
University of Crete

Computer Science Department

E�cient Faceted Exploration Services for Big
Volumes of Information

Nikos Armenatzoglou

Master's Thesis

Heraklion, 26 March 2010

PANEPISTHMIO KRHTHS

SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

Apodotik Upost rixh Leitourgi¸n Poludi�stathc

Plo ghshc se Meg�louc 'Ogkouc Plhrofori¸n

ErgasÐa pou upobl jhke apo ton

Nikìlao A. Armenatzìglou

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh

METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Nikìlaoc Armenatzìglou, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

Iw�nnhc TzÐtzikac, EpÐkouroc Kajhght c, Epìpthc

Dhm trhc Plexous�khc, Kajhght c , Mèloc

Grhgìrhc AntwnÐou, Kajhght c, Mèloc

Dekt :

P�noc Traqani�c, Kajhght c

Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, 26 MartÐou 2010

3

4

Efficient Faceted Exploration Services for Big Volumes of

Information

Nick Armenatzoglou

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Although most information needs have exploratory nature, current web search engines

do not support these needs sufficiently. The objective of this thesis is the development

of effective and efficient services for fulfilling such needs. Specifically, this thesis proposes

the extension of the ”traditional” interaction scheme (query-and-ranked answer) with

exploration services based on dynamic faceted taxonomies.

The advantages of this interaction scheme is that it bridges the gap between query-

ing and browsing, it provides an overview of the information space and gives the user

the ability to reduce in a flexible and efficient manner the size of the information space

according to his interests.

To support this model over a Web Search Engine (WSE), we studied various archi-

tectures and implementation approaches and subsequently we designed and implemented

a general purpose API and a Web-based GUI interface. Furthermore, we examined sev-

eral methods for exploiting the metadata that are available at the index of a WSE plus

those that can be dynamically generated (e.g. from applying real-time clustering results

techniques or other data mining techniques).

The above techniques have been applied and evaluated over the Mitos WSE, making

it the first WSE that supports this model. The performance of the proposed techniques

was evaluated experimentally, while various variants of the model (regarding the choice

of facets) were evaluated by users comparatively. The evaluation showed that users can

directly use this model of interaction (no need for training) and that they are quite

effective.

5

Finally, the thesis proposes and analyzes an advanced method for scaling up these

services, so that to enable real-time exploration of billion-sized information spaces. More

precisely, it proposes an approach that allows computing the zoom points without having

to perform any operation on the object-base at browsing time. The proposed technique is

based on CTCA (Compound Term Composition Algebra), special indices and algorithms.

The above techniques have been applied to a range of large data sets and we compare

it with the existing techniques. The analytic study showed that current methods cannot

scale to billion-sized collections. The experimental evaluation showed that the proposed

approach is efficient enough for such magnitudes.

Supervisor: Yannis Tzitzikas

Assistant Professor

6

Apodotik Upost rixh Leitourgi¸n Poludi�stathc

Plo ghshc se Meg�louc 'Ogkouc Plhrofori¸n

NÐkoc Armenatzìglou

Metaptuqiak ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

An kai oi perissìterec plhroforiakèc an�gkec èqoun exereunhtikì qarakt ra, oi sh-

merinèc mhqanèc anaz thshc tou IstoÔ den tic kalÔptoun epark¸c. Stìqoc thc ergasÐac

eÐnai h an�ptuxh apotelesmatik¸n kai apodotik¸n uphresi¸n gia thn ikanopoÐhsh tètoiwn

anagk¸n. Sugkekrimèna proteÐnetai h epèktash tou kajierwmènou trìpou allhlepÐdra-

shc (upobol thc eper¸thshc kai epistrof diabajmismènwn apotelesm�twn) me uphresÐec

exereunhshc basismènec sto upìdeigma twn poludi�statwn dunamik¸n taxinomi¸n.

Ta pleonekt mata autoÔ tou montèlou allhlepÐdrashc eÐnai ìti gefur¸nei to q�sma

metaxÔ thc prìsbashc mèsw erwt sewn kai prìsbashc mèsw plo ghshc, parèqei epopteÐa

tou plhroforiakoÔ kai epÐtrèpei sto qr sth na mei¸sei gr gora kai eÔqrhsta ton plhro-

foriakì q¸ro endiafèrontoc.

Gia thn upost rixh autoÔ tou montèlou sthn anaz thsh ston istì, melet jhkan kai

axiolog jhkan di�forec arqitektonikèc kai trìpoi ulopoÐhshc kai katìpin sqedi�sthke kai

ulopoi jhke èna ARI, kai mia diadiktuokentrik grafik diepaf genikoÔ skopoÔ. EpÐshc

melet jhkan oi trìpoi axopoÐhshc twn metadedomènwn pou diajètei to euret rio miac mhqa-

n c anaz thshc, kaj¸c kai twn dunamik� paragìmenwn metadedomènwn (p.q. wc apotèlesma

teqnik¸n omadopoÐhshc pragmatikoÔ qrìnou �llwn teqnik¸n exìruxhc plhroforÐac).

Ta parap�nw efarmìsthkan kai axiolog jhkan sth mhqan anaz thshc MÐtoc kaji-

st¸ntac thn, thn pr¸th mhqan anaz thshc pou uposthrÐzei autì to montèlo. Oi epidìseic

axiolog jhkan peiramatik�, en¸ di�forec parallagèc tou montèlou (kurÐwc wc proc thn

epilog twn diast�sewn plo ghshc) axiolog jhkan sugkrtik� apì qr stec. H axiolìghsh

katèdeixe ìti ènac aplìc qr sthc thc mhqan c anaz thshc eÔkola mporeÐ na qrhsimopoieÐ

th sugkekrimènh leitourgikìthta kai na ft�sei sto epijumhtì apotèlesma.

7

Tèloc, proteÐnontai kai analÔontai prohgmènoi trìpoi klim�kwshc twn uphresi¸n ¸ste

na katasteÐ efikt h plo ghsh se pragmatikì qrìno apant sewn thc t�xhc tou 109. Sug-

kekrimèna, proteÐnetai o upologismìc twn shmeÐwn estiasmoÔ me mia prosèggish h opoÐa

den apaiteÐ upologismoÔc epÐ twn eurethriasmènwn antikeimènwn kat� th di�rkeia thc exe-

reÔnhshc. H prosèggish aut basÐzetai sthn �lgebra CTCA kai se eidik� sqediasmèna

euret ria kai algorÐjmouc. Oi parap�nw teqnikèc efarmìsthkan se meg�louc ìgkouc plh-

rofori¸n kai sugkrÐjhkan me tic up�rqousec teqnikèc. H analutik melèth èdeixe ìti kami�

apì tic up�rqousec teqnikèc den mporeÐ na efarmosteÐ se meg�louc ìgkouc plhrofori¸n.

H peiramatik axiolìghsh èdeixe ìti h sugkekrimènh prosèggish eÐnai arket� apodotik gia

tètoiou megèjouc ìgkou plhrofori¸n.

Epìpthc Kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc Kajhght c

8

EuqaristÐec

Se autì to shmeÐo ja jela na euqarist sw jerm� ton epìpth mou epÐkouro kajhght

k. Iw�nnh TzÐtzika gia th polÔ kal sunergasÐa mac kaj¸c kai gia thn ousiastik tou

kajod ghsh kai sumbol sthn olokl rwsh aut c thc ergasÐac. Mèsa apì aut th suner-

gasÐa kèrdisa p�ra poll� kai se diaforetik� epÐpeda. 'Opote akoloÔjhsa tic sumboulèc

kai to susthmatikì trìpo douleÐac tou eÐqa polÔ kal� apotelèsmata. EpÐshc, ja jela

na ton euqarist sw gia ìlec tic eukairÐec pou mou èdwse mèsw tou PanepisthmÐou Kr thc

kai tou InstitoÔtou Plhroforik c tou IdrÔmatoc TeqnologÐac kai 'Ereunac.

Epiplèon, ja jela na euqarist sw touc kajhghtèc k. Dhm trh Plexous�kh kai k.

Grhgìrh AntwnÐou gia th projumÐa touc na summet�sqoun sthn exetastik epitrop thc

metaptuqiak c mou ergasÐac kaj¸c kai gia tic eÔstoqec parathr seic touc.

Ja tan par�lhyh mou na m n euqarist sw touc fÐlouc kai sumfoithtèc mou pou èkanan

autì to di�sthma polÔ euq�risto (merikèc forèc me th bo jeia rak c/ouÐski). IdiaÐtera ja

 jela na euqarist sw to Panagi¸th, to Gi�nnh kai to NÐko gia to qrìno kai tic parath-

r seic touc sth proetoim�sia thc parousÐashc.

Tèloc, ja jela na euqarist sw touc goneÐc mou Anèsth kai MarÐa kai thn aderf mou

MarÐa (nai, èqoun to Ðdio ìnoma) gia thn ag�ph touc.

9

Contents

Table of Contents v

List of Figures xi

1 Introduction 1

1.1 Background - History . 3

1.1.1 Objects’ Indexing . 3

1.1.2 FDT . 4

1.2 Advantages of Dynamic Taxonomies . 5

1.3 Contributions . 7

1.4 Organization of the thesis . 7

2 Faceted Exploration Model 9

2.1 A Model for Facet-based Exploration . 9

2.1.1 Top Element . 10

2.1.2 Zoom-in . 11

2.1.3 Zoom-out . 12

2.1.4 Zoom-Side . 13

2.1.5 Presentation and Ranking of Zoom-in points 14

2.1.6 Restriction of a Materialized Faceted Taxonomy 14

2.1.7 Synopsis . 16

2.2 Related Approaches . 16

i

3 Architectures and Related Work 19

3.1 FDT Interaction & Computational Requirements 19

3.1.1 A State-based Interaction Method 20

3.1.1.1 States . 20

3.1.1.2 State Visualization . 20

3.1.1.3 State Transition . 21

3.1.2 General Evaluation Approaches . 22

3.2 Data Structures & Algorithms . 23

3.2.1 Notations . 23

3.2.2 Storage Policies . 24

3.2.2.1 Data Structures . 26

3.2.3 Algorithms and Complexity . 26

3.2.3.1 EVi & Vi Computation . 26

3.2.3.2 Zoom-out points Computation 29

3.2.3.3 Count Information . 30

3.2.3.4 Conclusions of the Analysis 30

3.3 Possible Architectures . 32

3.3.1 (MEM) Architecture . 32

3.3.2 (DB) Architecture . 34

3.3.2.1 From the Relational to the Faceted Data Model: Method-

ological Comments . 35

3.3.2.2 On SQL implementation 37

3.3.2.3 Direct and Indirect Narrower/Broader terms of a term . . 38

3.3.2.4 Maximal Incomparable Terms of a Term 39

3.3.2.5 Direct and Indirect Narrower/Broader terms of a set of

terms . 39

3.3.2.6 Model Interpretations . 40

3.3.2.7 Object Descriptions . 42

3.3.2.8 Complete Descriptions . 42

3.3.2.9 Vi & EVi Computation . 44

ii

3.3.2.10 Zoom-out points Computation 46

3.3.2.11 Count Information . 47

3.4 Faceted Exploration User Interfaces . 47

3.5 FDT in Commercial Web-sites . 53

3.5.1 Commercial Faceted Metadata Search Engines 53

3.5.2 XFML . 54

4 fleXplorer & Applications 57

4.1 fleXplorer API . 57

4.1.1 Specifications . 57

4.1.1.1 Class Diagrams . 59

4.1.2 An Example of Using the API . 60

4.1.3 Desktop-based Client . 68

4.1.4 Experimental Evaluation . 68

4.2 Application on a Web Search Engine . 71

4.2.1 Mitos WSE . 71

4.2.2 Exploratory web searching with dynamic taxonomies and results

clustering . 73

4.2.2.1 Coupling Static and Dynamically-mined Metadata for Ex-

ploration . 76

4.2.2.2 Incremental Algorithm for Exploration 77

4.2.2.3 Implementation . 77

4.2.2.4 Experimental Results . 79

4.2.2.5 Evaluation of Usability . 81

4.2.3 Exploratory web searching with Entity Mining 85

4.3 EO User Service Next Generation Project (EO USNG) 87

4.4 Experimental Results on DB-R Architecture 87

4.4.1 (DB-R) With No Hierarchically Organized Values 88

4.4.2 (DB-R) With Hierarchically Organized Values 88

4.4.3 (DB-R) With Hierarchically Organized Values (Bigger Data Set) . . 91

iii

5 Extensions For Scalability 93

5.1 A Global-scale Exploration Scenario . 93

5.2 Interaction Scheme for Large Collections 95

5.2.1 CTCA-based Approach . 97

5.2.1.1 Vi & EVi Computation . 97

5.2.1.2 A short introduction to CTCA 98

5.2.1.3 Compound term validity and CTCA 100

5.2.1.4 Mining a CTCA expression 102

5.2.1.5 Approximating Zoom Point Count Information 102

5.2.1.6 Optimizations . 103

5.2.1.7 Related Work on Labeling Schemes 106

5.2.2 TLOI-based Approach . 107

5.2.2.1 Indices for Storing the Interpretations 107

5.2.2.2 Indices for storing the taxonomies 109

5.2.2.3 Zoom-in points Computation 110

5.2.2.4 TLOI Advantages . 111

5.2.2.5 TLOI on DAG and Multiple Classification 111

5.2.3 Changes over Materialized Faceted Taxonomy 112

5.2.3.1 CTCA Updates . 113

5.2.3.2 TLOI Updates . 113

5.3 Evaluation . 114

5.3.1 Analytical Evaluation . 115

5.3.2 Computation of Ī: Time Perspective 116

5.3.3 CTCA Validity Checking . 118

5.3.3.1 Estimation of CTCA Parameters Plurality 118

5.3.3.2 isValid Experiments Without Optimizations 119

5.3.3.3 isValid Experiments With Optimizations 120

6 Conclusion and Future Work 123

iv

7 Appendix 131

7.1 Proofs . 131

v

vi

List of Tables

2.1 Basic notions and notations . 11

2.2 Interaction notions and notations . 17

3.1 Zoom-in points Computation’ Complexities 31

3.2 Automatic Hierarchy Creation Examples 37

3.3 Faceted Metadata Search Engines in commercial sites 53

4.1 Table of Symbols . 76

4.2 Top-C Integration Timings for non-Incremental and Incremental Algo-

rithms (in seconds) . 79

4.3 User Evaluation Tasks . 82

4.4 User Evaluation Form . 82

4.5 User Satisfaction, Preference and Completeness percentage results per In-

terface . 83

4.6 Number of User Queries and Clicks (as recorded in the log) 83

4.7 User Satisfaction and Preference percentages per Interface (per task) . . . 85

4.8 Partial database schema of Mitos. 88

4.9 Database schema of small synthetic dataset 89

4.10 Database schema of large synthetic dataset. 91

5.1 Global Web Scenario . 95

5.2 Basic notions and notations . 100

5.3 Comparison table according Global Index Scenario 116

5.4 isV alid execution times without optimizations 120

vii

viii

List of Figures

1.1 Faceted Taxonomies UI . 2

1.2 Parametric Search . 5

1.3 FSEs . 6

2.1 Example of a Materialized Faceted Taxonomy 10

2.2 Examples of side zoom-in conditions (a) faceted taxonomies, (b) a non-tree

taxonomy (i.e. DAG) and (c) multiple classification. With black are the

current zoom-in points and with grey the side ones 13

2.3 Example of a Restricted Materialized Faceted Taxonomy 16

3.1 Visualization Modes Example . 21

3.2 Extensions Comparison: Simple example 25

3.3 A simple MFT . 33

3.4 Storage indices according to [5] . 33

3.5 Storage indices according to [38] . 35

3.6 Constructing Complete Descriptions . 43

3.7 Flamenco User Interface . 48

3.8 E-government portal with dynamic taxonomies 49

3.9 /facet User Interface . 49

3.10 Museum Finland User Interface . 50

3.11 Fathumb User Interface . 51

3.12 Veturi User Interface . 52

3.13 DBLP User Interface . 52

3.14 XFML file example . 54

ix

4.1 fleXplorer Class Diagram . 61

4.2 Terms’ Package Class Diagram . 62

4.3 Terminologies’ Package Class Diagram . 63

4.4 Taxonomies’ Package Class Diagram . 64

4.5 Facets’ Package Class Diagram . 65

4.6 Faceted Taxonomies’ Package Class Diagram 65

4.7 Materialized Faceted Taxonomies’ Package Class Diagram 66

4.8 Desktop-based Client: Welcome Screen . 69

4.9 Desktop-based Client: Facets and Objects Loading 69

4.10 Desktop-based Client: Faceted Exploration UI 70

4.11 Time to load results to fleXplorer . 70

4.12 Time to compute zoom-in points . 71

4.13 Mitos & fleXplorer Sequence Diagram 72

4.14 Mitos user interface: Interpretations, Descriptions 73

4.15 Mitos user interface: Focus . 74

4.16 Modified Faceted Exploration UI according user’s preferences 74

4.17 Screenshot of Mitos WSE . 78

4.18 Steps (a)-(c) of running scenario . 80

4.19 Faceted Taxonomies and Entity Mining . 86

4.20 ESA-USNG User Interface . 87

4.21 Experimental Results on DBMS . 88

4.22 Experimental results on synthetic databases. 90

5.1 Product and minus-product operation example 99

5.2 Self-plus-product operation example . 99

5.3 Labeling algorithm over the Faceted Taxonomy 104

5.4 Indices for storing P parameter . 105

5.5 Indices for storing N parameter . 106

5.6 DDC labeling algorithm over the Faceted Taxonomy 107

5.7 Store Indices . 109

5.8 TLOI vs Object-extended Agrawal’s Labeling 110

x

5.9 TLOI on DAG . 112

5.10 TLOI with multiple classification . 113

5.11 Ī(ctx) Measures . 117

5.12 isV alid execution times with terms labeling optimization 121

xi

xii

Chapter 1

Introduction

Nowadays, the size of the available information in digital format is extremely huge. Ac-

cording Netcraft1 the Web (until April 2009) contains 232 million web sites and according

to [19], the public indexable Web contained 11.5 billion pages on 2005. Additionally, there

are a lot of digital libraries which are not yet published to the Internet. This extremely

fast rate of the digital information grow is caused to the people which can continuously

put information onto the Internet.

Every day, there are millions of users that perform a request to a web search engine

or others who browse web catalogues in order to find the information needed. There are

two different information access modes: querying and browsing. We could say that query

services are either too simplistic (e.g. free text queries), or too sophisticated (e.g. SQL

queries, or Semantic Web Queries). On the other hand, web catalogues which provide

browsing services, are either too simplistic (e.g. plain Web links) or very application

specific (dynamic pages derived by specific application programs).

Faceted exploration services have recently gained a lot of attention among researchers

and have been used in various application domains (for more see [39, 24, 22, 27, 29, 44,

17]. In brief, FSE (Faceted Search Engines) can switch easily between searching and

browsing and allow users to see exactly the options that are available at any time for

restricting their focus. The aim of a faceted metadata search engine is to provide guided

exploration and information thinning services in order to guide the user to reach his goal.

1http://news.netcraft.com/archives/web server survey.html

1

2008 is pressed

facet

zoom
point

count

Figure 1.1: Faceted Taxonomies UI

For instance, if we assume that the objects of the domain are indexed by descriptions over

a multidimensional space where each dimension is associated with a taxonomy (hierarchy

of terms/values), then a FSE that supports the interaction paradigm of faceted dynamic

taxonomies (FDT), shows only those terms of the taxonomy of each facet that lead to

non-empty answer sets, and the user can gradually restrict his focus by clicking on such

terms, e.g. see Figure 1.1.

In brief, FSE:

• display the current results in multiple categorization schemes (e.g. based on meta-

data terms, such as size, price or date),

• display categories or values (usually called zoom points) leading to non-empty re-

sults,

• display the count of the indexed objects of each category/value (i.e. the number of

results the user will get if he restricts his focus using that category).

• support a session-based dialog in contrast to the state-less query-and-answer dialog

of WSE.

2

On the other hand, exploratory searching poses several open questions and challenges

(e.g. see [50]). One critical and open problem [48] is how a search engine could quickly

compute (or estimate) the zoom points for every result that matches a particular query

over a large corpus of documents each possibly described by many facets. All performance

measurements that have been reported in related works (e.g. in [59, 43, 5]) are over small

collections of objects (104 to 8 ∗ 105), and to the best of our knowledge there is not any

system or work that attempts to scale such services (i.e. the computation of zoom points)

for larger collections.

The general objective of this thesis is to study and develop effective and efficient

faceted exploration services which can fulfill the needs of a web search engine user for fast

and efficient information exploration.

1.1 Background - History

This section presents the background/history of objects’ indexing and FDT.

1.1.1 Objects’ Indexing

The categorization of our knowledge occupy the mind of the man from the first time

that he was characterized as ”homo universalis” 2. First of all, Plato (427 BC - 348

BC), in his Statesman dialogue introduces the approach of grouping objects based in

their similar properties (classical categorization). His approach was further explored and

systematized by one of his best students, Aristotle. Aristotle (384 BC - 322 BC) analyzed

the differences between classes and objects and applied Plato’s classical categorization

scheme to the classification of living beings [36].

According Aristotelian classification, categories are discrete entities and should be

mutually exclusive and collectively exhaustive. A category is characterized by a set of

properties. Finally, any entity of the given classification belongs to one and only one

category. Aristotle’s classification contains some elements which still existed in the twenty

2The term ”homo universalis” (Latin for ”universal man” or ”man of the world”) is used to describe
a person who is well educated or who excels in a wide variety of subjects or fields.

3

century.

Many years later, S. R. Ranganathan (1892 - 1972) developed the first major analytico-

synthetic classification system, the Colon classification [37]. Colon classification (CC) is

a system of library classification. Its name comes from the use of colons to separate

categories (or facets). CC uses five primary categories, or facets to further specify the

sorting of a publication collectively called ”PMEST”: Personality, Matter (or property),

Energy, Space, Time.

Research groups (1950 - 1970) simplified Ranganathan’s classification scheme: a facet

must represent only one characteristic and suppose that an object can be classified by

only one term of each facet.

Nowadays, multiple classification (i.e. an object can be indexed with more than one

terms from the same facet) is common requirement.

1.1.2 FDT

FDT uses metadata for switching easily between querying and browsing. According to

Wikipedia 3, metadata is information about information: more precisely, it is structured

information about resources. For example, metadata would document data about data

elements or attributes, (name, size, data type, etc) and data about records or data struc-

tures (length, fields, columns, etc) and data about data (where it is located, how it is

associated, ownership, etc.). Metadata may include descriptive information about the

context, quality and condition, or characteristics of the data. So, faceted exploration is

an approach to structured data access.

A traditional approach to structured data access is the parametric search. Parametric

search fits a number of simultaneous criteria (the parameters of the search). For example,

finding a house within one of three neighborhoods, $3-600,000, with at least 3 bedrooms

and 2 baths. Figure 1.2 presents two user interfaces of advanced search from commercial

sites.

However, the parametric search is so user specific and does not allow the browsing

of information space. For this reason, researchers proposed the faceted and dynamic

3http://www.wikipedia.org

4

Figure 1.2: Parametric Search

taxonomies. Nowadays, FDT are used in several application domains e.g. web portals,

libraries. Figure 1.3 presents the UIs from three commercial web sites, in (a) the Tower

Records 4, in (b) the American Express Travel and Leisure 5 and in (c) the Beach House

6. According to the Knowledge Architecture Professional Services Group (KAPS Group)

7, 69% of e-commerce web sites used faceted navigation, 77% used navigation, 6% used

faceted classification in search but no browse, 17% had both search and browse and 67%

only used single point entry, no progressive filtering, just categories.

1.2 Advantages of Dynamic Taxonomies

Faceted interaction scheme seems to be very quickly understood by end-users as its user

interface is very user-friendly, facets are hierarchical organized and the user has only to

execute zoom operations (select/deselect a zoom point).

Below we enumerate the advantages of dynamic taxonomies as they described in [39]:

• The user is effectively guided to reach his goal: at each stage he has a complete list

of all related concepts (i.e. a complete taxonomic summary of his current focus).

• Transparency: the user is in charge and knows exactly what’s happening.

• Schema design, where a faceted structure leads to minimal and flexible schemata.

4http://www.towerrecords.com/
5http://www.travelandleisure.com/index.cfm
6http://www.beachhouse.com
7http://www.kapsgroup.com

5

(a) (b) (c)

Figure 1.3: FSEs

• Search effectiveness, because dynamic taxonomies have an extremely fast conver-

gence to small result sets.

• Discovery of unexpected relationships between facet’s terms e.g. imagine a collection

of recipes where the most recipes which are classified under the term ”Summer” of

the facet ”By Season” are also classified under the term ”Tomatoes” of the facet

”By Ingredients”, so we know that the most foods in summer contain tomato.

• No empty results, by construction.

• Any combination of concepts (AND, OR, NOT) is supported.

• Easy to accommodate reviews, popularity, etc.

• Simple integration with other retrieval techniques (IR, DB).

Finally, the main advantage of the faceted exploration interaction scheme is the in-

formation thinning after a zoom operation and that user is sure that there is no any

better object than the one that he is about to select. Sacco in [39] shows that 3 zoom

6

operations on terminal concepts are sufficient to reduce a 10,000,000 object information

base described by a taxonomy with 1,000 zoom points to an average of 10 objects.

1.3 Contributions

The main contributions of this thesis are:

• the analytical study of a number of possible architectures that one can follow to

develop a faceted exploration application with respect to the available resources i.e

RAM, and the size of the collection,

• the implementation of a Main Memory API written in Java which provides the core

functionality for implementing the faceted exploration model,

• the usage of the API in various applications e.g. in Mitos web search engine and

European Space Agency web portal,

• the dynamic coupling of results clustering with dynamic faceted taxonomies result-

ing to an effective, flexible and efficient exploration experience, and

• an investigation of various techniques that could be used for advancing the scalability

of such services.

1.4 Organization of the thesis

This thesis is organized as follows:

Chapter 2 introduces a formal model for facet-based exploration services.

Chapter 3 introduces and describes possible architectures for realizing this model and

discusses the related work.

Chapter 4 presents an API for supporting faceted exploration and various applications

that were implemented with experimental results.

Chapter 5 elaborates on techniques for providing faceted exploration services over

terra-sized collections of data.

7

Chapter 6 summarizes the results of this thesis and identifies topics that are worth

further work and research.

8

Chapter 2

Faceted Exploration Model

Section 2.1 introduces a formal model for facet-based exploration services, while section

2.2 presents related approaches.

2.1 A Model for Facet-based Exploration

This section introduces a formal model aiming at capturing all key notions appearing

in [41], [55], and [14]. In brief Obj is a set of objects, T is a set of terms that may be

hierarchically organized, the elements of Obj can be described with respect to one or more

aspects (facets), while the description of an object with respect to one facet consists of as-

signing to the object one or more terms from the taxonomy that corresponds to that facet.

Table 2.1 defines formally and introduces notations for terms, terminologies, taxonomies,

faceted taxonomies, interpretations, descriptions and materialized faceted taxonomies (for

details refer to [55, 53]).

An example of a materialized faceted taxonomy, i.e. a faceted taxonomy consisting of

four facets and accompanied by a set of object indexes, is shown in Figure 2.1.

Each facet Fi is associated with a name (a String) and a taxonomy. The same tax-

onomy may be associated with more than one facets (for instance, for indexing flights

we may have two facets, named ”from” and ”to”, associated with the same taxonomy

”Location”). However, by prefixing the name of each term with the facet name, we may

assume that all facet terminologies are disjoint (as stated in Table 2.1).

