetsTypes, Term<F acetsTypes]: boslean

toString() : String

clear) vaid

addHead(F aceisType) : int

getTopElement) : Tem<F acetsType>

is/alid(y: boolean

elimRRQ) : vaid

hateriali 3 boalean
isBroaderint, inf): boolean
isNamomerint, int] : boolaan

wenumerations
walidation Haslists CheckRel FLaEetl
wenumn cenuma cenumn r——
VALID TRUE TRUE eERIAICE
INVALID FALSE TRl pase
—validation?] Tt
sinterfaces
ITaxomomy
+ gdiTyme Sting
+ femt Ty (Siing)
sethstists vaid

T e——

setCireckRel (CheckRel) : roid
priatdmet Chitdrer (Tem <Type =) © void
printtimetPareatstTem <Fype=) : wid
setValidation (Validation) « void
getlislidation() : Validation
reaoueOimaChild (Tem =Facets Tyne =, Tem=FacetsType =) * Aoolean
riroue ‘ o=, yoex) - hoolean
directChildren Size (Tem =Facets Tyne =) - int
containsChildnt, Facets Tyne) : hooiean
contzinsChildgnt, int) : hookean
contzinsPareatint, Favets Fye) | Aoolean
containsPareatiat, int) : boolean
direotPamnts Size (Tem <Facets Type=) :int
diotPamats Size) : it
dimectChildren Size gat) : int
gethium OfRelations() - int

Map< Tyae=,Co
getDirectChildma Typex) ; Co,
getDirect Childra ft) : Collection <Tem <Facets ypess
et Paments(Tenm <Favets Tyoe =) ; Collection = fem=Facets Type ==

Typesss
o=

- Colleation= Type e
isirect Child (Temr <Facets Type =, Tem <Favets Tynex) : Aoolean
st Tyoe=, Tyne=) - hanlean

{
getresd () : Tem =FacetsTyne =
getTopElenentil() : int

et TopElenent() | Tem <FacetsType>
isZPat, Hesh Set<itegers) : boolean
getCountint, Hash Set<hiegers) :int
etCount(Tem <Favels Fypes, Hash Set<leger=] . imt

getCount] Type = integers
getAllisiat) : Hash Setsintegers

etk s Tem <Facets Type=) : Hash Set<htegers

etAl Ghildren (Temr < gcets Tyne =) : Ama plist<Tem <Facets Tyne=s
rearoue Al The Cthertrdexes(nt] : void

reiraueRelshiafat, int) ; hoolean

5 Tyoe=) ; boolean
getAliFareatsiTem<FacetsTyoe=) | Araylist<Tem Facels Toe==

\ Tyoe=) - Gallention =

Callectinn s, o

EsCinit (Fem <Facets Type>, Tem <Facets Fyne=) : hanlesn

isParmat{Tem =Facets Type =, Fem <FacetsTyne =) : hoolear
Tyoe=, Tynes) : hoolesn

setRelshipiFacets Type, int, FacetsType, int) : hoolean

setRelshipFacets Type, Facets Type) | Heshian <Sting, fiegers

setAelshipint, Favets Type) . int

getChildd frt, FavetsType) - int

isRA(Tem Facats Tyne>, Tem=FaetsTyne=) * hoolean

isCyole (Tem=Facets Type =, Fem <FacetsTyne =) : oolean

toSking) : Stirg

clear) ; void

sddrezd FacetsTyne) :int

islialin) - hoolean

liarRAY : void

setAelshipsiztedalization Matenalization) . hoolean

Tyoeemn

Figure 4.4: Taxonomies’ Package Class Diagram

64

Typeextends FacetsType :

ARt L LR LR LD TR EE]
I |
Facet «enumeratio...

IndexType

name: String

te: Taxonomys7s type e

type: IndexType / SIMPLE
COMPLEX

Facet]

F acet{String)

Facet{String, TaxonomysTyper, IndexType) sinterface s

setindexTypellndexType) : woid IEacaf

+ o+ o+ + o+ o+ o+ o+

getindexTypel : IndexType

setF acetMamelString) : void
getFacetMamer) : String

setF acetT axonomy(T axonomy< 720 woid
getFacetTaxonomyll: Taxonomy<?s
toStringl : String

sebFacetiane (Shing) - void
getFacetiame) © Shing

sebFacet Taxomonm y(Taxomom ¥ =7=) void
getFacet Taxomomy () | Taxoromy=7=
sedivdex Tyoe firdex Tyoe) - void
getirdex Tyoe) : frdex Tyoe

+ o+ o+ o+ o+

Figure 4.

: Facets’ Package Class Diagram

FacetedTaxonomies

T

FT
«enumeratio...
facetsList: ArayList<Facet<?>> = new ArrayList<F... Facet=Order
name: String
isinOrder: FacetsOrder -isinOrder| yenums
INORDER
FT UNORDER
FT(FacetsOrder)
FTiString, FacetsOrder) .
FT(String, Collection<Facet<?ex, FacetsOrden FhEEfates
IFT

add(Facet<?=1: boolean
addiFacet=7>, int1: boolean

removeF acetString) : boolean
removeF acet(int) : boolean
getFacet{String) : Facet7>
getFacet(int) : Faceta?s

setF THame(String) @ void

getF THame) : String
addAllfCollection=Facet<?>>): boolean
getfacetsLisy : Collection=F acet<7s»
toStringl) : String

numOfF acets(: int

isOrdered): boolean
getfFacetsMames)) : ArrayList< String=

Fod Faoet=r=) : hoolean

Fdd (Faoet=F=, int) - hoolean
memoueFFoetShieg) fhoolean
memoueFgoetint) D hoolean
getFaoed(Shing) | Faoetar=
getFacetfnt) : Faoet=r=

setF Thizae (Shimg) - woid

getF Thizme) : Sting

Fdo Al (Collection SFgoet=F=xR] @ hoolean
getFacetsiizt) © Colleckon SFzcet=rr=
to Shimg) - Shing

nu CfFzeete]) @ int

isCmleed] hoolezm

O Y

Figure 4.6: Faceted Taxonomies’ Package Class Diagram

65

31

36

41

46

MaterizlizedFacetedTazonomies

WET
~ name: String «enumeratio
-t FT Caunters
L «enumeratic.
~ zoominPaints Hashhap<String, Taxonamys?s# = neuw Hashhapsstr cenums pchieglne
~ zoomlnPaintshoCount: HashhMap=String. Taxonomy<?»> = new HashMap<St. ~eomputation| g
~ legallds HashSetzinteger: = new HashSetslnt FALSE. | 1 hacture “e"h:g:n
~ facets: AmayListsSting® = new AnayList<s e b
~ computation: Counters
~ zoomSidePoints: HashMap<Sting HashMap<Term<F acetsTypex, Integars» = new HashMap< St pEET
~ architecture: Architecture FAkES
~ focus: HashMap<Stiing, Stings = new HashMap <Str.
~ focuslds: Hashhap<String, Stings = new Hashhiap<str...
~ faceiDbjects: HashMap<Sting, HashSet<Intager>> = new HashMap <5t S entimieratn
~ deseriptions: HashMap=integer, Hashhlap<String, HashSetsinteger>>> = new Hashhlap<int ObjectFacet
~of
getGeneralDescription(integen) : HashhMap<String, HashSetsintegers» R
geté eneralD escriptionWithNamesnteger) : Hashhap=3ting. HashSet<Sting>» / VES
2ddDbjectDeserption(Sting, int, int) : veid NO
2ddDbjectToF acet(String, int): woid
printObjecisP erf acell) : void
printDescriptions : void Sedalizable

getDesoription(String, Integen : HashGet<intzgers MFT_MEM
getf acetDeseriptioniString) | Sting

getF asetDesoriptionifithlds(Sting) : String
getAll0bjects(String) : HashSetzintegers
getAllObjects) : HashSet<integers
getbesoriptionDF ocus() : String

changeFacetTaxonomy(String, Taxonomy<?s) : void T\
sethdF THame(String) : void

getMF THamed) : String

setCountersCounters) : waid

isCountersEnabled() : boolean

et T(FT) < waid

QetFTOFT

printF acetedTreetHashhap<Sting, Taxenomy<7>) : void
getlegallds)) : HashSet<integers

serialVersionUID: long = 1L freadOnly

WEF T_MEMD)

WF T_MEM(Sting, Counters, Objectf acet)
WF T_MEM(String, FT, Counters, Objectf acet)
worite(MF T_MER, File) : void

readFile) MFT_MEM
computeLegallds) : vaid

setf ocus(String) : Sting

setP aths(String, String) : Sting

setf asustHashSetsinteger=) ; boolean
setf ocus(Sting, Sting): String

setf ocusifith ds(String, Sting): String

P

getlumOfLegalldsCfTermiGting, int) - int - checkExpression(String, Sting) : String
getZoaminPaints() : HashMap<String, Taxenomys?sx - chedExpressionWithld=(Sting, Stiing) : Stiing
getZoominF eintsNoCount) | Hashhdap=Sting, Taxonomys?=» - chedBooleanExpression(Sting) : String
getZoomSideFoints) | Hashiap=Sting Hashhlap<T erm<F acetsTypes, Integers» + cumputeZoominFoint) : void
removeAllOtherindexeSting, int): vaid - computeZP() : HashMap=Stiing, Taxonomy<#»>
printZoomPoints(Hashiap<Sting HashMap<Term<FacetsTypes, Integers=) : void - computeZFHoCount]) : Hashhap<Sting, Taxanomy<7s>

S

addTolegalldsHashSets ntegers) : void

Figure 4.7: Materialized Faceted Taxonomies’ Package Class Diagram

Facet<StringType> facet2 = new Facet<StringType>("By domain” , domainsTaxonomy ,
IndexType .SIMPLE) ;

// Add facets to facetTazonomy
facetedTaxonomy .add (facetl);
facetedTaxonomy .add (facet2);

// Add facet tazxonomy to materialized faceted tazonomy

materializedTaxonomy .setFT (facetedTaxonomy) ;

// Each object is a Document. This list contains all the objects.
ArrayList<Document> docs = new ArrayList<Document>();

// This HashMap contains the term of each facet that a Document is classified
under.

HashMap<String , FacetsType> stl = new HashMap<String , FacetsType>();

stl.put(”By domain” , new StringType(”ics.forth.gr”));

stl.put(”By filetype”, new StringType(”doc”));

// This Document has the id 1, ranking 1 and is classified under the term ics.
forth.gr of
// facet By domain and under the term doc of the facet By filetype.

Document docl = new Document(1,1,stl);

66

51

56

61

66

71

76

81

86

91

96

docs.add(docl);

HashMap<String , FacetsType> st2 = new HashMap<String , FacetsType>();
st2.put(”By domain” , new StringType(”ics.forth.gr”));

st2.put(”By filetype”, new StringType(”txt”));

Document doc2 = new Document(2,2,st2);

docs.add(doc2);

HashMap<String , FacetsType> st3 = new HashMap<String , FacetsType>();
st3.put(”By domain” , new StringType(”csd.uoc.gr”));

st3.put(”By filetype”, new StringType(”doc”));

Document doc3 = new Document (3,3 ,st3);

docs.add(doc3);

// Creates the exztensions of each term.
Documents dts = new Documents(materializedTaxonomy , docs);

dts.setIndexes () ;

// Computes the ids that belong to the extension of the focus.
// At first the focus is the top element of each facet.

materializedTaxonomy . computeLegallds () ;

// Computes the zoom—in points

materializedTaxonomy . cumputeZoomInPoints () ;

// Gets the zoom—in points
HashMap<String , Taxonomy<?>> tmp = materializedTaxonomy . getZoomInPoints () ;

// Prints the facets.

materializedTaxonomy . printFacetedTree (tmp) ;

// Prints the focus.

System.out.println (materializedTaxonomy . getDescriptionOfFocus ());

// Sets the focus. User prefers the documents which are
// classified under term csd.uoc.gr of facet By domain.
materializedTaxonomy .setFocus (”By domain”, ”csd.uoc.gr”);
materializedTaxonomy .computeLegallds () ;
materializedTaxonomy . cumputeZoomInPoints () ;

tmp = materializedTaxonomy . getZoomInPoints () ;

materializedTaxonomy . printFacetedTree (tmp) ;

// Prints the ids of the legal Documents wrt the focus in our case the id:

System.out.println (” Legallds: ”"+materializedTaxonomy .getLegallds());

// Set the focus with a boolean exzpression.

67

101

106

materializedTaxonomy .setFocus (" {By filetype : doc OR txt} AND {By domain : ics.
forth.gr}”);

materializedTaxonomy . computeLegallds () ;

materialized Taxonomy . cumputeZoomInPoints () ;

tmp = materializedTaxonomy . getZoomInPoints () ;

materialized Taxonomy . printFacetedTree (tmp) ;

System.out. println (materializedTaxonomy . getDescriptionOfFocus ());

System.out. println (”Legallds: ”"+materializedTaxonomy .getLegallds());

4.1.3 Desktop-based Client

In this section, we present a Desktop-based graphical client of f1leXplorer for supporting faceted
exploration. In more details, it loads the facets and the records (using specific configuration files)
to the main memory and provides faceted exploration services.

Figure 4.8 presents the welcome screen of application. By pressing the "next” button, the
screen of Figure 4.9 will be presented. Here the user has to specify the configuration file for
facets. If user selects the configuration file correctly and presses the "next” button a same screen
will be presented for loading the configuration file of objects. Finally, by pressing the ”finish”
button, the objects will be loaded to the main memory successfully and the faceted exploration

user interface of Figure 4.10 will be presented.

4.1.4 Experimental Evaluation

Below we report some experimental results using the fleXplorer .

We created a materialized faceted taxonomy consists of 4 facets, each was a balanced and
complete tree with degree = 3 and depth = 5. A dataset of 10° objects was created where each
object was classified under a randomly selected term from each facet.

Firstly, we measured the time fleXplorer needs to load a number of object (or the results
which belong to the answer of a query on a web search engine). Figure 4.11 shows the loading
time of the top-L answer to the fleXplorer for 4 different methods as we have already described
in 4.1. The loading time for each answer size and for each different method is the average time

of 10 executions. It is obvious that the ResultDocument is the faster one since the data are kept

68

fleXplorer Wizard Dialog

Welcome to the fleXplorer Wizard Dialog!
This is a wizard dialog, which allows a user to configurate the fleXplorer
tool. FleXplorer is a framework for providing faceted and dynamic

taxonomy-based information exploration.

Press the 'Next' button to continue....

= =
‘ 2 Back H Lm ‘ ‘ .Cancel ‘

Figure 4.8: Desktop-based Client: Welcome Screen

fleXplorer Wizard Dialog

EEEE

=3 My Documents

=3 My Computer

=3 My Network Places
=3 acrobat

3 armenan

=3 documentation

EHI| ID

File Name: | |

Files of Type: M Files [~]

Open Cancel | o) Next | | OCancel ‘

Figure 4.9: Desktop-based Client: Facets and Objects Loading

69

fleXplorer Simple GUI

[By Location (0.
o= [Winrld (100)

.2,3,4,6,6,7,8,8,10,11,12,13,14,15,17,16,18, 18, 21, 20, 2
24,27, 26,29, 268,31, 30, 34, 35, 32, 33, 38, 39, 36, 37, 42, 43, 4
47,44, 45,51, 50, 49, 48, 55, 54, 53, 52, 50, 58, 57, 56, 63, 62, 6
|69, 70, 71,64, 65, 66, 67, 76, 77, 78, 78,72, 73, 74, 75, 85, 84, 8
a0, 83, 82,03, 92, 95, 84, 89, 88, 81, 00, 98, 98, 95, 97]

3,2[4]
0,4
1,6
7.8

1 By Season
[wiinter c28)
D Summer (28]
[snring c23)
[Auturan (213

3 By Filetype
Cypro 1)
[yipaciey
[Ty brap (14)
[yipea 14y
[y airaie
Oy tircza |

Figure 4.10: Desktop-based Client: Faceted Exploration UI

45

ResultDocument —— |
40 ResultSet - /|

XML File -
TXT File 8- *
35 | * 1

30 f s
25 f F
20 t ,

15

Loading Time (secs)
*

10

log10(Results)

Figure 4.11: Time to load results to fleXplorer

in main memory, followed by the ResultSet times, since in this case the data are stored in the
database. Parsing a txt file with predefined data locations is much slower than the above and
parsing the xml file is the slowest one. For the experiments we used a Pentium IV 3GHz with

2GB RAM and using Windows XP.

Figure 4.12 shows the time to compute the zoom-in points for the above four facets after
the selection of a zoom-in point, with and without count information. Each time is the average
time of 20 executions (5 executions for every results loading way). It is obvious that computing
zoom-in points with count information is more expensive than not computing it. From the figure
above, in 1 sec we can compute the zoom-in points of 240.000 results with count information

and 540.000 without.

