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Abstract

Metamaterials constitute a relatively new field which is very promising
because it exhibits properties that may not be readily found in nature. One
of promising lines of research is the study of novel characteristics of the prop-
agation of electromagnetic (EM) waves in gradient refractive index (GRIN)
lenses. In this Thesis, three geometrical optics methods as well as a wave
numerical method have been developed for the investigation of EM waves
propagation through media with certain refractive indices. Furthermore, we
study the propagation of EM waves through specific geometrical configura-
tions as well as through complex random networks of GRIN lenses, such as
Luneburg (LL) and Luneburg Hole (LH) lenses. We show that waveguides,
which are formed by LLs, offer the capability of better controlling the prop-
agation characteristics of EM waves. In addition, we show that branched
flows and extreme events can arise in such complex photonic systems.

In addition to GRIN lenses networks, we use the discrete nonlinear Schrö-
dinger equation to investigate the propagation of an EM wavepacket through
certain configurations of optical fiber lattices and investigate the effects of
randomness and nonlinearity in the diffusion exponent.

Finally, we study surface plasmon polaritons (SPPs). We investigate how
the presence of active (gain) dielectrics change the dispersion relation and
enhance the propagation length of SPPs. We show that the use of an active
dielectric with gain, which compensates for metal absorption losses, enhances
substantially the plasmon propagation.





Περίληψη

Τα μεταϋλικά αποτελούν ένα σχετικά νέο πεδίο έρευνας το οποίο είναι πολ-

λά υποσχόμενο καθώς παρουσιάζει ιδιότητες οι οποίες δεν έχουν βρεθεί έως

τώρα στη φύση. Μία από τις σημαντικε΄ς κατευθύνσεις ερευνητικής δραστηριό-

τητας στο πεδίο αυτό είναι η μελέτη καινοτόμων χαρακτηριστικών στη διάδοση

ηλεκτρομαγνητικών (ΗΜ) κυμάτων σε φακούς με μεταβαλλόμενο δείκτη διά-

θλασης. Στη Διατριβή αυτή, τρεις μέθοδοι γεωμετρικής οπτικής και μία κυμα-

τική μέθοδος έχουν αναπτυχθεί για τη διερεύνηση της διάδοσης ΗΜ κυμάτων

μέσα από υλικά συγκεκριμένων δεικτών διάθλασης. Επιπλέον μελετάται η διά-

δοση ΗΜ κυμάτων μέσα από οργανωμένες δομές καθώς και μέσα από τυχαία

δίκτυα φακών μεταβαλλόμενου δείκτη διάθλασης, όπως οι φακοί και οι οπές

Luneburg. Δείχνουμε ότι κυματοδηγοί, οι οποίοι αποτελούνται από φακούς
Luneburg, προσφέρουν τη δυνατότητα καλύτερου ελέγχου στη διάδοση των
ΗΜ κυμάτων. Επίσης δείχνουμε ότι διακλαδισμένη διάδοση καθώς και ακραία

φαινόμενα μπορούν να αναδειχθούν σε τέτοια πολύπλοκα φωτονικά δίκτυα.

Επί πρόσθετα, χρησιμοποιούμε την διακριτή μη γραμμική εξίσωση Schrödin-
ger για να διερευνήσουμε τη διάδοση ενός ΗΜ κυματοπακέτου μέσα από δομές
οπτικών ινών και μελετάμε πως επηρεάζουν η τυχαιότητα και η μη γραμμικότητα

τον εκθέτη διάχυσης.

Τέλος, μελετάμε τα επιφανειακά πλασμόνια. Διερευνούμε πως η παρουσία

ενός ενεργού διηλεκτρικού αλλάζει την σχέση διασποράς και βελτιώνει το μήκος

διάδοσης των πλασμονίων. Δείχνουμε ότι η χρήση ενός ενεργού διηλεκτρικού,

το οποίο αντισταθμίζει τις ωμικές απώλειες του μετάλλου, βελτιώνει σημαντικά

την διάδοση των πλασμονίων.
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Introduction

Since the beginning of science (or Natural Philosophy) the understanding
of the nature of light -as well as the manipulation of it- has attracted the
attention of scientists. The ancient Greeks believed that light -as well as
heat- was composed of minute atoms and they studied the motion of light
in geometrical terms. Furthermore, ancient Greeks exhibited the first suc-
cessful attempts to manipulate the light propagation; a historic example is
the use of the famous mirrors of Archimedes, which were used for burning
the enemy’s ships. Newton also believed in atomic theory and he wrote, at
the beginning of the 18th century, his classical opus “Optics”, in which he
presented his theory about the particle nature of light. In the same century,
Huygens conducted many experiments concluding that light behaves as a
wave instead of a bunch of particles. His beliefs were adopted by Young in
the 19th century who also conducted many experiments for studying light
interference and thus, proving the wave nature of light. The 19th century
was one of the most important periods for the understanding of the nature
of light; Fresnel showed that light is a transverse wave; Maxwell derived his
famous equations and showed that the light comprises a new kind of wave,
namely the Electromegnetic wave (EM). This idea was proved experimen-
tally and was applied by Hertz some years later by constructing instruments
to transmit and receive radio pulses. In the beginning of the 20th century
Einstein reintroduced the particle properties of light in explaining the photo-
electric effect, revealing that scientists had not fully understood yet the real
nature of light. The idea of the “double” nature of light, that is that light
is both wave and particle, born by the photoelectric effect, planted the seeds
for the quantum mechanics revolution resulting in a more complete under-
standing of the nature of light and offering opportunities for manipulation of
it.

Nowadays another breakthrough has been started regarding the manipu-
lation of light. A new kind of materials, called Metamaterials (MMs), which
can fabricated readily in labs, give us much more control toward light ma-
nipulation. MMs are artificial materials engineered to have properties not

xv



CHAPTER 0. INTRODUCTION

found in nature, such as negative refractive index, cloaking, perfect imaging,
flat slab imaging and gradient refractive index (GRIN) lenses. MMs are en-
gineered by means of the composition of one or several different materials on
subwavelength structures. The macroscopic properties of MMs are derived
by means of the microscopic properties of the compositional properties as
well as from certain structures of the compositional materials.

In this Thesis, GRIN metamaterials are investigated and studied. GRIN
metamaterials are formed via the spatial variation of the index of refraction
and lead to enhanced light manipulation in a variety of circumstances. These
metamaterials provide means for constructing various types of waveguides
and other optical configurations that guide and focus light in specific desired
paths. Different configurations have been tested experimentally while the
typical theoretical approach uses transformation optics (TO) methods to cast
the original inhomogeneous index problem to an equivalent one in a deformed
space. While this approach is mathematically elegant, it occasionally hides
the intuition obtained through more direct means.

For the most part of this Thesis we are dealing with GRIN lenses. At
first we develop three geometrical optics methods, which provide ray-tracing
solutions for the description of light paths. We apply the geometric optics
methods on a well known GRIN lens system, namely the Luneburg Lens (LL)
and calculate analytically one dimension (1D) and two dimensions (2D) ray
tracing solutions for the light propagation through an LL. We also develop
a numerical wave method, the Finite Difference Time Domain (FDTD),
and compare the findings obtained by geometrical optics methods to those
obtained by the FDTD method.

Having developed the mathematical tools for the study of EM waves
propagation through GRIN lenses, we proceed with the investigation of light
propagation through networks of GRIN lenses. First, we make certain con-
figurations of LLs showing that EM waveguides can be formed by such GRIN
lenses. Light propagation through random networks is also investigated; as a
result we show that extreme events, such as branched flows and rogue waves,
can arise in such complex photonic GRIN systems.

In addition to GRIN lenses, we have investigated light propagation through
disordered optical coupled fiber lattices. We have developed a simple model,
based on the Discrete Nonlinear Schrödinger Equation (DNLS), for the study
of EM wavepacket propagation, investigating how the fiber network topology
(namely, the randomness of the arrangement of fibers), influences the diffu-
sion exponent of light propagation. Furthermore, we study how this diffusion
exponent is affected by the presence of nonlinearity (Kerr effect).

Finally, we investigate a well known light-matter interaction effect, called
the Surface Plasmon Polaritons (SPPs). SPPs are quasi particles which are

xvi



created by the coupling of EM waves with the electron oscillations field. We
develop and discuss the background theory of SPPs based on Maxwell equa-
tions and we describe a method for SPPs excitation based on the attenuated
total reflectance (ATR) method. We introduce active (or gain) dielectrics
and study how these active materials affect the properties of SPPs such as
the SPPs dispersion relation and the propagation length.
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Chapter 1

Methods for light propagation

In the beginning of this Thesis, fundamental concepts and methods which
will be used throughout in this Thesis will be introduced. We begin by
describing methods that have been used in order to determine the charac-
teristics of light propagation via an inhomogeneous isotropic medium with
refractive index n(r) =

√
ε, where r is the radial coordinate of a given struc-

ture embedded in the medium. In the first part of this Thesis we focus our
investigation on the electromagnetic field associated with propagation near
the visible spectrum; in this regime, light oscillates very rapidly (with fre-
quencies of the order of 1014Hz) resulting in very large magnitudes of the
wavevector (i.e. k →∞) and very small magnitudes of wavelength (λ→ 0).
In this limit, the wave behavior of the light can be neglected and the optical
laws can be formulated in geometrical terms, that is, the electromagnetic
(EM) waves are treated as rays. This approximation is well known in the
literature as geometrical optics and holds as the size of lenses (or obsta-
cles), in the propagation media, are much larger than the wavelength of the
propagated EM wave. The geometrical optics is a very convenient method,
compared with wave optics, because so the analytical as the numerical cal-
culation are much easier and faster than those in the wave optics. On the
other hand, the main advantage of wave optics is that it holds for any case
of light propagation whereas for the geometrical optics the wavelength has
to be much more smaller than the characteristics length of the geometry of
the propagation media [1–5].

In this Chapter, three methods of geometrical optics propagation together
with a numerical wave optics method are developed and applied in a specific
medium comprised by Luneburg Lens (LL) [4, 6], which is used as a toy
model. The LL belongs to the gradient refractive index (GRIN) lenses and it
is a spherical construction where the index of refraction varies from the value
1, at its outer boundary, to

√
2 in its center through a specific functional
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CHAPTER 1. METHODS FOR LIGHT PROPAGATION

dependence on lens radius, as it is described by the equation (1.1)

n(r) =

√
2−

( r
R

)2

(1.1)

where R is the radius of the LL. Its basic property, in the geometrical optics
limit, is to focus parallel rays that impinge on the spherical surface on the
opposite side of the lens. This feature makes LLs quite interesting for ap-
plications since the focal surface is predefined for parallel rays of any initial
angle. The LLs can be used to form GRIN optical metamaterials (MMs); the
latter use spatial variation of the index of refraction and lead to enhanced
light manipulation in a variety of circumstances [6].

In this Chapter, we develop and apply the following three geometrical
optics methods: (a) Fermat’s principle of the optical path optimization de-
riving to an exact ray tracing equation for a single LL (detailed presentation
in subsection 1.1); this is a quasi two dimensional (2D) approximation, (b) a
parametric two dimensional method based also on Fermat’s principle, where
the infinitesimal arc length is used as a free parameter (subsection 1.2), and
(c) a geometrical optics approach based on the Helmholtz wave equation
(subsection 1.3). Finally, (in subsection 1.4) a numerical method for solving
time-dependent Maxwell equation, known as Finite Difference in Time Do-
main (FDTD), is presented, and the obtained results are compared with the
ray-tracing findings.

1.1 Quasi two dimensional (2D) ray tracing

The total time T that light takes to traverse a path between points A
and B is given by the integral [1, 5]

T =

∫ B

A

dt =
1

c

∫ B

A

nds (1.2)

where the infinitesimal time dt has been written in arc length terms as
dt = ds/v and v is the velocity of light in a medium with refractive index n
(v = c/n), where c the velocity of light in the bulk medium.

The optical path length S of a ray transversing from a point A to a point
B via a medium with radially depended refractive index n(r) is related to
the travel time by S = cT and is given by [1–6]

S =

∫ B

A

n(r)ds (1.3)

2



1.1. QUASI TWO DIMENSIONAL (2D) RAY TRACING

Since the optical path length S is independent of the time, it is a purely
geometrical quantity. According now the variational theory and the Fermat’s
statement, the light follows the path where it needs the minimum time travel,
viz. an extremum in the travel time T of equation (1.2), as a result the optical
length of the path followed by light between two fixed points, A and B, is
also an extremum of equation (1.3), subsequently, in the context of calculus
of variations, this can be written as

δS = δ

∫ B

A

n(r)ds = 0 (1.4)

For historical reasons we note that the two integral equations (1.2) and (1.3)
is proposed by the famous French mathematician Pierre de Fermat, how-
ever, the complete modern statement of the variational Fermat principle was
developed after the generation of the variational theory.

In polar coordinates the arc length is ds =
√
dr2 + r2dφ2, where r, φ

are the radial and angular polar coordinates respectively. In the quasi 2D
approximation the coordinate r can be considered as the independent variable
of the problem or as the generalized time and therefore the arc length can

be written as ds =

√
1 + r2φ̇2dr, with φ̇ ≡ dφ/dr. As a result, the Fermat’s

variational integral of equations (1.3) and (1.4) becomes

S =

∫ B

A

n(r)

√
1 + r2φ̇2dr (1.5)

yielding the optical Lagrangian [3–6]

L(φ, φ̇, r) = n(r)

√
1 + r2φ̇2 (1.6)

Since we know the Lagrangian of the problem (equation (1.6)), we can
calculate the optical Hamiltonian by using Legendre transformation [7, 8].
Afterwards, we can proceed by solving Hamilton equations yielding to a
ray tracing solution. However, in this part of Thesis, we are working with
Lagrange formalism instead of Hamiltonian, in the Appendix A there are
the calculations for the Hamiltonian derivation as well as for the ray tracing
solution.

The shortest optical path is obtained via the minimization of the inte-
gral of equation (1.5) and can be calculated by solving the Euler-Lagrange
equations for the Lagrangian of equation (1.6), viz.

d

dr

∂L
∂φ̇

=
∂L
∂φ

(1.7)

3



CHAPTER 1. METHODS FOR LIGHT PROPAGATION

Since the Lagrangian of equation (1.6) is cyclic in φ, ∂L/∂φ = 0 and, thus,
∂L/∂φ̇ = C where C is a constant, the Lagrangian of equation (1.6) [3, 5, 6]
therefore becomes

n(r)r2√
1 + r2φ̇2

φ̇ = C (1.8)

This is a nonlinear differential equation describing the trajectory r(φ) of a
ray in an isotropic medium with refractive index n(r). Replacing the term
φ̇ ≡ dφ/dr and solving for dφ, we obtain a first integral of motion [1, 3, 6],
that is ∫

dφ =

∫
C

r
√
n2r2 − C2

dr (1.9)

The equation (1.9) holds for arbitrary index of refraction n(r). The differ-
ential equation (1.8) and the integral (1.9) are the most important results
of this Section; they provide, for a specific refractive index profile, the ray
tracing equation for r(φ).

We have done so for the specific LL refractive index function of equation
(1.1), obtaining the ray tracing equation in the interior of a single LL

r(φ) =
C ′R√

1−
√

1− C ′2 sin (2(φ+ β))
(1.10)

where C ′ and β are constants [6]. This analytical expression may be cast
in a direct Cartesian form for the (x, y) coordinates of the ray; after some
algebra we obtain

(1− T sin(2β))x2 + (1 + T sin(2β)) y2 − 2T cos(2β)xy +
(
T 2 − 1

)
R2 = 0

(1.11)
where T and β are constants. We note that equation (1.11) is the equation
of an ellipse. This result agrees with the Luneburg theory and states that
inside a LL light follows elliptic orbits [4, 6].

The constants T and β of equation (1.11) are determined by the ray
boundary (or the “initial” conditions) and depend on the initial propagation
angle θ of a ray that enters the lens at the point (x0, y0) located on the circle
at the lens radius R [3, 6]. In the most general case, the entry point of the
ray is at (x, y) = −R(cos θ, sin θ). Substituting these expressions in equation
(1.11) we obtain after some algebra the relation

T = sin (2β + 2θ) (1.12)

In order to determine the constants T and β, we need an additional relation
connecting them. We take the derivative of the equation (1.11) with respect

4



1.1. QUASI TWO DIMENSIONAL (2D) RAY TRACING

to x and utilize the relation dy/dx = tan(θ), where θ the initial propagation
angle. In addition, using (x0, y0) for the initial ray point on the LL surface,
we set x = x0 and y = y0 in equation (1.11) and solve for T , getting

T =
x0 + y0 tan(θ)

tan(θ) [x0 cos(2β)− y0 sin(2β)] + [x0 sin(2β) + y0 cos(2β)]
(1.13)

The equations (1.12) and (1.13) comprise an algebraic nonlinear system ex-
pressing the constants T and β as a function of the initial ray entry point
in the LL at (x0, y0) with initial propagation angle θ. Combining equations
(1.12) and (1.13) we obtain

β =
1

2

(
tan−1(x0/y0)− θ

)
(1.14)

therefore, according to the equation (1.12)

T = sin
(
tan−1(x0/y0) + θ

)
(1.15)

Substituting now the equations (1.14) and (1.15) to the equation (1.11) and
solving for y, we obtain the ray tracing equation for an LL [6], that is

y(x) =
(2x0y0 +R2 sin(2θ))

2x2
0 + (1 + cos(2θ))R2

x

+

√
2Ry0 cos(θ)

√
(1 + cos(2θ))R2 + 2x2

0 − 2x2

2x2
0 + (1 + cos(2θ))R2

− x0 sin(θ)
√

(1 + cos(2θ))R2 + 2x2
0 − 2x2

2x2
0 + (1 + cos(2θ))R2

(1.16)

The equation (1.16) describes the complete solution of the ray trajectory
through an LL. In the simple case where all the rays are parallel to the x
axis and thus the initial angle is θ = 0, the equation (1.16) simplifies to the
equation [6]

y(x) =
y0

x2
0 +R2

(
x0x+R

√
R2 + x2

0 − x2

)
(1.17)

We note that in order to determine the exit angle θ′, i.e. the angle with
which each ray exits the lens, we take the arc tangent of the derivative of
equation (1.16) with respect to x, at the focal point on the surface of lens,
i.e. at x = R cos(θ). The solution of equation (1.16) can be used to study
several configurations of LLs; this topic will be discussed later in Chapter 2.