9

byFrom byTo byDate

12/4/2008

9/15/2008

6/11/2008

3/14/2008

byPrice

[30,150]

[30,90] [40,70]

[50,55]

Faceted Taxonomy

Flight1 Flight2

M
F
T

Facet3 Facet4Facet2Facet1

Flight3

Iraklio1Chania1Linate1Malpensa1

Crete1Athens1Rome1 Milan1

Italy1 Greece1

Europe1

Iraklio2Chania2Linate2Malpensa2

Crete2Athens2Rome2 Milan2

Italy2 Greece2

Europe2

Flight1

Flight3

Flight2

D(Flight1) = {Malpensa
1
, Iraklio

2
, 3/14/2008

3
, [30,90]

4
}

D(Flight2) = {Iraklio
1
, Linate

2
, 6/11/2008

3
, [50,55]

4
}

D(Flight3) = {Linate
1
, Chania

2
, 12/4/2008

3
, [40,150]

4
}

Figure 2.1: Example of a Materialized Faceted Taxonomy

For our purposes, we need to adopt a minimal query language. A query is a compound

term s (i.e. a conjunction of terms) and its answer is the set of objects Ī(s) (as defined

in Table 2.1). Of course, boolean expressions and more complex query operators can be

straightforwardly supported.

As interaction is of prominent importance, now we define formally the notions needed

for describing interaction. Any subset of T is a possible focus. For reasons of minimality,

we shall hereafter consider foci that are redundancy free. A focus ctx (i.e. ctx ⊆ T)

is redundancy free if ctx = minimal≼(ctx). For example, ctx = {Greece, Athens} is

not redundancy free because minimal≼(ctx) = {Athens}. The content of a focus ctx,

is the set of objects Ī(ctx). We could also refine this notion and distinguish the shallow

content I(ctx), from the deep content Ī(ctx). In our example, I(byFrom.Italy) = ∅, while

Ī(byFrom.Italy) = {Flight1, F light3}.

2.1.1 Top Element

Each facet i independently to its structure (flat or hierarchically organized) has an unique

auxiliary element⊤i, which is the top element of the taxonomy (Ti,≤) i.e. ⊤i = max≤(Ti).

⊤i is used for keeping the heads of each facet hierarchy. Furthermore, for a focus ctx,

if ctxi = ∅, then we will assume that ctxi = ⊤i. The figures which depict facet hierarchies

10

MATERIALIZED FACETED TAXONOMIES

Name Notation Definition

terminology T a set of terms (can capture categorical/numeric
values)

subsumption ≤ a partial order (reflexive, transitive and antisym-
metric)

taxonomy (T ,≤) T is a terminology, ≤ a subsumption relation over
T

broaders of t B+(t) { t′ | t < t′}
narrowers of t N+(t) { t′ | t′ < t}
t and its broaders B∗(t) {t} ∪B+(t)
t and its narrowers N∗(t) {t} ∪N+(t)
direct broaders of t B(t) minimal<(B+(t))
direct narrowers of t N(t) maximal<(N+(t))
faceted taxonomy F= {F1, ..., Fk} Fi = (T i,≤i), for i = 1, ..., k and all T i are dis-

joint

compound term over T s any subset of T (i.e., any element of P(T))
compound ordering ≼ s ≼ s′ s ≼ s′ iff ∀t′ ∈ s′∃t ∈ s s.t. t ≤ t′

broaders of s B+(s) {s′ ∈ P (T) | s ≺ s′}
narrowers of s N+(s) {s′ ∈ P (T) | s′ ≺ s}
direct broaders of s B(s) minimal≺(B+(s))
direct narrowers of s N(s) maximal≺(N+(s))
object domain Obj any denumerable set of objects

interpretation of T I any function I : T → 2Obj

materialized (F , I) F is a faceted taxonomy {F1, ..., Fk},
faceted taxonomy I is an interpretation of T =

∪
i=1,k T i

Top element of faset i ⊤i ⊤i = maximal≤(Ti)
ordering of interpretations I ⊑ I′ I(t) ⊆ I′(t) for each t ∈ T
model of (T ,≤) Ī the minimal model that is greater than I
induced by I Ī(t) = ∪{I(t′) | t′ ≤ t}
extension of s I(s), Ī(s) I(s) = ∩{ I(t) | t ∈ s} and
in I and in Ī Ī(s) = ∩{ Ī(t) | t ∈ s}
Description of o wrt I DI(o) DI(o) = { t ∈ T | o ∈ I(t)}
Description of o wrt Ī DĪ(o) ≡ D̄I(o) DĪ(o) = { t ∈ T | o ∈ Ī(t)} =

DĪ(o) = ∪t∈DI (o)
({t} ∪B+(t))

Description of a set of ob-
jects A wrt I

DI(A) DI(A) = ∪o∈ADI(o)

Table 2.1: Basic notions and notations

do not show the top element, it can be inferred.

2.1.2 Zoom-in

Now we will introduce elements allowing the refinement of a focus. To this end we

introduce the notion of zoom-in points. A zoom-in point is actually a term that indicates

where the user could zoom in. When building a GUI, an area is usually dedicated to each

facet and the zoom-in points with respect to a facet Fi are actually those terms of Ti that

should be shown in that area.

Given a focus ctx, we can define its projection to a facet Fi, denoted by ctxi, as follows

ctxi = ctx ∩ Ti. Now we will define the (immediate) zoom-in points with respect to a

particular facet Fi. Consider a focus ctx and suppose that ctxi ̸= ∅. The candidate

11

zoom-in points with respect to Fi, denoted by CZi(ctx), are defined as:

CZi(ctx) = N(ctxi)

The above definition can also be applied in cases where |ctxi| > 1, assuming that N is

defined also for a set of terms S. Specifically, if S ⊆ T then we can define N(S) =

∪t∈SN(t).

From the candidate zoom-in points we now filter out those that yield an empty content.

The (good or useful) zoom-in points are defined as:

Zi(ctx) = {t ∈ CZi(ctx) | Ī(ctx) ∩ Ī(t) ̸= ∅}.

So Zi(ctx) comprises the terms of Ti that should be shown in the GUI area dedicated to

facet Fi if the user focus is ctx. For example, assuming the example of Figure 2.1, we

have:

Z1({Greece1, Italy2}) = {Crete1}

Z2({Greece1, Italy2}) = {Milan2}

Z3({Greece1, Italy2}) = {6/11/2008}

Z4({Greece1, Italy2}) = {[30, 150]}

Z1({Italy1, Crete2}) = {Milan1}

Z2({Italy1, Crete2}) = {Iraklio2, Chania2}

When the user selects a zoom-in point t, then the current focus is updated, i.e. ctx′ =

ctx∪{t} (specifically, ctx′ = minimal≼(ctx∪{t})). Subsequently, all new zoom-in points

are computed and presented.

2.1.3 Zoom-out

The user can also zoom out by deselecting any term t of the corresponding focus. In that

case t is replaced by its direct broader term(s) i.e. by B(t). In general the replacement of

t by any t′ ∈ B+(t), or even the removal of t (without any replacement), can be considered

as a zoom-out operation1.

1Note that if the taxonomy is a DAG then the replacement of a term t by two or more terms such
that all of them subsume t, is also a zoom-out operation.

12

Figure 2.2: Examples of side zoom-in conditions (a) faceted taxonomies, (b) a non-tree
taxonomy (i.e. DAG) and (c) multiple classification. With black are the current zoom-in
points and with grey the side ones

2.1.4 Zoom-Side

Now we introduce another kind of zoom-in points. This kind of points is useful for

taxonomy-based sources that satisfy at least one of the following conditions:

(a) comprise more than one taxonomy (i.e. they are faceted taxonomies),

(b) comprise a taxonomy that is not a tree (e.g. it is a DAG),

(c) multiple classification (i.e. an object can be indexed with more than one terms from

the same facet) is allowed with respect to at least one facet.

Figure 2.2 highlights the corresponding conditions. In all cases we assume that if user

selects the black term then the grey term will be a zoom-side point. As we can see, in all

conditions the black and the grey terms are incomparable with respect to the ≤ and the

intersection of their extension is not empty, so their union can belong to a valid ctx.

Definition 1 From a materialized faceted taxonomy M = (F , I) we can define a sym-

metric binary relation � over T (i.e. �⊆ T 2), called extensionally related, as follows

t � t′ iff Ī(t) ∩ Ī(t′) ̸= ∅ and t∥t′

where t∥t′ means that t and t′ are incomparable with respect to ≤ (i.e. neither t ≤ t′ nor

t′ ≤ t).

We can now define the zoom-side points w.r.t. a facet Fi, denoted by RZi(ctx), as

follows:

RZi(ctx) = maximal<({t ∈ Ti | Ī(t) ∩ Ī(ctx) ̸= ∅ and t∥ctxi})

13

In our running example of Figure 2.1 we have RZ4({Milan1, Iraklio2, [30, 90]4}) =

{[40, 70]4}. Note that if objects are indexed by at most one term from a facet Fi and

Fi is a tree, then RZi(ctx) = ∅ for any ctx (e.g. in our running example we have

RZ1({Milan1}) = ∅ and RZ2({Iraklio2}) = ∅).

2.1.5 Presentation and Ranking of Zoom-in points

Each zoom-in point t is usually accompanied by a number that indicates the number

of objects that will be obtained if the user selects that zoom-in point. Specifically that

number equals the cardinality of the set Ī(ctx) ∩ Ī(t) = Ī(ctx ∪ {t}), which is certainly

greater than zero (if t ∈ Zi(ctx) or t ∈ RZi(ctx)).

The zoom-in points can be ranked according to various criteria like, number of results if

selected, user preferences, popularity, usage workload, etc. Such ranking can be exploited

for determining the order by which the zoom-in points are displayed in the screen, or

even filtered out. Complimentarily, other criteria can also be employed to suppress the

visibility of some points. For instance, we may hide those zoom-in points leading to

contexts with content size below a predefined threshold, or we may decide to present only

the top-K zoom-in points for each facet.

2.1.6 Restriction of a Materialized Faceted Taxonomy

As faceted exploration can be combined easily with other access methods (e.g. information

retrieval queries, structured queries, or application-specific queries), the user could start

interacting not only by selecting some terms (i.e. by specifying a focus), but through a

set of objects, e.g. the objects returned by a full text query. To this end in this section

we introduce a notion useful for capturing such scenarios.

Let M = (F , I) be a materialized faceted taxonomy. Let A be a subset of Obj

(A ⊆ Obj) which could be the result of an arbitrary access method. Below we will define

the restriction of M on A, hereafter denoted by (F , I)|A.

The restriction of M on A, i.e. (F , I)|A, is again a materialized faceted taxonomy, and

let us write (F , I)|A = (F ′, I ′). It comprises a restriction of the interpretation function I

14

and a restriction of the faceted taxonomy F . The later is the reduced taxonomy.

The interpretation I ′ is an interpretation that is smaller than I, denoted by I ′ ⊑ I,

meaning the I ′(t) ⊆ I(t) for each t ∈ T . In particular, I ′ is defined as follows:

∀t ∈ T , I ′(t) = I(t) ∩ A

So the range of I ′ is the powerset of A (and not the powerset of Obj as it is for I).

It is not hard to see that from a given interpretation I, we can define a descriptive

function, denoted by DI(o) as follows:

∀o ∈ Obj, DI(o) = { t ∈ T | o ∈ I(t)}

and the vice versa (i.e. from a descriptive function D we can define an interpretation I).

The domain of the function DI is the set Obj. We can restrict the domain of DI on A,

i.e. we can define the function DI|A (where DI|A denotes the restriction of the domain of

DI on A). It is equivalent to say that the interpretation I ′ of the restriction of M on A,

is the interpretation obtained by the descriptive function DI|A.

Now the reduced taxonomy F ′ comprises a terminology T ′ (T ′ ⊆ T) and a subsumption

≤′ defined as follows

T ′ = {t ∈ T | Ī(t) ∩ A ̸= ∅}

and ≤′=≤ | T ′ .

Equivalently,

T ′ = ∪o∈AB
+(DI(o))

i.e. it comprises those terms that are associated with the objects in A plus all broader

terms of these terms. We could denote this terminology by T|I,A.

Definition 2 The restriction of a materialized faceted taxonomy M = (F , I) over a set

of objects A, denoted by (F , I)|A, is again a materialized faceted taxonomy, comprising

a reduced taxonomy with terminology T ′ = {t ∈ T | Ī(t) ∩A ̸= ∅} and an interpretation

I ′ such that I ′(t) = I(t) ∩ A for each t ∈ T .

For example, let M = (F , I) be the materialized faceted taxonomy of Figure 2.1. If

A = {Flight1, F light2} then the restriction of M on A, i.e. (F , I)|{Flight1,F light2} is shown

in Figure 2.3.

15

Figure 2.3: Example of a Restricted Materialized Faceted Taxonomy

2.1.7 Synopsis

Table 2.2 (taken from [39]) synopsizes and provides equivalent definitions.

2.2 Related Approaches

There are other very closely related approaches to the faceted exploration services and

dynamic taxonomies which are also discussed in [40]. In this Section we report, describe

and compare some of these approaches.

Formal Concept Analysis (FCA) [16] and dynamic taxonomies are closely related.

As DTs are based on dynamic computations, they can tackle better dynamic collections

where objects are added and deleted. In contrast, the FCA concept lattice is a static,

precomputed structure that cannot easily accommodate variations in the database (apart

from for incremental object insertion [31]). So FCA techniques seem more suitable for

data analysis of static collections rather than for dynamic collections.

OLAP (On-Line Analytical Processing) techniques are mainly useful in cases of nu-

merically valued facets [7]. For instance OLAP techniques like cubes could save time

16

Name Notation Definition

focus ctx any subset of T such that ctx = minimal(ctx)
focus projection on a facet
i

ctxi ctxi = ctx ∩ Ti

Kinds of zoom points
w.r.t. a facet i while be-
ing at ctx

Notation Definition(s)

zoom points AZi(ctx) = { t ∈ Ti | Ī(ctx) ∩ Ī(t) ̸= ∅}
zoom-in points Z+

i (ctx) = AZi(ctx) ∩N+(ctxi)

immediate zoom-in points Zi(ctx) = maximal(Z+
i (ctx))

= AZi(ctx) ∩N(ctxi)

zoom-side points ZR+
i (ctx) = AZi(ctx) \ ({ctxi} ∪N+(ctxi) ∪B+(ctxi))

immediate zoom-side
points

ZRi(ctx) = maximal(ZR+(ctx))

Restriction over an ob-
ject set

Notation Definition(s)

restricted object set A any subset of Obj
reduced interpretation I′ I′(t) = I(t) ∩A

reduced terminology T ′ = { t ∈ T | Ī′(t) ̸= ∅}
= { t ∈ T | Ī(t) ∩A ̸= ∅}
= ∪o∈AB+(DI(o))

Table 2.2: Interaction notions and notations

however their construction costs time and thus are not very appropriate for dynamic

collections as one would have to recompute them (although incremental maintenance is

possible in certain cases). Certainly the adoption of cubes is not appropriate for facets

that are computed during query answering e.g. for the facet that is derived by applying

content-based clustering on the top-L document of the query answer (as in the case of

Mitos). For the same reason, such techniques cannot be applied in cases of dynamically

(e.g. user-specified) facets. Finally, OLAP techniques are not very flexible if objects are

indexed with more than one terms from a facet (which is however a typical requirement of

faceted classification and search). [5] discusses the relation of faceted exploration services

with OLAP.

17

18

Chapter 3

Architectures and Related Work

” 'Amilla eÐnai h t�sh na ft�sei kanènac ton �llo pou ton jaum�zei

 kai na ton xepar�sei, qwrÐc na aisj�netai fjìno an o �lloc ton xepern�ei.”

Aristotèlhc (384 p.Q. - 322 p.Q.)

This chapter is organized as follows. Section 3.1 presents the FDT interaction scheme

by describing all possible states and the transitions between them. Section 3.2 elaborates

on the storage policies that one can follow and discusses various algorithmic and imple-

mentation approaches regarding the realization of the exploration services. Section 3.3

presents a number of possible general architectures regarding how main and secondary

memory is used. Furthermore, it discuses special index structures which have been pro-

posed. Section 3.4 presents several web-based faceted exploration implementations and

concentrates on user interfaces. Finally, Section 3.5 lists a number of faceted metadata

search engines and presents an open XML specification for defining and sharing faceted

classification schemes that has been proposed.

3.1 FDT Interaction & Computational Requirements

This section describes the FDT interaction scheme by presenting the possible states be-

tween client and server communication and the transitions between them. Moreover, it

presents the two basic visualization modes for depicting a materialized faceted taxonomy.

Finally, it discusses the main approaches for computing the zoom-in/out/side points.

19

3.1.1 A State-based Interaction Method

FDT interaction paradigm can be described as a state-based interaction scheme between

a client (e.g. user) who wants to search and browse, and a server providing these services.

Below we describe all possible states of this interaction scheme and the transitions between

them.

3.1.1.1 States

Let ST denote the set of all states. A state st ∈ ST is described by a pair (A, ctx) where A

is a set of objects i.e. A ⊆ Obj, and ctx is a set of terms i.e. ctx ⊆ T , ctx = minimal≼(ctx)

which should satisfy the following constraints: ∅ ⊂ A ⊆ Ī(ctx) ⊆ Obj. If the user reaches

a state restricted by a set of terms ctx (and not by any other external access method

is used), then it will hold A = Ī(ctx). On the other hand, if the user reaches a state

restricted by a set of objects A e.g. A has been provided by an external access method

like an answer to a query in a WSE, and after that the user further restricts his scope by

clicking on a set of terms ctx, then it will hold A ⊆ Ī(ctx).

In the sequel, we will refer to the A as st.A and to the ctx as st.ctx.

3.1.1.2 State Visualization

While the user is at a state st = (A, ctx), he is given a visualization of the restricted

materialized faceted taxonomy on A, i.e. a visualization of (F, I)|A. There are two visu-

alization modes: SVM and EVM. The basic difference between the two modes is the set

of terms that will be computed and presented in the UI during the interaction. In more

detail:

• SVM (Simple Visualization Mode)

For each facet i the set of terms of the restriction of Ti on A which will be computed

and shown are defined as: Vi(st) = B∗(st.ctxi)∪Zi(st.ctx)∪RZi(st.ctx), where the

first set is the broader terms, the second the immediate zoom-in points, and the

third the immediate zoom-side points.

20

a

1

E

d

b

F

2 3

g k

a(3)

b(1)

e(3)

click(b)

SVM

EVM

a

E

d

b

B*(b)

Zi ({b})

RZi ({b})

a

E

d

b

F

g

a(1)

b(1)

d(1)

e(1)

a(1)

b(1)

d(1)

e(1)

(a) (d)(c)(b)

T’I

Figure 3.1: Visualization Modes Example

• EVM (Extended Visualization Mode)

For each facet i the set of terms which will be computed are: EVi(st) = T ′
i where

T ′
i is the restriction of Ti on A (remember section 2.1.6). During the interaction,

EVM will show the Vi(st), while it allows the expansion of each zoom-in point by

showing the narrower zoom-in points i.e. EVi(st).

Figure 3.1(a) depicts a facet from a materialized taxonomy and how the objects of

the collection are classified under facet’s terms. Furthermore, Figure 3.1(b) shows the

browsing structure that have been provided at the GUI layer at the current state without

taking into consideration the visualization mode. Let us now assume that the user clicks

on b and we want to compute the zoom-in and side points. Figure 3.1(c) sketches the

terms that will be computed in each visualization mode, while Figure 3.1(d) shows the

browsing structures.

3.1.1.3 State Transition

The user can change states using two operations: (i) feed(A), where ∅ ⊂ A ⊆ Obj and

(ii) click(t), where t ∈ V (st) or t ∈ EV (st) depending on the visualization mode where

V (st) =
∪k

i=1 Vi(st), EV (st) =
∪k

i=1 EVi(st) and k is the number of the facets of the

21

materialized faceted taxonomy. Let st′ = next(st, op) denotes the next state if the user is

on the state st and will execute the operation op. This is defined as follows:

• Operation click(t)

It describes the zoom operation. When the user selects/presses a zoom point t, then

an operation click(t) will be executed. Specifically, if st = (A, ctx) and op = click(t),

then st′ = next(st, click(t)) = (A′, ctx′) such that ctx′ = minimal≼(ctx ∪ {t}) and

A′ = A ∩ Ī(ctx′).

• Operation feed(A)

As we have already described in section 2.1.6, we can restrict a materialized faceted

taxonomy M on a subset A ⊆ Obj and produce the (F , I)|A. A user can restrict the

M on A by executing the feed(A) operation. In more detail, if st = (A, ctx) and

op = feed(A′), then st′ = next(st, feed(A′)) = (A′, ctx′) such that ctx′ =
∪k

i=1 ⊤i.

3.1.2 General Evaluation Approaches

Independently to the visualization modes, two are the main approaches for computing

the zoom-in/out/side points:

• Extension Intersection-based approach

In this case, the computations are based on the extension of the terms, and

• Description-based approach

Here, the computations are based on the descriptions of the objects which belong

to A.

In order to understand the difference between the two approaches, we will show how

the EVi for a facet i can be computed using each one computation approach separately.

The EVi with respect to the Extension Intersection-based approach will be all the

terms t ∈ Ti such that there are objects which belong to A and are also classified under t

i.e EVi(st) = {t ∈ Ti | st.A ∩ Ī(t) ̸= ∅}. On the other hand, in case of Description-based

approach they will be all the terms t ∈ Ti such that they describe an object o ∈ A i.e.

EVi(st) = {t ∈ D̄(o) | o ∈ st.A}.

22

3.2 Data Structures & Algorithms

In this section we elaborate on the storage policies that one can follow. Furthermore, we

present various algorithms for computing the zoom-in/out/side points taking into account

the storage policies, the evaluation approaches and the visualization methods. Moreover,

we sketch their complexity and we compare them.

3.2.1 Notations

Below we assume a materialized faceted taxonomy M .

• CM : the average number of terms that are (directly) assigned to an object o ∈

Obj, i.e. CM = avgo∈Obj(|D(o)|). For instance, if we have one taxonomy and

mandatory single classification then CM = 1. If we have k facets and mandatory

single classification with respect to each one of them, then CM = k.

• d(t): the depth of a term t ∈ T . According to the section 2.1.1, each facet i has a

top element ⊤i for keeping the heads of facet’s hierarchy. So, if the facet is tree-

structured, then d(t) is the length of the path from t to the ⊤i. In case of DAG,

d(t) is the length of the longest path that starts from t and ends to the ⊤i.

• davg: the average depth of terms in the faceted taxonomy, i.e. davg = avgt∈T (d(t)).

• dM,avg: the average depth of terms that are directly used in object descriptions in

M , i.e. dM,avg = avgt∈D(Obj)(d(t)). Notice that here we do not take into account

how many objects are associated with each term. If we would like to also take that

into account then, we could define the cumulative average depth of terms that are

directly used in object descriptions:

dM,cavg =

∑
o∈Obj

∑
t∈D(o) d(t)∑

o∈Obj

∑
t∈D(o) 1

and we could also refine dM,cavg,i analogously.

• Bavg: the average number of direct children that a term has. Analogously Bavg,i.

• Pavg: the average number of parents that a term has. Analogously Pavg,i.

23

• Iavg: the average number of objects which are directly described by a term i.e.

Iavg =
|Obj|∗CM

|T | .

• Īavg: the average number of objects which are described by a term i.e. Īavg =

|Obj|∗CM∗dM,avg

|T | .

3.2.2 Storage Policies

In this section we describe the basic approaches one can follow for storing a materialized

faceted taxonomy.

One space minimal approach is to keep stored only the reflexive and transitive reduc-

tion of the taxonomies and only the I (or equivalently DI). An alternative, at the other

extreme, approach is to store redundant (inferred) data for speeding up some computa-

tions (e.g. as it is done in [5, 38]). Specifically, we could keep stored the entire ≤ of the

taxonomies involved (i.e. all transitively induced relationships). Furthermore, we could

keep stored the Ī(t) for every t ∈ T (or equivalently the DĪ for each o ∈ Obj). In general,

we should note that policies which store inferred data apart from being more memory

consuming (and thus less scalable), are more expensive to maintain if changes occur.

Let’s quantify the space overhead of such policies.

• overhead of Ī wrt I

Let |I| denote the space required for storing I i.e. |I| =
∑

t∈T |I(t)|. Moreover, we

know that an object o ∈ Obj is classified under CM terms and we assume that each

object is mandatorily classified under at least one term from each facet. So, it is

obvious that |I| = |Obj| ∗ CM .

If we have stored the set Ī(t),∀t ∈ T , each object o ∈ I(t) should also be stored

to the extension of all t′ ∈ B+(t). In other words, each object o ∈ Obj will be

additionally classified under dM,avg terms. So, it is clear that |Ī| = dM,avg ∗|I|, where

|Ī| =
∑

t∈T |Ī(t)|. For example, let us assume that we have the materialized faceted

taxonomy presented in Figure 3.2. The materialized faceted taxonomy contains one

facet which describes three objects (|Obj| = 3). In this case, |I| = 3, |Ī| = 7,

dM,avg =
7
3
and CM = 1. So, |Ī| is dM,avg times larger than |I|.

24

Figure 3.2: Extensions Comparison: Simple example

Here we have to mention that we do not store the Ī(⊤i) for a facet i.

Notice that the overhead of storing DĪ instead of DI , is exactly the same.

• overhead of ≤ wrt ≤r

As we have already defined, ≤r denotes the reflexive and transitive reduction of ≤.

The number of relationships of ≤r is at most |T |2
4
. This value is obtained when

(T ,≤r) is a bipartite graph, whose |T |
2

nodes are connected with all other |T |
2

nodes.

On the other hand the number of relationships of ≤ is at most 1
2
|T |(|T | − 1) [45].

Alternatively, if davg is the average depth of terms in (T ,≤), then storing ≤ requires

storing davg − 1 times more relationships than ≤r.

We will define the storage policy as a pair (X,Y) where X is ≤ or ≤r and Y is I or

Ī or D or D̄. In general, we can say that the storage policies which can be followed are

all possible combinations between X, Y . However, in case that we have stored the Ī(t)

or D̄(t) where t ∈ T , there is no reason for storing the ≤, as we do not need to compute

and scan N+(t). On the other hand, in case we have stored the I or D and the ≤r, the

cost of computing the zoom-in points will be high as we additionally need to compute the

narrower terms of t. So, in this thesis we elaborate on the below storage policies taking

into consideration the evaluation approaches presented in section 3.1.2:

• Extension Intersection-Based

Minimal Storage Policy: (I,≤)

Maximal Storage Policy: (Ī ,≤r)

25

• Description-Based

Minimal Storage Policy: (D,≤)

Maximal Storage Policy: (D̄,≤r)

3.2.2.1 Data Structures

We can store the extension of a term t (I(t) or Ī(t)), or the A in hash-based indices.

Subsequently, the cost for checking whether an object o ∈ A belongs to Ī(t) i.e. o ∈

Ī(t) (or the opposite), will be the cost of a lookup operation, so it takes constant time.

Consequently, if we have to compute the Ī(t) ∩ A, the cost will be min(|A|, Īavg), while

in case of I(t) ∩ A, it will be min(|A|, Iavg). Furthermore, in case of union e.g. Ī(t) ∪ A,

the complexities will be the same as we do not want the union contains duplicate values.

The algorithm for computing the union will be: we first add to the union u the maximum

in size set mx (mx = Ī(t) or mx = A, taking into account their cardinalities). Let mn

denotes the minimum in size set. Then for each object o ∈ mn we check whether o ∈ mx,

if no then we add it to u. This operation is the same for computing the I(t) ∪ A.

As regards the storage of the ≤ or ≤r, we can store the relationships between the

terms as sets. In more detail, if we have decided to store the ≤r then ∀t ∈ T we will store

the sets N(t) and B(t). On the other hand, in case of ≤, ∀t ∈ T we will store the sets

B+(t) and N+(t). Finally, we will denote the cost of the union of two sets of terms as T∪

while the cost of intersection as T∩.

3.2.3 Algorithms and Complexity

Here we discuss various algorithmic and implementation approaches regarding the real-

ization of the exploration services, and we sketch and compare their complexities. The

objective of this analysis is to identify good (efficient) evaluation plans taking into account

the visualization modes, the general evaluation approaches and the storage policies.

