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Abstract

Computing Longest Path Parameterized st-Orientations of

Graphs: Algorithms and Applications

The problem of orienting an undirected graph such that it has one source, one sink, and no

cycles (st-orientation) is central to many graph algorithms and applications, such as graph

drawing (hierarchical drawings, visibility representations, orthogonal drawings), graph col-

oring, longest path and network routing. Most algorithms use any algorithm that produces

such an orientation, without expecting any specific properties of the oriented graph.

In this thesis we present a new algorithm that computes st-orientations with certain

characteristics. Actually, we describe new algorithms along with theoretical and experi-

mental results that show that there is an efficient way to control the length of the longest

path that corresponds to an st-orientation. The importance of this research direction has

been implied in the past, especially in the field of Graph Drawing.

Our algorithms are able to compute st-oriented graphs of ”parameter-defined” length

of longest path, the value of which is very important in the quality of the solution many

algorithms produce. For example the area-bounds of many graph drawing algorithms are

dependent on the length of the longest path of the st-oriented graph. Moreover, certain st-

orientations of graphs can approximate suitably formulated graph problems (longest path,

graph coloring). Finally, network routing via st-numberings gives alternate paths towards

any destination and therefore deriving different (parameterized longest-path) st-numberings

provides flexibility to many proposed routing protocols. We investigate most of these ap-

plications and show that there is indeed a need for parameterized st-numberings.

xi



PerÐlhyh

Upologismìc Parametrik¸n wc proc to MakrÔtero Monop�ti
st-Prosanatolism¸n Gr�fwn: Algìrijmoi kai Efarmogèc

To prìblhma tou prosanatolismoÔ enìc mh kateujunìmenou gr�fou ètsi ¸ste na èqei mia

phg  (source), mia dexamen  (sink) kai kajìlou kÔklouc (st-prosanatolismìc), eÐnai polÔ

shmantikì se polloÔc algìrijmouc gr�fwn kai efarmogèc, ìpwc h sqedÐash gr�fwn (ierar-

qik  sqedÐash, anapar�stash oratìthtac, orjog¸nia sqedÐash), o qrwmatismìc gr�fwn, to

prìblhma tou makrÔterou monopatioÔ kai h dromolìghsh diktÔwn. Oi perissìteroi algìri-

jmoi qrhsimopoioÔn opoiond pote algìrijmo pou par�gei ènan tètoio prosanatolismì qwrÐc

na apaitoÔn k�poiec sugkekrimmènec idiìthtec tou prosanatolismènou gr�fou.

Se aut n thn ergasÐa parousi�zetai ènac kainoÔrioc algìrijmoc pou upologÐzei st-prosanatolismoÔc

gr�fwn sugkekrimènwn qarakthristik¸n. Sugkekrimèna, perigr�foume nèouc algorÐjmouc me

jewrhtik� kai peiramatik� apotelèsmata pou deÐqnoun ìti up�rqei ènac apodotikìc trìpoc na

elègxoume to m koc tou makrÔterou monopatioÔ pou antistoiqeÐ se k�poion st-prosanatolismì.

H shmantikìthta aut c thc ereunhtik c kateÔjunshc eÐqe tonisjeÐ sto pareljìn, eidikìtera

sto q¸ro thc sqedÐashc gr�fwn.

Oi algìrijmoi pou parousi�zontai upologÐzoun st -prosanatolismènouc gr�fouc me m koc

makrÔterou monopatioÔ pou mporeÐ na kajoristeÐ apo paramètrouc. To m koc autì eÐnai

polÔ shmantikì sthn poiìthta twn lÔsewn pou par�gontai apì di�forouc algorÐjmouc. Gia

par�deigma, ta ìria embadoÔ poll¸n algorÐjmwn sqedÐashc gr�fwn exart¸ntai apì to m koc

tou makrÔterou monopatioÔ tou st-prosanatolismènou gr�fou. Epiplèon, sugkekrimènoi st-

prosanatolismoÐ gr�fwn mporoÔn na proseggÐsoun katall lwc morfopoihmèna probl mata

xii



gr�fwn (makrÔtero monop�ti, qrwmatismìc gr�fwn). Tèloc, h dromolìghsh diktÔwn mèsw st-

arijm sewn dÐnei poll�pla monop�tia proc k�poio kìmbo kai sunep¸c o upologismìc diafore-

tik¸n (parametrik¸n wc proc to makrÔtero monop�ti) st-arijm sewn parèqei elastikìthta se

poll� up�rqonta protìkolla dromolìghshc diktÔwn. Exet�zoume tic perissìterec apì autèc

tic efarmogèc kai deÐqnoume ìti up�rqei pragmatik� h an�gkh susthmatikoÔ upologismoÔ

parametrik¸n st-prosanatolism¸n.
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Introduction