We present, in Fig.1.1, the ray tracing propagation based on the equation
(1.16), through a single LL for initial propagation angle θ = 0 (Fig.1.1a)

5



CHAPTER 1. METHODS FOR LIGHT PROPAGATION

Figure 1.1: The red dashed lines denote the the Luneburg lenses (LL) whereas
the blue lines represent light rays. Ray tracing through a single LL for initial
propagation angle (a) θ = 0 (b) θ = π/6 (c) θ = −π/6; all rays are focused on a
single point on the opposite side that they entered in the LL.

and for θ = ±π/6 (Fig.1.1(b - c)) [6]; in all cases the bulk media is air with
refraction index nair = 1.

When the rays are scattered backwards, i.e. the propagation angle |θp| >
π/2, the quasi 2D approximation breaks down and the equation (1.16) gives
complex solutions. This failure is due to the assumption that the radial
coordinate plays the role of time, viz. a monotonically increasing parame-
ter similar to the physical time; in the Fig.1.2 this failure in ray-tracing is
demonstrated. In these cases it is more practical to use parametric solutions
where the ray coordinates x, y are both dependent variables. This approach
is explained in Sections 1.2 and 1.3 where the parametric solution is derived.

6



1.2. PARAMETRIC TWO DIMENSIONAL (2D) RAY TRACING
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Figure 1.2: The red dashed lines denote the the Luneburg lenses (LL) whereas
the blue lines represent light rays. In both pictures the black arrows indicate the
failure of quasi 2D approximation, viz. when the rays are scattered backwards,
that is, the propagation angle |θp| > π/2. Ray tracing through a single LL is
plotted for initial propagation angles (a) θ = π/3 and (b) θ = −π/3.

1.2 Parametric two dimensional (2D) ray trac-

ing

Since the quasi 2D approximation fails for backscattered rays, we need
to develop a real two dimensional parametric ray tracing equation. This is
done by using Fermat’s principle and assuming that both ray coordinates are
dependent variables.

We use the infinitesimal arc length ds =
√
dx2 + dy2 in Cartesian co-

ordinates and further introduce the parameter τ as generalized time i.e.
ds =

√
ẋ2 + ẏ2 dτ , where the dot indicates differentiation with respect to

parameter τ , (α̇ ≡ dα/dτ) and x ≡ x(τ), y ≡ y(τ) [2, 4–6]. The Fermat
integral of equation (1.3) becomes

S =

∫ B

A

n(x, y)
√
ẋ2 + ẏ2dτ (1.18)

where n(x, y) is the refractive index in Cartesian coordinates; Minimization
of the travel path S leads to the optical Lagrangian

L(x, y, ẋ, ẏ, τ) = n(x, y)
√
ẋ2 + ẏ2 (1.19)

7



CHAPTER 1. METHODS FOR LIGHT PROPAGATION

In this method we are going to work with Hamilton formalism, therefore
we introduce the generalized optical momenta kx, ky that are conjugate to
x, y as

kx =
∂L
∂ẋ

=
nẋ√
ẋ2 + ẏ2

(1.20)

ky =
∂L
∂ẏ

=
nẏ√
ẋ2 + ẏ2

(1.21)

The equations (1.20) and (1.21) comprise of an algebraic nonlinear system,
which has the solution

k2
x + k2

y − n(x, y)2 = 0 (1.22)

We can rewrite the equation (1.22) in vector form using ~r ≡ (x, y) and
~k ≡ (kx, ky), that is

~k2 − n(~r)2 = 0 (1.23)

Multiplying equation (1.23) with the factor 1/2 reveals the direct analogy to
the equations of classical mechanics. The first term is the kinetic energy of
the rays

T =
~k2

2
(1.24)

whereas, the second term is the potential energy given by

V = −n(~r)2

2
(1.25)

while the total energy is

H(~r,~k) =
~k2

2
− n(~r)2

2
(1.26)

which is equal to zero H = 0 regarding the equation (1.23). The equations
(1.24)-(1.26) can be interpreted as representing the motion of a classical
particle, of unit mass, moving in a potential, while the total energy of the
system is zero [1, 2, 4, 6].

We can obtain a Hamiltonian ray tracing system by solving Hamilton’s
equations for the Hamiltonian of equation (1.26) [5, 6, 9]; we get

d~r

dτ
=
∂H
∂~k

= ~k (1.27)

and
d~k

dτ
= −∂H

∂~r
=

1

2
∇n(~r)2 (1.28)

8



1.3. HELMHOLTZ WAVE EQUATION APPROACH

where ∇ ≡
(
∂
∂x
, ∂
∂y

)
, τ is an effective time related to real travel time t

through dτ = c dt, where c is the velocity of rays in the bulk medium with
refractive index n0 (c = c0/n0). Combining equations (1.27) and (1.28) we
obtain the differential equation (1.29) [1, 2, 4–6,9]

~̈r =
1

2
∇n(~r)2 (1.29)

and restoring the real travel time t instead of the effective time τ , we get

~̈r =
c2

2
∇n(~r)2 (1.30)

where derivatives are taken with respect to travel time t, that is, q̇ = dq/dt
for arbitrary q(t). In conclusion, the equation (1.30) is a general equation of
motion for ray paths in a medium with an arbitrary refractive index function
n(~r). The explicit solution for Luneburg lens will be given in the following
Section (Section 1.3), since the equation (1.30) is also derived with different
method.

1.3 Helmholtz wave equation approach

In this Section, we present a geometrical optics approach based on the
Helmholtz wave equation. We obtain once again the ray tracing equation
(1.28) and find an explicit ray solution for light propagation through an LL
with refractive index given by the equation (1.1).

The stationary states for a monochromatic EM wave are given by the
solutions of the Helmholtz equation (1.31) [2, 5, 9].[

~∇2 + (nk0)2
]
u(x, y) = 0 (1.31)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian in two dimensional space and u(x, y)

is a scalar function representing any component of the electric or magnetic
field; n is the refractive index that generally depends on position (n ≡ n(~r)),
k0 ≡ ω/c = 2π/λ0 is the wave vector in the bulk media where ω and λ0

are the angular frequency and wavelength of the EM wave respectively and
finally c is the velocity of the light [2, 5, 6, 9]. Although equation (1.31) is
time-independent and therefore we cannot investigate dynamical phenomena,
we can determine the stationary paths followed by the light rays; this is a
ray tracing approximation.

Assuming that the scalar field u can be determined by an amplitude
real function A(x, y) and a phase real function φ(x, y) (Sommerfeld-Runge

9



CHAPTER 1. METHODS FOR LIGHT PROPAGATION

assumption), where φ is known as the eikonal function [1–5, 9]; we proceed
with the well known transformation

u(x, y) = A(x, y)eiφ(x,y) (1.32)

Substituting equation (1.32) into wave equation (1.31) and separating the
real from the imaginary parts, we obtain the following system of differential
equations [6, 9]

(∇φ)2 − (nk0)2 =
∇2A

A
(1.33)

∇ ·
(
A2∇A

)
= 0 (1.34)

The equation (1.34) expresses the constancy of the flux of the vector A2∇φ
along any tube formed by the field lines of the wavevector [9], defined through
~k = ~∇φ, which transforms the equation (1.33) into

~k2 − (nk0)2 =
∇2A

A
(1.35)

The last term in the equation (1.33), viz. ∇2A
A

, is called Helmholtz poten-
tial [6, 9]; it preserves the wave behaviour, like diffusion, in the ray tracing
equation. In the geometrical optics limit (where the space variation L of
the beam amplitude A satisfies the condition k0L >> 1 i.e. λ << L) the
Helmholtz potential vanishes; in this case the equation (1.35) gives the well
known eikonal equation, (equation (1.36)) which is the basic equation in the
geometrical optics approach [1–5,9], namely

(∇φ)2 = (nk0)2 (1.36)

The most important result of this approach is that the rays are not coupled
any more and they propagate independently one from the other, viz. the
movement of rays looks like more with particles movement than with wave
propagation.

We introduce the optical Hamiltonian by multiplying equation (1.35) with
the factor c/(2k0) and by using the relation (1.36), yielding to

H(~r,~k) =
c

2k0

~k2 − ck0

2
n2(~r) (1.37)

In addition, according the equation (1.35) and the assumption that ∇
2A
A

= 0,
the Hamiltonian of equation (1.37) describes the motion of a classical particle
in a potential, while the total energy of the system is zero, as the Hamiltonian
(1.26) of Section 1.2 represents.

10



1.3. HELMHOLTZ WAVE EQUATION APPROACH

Finally, the system of equation of motion can be written as a second order
ordinary differential equation (ODE) by solving the Hamilton’s equation de-
scribed by equations (1.27),(1.28) and yields to the same equation of motion
which is found earlier and given by the equation (1.30), viz. the equation

~̈r =
c2

2
∇n2 (1.38)

Substituting the LL refractive index equation (1.1) in the differential equation
(1.30), or equation (1.38), we obtain an equation of motion which describes
the ray paths inside an LL, that is

~̈r +
c2

R2
~r = 0 (1.39)

Now, we proceed to the solution of the equation (1.39). Using the boundary

conditions ~r(0) = ~r0 = (x0, y0) and ~̇r0 = ~k0 = (k0x, k0y) we obtain

~r(t) = ~r0 cos
( c
R
t
)

+ ~k0
R

c
sin
( c
R
t
)

(1.40)

or in Cartesian coordinates

(
x(t)
y(t)

)
=

(
x0

y0

)
cos
( c
R
t
)

+

(
k0x

k0y

)
R

c
sin
( c
R
t
)

(1.41)

The solution (1.41) describes elliptical orbits in the two dimensional surface
formed by (x, y) coordinates, in agreement with Luneburg’s theory [4] as well
as with ray equations (1.16) and (1.17) [6].

In Fig.1.3, we present results based on the explicit ray solutions of the
equations (1.40) and (1.41). The ray tracing propagation through a single
LL with initial propagation angle θ = 0, is indicated in Fig.1.3a; this is in
agreement with the results obtained by the quasi 2D ray solution as they are
shown in Fig.1.1a. In the Figs1.3(b - c) the propagation with θ = ±π/3 are
indicated, showing that the methods that are developed in Sections 1.2 and
1.3 holds for backscattered rays unlike with quasi 2D approach which fails to
describe the backscattering propagation (Fig.1.2).

11
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Figure 1.3: The red dashed lines denote Luneburg lenses (LL) whereas the blue
lines show the ray tracing performed through the analytical parametric solution of
equations (1.40) and (1.41). Ray tracing through a single LL is plotted for initial
propagation angle (a) θ = 0, (b) θ = π/3 and (c) θ = −π/3.

1.4 Numerical solution of Maxwell equations

The EM waves propagation as well as the interaction between light and
matter are fully described by Maxwell’s field equations. Since we cannot find
analytical solutions of Maxwell equation for the most problems in nature, due
to the anisotropic materials, nonlinearity, complex geometries etc, we have
to resort to numerical methods for solving Maxwell equations, such as Green
functions, finite elements, finite volumes, Fourier expansions, asymptotic,
pseudospectral, integration and finite difference methods. In this Thesis, we
are going to develop and use a finite difference method.

The Finite Difference in Time Domain (FDTD) method is a well known
numerical approach used for modelling computational electrodynamics; while
most numerical methods are applied in the frequency domain, FDTD solves
the time dependent Maxwell equations in the time domain, viz. the calcu-
lation of the EM field progresses at discrete steps both in time and space.
Since it is a time domain method, FDTD solutions can cover a wide fre-
quency range with a single simulation. Furthremore, FDTD is applied in
several scientific and technology areas dealing with EM wave propagation
such as antennas, radiation and microwave applications, as well as the inter-

12



1.4. NUMERICAL SOLUTION OF MAXWELL EQUATIONS

action between EM waves with material structures such as plasmonics and
photonic crystals.

The FDTD was firstly introduced by Yee, presented in his seminal paper
[10], where he applied centered finite difference operators in both space and
time for each electric and magnetic vector field component in Maxwell’s curl
equations. Finally, the descriptor Finite Difference in Time Domain as well
as the acronym of the FDTD method was given by Taflove almost fifteen
years later than Yee, in his article [11].

The initial point of the FDTD method is the Maxwell equations in mat-
ter (equations (1.42) and (1.43)); assuming no free charges or currents, the
Maxwell curl equations can be written as

∇× ~E = −∂
~B

∂t
(1.42)

∇× ~H =
∂ ~D

∂t
(1.43)

Where ~E is the electric field intensity, ~D the electric flux density, ~B is the
magnetic flux density and ~H the magnetic field intensity, where all of them
are in general time depended.

In addition we have also the constitutive relations, which reveal how fields
interact with the mater, that is

~B = µ ~H (1.44)

~D = ε ~E (1.45)

where ε and µ are permittivity and permeability respectively, which are in
general depended on spatial location within the medium that is studied, i.e.
ε ≡ ε(~r) and µ ≡ µ(~r).

Gathering the Maxwell equations (1.42)(1.43) together with constitutive
relations (1.45)(1.44) we obtain

∂ ~H

∂t
= − 1

µ
∇× ~E (1.46)

∂ ~E

∂t
=

1

ε
∇× ~H (1.47)

In this Thesis, we are interested in two dimensional (2D) transverse

magnetic polarization (TM) EM waves, that is, ~E = (0, 0, Ez) and ~H =
(Hx, Hy, 0), where z is the propagation axis, Ez the z component of the
electric field and Hx, Hy the transverse components of the magnetic field.

13



CHAPTER 1. METHODS FOR LIGHT PROPAGATION

Subsequently, the differential system of vector equations (1.47) (1.46) be-
comes to a system of three scalar partial differential equations (PDE), that
is

∂Hx

∂t
= − 1

µ

∂Ez
∂y

(1.48)

∂Hy

∂t
=

1

µ

∂Ez
∂x

(1.49)

∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(1.50)

The FDTD method employs the second order accurate central-difference
approximations both to the space and time partial derivatives, in order to dis-
cretize and solve the PDE system of equations (1.48) (1.49) and (1.50) [10,11].
Consider a second order Taylor expansion of an arbitrary one dimensional
function f(x) expanded around the point x0 with an offset of ∆x

2
, that is

f

(
x0 +

∆x

2

)
= f (x0) +

∆x

2

∂f

∂x

∣∣∣∣
x0

+
1

2!

(
∆x

2

)2
∂2f

∂x2

∣∣∣∣
x0

(1.51)

f

(
x0 −

∆x

2

)
= f (x0)− ∆x

2

∂f

∂x

∣∣∣∣
x0

+
1

2!

(
∆x

2

)2
∂2f

∂x2

∣∣∣∣
x0

(1.52)

Subtracting the equation (1.52) from the equation (1.51) and dividing by ∆x
yields to the central-difference approximation

∂f

∂x

∣∣∣∣
x0

=
f
(
x0 + ∆x

2

)
− f

(
x0 − ∆x

2

)
∆x

(1.53)

Having now an expression to calculate first derivatives, we proceed to
central ideas of FDTD method. First of all, FDTD replaces all the derivatives
in Maxwell equations (1.48) (1.49) (1.50) with finite differences; discretizes
space and time so that the electric and magnetic fields are staggered in both
space and time. Moreover, FDTD solves the resulting difference equations
obtaining the “update equations” that express the unknown future fields in
terms of the past fields. Therefore the magnetic fields are evaluated at one
time step and they are used for evaluating of the electric field in the same
time step. The last step is repeated until the fields reach to the steady state.
A schematic algorithm of an FDTD code and the discretized equations are
given in the Appendix B.

Since we are working on two dimensional EM wave propagation, we need
two space grid size, i.e. ∆x and ∆y and one for the time, i.e. ∆t. The size
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1.4. NUMERICAL SOLUTION OF MAXWELL EQUATIONS

of these steps have to satisfy two stability conditions. Firstly, the smaller of
the spatial grid sizes, say ∆x, has to be much smaller than the wavelength
which corresponds to higher frequency of the problem, i.e. ∆x << λmin.
For the most problems the choice ∆x = λmin/10 gives very good accurate,
but there are several problems, where smaller grid size is necessary; in our
case we use smaller grid space, viz. ∆x = λmin/20. Secondly, there is a
condition between time increment and the space increments, called Courant
limit. This stability criterion states that the time grid size ∆t must be small
enough compared to the longest wavelength (which correspond to the highest
wave propagation velocity cmax), in order to not outrun the spacial grid size
∆s =

√
(∆x)2 + (∆y)2, subsequently

∆t <

√
(∆x)2 + (∆y)2

cmax
(1.54)

where the cmax is related with dielectric constants and consequently with
refractive index n, as cmax = c0/

√
εµ = c0/n, where c0 the velocity of light

in the vacuum. As a result, the EM characteristics of the materials, which
are used in the problem, rule the size of time and space grid size.

FDTD method supports all kinds of the EM wave sources for a single or
a range of frequencies, such as plane waves, point sources, Gaussian pulses,
square waves etc. In this Thesis we are working with monochromatic plane
wave sources.

Finally, as it has been already mentioned, FDTD method calculates , and
gives as output, the components of the electric and magnetic fields, i.e. for
TM mode the Ez, Hx and Hy components; we obtain either a snapshot of
these components, for a specific time or the intensity of fields under steady
state conditions. Furthermore, for the intensity calculation, the FDTD sim-
ulation is running until the steady state of fields achieved and afterwards
we integrate the square of the absolute value of the electric and magnetic
components, over a single or more periods. In this Thesis, we are working
with the intensities of the EM fields.