3.2.3.1 EVi & Vi Computation

Let st denotes the current interaction state. Below we present algorithms for the EVi

& Vi computation. In case of EVM we need to compute the EVi(st) = T ′ for a facet

26

i. On the other hand, in SVM, Vi(st) = B∗(st.ctxi) ∪ Zi(st.ctx) ∪ RZi(st.ctx), so we

need to compute the immediate zoom-in and side points, and then take the union with

the broader terms. According to the definition of the zoom-side points in chapter 2:

RZi(st) = maximal≤({t ∈ Ti | Ī(t) ∩ st.A ̸= ∅ and t∥st.ctxi}). Let us denote the

maximal incomparable terms of t ∈ Ti as Inci(t). They will be only the brothers of t and

all the brothers of its ancestors i.e. Inci(t) = {t′ ∈ N(B∗(t))}/{t} 1. As the number of

the Inci(t) is dependent on the structure of the hierarchy we denote the |Inci(st.ctxi)| as

a constant c.

• EVM Approach

– Extension Intersection-based Approach

∗ Minimal Storage Policy (I,≤)

To compute the EVi for a facet i i.e. EVi(st) we have ∀t ∈ Ti to compute

the I ′(t) = I(t) ∩ st.A. If I ′(t) ̸= ∅ then we add the set of terms B∗(t)

to the EVi(st) i.e. EVi(st) = {t′ ∈ B∗(t) | I(t) ∩ st.A ̸= ∅, t ∈ Ti}. The

overall cost of this approach will be the cost of taking |T | intersections with

the st.A, then (in the worst case) to compute ∀t ∈ T the set B∗(t) and

finally to take the union of all B∗(t). As we have already described, the

cost of taking an intersection of I with st.A will be min(|A|, Iavg) while

the cost of computing the set B∗(t) for a term t ∈ T will be constant

as we have stored ∀t ∈ T the B+(t). So, the overall complexity will be

|T | ∗min(|A|, Iavg) + (|T | − 1) ∗ T∪.

∗ Maximal Storage Policy (Ī ,≤r)

In this case, ∀t ∈ T , we have to compute the Ī ′(t) = Ī(t)∩st.A. If Ī ′(t) ̸= ∅

then t ∈ EVi(st) i.e. EVi(st) = {t ∈ Ti | Ī(t) ∩ st.A ̸= ∅}. So, the overall

cost is |T | ∗min(|A|, Īavg).

– Description-based Approach

∗ Minimal Storage Policy (D,≤)

1In case of DAG, we use the ⊤ element for each facet, so we can visit paths that visually they do not
have any common ancestor.

27

Here, ∀o ∈ st.A we have to get the terms t ∈ D(o), and then to compute

the B∗(t). Finally, we have to take the union of all B∗(t) i.e EVi(st) = {t′ ∈

B∗(t) | t ∈ D(o),∀o ∈ st.A}. The cost of getting the terms t ∈ D(o) will

be |A| ∗ CM

k
, where k is the number of facets, as each object will be directly

classified under CM

k
terms from each facet. The cost of computing the B∗(t)

is constant while the cost of computing the union will be (|A|CM

k
− 1)∗T∪.

So, the overall complexity will be |A| ∗ CM

k
+ (|A| ∗ CM

k
− 1) ∗ T∪.

∗ Maximal Storage Policy (D̄,≤r)

In this case the zoom-in points will be the terms t ∈ D̄(st.A). Formally,

EVi(st) = {t ∈ D̄(o),∀o ∈ st.A}. Also in this case we have to take the

unions of all D̄(o). The overall cost will be the same as in minimal storage

policy, so |A| ∗ CM

k
+ (|A| ∗ CM

k
− 1) ∗ T∪.

• SVM Approach

– Extension Intersection-based Approach

∗ Minimal Storage Policy (I,≤)

In this case, we need to compute ∀t ∈ N(st.ctxi)∪Inci(st.ctxi) the Ī
′(t) =

Ī(t) ∩ st.A. If Ī ′(t) ̸= ∅ then t ∈ Vi(st). Finally we need to add to

Vi(st) the B∗(st.ctxi) i.e Vi(st) = {t ∈ N(st.ctxi) ∪ Inci(st.ctxi) | Ī(t) ∩

st.A ̸= ∅} ∪ B∗(st.ctxi). The complexity of this approach will be the

cost of computing the Inci(st.ctxi) and the Ī(t) from I(t) and then take

|N(st.ctxi) ∪ Inci(st.ctxi)| intersections. Moreover, we need to compute

the B∗(st.ctxi) and add it to the Vi. It is easy to see that |N(st.ctxi)| =

Bavg, while the cost for computing the Inci(st.ctxi) or the B∗(st.ctxi)

will be constant as we have stored the ≤ 2. The cost of intersection is

min(|A|, Īavg). The cost of computing the Ī(t) will be (davg−1)∗Iavg, as we

have to compute the
∪

t′∈N∗(t) I(t
′). Consequently, the overall complexity

will be (Bavg + c) ∗ (min(|A|, Īavg) + (davg − 1) ∗ Iavg).

∗ Maximal Storage Policy (Ī ,≤r)

2We do not need transitive closure computations.

28

Here, ∀t ∈ N(st.ctxi) ∪ Inci(st.ctxi) we have to compute the intersection

Ī(t)∩st.A and then add to Vi the B
∗(st.ctxi)i.e. Vi(st) = {t ∈ N(st.ctxi)∪

Inci(st.ctxi) | Ī(t)∩ st.A ̸= ∅}∪B∗(st.ctxi). As we have stored the ≤r the

cost of computing the B∗(st.ctxi) and Inci(st.ctxi) will not be constant.

In more detail, the cost of computing the B∗(st.ctxi) will be Pavg ∗ T∪

as we need to compute the union of all B(p) where p ∈ Pavg. The cost

of Inci(st.ctxi) computation will be the cost to compute the N(t), ∀t ∈

B∗(st.ctxi). As we have already stored the N(t) ∀t ∈ T we will not

have any additional cost. So in this case the complexity is (Bavg + c) ∗

min(|A|, Īavg) + Pavg ∗ T∪.

– Description-based Approach

∗ Minimal Storage Policy (D,≤)

Here, we will use the same technique as in the EVM approach (EVM

approach, Description-based, Minimal Storage Policy). The only difference

is that we need to take the intersection with the N(ctxi) ∪ Inci(st.ctxi) ∪

B∗(st.ctxi) i.e. Vi(st) = {t′ ∈ B∗(t) | t ∈ D(o),∀o ∈ st.A} ∩ (N(st.ctxi) ∪

Inci(st.ctxi) ∪ B∗(st.ctxi)). So the complexity is |A| ∗ CM

k
+ (|A| ∗ CM

k
−

1) ∗ T∪ + T∩.

∗ Maximal Storage Policy (D̄,≤r)

Also, in this case we follow the corresponding EVM approach (EVM ap-

proach, Description-based, Maximal Storage Policy) and we take the in-

tersection with N(st.ctxi) ∪ Inci(st.ctxi) ∪ B∗(st.ctxi) i.e. Vi(st) = {t ∈

D̄(o), ∀o ∈ st.A} ∩ (N(st.ctxi) ∪ Inci(st.ctxi) ∪ B∗(st.ctxi)). As we have

already computed, the cost of B∗(t) and Inci(st.ctxi) computation is 2 ∗

Pavg ∗ T∪. Subsequently, |A| ∗ CM

k
+ (|A| ∗ CM

k
− 1) ∗ T∪ + T∩ + Pavg ∗ T∪.

3.2.3.2 Zoom-out points Computation

Basically, a zoom-out operation can be executed only after a zoom-in operation as it is

exactly the opposite. In more detail, we can say that when we zoom-out we execute

a click(t′) operation where t′ is broader than the term t which was clicked in the last

29

click operation. We can say that the computation of zoom-out points can be done in

constant time as any term which is broader than a zoom-in point will be valid too. This

holds because the objects which are classified under a term t, are also classified under the

broader terms of t.

In contrast to the above, let us assume that we are in the state st = (A, ctx) and

we have computed the zoom-in or the immediate zoom-in points. Furthermore, imagine

that the user has the ability to zoom-out from the current focus. For instance, if st.A =

stprev.A∩Ī(st.ctx) where stprev denotes the previous state, the new state st′ with the zoom-

out operation will be st′ = (A′, ctx) where A′ = Ī(st.ctx). In this case, the computation

of the zoom-out points will have the same complexity as the computation of zoom-in

operations, as the st′.A has been changed.

3.2.3.3 Count Information

In case we follow the Extension Intersection-based approach, we can define the count of a

term t as count(t) = |Ī(t) ∩ A|, while in case of Description-based as count(t) = tft,D̄i(A)

where tft,D̄i(A) is the appearance frequency of t in D̄i(A).

If we follow the maximal storage policy independently to the evaluation approach, the

complexity of computing the count of a term t will be constant as we have already made

these computations in order to decide if t is a zoom-in point.

In case of minimal storage policy, if we follow the Extension Intersection-based ap-

proach we need to compute the Ī(t) from I(t) and then take the intersection. We have

already pay this cost only in case of SVM. On the other hand, in case of Description-based

approach, we need to compute how may times the t appears in D̄i(A).

However, we can avoid these computations by providing the count information of a

term approximately. Section 5.2.1.5 presents a method for providing approximately the

count information of a term in constant time.

3.2.3.4 Conclusions of the Analysis

Table 3.1 presents the complexity of the zoom-in computation taking into account the

storage policies, the visualization methods and the computation approaches.

30

If we follow the Description-based approach, it is obvious that we do not need to follow

a maximal storage policy as the computational costs are almost the same as in case of

minimal storage policy. However, the basic drawback of the minimal storage policy is

that the cost of zoom-in points computation does not include the cost of computing the

count information. To provide the exact count information for each zoom-in point we

need to follow the algorithms which follow the maximal storage policy.

In the Extension Intersection-based approach, the computation of zoom-in points ac-

cording to the maximal storage policy costs less than the case of minimal, and it also

contains the cost of providing the count information. However, the storage overhead is

bigger.

Finally, we need to specify which evaluation approach is preferable for very large

collections e.g. |Obj| = 1010. We can see that the complexity of Description-based eval-

uation approach is always proportional to |A|, while in Extension Intersection-based it

is proportional to min(|A|, Iavg) or min(|A|, Īavg). It is obvious that if A is very large

then the Description-based approach is prohibitive. On the other hand, if A is small,

the Description-based approach seems to be better as it is independent to the size and

structure of the facet hierarchy. Specifically, in cases that we have mandatory single

classification then CM

k
= 1.

Storage Policy Complexity

EVM
(I,≤) |T | ∗min(|A|, Iavg) + (|T | − 1) ∗ T∪
(Ī,≤r) |T | ∗min(|A|, Īavg)
(D,≤) |A| ∗ CM

k
+ (|A| ∗ CM

k
− 1) ∗ T∪

(D̄,≤r) |A| ∗ CM
k

+ (|A| ∗ CM
k

− 1) ∗ T∪

SVM
(I,≤) (Bavg + c) ∗ (min(|A|, Īavg) + (davg − 1) ∗ Iavg)
(Ī,≤r) (Bavg + c) ∗min(|A|, Īavg) + Pavg ∗ T∪
(D,≤) |A| ∗ CM

k
+ (|A| ∗ CM

k
− 1) ∗ T∪ + T∩

(D̄,≤r) |A| ∗ CM
k

+ (|A| ∗ CM
k

− 1) ∗ T∪ + T∩ + Pavg ∗ T∪

Table 3.1: Zoom-in points Computation’ Complexities

31

3.3 Possible Architectures

Here we distinguish two general architectures regarding how main and secondary memory

is used as we are interested in very large data sets. Each architecture has different

applicability and pos and cons.

3.3.1 (MEM) Architecture

In this architecture all data are kept in Main Memory. As faceted exploration can be

combined easily with other access methods (e.g. information retrieval queries, structured

queries, or application-specific queries), another variation of the (MEM) architecture is

possible: to load in main memory only the answer of each submitted query. Below we

focus on specialized index structures which have been proposed for implementation and

follow the (MEM) architecture.

The implementation described in [5] uses Apache Lucene web search engine library, and

Apache Solr which is an open source enterprize search server based on Lucene that deals

with non-hierarchical facets. In that approach, a taxonomy T is a DAG whose nodes

represent facet terms and direct edges denote the specialization (refinement) relations

between them. T is stored into a structure called Taxonomy Index. Let assume that we

have the materialized faceted taxonomy of Figure 3.3, the Taxonomy Index which will be

created is shown at Figure 3.4.

The interpretations of terms are stored in a inverted index, i.e for each term t, the set

Ī(t) is kept into a posting list and t is described by its taxonomy path. Another postings

list named DirectIndex stores the description of each object o (having id=oid) w.r.t. to

I, i.e DI(o), being a list of term ids (tid). Figure 3.4 presents the indices that will be

created for the facet ”By Location”.

A more efficient implementation for large information bases is presented in [38]. To

store the interpretation of each term t ∈ T , for each object o ∈ Ī(t) a tuple De(tid, oid)

is stored, where oid is the id of the object o and tid is the id of the term t. In order to

store the De tuples, that work exploits the observation that a term ht at the high levels

of a facet hierarchy will belong to the majority of the descriptions of the objects, while a

32

By Location By Sports

Greece

OlympusCrete

Heraklio Lasithi

All Sports

Sea Sports Winter Sports

WindsurfingSeaSki SnowSki Snowboard

H1 H4H3H2 H5

Ios

Figure 3.3: A simple MFT

Greece
n = 1

f = null

Crete
n = 3
f = 1

Olympus
n = 6
f = 1

Lasithi
n = 5
f = 3

Ios
n = 2
f = 1

Heraklio
n = 4
f = 3

Taxonomy Index Inverted Index

Facet$Greece: H1, H2, H3, H4, H5

Facet$Greece/Ios: H1

Facet$Greece/Crete: H2, H3

Facet$Greece/Crete/Heraklio:H3

Facet$Greece/Crete/Lasithi: H2

Facet$Greece/Olympus: H4, H5

…. …

DirectIndex: H1 � 1,..;H2� 5,.. ; ….. ; …..

n: term id
f: father id OIDs TIDs

Figure 3.4: Storage indices according to [5]

33

term lt at low levels (e.g. leaves) will belong to few descriptions of objects. So is better to

have different kind of indices for the highest and lowest levels with respect to the storage

overhead.

So, the author proposes the following compression strategy. For the higher levels, he

uses a bitmap of |HT | × |Obj| dimensions where HT is the set of all ht ∈ T w.r.t. ≤. If

o ∈ Ī(t) he put 1 in [tid, oid] cell; 0 otherwise. For the lower levels, the author uses an

inverted list where for each term lt, an ordered vector with every oid ∈ Ī(lt) is kept (as

in [5]). In order to have a single index for all terms, he uses a pointer array keyed by tid

where if the term at the position i of the table is a highest level term the pointer points to

a specific row of the bitmap, otherwise it points to a specific position of the inverted list.

Figure 3.5 depicts the indices that this approach will create for the example of Figure 3.3

for the facet ”ByLocation”, assuming that HT = {Greece, Ios, Crete, Olympus}.

For the taxonomies of facets, [38] uses the below indices:

• a father-to-son structure, FS, which for each t ∈ T it stores N(t) i.e for each tid it

stores the sequence of its sons, ordered by display order.

• a son-to-father structure, SF , which ∀t ∈ T it stores the B(t) i.e for each term tid

it stores the set of its fathers in case the hierarchy is a DAG, or its single father if

hierarchy is a tree. This structure allows upwards navigation from a term to the

taxonomy top element.

• a Descendants structure which for each term stores the set of all its descendants,

i.e ∀t ∈ T stores the N+(t). and

• an Ancestors structure which for each term it stores the set of all its ancestors, i.e

∀t ∈ T stores the B+(t).

3.3.2 (DB) Architecture

Here we examine the case where all data are stored in a relational database. The mo-

tivation for elaborating on this case is that relational database technology dominates in

34

Lasithi

Heraklio

Olympus

Crete

Ios

Greece

Lasithi

Heraklio

Olympus

Crete

Ios

Greece
tid

s Pointers

1

0

0

1

0001

1000

0110

1111

1

0

0

1

0001

1000

0110

1111

H3H3

H2H2

Pointer Array

Bitmap

Inverted
List

Ordered Vectors by oid

H5H4H3H2H1 H5H4H3H2H1

Figure 3.5: Storage indices according to [38]

business applications. However, we should mention that this approach is feasible only if

we a-priori know the depth of the taxonomies involved or if we adopt recursive SQL.

An implementation which follows this approach is the Flamenco project[59]. It relies

on a relational DBMS (specifically MySQL) and for each object o ∈ Obj it stores D(o)

using tuples at the form (o, t) for each term t ∈ D(o). Flamenco does not store the Ī of

terms and has to dynamically reconstruct it by taking the union of the I of narrower terms.

When the user selects a zoom-in point, a query is generated using the SQL COUNT (∗)

and GROUPBY operators to count the number of objects that fall into each facet term.

Further implementations which are based on RDBMS include i4113 and Atomz4.

At first, in section 3.3.2.1 we describe in brief some methodological issues regarding

the application of the faceted exploration paradigm over relational databases. Further-

more, section 3.3.2.2 describes how SQL can be used for enabling information exploration

services.

3.3.2.1 From the Relational to the Faceted Data Model: Methodological

Comments

Suppose that we have a relational database and we want to offer faceted exploration

services for its contents.

One approach would be to define a view containing the attributes that should be

considered as facets. This means that the declarative query language offered by a DBMS

3Source: http://www.i411.com
4Source: http://www.atomz.com

35

can be exploited for defining the desired facets, i.e. those that are appropriate for browsing

by humans. Note that the relational view may comprise attributes coming from different

relations (and its definition may include joins and other transformations). Each object

o ∈ Obj is represented as a tuple, while each attribute of that view is considered as a

facet, and the set of distinct values of these attributes that appear in the tuples of the

view are considered as the terms of that facet.

Of course, the paradigm of faceted exploration can be combined with other existing

methods: e.g. with predefined query forms or with plain SQL query answering. In that

case, faceted exploration can be used to summarize the results of these access methods. It

is not necessary for the faceted view to include all attributes that characterize an object,

or all the attributes that are being exploited by other access methods. It may contain

only those that are appropriate for exploration.

However, some frequently occurring attributes, like ”price”, ”weight”, ”dates”, ”lo-

cations”, usually have a big number of distinct values (which are not hierarchically or-

ganized). It would be problematic (in terms of usability) to visualize all such values as

candidate zoom-in points. To alleviate this problem, an additional step that aims at

organizing these values hierarchically could be adopted. Such hierarchies can be defined

manually or automatically. For instance, there may already exist appropriate hierarchies

which could be stored in the DB (represented as separate relational tables). Alternatively,

automatic methods for defining hierarchies could be adopted. For instance, [6] describes

methods for creating multi-level taxonomies for attribute values on the fly. In general,

a number of techniques for creating such hierarchies for frequently occurring cases and

needs, could be developed and supported. Some indicative examples are given in Table

3.2. The table also shows how the children of a node (hence the set of its zoom-in points)

could be ordered (the listed choices could be considered as alternative/complementary/op-

tional criteria to the ”default ordering mode” which usually is: order values in descending

order with respect to the number of hits). Apart from such (simple) cases, there is almost

always the trade-off between degree of automation and quality of produced hierarchy.

36

Attribute Possible hierarchies of at-
tribute values

Ordering of children

Prices Intervals of prices According to their value
Dates and Periods Years, months, dates According to their value

e.g. 2008-05-21, 2008-05-22
2008 →

05 →
21
22

Place Names Countries, Regions, Cities, Sub-
urbs, Streets, Interval of street
numbers,

Lexicographically

Web Domains (in general strings
formed according to a hierarchi-
cal naming scheme)

GR → FORTH → ICS → ISL Lexicographically

Table 3.2: Automatic Hierarchy Creation Examples

3.3.2.2 On SQL implementation

This section describes how SQL can be used for realizing the exploration services. This

is done over a running example that includes an hierarchy that is represented and stored

in the database. Consider the following schema:

Hotel(hId, hName, stars, lId)

Location(lid, lName, parentlId)

with the following foreign key constraints

Hotel.lid ⊆ Location.lid

Location.parentlId ⊆ Location.lid

and assume the domain of the attribute stars in the integer interval [1..5].

We can consider this database schema as a materialized faceted taxonomy F =

(Fh, Fs, Fl) with three facets corresponding to the attributes (hotel) name, stars and

location respectively. We can define T = Th ∪ Ts ∪ Tl where Th comprise the names of

the Hotels , Ts contains those values of [1..5] that occur in the database, and Tl are the

location names in the relation Location.

Let us assume that the terms of Fl are hierarchically organized as follows: Crete <

Greece < Europe, and Italy < Europe. For example, the table Location could have

37

the following contents:

Location

lid lName parentlId

1 Europe NULL

2 Greece 1

3 Italy 1

4 Crete 2

Below we will present queries for computing the zoom-in/out/side points according to

the approaches presented in section 3.2.

3.3.2.3 Direct and Indirect Narrower/Broader terms of a term

Let us assume that our materialized faceted taxonomy contains the facet i which is not

hierarchically organized. Subsequently, for every t ∈ Ti we have N(t) = ∅ and N+(t) = ∅.

On the other hand, if the facet i is a hierarchy of values then N(t) can be computed with

one selection query, whileN+(t) can be computed with a recursive approach. For example,

to compute N(EuropeId) we can use the query Πlid(σparentlId=EuropeId(Location)), i.e.:

SELECT lid FROM Location WHERE parentlId=EuropeId

and we can denote this query by q
(1)
N (EuropeId).

The direct broader terms of a term, e.g. of Crete, can be computed analogously, by

ΠparentlId(σlId=CreteId(Location)):

SELECT parentlId FROM Location WHERE lId=CreteId

and we can denote this query by q
(1)
B (CreteId).

In case we have to compute the indirect narrower/broader terms of a term t e.g. N+(t)

or B+(t), we need to define the number of the links between the t and its narrower/broader

terms. Let denote it as d. We need this assumption as we need a-priori know the depth

of the hierarchy. It is clear that in case of indirect narrower/broader terms d > 1, while

in case of direct d = 1. Then q
(d)
N (t) contains the narrower terms of t at exactly d links

(<) distance. Let q
(1)
N (t) denote the query template ”SELECT lid FROM Location WHERE

38

parentlId IN t”. Then we can write q
(2)
N (EuropeId) = q

(1)
N (q

(1)
N (EuropeId)). We can

generalize and construct such queries for various values of d as follows:

q
(d)
N (t) = q

(1)
N (q

(d−1)
N (t))

Analogously we can define the query q
(d)
B (t).

If we want all narrower (resp. broader) terms that can be reached with at most

d links, we just have to change the query q
(1)
N (t) (resp. q

(1)
B (t)). Specifically, in that

case q
(1∗)
N (t) should denote the template ”SELECT lid FROM Location WHERE lid IN t

OR parentId IN t”.

Hereafter we can use the notations q
(d∗)
N (t) and q

(d∗)
B (t) to denote such queries.

3.3.2.4 Maximal Incomparable Terms of a Term

As we presented in section 3.2.3.1, we denote the maximal incomparable terms of a term

t as Inci(t) = {t′ ∈ N(B∗(t))}/{t}. In this section we present sql queries which compute

the Inci(st.ctxi). The query in our running example would be:

SELECT lid

FROM Location

WHERE lid IN (q
(1)
N (q

(d∗)
B (st.ctxi)) MINUS st.ctxi)

Here we have to remind that we need to compute the Inci(st.ctxi) only in case of

Simple Visualization Mode.

3.3.2.5 Direct and Indirect Narrower/Broader terms of a set of terms

Let s a set of terms i.e. s ⊆ T . We can write that

N(s) = ∪t∈sN(t)

B(s) = ∪t∈sB(t)

We can extend the above queries so that to compute these sets by adding a disjunction.

For example N({GreeceId, ItalyId}) can be computed by the query:

Πlid(σparentlId∈{GreeceId,ItalyId}(Location)), i.e.:

SELECT lId FROM Location WHERE parentlId IN {GreeceId, ItalyId}

39

and we can denote this query by q
(1)
N ({GreeceId, ItalyId}). Analogously we can define

the query q
(1)
B (s).

As in case of the computation of the indirect narrower/broader terms of a term t,

we can define the query q
(d)
N (s) for computing the narrower set of terms of s at ex-

actly d links (<) distance. Let q
(1)
N (s) denote the query template ”SELECT lid FROM

Location WHERE parentlId IN s”. Then we can write q
(2)
N ({EuropeId, CreteId}) =

q
(1)
N (q

(1)
N ({EuropeId, CreteId})). We can generalize and construct such queries for vari-

ous values of d as follows:

q
(d)
N (s) = q

(1)
N (q

(d−1)
N (s))

Analogously we can define a query q
(d)
B (s).

In addition, if we want all narrower (resp. broader) terms that can be reached with

at most d links, we just have to change the query q
(1)
N (s) (resp. q

(1)
B (s)). Specifically, in

that case q
(1)∗
N (s) should denote the template ”SELECT lid FROM Location WHERE lid

IN s OR parentId IN s”.

Hereafter we can use the notations q
(d∗)
N (s) and q

(d∗)
B (s) to denote such queries.

3.3.2.6 Model Interpretations

A context ctx is any subset of T . Suppose that ctx = {t1, . . . , tk} where ti ∈ Ti and

each Ti is the domain of a relational attribute Ai. For computing I(ctx) we can define a

selection condition, denoted by ϕctx, defined as:

ϕctx : (A1 = t1) ∧ . . . ∧ (Ak = tk)

For example, if ctx = {Sunwing, 4} then ϕctx = ”hname=Sunwing AND stars = 4”. We

can compute I(ctx) using the selection query σϕctx(Hotel).

Analogously we can construct selection conditions for terms corresponding to location

ids. However, if a term corresponds to a location name, e.g. if ctx = {Crete}, then we

need a query that includes a join, specifically the query σlname=Crete(Hotel ◃▹ Location)

corresponding to the SQL query:

SELECT * FROM Hotel, Location WHERE lname="Crete" AND

Hotel.lid = Location.lid

40

Furthermore, we will use ϕctxi to denote the corresponding selection condition that concerns

facet Fi only. So, to compute I(t) where t ∈ Ts we can use the query σϕt(Hotel). For example,

if t = 3 the query will be:

SELECT *

FROM Hotels

WHERE stars=3

Consider now a term t that is part of a taxonomy with depth d. In this case we can write:

Ī(t) = ∪{ I(t′) | t′ ≤ t} = ∪{ I(t′) | t′ ∈ N (d∗)(t)}

where N (d∗)(t), t ∈ T contains the t and all its narrower terms at exactly d links (<) distance.

To compute Ī(t), e.g. Ī(EuropeId), we can use the query:

πhId,hName,stars,lId(Hotels ◃▹Hotels.lId=Location.lId Rx)

where Rx = σ
lid∈q(d∗)N (EuropeID)

(Location)

or

SELECT *

FROM Hotels

WHERE lid IN q
(d∗)
N (EuropeID)

For more than one terms we have to use conjunction. For example to compute

Ī({EuropeId, 3stars}) we can use the query:

let Rx = σstars=3(Hotels) and

Ry = σ
lid∈q(d∗)N (EuropeID)

(Location) we have

πhId,hName,stars,lId(Rx ◃▹Hotels.lId=Location.lId Ry) i.e.:

SELECT *

FROM Hotels

WHERE stars = 3 AND lid IN q
(d∗)
N (EuropeID)

Here we have to mention that the order of AND operations leaves space for optimization.

For example, if we firstly write the case stars = 3, we will execute the Ry only RX times, where

RX denotes the cardinality of the result set if we execute the Rx query. On the other hand, if

they have the opposite order it will be executed Fcount(∗)(Hotels) times.

To sum up, if ctx = {t1, . . . , tk} where ti ∈ Ti and all Ti are hierarchically organized with

41

maximum depth d, then Ī(ctx) can be computed with a query that has as condition

ϕ̄(ctx) =
k∧

i=1

Ai IN q
(d∗)
N (ti)

3.3.2.7 Object Descriptions

We can define the description of an object oid with respect to a facet Fi as follows: Di(oid) = {t ∈

Ti | o ∈ I(t)}. It can be computed by a projection on a selection query ΠAi(σid=oid(R)) ≡ qi(o).