70

With Count Information ——
Without Count Information ----x-- 1 |

Time (secs)

log10(Results)

Figure 4.12: Time to compute zoom-in points

4.2 Application on a Web Search Engine

As we already described in previous chapters, faceted and dynamic taxonomies are used more
and more nowadays in a plethora of application domains. In this section we describe a web

based application of fleXplorer API.

4.2.1 Mitos WSE

Mitos [35, 34] (formerly known as grOOGLE)! is a prototype Web search engine that is being
developed by the Department of Computer Science of the University of Crete and FORTH-ICS.
fleXplorer is used by Mitos for offering general purpose browsing and exploration services.

On the basis of the top-L answer of each submitted query, the following four facets are created

and offered to users:

e web domain, a hierarchy is defined (e.g. csd.uoc.gr < uoc.gr < gr),
e file type (e.g. pdf, html, doc, etc), no hierarchy is created in this case
e language of a document based on the encoding of a web page and

e (modification) date hierarchy.

Notice that each page in the top-L answer is (straightforwardly) classified to one term of

each of the above taxonomies.

In more detail, when the user executes a query, Mitos returns an ordered list with the

ids (wrt the ranking) of the documents which belong to the answer. Then, Mitos loads to

thttp://groogle.csd.uoc.gr:8080 /mitos/

71

d SeqbiagriueryEval AndFacetedExploration
Mitos - Usar Mitos - Query Mitos - Indexer FleXplorer- MFT
Interface Evaluator ! :
maks_queng)
proccess :_queng)
; get_related_files_weight)
get_nom_and_rank)) e
iR
saloulate_quen_normp)
add_pagerank_for_relative_documents() |
__ send_relative_documents_orderedQ :
cieate_fleXplarer_documents_from_results() | :
set_all_indesces()
lculate_zoom-in_points()
» send_zoam-in_points_with_counts)

Figure 4.13: Mitos & fleXplorer Sequence Diagram

fleXplorer each document with the information for each facet. The hierarchies for web do-
main, file type and language are predefined, while the hierarchy of dates can be constructed
with two different ways. It can be predefined e.g. from 1990 to 2010, or it can be constructed
on-the-fly from the loaded documents. fleXplorer provides functions for constructing automat-
ically hierarchies from the D(o0). Figure 4.13 presents a sequence diagram of fleXplorer and

Mitos communication.

After query execution and facets construction, user can start exploring the query answer.
The facets are appeared at the right of the screen. To zoom-in, user has to select the zoom-in
points by checking their checkboxes and presses the ”OK” button. In more detail, after selecting
the zoom-in points, user must select the ”OR” or ”NO” radio button. In case of ”OR”, the focus
answer will consist of objects which belong to the union of the extensions of all selected zoom-in
points. On the other hand, in case of "NO”, the focus answer will contain the objects that do
not belong to the extensions of the selected zoom-in points. In case we have multi classification
for a facet, an "AND” radio button will be appeared. By selecting this, the focus answer will
contain only the objects which belong to the intersection of the extensions of all zoom-in points.

Figure 4.14 depicts the user interface of Mitos.

Furthermore, if the mouse be over a result then a box which will contain the complete
descriptions of the document will be appeared at the right of the screen. For example, in Figure

4.14 we can see the complete descriptions for the first document.

72

gresce | Search |

@ mTTOS Advanced Search
Results per page | 10 v Results in ROFXHIL
Faceted taxonomies with on-demand clustering results Results 1- 10 from 3870 for greece. (2798 ms)
FORTH-ICS: News - 052731844 Object Description
By filetype (4 v a | Greece TELA Conference 2004 17 19 May 2004 Hersonissos Crete 1By language= [Latin-11, By
v l‘amm (2208) Greece ... August 25 26 2005 Athens Greece hitp www ics forth gr gleg‘m?gu[g';ﬂ}l%‘ R
. ate= , By domain=
[WS PowerPaint (36] hittpifanan |C.S.fpl‘th.ng’nEWSJneWS-prEV-EUUE.htm\ - 1178392891000 - 37KB [farffarth.grfics. forth.or], By
™ s ward (14) Cached- Similarpages [mawk asspam] clustering=[/greece, fgreece
. fforthT:
I Spdf (1522) PrognoChip - People - 0.6042318
@ or O woT Computer Science FORTH ICS Greece Dimitris Plexousakis Ph D

Institute of ... Computer Science FORTH ICS Greece Departrment of
Cornputer Science University of
hitpiheeeese ics forth grlislprojects/PrognoChipfpeople hitrml - 1201 266607000 -

By language rd = TKB Cached- Similarpages [maw asspam]
,'Zémv_tUTF-B) 47) FORTH - ICS: Newss - 06025675
'_5Eng||sh (&) 2009 FORTH Heraklion Crete Greece http wiw ics forth gr cvrl ..
QG“?Ek (1072) Orphanoudakis Seminar Room FORTH Heraklion Crete Greece 2008
I™ SLatin-1 (956) Decernber 2008 THL
I~ S Unknown (1783) ity fwnanes ic 3. farth.orh evesinews-prev.itmi - 1241420849000 - 54KB
DIEE (@ NG Cached- Similar pages [mad asspam]

FORTH - ICS: Events - 0.5774606

Lonlieminm Slmnin Cembn Creanan Caedresboe 95 T2 OO Sivnd Cenbmin

Figure 4.14: Mitos user interface: Interpretations, Descriptions

Moreover, Mitos provide several services as regards the setting of the focus. After a zoom-
in/out point execution, user can see and edit the current focus. Under the facets, a specific box
which contain the focus is appeared. User can see the current focus, edit it and submit it. The
focus has a specific format and supports boolean expressions. Figure 4.15 presents the specific
service.

As the screen of a computer or a PDA may be too small to show all the facets (like the
previous screenshot), or the user is not interested in a specific facet, or prefers a specific ranking
of the facets, we have developed a mechanism which allows the user to drag and drop the
facets (so that to place them in the desired order) and open or close them. Figure 4.16 shows
the modified version of the GUI of Figure 4.17 where the user has opened only the facets By
Filetype and By Language and prefers to show first the facet By Filetype. User’s preferences are

stored to the cache of the internet browser as cookies to persist over time.

4.2.2 Exploratory web searching with dynamic taxonomies and

results clustering

Web Search Engines (WSEs) typically return a ranked list of documents that are relevant to the
query submitted by the user. For each document, its title, URL and snippet (fragment of the

text that contains keywords of the query) are usually presented. It is observed that most users

73

r@1998(4) LR T Rala e g] o])
---I_@Umknown {539 of loannina Greece Dimitris Plexousakis University of Crete and FORTH

Greece . Greece Peter Triantafillou University of Patras Greece

®or O wNoT “assilis Tsotras Univ of
hitp:ihanaeeic s forth.grihdmes08/melh_en.html - 1141121815000 - 15KB
Cached - Similar pages [mak asspam)
(4 Microsaft Word - openings 2008-02-10.dow - 0.5744409
By clustering 3570 e B 4 - |

[~ Rest (3770) 71110 he_rakl\cm crete greece courier address vassilika vouton gr 700 ...
--r@greece {100) 13 heraklion crete greece tel 30 2870 391600 fax 30 2810

hitpeiweeee. 5. forth g% FEmouchtarpostdoc_apening. pdf- 1235037781000 -
Oamp ®@or OwoT 588KE Cached- Similarpages [madk asspam]

Copyright Metice: C©S-225 (Sp'02), CSO-U.Crete - 057433873
Crete Greece is owned and copyrighted by thellniversity of Crete
Focus Help Greece ... Computer Organization Spring 2002 Department of Computer
(By language : copElement} Seiencellniversity of Creta Greece
ﬂg ig" [filte“_’p: 'Efdﬂ o htlp fhweww. cd.uoe, ari~hy225/02alcopyright htm| - 101 3006223000 - 2KB

¥ date @ Lopklemen Cached - Similar pages (ma asspam]
AND {By dowain :
s?pEtemgnm m:n ;?3’ o Copyright Notice: ©S-225 (Sp'07], CSD-L.Crete - 057319367
clustering : topElemen - -

Crete Greece is owned and copyrighted by thellniversity of Crete

Greece .. Computer Organization Spring 2007 Departrment of Computer
Sciencellniversity of Crete Greece
hitp:ihanan ics farth gri~dsnihy2 28/07 alcopyright htrml - 1233933348000 - 2KB
Cached - Similar pages [mam asspam]

[Edit || Submit][Clear | 1 2 3 4 5 B 7T 8 9 10 11 Ned
Emitos Last
nitos & Computer Science Department, University Of Crete & Information Systems Laboratory, FORTH-ICS Wigww Taxonomy Wiki | Repository | Bugzila | Javadoc | About | Credts

Figure 4.15: Mitos user interface: Focus

“,

By filetype b
- Html (2208)
[s PowerPaint (36)
-7 s ward (14)
-7 A=pdf (1522)

® or O NOT

(4

By language g
I Sy (UTF-8) (47)
I &English (6)
- &Greek (1072)
-7 #Latin-1 (958)
[T Surknown (1783)

@ or O nNoT

By domain

By date

Figure 4.16: Modified Faceted Exploration Ul according user’s preferences

74

are impatient and look only at the first results [3]. Consequently, when either the documents
with the intended (by the user) meaning of the query words are not in the first pages, or there
are a few dotted in various ranks (and probably different result pages), it is difficult for the user
to find the information he really wants. The problem becomes harder if the user cannot guess
additional words for restricting his query, or the additional words the user chooses are not the

right ones for restricting the result set.

One solution to these problems is results clustering [60] which provides a quick overview of the
search results. It aims at grouping the results into topics, called clusters, with predictive names
(labels), aiding the user to locate quickly documents that otherwise he wouldn’t practically find

especially if these documents are low ranked (and thus not in first result pages).

Another solution as we already discussed is to exploit the various static metadata that are
available to WSEs in the context of the interaction paradigm of faceted and dynamic taxonomies

(FDT).

There are a few works in the literature [3, 26] that compare automatic results clustering with
guided exploration (through FDT). In [33] we proposed combining these two approaches. In a
nutshell, this work lies in: (a) proposing and motivating the need for exploiting both (static)
explicit and (dynamically) mined metadata during Web searching, (b) showing how automatic
results clustering can be combined with the interaction paradigm of dynamic taxonomies, by
clustering on-demand the top elements of the user focus, (c) providing incremental evaluation
algorithms for speeding up the interaction, and (d) reporting experimental results that prove

the feasibility and the effectiveness of the approach.

To the best of our knowledge, there are no other WSEs that offer the same kind of informa-
tion/interaction. A somehow related interaction paradigm that involves clustering is Scatter/-
Gather [10, 20]. This paradigm allows the users to select clusters, subsequently the documents
of the selected clusters are clustered again, the new clusters are presented, and so on. This
process can be repeated until individual documents are reached. However, for very big answer
sets, the initial clusters apart from being very expensive to compute on-line, will also be quite
ambiguous and thus not very helpful for the user. Our approach alleviates this problem, since
the user can restrict his focus through the available metadata, to a size that allows deriving

more specific and informative cluster labels.

75

4.2.2.1 Coupling Static and Dynamically-mined Metadata for Exploration

FDT-based interaction is feasible for hundreds of thousands of objects very fast. However, the
application of results clustering on thousands of snippets would have the following shortcomings:
(a) Inefficiency, since real-time results clustering is feasible only for hundreds of snippets, and
(b) Low cluster label quality, since the resulting labels would be too general. To this end we
propose a dynamic (on-demand) integration approach. The idea is to apply the result clustering
algorithm only on the top-C' (usually C < 500) snippets of the current focus and to redo this
whenever the focus changes. This approach not only can be performed fast, but it is expected
to return more informative cluster labels. Let ¢ be the user query and let Ans(q) be the answer
of this query. We shall use Af to denote top-K (usually K < 10%) objects of Ans(q) and A, to
denote top-C' objects of Ans(q). Clearly, A. C Ay C Ans(q). Table 4.1 lists all symbols that

are used in the sequel.

[Symbol “ Meaning]

q Current query

Ans(q) Answer of the query as returned by the WSE

C Number of top elements of the answer that will
be clustered (usually C < 500)

K Number of top elements of the answer that will
be loaded to fleXplorer (usually K < 10%)

Ay Top-K elements of Ans(q)

Ac Top-C' elements of Ans(q)

ci Cluster c¢;

Ext(c;) || Documents that belong to cluster ¢;

Table 4.1: Table of Symbols

The steps of the process are the following:
(1) The snippets of the elements of A, are generated.

(2) Clustering is applied on the snippets of the elements of A., generating a cluster label tree

clt.

(3) The set of Ay (with their metadata), as well as clt, are loaded to fleXplorer, a module
for creating and managing the FDT. As the facet that corresponds to automatic clustering
includes only the elements of A., we create an additional artificial cluster label, named

"REST” where we place all objects in Ay \ A, (i.e. it will contain K — C objects).

(4) fleXplorer computes and delivers to the GUI the (immediate) zoom points.

76

The user can start browsing by selecting the desired zoom point(s), refining in this way the
answer set. When a zoom point is selected the new focus is computed and steps (1)-(4) are
performed again over the new Ay (and A.). A more efficient incremental approach is described

below.

4.2.2.2 Incremental Algorithm for Exploration

Here we present an incremental approach for exploiting past computations and results. Specifi-
cally the algorithm aims at reusing the snippets and their suffixes since this is the more expensive
task of online results clustering.

Let Ay be the objects of the current focus. If the user selects a zoom point he moves to a
different focus. Let A’f denote the top-K elements of the new focus, and A, the top-C of the

new focus. The steps of the algorithm follow.

(1) Weset Acnew = AL\ Ac and Agp1g = Ac\ AL, i.e. Acpew 1S the set of the new objects that

have to be clustered, and A, 44 is the set of objects that should no longer affect clustering.

(2) The snippets of the objects in A e, are generated (those of A, oq are available from the

previous step). Recall that snippet generation is expensive.
(3) Clustering is applied incrementally to Ac new-
(4) The new cluster label tree clt’ is loaded to fleXplorer.

(5) fleXplorer computes and delivers to the GUI the (immediate) zoom points for the focus

with contents A}.

4.2.2.3 Implementation

The implementation was done in the context of Mitos, while fleXplorer is used for offering
general purpose browsing and exploration services. Figure 4.17 shows a screenshot of Mitos
WSE.

When the user interacts with the clustering facet we do not apply the re-clustering process
(i.e. steps (1) and (2) of the on-demand algorithm). This behavior is more intuitive, since
it preserves the clustering hierarchy while the user interacts with the clustering facet (and
does not frustrate the user with unexpected results). In case the user is not satisfied by the

available cluster labels for the top-C' objects of the answer, he can enforce the execution of the

77

Jerds
ergrw] salfied JE|WIE - PAUIED &S - D005 LEET b LF L - (WA WSS OS IR Lo)) s Ty
0 UM SE4OS] SIISSEA BIRBID SEIEL J0 KESIBAUM NO|UEIIEDL]

Jalh A3BRIG T BIRANEG LI M0] PUE 81817 jo Kkl SINESNONE]] UML) S300I6 EUILUES| 5
SLPIS5L50 - CO0Z SWOH — WNiSO0WAS ueisbeley Eled JUs[aH Uk

s

sepril gabediBiung -PeUIEd @A - DO0FSCHELES B | - PRSI BABIBIHUETUD LLICH S| M Ty
Kgnjaadans Sem Ieuwes g ay| wodiyoag seisbiy aar 61

SUR[AIBRIGY 1 FNPLACRUIOET] UBLAE] 150 G007 OF o7 1equaidas saaann ajug wuey) uedw ko

0881450 - S0EARS S5 L0

lwrdemr gl saled ewis -DBYIED EALT - DO0FSEBELES L - AL SIUBASUNME LIOES 3) sy duy
Agrysasans sem euwas g ay) woddpag sesbi) 9Oz 61

SURP @3BAUS, ' S3ELLGHUIONT UELBEY [Sid G007 67 57 1sqwaldes saeaan ajaes ey uedwloy
angrLis0 - SUSAT SOl - HIH04

[wrde

eeoweul soliedie||ug -Payied GALT - ODOVSEGELES LI - I SHOBAaMMEaHRUD L0y 53] sbas diy
Kgrysaang sewm ieuiuds 4ig sy) wodksoug senby o007 61

SUNM AFIRIG SHBUBCHUIGET UBLE] [SI] G000 O 57 requaidas aaamag amg eueys) uedwioy
90981450 - SUBAT SO - HIBOS

lweds

seprw] salied mwig - paYIES EHeS - O00GFEODF LED b - [y wiad- S psal Ul Uty €31 e 0y
L B00F JAquaaag B00C 939815 58] UDIYEIRH HIHO S

WD JEUIWES SEpROuEydnn e 16 Yuo) 520 se Ay S09IE) S0 UDINEIRH HLH0 S B00C
SLASI0A'D - SRABR SO - HLE03

[wrdsse mrwd cafied

SIS - PRYIED AL - DO0LKASET LT - Iy Edoa g2 ou B0 s ebnadn sl oy s 0] ey

0 AuSIBAU) BIUBIIG SNt o dag S0 HLHOS

BANBIG MAdWaZ 0 BRI 4d Seshorsg SUpWI] 3880 S| HLHOS SIUNIT Sindwo

#LE0R09'0 - B0S S - A oub0IS

fuaw e s prwd]

SHER0IEIWES - POUIED @HLE - 00 LESOEEELE | - MUY S O -HE10-SAEU S ME U LIOY S| Wi Ty
Sy 531 M D3l B3BBG SUBLTY

COOT 97 57 15nbmy ' 80995 9181 SOSSIL0SISH FOOZ AR 1 21 P00 SOURIUOD YL 939810

FRBIEL28D - SABR ST L0

asaaul

Figure 4.17: Screenshot of Mitos WSE

78

clustering algorithm for the next top-C' by pressing the REST zoom-in point as it has already

been mentioned (which keeps pointers to K — C' objects).