We apply the FDTD method for a monochromatic EM plane wave source
with wavelength λ, with vacuum as the bulk material, with permittivity
ε = 1. We use an LL with radius R = 10λ and permittivity based on the
equation (1.1) i.e. ε = n2 = 2 − (r/R)2. We compute an FDTD simulation
for EM propagation via a single LL; we present in Fig.1.4 the steady state
intensity of the electric field as it is computed by FDTD simulations, verifying
the analytical results that are indicated in Figs.1.1a and 1.3a.
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Figure 1.4: FDTD simulation. The white dashed line denotes a Luneburg Lens
(LL). We present the intensity I of a monochromatic EM wave which is propagating
through a single LL.
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Chapter 2

Networks of lenses

In the previous Chapter, we developed four methods in order to inves-
tigate the light propagation through a given function of refractive index
n(r) (or permittivity ε(r)), which has in general space dependence. In this
Chapter these methods are applied to investigate the EM wave propagation
through certain configurations of Luneburg Lenses (LLs). The main point
of this Chapter is the formation of LL waveguides (LLW) through the ar-
rangement of multiple LLs in geometrically linear or bent configurations [6].
Afterwards, we proceed with a beam splitter device based on LL arrange-
ment as an example for LLW application. We present EM wave propagation
results obtained by the LL parametric ray tracing solution of equation (1.41)
as well as by FDTD simulations.

2.1 Waveguides formed by Luneburg lens net-

works

A general continuous GRIN waveguide may be hard to analyze in more
elemental units and relate its global features to these units. In this Section,
we adopt precisely this latter avenue, viz. attempt to construct waveguide
structures that are seen as lattices, or networks, of units with specific fea-
tures. This is a “metamaterials approach”, where specific properties of the
“atomistic” units are inherited as well as expanded in the network. The
“atomic” unit of the networks that we are going to discuss is an LL and
the important property of this “atomistic” unit is that the focal point is
predefined for parallel rays that enter in an LL (for any initial angle) [4, 6].

We proceed with Fig.2.1 and Fig.2.2 where LLW formation through the
arrangement of multiple LLs [6] are shown. Firstly, we design two linear
LLW formed by five and six LLs respectively. Afterwards we make an 180o

17



CHAPTER 2. NETWORKS OF LENSES

reversed bend waveguide formed by seventeen LLs and finally we make a
full circle LLW formed also by seventeen LLs. Fig.2.1 represents ray tracing
propagation found by the analytical ray solution that is given by the equation
(1.41), whereas in Fig.2.2 we present FDTD simulations for the same struc-
tures as in Fig.2.1. In all cases studied, the numerical solution of Maxwell’s
equations is compatible with the findings obtained through the ray tracing
map.

Two geometrically linear arrangements of touching LLs on a straight line
are shown in Figs. 2.1(a,b) and Figs.2.2(a,b). Depending on the number of
lenses, odd or even number, the EM wave focus in the last LL surface or
exit as it entered (as a plane wave in the present case) respectively. In both
cases we sent a beam parallel to the axis of symmetry of the LL network, i.e.
parallel to x axis for the ray tracing and z axis for the FDTD simulations. In
Figs.2.1(c,d) and in Figs.2.2(c,d), we form an 180o reversed bend waveguide
and a full circle bend waveguide through a sequence of seventeen LLs and
we proceed with light propagation in the geometric optics limit. We show
that light can propagate efficiently through a loop, signifying that arbitrary
waveguide formation and guiding is possible.
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Figure 2.1: The red dashed lines denote the arrangement of LLs. The blue lines
show the ray tracing performed through the analytical parametric ray solution of
the equation (1.41). Light is guided by LLs across the linear network constituted
of six LLs in (a) and of five LLs in (b). In (c) seventeen LL form an 180o reversed
bend waveguide and a full circle bend waveguide in illustrated in (d).

The LL network cases presented (linear, reversed bend and full circle
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2.1. WAVEGUIDES FORMED BY LUNEBURG LENS NETWORKS

Figure 2.2: FDTD simulation. The white dashed lines denote the arrangement of
LLs. We present the intensity I of an EM wave which is propagating through (a)
a linear LL waveguige formed by six LLs (b) a linear LL waveguide formed by five
LLs (c) through an 180o reversed bend waveguide formed by seventeen LLs (d)
and through a full circle bend waveguide formed also by seventeen LLs.

curved) signify that LLs may be used as efficient waveguides. Their advantage
over the usual dielectric guides is that light bending occurs naturally through
the LL properties while the outgoing light may be also focused, if so desired.
In bends, there are naturally some losses that, in the geometric optics limit,
may be estimated by comparing the number of the incoming to the outgoing
rays, namely NIN versus NOUT respectively; in the EM wave propagation we
can measure the incoming electric field intensity IIN and compare it with the
outgoing IOUT . In the linear arrangement of LLWs, as in Figs.2.1 (a,b) and
Figs.2.2 (a,b), the performance is perfect. In the bend cases, such as in the
180o reversed bend arrangement of Fig.2.1c and Fig. 2.2c as well as in the
full circle bend waveguide of Fig.2.1c and Fig.2.21c, the losses are measured
about 40% [6]. We note that the aforementioned losses depend also on the
ray coverage of the initial lens as well as the sharpness of the bend; the losses
can be reduced by manipulating appropriately these two factors.
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Figure 2.3: A beam split-
ter device formed by twenty
LLs. The red dashed
lines denote the LL network
whereas the blue solid lines
show the ray tracing per-
formed through the analyt-
ical parametric solution of
equation (1.41). −2 0 2 4 6 8 10 12 14 16 18
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Figure 2.4: FDTD simulation.
A beam splitter device formed
by LLW. The white dashed lines
denote the LL network. We
show the intensity I of the elec-
tric field of an EM plane wave
which is propagating through a
beam splitter device formed by
twenty LLs.

2.2 Beam splitter

A simple but useful application of the LLWs may be a beam splitter, viz.
a device which splits and guides EM waves. LLWs as well as beam splitters
may be used to enhanced light manipulation in a variety circumstances, for
instance they can be used in fabrication of integrated photonic circuits.

In Fig.2.3 and Fig.2.4 a beam splitter device is represented. Twenty LLs
have been arranged in order to split a bundle of rays and afterwards to guide
in different directions. The losses are measured as the 10%, subsequently the
90% of the incoming rays are split and guided through LLs configuration of
Fig.2.3 and Fig.2.4.
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Chapter 3

Branching flow

When waves propagate through random media many, interesting phenom-
ena occur, such as the branching onset of caustic areas, Anderson localization
and rogue wave formation. Recently, these phenomena have received consid-
erable attention by theoretical physicists and engineers. Typical cases include
electron flow in a two dimensional electron gas (2DEG) [12–14], transport
properties of semiconductors [12–14], ocean waves [15], linear and nonlinear
light propagation in random fibers [16–18], sound wave propagation [19–21],
microwave devices [22, 23], resonance in nonlinear optical cavities [24] and
light propagation through random refractive index media [5, 25–29].

In this Chapter, we focus on branching effects that occur in two dimen-
sional conservative particle flow as well as in EM wave propagation through
a weak random potential. Even if the random potential is very weak, the
flow can be strongly affected resulting in caustics branches [12, 13, 30]. We
present the theoretical framework that has been developed for the quantifi-
cation of branching effects in a two-dimensional particle or/and EM waves
flow. Specifically, we show that caustics can take place in the propagation
of light via a disordered network of lenses and we highlight the similarities
between light propagation and particle flow.

3.1 Statistics of caustics

We present the theoretical framework for caustics, based in the Lagrangian
manifold (LM) approach, in order to obtain analytical results for the statistics
of caustics. The LM approach offers the opportunity to adequately under-
stand the phase space geometry of caustics. The obtained analytical results
are general and hold for a variety of problems, since the initial point of this
analysis is an ordinary Hamiltonian of equation (3.1). An appropriate way
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CHAPTER 3. BRANCHING FLOW

to study the branched flow is to analyse the statistics of caustics, because
each caustic is followed by a branched flow.

We begin with an ordinary Hamiltonian of the form

H =
~p2

2m
+ V (t, ~x) (3.1)

where ~x is the position vector, ~p the conjugate momenta and t the time.
The Hamiltonian of the equation (3.1) yields to a Hamilton-Jakobi-Equation
(HJE) [7,8], where the last equation is a first order non-linear partial differ-
ential equation given by

∂

∂t
S(t, ~x) +H = 0 (3.2)

where S(t, ~x) is the classical action which is associated with the conjugate
momenta vector as

~p(~x) =
∂S(~x)

∂~x
(3.3)

Equation (3.2) thus becomes (by substituting equation (3.3) and equation
(3.1) in equation (3.2) and assuming particles with unit mass m = 1)

∂

∂t
S(t, ~x) +

1

2

(
∂S

∂~x

)2

+ V (t, ~x) = 0 (3.4)

For “weak” potentials, we can use the quasi two dimensional (quasi 2D) or
the paraxial approximation, where we have only one spatial coordinate, viz.
~x(t) ≡ y(t), with time t playing the role of the propagation axis, as it is
discussed in Section 1.1. From the mathematical view, we deal with an one
dimensional (1D) HJE with a time dependent potential, viz. V (t, y(t)).

The curvature u of the action S is defined as the partial derivative of
conjugate momenta p with respect to position y, namely

u ≡ ∂p

∂y
=
∂2S

∂y2
(3.5)

In order to obtain a differential equation for the curvature u, we differentiate
twice the equation (3.4) with respect to the position y and use the definitions
of the equations (3.3)(3.5) [13,25,26], we have

∂

∂t
u+

∂S

∂y

∂

∂y
u+ u2 +

∂2

∂y2
V (t, y) = 0[

∂

∂t
+ p

∂

∂y

]
u+ u2 +

∂2

∂y2
V (t, y) = 0 (3.6)
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The operator in the brackets of the equation (3.6) is known as the convective
or material derivative [13, 31], turning the differential equation from partial
differential equation (PDE) into an ordinary differential equation (ODE) and,
thus, the Eulerian into a Lagrangian framework.

Subsequently, we obtain the ODE

d

dt
u+ u2 +

∂2

∂y2
V (t, y) = 0 (3.7)

The next step is to introduce a random white noise. Since we are interested
in particle flow or wave propagation via a random weak potential, we assume
that the potential acts as a white noise Γ(t) with delta correlation function,
that is c(t − t′) = 〈Γ(t)Γ(t′)〉 = 2δ(t − t′), only in the propagation direction
t, because of the paraxial approximation [12, 13, 22, 25, 26]. The correlation
function c(t, y) of the stochastic term ∂yyV (t, y) of the equation (3.7) is

c(t− t′, y − y′) = 〈∂yyV (t, y) ∂y′y′V (t′, y′)〉 = ∂yy∂y′y′ c(t− t′, y − y′)

c(t− t′, y − y′) = 2δ(t− t′)∂yy∂y′y′c(y − y′) (3.8)

Although we assume that the random noise Γ(t) acts only in the propagation
direction t, we have to retain the characteristics of the random potential in
the transverse axis y as well. This can be achieved by keeping constant the
integral over the derivatives of the correlation function c(y − y′) as [12, 13,
25,26]

σ2 =
1

2

∫ ∞
−∞

∂4

∂y4
c(t, y)

∣∣∣∣
y=0

dt (3.9)

where σ is the standard deviation of the potential and thus σ2 is the variance.
The constant coefficient D will be identified later as the diffusion coefficient
and related with standard deviation σ as

D = 2σ2 (3.10)

Finally, the ODE (3.7) becomes an ordinary stochastic differential equation
(OSDE) viz.

du(t)

dt
= −u2(t)− σ Γ(t) (3.11)

In the following, we use the Fokker Plank Equation (FPE), which is a partial
differential equation describing the time evolution of the probability density
function derived from an ordinary stochastic differential equation (OSDE)
[13,32,33] of the form (in one-dimensional case)

ẏ(t) = f(y) + g(y)Γ(t) (3.12)
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CHAPTER 3. BRANCHING FLOW

where f and g are arbitrary functions of y and Γ is a Gaussian delta-correlated
white noise. The corresponding FPE for the density function P (y, t) reads
[32,33]

∂

∂t
P (y, t) =

[
− ∂

∂y
D(1)(y, t) +

∂2

∂y2
D(2)(y, t)

]
P (y, t) (3.13)

with drift and diffusion coefficients D(1) and D(2) respectively, calculated by
equation (3.12) according to the relations [32,33]

D(1)(y, t) = f(y) + g(y)
∂

∂y
g(y) (3.14)

D(2)(y, t) = g2(y) (3.15)

In addition to FPE, there is an equivalent backward Fokker Plank Equation
(BPFE) (equation (3.16), presented below), in which the space independent
variable is a function of the initial position y0. The main difference be-
tween the forward FPE and the backward FPE is the fact that in the former
(forward FPE) the initial value for the probability density P is given, i.e.
P (y0, t0) and, therefore, FPE describes the time evolution of this density
P (y, t) for time t > t0. On the other hand, in the BFPE the final condition
P (yf , tf ) is given, where yf , tf are the final values of variables y and t, while
the initial conditions are unspecified. The BFPE is very useful for the solu-
tion of the problems where we know the final state of process but we are not
interested in (or we do not know) the initial conditions. For convenience, we
use the notation P for the probability density of the forward FPE and pf for
the backward FPE [32,33].

∂

∂t0
pf (y, t) =

[
−D(1)(y0, t0)

∂

∂y0

+D(2)(y0, t0)
∂2

∂y2
0

]
pf (y, t) (3.16)

Now we proceed to derive the drift and the diffusion coefficients, based on
equations (3.12, 3.14, 3.15) for the OSDE of equation (3.11), that is

D(1) = −u2 (3.17)

D(2) = σ2 =
D

2
(3.18)

Subsequently, the FPE of our problem, viz. for the OSDE 3.11 , is given by
the equations (3.13, 3.17, 3.18), namely

∂

∂t
P (u, t) =

[
∂

∂u
u2 +

∂2

∂u2

D

2

]
P (u, t) (3.19)
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3.1. STATISTICS OF CAUSTICS

In order to find how long it is needed to reach a caustic for the first time, viz.
when the solution of FPE becomes infinity for the first time (u(tc) → ∞,
where tc is the mean time of this process), we ask the inverse question, that
is, what is the probability that no singularity appears until time t, (meaning
that when a singularity appears, the process is terminated). This analysis can
be performed by means of the BFPE [13,25,26]. Using the form of equation
(3.16) with coefficients given by equations (3.17) and (3.18), we obtain the
BFPE

∂

∂t
pf (u, t) =

[
−u2

0

∂

∂u0

+
D

2

∂2

∂u2
0

]
pf (u, t) (3.20)

where u0 the initial curvature.
We proceed with the calculation of the mean time 〈tc(u0)〉 which an initial

curvature u0 needs to go to infinity, resulting in a caustic. According to basic
probability theory, the mean time 〈tc(u0)〉 is given by means of the probability
density pf by the relation

〈tc(u0)〉 =

∫ ∞
0

tpf dt (3.21)

In order to calculate 〈tc(u0)〉, we multiply the BFPE of equation (3.20) and
integrate over time t. The left hand side can be evaluated by means of the
integration by parts method, resulting in∫ ∞

0

t
∂

∂t
pf dt = tpf |∞0 −

∫ ∞
0

pf dt = 0− 1 = −1 (3.22)

In which we have assumed that the probability density pf is normalized to
unity, i.e.

∫∞
0
pf = 1, and furthermore, it vanishes as time approaches infinity

resulting in pf (t→∞) = 0. The left hand side does not include derivatives
with respect to t and, therefore, the integration is trivial; the equation thus
becomes

− 1 = −u2
0

d

du0

〈tc(u0)〉+
D

2

d2

du2
0

〈tc(u0)〉 (3.23)

where we have used the definition of equation (3.21) and transformed the
partial derivatives (with respect to u0) to full derivatives, since the time
derivatives vanish. Equation (3.23) is a second order inhomogeneous differ-
ential equation of the form

y′′(x) + f(x) y′(x) = g(x)

with exact solution given by [34]

y(x) = C1 +

∫
e−F

(
C2 +

∫
eFgdx

)
dx where F =

∫
fdx (3.24)
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CHAPTER 3. BRANCHING FLOW

Using equation (3.24) along with the boundary conditions

lim
u0→−∞

〈tc(u0)〉 = 0 and lim
u0→∞

〈tc(u0)〉 = finite (3.25)

we obtain the final solution for the mean time 〈tc(u0)〉 in terms of a double
integral form [13,25,26], thus

〈tc(u0)〉 =
2

D

∫ u0

−∞
e2ξ3/3D

∫ ∞
ξ

e−2η3/3Ddηdξ (3.26)

Since we are interested only for a scaling law of the first caustic location
(or time), we may find analytically the behaviour of the solution of the inte-
gral of equation (3.26). That is, we introduce two new variables µ and ν and
therefore we make the notations ξ = 3

2
D1/3µ and η = 3

2
D1/3ν, subsequently

the double integral solution (3.26) becomes

〈tc(u0)〉 =
9

2
D−1/3

∫ (
2u30
3D

)1/3

−∞
eµ

3

∫ ∞
(

2µ3

3D

)1/3
e−ν

3

dνdµ (3.27)

The double integral with the prefactor 9/2 of the equation (3.27) can be
defined as a constant unknown function g(u0, D) reveals the scaling behaviour
〈tc(u0)〉 ∼ D−1/3, that is

〈tc(u0)〉 = g(u0, D)D−1/3 (3.28)

or in terms of standard deviation (regarding to the relation (3.10))

〈tc(u0)〉 = g(u0, D)σ−2/3 (3.29)

In addition, the integral in equation (3.26) can be evaluated numerically
for a plane wave or point source condition, i.e. u0 = 0 or u0 =∞ respectively,
giving a numerical value for the characteristic mean time (or, equivalently,
the distance from the source in the quasi 2D approximation) from a plane or
from a point source respectively, where the first caustic appears [13, 25, 26],
that is

〈tc(0)〉 = 4.18D−1/3 and 〈tc(∞)〉 = 6.27D−1/3

Employing equation (3.10) we can rewrite the results in terms of standard
deviation σ as

〈tc(0)〉 = 3.32σ−2/3 and 〈tc(∞)〉 = 4.98σ−2/3 (3.30)

The quantity 〈tc(0)〉 describes the mean distance of the appearance of the
focus for an initial plane wave, whereas the quantity 〈tc(∞)〉 describes the
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3.2. BRANCHING FLOW IN PHYSICAL SYSTEMS

mean distance between two subsequent caustics, since any caustic can be
assumed as a point source.