The problem of orienting an undirected graph such that it has one source, one sink, and
no cycles (st-orientation) is central to many graph algorithms and applications, such as
graph drawing [22, 18, 3, 4, 21], network routing [2, 1] and graph partitioning [17]. Most
algorithms use any algorithm that produces such an orientation, e.g., [8], without expecting
any specific properties of the oriented graph. In this thesis we present new algorithms
that produce such orientations with specific properties. Namely, our techniques are able to
control the length of the longest path of the resulting directed acyclic graph. This provides
significant flexibility to many graph algorithms and applications [22, 18, 2, 1, 17].

Given a biconnected undirected graph G = (V, E), with n vertices and m edges, and two
nodes s and t, an st-orientation (also known as bipolar orientation or st-numbering) of G

is defined as an orientation of its edges such that a directed acyclic graph with exactly one
source s and exactly one sink t is produced. An st-orientation of an undirected graph can
easily be computed using an st-numbering [8] of the respective graph G and orienting the
edges of G from low to high. An st-numbering of G is a numbering of its vertices such that
s receives number 1, t receives number n and every other node except for s, t is adjacent
to at least one lower-numbered and at least one higher-numbered node.

st-numberings were first introduced in 1967 in [15], where it is proved that given any
edge {s, t} of a biconnected undirected graph G, we can define an st-numbering. The proof
of a theorem in [15] gives a recursive algorithm that runs in time O(nm). However, in 1976
Even and Tarjan proposed an algorithm that computes an st-numbering of an undirected
biconnected graph in O(n + m) time [8]. Ebert [7] presented a slightly simpler algorithm
for the computation of such a numbering, which was further simplified by Tarjan [24].
The planar case has been extensively investigated in [19] where a linear time algorithm is
presented which may reach any st-orientation of a planar graph. Finally, in [16] a parallel
algorithm is described. An overview of the work concerning bipolar orientations is presented
in [9].

Developing yet another algorithm for simply computing an st-orientation of a bicon-
nected graph would probably seem meaningless, as there already exist many efficient linear
time algorithms for the problem [8, 7, 24]. In this paper we present a new algorithm along
with theoretical and experimental results that show that there is an efficient way to control
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the length of the longest path that corresponds to an st-numbering. The importance of this
research direction has been implied in the past [18, 19]. Our algorithms are able to compute
st-oriented graphs of absolutely ”user-defined” length of longest path, the value of which is
very important in the quality of the solution many algorithms produce. For example the
area-bounds of many graph drawing algorithms [22, 18, 21] are utterly dependent on the
length of the longest path of the st-oriented graph. Additionally, network routing via st-
numberings gives alternate paths towards any destination and therefore deriving different
(parameterized longest-path) st-numberings provides flexibility to many proposed routing
protocols [2, 1].

The thesis is organized as follows: Chapter 1 presents some results and algorithms from
the past and points out the need for an algorithm that computes longest path parameterized
st-orientations. Chapter 2 presents a new algorithm for computing an st-orientation of
a general undirected biconnected graph. Chapter 3 presents some techniques that can
be implemented on the developed algorithm in order to control the length of the longest
path of the final st-oriented graph. Chapter 4 discusses applications of parameterized st-
orientations (primal and dual parameterized st-orientations, graph coloring, longest path)
and st-orientations of special classes of graphs. Chapter 5 presents the overall computational
results. Finally, Chapter 6 talks about open problems and future work.



Chapter 1

Background Work

1.1 Basic Definitions

We begin with two very important definitions, the st-numbering and st-orientation, and
discuss how these definitions are mutually dependent:

Definition 1.1.1. Let G = (V, E) be an undirected biconnected graph. Let (s, t) be one of
its edges. An st-numbering is a function f : V → {1, . . . , n} such that f(s) = 1, f(t) = n

and ∀v ∈ V − {s, t} there are two edges (x, v) and (v, y) such that f(x) < f(v) < f(y).