For example, DL(h2) can be computed by the query qL(h2) = ”select lid from hotels where

hid=h2”.

We can define the complete description of an object oid wrt a facet Fi as follows: D̄i(oid) =

B+(Di(o)). For example for a hotel h1 located in Crete we have D̄L(h1) = {Crete,Greece, Europe}.

If the maximum depth is d then the complete description can be computed by the query

q
(d∗)
B (Crete). Specifically by the query q

(d∗)
B (qi(h1)).

3.3.2.8 Complete Descriptions

As we have already described, we can compute the D̄i(o), o ∈ Obj or the Ī(t), t ∈ T by using

specific forms of queries. However, these computations can be used in the minimal storage policy

where the D, I are stored. In case we want to follow the maximal storage policy we need to

construct the complete descriptions of the objects. Then the queries will be simpler and faster.

Below, we will present the queries for constructing the complete descriptions.

To begin with, let us assume that we have a database with the same relational schema as

in our running example and we add some hotels. The tuples of the tables are shown in Figure

3.6(a). To create the complete descriptions we need to create an additional table for each domain

which is hierarchically organized. In our example, we need to create a table for the location. The

new table will have two domains which will be both primary keys, hid and lid. Then for each

hotel, we need to add one tuple with the id of the hotel and the id of hotel’s specific location and

a tuple for each broader location. Figure 3.6(b) depicts the table CompleteDescriptions which

contains the complete descriptions of the hotels for the domain location. For example, for the

hotel Minoan Palace which is located in Crete, three tuples will be created: (4,1) for Europe,

(4,2) for Greece and (4,4) for Crete.

We can create the complete descriptions for an object o ∈ Obj with the following way. Let us

assume that we need to compute the complete descriptions of the Minoan Palace hotel. First,

42

1Italy3

2Crete4

1Greece2

NullEurope1

parentIdlnamelid

Location

1Italy3

2Crete4

1Greece2

NullEurope1

parentIdlnamelid

Location

44Minoan Palace4

35Colosseum3

24Poseidon2

13Relax1

lidstarshnamehid

Hotel

44Minoan Palace4

35Colosseum3

24Poseidon2

13Relax1

lidstarshnamehid

Hotel

CompleteDescriptions

24

14

33

13

22

12

44

11

lidhid

CompleteDescriptions

24

14

33

13

22

12

44

11

lidhid

(a) (b)

Figure 3.6: Constructing Complete Descriptions

we need to compute all the broader locations of the hotel. We can do it by computing the

Locs = q
(d∗)
B (qL(4)). Then for each location l which belongs to the result of the query Locs we

can create an insert query which will have the following form:

INSERT INTO CompleteDescriptions(hid, lid)

VALUES (4, l)

Also we have the ability to construct the complete descriptions of all objects for the location

domain by executing a query with the following form:

INSERT INTO CompleteDescriptions(hid, lid)

VALUES(hid, q
(d∗)
B (qL(hid)))

Now, we can compute the Ī(t) and D̄(o) faster. For example the query for computing the

Ī(EuropeId) would be:

SELECT hid

FROM CompleteDescriptions

WHERE lid = EuropeId

On the other hand, the query for computing the D̄L(4) would be:

SELECT lid

FROM CompleteDescriptions

WHERE hid = 4

43

3.3.2.9 Vi & EVi Computation

As in section 3.2.3.1, to compute the Vi, EVi we have to take into account the storage policy

(minimal or maximal), the visualization mode (EVM or SVM) and the evaluation approach

(Extension Intersection-based or Description-based). Furthermore, in (DB) architecture we have

to decide where the computations of intersection and unions will be executed. In more detail,

we have two possible approaches. In the first approach, all computations are executed by SQL

queries. A second approach would be to execute queries which compute the D, I, Ī, D̄, then we

get the result sets and finally we execute the intersections and unions in main memory. In this

thesis we elaborate on the first approach.

Let st denotes the current interaction state. We will not give any detail about flat facets

as the queries for computing the zoom-in points are somewhat trivial (use of DISTINCT and

GROUP BY operators). Below we present queries for the zoom-in points computation in hi-

erarchically organized domains. So, we want to compute the zoom-in points for the Location

facet. The st.A has to be computed in each interaction state, as we have not stored it in main

memory. In the sequel, we use the notation st.A but we have to mention that it is a sub-select

query.

• EVM Approach

– Extension Intersection-based Approach

∗ Minimal Storage Policy (I,≤)

In this case EVi(st) = {t′ ∈ B∗(t) | I(t) ∩ st.A ̸= ∅, t ∈ Ti}. Query:

SELECT DISTINCT(Location.lname)

FROM Location

WHERE Location.lid IN q
(d∗)
B (st.ctxi) AND

(SELECT COUNT(*) FROM Hotel WHERE Hotel.lid=Location.lid

INTERSECT st.A) > 0

∗ Maximal Storage Policy (Ī ,≤r)

In this case, EVi(st) = {t ∈ Ti | Ī(t) ∩ st.A ̸= ∅}. Query:

SELECT DISTINCT(Location.lname)

FROM Location

WHERE

44

(SELECT COUNT(*) FROM CompleteDescription WHERE lid = Location.lid

INTERSECT st.A) > 0

– Description-based Approach

∗ Minimal Storage Policy (D,≤)

Here, EVi(st) = {t′ ∈ B∗(t) | t ∈ D(o),∀o ∈ st.A}. Query:

SELECT DISTINCT(Location.lname)

FROM Location

WHERE Location.lid IN q
(d∗)
B (SELECT DISTINCT(lid) FROM Hotel

where hid IN st.A)

∗ Maximal Storage Policy (D̄,≤r)

In this case, EVi(st) = {t ∈ D̄(o),∀o ∈ st.A}. Query:

SELECT DISTINCT(Location.lname)

FROM Location, CompleteDescription

WHERE CompleteDescription.hid IN st.A AND

CompleteDescription.lid = Location.lid

• SVM Approach

– Extension Intersection-based Approach

∗ Minimal Storage Policy (I,≤)

In this case, Vi(st) = {t ∈ N(st.ctxi) ∪ Inci(st.ctxi) | Ī(t) ∩ st.A ̸= ∅} ∪

B∗(st.ctxi). Query:

SELECT DISTINCT(Location.lname)

FROM Location

WHERE Location.lid IN (((q
(1)
N (st.ctxi) OR (q

(1)
N (q

(d∗)
B (st.ctxi)) MINUS st.ctxi))

AND

(SELECT COUNT(*) FROM Hotel WHERE Hotel.lid in q
(d∗)
N (Location.lid)

INTERSECT st.A) > 0) OR q
(d∗)
B (st.ctxi))

∗ Maximal Storage Policy (Ī ,≤r)

Here, Vi(st) = {t ∈ N(st.ctxi) ∪ Inci(st.ctxi) | Ī(t) ∩ st.A ̸= ∅} ∪ B∗(st.ctxi).

Query:

SELECT DISTINCT(Location.lname)

45

FROM Location

WHERE Location.lid IN (((q
(1)
N (st.ctxi)) OR (q

(1)
N (q

(d∗)
B (st.ctxi)) MINUS st.ctxi))

AND

(SELECT COUNT(*) FROM CompleteDescription WHERE lid = Location.lid

INTERSECT st.A) > 0) OR q
(d∗)
B (st.ctxi)))

– Description-based Approach

∗ Minimal Storage Policy (D,≤)

Here, Vi(st) = {t′ ∈ B∗(t) | t ∈ D(o),∀o ∈ st.A} ∩ (N(st.ctxi) ∪ Inci(st.ctxi) ∪

B∗(st.ctxi)). Query:

SELECT DISTINCT(Location.lname)

FROM Hotel, Location

WHERE Hotel.hid IN st.A AND Location.lid IN

q
(d∗)
B (qL(Hotel.hid))

INTERSECT

SELECT lname FROM Location WHERE

lid IN (q
(1)
N (st.ctxi) OR (q

(1)
N (q

(d∗)
B (st.ctxi)) MINUS st.ctxi) OR q

(d∗)
B (st.ctxi)))

∗ Maximal Storage Policy (D̄,≤r)

In this case, Vi(st) = {t ∈ D̄(o),∀o ∈ st.A} ∩ (N(st.ctxi) ∪ Inci(st.ctxi) ∪

B∗(st.ctxi)). Query:

SELECT DISTINCT(Location.lname)

FROM Location, CompleteDescription

WHERE CompleteDescription.hid IN st.A AND

CompleteDescription.lid = Location.lid

INTERSECT

SELECT lname FROM Location WHERE

lid IN (q
(1)
N (st.ctxi) OR (q

(1)
N (q

(d∗)
B (st.ctxi)) MINUS st.ctxi) OR q

(d∗)
B (st.ctxi)))

3.3.2.10 Zoom-out points Computation

According to the section 3.2.3.2, we need to compute the zoom-out points only when we need

to zoom-out from the current focus. In this case, as he have already described, we can execute

46

the same queries as in the zoom-in points computation.

3.3.2.11 Count Information

In case we follow the maximal storage policy, to provide count information for a zoom-in point

we only need to add the count(∗) function in the query. For example, in case of EVM, maximal

storage policy and Extension Intersection-based evaluation approach the query would be:

SELECT DISTINCT(Location.lname),COUNT(*)

FROM Location

WHERE

(SELECT COUNT(*) FROM CompleteDescription WHERE lid = Location.lid

INTERSECT st.A) > 0 GROUP BY Location.lname

3.4 Faceted Exploration User Interfaces

Faceted and dynamic taxonomies are used more and more nowadays in a plethora of application

domains, and recently also in general purpose Web search engines5. There are already several

applications of faceted metadata search in e-commerce (e.g. ebay), library and bibliographic

portals (e.g. DBLP), museum portals (e.g. MuseumFinland [23]), mobile phone browsers (e.g.

FaThumb[24]), yellow pages portals (e.g. Veturi [27]). There are also some attempts to apply

this interaction paradigm over Semantic Web (e.g. [21, 29, 32]), as well as over general purpose

web search engines (e.g. Google Base), and interaction frameworks (e.g. mSpace[44]). Below

we will discuss some user interfaces from various implementations.

The Flamenco interface permits users to navigate by selecting from multiple facets [59]. The

information base is specific and contains art, architecture, and tobacco documents. Additionally,

It provides an additional service that gives user the ability to see the description of an object.

When user put the pointer of his mouse over an object o s.t. o ∈ Ī(ctx) then the terms t ∈ DI(o)

are highlighted. In Figure 3.7 the displayed images have been filtered by specifying values for

two facets (Materials and Structure Types). The matching images are grouped by subcategories

of the Materials facet”s selected Building Materials category.

Sacco in [42] proposes faceted exploration interaction scheme for government e-services which

are available to citizens. The information base of such services is so complex and the usage of

5e.g. Google Base (http://base.google.com/)

47

Figure 3.7: Flamenco User Interface

the specific interaction scheme make it easier. Figure 3.8 depicts the e-government portal which

classifies all e-government information in 7 facets.

An other application domain of dynamic taxonomies is the Semantic Web. Searching for a

specific information in Semantic Web is not easy as data have heterogenous character. /facet is

a browser for Semantic Web developers as an instant interface to their complete dataset [21]. It

gives user the ability to navigate through facets and make zoom operations based on properties.

Additionally, /facet browser can handle any RDFS dataset without any additional configuration.

Figure 3.9 shows /facet user interface.

At the same domain, MuseumFinland publishes heterogeneous museum collections on the

Semantic Web [23]. It shares a set of ontologies and makes its rich collection semantically

interoperable. The portal provides faceted exploration services over these collections (see Figure

3.10).

Fathumb is a novel approach for supporting faceted exploration services on hierarchical

metadata from a mobile phone [24]. Figure 3.11(a) shows the user interface of Fathumb where

Yellow Pages listings are described by 6 of 8 available facets e.g. category, distance, location,

hours, price and ratings. Facets favorites and shortcut are inactive as their count information

48

Figure 3.8: E-government portal with dynamic taxonomies

Figure 3.9: /facet User Interface

49

Figure 3.10: Museum Finland User Interface

50

Figure 3.11: Fathumb User Interface

is zero. To zoom in a facet you have just to select the relative button from mobile’s keyword.

In Figure 3.9(a) user selects the facet location. Figure 3.9(b) shows the zoom-in points of the

location facet. User has the ability to zoom-in or go back to his previous selection (zoom-out)

or return to top in order to select an other facet (see at the bottom of mobile screen in Figure

3.9(b),(c)).

An other faceted exploration system on Yellow pages described in [27]. The yellow pages

service portal Veturi contains some 220,000 real-world services. The user interface of Veturi is

based on on-the-fly semantic autocompletion of keywords into categories, made possible by the

use of AJAX6 techniques. Figure 3.12 depicts the search interface of the Veturi portal where a

user trying to find out where he can buy rye bread in Helsinki. He has already selected Helsinki

as the locale for the services he requires and he is in the process of describing the actual service.

Finally, a faceted exploration interface that use more and more the academic community

is the Faceted DBLP7. User can search publications by author or venue and the answer of his

query are loaded to the faceted search system. Faceted search engine provides 4 facets: venue,

author, year, publication type. Figure 3.13 depicts Faceted DBLP interface.

6Asynchronous Javascript And XML
7http://dblp.l3s.de/?q=&newQuery=yes&resTableName=query result9prpDC

51

Figure 3.12: Veturi User Interface

Figure 3.13: DBLP User Interface

52

3.5 FDT in Commercial Web-sites

Section 3.5.1 presents a number of commercial faceted metadata search engines while section

3.5.2 describes an open XML specification for defining and sharing faceted classification schemes.

3.5.1 Commercial Faceted Metadata Search Engines

Table 3.3 lists a number of faceted metadata search engines and for each one of them some

commercial sites in which they are used.

Metadata
Search Engines

Used in commer-
cial sites

Support
of
Zoom-
in
Points

Support
of
count
infor-
ma-
tion

over
DBMS

Support
of re-
mote
sources

I/O Formats Other supported
features

Knowledge
Processors8

Non Com-
mercial:
tiziano.di.unito.it,
erare.di.unito.it

Yes Yes No Yes rule-base au-
toclassifier for
XML sources,
integrated IR
component

CAMELIS personal data Yes Yes No Yes
(URLs)

CSV, JPEG,
MP3, BIBTEX

automatic and
manual classifi-
cation, querying
by examples, ex-
port of playlists
and slideshows

i411 ElectionsOntario.on.ca,
DeTele-
foongids.nl,
iLocal.net

Yes Yes Yes Yes HTML, XML,
PDF, DOC,
PPT, XLS, ...

Predefined tax-
onomies and
categories, com-
pressed on-disk
storage.

Mercado Blockbuster.com,
Sears.com,
USOPNet.com,
officemax.com

Yes Yes Yes Yes Integrates with
external per-
sonalization
systems.

Siderean Sea-
mark

Indiana Edu-
cational Clear-
inghouse, For-
tunoff.com,
Environmental-
HealthNews.org

Yes Yes Yes Yes XML, RDF,
RSS, flat files.

Predefined tax-
onomies and
categories, uses
RDF an inter-
mediate storage
format.

Endeca TowerRecords.com,
BarnesAnd-
Noble.com,
Spiegel.com,
Cabot-Corp.com

Yes Yes Yes Yes XML and
database im-
ports

Predefined tax-
onomies and cat-
egories

Solr Repubblica.it,
StubHub.com,
Archive.com,
Chowhound.com,
CNet.com

Yes Yes Yes Yes HTML, OpenOf-
fice, DOC, XLS,
PPT, IMAP,
RTF, PDF, etc.

It uses the
Lucene Search
Library and
extend it.

Google Base base.google.com Yes No No Yes PDF, XLS,
TXT, HTML,
RTF, WPD,
ASCII, XML

Table 3.3: Faceted Metadata Search Engines in commercial sites

53

<?xml version="1.0" ?>
<xfml version="1.0“ url="http://domain.com/xfml/map1.xml" language="en-us">

<facet id="from">By From</facet>
<topic id="eu" facetid="from"><name>Europe</name></topic>
<topic id="it" facetid="from“ parentTopicid="eu"><name>Italy</name></topic>
<topic id="gr" facetid="from“ parentTopicid="eu"><name>Greece</name></topic>
<topic id="ro" facetid="from" parentTopicid="it"><name>Rome</name></topic>
<topic id="mi" facetid="from" parentTopicid="it"><name>Milan</name></topic>
<topic id="ma" facetid="from" parentTopicid="mi"><name>Malpensa</name></topic>
<topic id="li" facetid="from" parentTopicid="mi"><name>Linate</name></topic>
<topic id="at" facetid="from" parentTopicid="gr"><name>Athens</name></topic>
<topic id="cr" facetid="from" parentTopicid="gr"><name>Crete</name></topic>
<topic id="ch" facetid="from" parentTopicid="cr"><name>Chania</name></topic>
<topic id="ir" facetid="from" parentTopicid="cr"><name>Iraklio</name></topic>
<facet id="to">By To</facet>
.....
…..
<facet id="date">By Date</facet>
.....
…..
<facet id="price">By Price</facet>
.....
…..
<page url="http://flight1.com/">

<title>Flight1</title>
<description>Flight 1 from Malpensa to Heraklion</description>
<occurrence topicid="ma" />
.....

</page>
</xfml>

Figure 3.14: XFML file example

3.5.2 XFML

eXchangeable Faceted Metadata Language (XFML) is an open XML specification for defining

and sharing faceted classification schemes [2]. It provides a simple format to share classification

and indexing data. The building blocks of a faceted hierarchy in XFML are facets and concepts

(or topics). A facet is the top node of each tree. The nodes in the tree are called topics. XFML

can define multiple hierarchies, and each hierarchy is a facet.

The <facet id=”from”>By From< /facet> tag denotes the facet with name ”By From” while

the <topic id=”it” facetid=”from” parentTopicid=”eu”><name>Italy< /name>< /topic> tag

denotes the term Italy ∈ TByFrom as facetid property defines the facet that term belongs and

Italy ∈ N(Europe) as parentTopicid parameter denotes his parent. The <page> tag denotes an

object while <occurence> tags denote the DI(o). Figure 3.14 depicts the materialized faceted

taxonomy of our running example expressed in XFML.

There are not a lot of tools that support this standard. Drupal9 is a content management

system which gives user the ability to export XFML. Facetmap10 lets you import and browse

9http://www.drupal.com
10http://www.facetmap.com

54

XFML files, and Taxomita11 is an authoring tool built around XFML.

11http://www.taxomita.com

55

56

Chapter 4

fleXplorer & Applications

�'Osa me th logik brÐskeic swst�, aut� ef�rmose ta kai sth pr�xh.

'Osa den prèpei na k�neic, oÔte na ta skèftesai.�

Isokr�thc (436 p.Q. - 338 p.Q.)

This chapter presents and describes an API for providing faceted exploration services. Fur-

thermore, it presents various implemented applications and experimental results. In more de-

tails, Section 4.1presents fleXplorer , a main memory API for supporting faceted exploration.

Section 4.2 and 4.3 present two applications of fleXplorer on web search engines. Finally, 4.4

reports experimental results on DB-R architecture.

4.1 fleXplorer API

fleXplorer is a main memory API for providing faceted exploration services [56]. fleXplorer fol-

lows the minimal storage approach (I,≤), supports both EVM and SVM visualization modes,

and Extension Intersection-based computational approach. Moreover, it supports both click(t)

and feed(A) operations.

4.1.1 Specifications

fleXplorer allows managing (creating, deleting, modifying) terms, taxonomies, facets and

object descriptions. It supports both finite and infinite terminologies (e.g. numerically-valued

attributes). In addition it supports explicitly and intentionally defined taxonomies. Examples

57

of the former include classification schemes and thesauri, while examples of the latter include

hierarchically organized intervals (based on the cover relation).

The implementation is in Java, so the predefined ordering of built-in types (e.g. of int,

float, String), as well as the customized ordering defined for user-defined Java classes (e.g.

through the comparable interface) is exploited. To allow intentionally defined partially or-

dered domains, a partiallyComparable interface has been introduced and can be used by the

developer. The framework also supports parametric types. Subsequently, regarding internal

architecture, for each term t ∈ T , fleXplorer stores the I(t) and the N(t).

Regarding, interaction, the framework provides methods for setting (resp. computing) the

focus (resp. zoom-in points). In addition, the framework allows materializing on demand the

relationships of a taxonomy, even if the domain is infinite and intentionally defined (e.g. between

numbers, intervals, etc), as this can accelerate the computation of N(t) at the cost of extra main

memory space (to keep the relationships). Regarding deployment, the framework can be used

either at the server side or at client side, depending on the case. Finally, the results can be loaded

on fleXplorer in 4 different ways: JDBC ResultSet, XML file, TXT file and ResultDocument

(is an Object that have been defined in API).

In more detail, fleXplorer supports:

• State Transitions

– click(t), by defining term’s name

– click(t), by defining term’s id

– click(t), by defining term’s taxonomy path

– feed(A)

– boolean expressions which allow multiple click(t) operations

• Facets’ Structures

– finite and infinite terminologies

– explicitly and intentionally defined taxonomies

– intentionally defined partially ordered domains

– DAGs

58

• Loading / Storing

– loading objects from JDBC ResultSet

– loading objects from XML files

– loading objects from TXT files

– loading objects as ResultDocument (is an Object that has been defined in API)

– loading/storing faceted taxonomies in TXT and XML files under specific format

• Other Functionalities

– checks for redundant relationships

– checks for cycles

– zoom-in points ranking by: (a) count descending, (b) count ascending, (c) alphabet-

ical order descending and (c) alphabetical order ascending

The official website of fleXplorer is: http://www.ics.forth.gr/∼tzitzik/flexplorer/index.html

4.1.1.1 Class Diagrams

Figure 4.1 presents the class diagram of the API. The main packages of the API are described

in more details in the Figures 4.2 - 4.7.

API contains 13 packages. They are described below:

1. Terms: The classes of this package implement the entity Term. The objects are classified

under a Term. A Term in the UI layer is a zoom point.

2. Terminologies: This package manages the functionality of a facet’s terminology, where

terminology = a list of Terms.

3. Taxonomies: This package implements the relationships between the terms.

4. Facets: A facet has a Taxonomy and a name.

5. FacetedTaxonomies: A faceted taxonomy contains a list of facets.

6. MaterializedFacetedTaxonomies: This package implements the entity: materialized

faceted taxonomy. A materialized faceted taxonomy contains a faceted taxonomy and the

59

objects which are classified under the terms of the faceted taxonomy. The classes of this

package provide methods for defining the focus, computing the legal objects with respect

to the focus, computing the new zoom-points and their counts etc.

7. Types: The framework supports parametric types, this package defines these parametric

types.

8. Comparators: This package contains various comparators.

9. IndexesSetting: As we already described in 4.1.1, fleXplorer can load objects with 4

different ways. The classes of this package supports this functionality.

10. Storing: The classes of this package support the storing of a materialized faceted taxon-

omy in txt and xml files.

11. Resources: This package contains a class named Resources. This class contains various

resources for the API such as the global name of the ⊤.

12. Util: It contains various utile classes and methods.

13. BooleanParser: This package contains classes which implement a boolean parser.

4.1.2 An Example of Using the API

In this section we present an example of using the fleXplorer API for constructing a materi-

alized faceted taxonomy that consists of two facets (one flat and one hierarchically organized)

and three classified objects. The example shows two ways for setting the focus.

1 public class DemoAPIClient {

public DemoAPIClient () {}

public stat ic void main (St r ing [] a rgs) {

6 // Creates a new ma t e r i a l i z e d f a c e t ed taxonomy

MFTMEM material izedTaxonomy = new MFTMEM(”Mitos DB” , Counters .TRUE, ObjectFacet

.YES) ;

//Creates the f a c e t ed taxonomy

FT facetedTaxonomy = new FT() ;

11

// F i l e t y p e s ’ Taxonomy

60

Figure 4.1: fleXplorer Class Diagram

61

Figure 4.2: Terms’ Package Class Diagram

Taxonomy<StringType> f i letypeTaxonomy = new Taxonomy<StringType>(” F i l e t yp e s ” ,

CheckRel .FALSE, Comparison .NONCOMPARABLE, HasLis t s .FALSE, ” St r ing ”) ;

// Domains ’ Taxonomy

Taxonomy<StringType> domainsTaxonomy = new Taxonomy<StringType>(”Domains” ,

CheckRel .FALSE, Comparison .NONCOMPARABLE, HasLis t s .TRUE, ” St r ing ”) ;

16

// Creates the r e l a t i o n s h i p s o f f i l e t y p e taxonomy . The f a c e t i s f l a t .

f i letypeTaxonomy . setTerm (new StringType (”pdf ”)) ;

f i letypeTaxonomy . setTerm (new StringType (”doc”)) ;

f i letypeTaxonomy . setTerm (new StringType (” txt ”)) ;

21

// Creates the r e l a t i o n s h i p s o f domains taxonomy . The f a c e t i s h i e r a r c h i c a l l y

organized .

domainsTaxonomy . addHead (new StringType (” gr ”)) ;

domainsTaxonomy . s e tRe l sh ip (new StringType (” gr ”) , new StringType (”uoc . gr ”)) ;

domainsTaxonomy . s e tRe l sh ip (new StringType (” gr ”) , new StringType (” f o r t h . gr ”)) ;

26 domainsTaxonomy . s e tRe l sh ip (new StringType (”uoc . gr ”) ,new StringType (” csd . uoc . gr ”))

;

domainsTaxonomy . s e tRe l sh ip (new StringType (” f o r th . gr ”) ,new StringType (” i c s . f o r t h .

gr ”)) ;

// Add taxonomies to f a c e t s .

Facet<StringType> f a c e t 1 = new Facet<StringType>(”By f i l e t y p e ” , f i letypeTaxonomy ,

IndexType .SIMPLE) ;

62

Figure 4.3: Terminologies’ Package Class Diagram

63

Figure 4.4: Taxonomies’ Package Class Diagram

64

Figure 4.5: Facets’ Package Class Diagram

Figure 4.6: Faceted Taxonomies’ Package Class Diagram

65

Figure 4.7: Materialized Faceted Taxonomies’ Package Class Diagram

31 Facet<StringType> f a c e t 2 = new Facet<StringType>(”By domain” , domainsTaxonomy ,

IndexType .SIMPLE) ;

// Add f a c e t s to facetTaxonomy

facetedTaxonomy . add (f a c e t 1) ;

facetedTaxonomy . add (f a c e t 2) ;

36

// Add f a c e t taxonomy to ma t e r i a l i z e d f a c e t ed taxonomy

material izedTaxonomy . setFT (facetedTaxonomy) ;

// Each o b j e c t i s a Document . This l i s t conta ins a l l the o b j e c t s .

41 ArrayList<Document> docs = new ArrayList<Document>() ;

// This HashMap conta ins the term of each f a c e t t ha t a Document i s c l a s s i f i e d

under .

HashMap<Str ing , FacetsType> s t1 = new HashMap<Str ing , FacetsType>() ;

s t1 . put (”By domain” , new StringType (” i c s . f o r t h . gr ”)) ;

46 s t1 . put (”By f i l e t y p e ” , new StringType (”doc”)) ;

// This Document has the id 1 , ranking 1 and i s c l a s s i f i e d under the term i c s .

f o r t h . gr o f

// f a c e t By domain and under the term doc o f the f a c e t By f i l e t y p e .

Document doc1 = new Document (1 , 1 , s t1) ;

66

51 docs . add (doc1) ;

HashMap<Str ing , FacetsType> s t2 = new HashMap<Str ing , FacetsType>() ;

s t2 . put (”By domain” , new StringType (” i c s . f o r t h . gr ”)) ;

s t2 . put (”By f i l e t y p e ” , new StringType (” txt ”)) ;

56 Document doc2 = new Document (2 , 2 , s t2) ;

docs . add (doc2) ;

HashMap<Str ing , FacetsType> s t3 = new HashMap<Str ing , FacetsType>() ;

s t3 . put (”By domain” , new StringType (” csd . uoc . gr ”)) ;

61 s t3 . put (”By f i l e t y p e ” , new StringType (”doc”)) ;

Document doc3 = new Document (3 , 3 , s t3) ;

docs . add (doc3) ;

// Creates the ex t ens ions o f each term .