At this point, we would like to point out that we can derive to same
results if we start from the parabolic equation (or Schrödinger like equation)

2ik
∂

∂t
ψ +∇2ψ + k2ε(t, ~r)ψ = 0 (3.31)

which is also well known approximation for wave fields, in addition to the
Hamiltonian of equation (3.1) which describes the light propagation as it was
shown in Sections 1.2 and 1.3 (see the Hamiltonians of the equations (1.26)
and (1.37)) [2, 5, 25, 26]. Here, the time t is also the propagation axis (as
the paraxial approximation states), ψ = ψ(t, ~r) is any component of electric
or magnetic field, k is the wavevector and ε is the fluctuation part of the
dielectric permittivity (or refractive index). In this case, the classical action
S, which is defined by equation (3.3), is the phase front of the EM wave,
and the curvature u denotes the curvature of the phase front; ε is a random
potential [25,26]. More details about the derivation of equation (3.31), as well
as how this equation yields to the same FPE (3.19) are given in Appendix
C.

These results prove that caustic formation is a general phenomenon, which
takes place in conservative particle flows as well as in wave propagation via
a weak delta-correlated random potential. We have shown that the char-
acteristic mean distance from the source, where the first caustic occurs, is
universal for all such systems and it is given in terms of standard deviation
of the random potential according to the relations (3.30).

In the following Sections we present numerical results obtained by running
simulations of particle flows and wave propagation systems; the numerical
results are in agreement (and, thus, verify) the analytical results presented
in this Section (3.1).

3.2 Branching flow in physical systems

Numerical simulations and experiments have revealed that branching
flows can arise in a variety of physical systems. Topinka et al. [14] have shown
experimentally that branching flow takes place in electron flow through a two
dimensional electron gas (2DEG). Kaplan [30] and Metzger [13] have studied
both analytically and numerically the branching flow in electron propagation
and have found that the scaling law, which is governing the scaling behavior
of the first caustic position, is the one described in Section 3.1 (equation
(3.30)). In addition, Metzger et al., in [12], have found an analytical ex-
pression for the number of branches that occur at all distances from the
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CHAPTER 3. BRANCHING FLOW

source. Moreover Barkhofen et al. [22] have found, both experimentally and
numerically, branching effects in microwave flow through disordered media
fabricated by randomly distributed scatterers; additionally, they have shown
that the statics of the first caustic position, in such process, satisfies the scal-
ing rule described by equation (3.30). Another microwave study, which has
been performed by Hohmann et al. [23], found by means of the ray dynam-
ics method and by wave propagation simulations, that branching flow can
emerge in two dimensional microwave propagation through media which com-
prises by random metallic scatterers. Furthermore, Ni et al. [28] have studied
the EM wave propagation in an optical system comprising random scatterers
with continuous refractive index, and have proposed that branched waves
can emerge as a general phenomenon between the weak scattering limit and
the Anderson localization. In addition, they have found that high intensities
(i.e. caustics or other extreme events) are distributed following an algebraic
law. Finally, a numerical investigation on sound waves has been performed
by Blanc-Benon et al. [19] showing that branching flow can arise from high
frequency sound wave propagation through a turbulent field; experiments
performed by Wolfson in [21] confirms the numerical findings.

In order to check the validity of the theoretical methods presented in
Section 3.1, we introduce a method and a toy model with a single LL in order
to investigate the location of the first caustic and then, we proceed to show
that the numerical results agree with the theoretical prediction of equation
(3.30). As it has already been mentioned, caustics are high intensity areas,
as a result high deviation of the mean value of the intensity I is expected to
appear in the intensity statistics of the wave flow, resulting in a maximum
of the standard deviation of the intensity of flow. As a result, a simple
measure to investigate the caustics is given by the scintillation index [22,35]
of equation (3.32), as a function of the propagation distance, viz. x, where I
is the wave intensity and the average is taken over many realizations of the
random potential. The maximum of the scintillation index, (a pick in the
curve of σI), denotes the onset of a caustic; subsequently, peaks for different
values of standard deviation σ (of the random potential) are expected to be
scaled as the equation (3.30) predicts.

σ2
I =
〈I(x)2〉
〈I(x)〉2

− 1 (3.32)

An alternative measure to the scintillation index σ2
I is to average over the

transverse direction, namely y, as it is given by equation (3.33). This is a
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3.3. CAUSTIC FORMATION IN OPTICS

Figure 3.1: FDTD simulation for
EM wave propagation through a
single LL is illustrated; LL is shown
by the dashed white line, the lighter
color denotes high intensity and the
darker one is for lower intensity.
The yellow solid line is the scin-
tillation index, σ2

I , given by equa-
tion (3.32). As can been seen, σ2

I

takes its maximum value in the fo-
cus point, as it is expected.

more appropriate method when the average is taken over a few realizations.

s2
I =
〈I(x)2〉y
〈I(x)〉2y

− 1 (3.33)

Fig. 3.1 shows that the peak of scintillation index σ2
I (yellow curve) appears

in the same position where the EM wave is focused by an LL, proving that σI
is an efficient way to investigate caustics. The Fig. 3.2 represents numerical
results obtained by Ref. [22], for the scintillation index curve σ2

I (x) for several
values of potential strength ε, where ε is proportional to standard deviation
σ of the random potential; the scaling law of equation (3.30) is revealed and
confirmed.

3.3 Caustic formation in optics

In this Section, we present results from the numerical simulations of EM
plane waves through a random transparent medium consisting of randomly
located LLs, each with refractive index profile given by equation (1.1). The
simulations are performed by the FDTD method, as described in Section 1.4.

In order to investigate the branching flow for several values of standard
deviation σ of the random potential, we introduce a strength parameter α in
the LL refraction index function (1.1); this control parameter α is propor-
tional to the standard deviation, i.e. σ ∼ α; the analytical calculations for
the standard deviation of the generalized LL potential are given in Appendix
D. The generalized LL refractive index function is then given by the equation

n(r) =
√
α (n2

L − 1) + 1 (3.34)

where nL denotes the original LL refraction index, given by equation (1.1).
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Figure 3.2: Scaling of the branching length with the strength of the random poten-
tial ε. (a) Scintillation index σ2

I (x) as a function of the distance from the source for
different values of ε. (b) Peak positions of the scintillation curves obtained from
s2
I(x) and σ2

I (x) (inset). Both curves show a scaling of ε−2/3 (red dashed lines).
The black dotted lines indicate the standard deviation of the individual peak po-
sitions around their mean value. The scaling is confirmed in panel (c), where the
curves from the left panel are shown with a rescaled x axis, on which all peaks
occur at approximately the same distance. The peaks of the two curves for the
strongest potential, i.e., the two leftmost curves of panel (a), start to decrease in
amplitude with growing ε, which we attribute to the onset of a significant amount
of backscattering. This figure has been taken by Ref. [22]

For α = 1 we obtain the original LL index, while for α = 0 we have a flat
refractive index n = 1.

For the simulations, we use a random network consisting of 150 randomly
located LLs each with radius R = 10λ; λ is the wavelength of the EM wave,
used as normalized unit of length. The size of the disordered rectangular
lattice is 460λ× 360λ with constant filling factor f = 0.28. Furthermore, we
use periodic boundary conditions at the up and down edges and absorbing
boundary condition at the end.

The intensity of the electric field component of the EM wave simulations
through the random LLs networks for two different values of strength param-
eter α is presented in Fig.3.3. The randomly located LLs are illustrated by
means of white lines; the lighter color denotes high intensity areas whereas
the darker denotes lower values of intensity. Fig.3.3a shows the propaga-
tion for α = 0.07 whereas Fig.3.3b indicates the propagation for α = 0.1.
Fig.3.4 shows the scintillation index σ2

I , as it is given by equation (3.32), for
several values of α (viz. several values of the potential standard deviation
σ). In Fig.3.4 a we plot the σ2

I as a function of the propagation coordinate
x, whereas in Fig.3.4c the same curves are illustrated in a rescaled x axis,
i.e. x → x/σ−2/3. The maximum of σ2

I curves are plotted in the Fig.3.4b
revealing that the theoretical finding of equation (3.30) holds as well for the
propagation of EM waves through a random and weak scattering medium.
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3.3. CAUSTIC FORMATION IN OPTICS

Figure 3.3: White lines denote the arrangement of Luneburg lenses. Monochro-
matic EM plane waves propagate through a disordered transparent media consists
of generalized LLs with index of refraction given by (3.34).The intensity of electric
field is denoted by lighter color for high intensity and by darker color for lower
intensity. In (a), the strength parameter is α = 0.07 while in (b) α = 0.1. In both
images the branching flow is evident.
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Figure 3.4: Scaling of the branching length with respect to the standard deviation
of the random potential σ. (a) Scintillation index σ2

I (x) as function of the distance
from the source, for different values of σ (b) maximum position of the scintillation
curves obtained from σ2

I ; the curve shows a scaling of σ−2/3 (red solid line) The
scaling is confirmed in panel (c), where the curves from the left panel (Fig. a) are
shown with a rescaled x axis, in which all peaks occur at approximately the same
distance.
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Chapter 4

Rogue wave formation through
strong scattering random media

Rogue waves (RWs) or freak waves, have for long triggered the interest of
scientists because of their intriguing properties. They are extreme coherent
waves with huge magnitude which appear suddenly from nowhere and disap-
pear equally fast. RWs were first documented in relatively calm water in the
open seas [15,36] but recent works have demonstrated that rogue wave-type
extreme events may appear in various physical systems such as microwaves,
nonlinear crystals, cold atoms and Bose-Einstein condensates, as well as in
non-physical systems such as financial systems [22–24,27,29,37–40].

RW pattern formation emerges in a complex environment but it still
unclear if their appearance is due to linear or nonlinear processes. Intuitively,
one may link the onset of RW pattern formation to a resonant interaction
of two or more solitary waves that may appear in the medium; subsequently
it has been tacitly assumed that extreme waves are due to nonlinearity [24,
29, 38, 40–42]. However, large amplitude events may also appear in a purely
linear regime [15,22,23,27,36]; a typical example is the generation of caustic
surfaces in the linear wave propagation as it was discussed in Chapter 3.

In this Chapter we investigate optical wave propagation in a strongly
scattering optical media that comprising Luneburg-type lenses, randomly
embedded in the bulk of transparent glasses. In particular, we use a type
of lenses, namely Luneburg Holes (LH) (or anti-Luneburg lenses) instead of
the original LLs, with refractive index profile given by equation (4.1) [27]
and with ray tracing solution of equation (4.2), which is obtained by solving
the ray differential equation (1.38) for LH refractive index function (4.1). In
contrast to an LL, LH has a purely defocussing property as it is illustrated in
Fig.4.1. The maximum difference of the refractive index for LL as well as for
LH, compared to the background, is very large, viz. of the order of 40% and
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SCATTERING RANDOM MEDIA

thus a medium with a random distribution of LHs can be characterized as a
strongly scattering random media. We are using this kind of lenses instead
of original LLs, because they are easier to be fabricated in the bulk of a
dielectric, such as a glass [27].

n(r) =

√
1 +

( r
R

)2

(4.1)

~r(t) = ~r0 cosh
( c
R
t
)

+ ~k0
R

c
sinh

( c
R
t
)

(4.2)

where ~r = (x, y) and ~k = (kx, ky).
By analysing the EM wave propagation in the linear regime we observe

the appearance of RWs that depend solely on the scattering properties of the
medium. Interestingly, the addition of weak nonlinearity does not modify
neither the RW statistics nor the position where a linear RW appears [27].
Numerical simulations have been performed using the FDTD method, as it
was discussed in Section 1.4, proving that optical rogue waves are generated
through linear strong scattering complex environments. Finally we give some
experimental results which confirm the validity of our theoretical predictions.
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Figure 4.1: The red dashed line in (a) and the white line in (b) denote a Luneburg
hole (LH) lens with refractive index profile given by equation (4.1). In (a) an exact
solution is represented, based on equation (4.2), for ray tracing propagation with
plane wave initial conditions, while in (b) we present FDTD simulation results of
monochromatic EM plane wave propagation through a single LH. Both of images
reveal the purely defocussing properties of LH.
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4.1 Rogue waves in optics

As it has been already mentioned, RWs are extreme coherent waves with
huge magnitude; a more precise definition of RWs specifies that the height or
the intensity of a RW has to be at least two times larger than the significant
wave height (SWH) Hs, where the latter is defined as the mean wave height
of the highest (statistical) third of the waves [15,27,36].

Another way to investigate RWs is by means of the distribution of wave
heights or intensities. According to the central limit theorem and the simple
random wave prediction for the probability distribution of wave intensities
I, the intensities have to follow the Rayleigh law, obeying a distribution of
P (I) = e−I , where I = |E|2 (E is the electric field), normalized to one.
However, when extreme events appear, the intensities distribution deviates
from the simple exponential resulting to long tails appearance, due to the
presence of very high intensities [15,23,27,36].

In the following, we present FDTD numerical simulations for EM wave
propagation through a media which consists of random located LHs. Each
LH lens, with refractive index given by equation (4.1), has radius R = 3.5λ,
where λ is the wavelength of the EM wave. The bulk medium has dimensions
(175.0× 528.5) in (λ2 units) and refractive index n =

√
2; 400 LH lenses are

placed randomly in the dielectric (bulk medium) with fixed filling factor
f = 0.17; absorbing boundary conditions have been applied.

In Fig.4.2 we present the numerical results based on the FDTD method for
the linear medium. In Fig.4.2a and in Fig.4.2b, we present the propagation
of a monochromatic EM plane wave through the random LH network. We
observe that the presence of scatterers with strong defocussing properties,
forces light to form propagation channels (Fig.4.2a) that can lead to the
generation of very large amplitude rogue type waves (Fig.4.2b). In Fig.4.2c,
the random LH network which is used for FDTD simulation of Figs.4.2a
and 4.2b, is represented. Fig.4.2d shows the intensity profile where a linear
RW occurs; as can been noticed, the highest pick is larger than twice the
SWH resulting in a RW. Fig.4.2e presents, in semilog axis, the distribution
of electric intensities (blue dots) and the Rayleigh distribution (dashed black
line). As we can see, the distribution of intensities deviates from the Rayleigh
curve resulting in an extreme event signature.
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Figure 4.2: (a) A monochromatic plane wave beam propagates, from left to right,
through the LH lattice. (b) A detail of the propagation (yellow box in (a)) showing
an optical RW. (c) A 2D random LHs network used in the simulations; each red
circle represents a LH. (d) Intensity profile in the RW region as a function of x.
(e) Intensities distribution (in semilog scaling) for the entire lattice.

Further up, we introduce a focusing nonlinearity (Kerr effect) in the di-
electric function reading ε = n2 = εL + χ|E|2, where E is the electric field,
εL the linear part pf the permittivity and χ the nonlinear parameter varying
from 10−7 to 10−6 (depending on the strength of the nonlinearity; in normal-
ized values). As it has mentioned, we can see that the linear observed RW
statistics of Figs.4.3(a,c) are not affected in the presence of a relatively small
nonlinearity (Figs.4.3(b,d)). In this case most waves are simply amplified
without destroying the RW statistics but slightly increasing the queue of the
intensity distribution Fig.4.3d as expected from the higher amplitudes.
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Figure 4.3: Simulations on the role of the nonlinearity. (a) An intensity profile in
the linear regime of a region presenting a RW surrounded by low amplitude waves,
(b) the same region in the nonlinear regime (at the limit of the critical power)
showing an increase of the amplitude of the related waves maintaining though a
clear RW picture. (c-d) Intensity distributions in the linear and nonlinear cases
respectively, showing similar RW statistics with a slight change of the slope in the
nonlinear case as expected by the higher wave amplitudes.

4.2 Experimental results

In this Section, we present experimental results which have performed by
collaborators Tzortzakis and Pitsios and are taken by Ref. [27].

Focusing tightly a femtosecond IR beam into the bulk of fused silica
substrates induces nonlinear absorption allowing the selective modification
of the material [43]. Under appropriate irradiation conditions one may create
LH-type structures and by placing those in a controlled way in space to create
three dimensional LH lattices like the ones shown in Fig.4.4a.

The investigation for the presence of a rogue wave is performed by probing
a laser beam through the volume of the lattice and imaging the output. This
approach is advantageous because it allows the study of both linear and
non-linear phenomena, depending only on the probe beam intensity.

For the linear observations a low power continuous wave 633 nm laser
beam was used as probe. A large number of different lattices were studied
until “rogue” events were observed as seen in Fig.4.4b. The corresponding
“rogue” event intensities profile is shown in Fig.4.4c and the distribution of
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the intensities, in semilog scaling, in Fig.4.4d and permit to conclude that
this signal cannot be anything else than an optical rogue wave, contiguous
to the definition of the phenomenon [15,23,27,36].

An obvious question arises as of the role of nonlinearity in the same pro-
cesses. For answering this question experimentally we increased the intensity
of the probing radiation (using high power femtosecond pulses) exciting thus
nonlinear modes through Kerr nonlinearity. In Fig.4.5 one can observe the
total beam, Kerr-induced, self-focusing in the bulk of a glass without any lat-
tice inscribed in it as the input beam power is increased from (a) to (d). On
the contrary when the same intense beam goes through a glass with a lattice
inscribed in it things are considerably different. At the limit of small non-
linearity, around the critical power, although an amplification of the waves
already existing in the linear regime is observed, the linear RW statistics
are not modified. This is shown in Fig.4.6(a) where linear RWs are further
amplified maintaining though their intensity aspect ratio compared to the
neighboring lower level waves. As the input power is increased gradually
also the low level waves are amplified as well resulting to a small amplitude
multi-filamentation image, Fig.4.6(b). Further increase in the input beam
power, and thus higher nonlinearity, results to the saturation of the intensity
of all modes, starting from the higher to the lower ones, since higher order
-defocusing- nonlinearities lead to intensity clamping [44]. This is shown in
Fig.4.6(c) where a higher input laser power pushes many small waves up to
the clamping intensity. From the above it is clear that the generation of
RWs in the strongly scattering system is a result of linear interference mech-
anisms while nonlinearity will either accentuate the phenomenon, when it
is relatively small, or completely destroy the RW statistics when it is high.
An interesting report at the filamentation and intensity clamping regime
discussing filamentation merging and RW events has appeared recently [45].