4.2.2.4 Experimental Results

In this experiment we measured the overall cost, for cluster generation (snippet generation and
clustering algorithm execution times) and dynamic taxonomies (to compute the zoom points
and to load the new clustering labels to the corresponding facet). Moreover, we compare the
non-incremental with the incremental algorithm, which preserves the initial suffix tree and the
elimination of old objects is done using the Scan-approach. The scenario includes: (a) the
execution of the query crete which returns 4067 results, (b) the expansion of the gr zoom point
of the By domain facet and the selection of the woc.gr (1277) zoom-in point from the hierarchy
revealed from the expansion, and (c) the selection of the text/html (807) zoom-in point of the By
filetype facet. Let cq,cp and c. be snippets of the top — C' elements in the steps (a), (b) and (c)
respectively. Figure 4.18 shows the facet terms after steps (a), (b) and (c), as they are displayed
in the left bar of the WSE GUI 2. We set K = 10* (i.e. the whole answer set is loaded) and
repeated the above steps for the following values of C: 100, 200, ... ,500. We do not measure the
cost of the query evaluation time. In all experiments the displayed zoom points are accompanied

by count information.

Step (a) Step (b) Step (c)

Total [FDT [Clust. [Snip. Total [FDT [Clust. [Snip. Total [FDT [Clust. [Snip.
top-100 |ca] = 100 |ca N cp| = 85, overlap=85% lep N ce| = 22, overlap=22%
Non-Incr. 1.72 0.62 0.06 1.04 1.07 0.23 0.03 0.82 0.36 0.21 0.01 0.14
Incr. 1.75 0.62 0.07 1.06 0.53 0.24 0.04 0.25 0.42 0.20 0.09 0.12
top-200 |ca] = 200 |ca N cp| = 174, overlap=87% ley Nee| = 24, overlap=12%
Non-Incr. 2.88 0.49 0.08 2.31 1.95 0.13 0.07 1.76 0.73 0.24 0.13 0.36
Incr. 2.93 0.50 0.11 2.32 0.58 0.13 0.08 0.37 0.66 0.20 0.18 0.28
top-300 |ca| = 300 [ca N ep| = 232, overlap=77.3% ley Nee| = T8, overlap=26%
Non-Incr. 3.51 0.42 0.14 2.95 2.60 0.23 0.16 2.21 0.82 0.21 0.17 0.44
Incr. 3.69 0.5 0.22 2.97 0.7 0.12 0.38 0.2 0.85 0.21 0.31 0.33
top-400 |ca| = 400 |ca N ep| = 257, overlap=64.25% ley Nee| = 170, overlap=42.5%
Non-Incr. 3.87 0.43 0.23 3.21 3.12 0.25 0.31 2.56 2.16 0.12 0.24 1.8
Incr. 4.04 0.5 0.34 3.2 1.09 0.24 0.57 0.28 0.84 0.11 0.45 0.28
top-500 |ca| = 500 [ca N cp| = 269, overlap=53.8% |y N cc| = 268, overlap=53.6%
Non-Incr. 4.39 0.46 0.45 3.48 3.14 0.26 0.32 2.56 2.71 0.24 0.32 2.15
Incr. 4.56 0.45 0.63 3.48 1.32 0.14 0.8 0.38 1.08 0.23 0.56 0.29

Table 4.2: Top-C' Integration Timings for non-Incremental and Incremental Algorithms
(in seconds)

Table 4.2 shows the intersection of A, and A’ for steps (a), (b) and (c) and the execution

2The screenshots are from the previous version of Mitos GUIL

79

By clustering

information (11)

network (2

physical {5)

sCience (22

ITE TEYWIKEG OVOIpOREG (22

REST (3981)

-

By clustering

report (10)

schedule (1)

sCience (31)

stride (1)

BELOTO sMkoivaving ovEpmnou
Hyavns (1)

By clustering

It
program (68)
sCience (90)
siternap (1)
tziritas (2)
Liniversity (91]

b architecture (8) » amnouncements (1) b coding (1)

contact (10) » architecture (2) » contact (3)
content (10} b contact (2) home (10}

¥ copyright notice csd (13 b faciities (1) » homepage yvannis tzitzikas (2)
» rcourse content english (7) horne (8) » bwperlinks (1)

b cod (14) ¥ lito kriara (5) » kos home page (1)
b department (8) main (78] b lito kriara (6)

forth {28) b page (10} main (77

» health telematics network (5) problem (11} » page (11)

» ics (39) » program (61) problem (11)

» »

» »

¢

» 2 »

» 4 »

REST (1177) REST (707)
- > -
By domain By o By d .
or (40671 y domain y domain
B or (1277) = gr (807)
= uoc.gr (1277) = uoc.gr (807)
- b csduoc.gr (1277) b csduoc.gr (B07)
By date Expand gr and -
. xt/html is pr
2008 (479) uoc.gr is pressed ” TRl (3 resaE0 -
2007 (694) By date
2006 (1340) By date
2005 {184) e 2008 (97)
2004 (106) 2006 (174) 2007 (75)
2003 (82) 2005 (142) 2006 (66)
2002 (23] 5002 (a7 2005 (53)
2001 (28) 2003 (70) 2004 (53}
2000 (13) 2002 (58) 2003 (59)
1993 (4) 2001 (24} 2002 (41)
1993 (6) 2000 (2] 2001 (20)
o7 (1) 1999 (1) 2000 (3)
b Unknown (1042) 1997 (1) 1997 (1)
b Unknown (342) » Unknown (338
-
By filetype ’” o
¥ application/msword (16) By filetype
» application/pdf (1476) » applicationpdf (465) Dy flietpe
» bt ; b text/html (207)
o : ¥ applicationvnd.ms-powerpoint (5)
applicationvnd. ms-powerpoint (29) » textihtml (2073
b textfhtml (2546)
-

-

By language

b Any (UTF-8) (18)

» Greek (1209)

b Latin-1 {Europe, Latin America,
Carbbean, Canada, Africa) (944)

¥ Latin-2 (Central and Eastern
Europe) (4)

» Unknown (1292)

(a)

-

By language

P Any (UTF-E) (11)
b Greek (640)
» Latin-1 (Europe, Latin America,

Caribbean, Canada, Africa) (34)

¥ Latin-2 (Central and Eastern

Europe) (4)

b Unknown (533)

(b)

By language

b Ay (UTF-2) (11}

» Greek (639)

» Latin-1 (Europe, Latin America,
Caribbean, Canada, &frica) (34)

» Latin-2 (Central and Eastern
Europe) (4]

» Unknown (1123

(€)

Figure 4.18: Steps (a)-(c) of running scenario

80

times that correspond to the integration of fleXplorer and results clustering using the non-
incremental and an incremental approach, for the top — C' elements. Specifically, FDT times
include zoom points calculation timings (for each step) and loading to fleXplorer the entire
MFT (step A) and removing and loading the new clustering facet for (steps B and C). It is
evident that for top-100 and top-200 values, the results are presented to the user pretty fast
(especially for steps B and C), making the proposed on demand clustering method suitable as
an online task. Moreover, we can see that there is a linear correlation between time cost and
the top-C' value. Finally, calculating and loading clusters for the top-500 documents, costs less

than 4.5 seconds making even big top-C a feasible configuration.

4.2.2.5 Evaluation of Usability

We conducted a user evaluation in order to compare the usefulness and usability of three in-
terfaces: (A) one offering FDT but without the results clustering facet, (B) one offering results

clustering only, and (C) the proposed interface that combines both.

To this end we specified 4 information needs (or tasks) shown in Table 4.3. For the first three
(T1-T3) we specified three variations of each, one for each interface (the subscripts indicate the
interface that should be used in each variation). We decided to follow this policy because if we
had the same task for each interface then the order by which participants used the interfaces
would bias the results (the users would remember the title of the pages that have the sought
information). However for the fourth task (7'4) we did not provide a distinct variation for each
interface but the participant had to return the number of the results they found using each

interface in a specific interval of time.

For each information need each participant had to fill a form like the one shown at Table 4.4
where apart from the sough information (i.e. the requested URLSs), the participant had to rank
the three interfaces according to preference by assigning each interface a distinct number from
{1,2,3} (1 for the most preferred), and to express the degree of his satisfaction from each interface
by using a value from the set {high, medium, low}. The latter question is not comparative in

the sense that a user could assign ”high” or "low” to all interfaces.

13 users participated in the evaluation with ages ranging from 20 to 30, 61.5% males and

38.5% females. We distinguished the participants into two groups: the advanced and the reqular

81

Table 4.3: User Evaluation Tasks

Id [Information need/task description]

(T14) | Find at least two papers of the head of the Information
Systems Laboratory of FORTH-ICS that were pub-
lished on 2007 and concern Semantic Web.

(T1p) | Find at least two papers of the chairman of the Com-
puter Science Department of University of Crete that
were published on 2006 and concern e-learning.

(T1c) | Find at least two papers of the Director of the ICS-
FORTH that were published on 1997 and concern user
interfaces.

(T24) | Find the personal web pages of at least two local col-
laborators of Dimitris Plexousakis.

(T2p) | Find the personal web pages of at least two local col-
laborators of Grigoris Antoniou.

(T2¢) | Find the personal web pages of at least two local col-
laborators of Vasilis Christophides.

(T'34) | Find two presentations about Wireless Networks in
.ppt that are published at the FORTH domain
(forth.gr).

(T'3p) | Find two presentations about Web Services in .ppt
that are published at the FORTH domain (forth.gr).

(T3¢) | Find two presentations about Computer Vision in .ppt
that are published at the FORTH domain (forth.gr).

(T4) Find in 2 minutes all (or the most) persons of CSD

who include into their home pages information about
their music preferences.

Information Need: (n4) || Response:

Interface User Satisfaction Preference

(Low/Medium/High) (1/2/3)

(A) FDT

Information Need: (n4) || Response:

Interface User Satisfaction Preference

(Low/Medium/High) (1/2/3)

(B) Clustering

Information Need: (n4) || Response:

Interface User Satisfaction Preference

(Low/Medium/High) (1/2/3)

Both (A) FDT
and (B) Clustering

Table 4.4: User Evaluation Form

82

users. The advanced users had prior experience in using clustering and multidimensional brows-
ing services, while the regular ones had not. For this reason, and before starting the evaluation,
we gave to each regular user a brief tutorial on using these services through examples over the
Mitos WSE. The tutorial was personal (for each participant individually) and lasted around 5
minutes.

Table 4.5 shows the aggregated results of the evaluation for all participants and all tasks per
interface. For instance, we can observe that 50% of the advanced users had medium satisfaction
for the Clustering. Table 4.7 shows the results of the evaluation for all participants per task.

For instance, we can observe that all users had high satisfaction for the FDT in Task 3.

Interface User Satisfaction Preference Completeness of
Low | Medium [High 1 [21 3 Task (n4)

(A) FDT 25% 33.3 41.6 16.6 | 41.6 | 41.6 72.2
Advanced Users | (B) Clustering 33.3 50 16.6 25 16.6 | 58.3 55.5

Both (A) and (B) || 16.6 %5 58.3 || 58.3 | 416 | 0 T

(A) FDT 5 10 55 || 425 | 25 | 30 16,6
Regular Users (B) Clustering 37.5 50 12.5 20 15 65 38.3

Both (A) and (B) || 125 | 375 50 3% | 8575 5 5

Table 4.5: User Satisfaction, Preference and Completeness percentage results per Interface

Completeness. The last column of Table 4.5 shows the average percentage of the correct
URLs that users found in task 74 in each user interface, out of the total number of correct URLs
in our testbed (6 correct URLs). We observe that with (C) (combination of the Clustering with
the FDT') advanced users achieved the highest degree of completeness i.e. 77,7%. Regular users
achieved the highest degree of completeness using (A) i.e. 46.6% while (C) is quite close, i.e.
45%.

Zoom-in Points Clicks
” Queries By Clustering H By domain ” By filetype ” By date ” By encoding
(A) (B) | Both Both (A) | Both || (A) | Both || (A) | Both || (A) | Both
Avg. Advanced 5.6 | 12.6 | 5.33 6 1.6 1.3 0.3 0.3 1 1 0 0
Avg. Regular 119 | 13.2 | 10.9 2.7 1.8 0.8 1 1.1 2 1.7 0.1 0.6

Table 4.6: Number of User Queries and Clicks (as recorded in the log)

Log Data Analysis. We logged and counted the number of queries and clicks (on zoom
points) the users made. Specifically for each user we counted: (a) the number of queries submit-
ted and (b) the number of clicks on zoom-points (by facet). Table 4.6 shows the average number
of queries and zoom-points that a user from each group made in each interface for all tasks.
For example, a regular user submitted in average 13.2 queries in Clustering interface during the

evaluation. At first we observe that both groups submitted the least number of queries when

83

using (C) interface, which is an evidence that the combination of interfaces makes information
seeking less laborious. The difference is significant for the advanced users as they made more
than 50% less queries in the Faceted Taronomies and in the combination than the Clustering.
Regarding clustering zoom points, we can see that a regular user pressed in average only 2.7
zoom-points of the facet By Clustering, while an advanced user pressed 6 (we will attempt to
explain this difference later on). Notice that 6 clicks on clustering zoom points (that advanced

users made) are more than the sum of the clicks on the points of the rest facets.

User Satisfaction For advanced users, (C) seems to be the most preferred choice as the
58, 3% of the users rate it first. On the other hand, for reqular users the most preferred interface
seems to be (A) (FDT) as 42, 5% of them rate it first. In that group the difference in satisfaction
between (A) and (C) is small, 55% for the first one and 50% for the second one.

Both groups consider (B)(Clustering) as the least preferred interface: 58,3% of the advanced
users and 65% of the reqular. This is probably because users are either not familiar with
clustering services (as there are only a few meta search engines - and not well known - that offer

this feature), or because they do not yet trust such services (as they do not use them regularly).

If we look at the table with the detailed results (Table 4.7) we observe that the advanced
users were more satisfied from Clustering than from FDT for the first two tasks, while in the
last two tasks the opposite was happened. The former can not be explained (maybe users were
unsatisfied for Taskl with the date facet, since it uses the modification time), but for the latter
it is obvious that facets filetype and domain where very helpful for the tasks at hand. Regular

users were not satisfied from Clustering in none task.

Overall, we can conclude that the combination of FDT with Clustering is expected to help
mainly users who are familiar with the functionality of each interface (especially with cluster-
ing), and for such users this interface will probably be the most preferred. Users who are not
very familiar with these technologies are more satisfied with FDT (probably because they fully
understand it immediately) than with the combination of both or with Clustering alone. This is
quite expected as users who have not used real-time clustering probably neither can understand
it immediately (e.g. they may wonder whether the clusters contain overlapping or disjoint sets
of pages), nor have experience on using such services so they do not trust them. However we
have to remark that the tutorial was very brief, and it is possible that a more detailed and
comprehensive tutorial (e.g. a hands on training session of 30 minutes) could turn the results of

the regular users to converge to those of the advanced ones.