66 Documents dts = new Documents (materializedTaxonomy , docs) ;

dts . s e t Indexe s () ;

// Computes the i d s t ha t be long to the ex t ens ion o f the focus .

// At f i r s t the focus i s the top element o f each f a c e t .

71 material izedTaxonomy . computeLegalIds () ;

// Computes the zoom−in po in t s

material izedTaxonomy . cumputeZoomInPoints () ;

76 // Gets the zoom−in po in t s

HashMap<Str ing , Taxonomy<?>> tmp = material izedTaxonomy . getZoomInPoints () ;

// Prints the f a c e t s .

material izedTaxonomy . pr intFacetedTree (tmp) ;

81

// Prints the focus .

System . out . p r i n t l n (material izedTaxonomy . getDescr ipt ionOfFocus ()) ;

// Sets the focus . User p r e f e r s the documents which are

86 // c l a s s i f i e d under term csd . uoc . gr o f f a c e t By domain .

material izedTaxonomy . setFocus (”By domain” , ” csd . uoc . gr ”) ;

material izedTaxonomy . computeLegalIds () ;

material izedTaxonomy . cumputeZoomInPoints () ;

tmp = material izedTaxonomy . getZoomInPoints () ;

91 material izedTaxonomy . pr intFacetedTree (tmp) ;

// Prints the i d s o f the l e g a l Documents wrt the focus in our case the id : 3

System . out . p r i n t l n (” Lega l Ids : ”+material izedTaxonomy . ge tLega l Id s ()) ;

96 // Set the focus with a boolean expres s ion .

67

material izedTaxonomy . setFocus (”{By f i l e t y p e : doc OR txt } AND {By domain : i c s .

f o r t h . gr }”) ;

material izedTaxonomy . computeLegalIds () ;

material izedTaxonomy . cumputeZoomInPoints () ;

tmp = material izedTaxonomy . getZoomInPoints () ;

101 material izedTaxonomy . pr intFacetedTree (tmp) ;

System . out . p r i n t l n (material izedTaxonomy . getDescr ipt ionOfFocus ()) ;

System . out . p r i n t l n (” Lega l Ids : ”+material izedTaxonomy . ge tLega l Id s ()) ;

}

106 }

4.1.3 Desktop-based Client

In this section, we present a Desktop-based graphical client of fleXplorer for supporting faceted

exploration. In more details, it loads the facets and the records (using specific configuration files)

to the main memory and provides faceted exploration services.

Figure 4.8 presents the welcome screen of application. By pressing the ”next” button, the

screen of Figure 4.9 will be presented. Here the user has to specify the configuration file for

facets. If user selects the configuration file correctly and presses the ”next” button a same screen

will be presented for loading the configuration file of objects. Finally, by pressing the ”finish”

button, the objects will be loaded to the main memory successfully and the faceted exploration

user interface of Figure 4.10 will be presented.

4.1.4 Experimental Evaluation

Below we report some experimental results using the fleXplorer .

We created a materialized faceted taxonomy consists of 4 facets, each was a balanced and

complete tree with degree = 3 and depth = 5. A dataset of 106 objects was created where each

object was classified under a randomly selected term from each facet.

Firstly, we measured the time fleXplorer needs to load a number of object (or the results

which belong to the answer of a query on a web search engine). Figure 4.11 shows the loading

time of the top-L answer to the fleXplorer for 4 different methods as we have already described

in 4.1. The loading time for each answer size and for each different method is the average time

of 10 executions. It is obvious that the ResultDocument is the faster one since the data are kept

68

Figure 4.8: Desktop-based Client: Welcome Screen

Figure 4.9: Desktop-based Client: Facets and Objects Loading

69

Figure 4.10: Desktop-based Client: Faceted Exploration UI

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4 4.5 5 5.5 6

Lo
ad

in
g

T
im

e
(s

ec
s)

log10(Results)

ResultDocument
ResultSet
XML File
TXT File

Figure 4.11: Time to load results to fleXplorer

in main memory, followed by the ResultSet times, since in this case the data are stored in the

database. Parsing a txt file with predefined data locations is much slower than the above and

parsing the xml file is the slowest one. For the experiments we used a Pentium IV 3GHz with

2GB RAM and using Windows XP.

Figure 4.12 shows the time to compute the zoom-in points for the above four facets after

the selection of a zoom-in point, with and without count information. Each time is the average

time of 20 executions (5 executions for every results loading way). It is obvious that computing

zoom-in points with count information is more expensive than not computing it. From the figure

above, in 1 sec we can compute the zoom-in points of 240.000 results with count information

and 540.000 without.

70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 4 4.5 5 5.5 6

T
im

e
(s

ec
s)

log10(Results)

With Count Information
Without Count Information

Figure 4.12: Time to compute zoom-in points

4.2 Application on a Web Search Engine

As we already described in previous chapters, faceted and dynamic taxonomies are used more

and more nowadays in a plethora of application domains. In this section we describe a web

based application of fleXplorer API.

4.2.1 Mitos WSE

Mitos [35, 34] (formerly known as grOOGLE)1 is a prototype Web search engine that is being

developed by the Department of Computer Science of the University of Crete and FORTH-ICS.

fleXplorer is used by Mitos for offering general purpose browsing and exploration services.

On the basis of the top-L answer of each submitted query, the following four facets are created

and offered to users:

• web domain, a hierarchy is defined (e.g. csd.uoc.gr < uoc.gr < gr),

• file type (e.g. pdf, html, doc, etc), no hierarchy is created in this case

• language of a document based on the encoding of a web page and

• (modification) date hierarchy.

Notice that each page in the top-L answer is (straightforwardly) classified to one term of

each of the above taxonomies.

In more detail, when the user executes a query, Mitos returns an ordered list with the

ids (wrt the ranking) of the documents which belong to the answer. Then, Mitos loads to

1http://groogle.csd.uoc.gr:8080/mitos/

71

Figure 4.13: Mitos & fleXplorer Sequence Diagram

fleXplorer each document with the information for each facet. The hierarchies for web do-

main, file type and language are predefined, while the hierarchy of dates can be constructed

with two different ways. It can be predefined e.g. from 1990 to 2010, or it can be constructed

on-the-fly from the loaded documents. fleXplorer provides functions for constructing automat-

ically hierarchies from the D̄(o). Figure 4.13 presents a sequence diagram of fleXplorer and

Mitos communication.

After query execution and facets construction, user can start exploring the query answer.

The facets are appeared at the right of the screen. To zoom-in, user has to select the zoom-in

points by checking their checkboxes and presses the ”OK” button. In more detail, after selecting

the zoom-in points, user must select the ”OR” or ”NO” radio button. In case of ”OR”, the focus

answer will consist of objects which belong to the union of the extensions of all selected zoom-in

points. On the other hand, in case of ”NO”, the focus answer will contain the objects that do

not belong to the extensions of the selected zoom-in points. In case we have multi classification

for a facet, an ”AND” radio button will be appeared. By selecting this, the focus answer will

contain only the objects which belong to the intersection of the extensions of all zoom-in points.

Figure 4.14 depicts the user interface of Mitos.

Furthermore, if the mouse be over a result then a box which will contain the complete

descriptions of the document will be appeared at the right of the screen. For example, in Figure

4.14 we can see the complete descriptions for the first document.

72

Figure 4.14: Mitos user interface: Interpretations, Descriptions

Moreover, Mitos provide several services as regards the setting of the focus. After a zoom-

in/out point execution, user can see and edit the current focus. Under the facets, a specific box

which contain the focus is appeared. User can see the current focus, edit it and submit it. The

focus has a specific format and supports boolean expressions. Figure 4.15 presents the specific

service.

As the screen of a computer or a PDA may be too small to show all the facets (like the

previous screenshot), or the user is not interested in a specific facet, or prefers a specific ranking

of the facets, we have developed a mechanism which allows the user to drag and drop the

facets (so that to place them in the desired order) and open or close them. Figure 4.16 shows

the modified version of the GUI of Figure 4.17 where the user has opened only the facets By

Filetype and By Language and prefers to show first the facet By Filetype. User’s preferences are

stored to the cache of the internet browser as cookies to persist over time.

4.2.2 Exploratory web searching with dynamic taxonomies and

results clustering

Web Search Engines (WSEs) typically return a ranked list of documents that are relevant to the

query submitted by the user. For each document, its title, URL and snippet (fragment of the

text that contains keywords of the query) are usually presented. It is observed that most users

73

Figure 4.15: Mitos user interface: Focus

Drag & Drop

Open

Close

Figure 4.16: Modified Faceted Exploration UI according user’s preferences

74

are impatient and look only at the first results [3]. Consequently, when either the documents

with the intended (by the user) meaning of the query words are not in the first pages, or there

are a few dotted in various ranks (and probably different result pages), it is difficult for the user

to find the information he really wants. The problem becomes harder if the user cannot guess

additional words for restricting his query, or the additional words the user chooses are not the

right ones for restricting the result set.

One solution to these problems is results clustering [60] which provides a quick overview of the

search results. It aims at grouping the results into topics, called clusters, with predictive names

(labels), aiding the user to locate quickly documents that otherwise he wouldn’t practically find

especially if these documents are low ranked (and thus not in first result pages).

Another solution as we already discussed is to exploit the various static metadata that are

available to WSEs in the context of the interaction paradigm of faceted and dynamic taxonomies

(FDT).

There are a few works in the literature [3, 26] that compare automatic results clustering with

guided exploration (through FDT). In [33] we proposed combining these two approaches. In a

nutshell, this work lies in: (a) proposing and motivating the need for exploiting both (static)

explicit and (dynamically) mined metadata during Web searching, (b) showing how automatic

results clustering can be combined with the interaction paradigm of dynamic taxonomies, by

clustering on-demand the top elements of the user focus, (c) providing incremental evaluation

algorithms for speeding up the interaction, and (d) reporting experimental results that prove

the feasibility and the effectiveness of the approach.

To the best of our knowledge, there are no other WSEs that offer the same kind of informa-

tion/interaction. A somehow related interaction paradigm that involves clustering is Scatter/-

Gather [10, 20]. This paradigm allows the users to select clusters, subsequently the documents

of the selected clusters are clustered again, the new clusters are presented, and so on. This

process can be repeated until individual documents are reached. However, for very big answer

sets, the initial clusters apart from being very expensive to compute on-line, will also be quite

ambiguous and thus not very helpful for the user. Our approach alleviates this problem, since

the user can restrict his focus through the available metadata, to a size that allows deriving

more specific and informative cluster labels.

75

4.2.2.1 Coupling Static and Dynamically-mined Metadata for Exploration

FDT-based interaction is feasible for hundreds of thousands of objects very fast. However, the

application of results clustering on thousands of snippets would have the following shortcomings:

(a) Inefficiency, since real-time results clustering is feasible only for hundreds of snippets, and

(b) Low cluster label quality, since the resulting labels would be too general. To this end we

propose a dynamic (on-demand) integration approach. The idea is to apply the result clustering

algorithm only on the top-C (usually C < 500) snippets of the current focus and to redo this

whenever the focus changes. This approach not only can be performed fast, but it is expected

to return more informative cluster labels. Let q be the user query and let Ans(q) be the answer

of this query. We shall use Af to denote top-K (usually K < 104) objects of Ans(q) and Ac to

denote top-C objects of Ans(q). Clearly, Ac ⊆ Af ⊆ Ans(q). Table 4.1 lists all symbols that

are used in the sequel.

Symbol Meaning

q Current query
Ans(q) Answer of the query as returned by the WSE
C Number of top elements of the answer that will

be clustered (usually C < 500)
K Number of top elements of the answer that will

be loaded to fleXplorer (usually K < 104)
Af Top-K elements of Ans(q)
Ac Top-C elements of Ans(q)
ci Cluster ci
Ext(ci) Documents that belong to cluster ci

Table 4.1: Table of Symbols

The steps of the process are the following:

(1) The snippets of the elements of Ac are generated.

(2) Clustering is applied on the snippets of the elements of Ac, generating a cluster label tree

clt.

(3) The set of Af (with their metadata), as well as clt, are loaded to fleXplorer, a module

for creating and managing the FDT. As the facet that corresponds to automatic clustering

includes only the elements of Ac, we create an additional artificial cluster label, named

”REST” where we place all objects in Af \Ac (i.e. it will contain K − C objects).

(4) fleXplorer computes and delivers to the GUI the (immediate) zoom points.

76

The user can start browsing by selecting the desired zoom point(s), refining in this way the

answer set. When a zoom point is selected the new focus is computed and steps (1)-(4) are

performed again over the new Af (and Ac). A more efficient incremental approach is described

below.

4.2.2.2 Incremental Algorithm for Exploration

Here we present an incremental approach for exploiting past computations and results. Specifi-

cally the algorithm aims at reusing the snippets and their suffixes since this is the more expensive

task of online results clustering.

Let Af be the objects of the current focus. If the user selects a zoom point he moves to a

different focus. Let A′
f denote the top-K elements of the new focus, and A′

c the top-C of the

new focus. The steps of the algorithm follow.

(1) We set Ac,new = A′
c \Ac and Ac,old = Ac \A′

c, i.e. Ac,new is the set of the new objects that

have to be clustered, and Ac,old is the set of objects that should no longer affect clustering.

(2) The snippets of the objects in Ac,new are generated (those of Ac,old are available from the

previous step). Recall that snippet generation is expensive.

(3) Clustering is applied incrementally to Ac,new.

(4) The new cluster label tree clt′ is loaded to fleXplorer.

(5) fleXplorer computes and delivers to the GUI the (immediate) zoom points for the focus

with contents A′
f .

4.2.2.3 Implementation

The implementation was done in the context of Mitos, while fleXplorer is used for offering

general purpose browsing and exploration services. Figure 4.17 shows a screenshot of Mitos

WSE.

When the user interacts with the clustering facet we do not apply the re-clustering process

(i.e. steps (1) and (2) of the on-demand algorithm). This behavior is more intuitive, since

it preserves the clustering hierarchy while the user interacts with the clustering facet (and

does not frustrate the user with unexpected results). In case the user is not satisfied by the

available cluster labels for the top-C objects of the answer, he can enforce the execution of the

77

Figure 4.17: Screenshot of Mitos WSE

78

clustering algorithm for the next top-C by pressing the REST zoom-in point as it has already

been mentioned (which keeps pointers to K − C objects).

4.2.2.4 Experimental Results

In this experiment we measured the overall cost, for cluster generation (snippet generation and

clustering algorithm execution times) and dynamic taxonomies (to compute the zoom points

and to load the new clustering labels to the corresponding facet). Moreover, we compare the

non-incremental with the incremental algorithm, which preserves the initial suffix tree and the

elimination of old objects is done using the Scan-approach. The scenario includes: (a) the

execution of the query crete which returns 4067 results, (b) the expansion of the gr zoom point

of the By domain facet and the selection of the uoc.gr (1277) zoom-in point from the hierarchy

revealed from the expansion, and (c) the selection of the text/html (807) zoom-in point of the By

filetype facet. Let ca, cb and cc be snippets of the top− C elements in the steps (a), (b) and (c)

respectively. Figure 4.18 shows the facet terms after steps (a), (b) and (c), as they are displayed

in the left bar of the WSE GUI 2. We set K = 104 (i.e. the whole answer set is loaded) and

repeated the above steps for the following values of C: 100, 200, ... ,500. We do not measure the

cost of the query evaluation time. In all experiments the displayed zoom points are accompanied

by count information.

Step (a) Step (b) Step (c)
Total FDT Clust. Snip. Total FDT Clust. Snip. Total FDT Clust. Snip.

top-100 |ca| = 100 |ca ∩ cb| = 85, overlap=85% |cb ∩ cc| = 22, overlap=22%
Non-Incr. 1.72 0.62 0.06 1.04 1.07 0.23 0.03 0.82 0.36 0.21 0.01 0.14
Incr. 1.75 0.62 0.07 1.06 0.53 0.24 0.04 0.25 0.42 0.20 0.09 0.12

top-200 |ca| = 200 |ca ∩ cb| = 174, overlap=87% |cb ∩ cc| = 24, overlap=12%
Non-Incr. 2.88 0.49 0.08 2.31 1.95 0.13 0.07 1.76 0.73 0.24 0.13 0.36
Incr. 2.93 0.50 0.11 2.32 0.58 0.13 0.08 0.37 0.66 0.20 0.18 0.28

top-300 |ca| = 300 |ca ∩ cb| = 232, overlap=77.3% |cb ∩ cc| = 78, overlap=26%
Non-Incr. 3.51 0.42 0.14 2.95 2.60 0.23 0.16 2.21 0.82 0.21 0.17 0.44
Incr. 3.69 0.5 0.22 2.97 0.7 0.12 0.38 0.2 0.85 0.21 0.31 0.33

top-400 |ca| = 400 |ca ∩ cb| = 257, overlap=64.25% |cb ∩ cc| = 170, overlap=42.5%
Non-Incr. 3.87 0.43 0.23 3.21 3.12 0.25 0.31 2.56 2.16 0.12 0.24 1.8
Incr. 4.04 0.5 0.34 3.2 1.09 0.24 0.57 0.28 0.84 0.11 0.45 0.28

top-500 |ca| = 500 |ca ∩ cb| = 269, overlap=53.8% |cb ∩ cc| = 268, overlap=53.6%
Non-Incr. 4.39 0.46 0.45 3.48 3.14 0.26 0.32 2.56 2.71 0.24 0.32 2.15
Incr. 4.56 0.45 0.63 3.48 1.32 0.14 0.8 0.38 1.08 0.23 0.56 0.29

Table 4.2: Top-C Integration Timings for non-Incremental and Incremental Algorithms
(in seconds)

Table 4.2 shows the intersection of Ac and A′
c for steps (a), (b) and (c) and the execution

2The screenshots are from the previous version of Mitos GUI.

79

(a) (b) (c)

text/html is pressed
Expand gr and

uoc.gr is pressed

Figure 4.18: Steps (a)-(c) of running scenario

80

times that correspond to the integration of fleXplorer and results clustering using the non-

incremental and an incremental approach, for the top − C elements. Specifically, FDT times

include zoom points calculation timings (for each step) and loading to fleXplorer the entire

MFT (step A) and removing and loading the new clustering facet for (steps B and C). It is

evident that for top-100 and top-200 values, the results are presented to the user pretty fast

(especially for steps B and C), making the proposed on demand clustering method suitable as

an online task. Moreover, we can see that there is a linear correlation between time cost and

the top-C value. Finally, calculating and loading clusters for the top-500 documents, costs less

than 4.5 seconds making even big top-C a feasible configuration.

4.2.2.5 Evaluation of Usability

We conducted a user evaluation in order to compare the usefulness and usability of three in-

terfaces: (A) one offering FDT but without the results clustering facet, (B) one offering results

clustering only, and (C) the proposed interface that combines both.

To this end we specified 4 information needs (or tasks) shown in Table 4.3. For the first three

(T1-T3) we specified three variations of each, one for each interface (the subscripts indicate the

interface that should be used in each variation). We decided to follow this policy because if we

had the same task for each interface then the order by which participants used the interfaces

would bias the results (the users would remember the title of the pages that have the sought

information). However for the fourth task (T4) we did not provide a distinct variation for each

interface but the participant had to return the number of the results they found using each

interface in a specific interval of time.

For each information need each participant had to fill a form like the one shown at Table 4.4

where apart from the sough information (i.e. the requested URLs), the participant had to rank

the three interfaces according to preference by assigning each interface a distinct number from

{1,2,3} (1 for the most preferred), and to express the degree of his satisfaction from each interface

by using a value from the set {high, medium, low}. The latter question is not comparative in

the sense that a user could assign ”high” or ”low” to all interfaces.

13 users participated in the evaluation with ages ranging from 20 to 30, 61.5% males and

38.5% females. We distinguished the participants into two groups: the advanced and the regular

81

Table 4.3: User Evaluation Tasks

Id Information need/task description

(T1A) Find at least two papers of the head of the Information
Systems Laboratory of FORTH-ICS that were pub-
lished on 2007 and concern Semantic Web.

(T1B) Find at least two papers of the chairman of the Com-
puter Science Department of University of Crete that
were published on 2006 and concern e-learning.

(T1C) Find at least two papers of the Director of the ICS-
FORTH that were published on 1997 and concern user
interfaces.

(T2A) Find the personal web pages of at least two local col-
laborators of Dimitris Plexousakis.

(T2B) Find the personal web pages of at least two local col-
laborators of Grigoris Antoniou.

(T2C) Find the personal web pages of at least two local col-
laborators of Vasilis Christophides.

(T3A) Find two presentations about Wireless Networks in
.ppt that are published at the FORTH domain
(forth.gr).

(T3B) Find two presentations about Web Services in .ppt
that are published at the FORTH domain (forth.gr).

(T3C) Find two presentations about Computer Vision in .ppt
that are published at the FORTH domain (forth.gr).

(T4) Find in 2 minutes all (or the most) persons of CSD
who include into their home pages information about
their music preferences.

Information Need: (n4) Response:
................................
................................
................................

Interface User Satisfaction Preference
(Low/Medium/High) (1/2/3)

(A) FDT

Information Need: (n4) Response:
................................
................................
................................

Interface User Satisfaction Preference
(Low/Medium/High) (1/2/3)

(B) Clustering

Information Need: (n4) Response:
................................
................................
................................

Interface User Satisfaction Preference
(Low/Medium/High) (1/2/3)

Both (A) FDT
and (B) Clustering

Table 4.4: User Evaluation Form

82

users. The advanced users had prior experience in using clustering and multidimensional brows-

ing services, while the regular ones had not. For this reason, and before starting the evaluation,

we gave to each regular user a brief tutorial on using these services through examples over the

Mitos WSE. The tutorial was personal (for each participant individually) and lasted around 5

minutes.

Table 4.5 shows the aggregated results of the evaluation for all participants and all tasks per

interface. For instance, we can observe that 50% of the advanced users had medium satisfaction

for the Clustering. Table 4.7 shows the results of the evaluation for all participants per task.

For instance, we can observe that all users had high satisfaction for the FDT in Task 3.

Interface User Satisfaction Preference Completeness of
Low Medium High 1 2 3 Task (n4)

Advanced Users
(A) FDT 25% 33.3 41.6 16.6 41.6 41.6 72.2
(B) Clustering 33.3 50 16.6 25 16.6 58.3 55.5
Both (A) and (B) 16.6 25 58.3 58.3 41.6 0 77.7

Regular Users
(A) FDT 5 40 55 42.5 25 30 46,6
(B) Clustering 37.5 50 12.5 20 15 65 38.3
Both (A) and (B) 12.5 37.5 50 35 57.5 5 45

Table 4.5: User Satisfaction, Preference and Completeness percentage results per Interface

Completeness. The last column of Table 4.5 shows the average percentage of the correct

URLs that users found in task T4 in each user interface, out of the total number of correct URLs

in our testbed (6 correct URLs). We observe that with (C) (combination of the Clustering with

the FDT) advanced users achieved the highest degree of completeness i.e. 77, 7%. Regular users

achieved the highest degree of completeness using (A) i.e. 46.6% while (C) is quite close, i.e.

45%.

Zoom-in Points Clicks
Queries By Clustering By domain By filetype By date By encoding

(A) (B) Both Both (A) Both (A) Both (A) Both (A) Both
Avg. Advanced 5.6 12.6 5.33 6 1.6 1.3 0.3 0.3 1 1 0 0
Avg. Regular 11.9 13.2 10.9 2.7 1.8 0.8 1 1.1 2 1.7 0.1 0.6

Table 4.6: Number of User Queries and Clicks (as recorded in the log)

Log Data Analysis. We logged and counted the number of queries and clicks (on zoom

points) the users made. Specifically for each user we counted: (a) the number of queries submit-

ted and (b) the number of clicks on zoom-points (by facet). Table 4.6 shows the average number

of queries and zoom-points that a user from each group made in each interface for all tasks.

For example, a regular user submitted in average 13.2 queries in Clustering interface during the

evaluation. At first we observe that both groups submitted the least number of queries when

83

using (C) interface, which is an evidence that the combination of interfaces makes information

seeking less laborious. The difference is significant for the advanced users as they made more

than 50% less queries in the Faceted Taxonomies and in the combination than the Clustering.

Regarding clustering zoom points, we can see that a regular user pressed in average only 2.7

zoom-points of the facet By Clustering, while an advanced user pressed 6 (we will attempt to

explain this difference later on). Notice that 6 clicks on clustering zoom points (that advanced

users made) are more than the sum of the clicks on the points of the rest facets.

User Satisfaction For advanced users, (C) seems to be the most preferred choice as the

58, 3% of the users rate it first. On the other hand, for regular users the most preferred interface

seems to be (A) (FDT) as 42, 5% of them rate it first. In that group the difference in satisfaction

between (A) and (C) is small, 55% for the first one and 50% for the second one.

Both groups consider (B)(Clustering) as the least preferred interface: 58, 3% of the advanced

users and 65% of the regular. This is probably because users are either not familiar with

clustering services (as there are only a few meta search engines - and not well known - that offer

this feature), or because they do not yet trust such services (as they do not use them regularly).

If we look at the table with the detailed results (Table 4.7) we observe that the advanced

users were more satisfied from Clustering than from FDT for the first two tasks, while in the

last two tasks the opposite was happened. The former can not be explained (maybe users were

unsatisfied for Task1 with the date facet, since it uses the modification time), but for the latter

it is obvious that facets filetype and domain where very helpful for the tasks at hand. Regular

users were not satisfied from Clustering in none task.

Overall, we can conclude that the combination of FDT with Clustering is expected to help

mainly users who are familiar with the functionality of each interface (especially with cluster-

ing), and for such users this interface will probably be the most preferred. Users who are not

very familiar with these technologies are more satisfied with FDT (probably because they fully

understand it immediately) than with the combination of both or with Clustering alone. This is

quite expected as users who have not used real-time clustering probably neither can understand

it immediately (e.g. they may wonder whether the clusters contain overlapping or disjoint sets

of pages), nor have experience on using such services so they do not trust them. However we

have to remark that the tutorial was very brief, and it is possible that a more detailed and

comprehensive tutorial (e.g. a hands on training session of 30 minutes) could turn the results of

the regular users to converge to those of the advanced ones.

84

Interface User Satisfaction Preference
Low Medium High 1 2 3

Advanced

Task1
(A) FDT 66.6 33.3 - 33.3 - 66.6
(B) Clustering 33.3 33.3 33.3 33.3 33.3 33.3
Both (A) and (B) 33.3 33.3 33.3 33.3 66.6 -

Task2
(A) FDT - 100 - - 33.3 66.6
(B) Clustering - 66.6 33.3 33.3 33.3 33.3
Both (A) and (B) - 66.6 33.3 66.6 33.3 -

Task3
(A) FDT - - 100 33.3 66.6 -
(B) Clustering 66.6 33.3 - - - 100
Both (A) and (B) - - 100 66.6 33.3 -

Task4
(A) FDT 33.3 - 66.6 - 66.6 33.3
(B) Clustering 33.3 66.6 - 33.3 - 66.6
Both (A) and (B) 33.3 - 66.6 66.6 33.3 -

Regular

Task1
(A) FDT 10 60 30 20 40 40
(B) Clustering 20 70 10 20 40 40
Both (A) and (B) 10 30 60 60 20 20

Task2
(A) FDT - 50 50 40 20 40
(B) Clustering 20 50 30 40 - 60
Both (A) and (B) - 60 40 20 80 -

Task3
(A) FDT - - 100 70 20 10
(B) Clustering 70 30 - - 10 90
Both (A) and (B) 30 - 70 30 70 -

Task4
(A) FDT 10 50 40 40 30 30
(B) Clustering 40 50 10 20 10 70
Both (A) and (B) 10 60 30 40 60 -

Table 4.7: User Satisfaction and Preference percentages per Interface (per task)

4.2.3 Exploratory web searching with Entity Mining

We should stress that what we have proposed in section 4.2.2 can be applied also on other

kinds of dynamically-mined metadata. With the term dynamically-mined metadata we refer to

metadata which should be minable (a) from small quantities or portions of data, e.g. from the

snippets of the top-K part of a query answer, and (b) in real-time. The motivation for focusing

on small quantities is that (i) we may not have at our disposal large quantities (e.g. we may

have access only to snippets), (ii) it may be computationally expensive to apply these mining

tasks on large quantities of data, and (iii) we may want to focus on small qualities for enhancing

the quality (specificity) of the mined information.