38



4.2. EXPERIMENTAL RESULTS

Figure 4.4: Experiments: (a) Schematic representation of the experimental setup.
A monochromatic coherent plane wave laser beam propagates from the left to right
(red arrow) in the glass sample where a five layer random LHs lattice is inscribed.
An imaging system allows recording the beam profile at various propagation planes.
(b) Experimental observation of an optical rogue wave as it is formed within the
LHs lattice (appearing at the 4th layer; almost at the center of the image). The
RW is clearly distinct as its intensity is significantly greater from every other wave
in the surrounding area in the lattice as seen also at the corresponding intensity
profile (c). (d) Intensities distribution (in semilog scaling); rogue waves presence
introduces a substantial deviation from the exponential distribution (Rayleigh law)
appearing as a tail at high intensities.
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Figure 4.5: Experimental results on the nonlinear propagation of an intense fem-
tosecond probe beam in the bulk of a glass without any lattice. The total beam
Kerr self-focusing can be clearly seen as the input laser power is increased from
(a) to (d).

Figure 4.6: Experimental results on the nonlinear propagation of an intense fem-
tosecond probe beam in the bulk of a glass with a LHs lattice inscribed in it. (a)
Under the effect of Kerr self-focusing at the limit of the critical power a linear RW
is further amplified maintaining its contrast from the surrounding waves. (b) As
the input power and nonlinearities are increased one can observe the appearance
of small scale multifilaments. (c) At even higher input powers the multifilaments
shown in (b) reach the clamping intensity (red peaks) and thus the RW statistics
are destroyed.
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Chapter 5

Optical fiber lattices

Small world networks have attracted great interest in the last decades
due to the very broad applicability to real-life problems ranging from social
networks, to physics, chemistry and biology [46–51]. Some of the unique
properties that arise in the small-world regime are robustness (high clus-
tering coefficient), combined with efficient transport properties (low average
path length) [52–54]. Quantum dynamics simulations on scale free networks
indicate a phase transition in the transport properties as one approaches the
thermodynamic limit [54–56]. Even though small-world networks have been
extensively studied focusing on diffusive properties and using a classical sta-
tistical description, wave-like propagation properties have not attracted con-
siderable attention yet. In this Chapter, the small-world concept is applied
to an optical or equivalently to a quantum mechanical system. In particular
we model an optical fiber lattice that exhibits small-world network topology.
The transport properties of this network are investigated and compared with
those of an ordered as well as a uniformly random network. The dynamics
of the system are governed by the amount of structural disorder present in
the network [18].

Experimental investigations of disordered optical lattices indicate that a
small amount of disorder is sufficient to lead to Anderson localization [16,
17,57–59]. In this case the excited wavepacket does not disperse but instead
remains partially localized due to the dielectric index disorder in the medium.
A different source for localization is nonlinearity: when the interaction of
the wavepacket with the medium is highly non-linear it can lead to self-
trapping [60, 61]. For example, when a laser pulse interacts with a highly
responsive medium, it can lead to self focusing and soliton formation [6, 62,
63]. Self-trapping is known to occur abruptly at a threshold which depends
on the system properties such as size and geometry [64–68].

In the present Chapter of this Thesis we investigate primarily the impact
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of structural disorder on the wavepacket dynamics on a 2D lattice. The spe-
cific form of disorder used leads to the formation of a small world network
lattice that is parametrized through a randomness parameter. Additionally,
we observe the effects that nonlinearity may induce, viz. that nonlinearity
rapidly leads to self-trapping, while structural disorder acts like a barrier
creating channels in which transport is favoured, leading to anomalous dif-
fusion [18]. Previous investigations on optical random media indicate that
nonlinearity can emerge from structural disorder in the form of branched
wave patterns [69]. In the current investigation we essentially disentangle
these two parameters and explore the possibility of tuning independently
localization due to structural disorder and due to self-trapping [18].

5.1 The small-world lattice

The physical system we are addressing consists of a lattice or network
of optical fibers that permits light propagation along the fibers plus some
interfiber interaction due to evanescent coupling. In Fig.5.1, we show an
ordered square lattice, where the points correspond to the optical fibers po-
sition on the x-y plane. The fibers extend along the z direction, which in a
paraxial approximation corresponds to time [70]. Initially, one of the fibers
is excited and by measuring the intensity profile of the lattice for different
cuts along the z-axis, one acquires the dynamics of the excited wavepacket
on the lattice.

Starting from an ordered lattice, structural disorder is inserted to the
system by applying a Monte-Carlo criterion. A disorder parameter ρ is in-
troduced, which is the probability of moving a single point of the lattice to
a new position. Sampling the whole lattice, the points are repositioned by
decision (whether a random check between 0 and 1 is larger that ρ) to a new
random position in the plane. The case ρ = 0 is the fully ordered case, while
for ρ = 1 all the points have been repositioned at arbitrary positions yield-
ing a uniform random network. In the intermediate regime 0 < ρ < 1 the
lattice is partially disordered; we will show that a small amount of structural
disorder is sufficient for the emergence of the small-world properties.

We can construct a network out of a 2D lattice by assigning the fibers
as the network nodes while the interaction between the optical fibers are the
edges. This treatment yields a weighted network [71], where the weight of
the edges depends on the distance between the points on the 2D plane in the
following way:

wij = A · e−(rij−r0) (5.1)
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Figure 5.1: (a)The 2D lattice of the optical fiber position for different values of
the structural disorder parameter ρ. The corresponding network configurations in
the (b)spring and (c)circular embedding.

where wij is the weigth that links any two fibers labeled i and j respectively,
rij is the distance between these fibers, r0 a characteristic lenght scale and
A is weight amplitude [18]. This form of edges models reasonably well the
fiber crosstalk, i.e. the tunneling probability between fibers. In Fig.5.1b we
show the networks that arise from the 2D lattices for the cases where ρ = 0,
ρ = 0.1 and ρ = 1. To facilitate comparison between the three networks the
edges are shown only above a certain weight (0.01%). The algorithm used
to optimize the network topology is the spring embedding, which assumes a
ball-string relationship between the nodes of the system.

In the ordered case (ρ = 0) the network is a 2D manifold corresponding
precisely to the 2D lattice. For a small amount of structural disorder (ρ =
0.1) a few nodes have been repositioned, creating holes on the one hand
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and patches of increased density on the other. This treatment leads to the
formation of local clusters, making some of the nodes of the network highly
connected and others more disconnected. This is the key feature of the
network, which as we will see has an significant impact on the dynamics. In
the fully random case (ρ = 1) the network has been essentially fractured to
smaller fractions, which are very weakly connected among them. The exact
value that the network passes to the fractured regime relates to the site and
bond percolation threshold of the network [72,73].

A more common network graphical representation is the circular embed-
ding, shown in Fig.5.1c. The nodes are placed on a circle and the corre-
sponding edges are drawn between them. Then instead of repositioning the
nodes like in the real 2D lattice and in the spring embedding, they are kept
in fixed positions and instead the edges are redirected. From this point of
view ρ can also be understood as the network rewiring probability. It has
been shown that by following this procedure small-world properties arise at
very small ρ’s [52]. Using this approach we can analyse the disordered 2D
lattice as a weighted network. This method allows us to make a direct con-
nection between the lattice transport properties and the network topology
and simplify the simulations by mapping the 2D lattice plane to a reduced
adjacency matrix.

To quantify the structural local change of the lattice as a function of in-
creasing structural disorder, we calculate the correlation length for different
ρ’s. This can be achieved by calculating the standard deviation of the corre-
lation function of the disordered network, which is normalized with respect
to the ordered lattice. In order to have a statistically good ensemble, we
make 50 realizations for 500 different steps of the disorder parameter ρ. The
resulting correlation length decays rapidly as a function of the disorder pa-
rameter, as can be seen in Fig.5.2. To extract consistently a single value for
the correlation length decay, we fit with a single exponential function (red
curve) yielding ρl = 0.28. As we discuss also below this value signals the
regime between ordered and random network [18]; this feature emerges in
both the structural and dynamical aspects of the system. The corresponding
offset of 0.26, observed for larger values of the disorder parameter is due to
the finite system size (400 points).
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Figure 5.2: The correlation length of the network as a function of the disorder
parameter ρ. A exponential fit (red line) yields a characteristic ρl = 0.28.

5.2 Dynamics of electromagnetic wavepacket

propagation

To simulate the dynamics of the excited wavepacket on the 2D lattice use
the discrete nonlinear Schrödinger equation (DNLS) [64,66,67,74]:

i
dψn
dt

=
∑
m

Vn,mψm − χ|ψn|2ψn (5.2)

where V is the network adjacency matrix, which contains the weights be-
tween the vertices. The second term introduces anharmonicity with the non-
linearity parameter χ. The DNLS equation is an ideal choise to depict the
evolution, because it can describe realistically the tunneling of a wavepacket
through optic fibers and allows one to explore the influence of nonlinearity
on the dynamics. The resulting dynamics are displayed on Fig.5.4, where
the color values indicate the amplitude of wavepacket between 0 (blue) and
1 (white) [18]. Initially the wavepacket is placed in the central lattice site;
in an experiment, this initial condition corresponds to the excitation of a
single fiber. In the vertical sections we show selections of snapshots from
the evolution of the wavepacket, while on the right hand side we portray
the wavepacket mean square displacement (MSD) as a function of time. In
the ordered lattice with no nonlinearity (Fig.5.4a), where ρ = 0 and χ = 0
the wavepacket spreads ballistically. This is quantified through the function
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f(t) = Dtα where D is the diffusion coefficient and α the diffusion exponent.
In the ballistic case, the fit yields α = 2 (blue line). We note that these re-
sults correspond to finite system behaviour that stop every time light reached
the edge fibers due to diffraction.

We also examine the influence of nonlinearity in the ordered lattice (Fig.5.4b).
As expected from previous investigations [64, 66–68], self-trapping of the
wavepacket occurs abruptly above a certain value of the nonlinearity pa-
rameter χ. This is characteristically depicted on the dynamics, as can be
seen from the snapshots for χ = 10. Even though the wavepacket initially
spreads (t=1), due to the intense self-interaction introduced by the nonlin-
ear term it is then trapped to the initial site (t=3). Additionally, a small
fraction of the wavepacket spreads through the rest of the lattice. The MSD
of the wavepacket is shown for different values of the nonlinear parameter
(χ = 0, .., 10) on the right hand panel [18].

One can see that the wavepacket exhibits ballistic behaviour for smaller
values of the nonlinearity parameter, whereas a rapid change of behaviour
occurs for greater χ’s. This feature becomes clear when plotting the fitted
diffusion coefficients α as a function of the nonlinearity parameter (Fig.5.3).
When increasing nonlinearity, the system changes from ballistic behaviour
to partial delocalization and finally to self trapping. A sigmoidal function fit
(stretched exponential - red line) yields the characteristic value of χc = 7.5,
which signifies the passing to the self-trapped regime. This feature has been
studied extensively in previous investigations, where it was shown that the
value χ critically depends on the system size and geometry [64–68]. Here, we
see that this property also holds for the 2D lattice and additionally discover
that a small fraction of the wavepacket is not trapped. In the simulations
we use open boundary conditions; we verified that implementing periodic
boundary conditions does not significantly alter our results and simply shifts
the critical nonlinearity value χc as shown in 1D networks [64], since we
essentially limit our studies on the early wavepacket dynamics, where the
probability amplitude is nearly zero near the boundaries. Furthermore, simi-
lar effects are observed for the system size: self-trapping is known to depend
critically on system size [64], which again can shift in our system the critical
nonlinearity χc in an analogous way to the 1D system.

An alternative way to localize the excitation is by incorporating disor-
der, which has been previously observed theoretically and experimentally
in optical lattices [16, 17, 57–59]. Using the procedure described in Fig.5.1,
structural disorder is introduced to the system and the dynamics is examined
in the regime in between an ordered lattice and a completely random one.
In Fig.5.4c we show snapshots from the dynamics in a lattice with disorder
parameter ρ = 0.3. Naturally, structural disorder acts like a barrier, slowing
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down dramatically all dynamics while creating new channels of transport as
can be seen clearly in the latter snapshots (t = 105). As a result the diffusion
coefficient decreases, in this case to α = 1.14 (the traces shown in the disor-
dered cases are averaged over 50 different lattices). For a completely random
lattice (Fig.5.4d - ρ = 1) we observe that the wavepacket remains localized
within the observed timescales and exhibits sub-diffusion with corresponding
diffusion coefficient α = 0.29. This behaviour is quantified in Fig.5.5, where
is shown the diffusion coefficient α as a function of the disorder parameter
ρ. We consider this as the main result of the paper: the system passes from
normal diffusion to sub-diffusion with increasing structural disorder, even
though nonlinearity is absent. A characteristic value of ρc = 0.22 is extracted
from the fit (stretched exponential - red line), which signifies the passage to
sub-diffusive behaviour [18]. The residual offset (α0 = 0.23) is due to trap-
ping of the wavepacket in the initial position, which exhibits Anderson-like
localization. The transition to sub-diffusion signifies the passage from an
ordered network to a small-world regime. Finally including a combination
of both nonlinearity and structural disorder leads to very strong localization
(α = 0.18 ) as shown in Fig.4e for the corresponding critical values ρc and
γc [18].
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Figure 5.3: The diffusion coefficient α as a function of the nonlinearity parameter
χ. For small χ’s the system exhibits ballistic behaviour, whereas for larger ones
(χc = 7.5) the wavepacket remains partially localized and finally becomes self-
trapped.
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Figure 5.4: The dynamics of the wavepacket and the corresponding mean–square–
displacement (MSD) as a function of time. (a) The linear case in the ordered
lattice. (b) Nonlinearity induces self–trapping in the ordered lattice. In presence
of structural disorder, the system passes from normal diffusion (c) to sub–diffusion
(d). Finally the combination of nonlinearity and disorder leads to strong localiza-
tion (e).
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Figure 5.5: The diffusion coefficient α as a function of the disorder parameter
ρ. For small ρ’s the system exhibits normal diffusion, whereas for larger ones
(ρc = 0.22) it switches to sub-diffusion.

5.3 Discussion

In the present Chapter is discussed a simple model describing the dynam-
ics of a wavepacket in an 2D lattice, in the presence of structural disorder
and nonlinearity. In a numerical experiment, the 2D lattice can refer to the
tips of an optic fiber network; the dynamics examined refer to the excitation
of one fiber and recording the intensity of the surrounding ones.

In an ordered lattice with no nonlinearity, we observe, as expected, that
the system exhibits ballistic behaviour. Non-linearity is introduced through
the DNLS equation, which lead to self-trapping for values larger than χc =
7.5. On the other hand, structural disorder is introduced to the system
by mapping the 2D lattice to a network, and repositioning the nodes with a
Monte-Carlo criterion and probability ρ. As structural disorder increases, we
observe a transition with regard both the structural and dynamical properties
of the system at about ρ = 0.25. The correlation length decreases rapidly
(ρl = 0.28) and a passage is noted from normal diffusion to sub-diffusion (ρc =
0.22). From the network analysis this result is understood as a signature of
the small-world regime: strongly connected local clusters are created, which
are weakly connected among them, and therefore channels of preferential
transport arise, leading to sub-diffusion.

Numerical results indicate that the combination of structural disorder
with nonlinearity leads to almost complete localization of the wavepacket,
for values bellow the self-trapping threshold (χc = 7.5), which is in agree-
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ment with previous investigations [67, 68]. It would be very illuminating to
perform the experiments discussed here and actually see whether one can
control diffusion through the lattice geometry (disorder) and laser intensity
(nonlinearity), and probe experimentally the small-world regime. Addition-
ally, it would be interesting to extend the same line of investigation to differ-
ent complex network topologies, such as the apollonian networks, in which
is known that one can observe quantum phase transitions of light [54–56].
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Chapter 6

Active plasmonic systems

In this Chapter we present a well known light-matter interaction effect
called surface plasmon polaritons (SPPs). SPPs are electromagnetic excita-
tions propagating at a interface between a dielectric and a metal, evanescent
confined in the perpendicular direction. At optical frequencies, the metal’s
free electrons can sustain, under certain conditions, oscillations; the SPPs
can arise via the coupling of this electron oscillation with an electromagnetic
field. Subsequently, the existence of plasmons is characteristic for the in-
teraction of metals with light [75–79]. What makes the plasmons of current
interest is their ability to confine light to nanoscale regions, i.e. much smaller
that the wavelength of light, resulting to sub-wavelength optics.

In addition, many innovative concepts and applications of metal optics
have been developed over the past few years. Two commonly used configu-
rations for plasmon excitation are the Kretschmann - Raether and the Otto
configurations. In the first, a thin metal film (40-70nm) is sandwiched be-
tween two dielectrics with different refractive indexes, with a incident EM
wave hitting the denser dielectric. In the second, viz. Otto configuration,
the denser dielectric and the metal sandwich the lighter medium. [75,77–80]

In this Chapter we present the fundamentals of SPPs for a single flat
interface. Taking as a starting point the wave equation derived by Maxwell’s
equations, we show that a dielectric-metal interface can support plasmon
modes only excited by TM polarization EM wave. Additionally, we calculate
the SPPs dispersion relation, the spatial profiles of the electric and mag-
netic fields as well as the propagation and penetration lengths. Furthermore,
we discuss about the excitation of SPPs using the Kretschmann - Raether
configuration and finally, we introduce active (gain) dielectrics, instead of
passive dielectrics, and show analytically as well as numerically using COM-
SOL multiphysics software, how the dispersion relations is changed as well
as the enhanced of the SPPs propagation length.
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6.1 Surface plasmon polaritons

In order to investigate the physical properties of the SPPs, we apply the
Maxwell equations to a flat interface between a metal (conductor) and a
dielectric (insulator). As a starting point, we may use the time dependent

wave equation for the electric field ~E, derived by free charges and currents
Maxwell equations, that is [

∇2 − ε

c2

∂2

∂t2

]
~E = 0 (6.1)

where we have assumed negligible variation of the dielectric permittivity
profile ε(~r) over distances on the order of optical wavelength and c the light
velocity in vacuum [75,77].