Definition 1.1.2. Let G = (V, E) be a directed graph. G is st-oriented if and only if it has
one single source s, one single sink t and contains no cycles.

It is easy to prove that G has an st-orientation if and only if it has an st-numbering and
we can compute either from the other in O(n+m) time, as follows. Given an st-orientation,
we number the vertices of G in topological order using Knuth’s algorithm [14]. This produces
an st-numbering. Given an st-numbering, we orient each edge from its lower-numbered to
its higher-numbered endpoint. This produces an st-orientation.

Note that computing an st-orientation from an st-numbering is a 1-1 function. On the
opposite, there may exist more than one st-numberings that correspond to a certain st-
orientation. Finally, if G is st-oriented, for each node v ∈ V there exists a directed path
from s to t that contains v. For a complete review of the properties of st-oriented planar
graphs (st-planar graphs), see [4].

In 1967, Lempel, Even and Cederbaum [15] made a first approach to this problem, by
presenting an O(nm) time algorithm for the computation of an st-numbering of the vertices
of an undirected graph in order to check whether a graph is planar or not. They proved
the following result:

Theorem 1.1.3 (Lempel et all [15]). Let (s, t) be any edge of a graph G. Then, G

admits an st-orientation if and only if G is biconnected.

3
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Proof. Assume G admits an st-orientation. Let v 6= {s, t} be a vertex of G. We will prove
that G−{v} is still connected. Let x 6= {s, t, v} be a vertex of G. As G is st-oriented there
will always be a directed path from s to t that contains x. The vertex x is connected to s

or t in G−{v}. As s, t are adjacent, G−{v} is connected. Similarly, if we delete the vertex
s or t, each vertex x is connected to t or s. Thus G is biconnected. Finally, let (s, t) be
an edge of a biconnected graph and let γ be a cycle that contains (s, t). Fraysseix et all [9]
have proved that an st-orientation of every partial subgraph H of a biconnected graph G

can be extended to an st-orientation of G. Hence the st-orientation of γ can be extended to
an st-orientation of G. In [15], this proof is given with an O(nm) algorithm that st-orients
every biconnected graph G.

In the following years, more efficient algorithms for the computation of such a numbering
were devised. Actually, these algorithms are based on the well known depth first search
traversal [23] (DFS) of graphs and run in linear time O(n + m). Following we present two
of the most important and widely used algorithms.

1.2 The Even-Tarjan Algorithm

In 1974, Even and Tarzan [8] developed an O(n + m) algorithm for the computation of
an st-numbering. The algorithm is based on DFS and uses the circles formed during the
execution of a DFS. As it is already known, given an undirected connected graph G = (V,E)
we can execute a DFS and get a DFS tree. All nodes v of the initial graph are contained in
the tree and get a number d(v) which actually denotes the rank of their visit.

A DFS traversal separates the edges of our initial graph into two sets, the tree edges
set Ut, with |Ut| = n − 1 and the cycle edges set Uc, with |Uc| = m − n + 1. Ut contains
the edges that belong to the tree and Uc contains the remaining edges of the graph. Each
edge e ∈ Uc forms a circle. This edge always returns form a node x to a node y previously
visited and forms a basic cycle. The collection C of all basic cycles is called a basis for the
desired set of cycles (a basis set for a vector space is an appropriate analogy). A cycle edge
(u, v) will be denoted with u− ...− v, whereas a tree edge (u, v), with d(u) > d(v), (i.e. u

is a child of v) will be denoted with v → u. If a node v can be reached by u by following
the tree path from node u to the root of the tree, we say that v is an ancestor of u and is
denoted with v ↪→ u. Note that for every cycle edge (u, v) of the DFS tree the following
equivalence holds:

u− ...− v ⇔ u ↪→ v | v ↪→ u

As we said before, DFS forms a spanning tree, assigning a unique number d(v) to every
node v of the initial graph. These numbers are very crucial to the computation of an st-
numbering as they define another function ÃL : V → {1, . . . , n}. This function is called the
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lowpoint function and ∀x ∈ V is defined as follows:

ÃL(x) = min({d(x)} ∪ {d(y) : ∃w : x ↪→ w ∧ w − ...− y}) (1.2.1)

Note that the lowpoint function is not an 1-1 function, i.e. there can be two nodes getting
the same lowpoint. It is easy to see from 1.2.1 that a node x either gets its DFS number
as a lowpoint or the DFS number of a node y, previously visited by DFS, reachable from x

by following a downward tree path to a node w which ends with a cycle edge from w to y.
This path may contain no tree edges. Next, we will present a lemma that comes out of the
definition of the lowpoint function.

Lemma 1.2.1 (Tarjan [23]). If G is biconnected and v → w, then d(v) 6= 1 implies
ÃL(w) < d(v) and d(v) = 1 implies L(w) = d(v) = 1.

Proof. For the first case, when d(v) 6= 1, let c be a node above v in the DFS tree, i.e.
d(c) < d(v). As the graph is biconnected there must be a path from w to c not containing
v. This path will certainly end with a back edge to c. Thus, c can be reached by w with
a back edge and therefore it is L(w) = d(c) and as d(c) < d(v) it is L(w) < d(v). For the
second case, there is no other node with DFS number less than 1. Thus if d(v) = 1 and
v → w then it must be L(w) = d(v) = 1.

The values L(v) can easily be computed in time O(n+m) during the execution of DFS.
We will now describe the algorithm for the computation of an st-numbering. We are given
an undirected biconnected graph G = (V,E) and we want to assign numbers to its vertices
which satisfy the definition of st-numbering. Let (s, t) be one edge of G. In the beginning,
we execute a DFS, such that the root of the DFS tree is node t and the first edge of the
tree is t → s. During DFS, we also compute the lowpoint numbers L(v) for every node v.
The information generated by DFS is valuable for the remaining part of the algorithm.

The most important part of the algorithm is a procedure that, given a node v, returns a
simple path from node v to a distinct node w. Initially, all nodes and edges of the graph are
marked new, except nodes s, t and edge (s, t) that are marked old. Each successive call of
the procedure PATHFINDER(v) returns a simple path of new edges and marks all vertices
and edges contained in the path as old. Next we present the pseudocode of the algorithm
(Algorithm1).

The procedure PATHFINDER(v) either produces a simple path of edges, which orig-
inates from node v to another node w, or returns the null path. When PATHFINDER(v)
is called and the null path is returned, there are no other new edges emanating from node
v, and thus the last part of the if statement is executed.

As referred above, PATHFINDER(v) is a procedure that is called by the main
body of the algorithm. The main algorithm uses a stack, where the old vertices are
stored. Initially the stack contains s on top of t. The top vertex on the stack, say v,
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is deleted and then PATHFINDER(v) is called. If PATHFINDER(v) returns a path
p = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}}, then vk−1, vk−2, . . . , v2, v1 are added to the top of
the stack, where v1 = v. Note that the last vertex of the path vk is not added to the stack.
If the null path is returned, then v is assigned the next available number and not put back
on the stack.

Algorithm 1 PATHFINDER(v)

1: if ∃v − ...− w ∈ Uc new with w ↪→ v then
2: mark (v, w) as old;
3: p = {v, w};
4: else if ∃v → w ∈ Ut new then
5: mark (v, w) as old;
6: p = {v, w};
7: while w new do
8: find new (w, x) with (d(x) = L(w) | (L(x) = L(w) ∧ w → x));
9: mark w and (w, x) as old;

10: p = p ∪ (w, x);
11: w = x;
12: end while
13: else if ∃v − ...− w ∈ Uc new with v ↪→ w then
14: mark (v, w) as old;
15: p = {v, w};
16: while w new do
17: find new (w, x) with x → w;
18: mark w and (w, x) as old;
19: p = p ∪ (w, x);
20: w = x;
21: end while
22: else
23: p = {Ø};
24: end if
25: return p;

Lemma 1.2.2. Supppose vertices s, t and edge (s, t) are initially marked old. An initial call
PATHFINDER(s) will return a simple path from s to t not containing (s, t). A successive
call PATHFINDER(v) with v old will return a simple path (of edges new before the call)
from v to some vertex w old before the call, if there are any edges (v, w) new before the call
(otherwise PATHFINDER(v) returns the null path).