In the context of web searching, we can say that dynamically-mined metadata refer to

metadata which are mined from the snippets of the top elements of the current answer. Examples

of such mining tasks, apart from results clustering, include

• Facet and Taxonomy Mining

For instance, [12] generates facet hierarchies dynamically from text or text-annotated

objects.

• Entity Mining

Named entity recognition (also known as entity identification and entity extraction) [28,

85

Figure 4.19: Faceted Taxonomies and Entity Mining

30] is a subtask of information extraction that seeks to locate and classify atomic elements

in text into predefined categories such as the names of persons, organizations, locations,

expressions of times, quantities, monetary values, percentages, etc (e.g. the GNOSIS

addon of Firefox).

Nowadays, Mitos supports the coupling of faceted exploration and entity mining using

the GATE/ANNIE project [9]. It provides named entity recognition over various format of

documents e.g. txt, html, pdf, in several languages and supports various types of entities e.g.

location, date. Mitos supports named entity recognition for documents written in English or

Greek, and for 6 specific types of entities: Location, Date, Organization, Address, Person and

Money.

As regards the combination of entity mining and faceted dynamic taxonomies, we follow the

same approach as for clustering with the only difference that in this case each entity is a facet.

When the user executes a query, the entity mining is executed on the entire text of the top− k

documents of the query answer, where usually k = 100. If an entity is recognized in a specific

document, then the document is classified under the particular term of the specific entity facet.

Figure 4.19 shows the user interface of the specific implementation on Mitos.

86

Figure 4.20: ESA-USNG User Interface

4.3 EO User Service Next Generation Project (EO

USNG)

The User Services Next Generation is an ESA (European Space Agency) project where the

user’s needs and requirements are the key driver for improving and redefining the way ESA

currently provides its data and services. The improvement of technologies, additional sensors

and engaging new user communities are key motivators in defining the new service. ESA aims

to increase user visibility of its services and wants to be challenged with a new innovative design

that improves the systematic flow and widens the scope of its Earth Observation services. In this

project we proposed an improved catalogue searching and browsing approach for ESA Products

using Dynamic Taxonomies and Faceted Search.

The first version of web-based user interface from the demonstration phase is presented in

Figure 4.20.

4.4 Experimental Results on DB-R Architecture

Here we report experimental results of three different experiments with respect to the hierarchi-

cally organized facets and the size of the dataset.

87

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
T

im
e

(s
ec

s)

Number of Results

Query time
Compute zoom-in points

Zooming-in

Figure 4.21: Experimental Results on DBMS

4.4.1 (DB-R) With No Hierarchically Organized Values

In this Section we present some experimental results on DB-R approach with no hierarchically

organized facets. As the index of Mitos is based on a DBMS (specifically PostgreSQL 8.3),

we performed experiments over it. The facets presented in Section 4.2.1 actually correspond to

columns of the database schema (shown in Table 4.8).

Table F ield Type (Bytes)
document id int4 (4)

md5 char (16)
title varchar (title.length)
path varchar (path.length)
link varchar (link.length)
type varchar (type.length)
encoding varchar (encoding.length)
norm float (4)
rank float (4)

Table 4.8: Partial database schema of Mitos.

Figure 4.21 shows the corresponding results (for various result sizes) for computing the

zoom-in points for only one facet (whose terms are not hierarchically organized). Notice that

the time to compute the contents of the new focus is higher than the time to compute those of

the original focus (because the corresponding query is longer). In general, this approach is very

fast too.

4.4.2 (DB-R) With Hierarchically Organized Values

Here we investigate the applicability of SQL in case we have hierarchically organized values.

However, we should mention that this approach approach is feasible only if we a-priori know the

88

depth of the taxonomies involved (or if we adopt recursive SQL).

We created a synthetic dataset whose schema is shown in Table 4.9. Table subjectHierar-

chy forms a balanced and complete tree with degree 5 and depth 5. Each paper is associated

with one randomly selected subject term (that is a leaf) and with 1 to 4 randomly selected

authors. All fields of the tables have been indexed with B-Trees and the size of the database

is 30.1 MB (the indexes occupy 17.2 MB). In order to run the experiments we have installed

PostgreSQL 8.3 (with shared buffers parameter set to 1 GB) on a Pentium IV machine with

3GHz CPU and 1 GB RAM.

Table F ield Num.ofTuples
paper pid 105

title
year
venue

author pid 4× 104

authorName
paperAuthors pid 2.2× 105

authorId
subjectHierarchy stId 3906

name
parentID

paperSubjects stId 105

pid

Table 4.9: Database schema of small synthetic dataset

Figure 4.22.(a) shows: (ta) the time for computing the answer of a query comprising one

subject term from various term depths, (tb) the time to compute the zoom-in points with respect

to the venue attribute, (tc) the time to compute the content of the new focus (we have selected

one zoom-in point from venue facet). Furthermore, the cost ta is included in both tb and tc, since

we re-compute the results. The reported times are the average of 20 different runs of 5 randomly

selected subject terms for each depth. Figure 4.22.(b) shows the corresponding average result

sizes.

We conclude that the query times increase, compared to the query times in Figure 4.21,

for the same number of results. This was an expected result, since to support hierarchically

organized values using the DBMS, more complicated queries had to be issued.

89

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 1 2 3 4 5
T

im
e

(s
ec

s)

Depth of Term

Query time
Compute Zoom-in points

Zooming-in

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5

N
um

be
r

of
 r

es
ul

ts

Depth of Term

Query results size
Zooming-in results size

(b)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5

T
im

e
(s

ec
s)

Depth of Term

Query time
Compute Zoom-in points

Zooming-in

(c)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1 2 3 4 5

N
um

be
r

of
 r

es
ul

ts

Depth of Term

Query results size
Zooming-in results size

(d)

Figure 4.22: Experimental results on synthetic databases.
90

4.4.3 (DB-R) With Hierarchically Organized Values (Bigger Data

Set)

Here we report the results for larger data sets, i.e. for databases that do not fit in main

memory. We used the database that described in Table 4.10.

Table F ield Num.ofTuples
paper pid 2× 106

title
year
venue

author pid 5× 105

authorName
paperAuthors pid 5× 106

authorId
subjectHierarchy stId 111.111

name
parentId

paperSubjects stId 2× 106

pid

subjectHierarchy2 stId 111.111
name
parentId

paperSubjects2 stId 2× 106

pid

Table 4.10: Database schema of large synthetic dataset.

Tables subjectHierarchy and subjectHierarchy2 form a balanced and complete tree

with degree 10 and depth 5. Again, each paper is associated with one randomly selected leaf

subject term from each of the two hierarchies and with 1 to 4 randomly selected authors. All

fields of the tables have been indexed with B-Tree access method and the size of the database

is 1.24 GB (the indexes occupy 718 MB). The experiments run on the same machine as above

but with the shared buffers parameter of postgreSQL set to 1 GB. Figure 4.22.(c) shows the

times of the same experiment as Figure 4.22.(a) in a larger dataset. The reported times are the

average times of 40 different runs for 10 randomly selected subject terms for each depth. Figure

4.22.(d) shows the corresponding average result sizes. The aforementioned times were gathered

using Java, meaning that the overhead of the JDBC driver is also included. This overhead also

exists in the Mitos engine, since it is also written in Java.

Summarizing, when the volume of data increases and performance of the DBMS approach

degrades. Note that 5 seconds is not acceptable for building on-line applications.

91

92

Chapter 5

Extensions For Scalability

Although, faceted and dynamic taxonomies are increasingly used nowadays in a plethora of ap-

plications, current methods (which are object-based) are applicable for relative small collections

of objects (comprising thousands of objects), and do not fully exploit the characteristics of the

information thinning process for reducing the computational costs. The provision of such ser-

vices for larger collections (e.g. of the magnitude of 109) is a challenging vision. In this chapter,

we elaborate on techniques that could be used for larger collections, by reducing the associated

computational costs and the storage overhead. In more detail, Section 5.1 introduces a scenario

that highlights the desired functionality of a FSE over Terra-sized collections. Section 5.2 pro-

poses an effective and efficient interaction scheme for exploring large collections. Section 5.3

evaluates our proposal analytically and experimentally, and discusses the experimental results.

5.1 A Global-scale Exploration Scenario

Suppose that we want to offer FDT exploration services over the set of all web pages. According

to the Netcraft1 the Web (until April 2009) contains 232 million web sites, while as of June

2008, the indexed web contains at least 63 billion pages 2.

Suppose that we have a global web search engine which provides faceted exploration func-

tionalities. Let us assume that the faceted taxonomy contains five facets. The facets and their

size are described below:

1http://news.netcraft.com/archives/web server survey.html
2http://www.worldwidewebsize.com/

93

• By language: According [18], as of early 2007, there are 6,912 known living human

languages. So we will have ≃ 7 ∗ 103 terms for that facet. Furthermore, ISO 639-2 and

ISO 639-5 propose a regional taxonomy of language families 3. For example, if someone

wants to select the Greek language has to follow the path: Europe/South Europe/ Modern

Greek. The depth of this path depends on the depth of family hierarchy. The average

depth is 3.

• By TLD (top level domain): According IANA4 the number of top level domains is

271 ≃ 3 ∗ 102. We have four categories of top level domains: gTLD, ccTLD, IDNA TLD

and infrastructure. The ccTLD (country code TLD) which includes the 88% of the top

level domains can also be categorized by continent. So the average depth of this facet is

2.

• By date: In this facet we will have the dates from 1992 to 2012. So, we will have:

(21 ∗ 366) + (21 ∗ 12) + 21 = 7959 ≃ 8 ∗ 103 terms. For selecting a specific date, the user

has to follow a path with the following format: year/month/day. Subsequently, the depth

of this hierarchy is 3.

• By filetype: According IANA, there are 9 categories of Mime Types which are described

below: application (701 mime types), audio (118 mime types), example (0 mime types),

image (39 mime types), message (19 mime types), model (14 mime types), multipart (14

mime types), text (50 mime types), video (57 mime types). So, the number of terms is

1021 ≃ 103, while the depth is 1.

• By clustering: Let us consider the case that we want to offer exploration with respect

to a classification scheme like that of DMoz directory5. DMoz contains 590.000 categories

which are hierarchical organized and the average depth as we try it was 7. In this scenario,

the hierarchy is a balanced and complete tree with depth = 7 and degree = 6. The number

of terms of this facet will be ≃ 3.4 ∗ 105.

Table 5.1 summarizes the above. All possible descriptions of this faceted taxonomy (assuming

single classification) is: |T1 × × T5| ≃ 5.7 ∗ 1018. Moreover, the number of the terms of the

entire faceted taxonomy (|T |) is 3.5 ∗ 105 terms.

3http://www.loc.gov/standards/iso639-2/iso639-2ra.html and http://www.loc.gov/standards/iso639-
5/langhome5.html

4http://www.iana.org
5http://www.dmoz.org/

94

Facet Terms Depth

Language 7 ∗ 103 3

TLD 3 ∗ 102 2

Date 8 ∗ 103 3

File Type 103 1

Clustering 3.4 ∗ 105 7

SUM. 3.5 ∗ 105 -

Avg. 0.7 ∗ 105 3.2

Table 5.1: Global Web Scenario

According to section 3.2.1, if we have mandatory single classification, as in our scenario,

then CM = k where CM is the average number of terms that are (directly) assigned to an object

o ∈ Obj and k the number of facets. So in our case, CM = 5. If we assume that |Obj| = 1010,

it follows that to store the set DI(o) ∀ o ∈ Obj requires 1010 ∗ 5 ids. Let us assume that the

cost of an id is 4 bytes, then the storage overhead will be 1010 ∗ 5 ∗ 4 = 2 ∗ 1011 bytes = 168

GB. As we presented in section 3.2.2, the overhead of storing DĪ instead of DI , is dM,avg where

dM,avg is the average depth of terms that are directly used in object descriptions in materialized

faceted taxonomy M . In our case davg = 3.2. From the above description of each facet, we can

infer that the majority of objects are classified under the leafs of each hierarchy. So, we suppose

that dM,avg = 3. Consequently, to store DĪ(o)∀o ∈ Obj would require 168 GB ∗ 3 ≃ 0.5 TB.

As the space requirements for storing this information is high, the realtime computation

of the exact zoom-in points and counts in a web application using ordinary hardware will be

unacceptably high.

5.2 Interaction Scheme for Large Collections

There are several works which discuss the challenges of providing faceted exploration services

on global web search engines. [50] discusses the challenges of providing such services on a large

corpus of documents with many facets. Additionally, [48] discusses the limitation of a search

engine to quickly compute (or estimate) the facet values for every result that matches a particular

query. However, all performance measurements that have been reported in related works (e.g. in

[59, 43, 5]) are over collections consisting of millions of objects, and to the best of our knowledge

there is not any system of work that attempts to scale such services for billions or more objects.

95

For a terra-sized collection, the computation of zoom-in points in real time, is roughly

impossible for the methods presented in section 3.3 using a single PC and assuming the current

technology. To this end, we propose a variation of the interaction scheme of FDT that provides

count information only if the focus size is under a certain threshold. For instance, assume that

the size of the collection is 109. The count information for the corresponding zoom-points, are

not very useful. A rough approximation of the count information (an upper and lower bound)

for the computation of the right zoom points would be enough. For this reason, the designer

should be able to define a threshold, e.g. thres = 106, and when the user after a number of clicks

reaches a focus whose the upper bound of the count information is below thres then zoom-in

points with exact count information will be computed.

In more detail, this variation proposes two different interaction approaches: (i) if the focus

size is over a ceratin threshold we will only compute the zoom-in points for each facet and their

counts approximately, and (ii) in the focus size is under the threshold we will follow the classical

object-based methods (remember chapter 3). In the first interaction approach we will follow

the CTCA-based approach for providing the specific services, while in the second interaction

approach the TLOI-based. Below we discuss each approach separately.

According to the CTCA-based approach, we compute the zoom-in points but we provide

approximated count information and we do not compute the focus answer. To compute zoom-in

points with no count information, we need a kind of preprocessing that yields some data that

can be exploited for speeding up the computation. However, these data should have low storage

space requirements. For this problem we adopt the Compound Term Composition Algebra

(CTCA) [55]. CTCA is fully intensional, in contrast to dynamic taxonomies which are both

intensional (due to the existence of hierarchies and their semantics) and extensional (as they

discard queries with empty extension). The adoption of CTCA allows computing the zoom-in

points without having to perform any operation on the object-base. Instead what we have to do

is to mine offline a CTCA expression that specifies all conjunctions of terms whose answer is non

empty and at run-time to reason over the mined CTCA expression. In this way we bypass the

overhead of the object-based approaches. The required CTCA expression is expected to have

low storage space requirements due to the compressing potential of CTCA (for more see [51]).

On the other hand, in case of TLOI-based approach, we should compute the zoom-in points,

provide the exact count information and compute the answer of the focus. Such information

cannot be derived from CTCA-based approach. This is an object-based method but it supports

96

efficient storage indices which reduce the computational costs.

We have to mention that the proposed interaction scheme supports the FDT exploration of

an entire collection and not a party of it e.g. FDT exploration on a subset A ⊆ Obj where A

has been provided by an external access method like an answer to a query in a WSE. In other

words, in this case we do not support the feed(A) operation presented in section 3.1.1.3, because

all computations are based in pre-computed indices which do not support for the moment this

functionality. This is an issue for further research.

Below we describe each approach analytically. In more detail, section 5.2.1 elaborates on the

CTCA-based approach, while section 5.2.2 on the TLOI-based approach. Moreover, in section

5.2.1.5 we propose a formula for estimating approximately the count information of a focus in

order to identify when we should apply the TLOI-based approach and when the CTCA-based.

5.2.1 CTCA-based Approach

This section describes how CTCA is exploited. The subsequent sections give more details for

various parts.

5.2.1.1 Vi & EVi Computation

Let M = (F , I), be the materialized ontology. Let V (M) = {s ⊆ T | Ī(s) ̸= ∅} i.e. the set

of all compound terms that have not empty extension. By using the approach described in

[53] we can produce an expression e of CTCA, such that Se = V (M), i.e. the terms that are

valid according to CTCA expression e, are those that are extensionally not empty in M . This

means that we can store the expression e and whenever we want to see if s ∈ Se we employ the

algorithm described in [55].

Let us now describe how the above can be exploited in the interaction paradigm of FDT. Let

st denotes the current state of the interaction with respect to the interaction states presented

in section 3.1. As we have already noted, in this case we can only execute click(t) operations.

Furthermore, let us assume that we have a function isV alid(e, s) which returns True, if s is a

valid compound term according to e (i.e if s ∈ Se) and False, otherwise.

In case of Simple Visualization Mode (SVM):

Vi(st) = {t ∈ N(st.ctxi) ∪ Inci(st.ctxi) | isV alid(e, st.ctx ∪ {t}) = True} ∪B∗(st.ctxi)

97

In case of Extended Visualization Mode (EVM):

EVi(st) = {t ∈ Ti | isV alid(e, st.ctx ∪ {t}) = True}

5.2.1.2 A short introduction to CTCA

CTCA is used for specifying the set of compound terms over a given faceted taxonomy that are

valid (i.e. meaningful) in the application domain. From a ”logical” point of view, we could say

that CTCA is an algebra for specifying the ”satisfiable” conjunctions of terms.

As we described above, if e is an expression, Se denotes the outcome of this expression and

is called the compound terminology of e. The initial operands, thus the building blocks of the

algebra, are the basic compound terminologies, which are the facet terminologies with the only

difference that each term (for reasons of notational simplicity) is viewed a singleton. Specifically,

the basic compound terminology of a terminology Ti is defined as: Ti = {{t} | t ∈ Ti}
∪
{∅}.

CTCA provides four basic algebraic operators: plus-product (⊕P), minus-product (⊖N), plus-

self-product (⊕∗
P) and minus-self-product (⊖∗

N). The definition of each operation of CTCA is

summarized in Table 5.2. They are all operations over P (T). Each of these four operations has

an extra parameter denoted by P or N , respectively. The set P is a set of compound terms

that we certainly want to appear in the result of the operation, i.e. they are valid. From these

more valid terms are inferred. On the other hand, the set N is a set of compound terms that

we certainly do not want to appear in the result of the operation, i.e. they are invalid. From

these more invalid terms are inferred.

Product operation is an auxiliary operation that results in an ”unqualified” compound ter-

minology whose compound terms are all possible unions of compound terms from its arguments.

Here we have to mention that a product operation is equal with a minus-product operation if N

is empty. An example is shown in Figure 5.1. On the other hand, a self-product operation gives

all possible compound terms of one facet. Plus-self-product operation results in a compound ter-

minology consisting of the compound terms of the initial basic compound terminology, plus all

compound terms which are broader than an element of P , while minus-self-product the opposite.

For example, the result of the operation ⊕∗
P (BySports), where P = {{SeaSki, Windsurfing},

{SnowSki, Snowboard}} is shown in Figure 5.2.

An expression e over F is defined according to the following grammar (i = 1, ..., k) in BNF

where k is the number of facets:

98

S S’

{Greece} {Greece}{Sports} {Sports}

{Crete} {SeaSports} {Crete} {SeaSports}{Greece, Sports}

{Crete, Sports} {Greece, SeaSports}

{Crete, SeaSports}

S S’ = S NS’, N = ø

Figure 5.1: Product and minus-product operation example

{All Sports}

{Sea Sports} {Winter Sports}

{Windsurfing}{SeaSki} {SnowSki} {Snowboard}

{All Sports}

{Sea Sports} {Winter Sports}

{Windsurfing}{SeaSki} {SnowSki} {Snowboard}

{SeaSki, Windsurfing} {SnowSki, Snowboard}

P={{Seaski, Windsurfing},
{SnowSki, Snowboard}}

By Sports
P

*
(By Sports)

P

*
(By Sports)

Figure 5.2: Self-plus-product operation example

e ::= ⊕P (e, ..., e) | ⊖N (e, ..., e) | ⊕∗
P Ti | ⊖∗

N Ti | Ti

Let us assume that we have the materialized faceted taxonomy of Figure 3.3. This material-

ized faceted taxonomy will be the running example of this chapter. In order to understand the

usability of minus and plus products, an expression e that defines a set of compound terms Se

which are those that have no empty extension is the following: e = ByLocation⊖N BySports

where

N ={{Crete, WinterSports},{Olympus, Sea Sports},

{Heraklio, Seaski}, {Ios, WinterSports},

{Ios, SeaSki}, {Lasithi, Windsurfing}}

There are several expressions that can be used to specify the same set of compound terms.

For example we can use an expression e′ that has a plus-product : e′ = ByLocation⊕P BySports

where

P ={{Olympus, Snowboard}, {Olympus, SnowSki},

{Heraklio, Windsurfing}, {Ios, Windsurfing},

{Lasithi, Seaski}}

99

Operation e Se

product S1 ⊕ S2 ⊕⊕ Sk {s1 ∪ s2 ∪ ∪ sk | si ∈ Si}
plus-product ⊕P (S1, S2,, Sk) S1 ∪ S2 ∪ ∪ Sk ∪B+(P)

minus-
product

⊖N (S1, S2,, Sk) S1 ⊕ S2 ⊕⊕ Sk −N+(N)

self-product ⊕∗(Ti) P (Ti)

self-plus-
product

⊕∗
P (Ti) Ti ∪B+(P)

self-minus-
product

⊖∗
N (Ti) ⊕∗(Ti)−N+(N)

Table 5.2: Basic notions and notations

As our paradigm is too small and it does not show the power of CTCA, imagine that we add the

term Islands in TByLocation where Islands ≺ Greece, Ios ≺ Islands and Crete ≺ Islands and

three objects {H6,H7, H8} where DI(H6) = {Ios, Seaski}, DI(H7) = {Heraklio, Seaski},

and DI(H8) = {Lasithi,Windsurfing}. Then we can use the expression:

e′′ = ByLocation⊖NBySports whereN = {{Islands,WinterSports}, {Olympus, SeaSports}}.

As we saw above, there are several expressions that could be used for defining the same

partition. In particular, what we are looking for is a Sperner system [46] of the maximal invalid

compound terms in case of N or the minimal valid compound terms in case of P .

One system based on CTCA has already been built [57], while other applications of CTCA

are described in [51, 53]. Approaches for mining the expression e have been already proposed

and are discussed in Section 5.2.1.4.

5.2.1.3 Compound term validity and CTCA

To check the validity of a compound term s, we can use the algorithm IsV alid(e, s) as described

in [55] and presented in Alg.1 which returns True, if s ∈ Se and False, otherwise.

Depending on the parse tree of e, i.e on the kind and number of operations (⊕P , ⊖N , ⊕∗
P ,

⊖∗
N) that are used in e, the algorithm contains steps of the form:

(1) if ∃n ∈ N s.t. n ≽ s, then s will be invalid; valid otherwise (appears in lines 14-21 and

29-33).

(2) if ∃p ∈ P s.t. p ≼ s, then s will be valid; invalid otherwise (appears in lines 7-13 and

22-28).

(3) if @t ∈ Ti,∀i = 1, ..., k s.t. {t} ≼ si
6, then s will be invalid; valid otherwise (appears in

6si may contain more than one term of facet i

100

Algorithm 1 IsValid(e,F , s)

1: if (s = ∅) then
2: return (TRUE)

3: if (∃ t ∈ s such that F (t) ̸∈ F (e),) then
4: return (FALSE)

5: if (s is singleton) then
6: return (TRUE)

7: if (e instanceOf ⊕P (e1, ..., en)) then
8: if (∃ p ∈ P s.t. p ≼ s) then
9: return (TRUE)

10: for (i = 1 to n) do
11: if (IsV alid(ei,F , s) = TRUE) then
12: return (TRUE)

13: return (FALSE)
14: else if (e instanceOf ⊖N (e1, ..., en)) then
15: if (∃n ∈ N s.t. s ≼ n) then
16: return (FALSE)

17: for (i = 1 to n) do
18: si = {t ∈ s | F (t) ∈ F (ei)}
19: if (IsV alid(ei,F , si) = FALSE) then
20: return (FALSE)

21: return (TRUE)

22: else if (e instanceOf
∗
⊕P (Ti)) then

23: if (∃p ∈ P s.t. p ≼ s) then
24: return (TRUE)

25: if (∃t ∈T i s.t. {t} ≼ s) then ◃ i.e. s ∈ Ti

26: return (TRUE)
27: else
28: return (FALSE)

29: else if (e instanceOf
∗
⊖N (Ti)) then

30: if (∃n ∈ N s.t. s ≼ n) then
31: return (FALSE)
32: else
33: return (TRUE)

34: else if (e instanceOf Ti) then
35: if (∃t ∈T i s.t. {t} ≼ s) then ◃ i.e. s ∈ Ti

36: return (TRUE)
37: else
38: return (FALSE)

101

lines 34-38).

While CTCA approach has low storage overhead as we have only to store the defining

algebraic expression e and the compound terms in P, N , the complexity of IsV alid(e, s) is

O(| T | 3 ∗ | s | ∗ | P
∪

N |) where P is the union of the P parameters of all plus-product

operations and N is the union of the N parameters of all minus-product operations which exist

in e [54]. This complexity overhead owed to the transitive closure computations and to the

sequential searching of P and N parameters, as no index is supported.

In this thesis we propose optimizations to minimize this overhead. In more detail, section

5.2.1.6 proposes the usage of labeling algorithms for avoiding the cost of transitive closure

computations, and efficient indices for storing the P, N parameters.

5.2.1.4 Mining a CTCA expression

A CTCA expression can be formulated manually or automatically. For instance a designer can

use CTCA in order to specify the set V of valid compound terms in a flexible and gradual

manner, without having to provide explicitly every element of V (the manual specification of

the elements of V would be a formidably laborious task). Note that if we have a materialized

faceted taxonomy M = (F , I), as in our case we could mine the expression e using the approach

presented in [53] (this is called expression mining). The cost of mining the expression e according

[53] is:

O(
|T |k+2

kk−1
|Obj|+ |T |2k+2

k2k
+ (k − 1)!5k ∗ Task(spo))

where k is the number of facets and Task(spo) is an optimized process where the parse tree

of an expression e is enriched with the P, N parameters while its complexity is at the magnitude

of O(|T |2). The time complexity is polynomial with respect to T and exponential with respect

to k but this algorithm will run once (offline) and the most times the k is small (in our example

k = 5).

5.2.1.5 Approximating Zoom Point Count Information

As we have already described in section 5.2, we need a formula for estimating approximately

the size of focus answer e.g. |Ī(ctx)|, in order to specify which interaction approach we have to

follow. In this section we propose a method for approximating the count information of a focus

ctx in constant time.

102

Suppose that we know the counts of all terms of the faceted taxonomy, where count(t) =

|Ī(t)|. The count of t is the number of objects that are indexed with t or its descendants. In

case we want to compute the count of a compound term s = {t1, ..., tk} approximately, we need

to compute the upper and the lower bound of |Ī(s)|. The bounds are the following:

Upper Bound: UB(s) = minki=1(count(ti)),

Lower Bound: LB(s) = 0

Clearly, UB(s) is the minimum count of the term in s since Ī(s) = ∩k
i=1Ī(ti). For example, if s =

{Creece, SeaSports} in our running example, then LB(s) = 0 and UB(s) = min(|Ī(Creece)|

, |Ī(SeaSports)|) = min(5, 3) = 3

Definition 3 We call a MFT cartesian if each object is mandatorily indexed by one and only

one term from each facet.