We solve the equation (6.1) separately in regions of constant ε, viz. solve
separately for metal and for dielectric, thereafter the obtained solutions have
to been matched using appropriate boundary conditions [75]. Firstly, we

assume a harmonic time dependence of the electric field, viz. ~E(~r, t) =
~E(~r)e−iωt, as a result the equation (6.1) is modified to the Helmholtz equation
(6.2) [

∇2 + k2
0ε
]
~E(~r) = 0 (6.2)

where k0 = ω/c is the wave vector of the EM propagating wave in vacuum.
We are working on a Cartesian orthocanonical system, where the interface

between metal and dielectric is located at z = 0. In addition, we assume, for
simplicity, an one dimensional problem, i.e. ε depends only on one spatial
coordinate. Specifically, the waves propagate along the x-direction of the
Cartesian system and show no variations in the perpendicular (in plane y-
direction), as a result we have ε = ε(z) [75]. The geometry that is described
above, is illustrated in Fig.6.1

Figure 6.1: Definition of a planar waveguide geometry. The surface waves propa-
gate along the x-direction in a Cartesian orthocanonical coordinate system.
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Since we are interested only in surface waves, we apply our theory only to
the interface, i.e. in the plane for z = 0. Subsequently, the propagating wave
can be described as ~E(x, y, z) = ~E(z)eiβx, where β is a complex parameter
called plasmon propagation constant of travelling surface waves. Substituting
this expression in the Helmholtz equation (6.2), yields to [75]

∂2 ~E(z)

∂z2
+
(
k2

0ε− β2
)
~E(z) = 0 (6.3)

Naturally, a similar equation exists for the magnetic field ~H [75], namely

∂2 ~H(z)

∂z2
+
(
k2

0ε− β2
)
~H(z) = 0 (6.4)

We are going to use the equations (6.3) and (6.4) for the general anal-
ysis of guided EM modes in waveguides. Since we are interested in spatial
field profiles and dispersion relation of the propagating surface waves, we
are going to use the curl Maxwell equations (1.42) and (1.43) together with
the relation (1.45); In addition, we use also the following properties for the
partial derivatives [75]

• Harmonic time dependence: ∂
∂t

= −iω

• Propagation along x-direction: ∂
∂x

= iβ

• Homogeneity in y-direction: ∂
∂y

= 0

Subsequently, we obtain a close set of coupled differential equations for the
components of the electric ~E and magnetic ~H fields, that is

∂Ey
∂z

= −iωµ0Hx (6.5)

∂Ex
∂z
− iβEz = iωµ0Hy (6.6)

iβEy = iωµ0Hz (6.7)

∂Hy

∂z
= iωε0εEx (6.8)

∂Hx

∂z
− iβHz = −iωε0εEy (6.9)

iβHy = −iωε0εEz (6.10)

where ε0 and µ0 are the vacuum permittivity and permeability respectively.
Having the governing equations (6.5)-(6.10) at our disposal, we proceed

to investigate separately two different EM waves polarizations, viz. the trans-
verse magnetic (TM) and transverse electric (TE) modes. Furthermore, for
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our analysis we use the simplest geometry sustaining SPPs, that is, a single
flat interface, as Fig.6.2) indicates, between a dielectric and a conductive
material (metal) with complex (in general) permittivities εd and εm respec-
tively. The dielectric is located in the upper half space (z > 0) and the real
part of its permittivity εd is positive (Re [εd] > 0), on the other hand the
metal is located in the below half space (z < 0) and its permittivity εm has
negative real part, viz. Re [εm] < 0. As we mentioned, we are interested
in surface waves, subsequently we want to find propagating waves solutions
with evanescent decay behaviour in the perpendicular axis z. We are going
to calculate wave solutions in dielectric and metal spaces separately, and af-
terwards we have to match the solutions at z = 0, since we are looking for
surface waves at the interface. The matching boundaries conditions which
are going to be used for matching the two solutions, are depended on the
polarization of the incident EM waves, viz. TM or TE polarization.

Figure 6.2: Geometry of SPP propagation at a single interface between a metal
and a dielectric.

6.1.1 Transverse electric (TE) polarization

First of all, we investigate TE mode EM waves. In this polarization,
the propagating component of the electric field vanishes resulting to ~E =
(0, Ey, 0), whereas for the magnetic field we have ~H = (Hx, 0, Hz). According
this condition and after some calculations, the governing equations (6.5)-
(6.10) are simplified to a coupled system of differential equation comprised
by the following three equations

Hx =
i

ωµ0

∂Ey
∂z

(6.11)

Hz =
β

ωµ0

Ey (6.12)

∂2Ey
∂z2

− (β2 − k2
0ε)Ey = 0 (6.13)
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Consider a flat interface between a dielectric and a metal, as illustrated
in Fig.6.2, and surface waves travelling in x direction, viz. (E(x, y, z) =
E(z)eiβx); the equations (6.11) - (6.13) yield to the following solutions for
the fields components in both half spaces (z > 0 and z < 0)

• Solutions in dielectric (z > 0 and ε = εd)

Hx = −A ikd
ωµ0

eiβxe−kdz (6.14)

Hz = A
β

ωµ0

eiβxe−kdz (6.15)

Ey = Aeiβxe−kdz (6.16)

• Solutions in metal (z < 0 and ε = εm)

Hx = B
ikm
ωµ0

eiβxekmz (6.17)

Hz = B
β

ωµ0

eiβxekmz (6.18)

Ey = Beiβxekmz (6.19)

where kd, km the wavenumbers in dielectric and metal respectively given by
the equations (6.20) and (6.21)

k2
d = β2 − k2

0εd (6.20)

k2
m = β2 − k2

0εm (6.21)

A and B are constants, which are going to be determined by applying the
matching conditions, i.e. continuity of Ey and Hx at the interface (z = 0);
subsequently, this requirement yields to the conditions

A = B (6.22)

A(kd + km) = 0 (6.23)

According the constrain for evanescent surfaces waves, the real part of both
wavenumbers kd and km has to be positive, subsequently the condition (6.23)
is satisfied only for A = B = 0. As a result, SPPs modes cannot be supported
in TE polarization [75] since the equation (6.14)-(6.19) become zero.
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6.1.2 Transverse magnetic (TM) polarization

We proceed with TM polarization EM waves, that is, the propagating
component of the magnetic field vanishes i.e. ~H = (0, Hx, 0) and for the elec-

tric field we have ~E = (Ex, 0, Ez). Substituting this polarization condition
to central equations (6.5)-(6.10) we obtain

Ex = − i

ωε0ε

∂Hy

∂z
(6.24)

Ez = − β

ωε0ε
Hy (6.25)

∂2Hy

∂z2
− (β2 − k2

0ε)Hy = 0 (6.26)

Consider again the flat interface between a dielectric and a metal as shown
in Fig.6.2 and surface waves travelling in x direction (E(x, y, z) = E(z)eiβx),
the equations (6.24) - (6.26) yields to the following solutions for the fields
components in both half spaces (z > 0 and z < 0)

• Solutions in dielectric (z > 0 and ε = εd)

Ex = A
ikd
ωε0ε

eiβxe−kdz (6.27)

Ez = A
β

ωε0ε
eiβxe−kdz (6.28)

Hy = Aeiβxe−kdz (6.29)

• Solutions in metal (z < 0 and ε = εm)

Ex = −B ikm
ωε0ε

eiβxekmz (6.30)

Ez = −B β

ωε0ε
eiβxekmz (6.31)

Hy = Beiβxekmz (6.32)

where the wavenumbers kd and km are given by the equations (6.20) and
(6.21) respectively. The constants A and B will be determined by matching
the solutions at the interface (z = 0) with the appropriate boundary condi-
tions, viz. continuity of the magnetic component Hy and continuity of the
electric flux density D = εiEz, where i = d,m for dielectric and metal respec-
tively. Substituting these matching condition in the solutions (6.27)-(6.32)
we obtain the relation

kd
km

= −εm
εd

(6.33)
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In order to keep the evanescent behaviour in z direction, the real part of
wavenumbers kd and km has to be positive, that yields to the condition

β2 > k2
0εi (i = d, m) (6.34)

In addition, the condition of equation (6.33) states that SPPs exist only at
interfaces between materials with opposite signs of real part of their permit-
tivity, for instance between an insulator (dielectric) and a conductor (metal).

We proceed with the calculation of dispersion relation for SPPs propa-
gating at the interface between the two half spaces of Fig.6.2. Combining the
equations (6.20) and (6.21) with the condition (6.33) we obtain the dispersion
relation for the SPP wavenumber β, that is [75,77,79]

β = k0

√
εdεm
εd + εm

(6.35)

where k0 = ω/c the light wavenumber in vacuum. In addition, we can also
define the SPPs effective refractive index nsp

nsp =
β

k0

=

√
εdεm
εd + εm

(6.36)

as well as the SPPs wavelength λsp, that is

λsp = nspλ0 = λ0

√
εdεm
εd + εm

(6.37)

Note that the expressions (6.35) - (6.37) hold either for real or for com-
plex permittivities εd and εm, where the imaginary part in the permittivity
accounts either for losses or gain of SPPs energy.

6.2 Characteristics of surface plasmon polari-

tons (SPPs)

The basic characteristics of SPPs are the dispersion relation β of equa-
tion (6.35), the propagation length L and the penetration length td; in this
Section, we analyse and discuss those characteristics. Since we are dealing
with metals, we need a permittivity function for them; we use the Drude-
Sommerfeld theory (or Drude model) for metals [75, 79], according with we
obtain the following frequency dependent permittivity function for metals

εm(ω) = εh −
ω2
p

ω2 − iωΓ
(6.38)
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where εh is a dimensionless variable showing the relative permittivity at
infinite frequency, ωp is the plasma frequency corresponds to the electrostatic
electrons oscillation frequency, Γ is measured in frequency units and denotes
the collision frequency which accounts for metal losses and ω the angular
frequency of the incident EM wave. The first three variables (εh, Γ, ωp) are
constants for a given metal. In the following analysis, we use silica glass as
an insulator and silver as a conductor, with parameters given by the Table
6.1

Table 6.1: Values of parameters for disperdion relation diagram.

Parameter Value
εd 1.69
Γ 1.018 · 1014 rad/sec
ωp 1.367 · 1016 rad/sec
εh 9.84

Substituting the metal’s permittivity given by the Drude model of equa-
tion (6.38) with the values of Table 6.1 in the dispersion relation (6.35), we
obtain the dispersion relation diagram shown in Fig. 6.3, The dashed-dotted
black line shows the dispersion relation in the dielectric (given by the well
known relation k = ω/c), the solid blue curve denotes the real part of the
plasmon dispersion relation β, whereas the broken red line indicated the
imaginary part of the β. The real part β determines the SPPs effective index
as well as the SPP wavelength (as they are given by the equations (6.36)
and (6.37) respectively), while the imaginary part β accounts for the damp-
ing of the SPPs energy as they propagate along the interface. Finally, the
green circles shows the characteristic plasmon frequency ωsp which is given
by the equation (6.39). Furthermore, in the Fig.6.3 all the wavenumbers are
normalized to kp ≡ ωp/c and the frequency to the plasma frequency ωp.

There are three interesting regimes of frequency ω in the dispersion re-
lation curve of Fig.6.3. First of all, the most interesting regime is when
β takes its maximum value, which is called characteristic surface plasmon
frequency ωsp. This characteristic frequency ωsp can be calculated by de-
manding β → ∞ and assuming a lossless Drude metal, i.e. Γ = 0, resulting
to Im [εm] = 0. In this sense and substituting the ω by ωsp, the dispersion
relation of equation (6.35) yields to the ωsp equation (6.39).

ωsp =
wp√
εh + εd

(6.39)
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Figure 6.3: Dispersion relation (6.35) of SPPs at the interface between a Drude
metal and a dielectric. The blue solid line denotes the real part of the dispersion
relation whereas the broken red line shows the imaginary part of the dispersion
relation. The dashed-dotted black line indicates the light dispersion relation in
the dielectric and finally the green circles is for the surface plasmon frequency ωsp

The other interesting regime is for sufficient small frequency, i.e. ω < 0.2ωp,
where the SPP constant β is close to light wavenumber k0; the surface waves
of this regime are known as Sommerfeld-Zenneck waves. Finally, at high
frequencies the metal is transparent to the EM radiation, subsequently SPP
modes cannot be supported at these frequencies.

As mentioned earlier, the most interesting regime is when ω of the EM
approaches the ωsp; in what it makes this regime interesting is that the SPPs
propagation constant goes to infinitive (β →∞) and the group velocity goes
to zero (υg = ∂ω/∂β → 0), that reveals the electrostatic behaviour of this
mode and it is called surface plasmon mode.

Due to ohmic losses in the metal, characterized by the imaginary part of
the the metal permittivity εm(ω) (for Γ 6= 0), the energy carried by an SPP
decays exponentially as the SPP propagates along the planar dielectric-metal
interface. The 1/e decay length, called energy propagation length L and it is
determined by the imaginary part of the SPP wavenumber β as the equation
(6.40) describes

L =
1

2Im[β]
(6.40)
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Naturally, there is a similar expression for the propagation length the
electric field LF , read as

LF =
1

Im[β]
(6.41)

In the visible regime a typically propagation length of the SPPs intensity L
is about 10µm to 100µm.

Finally, we would like to know how deeply the SPPs EM field penetrates
to the dielectric or to the metal; thus we define the field penetration length ti
in the dielectric (i = d) or in metal (i = m), which is given by the equation

ti =
1

k0

Re

[√
εd + εm
−ε2

i

]
(for i = d, m) (6.42)

6.3 Excitation of surface plasmon polaritons

(SPPs) at planar interfaces

We have already examined about the conditions that are needed in order
to have SPP modes, but we have not discusses anything of the excitation
of such modes. In this Section, we investigate the excitation of SPPs in a
planar interface between a dielectric and a metal. We describe an excitation
method and thereafter we simulate, using COMSOL multiphysics software,
the excitation as well as the propagation of SPPs. In addition, we calculate
the dispersion relation with COMSOL and compare it with the analytical
findings obtained by equation (6.35) and shown in Fig.6.3.

There are two commonly used configurations, namely Kretschmann-Raether
and Otto configurations shown in Fig.6.4a and in Fig.6.4b respectively. In
the first (6.4a), a thin metal film (40 − 70nm) is sandwiched between two
dielectrics with the incident EM wave hitting initially the optical denser
medium. In the Otto configuration (6.4b), the denser dielectric and the
metal sandwich the lighter medium, with the incident EM wave hitting also
the denser dielectric first [75,78–81].

In this study, we use the Kretscmann-Raether configuration of Fig.6.5,
that is, a metal of thickness d and permittivity ε2 is sandwiched between two
dielectric layers with permittivity ε1 and ε3 respectively, with the precondi-
tion ε1 > ε3. In addition, a plane EM wave source with TM polarization has
been located in the first medium; the wave vector of the incident TM wave
is k1 and the refracted wave in the next two layers are k2 and k3 respectively.
The permittivity of the metal is frequency dependent and given by the Drude
model of equation (6.38). In our analysis we use silver and two different kinds
of silica glass; Table 6.2 denotes the parameters used.
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Figure 6.4: Excitation of surface plasmons (SPPs) using the ATR method, in the
(a) Kretscmann-Raether configuration (b) Otto configuration.

Table 6.2: Values of parameters for SPPs excitation.

Parameter Value
ε1 2.25
ε3 1.69
d 50nm
Γ 1.018 · 1014 rad/sec
ωp 1.367 · 1016 rad/sec
εh 9.84

In Kretscmann-Raether as well as in Otto configurations, the method that
is used for exciting SPPs is called attenuated total reflectance (ATR) method.
When an EM wave is propagating in a dielectric and is made incident on the
metal film, a part of the light is reflected back into the dielectric whereas
the other a part is propagating in the metal, with phase velocity parallel
to the interface, in the form of an inhomogeneous EM wave [75, 79]. This
inhomogeneous EM wave decays exponentially in the direction perpendicular
to the dielectric-metal interface and is therefore an evanescent wave. If the
metal film is sufficiently thin (less than 100nm for the light in visible and
near infrared part of EM spectrum), the evanescent wave penetrates through
the metal and couples with a surface plasmon at the outer boundary of the
metal film. This is the most famous method for SPPs excitation called ATR
method.

The interaction between a light wave and a surface plasmon in the ATR
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Figure 6.5: A waveguide (layer structure) based on Kretscmann-Raether configu-
ration and used for surface plasmon excitation

method can be investigated using the Fresnel multilayer reflection theory
[75, 78, 79, 81]. Consider a layer with Kretscmann-Raether configuration, as
illustrated in Fig. 6.5, with ε1 > ε3, which is illuminated by a TM EM wave
with impingement angle θ and wavenumber k0. In the below we are going to
calculate the reflectivity coefficient R. In these terms, we are interested in
the minimum of R, that is, the most part of energy of the incident EM wave
penetrates through the metal and therefore excites the SPPs modes at the
outer side of the metal film.