84

Interface User Satisfaction Preference

Low [Medium [High 1 [2 [3

(A) FDT 66.6 33.3 - 33.3 - 66.6

Taskl | (B) Clustering 33.3 33.3 33.3 || 33.3 | 33.3 | 33.3
Both (A) and (B) || 33.3 | 33.3 | 33.3 || 33.3 | 66.6 | -

(A) FDT - 100 - ~ [333 | 66.6

Task2 | (B) Clustering - 66.6 33.3 || 33.3 | 33.3 | 33.3
Advanced Both (A) and (B) - 66.6 33.3 66.6 | 33.3 -
(A) FDT - - 100 || 333 | 66.6 | -

Task3 | (B) Clustering 66.6 33.3 - - - 100
Both (A) and (B) - - 100 || 66.6 | 333 | -

(A) FDT 333 - 66.6 | - | 66.6 | 33.3

Task4 | (B) Clustering 33.3 66.6 - 33.3 - 66.6
Both (A) and (B) 33.3 - 66.6 66.6 | 33.3 -

(A) FDT 10 60 30 20 40 40

Taskl | (B) Clustering 20 70 10 20 40 40
Both (A) and (B) || 10 30 60 60 | 20 | 20

(A) FDT - 50 50 40 | 20 | 40

Task2 | (B) Clustering 20 50 30 40 - 60
Regular Both (A) and (B) || - 60 10 20 | 80 -
(A) FDT - - 100 || 70 | 20 10

Task3 | (B) Clustering 70 30 - - 10 90
Both (A) and (B) 30 - 70 30 70 -

(A) FDT 10 50 40 40 30 30

Task4 | (B) Clustering 40 50 10 20 10 70
Both (A) and (B) || 10 60 30 10 | 60 -

Table 4.7: User Satisfaction and Preference percentages per Interface (per task)

4.2.3 Exploratory web searching with Entity Mining

We should stress that what we have proposed in section 4.2.2 can be applied also on other
kinds of dynamically-mined metadata. With the term dynamically-mined metadata we refer to
metadata which should be minable (a) from small quantities or portions of data, e.g. from the
snippets of the top-K part of a query answer, and (b) in real-time. The motivation for focusing
on small quantities is that (i) we may not have at our disposal large quantities (e.g. we may
have access only to snippets), (ii) it may be computationally expensive to apply these mining
tasks on large quantities of data, and (iii) we may want to focus on small qualities for enhancing
the quality (specificity) of the mined information.

In the context of web searching, we can say that dynamically-mined metadata refer to
metadata which are mined from the snippets of the top elements of the current answer. Examples

of such mining tasks, apart from results clustering, include

e Fuacet and Taxonomy Mining
For instance, [12] generates facet hierarchies dynamically from text or text-annotated
objects.

e FEntity Mining

Named entity recognition (also known as entity identification and entity extraction) [28,

85

G | scarcn |
@ mi TOS Advanced Search

Results per page | 10 v Results in RDF XML

Named Entity Recognition & Faceted Taxonomies Results 10 Results 1 - 10 from 10 for crete. (5680 ms)

FORTH- ICS Mews - 021005474

- ’ 8217 MNight 2007 Crete 28 September 2007 FORTH Heraklion Crete
By Location s : H N N
» Sweden (1) information ... 2009 FORTH Heraklion Crete Greece http www ics farth gr cwrl
» Germary (2) hitpcifwrenee.ics forth.grinewsmews-prev.himl - 1241420848000 - 54KB Cached -
» Heraklion (3} Similar pages [mawk asspam]
» Greece (10)
PRVYPT - 018255741
Phone 0937 564458 University of Crete University of Crete MSc s
$ Temporal Archimedous 4 PO 71306 Herakleion Crete 0310 3431330937
By Organization V oa 564458 Mohile
b Qe SHEREs itpfaan. £5C.UOE.OH~toUNOUNCONTACT HTH - 1008341649000 - 7K Cached

Technology (1)

» Helenic Data Management [2) - Similarpages [mar azspam]

b Crete (7
2 FORTH- ICS: Mews - 018138705
2004 Crete Greece ERCIM meetings 24 28 May 2004 Hersonissos Crete ..
F Workshop Septernber 20 23 2005 Heraklion Crete hitp www ics forth
By Date W A hittpcfieeerac oS forth.arnesysiness-prey- 2006 . himl - 1179398831000 - 37KB
» July 12-23 2004 (1) Cached - Similar pages [man as spam]
> 2002 (2)]]
: ggg‘; (3) Copyright Motice: ©5-225 (Sp'02), CS0-U Crete - 0.13043638
o Crete Greece is owned and copyrighted by theUniversity of Crete Greece ...
by permissionof the University of Crete Greece andthe Univ of Crete
@ hitp:ianene. c=d uoc.gr~hy225/02afcopyright himl - 1013006223000 - 2KB
By Add m— Cached - Similar pages [mark as spam]
Y ress
D i e 7 (1) Copyright Motice: ©5-225 (Sp'07), C5D-U Crete - 017765714

» webmaster@ics. forth.or (2)

Figure 4.19: Faceted Taxonomies and Entity Mining

30] is a subtask of information extraction that seeks to locate and classify atomic elements
in text into predefined categories such as the names of persons, organizations, locations,
expressions of times, quantities, monetary values, percentages, etc (e.g. the GNOSIS

addon of Firefox).

Nowadays, Mitos supports the coupling of faceted exploration and entity mining using
the GATE/ANNIE project [9]. It provides named entity recognition over various format of
documents e.g. txt, html, pdf, in several languages and supports various types of entities e.g.
location, date. Mitos supports named entity recognition for documents written in English or
Greek, and for 6 specific types of entities: Location, Date, Organization, Address, Person and

Money.

As regards the combination of entity mining and faceted dynamic taxonomies, we follow the
same approach as for clustering with the only difference that in this case each entity is a facet.
When the user executes a query, the entity mining is executed on the entire text of the top — k
documents of the query answer, where usually £ = 100. If an entity is recognized in a specific
document, then the document is classified under the particular term of the specific entity facet.

Figure 4.19 shows the user interface of the specific implementation on Mitos.

86

— esa space for europe

Faceted Exploration Num of Results: 100 in 0 ms.

@ Results Ids: too many
By Location £
o[Wodd1om

® or O NOT

By Start Date
o B s
o B mean
e |[D 2006 @y
e B w7en
e[| 0028

® or O NOT

By Mission
7 ERs (1D
LI Gocettsy
L7 BuvisatERS 20
117 Eavisat 22y
I Probazs)

® orR O NOT

Figure 4.20: ESA-USNG User Interface

4.3 EO User Service Next Generation Project (EO
USNG)

The User Services Next Generation is an ESA (European Space Agency) project where the
user’s needs and requirements are the key driver for improving and redefining the way ESA
currently provides its data and services. The improvement of technologies, additional sensors
and engaging new user communities are key motivators in defining the new service. ESA aims
to increase user visibility of its services and wants to be challenged with a new innovative design
that improves the systematic flow and widens the scope of its Earth Observation services. In this
project we proposed an improved catalogue searching and browsing approach for ESA Products

using Dynamic Taxonomies and Faceted Search.

The first version of web-based user interface from the demonstration phase is presented in

Figure 4.20.

4.4 Experimental Results on DB-R Architecture

Here we report experimental results of three different experiments with respect to the hierarchi-

cally organized facets and the size of the dataset.

87

0.08

"Query time ——
0.07 Compute zoom-in points = |
Zooming-in =
0.06 | i)
@ 0.05 - ’
2 004 v
E 003 r
0.02 | o
001t

O L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Results

Figure 4.21: Experimental Results on DBMS

4.4.1 (DB-R) With No Hierarchically Organized Values

In this Section we present some experimental results on DB-R approach with no hierarchically
organized facets. As the index of Mitos is based on a DBMS (specifically PostgreSQL 8.3),
we performed experiments over it. The facets presented in Section 4.2.1 actually correspond to

columns of the database schema (shown in Table 4.8).

Table Field Type (Bytes)

document | id int4 (4)
md5 char (16)
title varchar (title.length)
path varchar (path.length)
link varchar (link.length)
type varchar (type.length)
encoding | varchar (encoding.length)
norm float (4)
rank float (4)

Table 4.8: Partial database schema of Mitos.

Figure 4.21 shows the corresponding results (for various result sizes) for computing the
zoom-in points for only one facet (whose terms are not hierarchically organized). Notice that
the time to compute the contents of the new focus is higher than the time to compute those of
the original focus (because the corresponding query is longer). In general, this approach is very

fast too.

4.4.2 (DB-R) With Hierarchically Organized Values

Here we investigate the applicability of SQL in case we have hierarchically organized values.

However, we should mention that this approach approach is feasible only if we a-priori know the

88

depth of the taxonomies involved (or if we adopt recursive SQL).

We created a synthetic dataset whose schema is shown in Table 4.9. Table subjectHierar-
chy forms a balanced and complete tree with degree 5 and depth 5. Each paper is associated
with one randomly selected subject term (that is a leaf) and with 1 to 4 randomly selected
authors. All fields of the tables have been indexed with B-Trees and the size of the database
is 30.1 MB (the indexes occupy 17.2 MB). In order to run the experiments we have installed
PostgreSQL 8.3 (with shared buffers parameter set to 1 GB) on a Pentium IV machine with
3GHz CPU and 1 GB RAM.

Table Field Num.ofTuples
paper pid 10°
title
year
venue
author pid 4 % 10%
authorName
paperAuthors pid 2.2 x 10°
authorld
subjectHierarchy | stld 3906
name
parentID
paperSubjects stld 10°
pid

Table 4.9: Database schema of small synthetic dataset

Figure 4.22.(a) shows: (¢,) the time for computing the answer of a query comprising one
subject term from various term depths, (¢) the time to compute the zoom-in points with respect
to the venue attribute, (t.) the time to compute the content of the new focus (we have selected
one zoom-in point from venue facet). Furthermore, the cost t, is included in both ¢, and t., since
we re-compute the results. The reported times are the average of 20 different runs of 5 randomly
selected subject terms for each depth. Figure 4.22.(b) shows the corresponding average result

sizes.

We conclude that the query times increase, compared to the query times in Figure 4.21,
for the same number of results. This was an expected result, since to support hierarchically

organized values using the DBMS, more complicated queries had to be issued.

89

0.22 =

.\ Query time —+—
0.2 1 Compute Zoom-in points
0.18 Zooming-in -
0.16
0.14
012 %]
01 k
0.08
0.06
0.04 S
0.02 ‘ ‘ e

Time (secs)

Depth of Term
(a)

20000 T -
Query results size ——
18000 | Zooming-in results size - 1

16000]
14000]
12000]
10000]
8000 |]
6000 |]
4000 |]
2000 f]

Number of results

Depth of Term

(b)

Query time ——
57 Compute Zoom-in points
\ Zooming-in -

Time (secs)

Depth of Term
()

200000 ‘ —
Query results size ——
180000 Zooming-in results size - 1

160000 r |
140000 r |
120000 r |
100000 r |
80000 |
60000 r |
40000 + |
20000 - 1
0 e .

Number of results

Depth of Term

(d)

90
Figure 4.22: Experimental results on synthetic databases.

4.4.3 (DB-R) With Hierarchically Organized Values (Bigger Data
Set)

Here we report the results for larger data sets, i.e. for databases that do not fit in main

memory. We used the database that described in Table 4.10.

Table Field Num.ofTuples
paper pid 2 x 108
title
year
venue
author pid 5 x 10°
authorName
paperAuthors pid 5 x 108
authorld
subjectHierarchy stld 111.111
name
parentld
paperSubjects stld 2 x 10%
pid
subjectHierarchy2 | stId 111.111
name
parentld
paperSubjects2 stld 2 x 108
pid

Table 4.10: Database schema of large synthetic dataset.

Tables subjectHierarchy and subjectHierarchy2 form a balanced and complete tree
with degree 10 and depth 5. Again, each paper is associated with one randomly selected leaf
subject term from each of the two hierarchies and with 1 to 4 randomly selected authors. All
fields of the tables have been indexed with B-Tree access method and the size of the database
is 1.24 GB (the indexes occupy 718 MB). The experiments run on the same machine as above
but with the shared buffers parameter of postgreSQL set to 1 GB. Figure 4.22.(c) shows the
times of the same experiment as Figure 4.22.(a) in a larger dataset. The reported times are the
average times of 40 different runs for 10 randomly selected subject terms for each depth. Figure
4.22.(d) shows the corresponding average result sizes. The aforementioned times were gathered
using Java, meaning that the overhead of the JDBC driver is also included. This overhead also
exists in the Mitos engine, since it is also written in Java.

Summarizing, when the volume of data increases and performance of the DBMS approach

degrades. Note that 5 seconds is not acceptable for building on-line applications.

91

92

Chapter 5

Extensions For Scalability

Although, faceted and dynamic taxonomies are increasingly used nowadays in a plethora of ap-
plications, current methods (which are object-based) are applicable for relative small collections
of objects (comprising thousands of objects), and do not fully exploit the characteristics of the
information thinning process for reducing the computational costs. The provision of such ser-
vices for larger collections (e.g. of the magnitude of 10%) is a challenging vision. In this chapter,
we elaborate on techniques that could be used for larger collections, by reducing the associated
computational costs and the storage overhead. In more detail, Section 5.1 introduces a scenario
that highlights the desired functionality of a FSE over Terra-sized collections. Section 5.2 pro-
poses an effective and efficient interaction scheme for exploring large collections. Section 5.3

evaluates our proposal analytically and experimentally, and discusses the experimental results.

5.1 A Global-scale Exploration Scenario

Suppose that we want to offer FDT exploration services over the set of all web pages. According
to the Netcraft! the Web (until April 2009) contains 232 million web sites, while as of June
2008, the indexed web contains at least 63 billion pages 2.

Suppose that we have a global web search engine which provides faceted exploration func-
tionalities. Let us assume that the faceted taxonomy contains five facets. The facets and their

size are described below:

Thttp://news.netcraft.com/archives/web_server_survey.html
Zhttp:/ /www.worldwidewebsize.com/

93

e By language: According [18], as of early 2007, there are 6,912 known living human
languages. So we will have ~ 7 % 10% terms for that facet. Furthermore, ISO 639-2 and
ISO 639-5 propose a regional taxonomy of language families . For example, if someone
wants to select the Greek language has to follow the path: Europe/South Europe/ Modern
Greek. The depth of this path depends on the depth of family hierarchy. The average
depth is 3.

e By TLD (top level domain): According IANA* the number of top level domains is
271 ~ 3 % 10°. We have four categories of top level domains: gTLD, ccTLD, IDNA TLD
and infrastructure. The ccTLD (country code TLD) which includes the 88% of the top
level domains can also be categorized by continent. So the average depth of this facet is

2.

e By date: In this facet we will have the dates from 1992 to 2012. So, we will have:
(21 % 366) + (21 % 12) + 21 = 7959 ~ 8 * 10% terms. For selecting a specific date, the user
has to follow a path with the following format: year/month/day. Subsequently, the depth
of this hierarchy is 3.

e By filetype: According IANA, there are 9 categories of Mime Types which are described
below: application (701 mime types), audio (118 mime types), example (0 mime types),
image (39 mime types), message (19 mime types), model (14 mime types), multipart (14
mime types), text (50 mime types), video (57 mime types). So, the number of terms is

1021 ~ 103, while the depth is 1.

e By clustering: Let us consider the case that we want to offer exploration with respect
to a classification scheme like that of DMoz directory®. DMoz contains 590.000 categories
which are hierarchical organized and the average depth as we try it was 7. In this scenario,
the hierarchy is a balanced and complete tree with depth = 7 and degree = 6. The number
of terms of this facet will be ~ 3.4 x 10°.

Table 5.1 summarizes the above. All possible descriptions of this faceted taxonomy (assuming
single classification) is: |T} X x T5| =~ 5.7 * 10'®. Moreover, the number of the terms of the

entire faceted taxonomy (|77]) is 3.5 * 10° terms.

3http:/ /www.loc.gov/standards/is0639-2/is0639-2ra.html and http://www.loc.gov/standards/iso639-
5/langhome5.html

4http://www.iana.org

http://www.dmoz.org/

94

Facet H Terms ‘ Depth ‘

Language 7% 103 3
TLD 3 % 102 2
Date 8 % 10° 3
File Type 103 1
Clustering || 3.4 * 10° 7
SUM. 3.5 % 10° -
Avg. 0.7 * 10° 3.2

Table 5.1: Global Web Scenario

According to section 3.2.1, if we have mandatory single classification, as in our scenario,
then Cy; = k where C)y is the average number of terms that are (directly) assigned to an object
0 € Obj and k the number of facets. So in our case, Cjy = 5. If we assume that |Obj| = 100,
it follows that to store the set D;(0) V o € Obj requires 10! x 5 ids. Let us assume that the
cost of an id is 4 bytes, then the storage overhead will be 1010 x5 % 4 = 2 % 10! bytes = 168
GB. As we presented in section 3.2.2, the overhead of storing Dy instead of Dy, is d,qvg Where
dnavg 18 the average depth of terms that are directly used in object descriptions in materialized
faceted taxonomy M. In our case dqyg = 3.2. From the above description of each facet, we can
infer that the majority of objects are classified under the leafs of each hierarchy. So, we suppose
that das,qg = 3. Consequently, to store Dj(0)Vo € Obj would require 168 GB * 3 ~ 0.5 T'B.

As the space requirements for storing this information is high, the realtime computation
of the exact zoom-in points and counts in a web application using ordinary hardware will be

unacceptably high.

5.2 Interaction Scheme for Large Collections

There are several works which discuss the challenges of providing faceted exploration services
on global web search engines. [50] discusses the challenges of providing such services on a large
corpus of documents with many facets. Additionally, [48] discusses the limitation of a search
engine to quickly compute (or estimate) the facet values for every result that matches a particular
query. However, all performance measurements that have been reported in related works (e.g. in
[59, 43, 5]) are over collections consisting of millions of objects, and to the best of our knowledge

there is not any system of work that attempts to scale such services for billions or more objects.