Prop. 1 (Lower Bound)

In a cartesian materialized faceted taxonomy, if t1,, tk ∈ ×k
i=1Ti, then

LB(|Ī(t1,, tk)|) = max(0,
∑k

i=1 |Ī(ti)| − (k − 1)|Obj|) 2

For example, suppose we have 3 facets A,B,C with TA = {a1, a2}, TB = {b1, b2}, TC =

{c1, c2} and 4 objects where each object is indexed with exactly one term from each facet. Let

us assume that ctx = {a1, b1, c1}, count(a1) = count(b1) = 4 and count(c1) = 2. It is obvious

that count(ctx) = 2 as all objects are described by a1 and b1, but only two of them are described

by c1. So LB(ctx) = 4 + 4 + 2− 2 ∗ 4 = 2.

5.2.1.6 Optimizations

In this section we present two optimizations for minimizing the computational costs of isV alid

algorithm. In more detail, the optimizations are: (i) labeled taxonomies & naive CTCA’s pa-

rameters indexing, and (ii) FDT-based Method for storing the CTCA’s parameters. Below we

present analytically the optimization methods, while section 5.3 presents experimental results

on these optimizations.

Labeled Taxonomies & naive CTCA’s parameters indexing

In order to avoid the cost of subsumption checking (remember O(|T |2)) we can use a labeling

algorithm that allows deciding subsumption in constant time, like the one proposed by Agrawal

et al. [4] which relies on the introduction of a spanning tree to distinguish between tree and

103

Greece
[1, 6]

Crete
[2, 4]

Olympus
[5, 5]

Lasithi
[3, 3]

Ios
[1, 1]

Heraklio
[2, 2]

AllSports
[1, 7]

SeaSki
[1, 1]

WinterSports
[4, 6]

Windsurfing
[2, 2]

Snowboard
[5, 5]

SeaSports
[1, 3]

SnowSki
[4, 4]

ST
By Location

ST
By Sports

Figure 5.3: Labeling algorithm over the Faceted Taxonomy

non-tree edges. Specifically, they propose a hybrid scheme in which the spanning tree edges

fully take advantage of the interval-based labeling, while the non spanning tree edges require a

replication of the label of their source node upwards to their target and its ancestors. Then,

subsumption checking for spanning tree edges relies purely on interval inclusion test, while for

the remaining edges one has to also check whether there is a path in the graph.

More precisely, a node u in the spanning tree ST of the graph is labeled with an interval

[index, postorder] where postorder is the number of u in order to reflect its relative position in a

postorder traversal of the tree and index is the lowest postorder number among its descendants.

Now, for checking the subsumption u ≤ u′, let the postorder number of u be upn and the index

number be ui, and for u′ be u′pn and u′i respectively. There exists a direct path from node u to

u′ iff ui ≥ u′i and u′pn > upn.

In our approach we will have a spanning tree for each Fi where the nodes are the terms of

Ti. This compression scheme of transitive closure requires O(|T |) storage. Figure 5.6 presents

the labels that will be created for the hierarchies presented in figure 3.3.

Recall that according to Table 2.1, compound ordering is defined as s ≼ s′ iff ∀t′ ∈ s′ ∃t ∈ s

s.t. t ≤ t′. As we describe above, the cost of checking t ≤ t′ is O(1). So the overall cost of

subsumption checking of two compound terms s, s′ in case that all taxonomies are labeled will

be O(min(|s|, |s′|)).

Then, a naive method for storing the N (or P) can be used. For each n ∈ N , one interval

(w.r.t. the labeling algorithm) for each of its facets (i.e. for each ni = n ∩ Ti and i = 1, ..., k) is

stored. We can do the same for the P parameter.

In case a valid/invalid compound term belongs to a self plus/minus product operation pa-

rameter, then the cell for the specific facet will contain a set of intervals while the other cells

will be empty. The time complexity for checking whether there exists a compound term that

belong to P, N which determines whether a focus ctx is valid or not, is O(|N ∪ P | ∗ |k|) while

104

By Location By Sports

Greece

OlympusCrete

Heraklio Lasithi

All Sports

Sea Sports Winter Sports

WindsurfingSeaSki SnowSki Snowboard

op1 op2op5op4 op3

Ios

Figure 5.4: Indices for storing P parameter

the storage overhead is |N ∪ P | ∗ k, as we need to check all the parameters and the cost of

subsumption checking of ctx is |k|.

FDT-based Method for storing the CTCA’s parameters

Here we describe an alternative approach for storing N ∪ P . Plus-Product: The rough idea

is the following: for each p ∈ P we create one artificial object op which is classified under the

terms that constitute p and this defines an auxiliary interpretation, say Y . Then we reduce the

problem of deciding whether an s is valid by checking whether Ȳ (s) is non empty. For example,

Figure 5.4 shows the materialized taxonomy of the running example with respect to the P. For

ctx = {Heraklio, Snowski} we can see that Ȳ (ctx) is empty so ctx is invalid.

Minus-Product: Analogously, for each n ∈ N we create one artificial object on which is

classified under the terms that constitute n and this defines an auxiliary interpretation, say Y .

However from Y we will not define Ȳ (as for plus-products), but a new interpretation denoted by

Y which is defined as Y (t) = ∪{Y (t′) | t′ ≥ t}, i.e. it is like propagating the objects downwards

in the hierarchy. We reduce the problem of deciding whether an s is valid by checking whether

Y (s) is non empty. For example, Figure 5.5(a) shows the materialized taxonomy of the running

example with respect to the N , while figure 5.5(b) shows the interpretations of the terms. For

ctx = {Heraklio, SnowSki} we have Y (Heraklio) = {on3 , on4} while Y (SnowSki) = {on2 , on3},

so Y (ctx) = {on3} and ctx is invalid.

The storage overhead and the time complexity of this approach have been already presented

in chapter 3.

It is obvious that using the FDT-based method we do not need to label the taxonomies and

store the N , P using the naive method. So we can follow only one of the proposed optimizations.

105

By Location By Sports

Greece

OlympusCrete

Heraklio Lasithi

All Sports

Sea Sports Winter Sports

WindsurfingSeaSki

on1 on4on3on2 on5

Ios

on6

Y(Greece) = ø

Y(Ios) = {on1, on2}

Y(Crete) = {on3}

Y(Olympus) = {on6}

Y(Heraklio) = {on3, on4}

Y(Lasithi) = {on3, on5}

Y(SnowSki) = {on2, on3}

SnowSki Snowboard

(a) (b)

Figure 5.5: Indices for storing N parameter

The experimental results presented in section 5.3.3 specify which optimization is preferable and

under which conditions.

5.2.1.7 Related Work on Labeling Schemes

As we mentioned, a labeling algorithm allows deciding subsumption in constant time. Roughly,

three kinds of labeling algorithms have been proposed: prefix-based, interval-based and bit-

vector-based. In this section we present the prefix-based and bit-vector-based schemes, and we

discuss why they are not proper for our approach.

A prefix-based scheme directly encodes the parent of a node in a tree, as a prefix of its

label using for instance a depth-first tree traversal. The subsumption checking in prefix-based

schemes is performed by comparing two strings (labels) while the storage required for the labels

of a tree Tr is O(|Tr|) and the size of the proper node label at each level depends only on

the maximum depth of Tr. An interesting property of prefix-based labels is their lexicographic

order: the labels of nodes u in a subtree with root v are greater (smaller) than those of its left

(right) sibling subtrees. Dewey Decimal Coding (DDC) is a labeling scheme which belongs to

this category [1]. It is widely used by librarians and further investigated in [8, 15]. Figure 5.6

presents the labels that will be created in our running example according to DDC.

However, the interval-based schemes are more efficient than prefix-based as subsumption

checking is executed by comparing four integers and not Strings. Furthermore, from the storage

point of view, the interval-based approach is better as we have to store only two integers for

each t ∈ T than a String in prefix-based approach.

In bit-vector-based labeling schemes, the label of a node in a tree Tr is represented by a

106

Greece
1

Crete
1.2

Olympus
1.3

Lasithi
1.2.2

Ios
1.1

Heraklio
1.2.1

AllSports
2

SeaSki
2.1.1

WinterSports
2.2

Windsurfing
2.1.2

Snowboard
2.2.2

SeaSports
2.1

SnowSki
2.2.1

Tr
By Location

Tr
By Sports

Figure 5.6: DDC labeling algorithm over the Faceted Taxonomy

vector of |Tr| bits, a bit set to ”1” at some position uniquely identifies the node in a lattice

L and each node inherits the bits identifying its ancestors (or descendants) in a top-down (or

bottom-up) encoding. The bit-vector-based approach is not beneficial as |Tr| can be very high.

5.2.2 TLOI-based Approach

According to the proposed interaction scheme, we have to follow the TLOI-based approach when

the focus size is under a certain threshold. In this case we need to compute the zoom-in points,

to provide the exact count information and to compute the answer of the focus. It is obvious that

we need to follow an object-based method. In this section we present an object-based method

named TLOI-based (Term Labeling by Objects Ids) which supports efficient storage indices

for minimizing the required computational costs and the storage overhead. In more detail, we

propose indices for storing the taxonomies and the interpretations of a cartesian materialized

faceted taxonomy. Moreover, we present algorithms for computing the zoom-in points.

5.2.2.1 Indices for Storing the Interpretations

In section 3.2, we concluded that to provide the exact count information the maximal storage

policy is preferable. Furthermore, according to the complexities of zoom-in points computation,

in case of very large collections where A is also very big the Extension Intersection-based eval-

uation approach is more efficient. Subsequently, the most efficient and effective storage policy

we have to follow is (Ī ,≤r), where ∀t ∈ T we store the Ī(t) and the N(t), B(t). Moreover, we

determined that the usage of indices for storing the Ī and A, like hash-based indices, minimizes

the computational costs. However, the storage overhead for storing the ∀t ∈ T the Ī(t) is

|Obj| ∗CM ∗ dM,avg. Consequently, we need an efficient index for storing the Ī(t),∀t ∈ T which

will reduce both computational costs and storage requirements.

As we described in Section 5.2, when the user (through a sequence of clicks) reaches a focus

107

whose upper bound object cardinality is below thres, then zoom-in points with exact count

information should be computed. However, the computation of Ī(ctx) can be very expensive

at some occasions, despite the fact that UB(ctx) ≤ thres, as the computation is based on the

intersections between the Ī(ctxi), ctxi ∈ ctx. For instance, this can happen in the cases of the

form: assume that thres = 106, and consider a ctx such that |ctx| = 5 where four of these terms

have |Ī(.)| = 108, and one has 106. This overhead can be avoided by using hash-based indices

for storing the interpretations. However, returning to the object-based approaches, recall that

if |Obj| is high then Ī can also be very high incurring a big storage overhead.

To tackle this problem we introduce a novel approach (index), that we call TLOI, which

can significantly reduce the required time and storage overhead for cartesian and hierarchically

organized MFTs7. TLOI is constructed as follows: we use the Depth-first search (DFS) algorithm

for traversing the hierarchy of a facet and the term-to-object associations8, and we give a unique

integer (id) to each object o the first time we encounter it. The ids are contiguous, so each Ī(t)

is represented as an interval defined by the min and the max object identifiers that belong to

Ī(t). We have to mention that this approach can be used only in cartesian MFTs (i.e. when

we have single classification), because in case of multiple classification an object will have more

than one ids for a facet. We do the above procedure for each facet. At the end, each object will

have k ids where k is the number of the facets.

Regarding storage, for each t ∈ T we store the interval that corresponds to the labeled

objects in Ī(t). Furthermore, we create two indices: i) ∀o ∈ Obj we store the ids of o for each

facet, and ii) for each id ∈ [1, |Obj|] we store the object which it describes for each facet. Figure

5.7(a) shows the inverted index that is created for our running example while Figure 5.7(b)

shows the objects indices.

So, the space required is 2 ∗ |Obj| ∗ k. According to 3.2.2, the storage overhead if we want

to store the Ī(t),∀t ∈ T is |Obj| ∗ dM,avg ∗ CM . In our case CM = k so from the storage point

of view it follows that:

TLOI is more space economical than plain-Ī storage, if 2 ≤ dM,avg

Consequently, in case of cartesian materialized faceted taxonomies where the facets are

hierarchically organized with dM,avg > 2, TLOI requires |Obj| ∗ (dM,avg − 2) less space. In cases

7Specifically, for MFTs where dM,avg > 2
8Specifically, for a facet Fi = (Ti,≤i) we traverse the graph defined by the following set of edges:

≤i ∪I|Ti
where I|Ti

denotes the restriction (of the domain) of I on Ti.

108

(a) (b)

Interpretations

1 2

3 1

2 3

4 5

5 4

H1

H2

H3

H4

H5

Objects

By Location By Sports

term interval term interval

Greece [1, 5] All Sports [1, 5]

Ios [1, 1] Sea Sports [1, 3]

Crete [2, 3] SeaSki [1, 1]

Heraklio [2, 2] Windsurfing [2, 3]

Lasithi [3, 3] Winter Sports [4, 5]

Olympus [4, 5] SnowSki [4, 4]

Snowboard [5, 5]

(c)

H1 H2

H3 H1

H2 H3

H4 H5

H5 H4

1

2

3

4

5

Figure 5.7: Store Indices

that dM,avg < 2, the overhead of storing the Ī(t),∀t ∈ T will not be big so we can follow the

plain-Ī storage. Furthermore, an other major advantage of TLOI is that the storage overhead

is independent to the depth of the hierarchies.

5.2.2.2 Indices for storing the taxonomies

According to section 3.2.3, in case we follow a maximal storage policy, we only need to store

∀t ∈ T the B(t), N(t). So ∀t ∈ T , we will store as sets the B(t), N(t) and its interval which

represents the Ī(t).

In case that ∀t ∈ T , I(t) ̸= ∅, these intervals allow us to check term subsumption in constant

time, i.e. by checking if the interval of a term covers the interval of the other. For example if

tinterval = [2, 4] and t′interval = [2, 10] then it follows that t < t′. This means that if TLOI is

adopted and ∀t ∈ T , I(t) ̸= ∅ then we do not have to label taxonomies (remember CTCA-based

labeling optimization). We have to stress that TLOI is different from an ”object-extended”

application of the Agrawal’s labeling, i.e. from the labeling obtained by considering each object

o as ”narrower term” of the terms in D(o). This is evident in the example of Figure 5.8 which

shows the derived labels by each approach. Notice that Agrawal’s labels encode information

of both terms and objects, while TLOI only of objects. For the problem at hand, TLOI is

more appropriate because although it has the same complexity as Agrawal’s labels (two integer

comparisons), the label of a term t allows us to compute the |Ī(t)| in constant time as it is the

size of its interval, e.g if tinterval = [ostart, oend] then |Ī(t)| = oend − ostart + 1.

109

By Location
Greece

OlympusCrete

Heraklio Lasithi

H1 H4H3H2 H5

Ios

95H5

84H4

32H3

53H2

11H1

[5,6][3,3]Lasithi

[3,4][2,2]Heraklio

[8,10][4,5]Olympus

[3,7][2,3]Crete

[1,2][1,1]Ios

[1,11][1,5]Greece

Agrawal on ObjOur Approach

95H5

84H4

32H3

53H2

11H1

[5,6][3,3]Lasithi

[3,4][2,2]Heraklio

[8,10][4,5]Olympus

[3,7][2,3]Crete

[1,2][1,1]Ios

[1,11][1,5]Greece

Agrawal on ObjOur Approach

Figure 5.8: TLOI vs Object-extended Agrawal’s Labeling

5.2.2.3 Zoom-in points Computation

Let us now see how we can compute Ī(ctx) in case a TLOI is available. To compute
∩
{Ī(ctxi) |

ctxi ∈ ctx} we can start from the term tmin ∈ ctx with the minimum in size interval invlmin =

minki=1(|Ī(ctxi)|). For each id ∈ invlmin we get the object o which the id belongs. Then, we get

the set of identifiers (ids) of o for the rest facets. What we have to check is that each of these

identifies belongs to the interval of the corresponding term of ctx. For example, let us assume

that ctx = {Crete, SeaSports}. At first we get the intervals of these two terms, i.e. [2, 3], [1, 3].

The term Crete has the minimum in size interval, so invlmin = [2, 3]. Then, we get the object

H3 as it has the id 2 for the facet By Location. Next, we get its id for the facet By Sports, it is

3, and we check if it belongs to the interval [1, 3]. Yes, so H3 ∈ Ī(ctx). We do the same for id

2, and finally, the intersection is {H2, H3}.

The time complexity for computing Ī(ctx) will be the cost of getting the intervals of all

terms t ∈ ctx and the cost for computing their intersection using the method described earlier.

The cost for getting the intervals is O(k) as each term keeps its interval and the maximum

number of the terms that ctx can have is k. The cost for computing the intersection will be

O(invlmin ∗ (k − 1)) as ∀id ∈ invlmin we have to check the other k − 1 ids and the indices

can be hash-based. So, the overall time complexity will be O(k + invlmin ∗ (k − 1)). As the

cost depends on the invlmin, this approach is not efficient in the following cases: (i) for foci

whose terms belong to the highest levels of the hierarchy, as the invlmin will be large, and (ii)

the cardinalities of the interpretations of all terms ctxi ∈ ctx are the same. However, as FDT

is an information thinning technique, and the TLOI-based approach is followed under specific

situations e.g. under a threshold, these cases do not appear frequently.

Finally, to compute the zoom-in points, we can follow exactly the algorithms presented in

110

chapter 3. The advantage of TLOI is that minimizes the costs of computing the intersections.

5.2.2.4 TLOI Advantages

Until this point, we saw how TLOI can be used for computing efficiently the zoom-in points.

However, by using a simple hash-based index for storing the interpretations, we can have the

same efficiency. Both indices can check if an object o ∈ Ī(t) where t ∈ T , in constant time. In

case of a hash-based index, it is the cost of a look-up operation, while in case of TLOI , it is the

cost on an interval enclosure check. Bellow, we summarize the advantages of TLOI that make

it more efficient:

• TLOI is more space economical. As we prove in section 5.2.2.1, TLOI is dM,avg − 2 times

more space economical than plain-Ī storage in cartesian materialized faceted taxonomies.

• TLOI can speedup up and other on-line tasks. We get the |Ī(t)| for a term t ∈ T in

constant time. We need the count information for each term for two reasons: (i) computing

approximately the focus size and (ii) finding which ctxi ∈ ctx has the minimum in size

|Ī(ctxi)|.

• In case that ∀t ∈ T , I(t) ̸= ∅, TLOI allows us to check term subsumption in constant

time.

Some other details regarding TLOI follow. If an object is not classified with respect to a

facet, then this object will not get an id for that facet. If for a term t ∈ Ti the set Ī(t) = ∅ then

tinterval = [−1,−1] and we do not take it into consideration.

Finally, we have to mention that TLOI approach can be used also for storing the P param-

eters in CTCA− based approach.

5.2.2.5 TLOI on DAG and Multiple Classification

TLOI can also be used on DAG-structured taxonomies or on materialized faceted taxonomies

with multiple classification of objects. In this section we examine the TLOI behavior on these

particular cases.

For DAG-structured taxonomies we can follow the Agrawal’s approach on labeling graphs

with the only difference that the optimal spanning tree ST will be selected with respect to

the number of the objects that will be labeled. Then for each node of ST , the interval of

111

A

EDC

B

F

Node ST Propagation Compression

A [1, 5] [1, 1], [2, 2] [1, 5]

B [1, 4]

C [1, 1] [2, 2] [1, 2]

D [2, 3]

E [4, 4] [2, 2] [2, 2], [4, 4]

F [2, 2]

1 2 3 4 5

Figure 5.9: TLOI on DAG

source node is propagated to the target node and recursively up to its ancestors. After the

step of propagation, a node may contain more than one interval so we need a step of intervals’

compression. In case the intervals are adjacent, they can be merged. If an interval is subsumed

by another, it can be pruned. Finally, after the execution of the two above steps, the node gets

the remainder intervals. Figure 5.9 depicts an example of TLOI on a DAG. All the arrows which

connect the DAG’s nodes belong to DAG while only the non-dashed arrows belong to ST . The

table shows the nodes’ labels according to the spanning tree (column ST), the third column

shows the labels at the propagation step and the last shows the compression step.

As Agrawal’s labeling scheme on DAGs, the total storage requirement depends on the nature

of the graph. In the worst case, the storage required for the compressed closure can be O(|T |2),

as in the case of a bipartite graph.

As we have already mentioned, in case of multiple classification, TLOI is not efficient. This

is due to the facet that an object will have more than one ids for a facet. Figure 5.10(a) shows a

tree-structured facet with three indexed objects {o1, o2, o3} where each object is classified under

two terms of the facet. Figure 5.10(b) presents the objects’ ids according to the DFS, and figure

5.10(c) shows the terms’ labels.

5.2.3 Changes over Materialized Faceted Taxonomy

Taxonomy or objects’ indexing updates may turn a CTCA expression e or TLOI indices invalid.

In this section we examine how we can revise e and TLOI indices after a taxonomy or an object

update.

112

A

C

ED

B
Node Label

A [1, 6]

B [1, 4]

C [5, 6]

D [1, 1]

E [2, 4]o1 o2 o3

D E C

o1 1 2

o2 3 5

o3 4 6

(a) (b) (c)

Figure 5.10: TLOI with multiple classification

5.2.3.1 CTCA Updates

CTCA allows the specification of the valid and invalid compound terms of a materialized faceted

taxonomy according to the current state of affairs. Obviously, if the state of affairs changes,

currently valid terms may become invalid and vice-versa. [52] shows how we can revise e after a

taxonomy update9 and reach a valid expression e′ whose semantics (compound terms defined)

is as close as possible to the semantics of the original expression e before the update.

Furthermore, as a CTCA optimization uses the Agrawal’s labeling scheme, we need to present

how the labels which are assigned to each term will change. According to [4], to support

incremental updates without node relabeling one can leave gaps between the intervals generated

during the bottom-up tree traversal using some constant factor c in the postorder numbering,

i.e., the label of a node u is [index(u), c× post(u)].

In case of objects’ indexing updates, it is obvious that the expression e and its semantics

may need to be changed. To support the feed(A) operation also requires revising the expression

e and this is a topic that is worth further research.

5.2.3.2 TLOI Updates

Lets examine first the case of taxonomy update i.e term deletion, addition. In case of a term t

deletion, we need to determine if we also want to delete the objects which are directly classified

under t i.e., I(t) 10. In case we do not want to delete the I(t) and we assume that they will be

classified under t’s parents, the deletion is trivial as Ī(t′) ⊇ Ī(t) where t′ ∈ B(t). On the other

9The update operations are: term renaming, term deletion, term addition, subsumption relationship
deletion, subsumption link addition, leaf addition and intermediate term addition.

10We assume that we want to delete only t and not N∗(t)

113

hand, in case we want to delete the I(t), we must delete t and then follow the object deletion

approach which will be presented below.

In case of term addition, we add t in a location specified by the user and then t’s label will

be the union of its children intervals.

Furthermore, we have objects indexing updates i.e., feed(A) operations. In case we want

to delete an object o ∈ Obj, we simply delete o from Obj and we decrease the ids of all objects

where their ids are greater than o id. Let Objgrt denotes these objects i.e., Objgrt(o) = {ob ∈

Obj | ob.id > o.id}. Subsequently, we relabel only the terms t′ ∈ D̄(Objgrt(o) ∪ {o}). It is

obvious that the greater the id of o is, the less expensive the cost of deletion is going to be. As

we use DFS algorithm, the best case of object deletion is the deletion of objects which belong

to the extension of terms at the higher levels of hierarchy.

In case of object addition, we can follow two possible approaches. Let us assume that we

want to add the object o where D(o) = {t}. According to the first approach, o gets the greatest

id and we add to t an additional interval with the id of o. For example, if |Obj| = 100 the id of

o will be 101 and the interval [101, 101] will be added to the label of t. However, this approach

is not so efficient as a term will have more than one intervals. The second approach avoids this

shortcoming. Let us assume that the label of t is [90, 95]. Then, o will get the id 96 and the ids

of the objects ob ∈ Objgrt(o) will be increased. Consequently, the label of t will be [90, 96] and

we have to relabel the the terms t′ ∈ D̄(Objgrt(o)∪{o}). The cost of addition in this case is the

same with the cost of deletion.

5.3 Evaluation

Section 5.3.1 compares analytically [5], [38] and TLOI-based approaches with respect to the

storage overhead. Section 5.3.2 reports experimental results regarding the computation of Ī

using the TLOI-based approach. Finally, section 5.3.3 presents experimental results for the

CTCA-based approach.

All algorithms are implemented in Java and experiments are performed on an ordinary PC

(AMD Opteron 2,4GHz with 8GB RAM).

114

5.3.1 Analytical Evaluation

In this section we compare analytically from the storage point of view, the indices proposed in

TLOI-based approach with the other object-based indices presented in section 3.2.2 ([38] and

[5]).

Suppose that we have a cartesian materialized faceted taxonomy with similar characteristics

as those presented in the global-scale exploration scenario (see section 5.1). In more detail, we

have 5 facets, each one is hierarchically organized as a balanced and complete tree with degree

16 and depth 4. So, |T | ≈ 3.5 ∗ 105 . Furthermore, we suppose that |Obj| = 1010 where we

assume that the majority of objects are classified under the leafs of the trees, so dM,avg = 3.8.

This is a reasonable assumption as most objects are described by the most specific terms. In

addition, we assume that the size of an integer (Int) is 4 bytes.

If we follow the approach proposed in [5], we have to store the TaxIndex and the inverted

list that keeps the Ī(t) for each t ∈ T (see Figure 3.4). In this scenario we will not store the

list which contains the objects’s descriptions. TaxIndex keeps 2 integers for each t ∈ T , so the

required storage is |T | ∗ 2 ∗ Int. For storing Ī, we need |Obj| ∗ dM,avg ∗ CM ∗ Int bytes. In our

case CM = k where k is the number of the facets.

If we follow the approach proposed in [38] we need 4 indices for storing the taxonomy (SF,

FS, Descendants and Ancestors), while the interpretations will be stored in bitmaps and inverted

lists. In more detail, for SF index we need

(

d∑
i=1

(bi)) ∗ Int ∗ k

bytes, where d is the depth and b is the degree of the tree. For FS we need

(

d−1∑
i=0

(bi)) ∗ b ∗ Int ∗ k

bytes. For Descendants index we need |T |∗AD∗ Int bytes, where AD is the average number

of descendants of a term in the tree i.e. AD =
∑d−1

i=0 (
∑d

k=i+1(b
k))∑d

i=0(b
i)

. On the other hand, storage

overhead of Ancestors index is |T | ∗ AA ∗ Int where AA is the average number of ancestors of

a term of the tree i.e AA =
∑d

i=1(b
i∗i)∑d

i=0(b
i)

. For the reason that the facets’ hierarchies are balanced

and complete trees AA = AD.

Furthermore, the storage requirements of a bitmap-based interpretation according the author

is |T | ∗ |Obj|/8, while an inverted list-based will require |Obj| ∗ dM,avg ∗CM ∗ Int. Suppose that

115

we will use a bitmap for storing the interpretations of the terms at the first level of the hierarchy

and inverted lists for the rest. We will have (16 ∗ |Obj|/8) + |Obj| ∗ (dM,avg − 1) ∗ CM ∗ Int.

If we follow the TLOI-based approach, the storage overhead will be 2 ∗ |Obj| ∗ k ∗ Int for

storing the interpretations. For storing the hierarchies, we need |T | ∗ 2 ∗ Int for the intervals

and the same storage overhead of [38] for storing the SF, FS indices, as ∀t ∈ T we store the

B(t), N(t).

Table 5.3 shows the sizes. As we can see, our approach is more space economical. In case

that dM,avg will be increased, then the difference between storage overheads will be increased

too. This is for the reason that our approach is independent to the structure of the facets’

hierarchies.

Storage [38] [5] our

T 13 MB 2.6 MB 5.26 MB

Interpretations 0.54 TB 0.70 TB 0.37 TB

Table 5.3: Comparison table according Global Index Scenario

5.3.2 Computation of Ī: Time Perspective

In this section we compare two different Ī evaluation approaches with respect to the time

required for computing the Ī(ctx). In more detail, we compare the TLOI algorithm with the

Extension Interpretation-based evaluation approach, following the maximal storage policy. In

the experiments the Ī(t),∀t ∈ T was stored in inverted lists and they were not stored in hash-

based indices. We did not provide experiments on bit-map indices but we discuss times that

have been presented in [39] and we compare them with the inverted lists approach.