First of all, we have to discuss a few things about the components of
k vector. The perpendicular in interface component kiz, where i shows the
media (i = 1, 2, 3), is given by

kiz =
√
k2

0εi − k2
x (6.43)

where kx the k−component along the interface, k0 the wave number of the
incident EM wave and εi the permittivity of the i media. In addition, the
two components of k0 vector can be analysed in terms of incident angle θ,
namely

k1z = k0n1 cos(θ) (6.44)

k1x = k0n1 sin(θ) (6.45)

where n1 =
√
ε1 the refractive index in the first dielectric.
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Because of the continuity of the electric field, as Snell law states, the
transverse in propagation component of the k vector, i.e. kix are preserved
across the media, thereby

kx = k1x = k2x = k3x = k0n1 sin(θ) (6.46)

where we used the relation of the equation (6.45).
According now the Fresnel theory [78,79,81], the total reflection response

A of the structure is given by

A =
ρ1 + ρ2 exp(−2ik2zd)

1 + ρ1ρ2 exp(−2ik2zd)
(6.47)

where ρ1 and ρ2 are the TM reflection coefficients at the two interfaces and
given by

ρ1 =
ε1k2z − ε2k1z

ε1k2z + ε2k1z

, ρ2 =
ε2k3z − ε3k2z

ε2k3z + ε3k2z

(6.48)

Finally, the reflectivity R (power reflection coefficient) of the structure is
given by the square of the absolute value of the reflection response A of the
equation (6.47), that is

R = |A|2 (6.49)

Furthermore, we proceed with numerical simulations using COMSOL
multiphysics software, for the excitation of SPPs at the planar interface
of Fig.6.5. In our analysis we use silver and two different types of silica
glass; Table 6.2 shows the values used; the angular frequency of the incident
monochromatic EM wave, which is used for SPP excitation, is ω = 0.22ωp.
First of all, we are looking for the optimal incident angle corresponds to the
minimum of the reflection response of the incident wave [75, 78–83]. Fig.6.6
indicates with solid blue line the theoretical prediction of the reflection re-
sponse based on equations (6.47)(6.49) as function of incident angle, whereas
the red circles are COMSOL’s results. At the resonance angle of θ = 66.74o

the maximum amplitude of SPPs is formed.
In Fig.6.7 we show the magnetic field distribution (xz plane) at resonance.

We have imposed Floquet periodic boundary conditions on both up and
down boundaries for a better representation of the plasmon [81]. The major
diagram is a color scaled image of the magnetic field while the top right
insert is the corresponding 3D plot and the bottom right insert diagram is
the characteristic profile of the magnetic field distribution along the z-axis,
across the materials [81].

We proceed with numerical calculation of the SPPs dispersion relation.
Using the same materials and the same geometry, we are sweeping the angular
frequency in terms of plasmon frequency ωp, viz. ω = 0.05ωp to 0.35ωp and
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Figure 6.6: Angle dependence for the Kretschmann-Raether configuration: Analyt-
ical calculations (blue line) and COMSOL simulation (red circles). The resonance
angle is at θ = 66.74o and corresponds to the angle for which the total reflection
response is minimum yielding to maximum amplitude of SPPs.

compute with COMSOL the plasmon propagation constant β. In Fig.6.8
we plot the dispersion relation (real and imaginary part respectively) for
the materials (both metal and dielectrics). Points are results obtained by
COMSOL simulations, solid lines are theoretical plots of equation (6.35),
while dashed lines are the light dispersion relation (ω = kc/n) in the two
dielectrics with refractive index n =

√
ε.

6.4 Active dielectrics in plasmonic systems

In this Section, we investigate SPPs properties, namely the SPP dis-
persion relation and propagation length in the presence of active (gain) di-
electrics. First of all, active materials are called the materials that have
complex permittivities, i.e. εd = ε′d + iε′′d, where the the imaginary part
ε′′d accounts for gain [80, 82, 84–90]. In our analysis we replace the second
(optical lighter) dielectric with an active dielectric and we define, for conve-
nience, the permittivity of this gain material by means of refractive index,
i.e. ε3 = (1.3 + iκ)2, where κ accounts for gain. Gain will counterbalance
the ohmic loss of the metal in the SPP propagation, subsequently the sign of
the imaginary part of permittivity, of an active material has to be opposite
as a regard to the sign of the imaginary part of metal’s permittivity (which
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Figure 6.7: Magnetic field Hz(x, z) at the resonance angle (COMSOL simulation).
The major diagram is a color scaled image of the magnetic field while the top right
insert is the corresponding 3D plot and the bottom right insert is the characteristic
profile of the magnetic field distribution along the z-axis, across the materials.

accounts for loss). Table 6.3 shows the parameters used for the analytical as
well as for the numerical calculations of SPPs properties in the presence of
an active dielectric.

Firstly, we study the dispersion relation in the presence of an active di-
electric. As mentioned, the dispersion relation of equation (6.35) holds also
for complex permittivities εd and εm. In Fig.6.9 we present the real and the
imaginary part of the SPPs dispersion relation β in the presence of a gain
material with κ = 0.007; for comparison, the real and imaginary parts of β
are shown, when a purely real ε3 is used, i.e. κ = 0. The red solid curve
and points are for the case where an active dielectric used and indicate the
analytical results based on equation (6.35) and the COMSOL results respec-
tively; the blue curve and points are for a pure real permittivity ε3 and show
again the analytical and numerical results respectively. The agreement be-
tween analytical results and COMSOL simulations confirm the correctness
of our numerical simulations.

There are two interesting results shown in Fig.6.9. First of all, the Fig.6.9a
shows that the introduction of an active dielectric shifts the curve of the real
part of dispersion relation towards a greater wavenumber β resulting to SPP
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Figure 6.8: Dispersion relation. The left diagram (a) is the real part of the dis-
persion relation. The dashed purple line denotes the light dispersion relation (k
vector) in the first dielectric whereas the dashed green line is the light dispersion
relation for the second dielectric. The blue solid line is the real part of disper-
sion relation of SPPs based on equation (6.35) whereas the red circles show the
COMSOL results. The right diagram (b) indicates the imaginary part of SPPs
dispersion relation based on equation (6.35). The blue solid line is the imaginary
part of dispersion relation of SPPs based on equation (6.35) whereas the red cir-
cles show the COMSOL results. In both diagrams (a-b) ωp and kp = ωp/c are
normalization constants.

with higher energy and intensity of EM field. Secondly, the Fig.6.9b indicates
that the gain material shifts the imaginary part of dispersion relation towards
a smaller imaginary part of β yielding to longer SPPs propagation length L,
regarding to the equations (6.40)(6.41) [80,84–86].

The previous results can be illustrated in the Fig.6.10, where we plot
the intensity of magnetic field obtained by COMSOL simulations for a pure
real permittivity ε3 (κ = 0) and for two active dielectrics with different gain
parameter, viz. κ = 0.002 and κ = 0.007. First of all, Fig.6.10 denotes the
magnetic field across the materials showing that the maximum amplitude
of the magnetic field is significantly greater as it has predicted by Fig.6.9a.
Moreover, the Fig.6.10b is the the magnetic field across the interface; as it is
expected (Fig.6.9b), the propagation length is enhanced by the introduction
of the active dielectric.

Investigating deeper the dispersion relation (6.35) deeper, we can see that
in the presence of complex dielectric permittivity, a root in the imaginary
part of β is revealed, in contrast to the case where passive dielectrics are
used, wherein the imaginary part of β is always non-zero. Subsequently,
the propagation length given by the equation (6.40) becomes infinity since
Im[β] = 0, resulting to SPPs propagation without losses. This is the most
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Table 6.3: Values of parameters for SPPs excitation in the presence
of active dielectric.

Parameter Value
ε1 2.25
ε2 −15.13− 0.93i
ε3 (1.3 + iκ)2

κ Varies from 0 to 0.0099
d 50nm
θ 66.74o
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Figure 6.9: Dispersion relation with the presence of active dielectric. The points
are the COMSOL simulations while the lines are analytical calculations based on
equation (6.35). The Left image shows the real part of β whereas the right image
the imaginary part. The red line and points are for gain materials with κ = 0.007
whereas the blue line and points are for a non-active dielectric i.e. κ = 0.

interesting result of this Section, since a lossless SPPs propagation cannot be
achieved without the presence of active materials. Furthermore, this loss-gain
counterbalance offers additional perspectives for the existence of Parity-Time
symmetry (PT) plasmonic systems.

Furthermore, we proceed with a numerical experiment using COMSOL,
in order to measure the SPP propagation length L, for different values of
gain κ, to quantify the dependence of L as function of the gain parameter
κ. In Fig.6.11 we show, on semilog scaling, the COMSOL results (points) as
well as the fits (solid lines) of the magnetic field intensity along the interface,
for a few values of gain. The fits estimate the slopes that correspond to the
propagation length; COMSOL findings for various gains are represented in
Table 6.4. As a result, as the gain κ increases, the SPPs propagate longer
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Figure 6.10: Intensity of the magnetic fields with and without presence of gain
dielectric. (Left) Magnetic field across the materials for dielectric with no gain
κ = 0 (blue line) same as in Fig.6.7 and for gain κ = 0.002 (green line) and
κ = 0.007 (red line). Dashed line indicate the metal boundaries. (Right) Magnetic
field on the interface for dielectric with no gain (blue line; bottom), and for gain
κ = 0.002 (green line; middle) and κ = 0.007 (red line; top).

along the interface. For instance, gain of 0.6% (imaginary part over real part
of refraction index) facilitates plasmon propagation by a factor of three. At
the limit when the imaginary part of the propagation constant tends to zero
(ohmic losses are counterbalanced by the gain), plasmons propagate without
losses and propagation length goes to infinity (the fit to an exponential curve
is not appropriate). This critical gain, obtained numerically with COMSOL,
gives a plasmon propagating at constant amplitude.

Table 6.4: Propagation length obtained by COMSOL simulations.

Gain κ Propagation length (µm) Gain κ Propagation length (µm)
0 5.7 0.009 53.9
0.002 6.9 0.0092 69.7
0.004 8.6 0.0094 99.3
0.005 10.0 0.0095 125.3
0.006 12.3 0.0096 169.5
0.007 16.3 0.0097 261.2
0.008 25.1 0.0098 564.7
0.0085 34.2 0.0099 ∞, constant amplitude

Finally, we plot in Fig.6.12 the propagation length L as a function of
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Figure 6.11: Plasmon
propagation length for
different gain values
κ: The blue solid
line denotes the the-
oretical prediction
based on equations
(6.35)(6.40) whereas
the green points are the
COMSOL simulations
obtained by the Table
6.4.
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Figure 6.12: Plasmon prop-
agation length for different
gain values κ: The blue solid
line denotes the theoretical
prediction based on equa-
tions (6.35)(6.40) whereas
the green points are the
COMSOL simulations ob-
tained by the Table 6.4.

gain parameter κ; the theoretical values obtain by the equations (6.35) and
(6.40) and they are plotted by solid line, whereas the numerical values ob-
tained by the Table 6.4 and they are shown by points. Obviously, there is a
critical gain in which the propagation length tends to be infinitive resulting
SPPs propagation without losses. This is the most interesting result of this
Chapter.
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Chapter 7

Conclusion and Outlook

In this Thesis, several topics regarding the EM waves propagation and
light-matter interactions, have been discussed. In this closing Chapter, I
present all interesting findings and I propose several promising continuations
along the research lines followed in this Thesis.

I have developed four methods for the description of light propagation
via two dimensional GRIN MMs (presented in Chapter 1). The first three
methods are bounded by the geometrical optics limit and they are ray-tracing
methods, i.e. the wave behaviour of light are neglected and the optical laws
have been formulated in geometrical terms; as a result the EM waves are
treated as rays. These geometrical optics methods yield analytical ray trac-
ing equations for given function of refractive indexes; I have computed ana-
lytically the ray tracing equation of motion for light propagation through an
LL as well as via an LH lens. The latter method that has been developed is
a numerical method called FDTD, which solves the Maxwell time dependent
equations, resulting to the time evolution of EM field through a media with
given functions of permittivity and permeability. The finding obtained by
the geometric optics methods are in agreement with those obtained by the
FDTD method, thus verifying the rightness of the methods. It will be im-
portant to generalize these methods in three dimensional space, in order to
solve more realistic problems for light propagation.

Having developed the mathematical tools for the description of EM waves
propagation via GRIN MMs, I have proceeded, in Chapter 2, with inves-
tigation of networks of such GRIN lenses. Specifically, light propagation
through specific configurations of LLs have been investigated, showing that
EM waveguides (LLW) can be formed by GRIN lenses. As an example of
LLWs, a beam splitter consisted of LLs has been presented.

The advantage of LLW compared to ordinary fibers is that the properties
of GRIN networks are derived by the properties of the unit lens which com-
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prises the networks. This is a meta-material approach, since we can perform
the desired macroscopic properties of a GRIN network by analysing the prop-
erties of each lens, which is the “atomic” unit of the network. As a result, it
will be very interesting to use LLW instead of usual fibers, since LLWs give
more control to light propagation. In addition, integrated photonic circuits
may be constructed using such GRIN networks.

In addition to ordered lattices, random networks of GRIN lenses have
also investigated. LLs and LHs have been arranged randomly comprising
a disordered network. Afterwards, the propagation of EM waves has been
investigated resulting to the onset of extreme events, such as branching flow
and optical rogue waves (RWs). Cases with different strength of lenses have
been studied; where the strength is given by the maximum difference of the
refractive index of lenses ∆n, compared to the background index, and it is
also related to the standard deviation σ of the lenses. In Chapter 3, I have
studied the weak limit, i.e. ∆n < 10%. Specifically, I have shown that in
EM waves propagation through a weak random network, which is consisted
of weak LLs in random positions, caustics formation can arise. An analytical
theory based on FPE has been presented, giving analytical results for the
statistical law which rules the position of the first caustic in such process.
This law is given by means of standard deviation of the optical potential and
holds for several wave sources, such as point and plane wave sources.

Future work may focus on the generalization of the caustic theory in
order to include the strong scattering limit, i.e. high standard deviation of
the random potential, viz. σ > 10%. Moreover, it will be interesting to see
how in the presence of nonlinearity, i.e. the Kerr effect, affects the caustics
formation as well as the location of the first caustic. In addition, there is an
endogenous difference between the theory and the numerical experiments. In
theory we assume a continuous delta-correlated random potential, however
our disordered networks are strongly correlated because there is free space
(with constant and known optical potential) between the lenses. An idea for
further investigation is to use a dichotomous noise instead of the white noise;
in such process, we may use Lev́y walk approach instead of Brownian walk.

Furthermore, in Chapter 4 the strong scattering limit, i.e. ∆n ∼ 30%, has
been investigated, showing that optical rogue waves can arise in the absence
of nonlinearity. In this Thesis, it has been proposed that the mechanism,
which is responsible for the onset of such extreme events, depends on the
strong scattering properties of the medium as well as of the level of disorder.
In addition, I have shown that the introduction of weak nonlinearity does
not affect neither the position nor the statistics of linear RWs, revealing that
the dominant role belongs to the linear nature of the the phenomenon.

It will be important to study the similarities and the differences between
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linear and nonlinear RWs. Furthermore, it will be interesting to find a
method in order to recognise linear from nonlinear RWs. In addition, since
the observed RWs are linear, there are several mathematical approaches for
investigation; for instance it will be interesting to analyse the eigenvalues of
the optical potential, where the RWs have been observed; we may see the
sign of RWs in the distribution of eigenvalues. Another idea is to approach
the system as a many body problem; therefore, in this sense, we may find a
strange or a limit cycle attractor which would be responsible for the existence
of such extreme events. Finally, as a future application, a random network
may be constructed in order to give a RW in a predefined position; this will
be important because such a network may be used for fabrication of hyper
focus lens.

In addition to GRIN lenses, I have studied in Chapter 5 light EM wavepack-
ets propagation through disordered optical coupled fiber lattices. A simple
model based on DNLS has been used for studying such propagation; the
aim of this investigation was to determine the effects of randomness and of
nonlinearity in the diffusive properties of such processes. We have found
that randomness and nonlinearity change the process from ballistic diffusion
to sub-diffusion regime. Further, the combination of both disordered and
nonlinearity yields to a much lower diffusion exponent.

For the random arrangement of the fibers, I have used a delta correlation
function, i.e. uncorrelated position of fibers, and I have also used a square
lattice in which the fibers have been arranged. It will be interesting to inves-
tigate how the diffusion properties will be changed if a different correlation
function, for instance exponential or power law correlation will be used and
if different boundaries of lattice will be applied, like circular, triangular or
honeycomb lattices. In my view, the diffusion exponent will be change con-
siderably, because it strongly depends on the topological properties of the
network. In addition, since the theory that has been developed in Chapter
5 is general, it will also be interesting to apply the presented model in other
physical and non-physical system (such as financial systems).

Finally, a well known light-matter interaction mode, called surface plas-
mon polaritons (SPPs), has been investigated in Chapter 6. The basic theory
for the description and for the understanding of such quasi particles has been
developed. Moreover, I have presented a method for the excitation of SPPs,
based on the ATR technique. Furthermore, active (or gain) dielectrics (di-
electrics with complex permittivity) have been introduced and it has been
investigated how these active materials affect the properties of SPPs (such as
the SPPs dispersion relation and the propagation length). The main result
of this analysis is that there is a critical value of gain, where the ohmic losses
of metal are counterbalanced by gain, resulting to infinite SPPs propagation
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(propagation without losses).
There are several promising ideas regarding plasmons, due to the fact

that SPPs are relatively new in the field of applied physics. First, it will be
interesting to investigate the PT symmetry in plasmonic systems in the area
where the loss has been counterbalanced by gain. Secondly, an analysis of two
or more interactive SPPs in the presence of active materials have not been
done yet (to my knowledge); it will be interesting to see if new properties
will arise in such a case. Finally, it has been shown that plasmonics GRIN
meta-materials can be formed [91–93]. That gives the opportunity to apply
the ideas about GRIN lenses, which have been discussed in this Thesis, in
plasmonic systems. For instance, plasmonic LL has been formed in Ref.
[92, 93], as a result LLW may be constructed in order to guide SPPs giving
much more control in SPPs propagation. In addition, if we are able to guide
SPPs, integrated plasmonic circuits may be formed as well as combinations
of plasmonic and photonic circuits giving much more advantageous optical
systems. Apart from plasmon LLW, it will be interesting to study SPPs
propagation in random media, such as those discussed in Chapters 3 and 4.
SPPs caustics as well as plasmon RWs may be found, opening a new very
promising “world” in plasmon physics.
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Appendix A

Hamiltonian ray tracing
method in quasi two
dimensional approach

We present the Hamiltonian ray tracing method for the quasi two di-
mensional (2D) approach. Starting with the optical Lagrangian L, which is
calculated in Section 1.1 and given by the equation (1.6), we proceed with the
calculation of the corresponding Hamiltonian. Finally we solve the Hamil-
ton’s equations to obtain a ray tracing equation of motion for al travelling
beam via a media with refractive index given by an arbitrary, radial depen-
dent, function n(r).