95

For a terra-sized collection, the computation of zoom-in points in real time, is roughly
impossible for the methods presented in section 3.3 using a single PC and assuming the current
technology. To this end, we propose a variation of the interaction scheme of FDT that provides
count information only if the focus size is under a certain threshold. For instance, assume that
the size of the collection is 10°. The count information for the corresponding zoom-points, are
not very useful. A rough approximation of the count information (an upper and lower bound)
for the computation of the right zoom points would be enough. For this reason, the designer
should be able to define a threshold, e.g. thres = 105, and when the user after a number of clicks
reaches a focus whose the upper bound of the count information is below thres then zoom-in

points with exact count information will be computed.

In more detail, this variation proposes two different interaction approaches: (i) if the focus
size is over a ceratin threshold we will only compute the zoom-in points for each facet and their
counts approximately, and (ii) in the focus size is under the threshold we will follow the classical
object-based methods (remember chapter 3). In the first interaction approach we will follow
the CTCA-based approach for providing the specific services, while in the second interaction

approach the TLOI-based. Below we discuss each approach separately.

According to the CTCA-based approach, we compute the zoom-in points but we provide
approximated count information and we do not compute the focus answer. To compute zoom-in
points with no count information, we need a kind of preprocessing that yields some data that
can be exploited for speeding up the computation. However, these data should have low storage
space requirements. For this problem we adopt the Compound Term Composition Algebra
(CTCA) [55]. CTCA is fully intensional, in contrast to dynamic taxonomies which are both
intensional (due to the existence of hierarchies and their semantics) and extensional (as they
discard queries with empty extension). The adoption of CTCA allows computing the zoom-in
points without having to perform any operation on the object-base. Instead what we have to do
is to mine offline a CTCA expression that specifies all conjunctions of terms whose answer is non
empty and at run-time to reason over the mined CTCA expression. In this way we bypass the
overhead of the object-based approaches. The required CTCA expression is expected to have

low storage space requirements due to the compressing potential of CTCA (for more see [51]).

On the other hand, in case of TLOI-based approach, we should compute the zoom-in points,
provide the exact count information and compute the answer of the focus. Such information

cannot be derived from CTCA-based approach. This is an object-based method but it supports

96

efficient storage indices which reduce the computational costs.

We have to mention that the proposed interaction scheme supports the FDT exploration of
an entire collection and not a party of it e.g. FDT exploration on a subset A C Obj where A
has been provided by an external access method like an answer to a query in a WSE. In other
words, in this case we do not support the feed(A) operation presented in section 3.1.1.3, because
all computations are based in pre-computed indices which do not support for the moment this
functionality. This is an issue for further research.

Below we describe each approach analytically. In more detail, section 5.2.1 elaborates on the
CTCA-based approach, while section 5.2.2 on the TLOI-based approach. Moreover, in section
5.2.1.5 we propose a formula for estimating approximately the count information of a focus in

order to identify when we should apply the TLOI-based approach and when the CTCA-based.

5.2.1 CTCA-based Approach

This section describes how CTCA is exploited. The subsequent sections give more details for

various parts.

5.2.1.1 V; & EV; Computation

Let M = (F,I), be the materialized ontology. Let V(M) = {s C T | I(s) # 0} i.e. the set
of all compound terms that have not empty extension. By using the approach described in
[53] we can produce an expression e of CTCA, such that S, = V(M), i.e. the terms that are
valid according to CTCA expression e, are those that are extensionally not empty in M. This
means that we can store the expression e and whenever we want to see if s € S, we employ the
algorithm described in [55].

Let us now describe how the above can be exploited in the interaction paradigm of FDT. Let
st denotes the current state of the interaction with respect to the interaction states presented
in section 3.1. As we have already noted, in this case we can only execute click(t) operations.
Furthermore, let us assume that we have a function isValid(e, s) which returns True, if s is a
valid compound term according to e (i.e if s € S.) and False, otherwise.

In case of Simple Visualization Mode (SVM):

Vi(st) = {t € N(st.ctz;) U Inc;(st.ctx;) | isValid(e, st.ctxz U {t}) = True} U B*(st.ctx;)

97

In case of Extended Visualization Mode (EVM):

EVi(st) ={t € T; | isValid(e, st.ctx U{t}) = True}

5.2.1.2 A short introduction to CTCA

CTCA is used for specifying the set of compound terms over a given faceted taxonomy that are
valid (i.e. meaningful) in the application domain. From a ”"logical” point of view, we could say
that CTCA is an algebra for specifying the ”satisfiable” conjunctions of terms.

As we described above, if e is an expression, S. denotes the outcome of this expression and
is called the compound terminology of e. The initial operands, thus the building blocks of the
algebra, are the basic compound terminologies, which are the facet terminologies with the only
difference that each term (for reasons of notational simplicity) is viewed a singleton. Specifically,
the basic compound terminology of a terminology T; is defined as: T; = {{t} | t € T;} J{0}.

CTCA provides four basic algebraic operators: plus-product (©p), minus-product (Sy), plus-
self-product (©*p) and minus-self-product (&*). The definition of each operation of CTCA is
summarized in Table 5.2. They are all operations over P(7). Each of these four operations has
an extra parameter denoted by P or N, respectively. The set P is a set of compound terms
that we certainly want to appear in the result of the operation, i.e. they are valid. From these
more valid terms are inferred. On the other hand, the set IV is a set of compound terms that
we certainly do not want to appear in the result of the operation, i.e. they are invalid. From
these more invalid terms are inferred.

Product operation is an auxiliary operation that results in an ”unqualified” compound ter-
minology whose compound terms are all possible unions of compound terms from its arguments.
Here we have to mention that a product operation is equal with a minus-product operation if N
is empty. An example is shown in Figure 5.1. On the other hand, a self-product operation gives
all possible compound terms of one facet. Plus-self-product operation results in a compound ter-
minology consisting of the compound terms of the initial basic compound terminology, plus all
compound terms which are broader than an element of P, while minus-self-product the opposite.
For example, the result of the operation @}, (BySports), where P = {{SeaSki, Windsur fing},
{SnowSki, Snowboard}} is shown in Figure 5.2.

An expression e over F is defined according to the following grammar (i = 1, ..., k) in BNF

where k is the number of facets:

98

S s S @ s=s9s N=0

{Greece} {Sports} {Greece} {Sports}
{Crete} {SeaSports} {Crete} {Greece, Sports} {SeaSports}
{Crete, Sports} {Greece, SeaSports}

{Crete, SeaSports}

Figure 5.1: Product and minus-product operation example

By Sports é (By Sports) P={{Seaski, Windsurfing}
{All Sports} P {All Sports} {SnowSki, Snowboard}}

{Sea Sports} {Winter Sports} {Sea Sports} {Winter Sports}

AN\ N

{SeaSki} {Windsurfing} {SnowSki} {Snowboard}| {SeaSki}{Windsurfing} {SnowSki} {Snowboard}

NSNS

{SeaSki, Windsurfing} {SnowsSki, Snowboard}

Figure 5.2: Self-plus-product operation example

e=®p(e,...e) | on(e,...,e)| &pTi| oy Ti | T

Let us assume that we have the materialized faceted taxonomy of Figure 3.3. This material-
ized faceted taxonomy will be the running example of this chapter. In order to understand the
usability of minus and plus products, an expression e that defines a set of compound terms S,
which are those that have no empty extension is the following: e = ByLocation ©n BySports

where

N ={{Crete, WinterSports},{Olympus, Sea Sports},
{Heraklio, Seaski}, {Ios, WinterSports},
{los, SeaSki}, {Lasithi, Windsurfing}}

There are several expressions that can be used to specify the same set of compound terms.
For example we can use an expression ¢’ that has a plus-product: ¢/ = ByLocation ®p BySports

where

P ={{Olympus, Snowboard}, {Olympus, SnowSki},
{Heraklio, Windsurfing}, {Ios, Windsurfing},
{Lasithi, Seaski}}

99

Operation ‘ e ‘Se ‘

product S1®So®..... @ Sk|{s1Us2U..... Usk | si € Si}
plus-product |®&p(S1, 52, ,SE)S1US2 U L. USkUB+(P)
minus- on(S1,S2, ... ,SE)|S1 D S22 ... @Sk—N+(N)
product

self-product @*(T3) P(T3;)

self-plus- &% (T;) T; UBT(P)

product

self-minus- o) @*(T;) — NT(N)

product

Table 5.2: Basic notions and notations

As our paradigm is too small and it does not show the power of CTCA, imagine that we add the
term Islands in Tyrocation Where Islands < Greece, Ios < Islands and Crete < Islands and
three objects {H6, H7, H8} where D;(H6) = {los,Seaski}, D;(H7) = {Heraklio, Seaski},
and Dj(HS8) = {Lasithi, Windsur fing}. Then we can use the expression:
¢ = ByLocation©y BySports where N = {{Islands, WinterSports}, {Olympus, SeaSports}}.
As we saw above, there are several expressions that could be used for defining the same
partition. In particular, what we are looking for is a Sperner system [46] of the maximal invalid
compound terms in case of N or the minimal valid compound terms in case of P.
One system based on CTCA has already been built [57], while other applications of CTCA
are described in [51, 53]. Approaches for mining the expression e have been already proposed

and are discussed in Section 5.2.1.4.

5.2.1.3 Compound term validity and CTCA

To check the validity of a compound term s, we can use the algorithm IsValid(e, s) as described
in [55] and presented in Alg.1 which returns True, if s € S, and False, otherwise.
Depending on the parse tree of e, i.e on the kind and number of operations (®p, On, &*p,

©*) that are used in e, the algorithm contains steps of the form:

(1) if 3n € N s.t. n = s, then s will be invalid; valid otherwise (appears in lines 14-21 and
29-33).

(2) if 3p € P s.t. p < s, then s will be valid; invalid otherwise (appears in lines 7-13 and
22-28).

(3) if pt € T;,Vi = 1,....,k s.t. {t} < s; 6, then s will be invalid; valid otherwise (appears in

s; may contain more than one term of facet ¢

100

Algorithm 1 IsValid(e,F,s)

1
2
3
4:
5:
6.
7
8

9:
10:
11:
12:

13:
14:
15:
16:

17:
18:
19:
20:

21:

22:
23:
24:

25:
26:
27:
28:

29:
30:
31:
32:
33:

34:
35:
36:
37:
38:

: if (s =) then

return (TRUE)

: if (3t € s such that F(t) € F(e),) then

return (FALSE)
if (s is singleton) then
return (TRUE)

: if (e instanceOf @p (e, ...,e,)) then

if (3pe Pst. p=<s)then
return (TRUE)
for (i=1ton) do
if (IsValid(e;, F,s) = TRUE) then
return (TRUE)
return (FALSE)
else if (e instanceOf Oy (eq,...,e,)) then
if (3n € N s.t. s < n) then
return (FALSE)
for (i=1ton) do
si={tes|F(t)e F(e;)}
if (IsValid(e;, F,s;) = FALSE) then
return (FALSE)
return (TRUE)

else if (e instanceOf ®p (T;)) then
if (3p € P s.t. p < s) then
return (TRUE)
if (3t €T, s.t. {t} < s) then
return (TRUE)
else
return (FALSE)

else if (e instanceOf On (T3)) then
if (3n € N s.t. s < n) then
return (FALSE)
else
return (TRUE)

else if (e instanceOf T;) then
if (3t €T, s.t. {t} < s) then
return (TRUE)
else
return (FALSE)

>ie seT;

>ie. se€T;

101

lines 34-38).

While CTCA approach has low storage overhead as we have only to store the defining
algebraic expression e and the compound terms in P, N, the complexity of IsValid(e,s) is
O(|T|%«|s]| * | PUN |) where P is the union of the P parameters of all plus-product
operations and A is the union of the N parameters of all minus-product operations which exist
in e [54]. This complexity overhead owed to the transitive closure computations and to the
sequential searching of P and AN parameters, as no index is supported.

In this thesis we propose optimizations to minimize this overhead. In more detail, section
5.2.1.6 proposes the usage of labeling algorithms for avoiding the cost of transitive closure

computations, and efficient indices for storing the P, N parameters.

5.2.1.4 Mining a CTCA expression

A CTCA expression can be formulated manually or automatically. For instance a designer can
use CTCA in order to specify the set V of valid compound terms in a flexible and gradual
manner, without having to provide explicitly every element of V' (the manual specification of
the elements of V would be a formidably laborious task). Note that if we have a materialized
faceted taxonomy M = (F,I), as in our case we could mine the expression e using the approach
presented in [53] (this is called expression mining). The cost of mining the expression e according

[53] is:
|7~|kz+2
Lk—1

‘T|2k+2

O L

+ (k — 1)15% « Task(spo))

|Obj| +

where k is the number of facets and T'ask(spo) is an optimized process where the parse tree
of an expression e is enriched with the P, N parameters while its complexity is at the magnitude
of O(|T|?). The time complexity is polynomial with respect to 7 and exponential with respect
to k but this algorithm will run once (offline) and the most times the k is small (in our example

k= 5).

5.2.1.5 Approximating Zoom Point Count Information

As we have already described in section 5.2, we need a formula for estimating approximately
the size of focus answer e.g. |I(ctz)|, in order to specify which interaction approach we have to
follow. In this section we propose a method for approximating the count information of a focus

ctx in constant time.

102

Suppose that we know the counts of all terms of the faceted taxonomy, where count(t) =
|I(t)|. The count of t is the number of objects that are indexed with ¢ or its descendants. In
case we want to compute the count of a compound term s = {¢1, ..., tx} approximately, we need

to compute the upper and the lower bound of |I(s)|. The bounds are the following:

Upper Bound: UB(s) = minf_, (count(t;)),
Lower Bound: LB(s) =0

Clearly, U B(s) is the minimum count of the term in s since I(s) = N¥_, I(¢;). For example, if s =
{Creece, SeaSports} in our running example, then LB(s) = 0 and UB(s) = min(|/(Creece)|
,|I(SeaSports)|) = min(5,3) = 3

Definition 3 We call a MFT cartesian if each object is mandatorily indexed by one and only

one term from each facet.

Prop. 1 (Lower Bound)
In a cartesian materialized faceted taxonomy, if 1,,tp € X i-“:lTi, then

LB(I(t1, s ty)]) = max(0, S5, [(t3)] — (k — 1)|Obj]) 0

For example, suppose we have 3 facets A, B,C with T4 = {a1,a2}, Tp = {b1,b2}, Tc =
{c1,c2} and 4 objects where each object is indexed with exactly one term from each facet. Let
us assume that ctz = {ay, b1, cl}, count(ai) = count(by) = 4 and count(cl) = 2. It is obvious
that count(ctx) = 2 as all objects are described by a1 and by, but only two of them are described

by ci. So LB(ctz) =4+4+2—-2x4=2.

5.2.1.6 Optimizations

In this section we present two optimizations for minimizing the computational costs of isValid
algorithm. In more detail, the optimizations are: (i) labeled taxonomies & naive CTCA’s pa-
rameters indexing, and (ii) FDT-based Method for storing the CTCA’s parameters. Below we
present analytically the optimization methods, while section 5.3 presents experimental results
on these optimizations.

Labeled Taxonomies & naive CTCA’s parameters indexing

In order to avoid the cost of subsumption checking (remember O(|7?)) we can use a labeling
algorithm that allows deciding subsumption in constant time, like the one proposed by Agrawal

et al. [4] which relies on the introduction of a spanning tree to distinguish between tree and

103

ST ST

Figure 5.3: Labeling algorithm over the Faceted Taxonomy

non-tree edges. Specifically, they propose a hybrid scheme in which the spanning tree edges
fully take advantage of the interval-based labeling, while the non spanning tree edges require a
replication of the label of their source node upwards to their target and its ancestors. Then,
subsumption checking for spanning tree edges relies purely on interval inclusion test, while for

the remaining edges one has to also check whether there is a path in the graph.

More precisely, a node u in the spanning tree ST of the graph is labeled with an interval
[index, postorder| where postorder is the number of u in order to reflect its relative position in a
postorder traversal of the tree and index is the lowest postorder number among its descendants.

Now, for checking the subsumption u < v/, let the postorder number of u be u,, and the index

/

pn and w, respectively. There exists a direct path from node u to

number be u;, and for v’ be u
u' iff ;g > wj and g, > upp.
In our approach we will have a spanning tree for each F; where the nodes are the terms of

7;. This compression scheme of transitive closure requires O(|7]) storage. Figure 5.6 presents

the labels that will be created for the hierarchies presented in figure 3.3.

Recall that according to Table 2.1, compound ordering is defined as s < s' iff V' € s’ It € s
s.t. t < t'. As we describe above, the cost of checking ¢ < ¢’ is O(1). So the overall cost of
subsumption checking of two compound terms s, s’ in case that all taxonomies are labeled will
be O(min(|sl|,|s'])).