We did not make experiments in a billion object information base because, apart from not

having such an information base and according to our approach the computation of zoom points

is based on the extensions only if the focus size is under a threshold. In particular, we created a

faceted taxonomy of 10 hierarchically organized facets and an information base of 106 objects.

The |Ī(ht)| of a term ht at the highest level of hierarchy (root element) was 106 objects, for a

term mt at the middle levels was |Ī(mt)| = 1, 25 ∗ 105 objects, while for a low level term lt was

|Ī(lt)| = 104.

We computed the Ī for 6 different types of ctx:

i) all terms were ht (HT),

116

0

500

1000

1500

2000

2500

3000

I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I

5 6 7 8 9 10

0
20
40
60
80

100
120
140
160
180

I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I

5 6 7 8 9 10

HT MT

0

2

4
6

8
10

12
14

I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I

5 6 7 8 9 10

LT

0
200
400
600
800

1000
1200
1400
1600
1800
2000

I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I

5 6 7 8 9 10

HT & LT

0

20

40

60

80

100

120

I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I

5 6 7 8 9 10

MT & LT

0
200
400
600
800

1000
1200
1400
1600
1800
2000

I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I I

T
L

O
I

5 6 7 8 9 10

HT & MT

Figure 5.11: Ī(ctx) Measures

ii) all terms were mt (MT),

iii) all terms were lt (LT),

iv) one term was lt and the rest were ht (HT <),

v) one term was lt and the rest were mt (MT & LT), and

vi) one term was mt and the rest ht (HT & MT).

Each of the above foci, was executed for 5,6,...,10 facets. Figure 5.11 shows the execution

times in milliseconds where each execution time is the average of 103 different executions.

As we can see from Figure 5.11, the times are proportional to the number of facets because

as |ctx| increases, the number of intersections increases as well.

Regarding the comparison TLOI vs classical Extension Interpretation-based evaluation ap-

proach, we can see that if all ctxi have the same |Ī| or belong to the same hierarchical level,

Extension Interpretation-based is faster than TLOI approach, e.g in cases (HT), (MT) and (LT).

117

For example, in (MT) case with 5 facets, Ī method takes 92ms, while TLOI takes 141ms. How-

ever, this result was expected as we have already discussed in section 5.2.2. On the other hand,

in case we have a ctx with terms in different hierarchical levels e.g. (HT & LT), (MT & LT) and

(HT & MT), TLOI is much faster. For example, in case we have 10 facets and all terms are in

the highest level except one which is in the lowest, using Ī approach we need 1770 ms while with

TLOI we need only 32 ms. This means that TLOI is around two orders of magnitude faster.

This is an expected result as TLOI checks the ids of 104 objects while interpretation-based

approach makes intersections between sets of 106 integers.

Sacco in [39], presented several experiments for determining which implementation between

inverted lists and bitmap is more efficient. His experiments showed that the bitmap-based

approach clearly outperforms the inverted lists-based. In more detail, he showed that in a

corpus of 8∗105 objects which are classified under 10 hierarchically organized facets, the bitmap-

based implementation is about 35% faster than the inverted lists-based, while when the size of

collection decreased also decreased the difference between the two implementations. In case that

the size of the collection is less than 105, the inverted file-based implementation is more efficient.

However, this approach can be followed only for a focus ctx where all terms t ∈ ctx also belong

to the high levels of the taxonomy 11. In this case, as is barely the focus size be under the thres,

we follow the CTCA-based approach.

5.3.3 CTCA Validity Checking

In this section we present experimental results on CTCA-based approach. In more detail, sec-

tion 5.3.3.1 estimates the number of P, N parameters in a terra-sized collection. Section 5.3.3.2

presents execution times of isValid algorithm without the usage of any optimization. Section

5.3.3.3 presents experimental results on isValid algorithm by using the labeling taxonomies op-

timization presented in section 5.2.1.6 and compares it with the FDT-based CTCA’s parameters

indexing optimization presented in the same section.

5.3.3.1 Estimation of CTCA Parameters Plurality

A general discussion about the size of the parameters is given in [51]. In our case, we have

to take into consideration the organization of the facets, e.g. whether they are hierarchically

11According to [38], in bitmap are stored only the interpretations of the high level terms.

118

organized or flat, and the size of the collection i.e. |Obj|. We will elaborate on cases where the

facets are hierarchically organized, as in our examples and experiments there is no any flat facet,

and we have a terra-sized collection of data.

There are three main cases according to the size of hierarchies (wrt the |T |):

Case 1 (Small Taxonomies). As the number of all possible compound terms is not big and

the collection is very large, we need a minus-product operation with few n ∈ N parameters

to describe the V c(M), where V c(M) = {T1 ×× Tk} \ V (M).

Case 2 (Very Large Taxonomies). Here the number of all possible compound terms is much

bigger than the distinct descriptions of the collection’s objects. Therefore a plus product

having a parameter P where P = min≼(V (M)), is beneficial.

Case 3 (Medium-sized Taxonomies). This is a case that falls between the above two ex-

tremes. In such cases it is beneficial to use a plus-product operation if

|min≼(V (M))| < |max≼(V
c(M))|, or a minus-product otherwise.

If e has several plus and minus product operations, the range-restricted closed world as-

sumptions of these operations make hard the estimation of the |P ∪ N |. The exact estimation

of CTCA parameters’ plurality is an issue which worths further research.

5.3.3.2 isValid Experiments Without Optimizations

In this section, we present experiments for cases that fall between Case 2, Case 3. We do not use

any optimization like these presented in sections 5.2.1.6. We created three types of expressions

with the following formats:

e1: ⊕P (e1, ..., ek),

e2: ⊖N (e1, ..., ek), and

e3: ⊖N (⊕P (⊖N (⊕P (e1, e2), e3, ..., ek).

For each expression we created different P and N sets with the following cardinalities: 103,

104 and 105. For the expressions of the e3 format, the number of parameters for each one

subexpression was |P ∪ N |/(k − 1).

As we did not apply any labeling scheme, we had to consider the characteristics of facets’

organization. We created 4 different faceted taxonomies each one consisted of 5 facets. In all

faceted taxonomies the facets were organized as a balanced and complete tree with depth = 5.

The only difference between faceted taxonomies was the degree of the facets’ trees. In the first

one it was 3, for the second it was 4, 6 for the third, and 10 for the last. Additionally, ∀t ∈ T

119

we stored the N(t) and B(t).

The compound terms of each parameter had average term depth=3 and each P , N was

redundancy free as P = min≼(P) and N = max≼(N). Table 5.4 presents the execution times,

where each one is in milliseconds and is the average of 104 different executions.

Degree Num. of Params e1 e2 e3

3
103 14 15 8
104 144 156 87
105 1413 1566 861

4
103 40 41 22
104 399 406 239
105 3979 4100 2367

6
103 301 328 206
104 3132 3406 1975
105 32209 33804 19741

10
103 12357 12345 8848
104 128446 133989 82621
105 1292457 1350079 803020

Table 5.4: isV alid execution times without optimizations

The results, proves that the usage of isV alid algorithm without any optimization is pro-

hibitive.

5.3.3.3 isValid Experiments With Optimizations

In this section we do not present experimental results on the FDT-based CTCA’s parameters

indexing optimization as the execution times presented in section 5.3.2 covers this case. In case

of plus product operations, we can see that execution times using the TLOI approach, while

in case of minus product operation the times of Ī. We cannot use the TLOI method in minus

product operations, as for storing the Y , each term t ∈ T will have several labels.

Below, we present experiments on the labeled taxonomies and naive method of indexing

optimization approach, and finally we compare the two optimizations.

Firstly, we defined a faceted taxonomy of 10 facets each having the form of a balanced and

complete tree with depth = 5 and degree = 6. The taxonomies were labeled using the Agrawal’s

labeling scheme. We believe that 106 parameters are enough for a terra-sized collection with

the above characteristics. We executed the isV alid algorithm for foci with |ctx| = 5, 6, ..., 10.

We used the same format expressions as in the experiment presented above (section 5.3.3.2).

120

0

200

400

600

800

1000

1200

1400

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

5 6 7 8 9 10

Facets

E
xe

c.
 T

im
e

(m
s)

e1 e2 e3

104 104104104104104105 105 105 105 105 105106 106 106 106 106 106

Figure 5.12: isV alid execution times with terms labeling optimization

Figure 5.12 shows the execution times where axis x contains the cardinalities of parameters e.g.

104, 105, 106 and the number of facets.

We can see that in general, expressions of the e2 format take more time to be evaluated as

isV alid has one more operation to execute (line 18 of isV alid algorithm) than e1. Additionally,

for expressions of e1, e2 format, the execution time of isV alid algorithm was proportional to

the number of the facets. This is reasonable as we have to check one more interval for each

parameter.

As regards the expressions of e3 format, it is easy to see that the evaluation is faster. This

happens because we have subexpressions, so we firstly search the parameters of an expression

and if there is no a suitable parameter then we look for a suitable to the parameters of the

subexpressions. In cases of 6, 8 and 10 facets the time is less than having 5, 7, or 9 as the

expressions start with a plus-product operation while in the rests start with a minus. Further-

more, the execution time of isV alid is decreased while the number of the facets is increased.

This is a reasonable result as the size of P or N of a subexpression is degreased as the size of

parameters for each subexpression was |P ∪ N |/(k − 1).

Optimizations Comparison

Firstly, the naive method is more space economical than using FDT-based as it does not need

any special index. But let us assume that we have not any space limitation.

According to the Figure 5.11 and Figure 5.12, a hybrid approach for checking if ctx is valid

seems to be better. This hybrid approach has to take into consideration the format of the

expression. In case of e1 and e2 formats, it has to take into account the size of each Ȳ (ctxi) and

121

Y (ctxi) respectively. Then, according to the time that FDT-based approach needs to compute

such interpretations it will decide the method to follow. For example, in case we have 10 facets,

all terms ctxi ∈ ctx have the same |Ī| = 106, and e has the e1 format, the FDT-based needs

2574ms while naive method needs only 1300ms. On the other hand, in case we have the same

characteristics but all terms ctxi ∈ ctx have |Ī| = 106 except one which has 104, FDT-based

approach will need only 32ms while naive method will also need 1300ms. It is clear that in

first case we will use the naive method while in second case the FDT-based. Here we have to

mention that in case of e1 it will use the TLOI method, while in case of e2 only the Extension

Interpretation-based evaluation approach. In case of e3, we will follow the above approaches

recursively.

It is obvious that using the above hybrid approach and according to the experimental eval-

uation, the proposed approaches are efficient enough for such magnitudes.

122

Chapter 6

Conclusion and Future Work

This thesis introduced a framework for facet-based exploration services and described in detail

the engineering aspects of supporting such services. The contribution of this thesis lies in:

• studding analytically a number of possible architectures that one can follow to develop

a faceted exploration application with respect to the available resources i.e RAM, and

the size of the collection. This study included the description of several algorithms (for

enabling such services) and their complexity, the description of several architectures, the

identification of particular query plans (for achieving efficiency), the description of their

applicability and finally the presentation of comparative experimental results over large

data sets.

• implementing a Main Memory API called fleXplorer, written in Java which provides the

core functionality for implementing the faceted exploration model. fleXplorer can be

exploited in various ways. For instance, a human user (developer) could use this frame-

work to define the desired facets and taxonomies or for importing existing taxonomies.

Additionally, a user could use it for providing faceted access to a corpus of metadata

records or to a structured source. Moreover, it could be used by tools that mine facets

and terms, e.g. [11, 13, 25], or tools that create automatically the faceted metadata struc-

tures, e.g [47]. In general, we could say that such a framework can serve as the middleware

between the presentation layer and the underlying information sources.

• developing various applications e.g. in Mitos web search engine and European Space

Agency web portal which use the API,

123

• developing and presenting the dynamic coupling of results clustering with dynamic faceted

taxonomies resulting to an effective, flexible and efficient exploration experience and

• making an investigation on various techniques that could be used for advancing the scal-

ability of such services.

Directions that are worth further research include:

• Regarding Terra-sized collections

The proposed indices for storing CTCA’s parameter do not support feed(A) operations.

So, the user has not the ability of exploration on a specific set of objects. We plan to

elaborate on CTCA-based approach, and propose indices and algorithms for supporting

this type of operation.

Furthermore, we plan to elaborate on CTCA parameters plurality estimation. We need

a formula which will take as input a materialized faceted taxonomy and will export a

minimum and maximum number of CTCA parameters.

• Regarding FDT general architectures

Elaborating on DB-MEM architecture. This will be a hybrid approach. Data will be

stored in a DB, however some of them will be kept in main memory. For instance, the

hierarchically organized attributes values could be kept in Main Memory while the rest in

a DBMS. The benefits of this approach is that the hierarchies are loaded once, and the

SQL queries that are sent to the DBMS are more simple and faster to execute.

Moreover, we plan to compare experimentally all algorithms presented in section 3.2.3.1

for both (MEM) and (DB) architectures.

• Regarding facets for web searching

Provide to users the ability to define their own taxonomy. In this case any pair (n, q)

where n is a user-provided name and q is any Mitos-query could be considered as a term.

124

Bibliography

[1] Online Computer Library Center. Dewey decimal classification. Available at

www.oclc.org/dewey.

[2] “XFML: eXchangeable Faceted Metadata Language”. http://www.xfml.org.

[3] Special issue on Supporting Exploratory Search. Communications of the ACM, 49(4), April

2006.

[4] R. Agrawal, A. Borgida, and HV Jagadish. Efficient management of transitive relationships

in large data and knowledge bases. ACM SIGMOD Record, 18(2):253–262, 1989.

[5] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-Koifman,

D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev. Beyond basic faceted search. In

WSDM ’08, pages 33–44, 2008.

[6] K. Chakrabarti, S. Chaudhuri, and S. Hwang. “Automatic Categorization of Query Re-

sults”. Proceedings of the 2004 ACM SIGMOD International Conference on Management

of Data, pages 755–766, 2004.

[7] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM

Sigmod Record, 26(1):65–74, 1997.

[8] V. Christophides, G. Karvounarakis, D. Plexousakis, M. Scholl, and S. Tourtounis. Opti-

mizing taxonomic semantic web queries using labeling schemes. Web Semantics: Science,

Services and Agents on the World Wide Web, 1(2):207–228, 2004.

[9] D.H. Cunningham, D.D. Maynard, D.K. Bontcheva, and M.V. Tablan. GATE: A framework

and graphical development environment for robust NLP tools and applications. 2002.

125

[10] D.R. Cutting, D. Karger, J.O. Pedersen, and J.W. Tukey. Scatter/Gather: A cluster-based

approach to browsing large document collections. In Procs of the 15th Annual Intern. ACM

Conf. on Research and Development in Information Retrieval, (SIGIR’92), pages 318–329,

Copenhagen, Denmark, June 1992.

[11] W. Dakka, R. Dayal, and P.G. Ipeirotis. “Automatic Discovery of Useful Facet Terms”.

SIGIR Faceted Search Workshop, Aug. 2006.

[12] W. Dakka and P.G. Ipeirotis. Automatic extraction of useful facet hierarchies from text

databases. In Procs of the 24th Intern. Conf. on Data Engineering, (ICDE’08), pages

466–475, Cancún, México, April 2008.

[13] Wisam Dakka, Panagiotis G. Ipeirotis, and Kenneth R. Wood. “Automatic Construction

of Multifaceted Browsing Interfaces”. In Procs of the 14th ACM CIKM ’05, pages 768–775,

New York, NY, USA, Nov. 2005.

[14] Sebastien Ferre and Olivier Ridoux. Logical information systems: from taxonomies to

logics. In Procs of FIND’2007 (at DEXA ’07), pages 212–216, Regensburg, Germany, 3-7

Sept. 2007.

[15] H.B. Frej, P. Rigaux, and N. Spyratos. User notification in taxonomy based digital libraries.

In Intl. Symposium on Design of Communication, 2006.

[16] Bernhard Ganter and Rudolf Wille. “Formal Concept Analysis: Mathematical Founda-

tions”. Springer-Verlag, Heidelberg, 1999.

[17] F. Giunchiglia, B. Dutta, and V. Maltese. “Faceted Lightweight Ontologies”. Technical

Report DISI-09-022, Univerity Of Trento - Dipartimento Di Ingegneria E Scienza Dell’

Informazione, April 2009.

[18] R.G. Gordon, B.F. Grimes, and Summer Institute of Linguistics. Ethnologue: Languages

of the world. SIL International Dallas, TX, 2005.

[19] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In Interna-

tional World Wide Web Conference, pages 902–903. ACM New York, NY, USA, 2005.

126

[20] M.A. Hearst and J.O. Pedersen. Reexamining the cluster hypothesis: Scatter/Gather on

retrieval results. In Procs of the 19th Annual Intern. ACM Conf. on Research and Devel-

opment in Information Retrieval, (SIGIR’96), pages 76–84, Zurich, Switzerland, August

1996.

[21] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. “/facet: A Browser for

Heterogeneous Semantic Web Repositories”. In Procs of ISWC ’06, pages 272–285, Athens,

GA, USA, Nov. 2006.

[22] Eero Hyvönen, Eetu Mäkelä, Mirva Salminen, Arttu Valo, Kim Viljanen, Samppa Saarela,

Miikka Junnila, and Suvi Kettula. “MUSEUMFINLAND - Finnish Museums on the Se-

mantic Web”. Journal of Web Semantics, 3(2-3):224–241, 2005.

[23] Eero Hyvonen, Eetu Mdkeld, Mirva Salminen, Arttu Valo, Kim Viljanen, Samppa Saarela,

Miikka Junnila, and Suvi Kettula. “MuseumFinland – Finnish Museums on the Semantic

Web”. Journal of Web Semantics, 3(2):25, 2005.

[24] Amy K. Karlson, George G. Robertson, Daniel C. Robbins, Mary P. Czerwinski, and

Greg R. Smith. “FaThumb: a Facet-Based Interface for Mobile Search.”. In Procs of

the Conference on Human Factors in computing systems, CHI’06, pages 711–720, New

York, NY, USA, Apr. 2006.

[25] C. Kohlschütter, P.A. Chirita, and W. Nejdl. Using Link Analysis to Identify Aspects in

Faceted Web Search. In SIGIR’2006 Faceted Search Workshop, 2006.

[26] B. Kules, M. Wilson, M. Schraefel, and B. Shneiderman. From keyword search to explo-

ration: How result visualization aids discovery on the web. Human-Computer Interaction

Lab Technical Report HCIL-2008-06, University of Maryland, pages 2008–06, 2008.

[27] E. Makela, K. Viljanen, P. Lindgren, M. Laukkanen, and E. Hyvonen. Semantic yellow

page service discovery: The veturi portal. In poster paper at ISWC ’05, Nov. 2005.

[28] M. T. Maria Teresa Pazienza, editor. Information Extraction: Towards Scalable, Adaptable

Systems, volume 1714 of Lecture Notes in Computer Science. Springer, 1999.

[29] Eetu Mdkeld, Eero Hyvfnen, and Samppa Saarela. “Ontogator - A Semantic View-Based

Search Engine Service for Web Applications.”. In Procs of ISWC ’06, pages 847–860,

Athens, GA, USA, Nov. 2006.

127

[30] U. Y. Nahm and R. J. Mooney. Text mining with information extraction. In Procs of AAAI

2002 Spring Symposium on Mining Answers from Texts and Knowledge Bases, pages 60–67,

2002.

[31] L. Nourine and O. Raynaud. A fast incremental algorithm for building lattices. JETAI:

Journal of Experimental & Theoretical Artificial Intelligence, 14:217–227, 2002.

[32] E. Oren, R. Delbru, and S. Decker. “Extending Faceted Navigation for RDF Data”. In

Procs of ISWC ’06, pages 559–572, Athens, GA, USA, Nov. 2006.

[33] P. Papadakos, S. Kopidaki, N. Armenatzoglou, and Y. Tzitzikas. Exploratory web searching

with dynamic taxonomies and results clustering. In ECDL ’09: Proceedings of the 13th

European Conference on Digital Libraries, Corfu, Greece, September 2009. (to appear).

[34] P. Papadakos, Y. Theoharis, Y. Marketakis, N. Armenatzoglou, and Y. Tzitzikas. ”Mitos:

Design and Evaluation of a DBMS-based Web Search Engine”. In Procs of the 12th Pan-

Hellenic Conference on Informatics (PCI’08), Greece, August 2008 (to appear).

[35] P. Papadakos, G. Vasiliadis, Y. Theoharis, N. Armenatzoglou, S. Kopidaki, Y. Marke-

takis, M. Daskalakis, K. Karamaroudis, G. Linardakis, G. Makrydakis, V. Papathanasiou,

L. Sardis, P. Tsialiamanis, G. Troullinou, K. Vandikas, D. Velegrakis, and Y. Tzitzikas.

“The Anatomy of Mitos Web Search Engine”, http://arxiv.org/abs/0803.2220, Mar. 2008.

[36] P. Pellegrin and A. Preus. Aristotle’s classification of animals: biology and the conceptual

unity of the Aristotelian corpus. University of California Press, 1986.

[37] S. R. Ranganathan. “The Colon Classification”. In Susan Artandi, editor, Vol IV of the

Rutgers Series on Systems for the Intellectual Organization of Information. New Brunswick,

NJ: Graduate School of Library Science, Rutgers University, 1965.

[38] G. M. Sacco. Efficient implementation of dynamic taxonomies. Technical report, Univ. di

Torino, Dip. di Informatica, 2004.

[39] G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted Search: Theory, Practise

and Experience. Springer, 2009.

[40] G. M. Sacco, Y. Tzitzikas, S. Ferre, P. G. Ipeirotis, W. Dakka, M. Stefaner, S. Perugini,

Y. Zhang, and J. Koren. Dynamic Taxonomies and Faceted Search: Theory, Practice and

Experience. Springer, 2009. ISBN: 978-3-642-02358-3.

128

[41] Giovanni M. Sacco. “Dynamic Taxonomies: A Model for Large Information Bases”. IEEE

Transactions on Knowledge and Data Engineering, 12(3), May 2000.

[42] Giovanni Maria Sacco. “Guided Interactive Information Access for E-Citizens”. In Procs.

of the 4th Intern. Conf. on Electronic Government (EGOV-2005), pages 261–268, 2005.

[43] G.M. Sacco. Some Research Results in Dynamic Taxonomy and Faceted Search Systems.

In SIGIR’2006 Workshop on Faceted Search, 2006.

[44] M.C. Schraefel, Maria Karam, and Shengdong Zhao. “mSpace: Interaction Design for

User-Determined, Adaptable Domain Exploration in Hypermedia”. In Procs of Workshop

on Adaptive Hypermedia and Adaptive Web Based Systems, pages 217–235, Nottingham,

UK, Aug. 2003.

[45] Oliver Sinnen. Task Scheduling for Parallel Systems. Wiley-Interscience, 2007.

[46] E. Sperner. Ein satz über untermengen einer endlichen menge. Mathematische Zeitschrift,

27(1):544–548, 1928.

[47] E. Stoica, M.A. Hearst, and M. Richardson. Automating Creation of Hierarchical Faceted

Metadata Structures. In Proceedings of NAACL HLT, pages 244–251, 2007.

[48] J. Teevan, S. Dumais, and Z. Gutt. Challenges for supporting faceted search in large,

heterogeneous corpora like the Web. In HCIR, 2008.

[49] A.K. Tsakalidis. Maintaining order in a generalized linked list. Acta informatica, 21(1):101–

112, 1984.

[50] D. Tunkelang. Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and

Services, 1(1):1–80, 2009.

[51] Y. Tzitzikas. An Algebraic Method for Compressing Symbolic Data Tables. Journal of

Intelligent Data Analysis, 10(4), September 2006.

[52] Y. Tzitzikas. Evolution of faceted taxonomies and CTCA expressions. Journal of Knowledge

and Information Systems, 13(3):337–365, 2007.

[53] Y. Tzitzikas and A. Analyti. Mining the Meaningful Term Conjunctions from Materialised

Faceted Taxonomies: Algorithms and Complexity. Journal of Knowledge and Information

Systems, 9(4):430–467, May 2006.

129

[54] Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An Algebraic Approach for

Specifying Compound Terms in Faceted Taxonomies. In EJC’03, pages 67–87. IOS Press,

2004.

[55] Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An algebra for specifying

valid compound terms in faceted taxonomies. Journal of Data & Knowledge Engineering,

62(1):1–40, 2007.

[56] Y. Tzitzikas, N. Armenatzoglou, and P. Papadakos. FleXplorer: A Framework for Providing

Faceted and Dynamic Taxonomy-based Information Exploration. In Procs of FIND’2008

(at DEXA ’08), Torino, Italy, Sept. 3, 2008.

[57] Y. Tzitzikas, R. Launonen, M. Hakkarainen, P. Kohonen, T. Leppanen, E. Simpanen,

H. Tornroos, P. Uusitalo, and P. Vanska. FASTAXON: A system for FAST (and Faceted)

TAXONomy design. In ER’04, 2004.

[58] Yannis Tzitzikas. “Revising Faceted Taxonomies and CTCA Expressions”. In Proceedings

of the 4th Hellenic Conference on AI, SETN 2006, Heraklion, Greece, May 2006.

[59] K.P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted Metadata for Image Search and

Browsing. In SIGCHI ’03, pages 401–408, 2003.

[60] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration. In

Procs of the 21th Annual Intern. ACM Conf. on Research and Development in Information

Retrieval, (SIGIR’98), pages 46–54, Melbourne, Australia, August 1998.

130

Chapter 7

Appendix

7.1 Proofs

Prop. 1 (Lower Bound)

In a cartesian materialized faceted taxonomy, if t1,, tk ∈ ×k
i=1Ti, then

LB(|Ī(t1,, tk)|) = max(0,
∑k

i=1 |Ī(ti)| − (k − 1)|Obj|)

Proof:

We will prove this inductively. For m = 1 we have LB(Ī(t1)) = max(0, |Ī(t1)|) = |Ī(t1)| which

is obviously true. Let assume that Prop. 1 holds for k = m (where m > 1), i.e. suppose that it

holds:

LB(|Ī({t1,, tm}|) = max(0,
∑m

i=1 |Ī(ti)| − (m− 1)|Obj|).

What we have to prove is that it holds also for k = m+ 1, i.e. to prove that:

LB(|Ī({t1,, tm+1}|) = max(0,
∑m+1

i=1 |Ī(ti)| −m|Obj|).

Let ctx = ctx′∪{tm+1} where ctx′ = {t1,, tm}. Assuming single and mandatory classification,

we can easily see (e.g. through a Venn diagram), that |Ī(ctx)| = |Ī(ctx′) ∩ Ī(tm+1)| ≥ 1 if and

only if:

|Ī(ctx′)|+ |Ī(tm+1)| ≥ |Obj|+ 1 ⇔

|Ī(ctx′)| ≥ |Obj|+ 1− |Ī(tm+1)|

We can restate the above, and if X is a non negative integer we can write:

LB(|Ī(ctx)|) = X ⇔ |Ī(ctx′)| ≥ |Obj|+X − |Ī(tm+1)|

131

If in the above inequality we replace |Ī(ctx′)| by its lower bound (according to the inductive

hypothesis) we get:

LB(|Ī(ctx)|) = X ⇔

|Ī(ctx′)| ≥ |Obj|+X − |Ī(tm+1)| ⇔
m∑
i=1

|Ī(ti)| − (m− 1)|Obj| ≥ |Obj|+X − |Ī(tm+1)| ⇔

m+1∑
i=1

|Ī(ti)| −m|Obj| ≥ X

It follows that:

LB(|Ī(ctx)| = X ⇔ max(0,

m+1∑
i=1

|Ī(ti)| −m|Obj|) ≥ X

LB(|Ī(ctx)| = max(0,
m+1∑
i=1

|Ī(ti)| −m|Obj|)

2

scjsidcyneyxenrnwrwfdsw

132