Assume a Lagrangian L by means of generalized coordinates qi, general-
ized velocities q̇i and time t; the standard way to calculate the corresponding
Hamiltonian H, in terms of generalized coordinates qi, conjugate momenta
pi and time t, is to apply the Legendre transform of equation (A.1) [7, 8], to
the Lagrangian L, that is

H =
N∑
i

q̇ipi − L (A.1)

Where N denotes the dimension of the problem (or the degrees of freedom)
and the dot indicated derivative with respect to time t. The conjugate mo-
menta are calculated by differentiating the Lagrangian with respect to the
generalized velocities q̇i [7, 8], thus

pi(qi, q̇i, t) =
∂L
∂q̇i

(A.2)

The velocities q̇i are expressed in momenta pi by inverting the expression
(A.2); thereafter the velocities are substituted in Legendre transformation
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(A.1) by momenta, resulting to a Hamiltonian in terms of generalized coor-
dinates and momenta qi and pi respectively.

The quasi 2D approach gives the opportunity to reduce the dimensions
(or the degree of freedom) of the problem, since in this approach one of the
spatial coordinates plays the role of time. In Polar coordinates the quasi
2D approach states that the role of time t belongs to the radial coordinate
r, subsequently, the only dependent coordinate is the angular coordinate φ.
As a result, we have an one dimensional mathematical problem, i.e. N = 1,
with Lagrangian and Hamiltonian having the forms L(φ, φ̇, r) and H(φ, pφ, r)
respectively, where the dot indicates differentiation with respect to r. The
conjugate momenta is given by the formula (A.2) for the Lagrangian (1.6),
that is

pφ =
∂L
∂φ̇

=
nr2φ̇√
1 + r2φ̇2

(A.3)

where n is the refractive index with radial dependence, i.e. n = n(r). Invert-
ing the expression (A.3), we obtain for the φ̇

φ̇ =
pφ

r
√
n2r2 − p2

φ

(A.4)

The last step for obtaining the desired Hamiltonian is to apply the Legendre
transformation of equation (A.1) with N = 1 to the Lagrangian of equa-
tion (1.6) and using the equation (A.4). As a result, we obtain the optical
Hamiltonian for the quasi two dimensional approximation, thus

H = −
√
n2r2 − p2

r
(A.5)

Since the Hamiltonian (A.5) is cyclic in φ, the conjugate momenta pφ
is constant. Subsequently, we can proceed our calculation by solving the
differential equation (A.4) by replacing the term φ̇ = dφ/dr and solving
for dφ; we obtain the same first integral of motion as the integral (1.9) of
Section 1.1. Finally, we proceed with the same calculations as the Section
1.1 to obtain the ray tracing solution (1.16).
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Appendix B

Discretization by means of the
finite difference in time domain
method

In this section, we briefly discuss and develop an FDTD algorithm. As
it mentioned in Section 1.4, FDTD is a numerical approach used for solving
the time depended Maxwell equations (1.42) (1.43). Since in this Thesis we
are using only TM mode propagating EM waves, we are going to develop an
FDTD code for solving Maxwell equations only for TM polarization.

First of all, we have to discrete the equations (1.48) (1.49) (1.50) used
for partial derivatives the central-difference approximation, which is given
by formula (1.53). In addition, we use a rectangular two dimensional lattice
described by the orthocanonical coordinates x, y; moreover, we denote any
arbitrary grid point (i, j) of our configuration space as

(i, j) = (i∆x, j∆y) (B.1)

Similarly, for any arbitrary function of space and time, we have

F (i∆x, j∆y, n∆t) = F n(i, j) (B.2)

where ∆x, ∆y and ∆t the size of the two spatial and time unit cells respec-
tively. Using now the notations (B.1) and (B.2) together with the central-
difference approximation (1.53), we obtain for the electric and magnetic com-
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ponents, Ez, Hx, Hy, the following discretized equations.

Hn+1
x (i, j + 1) = Hn

x (i, j + 1) +
∆t

µ∆x
(En

z (i, j + 1)− En
z (i, j)) (B.3)

Hn+1
y (i+ 1, j) = Hn

y (i+ 1, j) +
∆t

µ∆y
(En

z (i+ 1, j)− En
z (i, j)) (B.4)

En+1
z (i, j) = En

z (i, j) +
∆t

ε∆y

(
Hn
y (i+ 1, j)−Hn

y (i, j)+

+Hn
x (i, j)−Hn

x (i, j + 1)) (B.5)

where the permittivity and permeability are also two dimensional functions,
viz. ε(i, j) and µ(i, j) respectively.

The equation (B.3)-(B.5) are the basic equations of this Appendix and
they are going to be solved in time domain. The FDTD method states that
for the calculation of each component in a time step n + 1, the component
from the previous time step n are used, naturally we call this process “update
equations”. We repeat this step (the update equations step) for any time is
needed until the steady state is reached.

First of all, in order to develop an FDTD code, we have to set an EM
source. In our study we use a monochromatic plane wave source (B.6) with
amplitude E0, wavelength λ and angular frequency ω = 2πc/λ, where c the
velocity of the EM wave. The source is located on the first sites (at i = 1 for
all j), subsequently the EM waves propagate from left to right (Fig.B.1).

E(1, j) = E0 sin(ω n∆t) (B.6)

Having set the EM source, we proceed with the calculations of the equations
(B.3), (B.4) and (B.5). Afterwards, we have to apply boundary conditions
(BC). We use periodic boundary conditions (PBC) at the up and down edges
(transverse sides) and absorbing boundary conditions (ABC) at the end;
these are illustrated in Fig.B.1. The PBC is a good choice because with this
way the energy is conserved, on the other hand the ABC at the end edge is
also a good choice because with this way we simulate an infinity propagation
space. Subsequently, the main body of an FDTD algorithm consists of three
parts for every time step, (a) EM wave source implementation (b) calculations
of Maxwell discrete equations (c) implementation of BC.
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Figure B.1: A snapshot of the z component of electric field (Ez) is represented.
The results are obtained by FDTD simulation for a monochromatic EM wave
propagation in vacuum. A plane EM wave source has been located in the begging
(blue curve on the left). Periodic boundaries conditions (PBC) have been applied
at the up and down edges (black curve), since absorbing boundary conditions
(ABC) has applied at the end (right side).

In the below, a brief plan of an FDTD code is represented.

SCHEMATIC ALGORITHM:

• Define and set up parameters

– Grid sizes Nx, Ny

– Define normalized units for wavelength λ and light velocity c;
therefore we define the period T and the angular frequency ω
of the EM wave source
> T = λ

c
; ω = 2πc

λ
;

– The unit cells ∆x and ∆y are defined according the first stability
criterion that is discussed in Section 1.4
> ∆x = λ

20
; ∆y = λ

20
;
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– Define the permittivity and permeability functions ε(i, j) and µ(i, j)
respectively.

– Define the time step ∆t according Courant stability criterion as
it is discussed in Section 1.4 (equation (1.54))

> cmax = max
(
c (εµ)−

1
2

)
;

> ∆t = 1
2cmax

√
(∆x)2 + (∆y)2

• Main body. In this part a time loop, with a time counter n, is running
until the system reaches to steady state

– Set the EM plane wave source, in the begin of lattice, i.e. for
i = 1 and for all j; where i and j are the spatial counters for the
propagation x and transverse y direction respectively
> E(1, j) = E0 sin(ω n∆t);

– Calculation and update of EM components as they are given by
the discretized equations (B.3), (B.4) and (B.5)

– Implementation of boundary conditions, PBC for the up (j = 1)
and down (j = Ny) edges and ABC for the end sites (i = Nx).

• Calculation of the steady state of EM component intensities

– Run again the main body for a single or more periods T . The
intensity is given by the time average of the square of each com-
ponent
> IHx = 1

T

∑T
0 |Hx(i, j)|2

> IHy = 1
T

∑T
0 |Hy(i, j)|2

> IEz = 1
T

∑T
0 |Ez(i, j)|2
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Parabolic equation and the
corresponding Fokker Plank
equation

We present the derivation of the parabolic equation 3.31, which is a well
known approximation for the description of wave fields, using the paraxial
approximation in Helmholtz wave equation (1.31). Afterwards, we show that
this parabolic equation yields to a FPE for the wave phase front, equivalent to
FPE equation (3.19), by using the assumption that the EM waves propagate
through a media with random fluctuated permittivity ε(or refractive index
n), as a result the parabolic equation yields to the same statistical law for
the caustic formation as is was described in Chapter 3.

Since our analysis is limited in two dimensions, we begin with a two
dimensional Helmholtz wave equation (1.31) and write the bulk medium
wavenumber k0 in terms of bulk refractive index n0 and wavenumber k, viz.
k0 = k/n0, that is [

∇2 +

(
nk

n0

)2
]
u(x, y) = 0 (C.1)

where u(x, y) is any component of electric ~E(x, y) or magnetic ~B(x, y) field
and the 2D Laplacian operator ∇2 = ∂2

∂x2
+ ∂2

∂y2
.

Assuming that x is the propagation axis, the component u can be written
as

u(x, y) = ψ(x, y)eikx (C.2)

where ψ(x, y) is a scalar function describes the amplitude of the propagated
EM wave. Substituting the notation (C.2) to the Helmholtz equation (C.1),
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we obtain after some calculations [1–5,9][
∂2

∂x2
+ 2ik

∂

∂x
+

∂2

∂y2
+ k2

(
n2

n2
0

− 1

)]
ψ(x, y) = 0 (C.3)

If we solve the equation (C.3), we then have the full solution to the scalar
wave equation (C.1). Unfortunately, the equation (C.3) is challenging to be
solved, consequently we proceed with the paraxial approximation which is a
well known approximation in waves propagation. The paraxial approxima-
tion states that the amplitude of the fields varies only gradually along the
propagation axis x. Mathematically, this approximation reads∣∣∣∣2ik∂ψ∂x

∣∣∣∣ >> ∣∣∣∣∂2ψ

∂x2

∣∣∣∣ (C.4)

Subsequently the equation (C.3) becomes [1–3,9][
2ik

∂

∂x
+

∂2

∂y2
+ k2

(
n2

n2
0

− 1

)]
ψ(x, y) = 0 (C.5)

The equation (C.5) is called paraxial wave equation. The term paraxial is
used because all of the EM wave must travel nearly parallel to the x axis in
order for the beam to have a sufficiently slow x dependence. The first term
in equation appC:eq:paraxialWave shows the evolution of the scalar wave ψ;
Furthermore, the middle term of the equation (C.5) is called diffraction term
whereas the last one is called scattering term.

We proceed with another approximation. We keep only the fluctuating
part of the refraction index, namely the term (nk/n0)2 and assume, for con-
venience, that the bulk medium is the vacuum, i.e. n0 = 1. Subsequently
the paraxial equation (C.5) becomes [26][

2ik
∂

∂x
+

∂2

∂y2
+ k2ε(x, y)

]
ψ(x, y) = 0 (C.6)

where we used the permittivity function ε instead of the refractive index n,
via the relation n2 = ε.

Let’s introduce a wave field of the form [25,26]

ψ(x, y) = A(x, y)eiS(x,y) (C.7)

where A is a real function describes the wave amplitude, while S is also a real
function describes the curve of the wave front and denotes the fluctuation
of the wave phase with respect to wave phase of the incident wave (∼ eikx)
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[25, 26]. Substituting the notation (C.7) in the paraxial equation (C.6) and
after some algebra we obtain the PDE

A′′ + k2εA− A(S ′)2 − 2kAṠ + i
(

2A′S ′ + 2kȦ+ AS ′′
)

= 0 (C.8)

where dots indicate differentiation with respect to x (α̇ = ∂α/∂x), whereas
the prime is for the differentiation with respect to y (α′ = ∂α/∂y)

In geometrical optics limit we have k → ∞ as well as S → ∞, subse-
quently the quotient S/k can be assumed constant. In addition, we are going
to make another standard approximation taken from the quantum mechan-
ics, that is, we divide the equation (C.8) with the term k2, as a result the first
term of equation (C.8), viz. A′′/k2, can be neglected since k →∞. After this
approach, we separate the real from the imaginary parts of equation (C.8)
obtaining a system of PDEs for the wave amplitude A and phase S [25, 26],
that is

2kṠ + (S ′)2 = k2ε (C.9)

2AA′S ′ + 2kȦA+ A2S ′′ = 0 (C.10)

Define now, for convenience, the wave intensity I(x, y) ≡ A2(x, y), the equa-
tions (C.9) and (C.10) can be written in the following more compact form

1

k

∂S

∂x
+

1

2k2

(
∂S

∂y

)2

=
ε

2
(C.11)

k
∂I

∂x
+

∂

∂y

(
I
∂S

∂y

)
= 0 (C.12)

In this point we may define two useful quantities. First of all, the equation
(C.11) is of the form of a HJE, where the phase curve S plays the role of
the classical action, as a result the conjugate momenta of the system can be
defined as [7, 8, 25,26]

p =
1

k

∂S

∂y
(C.13)

In addition to the conjugate momenta, we can define a function u, which
describes a curvature of the phase front S(x, y) = const (equivalent to the
curvature of classical action), that is

u(x, y) =
∂p

∂y
=

1

k

∂2S

∂y2
(C.14)

The curvature u is a useful quantity for investigating caustics or in general
focus points, because its singularities, i.e. u → ∞, reveals focus points or
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caustics, where all the intensity (or energy) of system has been focused. In
order to obtain a differential equation for the curvature u, we differentiate
twice the equation (C.11) with respect to y and take account the relations
(C.13) and (C.14). Subsequently, we obtain[

∂

∂x
+ p

∂

∂y

]
u+ u2 =

1

2

∂2

∂y2
ε(x, y) (C.15)

The operator in the bracket of equation (C.15) is the convective or ma-
terial derivative, which switch the differential equation from partial to ordi-
nary [13,31], since

d

dx
=

[
∂

∂x
+ p

∂

∂y

]
(C.16)

As a result the PDE (C.15) turns to an ODE of the form

d

dx
u+ u2 =

1

2

∂2

∂y2
ε(x, y) (C.17)

Using now the optical potential V , as it is defined in Section 1.2 by the
equation (1.25), the equation (C.17) becomes

d

dx
u+ u2 +

∂2

∂y2
V (x, y) = 0 (C.18)

which is the same ODE with the equation (3.7); assuming now that the
potential (or the fluctuations of the refractive index) acts as a random white
noise in the propagated waves, we obtain the same FPE as the equation
(3.19) which is derived in Chapter 3. Following the same analysis as the
Section 3.1, we obtain the same scaling law that rules location of the first
caustic in a media with random fluctuated permittivity.
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Appendix D

Statistics of generalized
Luneburg lenses networks

We present an analytical approximate method for the calculation of the
standard deviation σ of a random network consists of LL lenses. We use the
optical potential of equation (1.25) for the generalized LL refractive index
function (3.34). We calculate analytically the standard deviation by means
of LL strength parameter α as well as of filling factor f ; the last is given by
the following definition

f =
2πR

N ×M
L (D.1)

where R the radius of each lens, (N,M) the size of a rectangular lattice and
L the number of lenses. The values of f are between zero ( f = 0 for a lattice
without lenses) and one ( f = 1 for a full filled lattice).

Firstly, in for our assumption, we introduce two potentials; VL for the
generalized LL of equation (3.34) and VB for vacuum (bulk media). Using
the equation (1.25) we obtain

VL = −1

2

(
1 + α

(
1− r2

R2

))
(D.2)

VB = −1

2
. (D.3)

Thereafter, we define approximately, an expression for the mean value of
a random LL potential , that is

〈V 〉 = f 〈VL〉+ (1− f) 〈VB〉 (D.4)

where 〈VL〉 the mean value of a single LL potential VL and 〈VB〉 the mean
value of the bulk potential with refractive index n0 = 1 (for vacuum), which
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are given by the following equations

〈VL〉 =
1

πR2

∫ 2π

0

dθ

∫ R

0

rVLdr = −1

4
(2 + α) (D.5)

〈VB〉 = −1

2
. (D.6)

Using the formula (D.4) with the findings that obtained by equations
(D.5) and (D.6), we obtain for the mean value of the potential

〈V 〉 = −1

4
(αf + 2) (D.7)

We proceed to calculation of the standard deviation σ (or variance σ2)
using the general relation

σ2 =

∫ 2π

0

dθ

∫ R

0

r
(
V 2 − 〈V 〉2

)
dr (D.8)

which is simplified by using the approximation (D.4)

σ2 = f
(
V 2
L − 〈V 〉

2)+ (1− f)
(
V 2
B − 〈V 〉

2) (D.9)

Finally we obtain the standard deviation for a LL random network with
filling factor f and LL strength parameter α

σ2 =
α2

16
(1− f) f (D.10)

σ =
α

4

√
(1− f) f (D.11)

Subsequently, we show that the standard deviation of a random LL net-
work is proportional to the strength parameter α. In addition, we will obtain
the same result (the equation (D.11) if we use the LH refractive index of
equation (4.1) instead of the LL.
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APPENDIX E. ACRONYMS

Appendix E

Acronyms

ABS : Absorbing Boundary Conditions
ATR : Attenuated Total Reflection

BC : Boundary Conditions
BFPE : Backward Fokker Plank Equation
DNLS : Discrete Nonlinear Schrödinger equation

EM : ElectroMagnetic
FDTD : Finite Difference in Time Domain

FPE : Fokker Plank Equation
GRIN : Gradient Refractive Index

HJE : Hamilton-Jakobi Equation
LH : Luneburg Hole lens
LL : Luneburg Lens

LLW : Luneburg Lens Waveguides
LM : Lagrangian Manifold

MMs : Meta Materials
MSD : Mean Square Displacement
ODE : Ordinary Differential Equations

OSDE : Ordinary Stochastic Differential Equation
PT : Parity Time symmetry

PBC : Periodic Boundary Conditions
PDE : Partial Differential Equations
RW : Rogue Wave
SPP : Surface Plasmon Polariton

SWH : Significant Wave Height
TE : Transverse Electric Polarization
TM : Transverse Magnetic Polarization
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