Proof. It easy to prove by induction on the number of the PATHFINDER calls that, at the
beginning of any PATHFINDER call, if some vertex w is old, then all vertices and edges on
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the tree path from t to w are old. Given this fact, we can prove the Lemma by considering
the four different choices made at lines 1,4,13,22 of the PATHFINDER procedure. If
choices at line 1 or 22 are made, PATHFINDER obviously performs according to the
statement of the Lemma. Consider the choice made at line 4. By Lemma 1.2.1, L(w) < d(v),
where (v, w) is the first edge on the path. Thus statement at line 4 selects some path
(v1, v2), (v2, v3), . . . , (vk−1, vk), where vi → vi+1 for 1 ≤ i < k, vk−1 − ... − vk, vk ↪→ vk−1

and d(vk) = L(v2) < d(v1). Hence the selected path is simple. Consider choice at line 13.
Since choice at line 4 is not made, all vertices x such that v → x are old when choice at
line 13 is made. Thus the selected path terminates at some descendant of v (not v) and is
simple.

The main algorithm for the computation of an st-numbering uses the pathfinder proce-
dure to compute an st-numbering. The pseudocode of the algorithm is given (see Algorithm
2). In the following, we will prove the correctness of the algorithm. The importance and

Algorithm 2 STNUMBER(G, s, t)

1: compute the lowpoints L(v) for all nodes v ∈ V ;
2: mark s, t and (s, t) as old and all other vertices and edges as new;
3: initialize a stack R;
4: R =push(t);
5: R =push(s);
6: i = 0;
7: while R 6= Ø do
8: v=pop(R)
9: p = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}} = PATHFINDER(v);

10: if p 6= Ø then
11: for j = k − 1 downto 1 do
12: R =push(vj)
13: end for
14: else
15: i = i + 1;
16: f(v) = i;
17: end if
18: end while

efficiency of the algorithm depends on the clever use of the stack.

Theorem 1.2.3. Algorithm STNUMBER correctly computes an st-numbering of an undi-
rected biconnected graph G = (V, E).

Proof. It is evident that no vertex v appears in two or more places on stack at the same
time. Once a vertex v is placed on stack, nothing under v receives a number until v does.
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Additionally, a vertex x finally receives a number when PATHFINDER(x) returns the
null path, i.e., all edges (x,w) for some w have been marked old. Firstly, it is evident that
vertex s receives number 1. This happens because s will always be on top of the stack until
no new edges of type (s, w) exist. This time, PATHFINDER(s) will return the null path
and s will be the first vertex to permanently disappear from stack, thus receiving number
one. The power of the stack lies in the fact that adjacent vertices in stack are adjacent
vertices in the graph as well. Thus, an adjacent vertex of s, say r, will remain on top of
stack until all edges emanating from r become old. No vertex will receive a number until r

does. Thus r receives the next number. Vertex t finally receives number n. The procedure
goes on and guarantees that every vertex y 6= s, t will have at least one lower numbered
adjacent vertex and at least one higher numbered adjacent vertex.

1

2

3 4

5

67

8

9 10

Figure 1.1: A biconnected graph G.

The running time of the st-numbering algorithm is O(n + m) for the depth first search
traversal plus the time required for the main body of the algorithm. The time required by
the main body of the algorithm is dominated by the time spent in PATHFINDER(v)
calls. The algorithm PATHFINDER(v) can be implemented so that a call requires time
proportional to the number of edges found in the path. This requires that for each vertex v

the following items are kept: a list of cycle edges v− ...−w such that v ↪→ w; a list of cycle
edges v− ...−w such that w ↪→ v; a list of v’s children; v’s father; and finally an edge {v, w}
such that d(w) = L(v) | L(w) = L(v). All these structures can be constructed during DFS
and their storage requires linear space. Thus PATHFINDER(v) requires time O(n + m),
as each edge occurs in exactly one path, and therefore st-numbering takes time O(n + m).