Then, a naive method for storing the N (or P) can be used. For each n € N/, one interval
(w.r.t. the labeling algorithm) for each of its facets (i.e. for each n; =nNT; and i =1,...,k) is
stored. We can do the same for the P parameter.

In case a valid/invalid compound term belongs to a self plus/minus product operation pa-
rameter, then the cell for the specific facet will contain a set of intervals while the other cells
will be empty. The time complexity for checking whether there exists a compound term that

belong to P, N which determines whether a focus ctz is valid or not, is O(JN U P| * |k|) while

104

Herakllo La5|th|

» ALY

N ST
\ 3
\

By Location By Sports
Greece All Sports
los Crete Olympus Sea Sports Winter Sports

/'.\/\

SeaSki ‘\ALlndsurfmg SnowSkl Snowboard

N~
S~

Figure 5.4: Indices for storing P parameter

the storage overhead is [N U P| x k, as we need to check all the parameters and the cost of

subsumption checking of ctx is |k|.

FDT-based Method for storing the CTCA’s parameters

Here we describe an alternative approach for storing A'U P. Plus-Product: The rough idea
is the following: for each p € P we create one artificial object o, which is classified under the
terms that constitute p and this defines an auxiliary interpretation, say Y. Then we reduce the
problem of deciding whether an s is valid by checking whether Y (s) is non empty. For example,
Figure 5.4 shows the materialized taxonomy of the running example with respect to the P. For

ctz = {Heraklio, Snowski} we can see that Y (ctz) is empty so ctx is invalid.

Minus-Product: Analogously, for each n € N we create one artificial object o, which is
classified under the terms that constitute n and this defines an auxiliary interpretation, say Y.
However from Y we will not define Y (as for plus-products), but a new interpretation denoted by
Y which is defined as Y (t) = U{Y (¢') | ¢’ > t}, i.e. it is like propagating the objects downwards
in the hierarchy. We reduce the problem of deciding whether an s is valid by checking whether
Y (s) is non empty. For example, Figure 5.5(a) shows the materialized taxonomy of the running
example with respect to the N, while figure 5.5(b) shows the interpretations of the terms. For
ctx = {Heraklio, SnowSki} we have Y (Heraklio) = {on,, 0, } while Y (SnowSki) = {on,, 0ns },
so Y (ctx) = {on, } and ctz is invalid.

The storage overhead and the time complexity of this approach have been already presented

in chapter 3.

It is obvious that using the FDT-based method we do not need to label the taxonomies and

store the N, P using the naive method. So we can follow only one of the proposed optimizations.

105

i By Sports
By Lograezz); yoP All Sports Y(Greece) =
/T\ /\ Y(los) = {01, Oy}
los Crete Olympus Sea Sports Winter Sports Y(Crete) = {03}
7:\ /\ h /__ =i N Y(Olympus) = {06}
‘k-'ie\rik_ll_(’) L;\S‘m _’vaiSIiI Wmﬁum\n\g SnowSki Snowboard Y(Heraklio) = {05, 04}
e = Y(Lasithi) = 0,5, 0,)
. . ‘ . ‘ . Y(SnowSki) = {0, 0n3}

€Y (b)

Figure 5.5: Indices for storing N/ parameter

The experimental results presented in section 5.3.3 specify which optimization is preferable and

under which conditions.

5.2.1.7 Related Work on Labeling Schemes

As we mentioned, a labeling algorithm allows deciding subsumption in constant time. Roughly,
three kinds of labeling algorithms have been proposed: prefix-based, interval-based and bit-
vector-based. In this section we present the prefiz-based and bit-vector-based schemes, and we
discuss why they are not proper for our approach.

A prefir-based scheme directly encodes the parent of a node in a tree, as a prefix of its
label using for instance a depth-first tree traversal. The subsumption checking in prefiz-based
schemes is performed by comparing two strings (labels) while the storage required for the labels
of a tree T'r is O(|T'r|) and the size of the proper node label at each level depends only on
the maximum depth of T'r. An interesting property of prefix-based labels is their lexicographic
order: the labels of nodes u in a subtree with root v are greater (smaller) than those of its left
(right) sibling subtrees. Dewey Decimal Coding (DDC) is a labeling scheme which belongs to
this category [1]. It is widely used by librarians and further investigated in [8, 15]. Figure 5.6
presents the labels that will be created in our running example according to DDC.

However, the interval-based schemes are more efficient than prefiz-based as subsumption
checking is executed by comparing four integers and not Strings. Furthermore, from the storage
point of view, the interval-based approach is better as we have to store only two integers for
each t € T than a String in prefiz-based approach.

In bit-vector-based labeling schemes, the label of a node in a tree T'r is represented by a

106

TrBy Sports

Figure 5.6: DDC labeling algorithm over the Faceted Taxonomy

vector of |T'r| bits, a bit set to ”1” at some position uniquely identifies the node in a lattice
L and each node inherits the bits identifying its ancestors (or descendants) in a top-down (or

bottom-up) encoding. The bit-vector-based approach is not beneficial as |Tr| can be very high.

5.2.2 TLOI-based Approach

According to the proposed interaction scheme, we have to follow the T'L OI-based approach when
the focus size is under a certain threshold. In this case we need to compute the zoom-in points,
to provide the exact count information and to compute the answer of the focus. It is obvious that
we need to follow an object-based method. In this section we present an object-based method
named TLOI-based (Term Labeling by Objects Ids) which supports efficient storage indices
for minimizing the required computational costs and the storage overhead. In more detail, we
propose indices for storing the taxonomies and the interpretations of a cartesian materialized

faceted taxonomy. Moreover, we present algorithms for computing the zoom-in points.

5.2.2.1 Indices for Storing the Interpretations

In section 3.2, we concluded that to provide the exact count information the mazimal storage
policy is preferable. Furthermore, according to the complexities of zoom-in points computation,
in case of very large collections where A is also very big the Fxtension Intersection-based eval-
uation approach is more efficient. Subsequently, the most efficient and effective storage policy
we have to follow is (I, <"), where V¢t € T we store the I(t) and the N(t), B(t). Moreover, we
determined that the usage of indices for storing the I and A, like hash-based indices, minimizes
the computational costs. However, the storage overhead for storing the V¢t € T the I(t) is
|Obj| % Car * dag,avg- Consequently, we need an efficient index for storing the I(t),Vt € T which
will reduce both computational costs and storage requirements.

As we described in Section 5.2, when the user (through a sequence of clicks) reaches a focus

107

whose upper bound object cardinality is below thres, then zoom-in points with exact count
information should be computed. However, the computation of I(ctx) can be very expensive
at some occasions, despite the fact that UB(ctx) < thres, as the computation is based on the
intersections between the I(ctx;), ctz; € ctz. For instance, this can happen in the cases of the
form: assume that thres = 10%, and consider a ctz such that |ctz| = 5 where four of these terms
have |I(.)] = 108, and one has 10%. This overhead can be avoided by using hash-based indices
for storing the interpretations. However, returning to the object-based approaches, recall that
if |Obj| is high then I can also be very high incurring a big storage overhead.

To tackle this problem we introduce a novel approach (index), that we call TLOI, which
can significantly reduce the required time and storage overhead for cartesian and hierarchically
organized MFTs’. TLOI is constructed as follows: we use the Depth-first search (DFS) algorithm
for traversing the hierarchy of a facet and the term-to-object associations®, and we give a unique
integer (id) to each object o the first time we encounter it. The ids are contiguous, so each I(t)
is represented as an interval defined by the min and the max object identifiers that belong to
I(t). We have to mention that this approach can be used only in cartesian MFTs (i.e. when
we have single classification), because in case of multiple classification an object will have more
than one ids for a facet. We do the above procedure for each facet. At the end, each object will
have k ids where k is the number of the facets.

Regarding storage, for each t € T we store the interval that corresponds to the labeled
objects in I(t). Furthermore, we create two indices: i) Yo € Obj we store the ids of o for each
facet, and ii) for each id € [1,|Obj|] we store the object which it describes for each facet. Figure
5.7(a) shows the inverted index that is created for our running example while Figure 5.7(b)
shows the objects indices.

So, the space required is 2 % |Obj| * k. According to 3.2.2, the storage overhead if we want
to store the I(t),Vt € T is |Obj| * dM,avg * Cy. In our case Cyr = k so from the storage point

of view it follows that:

TLOI is more space economical than plain-I storage, if 2 < A avg

Consequently, in case of cartesian materialized faceted taxonomies where the facets are

hierarchically organized with dasavg > 2, TLOI requires |Obj| * (dar,avg — 2) less space. In cases

"Specifically, for MFTs where dpr,avg > 2
8Specifically, for a facet F; = (T;, <;) we traverse the graph defined by the following set of edges:
< Uli7, where I|7, denotes the restriction (of the domain) of T on T;.

108

Interpretations Objects

By Location By Sports %\0‘\ @ & e

term interval term interval Vo(’ GJQO \/00 @QO
Greece [1,5] [|AllSports [1,5] Q@ P
los [1,1] [SeaSports 1,3 | HL|1]2 1]H1|H2
Crete [2,3] | SeaSki [1, 1] H2 13 |1 2| H3 | H1
Heraklio | [2,2] [Windsurfing 2,3] | H3 |2 |3 3| H2 | H3
Lasithi [3,3] | Winter Sports | [4, 5] H4 |4 |5 4| H4 | H5
Olympus | [4,5] | SnowSki 4,4 | H5|5|4| 5|[H5|H4

Snowboard [5, 5]
(@ (b) ©)

Figure 5.7: Store Indices

that dpravg < 2, the overhead of storing the I(¢),Vt € T will not be big so we can follow the
plain-I storage. Furthermore, an other major advantage of TLOI is that the storage overhead

is independent to the depth of the hierarchies.

5.2.2.2 Indices for storing the taxonomies

According to section 3.2.3, in case we follow a maximal storage policy, we only need to store
Vt € T the B(t),N(t). So Vt € T, we will store as sets the B(t), N(¢) and its interval which

represents the I(t).

In case that Vt € T, I(t) # (), these intervals allow us to check term subsumption in constant
time, i.e. by checking if the interval of a term covers the interval of the other. For example if

interval = [274] and ¢’

interval

= [2,10] then it follows that ¢ < ¢’. This means that if TLOI is
adopted and Vt € T, I(t) # 0 then we do not have to label taxonomies (remember CTCA-based
labeling optimization). We have to stress that TLOI is different from an ”object-extended”
application of the Agrawal’s labeling, i.e. from the labeling obtained by considering each object
o as "narrower term” of the terms in D(o0). This is evident in the example of Figure 5.8 which
shows the derived labels by each approach. Notice that Agrawal’s labels encode information
of both terms and objects, while TLOI only of objects. For the problem at hand, TLOI is
more appropriate because although it has the same complexity as Agrawal’s labels (two integer
comparisons), the label of a term t allows us to compute the |I()| in constant time as it is the

size of its interval, e.g if tinterval = [Ostart; Oend) then |I(t)] = 0end — Ostart + 1.

109

Our Approach | Agrawal on Obj

By Location Greece [1,5] [1,11]
Greece los L1 L2
/T\ Crete [2,3] 37
los Crete Olympus Olympus [4.9] 8,10]
¢ /\ 4;\ Heraklio [2.2] [3.4]
i Y Lasithi 3.3 [5.6]
:.' Her:i(lio szafithi '.: S H1 1 1
D H2 3 5
H = H : H3 2 3
®) @2 @ | [: :
H5 5 9

Figure 5.8: TLOI vs Object-extended Agrawal’s Labeling

5.2.2.3 Zoom-in points Computation

Let us now see how we can compute I(ctz) in case a TLOI is available. To compute ({I(ctx;) |
ctx; € ctr} we can start from the term ¢,,:, € ctx with the minimum in size interval invly,, =
minf_, (|I(ctx;)|). For each id € invly, we get the object o which the id belongs. Then, we get
the set of identifiers (ids) of o for the rest facets. What we have to check is that each of these
identifies belongs to the interval of the corresponding term of ctx. For example, let us assume
that ctz = {Crete, SeaSports}. At first we get the intervals of these two terms, i.e. [2,3],[1,3].
The term Crete has the minimum in size interval, so invl,;, = [2,3]. Then, we get the object
H3 as it has the id 2 for the facet By Location. Next, we get its id for the facet By Sports, it is
3, and we check if it belongs to the interval [1,3]. Yes, so H3 € I(ctx). We do the same for id
2, and finally, the intersection is { H2, H3}.

The time complexity for computing I(ctz) will be the cost of getting the intervals of all
terms t € ctx and the cost for computing their intersection using the method described earlier.
The cost for getting the intervals is O(k) as each term keeps its interval and the maximum
number of the terms that ctx can have is k. The cost for computing the intersection will be
O(invlpmin * (k — 1)) as Vid € invly, we have to check the other k — 1 ids and the indices
can be hash-based. So, the overall time complexity will be O(k + invipmi, * (K — 1)). As the
cost depends on the invl,y, this approach is not efficient in the following cases: (i) for foci
whose terms belong to the highest levels of the hierarchy, as the inuvl,,;, will be large, and (ii)
the cardinalities of the interpretations of all terms ctx; € ctx are the same. However, as FDT
is an information thinning technique, and the TLOI-based approach is followed under specific

situations e.g. under a threshold, these cases do not appear frequently.

Finally, to compute the zoom-in points, we can follow exactly the algorithms presented in

110

chapter 3. The advantage of TLOI is that minimizes the costs of computing the intersections.

5.2.2.4 TLOI Advantages

Until this point, we saw how TLOI can be used for computing efficiently the zoom-in points.
However, by using a simple hash-based index for storing the interpretations, we can have the
same efficiency. Both indices can check if an object o € I(t) where t € T, in constant time. In
case of a hash-based index, it is the cost of a look-up operation, while in case of TLOI , it is the
cost on an interval enclosure check. Bellow, we summarize the advantages of TLOI that make

it more efficient:

e TLOI is more space economical. As we prove in section 5.2.2.1, TLOI is dqpg — 2 times

more space economical than plain-I storage in cartesian materialized faceted taxonomies.

e TLOI can speedup up and other on-line tasks. We get the |I(t)| for a term ¢ € T in
constant time. We need the count information for each term for two reasons: (i) computing
approximately the focus size and (ii) finding which ctz; € ctx has the minimum in size

|I(ctx;)|.

e In case that Vt € T, I(t) # (), TLOI allows us to check term subsumption in constant

time.

Some other details regarding TLOI follow. If an object is not classified with respect to a
facet, then this object will not get an id for that facet. If for a term ¢ € 7; the set I(t) = 0 then
tinterval = [—1, —1] and we do not take it into consideration.

Finally, we have to mention that TLOIl approach can be used also for storing the P param-

eters in CTCA — based approach.

5.2.2.5 TLOIl on DAG and Multiple Classification

TLOI can also be used on DAG-structured taxonomies or on materialized faceted taxonomies
with multiple classification of objects. In this section we examine the TLOI behavior on these
particular cases.

For DAG-structured taxonomies we can follow the Agrawal’s approach on labeling graphs
with the only difference that the optimal spanning tree ST will be selected with respect to
the number of the objects that will be labeled. Then for each node of ST, the interval of

111

Node ST Propagation Compression
A [1,5] [1,1],[2,2] [1,5]
B [1,4]
C [1,1] [2,2] [1,2]
D [2,3]
E [4,4] [2,2] [2,2],[4,4]
F

Bme ——

Figure 5.9: TLOI on DAG

source node is propagated to the target node and recursively up to its ancestors. After the
step of propagation, a node may contain more than one interval so we need a step of intervals’
compression. In case the intervals are adjacent, they can be merged. If an interval is subsumed
by another, it can be pruned. Finally, after the execution of the two above steps, the node gets
the remainder intervals. Figure 5.9 depicts an example of TLOI on a DAG. All the arrows which
connect the DAG’s nodes belong to DAG while only the non-dashed arrows belong to ST. The
table shows the nodes’ labels according to the spanning tree (column ST), the third column

shows the labels at the propagation step and the last shows the compression step.

As Agrawal’s labeling scheme on DAGs, the total storage requirement depends on the nature
of the graph. In the worst case, the storage required for the compressed closure can be O(|T]?),

as in the case of a bipartite graph.

As we have already mentioned, in case of multiple classification, TLOI is not efficient. This
is due to the facet that an object will have more than one ids for a facet. Figure 5.10(a) shows a
tree-structured facet with three indexed objects {01, 02,03} where each object is classified under
two terms of the facet. Figure 5.10(b) presents the objects’ ids according to the DF'S, and figure
5.10(c) shows the terms’ labels.

5.2.3 Changes over Materialized Faceted Taxonomy

Taxonomy or objects’ indexing updates may turn a CTCA expression e or TLOI indices invalid.
In this section we examine how we can revise e and TLOI indices after a taxonomy or an object

update.