Let as now regard an undirected graph G of 10 vertices (see Figure 1.1). Graph G is
biconnected and thus we can apply our algorithm to find an st-numbering. We will find a
2-1-numbering. The reader can verify that during the algorithm execution the variables of
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Table 1.1 will be computed. The final vector produced by the algorithm is

f =
[

10 1 3 2 7 6 5 4 8 9
]

Note that f(2) = 1 and f(1) = 10. Additionally, vector f satisfies the st-numbering
definition.

Table 1.1: The Even-Tarjan algorithm execution.
iteration # stack status path operation
1 {1,2} 2 → 3 → 8 → 7 → 1
2 {1,7,8,3,2} 2 → 4 → 3
3 {1,7,8,3,4,2} null f(2) = 1
4 {1,7,8,3,4} null f(4) = 2
5 {1,7,8,3} null f(3) = 3
6 {1,7,8} null f(8) = 4
7 {1,7} 7 → 6 → 1
8 {1,6,7} null f(7) = 5
9 {1,6} 6 → 5 → 9 → 1
10 {1,9,5,6} null f(6) = 6
... ... ... ...
15 {1,10} 10 → 3
16 {1,10} null f(10) = 9
17 {1} null f(1) = 10

1.3 A Streamlined Depth First Search Algorithm

Another simpler algorithm for the computation of an st-numbering was proposed by Tarjan
in 1986 [24]. The algorithm is also based on a DFS traversal of the initial biconnected
graph. In the depth first tree, we denote with p(v) the father of node v. The algorithm
works as follows.

It consists of two passes. The first pass is a depth first search during which for each
vertex v ∈ V , d(v), L(v) and p(v) are computed. The second pass constructs a list ℘ of the
vertices, such that if vertices are numbered in the order they occur in ℘, an st-numbering
results. Actually, the second pass is a preorder traversal of the spanning tree. During the
traversal, each vertex u that is a proper ancestor of the current vertex v has mimus sign
(i.e., s(u) = ∗−), if u precedes v in ℘. Respectively, each vertex u that is a proper ancestor
of the current vertex v has plus sign (i.e., s(u) = ∗+), if u follows v in ℘.

Initially ℘ = [s, t] and s(s) = ∗−. The second pass of the algorithm consists of repeating
the following step for each vertex v 6= s, t in preorder:
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1: if s(L(v)) == ∗+ then
2: Insert v after p(v) in ℘;
3: s(p(v)) = ∗−;
4: end if
5: if s(L(v)) == ∗− then
6: Insert v before p(v) in ℘;
7: s(p(v)) = ∗+;
8: end if

Theorem 1.3.1. The st-numbering is correct.

Proof. Consider the second pass of the algorithm. We must show that

• the signs assigned to the vertices have the claimed meaning

• if vertices are numbered in the order they occur in ℘, an st-numbering results.

For the first case, suppose s = x0, t = x1, x2, . . . , xl be the tree path from s to the vertex
xl most recently added to ℘ and let v with parent xk be the next vertex to be added to ℘.
Assume as an induction hypothesis that for all 0 ≤ i < j < l, s(xi) = ∗+ if and only if xi

follows xj in ℘, i.e., xi = p(xj). Since s(xk) is set to minus if v is inserted after xk in ℘

and to plus if v is inserted before xk in ℘, the induction hypothesis holds after v is added.
Hence the induction holds.

For the second case, let v 6= s, t. If (v, L(v)) is a back edge, the insertion of v between
p(v) and L(v) in ℘ guarantees that in the numbering corresponding to ℘, v is adjacent to
both a lower-numbered and a higher-numbered vertex. Otherwise, there must be a vertex
w such that p(w) = v and L(w) = L(v). By Lemma 1.2.1 we have that L(v) is a proper
ancestor of v, which means that s(L(v)) remains constant during the time v and w are
added to ℘. It follows that v appears between p(v) and w in the completed list ℘, which
implied that in the numbering corresponding to ℘, v is adjacent to both a lower-numbered
and higher-numbered vertex. Thus, the second case holds.

It is obvious that the algorithm runs in linear time O(n + m).
Following, we give an execution example of the algorithm. Suppose we want to compute a

2-1-numbering of the biconnected graph of figure 1.1 using the streamlined DFS algorithm.
First we execute a DFS, and we compute the DFS tree and the lowpoint values. The
lowpoint values of each vertex in Figure 1.2 are depicted with bold numbers. In Table
1.2, we can see the variables computed by the algorithm. Before the development of the
streamlined DFS algorithm by Tarjan, Ebert [7] presented a more complicated algorithm
for the computation of such a numbering, on which the Tarjan’s algorithm was based.