112

A
@ @ Node Label
D|E|C A [1,6]
@ @ B [1,4]
0, 2

C 5, 6]
AN 02 3 1° D [1,1]
Lo] [o2] [oz] 03 416 E 2,4]

(@) (b) (c)

Figure 5.10: TLOIl with multiple classification

5.2.3.1 CTCA Updates

CTCA allows the specification of the valid and invalid compound terms of a materialized faceted
taxonomy according to the current state of affairs. Obviously, if the state of affairs changes,
currently valid terms may become invalid and vice-versa. [52] shows how we can revise e after a
taxonomy update? and reach a valid expression e/ whose semantics (compound terms defined)
is as close as possible to the semantics of the original expression e before the update.

Furthermore, as a CTCA optimization uses the Agrawal’s labeling scheme, we need to present
how the labels which are assigned to each term will change. According to [4], to support
incremental updates without node relabeling one can leave gaps between the intervals generated
during the bottom-up tree traversal using some constant factor ¢ in the postorder numbering,
i.e., the label of a node w is [index(u), c X post(u)].

In case of objects’ indexing updates, it is obvious that the expression e and its semantics
may need to be changed. To support the feed(A) operation also requires revising the expression

e and this is a topic that is worth further research.

5.2.3.2 TLOI Updates

Lets examine first the case of taxonomy update i.e term deletion, addition. In case of a term ¢
deletion, we need to determine if we also want to delete the objects which are directly classified
under ¢ i.e., I(t) . In case we do not want to delete the I(¢) and we assume that they will be

classified under t's parents, the deletion is trivial as I(#) D I(t) where ¢ € B(t). On the other

9The update operations are: term renaming, term deletion, term addition, subsumption relationship
deletion, subsumption link addition, leaf addition and intermediate term addition.
10We assume that we want to delete only ¢ and not N*(t)

113

hand, in case we want to delete the I(¢), we must delete ¢ and then follow the object deletion

approach which will be presented below.

In case of term addition, we add ¢ in a location specified by the user and then t’s label will

be the union of its children intervals.

Furthermore, we have objects indexing updates i.e., feed(A) operations. In case we want
to delete an object o € Obj, we simply delete o from Obj and we decrease the ids of all objects
where their ids are greater than o id. Let Obj, denotes these objects i.e., Objg(0) = {ob €
Obj | ob.id > o.id}. Subsequently, we relabel only the terms ¢ € D(Objg¢(0) U {o}). It is
obvious that the greater the id of o is, the less expensive the cost of deletion is going to be. As
we use DFS algorithm, the best case of object deletion is the deletion of objects which belong

to the extension of terms at the higher levels of hierarchy.

In case of object addition, we can follow two possible approaches. Let us assume that we
want to add the object o where D(0) = {t}. According to the first approach, o gets the greatest
id and we add to t an additional interval with the id of o. For example, if |Obj| = 100 the id of
o will be 101 and the interval [101, 101] will be added to the label of t. However, this approach
is not so efficient as a term will have more than one intervals. The second approach avoids this
shortcoming. Let us assume that the label of ¢ is [90,95]. Then, o will get the id 96 and the ids
of the objects ob € Objg¢(0) will be increased. Consequently, the label of ¢ will be [90,96] and
we have to relabel the the terms ¢ € D(Objg+(0) U{o}). The cost of addition in this case is the

same with the cost of deletion.

5.3 Evaluation

Section 5.3.1 compares analytically [5], [38] and TLOI-based approaches with respect to the
storage overhead. Section 5.3.2 reports experimental results regarding the computation of I
using the TLOI-based approach. Finally, section 5.3.3 presents experimental results for the
CTCA-based approach.

All algorithms are implemented in Java and experiments are performed on an ordinary PC

(AMD Opteron 2,4GHz with 8GB RAM).

114

5.3.1 Analytical Evaluation

In this section we compare analytically from the storage point of view, the indices proposed in
TLOI-based approach with the other object-based indices presented in section 3.2.2 ([38] and
5))-

Suppose that we have a cartesian materialized faceted taxonomy with similar characteristics
as those presented in the global-scale exploration scenario (see section 5.1). In more detail, we
have 5 facets, each one is hierarchically organized as a balanced and complete tree with degree
16 and depth 4. So, |T| ~ 3.5 % 10° . Furthermore, we suppose that |Obj| = 101 where we
assume that the majority of objects are classified under the leafs of the trees, so dsqvg = 3.8.
This is a reasonable assumption as most objects are described by the most specific terms. In
addition, we assume that the size of an integer (Int) is 4 bytes.

If we follow the approach proposed in [5], we have to store the TaxIndex and the inverted
list that keeps the I(t) for each t € T (see Figure 3.4). In this scenario we will not store the
list which contains the objects’s descriptions. TaxIndex keeps 2 integers for each t € T , so the
required storage is | 7| * 2 x Int. For storing I, we need |Obj| * daraug * Car * Int bytes. In our
case Cj; = k where k is the number of the facets.

If we follow the approach proposed in [38] we need 4 indices for storing the taxonomy (SF,
FS, Descendants and Ancestors), while the interpretations will be stored in bitmaps and inverted
lists. In more detail, for SF index we need

d

(Z(b’)) * Int * k

=1

bytes, where d is the depth and b is the degree of the tree. For F'S we need

d—1

(Z(bl)) b Intx k

i=0
bytes. For Descendants index we need |7 |+ AD xInt bytes, where AD is the average number
Z?;&(Zizm(b’“))

of descendants of a term in the tree i.e. AD = . On the other hand, storage

io(b)
overhead of Ancestors index is |T|* AA * Int where AA is the average number of ancestors of
d i
a term of the tree i.c AA = Z=1"*) o the reason that the facets’ hierarchies are balanced

e,
i=0(b")
and complete trees AA = AD.

Furthermore, the storage requirements of a bitmap-based interpretation according the author

is |T| % |Obj|/8, while an inverted list-based will require |Obj| * dar,avg * Car * Int. Suppose that

115

we will use a bitmap for storing the interpretations of the terms at the first level of the hierarchy
and inverted lists for the rest. We will have (16 * |Obj|/8) + |Obj| * (dar,avg — 1) * Cas * Int.

If we follow the TLOI-based approach, the storage overhead will be 2 x |Obj| * k * Int for
storing the interpretations. For storing the hierarchies, we need |7 % 2 % Int for the intervals
and the same storage overhead of [38] for storing the SF, F'S indices, as Vt € T we store the
B(t), N(t).

Table 5.3 shows the sizes. As we can see, our approach is more space economical. In case
that dpsqvg Will be increased, then the difference between storage overheads will be increased
too. This is for the reason that our approach is independent to the structure of the facets’

hierarchies.

’ Storage | 38 | [5] | our |
T 13 MB | 2.6 MB | 5.26 MB
Interpretations || 0.54 TB | 0.70 TB | 0.37 TB

Table 5.3: Comparison table according Global Index Scenario

5.3.2 Computation of I: Time Perspective

In this section we compare two different I evaluation approaches with respect to the time
required for computing the I(ctz). In more detail, we compare the TLOI algorithm with the
Ezxtension Interpretation-based evaluation approach, following the mazimal storage policy. In
the experiments the I(t),Vt € T was stored in inverted lists and they were not stored in hash-
based indices. We did not provide experiments on bit-map indices but we discuss times that
have been presented in [39] and we compare them with the inverted lists approach.

We did not make experiments in a billion object information base because, apart from not
having such an information base and according to our approach the computation of zoom points
is based on the extensions only if the focus size is under a threshold. In particular, we created a
faceted taxonomy of 10 hierarchically organized facets and an information base of 10° objects.
The |I(ht)| of a term ht at the highest level of hierarchy (root element) was 10° objects, for a
term mt at the middle levels was |I(mt)| = 1,25 * 10° objects, while for a low level term It was
|I(1t)] = 10%.

We computed the I for 6 different types of cta:

i) all terms were ht (HT),

116

MT

180
160

140 { M M M M
120
100 |
80 |
60 -|
40 |
20 |
0 4
o
-
[

10

TLOI

TLOI
TLOI

o
-
[

TLOI
TLOI
TLOI

Figure 5.11: I(ctxr) Measures

ii) all terms were mt (MT),
iii) all terms were [t (LT),
iv) one term was It and the rest were ht (HT <),
v) one term was [t and the rest were mt (MT & LT), and
vi) one term was mt and the rest ht (HT & MT).

Each of the above foci, was executed for 5,6,...,10 facets. Figure 5.11 shows the execution
times in milliseconds where each execution time is the average of 103 different executions.

As we can see from Figure 5.11, the times are proportional to the number of facets because
as |ctx| increases, the number of intersections increases as well.

Regarding the comparison TLOI vs classical Extension Interpretation-based evaluation ap-
proach, we can see that if all ctz; have the same |I| or belong to the same hierarchical level,

Eztension Interpretation-based is faster than TLOI approach, e.g in cases (HT), (MT) and (LT).

117

For example, in (MT) case with 5 facets, I method takes 92ms, while TLOI takes 141ms. How-
ever, this result was expected as we have already discussed in section 5.2.2. On the other hand,
in case we have a ctz with terms in different hierarchical levels e.g. (HT & LT), (MT & LT) and
(HT & MT), TLOI is much faster. For example, in case we have 10 facets and all terms are in
the highest level except one which is in the lowest, using I approach we need 1770 ms while with
TLOIl we need only 32 ms. This means that TLOI is around two orders of magnitude faster.
This is an expected result as TLOI checks the ids of 10* objects while interpretation-based
approach makes intersections between sets of 10® integers.

Sacco in [39], presented several experiments for determining which implementation between
inverted lists and bitmap is more efficient. His experiments showed that the bitmap-based
approach clearly outperforms the inverted lists-based. In more detail, he showed that in a
corpus of 8%10° objects which are classified under 10 hierarchically organized facets, the bitmap-
based implementation is about 35% faster than the inverted lists-based, while when the size of
collection decreased also decreased the difference between the two implementations. In case that
the size of the collection is less than 10°, the inverted file-based implementation is more efficient.
However, this approach can be followed only for a focus ctx where all terms ¢ € ctx also belong
to the high levels of the taxonomy . In this case, as is barely the focus size be under the thres,

we follow the CTCA-based approach.

5.3.3 CTCA Validity Checking

In this section we present experimental results on CTCA-based approach. In more detail, sec-
tion 5.3.3.1 estimates the number of P, N parameters in a terra-sized collection. Section 5.3.3.2
presents execution times of isValid algorithm without the usage of any optimization. Section
5.3.3.3 presents experimental results on s Valid algorithm by using the labeling taxonomies op-
timization presented in section 5.2.1.6 and compares it with the FDT-based CTCA’s parameters

indexring optimization presented in the same section.

5.3.3.1 Estimation of CTCA Parameters Plurality

A general discussion about the size of the parameters is given in [51]. In our case, we have

to take into consideration the organization of the facets, e.g. whether they are hierarchically

1 According to [38], in bitmap are stored only the interpretations of the high level terms.

118

organized or flat, and the size of the collection i.e. |Obj|. We will elaborate on cases where the

facets are hierarchically organized, as in our examples and experiments there is no any flat facet,

and we have a terra-sized collection of data.
There are three main cases according to the size of hierarchies (wrt the |7):

Case 1 (Small Taxonomies). As the number of all possible compound terms is not big and
the collection is very large, we need a minus-product operation with few n € N parameters
to describe the V¢(M), where V¢(M) = {T1 x x T} \ V(M).

Case 2 (Very Large Taxonomies). Here the number of all possible compound terms is much
bigger than the distinct descriptions of the collection’s objects. Therefore a plus product
having a parameter P where P = min<(V (M)), is beneficial.

Case 3 (Medium-sized Taxonomies). This is a case that falls between the above two ex-
tremes. In such cases it is beneficial to use a plus-product operation if
|min<(V(M))| < |max<(V¢(M))|, or a minus-product otherwise.

If e has several plus and minus product operations, the range-restricted closed world as-
sumptions of these operations make hard the estimation of the |P UN/|. The exact estimation

of CTCA parameters’ plurality is an issue which worths further research.

5.3.3.2 isValid Experiments Without Optimizations

In this section, we present experiments for cases that fall between Case 2, Case 3. We do not use
any optimization like these presented in sections 5.2.1.6. We created three types of expressions
with the following formats:

el: dp(er,...,er),

e2: On(ey,...,ex), and

e3: On(®p(on(Dp(er,er),es, ..., k).

For each expression we created different P and A sets with the following cardinalities: 103,
10* and 10°. For the expressions of the e3 format, the number of parameters for each one
subexpression was [P UN|/(k — 1).

As we did not apply any labeling scheme, we had to consider the characteristics of facets’
organization. We created 4 different faceted taxonomies each one consisted of 5 facets. In all
faceted taxonomies the facets were organized as a balanced and complete tree with depth = 5.
The only difference between faceted taxonomies was the degree of the facets’ trees. In the first

one it was 3, for the second it was 4, 6 for the third, and 10 for the last. Additionally, Vt € T

119

we stored the N(t) and B(t).
The compound terms of each parameter had average term depth=3 and each P, N was
redundancy free as P = min<(P) and N = max<(N). Table 5.4 presents the execution times,

where each one is in milliseconds and is the average of 10* different executions.

Degree | Num. of Params H el e2 e3
103 14 15 8

3 10% 144 156 87
10° 1413 1566 861

103 40 41 22

4 10% 399 406 239
10° 3979 4100 2367

103 301 328 206

6 10% 3132 3406 1975
10° 32209 33804 | 19741

103 12357 12345 8848

10 10% 128446 | 133989 | 82621
10° 1292457 | 1350079 | 803020

Table 5.4: isValid execution times without optimizations

The results, proves that the usage of isValid algorithm without any optimization is pro-

hibitive.

5.3.3.3 isValid Experiments With Optimizations

In this section we do not present experimental results on the FDT-based CTCA’s parameters
indexing optimization as the execution times presented in section 5.3.2 covers this case. In case
of plus product operations, we can see that execution times using the TLOIl approach, while
in case of minus product operation the times of I. We cannot use the TLOl method in minus
product operations, as for storing the Y, each term ¢ € T will have several labels.

Below, we present experiments on the labeled taronomies and naive method of indexing
optimization approach, and finally we compare the two optimizations.

Firstly, we defined a faceted taxonomy of 10 facets each having the form of a balanced and
complete tree with depth = 5 and degree = 6. The taxonomies were labeled using the Agrawal’s
labeling scheme. We believe that 10° parameters are enough for a terra-sized collection with
the above characteristics. We executed the isValid algorithm for foci with |ctz| = 5,6, ..., 10.

We used the same format expressions as in the experiment presented above (section 5.3.3.2).

120

1400 7-Mel W e2 (@3- - s

Exec. Time (ms)

0 _[I]J1
10% | 105 | 108 | 10* | 10° [10% | 10 | 10% | 10° | 10* | 10% | 108 | 10% | 105 | 10° | 20% | 105 | 108

Facets

Figure 5.12: isValid execution times with terms labeling optimization

Figure 5.12 shows the execution times where axis x contains the cardinalities of parameters e.g.
104, 10°, 10 and the number of facets.

We can see that in general, expressions of the e2 format take more time to be evaluated as
isV alid has one more operation to execute (line 18 of isValid algorithm) than el. Additionally,
for expressions of el, e2 format, the execution time of isValid algorithm was proportional to
the number of the facets. This is reasonable as we have to check one more interval for each

parameter.

As regards the expressions of e3 format, it is easy to see that the evaluation is faster. This
happens because we have subexpressions, so we firstly search the parameters of an expression
and if there is no a suitable parameter then we look for a suitable to the parameters of the
subexpressions. In cases of 6, 8 and 10 facets the time is less than having 5, 7, or 9 as the
expressions start with a plus-product operation while in the rests start with a minus. Further-
more, the execution time of isValid is decreased while the number of the facets is increased.
This is a reasonable result as the size of P or N of a subexpression is degreased as the size of
parameters for each subexpression was |P UN|/(k — 1).

Optimizations Comparison
Firstly, the naive method is more space economical than using FDT-based as it does not need

any special index. But let us assume that we have not any space limitation.

According to the Figure 5.11 and Figure 5.12, a hybrid approach for checking if ctx is valid
seems to be better. This hybrid approach has to take into consideration the format of the

expression. In case of el and e2 formats, it has to take into account the size of each Y (ctz;) and

121

Y (ctz;) respectively. Then, according to the time that FDT-based approach needs to compute
such interpretations it will decide the method to follow. For example, in case we have 10 facets,
all terms ctz; € ctz have the same |I| = 10°, and e has the el format, the FDT-based needs
2574ms while naive method needs only 1300ms. On the other hand, in case we have the same
characteristics but all terms ctx; € ctz have |I| = 10° except one which has 10*, FDT-based
approach will need only 32ms while naive method will also need 1300ms. It is clear that in
first case we will use the naive method while in second case the FDT-based. Here we have to
mention that in case of el it will use the TLOl method, while in case of e2 only the Extension
Interpretation-based evaluation approach. In case of e3, we will follow the above approaches
recursively.

It is obvious that using the above hybrid approach and according to the experimental eval-

uation, the proposed approaches are efficient enough for such magnitudes.

122

Chapter 6

Conclusion and Future Work

This thesis introduced a framework for facet-based exploration services and described in detail

the engineering aspects of supporting such services. The contribution of this thesis lies in:

e studding analytically a number of possible architectures that one can follow to develop
a faceted exploration application with respect to the available resources i.e RAM, and
the size of the collection. This study included the description of several algorithms (for
enabling such services) and their complexity, the description of several architectures, the
identification of particular query plans (for achieving efficiency), the description of their
applicability and finally the presentation of comparative experimental results over large

data sets.

e implementing a Main Memory API called fleXplorer, written in Java which provides the
core functionality for implementing the faceted exploration model. fleXplorer can be
exploited in various ways. For instance, a human user (developer) could use this frame-
work to define the desired facets and taxonomies or for importing existing taxonomies.
Additionally, a user could use it for providing faceted access to a corpus of metadata
records or to a structured source. Moreover, it could be used by tools that mine facets
and terms, e.g. [11, 13, 25], or tools that create automatically the faceted metadata struc-
tures, e.g [47]. In general, we could say that such a framework can serve as the middleware

between the presentation layer and the underlying information sources.

e developing various applications e.g. in Mitos web search engine and European Space

Agency web portal which use the API,

123

e developing and presenting the dynamic coupling of results clustering with dynamic faceted

taxonomies resulting to an effective, flexible and efficient exploration experience and

e making an investigation on various techniques that could be used for advancing the scal-

ability of such services.

Directions that are worth further research include:

e Regarding Terra-sized collections

The proposed indices for storing CTCA’s parameter do not support feed(A) operations.
So, the user has not the ability of exploration on a specific set of objects. We plan to
elaborate on CTCA-based approach, and propose indices and algorithms for supporting

this type of operation.

Furthermore, we plan to elaborate on CTCA parameters plurality estimation. We need
a formula which will take as input a materialized faceted taxonomy and will export a

minimum and maximum number of CTCA parameters.

e Regarding FDT general architectures

Elaborating on DB-MEM architecture. This will be a hybrid approach. Data will be
stored in a DB, however some of them will be kept in main memory. For instance, the
hierarchically organized attributes values could be kept in Main Memory while the rest in
a DBMS. The benefits of this approach is that the hierarchies are loaded once, and the

SQL queries that are sent to the DBMS are more simple and faster to execute.
Moreover, we plan to compare experimentally all algorithms presented in section 3.2.3.1
for both (MEM) and (DB) architectures.

e Regarding facets for web searching

Provide to users the ability to define their own taxonomy. In this case any pair (n,q)

where n is a user-provided name and ¢ is any Mitos-query could be considered as a term.

124

Bibliography

1]

Online Computer Library Center. Dewey decimal classification. Available at

www.oclc.org/dewey.
“XFML: eXchangeable Faceted Metadata Language”. http://www.xfml.org.

Special issue on Supporting Exploratory Search. Communications of the ACM, 49(4), April
2006.

R. Agrawal, A. Borgida, and HV Jagadish. Efficient management of transitive relationships
in large data and knowledge bases. ACM SIGMOD Record, 18(2):253-262, 1989.

O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-Koifman,
D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev. Beyond basic faceted search. In
WSDM 08, pages 33—44, 2008.

K. Chakrabarti, S. Chaudhuri, and S. Hwang. “Automatic Categorization of Query Re-
sults”. Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data, pages 755-766, 2004.

S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM
Sigmod Record, 26(1):65-74, 1997.

V. Christophides, G. Karvounarakis, D. Plexousakis, M. Scholl, and S. Tourtounis. Opti-
mizing taxonomic semantic web queries using labeling schemes. Web Semantics: Science,

Services and Agents on the World Wide Web, 1(2):207-228, 2004.

D.H. Cunningham, D.D. Maynard, D.K. Bontcheva, and M.V. Tablan. GATE: A framework

and graphical development environment for robust NLP tools and applications. 2002.

125

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D.R. Cutting, D. Karger, J.O. Pedersen, and J.W. Tukey. Scatter/Gather: A cluster-based
approach to browsing large document collections. In Procs of the 15th Annual Intern. ACM
Conf. on Research and Development in Information Retrieval, (SIGIR’92), pages 318-329,

Copenhagen, Denmark, June 1992.

W. Dakka, R. Dayal, and P.G. Ipeirotis. “Automatic Discovery of Useful Facet Terms”.
SIGIR Faceted Search Workshop, Aug. 2006.

W. Dakka and P.G. Ipeirotis. Automatic extraction of useful facet hierarchies from text
databases. In Procs of the 24th Intern. Conf. on Data Engineering, (ICDE’08), pages
466-475, Cancun, México, April 2008.

Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. *“Automatic Construction
of Multifaceted Browsing Interfaces”. In Procs of the 14th ACM CIKM 05, pages 768-775,
New York, NY, USA, Nov. 2005.

Sebastien Ferre and Olivier Ridoux. Logical information systems: from taxonomies to
logics. In Procs of FIND’2007 (at DEXA ’07), pages 212-216, Regensburg, Germany, 3-7
Sept. 2007.

H.B. Frej, P. Rigaux, and N. Spyratos. User notification in taxonomy based digital libraries.

In Intl. Symposium on Design of Communication, 2006.

Bernhard Ganter and Rudolf Wille. “Formal Concept Analysis: Mathematical Founda-

tions”. Springer-Verlag, Heidelberg, 1999.

F. Giunchiglia, B. Dutta, and V. Maltese. “Faceted Lightweight Ontologies”. Technical
Report DISI-09-022, Univerity Of Trento - Dipartimento Di Ingegneria E Scienza Dell’

Informazione, April 2009.

R.G. Gordon, B.F. Grimes, and Summer Institute of Linguistics. Ethnologue: Languages
of the world. SIL International Dallas, TX, 2005.

A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In Interna-
tional World Wide Web Conference, pages 902-903. ACM New York, NY, USA, 2005.

126

[20]

[21]

[23]

[27]

[28]

M.A. Hearst and J.O. Pedersen. Reexamining the cluster hypothesis: Scatter/Gather on
retrieval results. In Procs of the 19th Annual Intern. ACM Conf. on Research and Devel-
opment in Information Retrieval, (SIGIR’96), pages 76-84, Zurich, Switzerland, August
1996.

Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. “/facet: A Browser for
Heterogeneous Semantic Web Repositories”. In Procs of ISWC 06, pages 272-285, Athens,
GA, USA, Nov. 2006.

Eero Hyvonen, Eetu Mékeld, Mirva Salminen, Arttu Valo, Kim Viljanen, Samppa Saarela,
Miikka Junnila, and Suvi Kettula. “MUSEUMFINLAND - Finnish Museums on the Se-
mantic Web”. Journal of Web Semantics, 3(2-3):224-241, 2005.

Eero Hyvonen, Eetu Mdkeld, Mirva Salminen, Arttu Valo, Kim Viljanen, Samppa Saarela,
Miikka Junnila, and Suvi Kettula. “MuseumFinland — Finnish Museums on the Semantic

Web”. Journal of Web Semantics, 3(2):25, 2005.

Amy K. Karlson, George G. Robertson, Daniel C. Robbins, Mary P. Czerwinski, and
Greg R. Smith. “FaThumb: a Facet-Based Interface for Mobile Search.”. In Procs of

the Conference on Human Factors in computing systems, CHI’06, pages 711-720, New
York, NY, USA, Apr. 2006.

C. Kohlschiitter, P.A. Chirita, and W. Nejdl. Using Link Analysis to Identify Aspects in
Faceted Web Search. In SIGIR’2006 Fuaceted Search Workshop, 2006.

B. Kules, M. Wilson, M. Schraefel, and B. Shneiderman. From keyword search to explo-
ration: How result visualization aids discovery on the web. Human-Computer Interaction

Lab Technical Report HCIL-2008-06, University of Maryland, pages 2008-06, 2008.

E. Makela, K. Viljanen, P. Lindgren, M. Laukkanen, and E. Hyvonen. Semantic yellow
page service discovery: The veturi portal. In poster paper at ISWC ’05, Nov. 2005.

M. T. Maria Teresa Pazienza, editor. Information Extraction: Towards Scalable, Adaptable

Systems, volume 1714 of Lecture Notes in Computer Science. Springer, 1999.

Eetu Mdkeld, Eero Hyvfnen, and Samppa Saarela. “Ontogator - A Semantic View-Based
Search Engine Service for Web Applications.”. In Procs of ISWC 06, pages 847-860,
Athens, GA, USA, Nov. 2006.

127

[30]

[31]

32]

U. Y. Nahm and R. J. Mooney. Text mining with information extraction. In Procs of AAAI
2002 Spring Symposium on Mining Answers from Texts and Knowledge Bases, pages 60-67,
2002.

L. Nourine and O. Raynaud. A fast incremental algorithm for building lattices. JETAI:
Journal of FExperimental & Theoretical Artificial Intelligence, 14:217-227, 2002.

E. Oren, R. Delbru, and S. Decker. “Extending Faceted Navigation for RDF Data”. In
Procs of ISWC' 06, pages 559-572, Athens, GA, USA, Nov. 2006.

P. Papadakos, S. Kopidaki, N. Armenatzoglou, and Y. Tzitzikas. Exploratory web searching
with dynamic taxonomies and results clustering. In ECDL ’09: Proceedings of the 13th

European Conference on Digital Libraries, Corfu, Greece, September 2009. (to appear).

P. Papadakos, Y. Theoharis, Y. Marketakis, N. Armenatzoglou, and Y. Tzitzikas. ”Mitos:
Design and Evaluation of a DBMS-based Web Search Engine”. In Procs of the 12th Pan-
Hellenic Conference on Informatics (PCI’08), Greece, August 2008 (to appear).

P. Papadakos, G. Vasiliadis, Y. Theoharis, N. Armenatzoglou, S. Kopidaki, Y. Marke-
takis, M. Daskalakis, K. Karamaroudis, G. Linardakis, G. Makrydakis, V. Papathanasiou,
L. Sardis, P. Tsialiamanis, G. Troullinou, K. Vandikas, D. Velegrakis, and Y. Tzitzikas.
“The Anatomy of Mitos Web Search Engine”, http://arxiv.org/abs/0803.2220, Mar. 2008.

P. Pellegrin and A. Preus. Aristotle’s classification of animals: biology and the conceptual

unity of the Aristotelian corpus. University of California Press, 1986.

S. R. Ranganathan. “The Colon Classification”. In Susan Artandi, editor, Vol IV of the
Rutgers Series on Systems for the Intellectual Organization of Information. New Brunswick,

NJ: Graduate School of Library Science, Rutgers University, 1965.

G. M. Sacco. Efficient implementation of dynamic taxonomies. Technical report, Univ. di

Torino, Dip. di Informatica, 2004.

G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted Search: Theory, Practise

and Fxperience. Springer, 2009.

G. M. Sacco, Y. Tzitzikas, S. Ferre, P. G. Ipeirotis, W. Dakka, M. Stefaner, S. Perugini,
Y. Zhang, and J. Koren. Dynamic Taxonomies and Faceted Search: Theory, Practice and

Ezxperience. Springer, 2009. ISBN: 978-3-642-02358-3.

128

[41]

[42]

[43]

[44]

[48]

[49]

[50]

[51]

[52]

[53]

Giovanni M. Sacco. “Dynamic Taxonomies: A Model for Large Information Bases”. IFEE

Transactions on Knowledge and Data Engineering, 12(3), May 2000.

Giovanni Maria Sacco. “Guided Interactive Information Access for E-Citizens”. In Procs.

of the 4th Intern. Conf. on Electronic Government (EGOV-2005), pages 261-268, 2005.

G.M. Sacco. Some Research Results in Dynamic Taxonomy and Faceted Search Systems.

In SIGIR’2006 Workshop on Faceted Search, 2006.

M.C. Schraefel, Maria Karam, and Shengdong Zhao. “mSpace: Interaction Design for
User-Determined, Adaptable Domain Exploration in Hypermedia”. In Procs of Workshop
on Adaptive Hypermedia and Adaptive Web Based Systems, pages 217-235, Nottingham,
UK, Aug. 2003.

Oliver Sinnen. Task Scheduling for Parallel Systems. Wiley-Interscience, 2007.

E. Sperner. Ein satz iiber untermengen einer endlichen menge. Mathematische Zeitschrift,

27(1):544-548, 1928.

E. Stoica, M.A. Hearst, and M. Richardson. Automating Creation of Hierarchical Faceted
Metadata Structures. In Proceedings of NAACL HLT, pages 244-251, 2007.

J. Teevan, S. Dumais, and Z. Gutt. Challenges for supporting faceted search in large,

heterogeneous corpora like the Web. In HCIR, 2008.

A K. Tsakalidis. Maintaining order in a generalized linked list. Acta informatica, 21(1):101—
112, 1984.

D. Tunkelang. Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and

Services, 1(1):1-80, 2009.

Y. Tzitzikas. An Algebraic Method for Compressing Symbolic Data Tables. Journal of
Intelligent Data Analysis, 10(4), September 2006.

Y. Tzitzikas. Evolution of faceted taxonomies and CTCA expressions. Journal of Knowledge

and Information Systems, 13(3):337-365, 2007.

Y. Tzitzikas and A. Analyti. Mining the Meaningful Term Conjunctions from Materialised
Faceted Taxonomies: Algorithms and Complexity. Journal of Knowledge and Information

Systems, 9(4):430-467, May 2006.

129

[54]

[57]

[58]

[59]

Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An Algebraic Approach for
Specifying Compound Terms in Faceted Taxonomies. In EJC’03, pages 67-87. I0S Press,
2004.

Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An algebra for specifying
valid compound terms in faceted taxonomies. Journal of Data & Knowledge Engineering,

62(1):1-40, 2007.

Y. Tzitzikas, N. Armenatzoglou, and P. Papadakos. FleXplorer: A Framework for Providing
Faceted and Dynamic Taxonomy-based Information Exploration. In Procs of FIND’ 2008
(at DEXA °08), Torino, Italy, Sept. 3, 2008.

Y. Tzitzikas, R. Launonen, M. Hakkarainen, P. Kohonen, T. Leppanen, E. Simpanen,
H. Tornroos, P. Uusitalo, and P. Vanska. FASTAXON: A system for FAST (and Faceted)
TAXONomy design. In ER’04, 2004.

Yannis Tzitzikas. “Revising Faceted Taxonomies and CTCA Expressions”. In Proceedings

of the Jth Hellenic Conference on AI, SETN 2006, Heraklion, Greece, May 2006.

K.P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted Metadata for Image Search and
Browsing. In SIGCHI ’03, pages 401-408, 2003.

O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration. In
Procs of the 21th Annual Intern. ACM Conf. on Research and Development in Information
Retrieval, (SIGIR’98), pages 46-54, Melbourne, Australia, August 1998.

130

Chapter 7

Appendix

7.1 Proofs

Prop. 1 (Lower Bound)

In a cartesian materialized faceted taxonomy, if t1,....,tx € xleTi, then
LB(|I(t1,....,t)|) = max(0, Zle |I(t;)| — (k — 1)|Obj])
Proof:

We will prove this inductively. For m = 1 we have LB(I(t1)) = maz(0,|I(t1)|) = |I(t1)| which
is obviously true. Let assume that Prop. 1 holds for £ = m (where m > 1), i.e. suppose that it
holds:

LBI({t1, ot }) = max(0, S50, |1(t5)] — (m — 1[Ob]]).

What we have to prove is that it holds also for kK = m + 1, i.e. to prove that:

LB(T({t1, s s H) = max(0, 4 |(8)] — m|Ob1).

Let ctx = cta’ U{t;,+1} where ctz’ = {t1,....,t; }. Assuming single and mandatory classification,
we can easily see (e.g. through a Venn diagram), that |I(ctz)| = |I(ctz’) N I(tme1)| > 1 if and

only if:

[I(cta”)| + [I(tm1)]

v

|0bj| +1 &

V

| I(cta”) |0bj] + 1 = [L(tm+1)]

We can restate the above, and if X is a non negative integer we can write:

LB(|I(ct))) = X & |[I(cta’)| > |0bj] + X — |T(tm+1)|

131

If in the above inequality we replace |I(ctz’)| by its lower bound (according to the inductive

hypothesis) we get:

LB(|I(ctx)]) = X &
[I(cta')] = |Objl+ X = |I(tmi1)]

S| = (m = 1)|Obj| > |Obj| + X — [I(tms1)| &
i=1

m—+1
> I(t)| —m|objl > X
i=1
It follows that:
m—+1

LB(|I(ctx)| =X < max(0, Y [I(t;)| — m|Obj]) > X
=1

m+41
LB(|I(ctx)] = max(0, Z |I(t;)| — m|Obj|)
=1

scjsidcyneyxenrnwrwidsw

132