Additionally, the planar case has been extensively investigated in [19] where a linear time
algorithm is presented which may reach any st-orientation of a planar graph. Finally, in [16]
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Figure 1.2: The DFS tree of the graph of Figure 1.1.

Table 1.2: The algorithm execution. Irrelevant signs are omitted
iteration # vertex added v List L

1 - {1−, 2}
2 3 {1−, 3, 2+}
3 4 {1−, 3−, 4, 2+}
4 5 {1−, 5, 3+, 4, 2+}
5 6 {1−, 6, 5+, 3+, 4, 2+}
6 7 {1−, 7, 6+, 5+, 3+, 4, 2+}
7 8 {1−, 7−, 8, 6+, 5+, 3+, 4, 2+}
8 9 {1−, 7, 8, 6, 9, 5+, 3+, 4, 2+}
9 10 {1−, 7, 8, 10, 6+, 9+, 5+, 3+, 4, 2+}

a parallel algorithm is described. The last solution to the problem was given by Brandes [5],
where an algorithm (that does not need lowpoint values) for computing an st-numbering is
presented. An overview of the work concerning bipolar orientations is presented in [9].

1.4 The Need for Parameterized st-Orientations

It is obvious that a biconnected graph G can be st-oriented in multiple ways and st-
numbered in many more, as there is a one to many correspondence between st-orientations
and st-numberings. In general there is an exponential number of st-orientations that corre-
spond to a certain biconnected graph. Actually, this number is connected to the chromatic
polynomial of a graph G, as proved by Stanley in 1973 [20].
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st-orientations and st-numberings, as mentioned in the introduction, are very important
to many applications. They are used by many algorithms in their first step. Therefore it
would be desirable to try define a metric that corresponds to an st-orientation so that one
could choose between different st-orientations. One of the most important variables that
characterize an st-oriented graph is the length of the longest path from s to t, denoted
with l(t), and which can be computed in O(n + m) time, given an st-orientation.
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(a) (b) (c)

Figure 1.3: An undirected biconnected graph (a) and two different st-orientations of it
((b),(c)) (of different length of longest path from s to t).

Suppose we are given the undirected biconnected graph G of Figure 1.3. If we apply the
existing algorithms we compute a random st-orientation of random longest path length l(t).
Note that G has exactly n−3 st-orientations of longest path length l(t) = 3, 4, . . . , n−1. The
question that arises is evident: Can we devise an algorithm that computes st-orientations
of almost predefined longest path length l(t)? If we could have such an algorithm, we
could guarantee the computation of different st-orientations, something that will give as the
opportunity to choose an ideal st-orientation, according to the application. For example,
in Graph Drawing, visibility representations algorithms such as [22] or hierarchical drawing
algorithms such as [21], produce drawings that are strongly dependent on the length of the
longest path of the st-orientation.

The contribution of this thesis is the development of a new algorithm that simultaneously
computes both an st-orientation and an st-numbering of a biconnected graph G and also
uses input parameters to control the length of the longest path of the final st-oriented graph,
l(t). The importance of this research direction has been implied in the past [18, 19].



Chapter 2

A New Algorithm for Computing

an st-Orientation

2.1 Introduction

In this chapter, we present the newly developed algorithm that computes an st-orientation
of a biconnected graph G = (V, E). We analyze its behavior and give proof of correctness.
This algorithm is designed in such a way that gives us the opportunity to develop techniques
that actually define the length of the longest path of the final st-oriented graph. For the
rest of the thesis, n = |V |, m = |E|, NG(v) denotes the set of neighbors of node v in graph
G, s is the source of the graph, t is the sink of the graph and l(u) is the length of the longest
path of a node u from the source s of the graph. We begin the presentation of the algorithm
by presenting its function on a special class of graphs and then we present its extension to
general graphs.

2.2 A Special Case

In this section, we describe an algorithm for computing an st-orientation of a special class
of graphs. This class includes graphs that maintain their biconnectivity after successive
removal of vertices (for example the Kn graphs).

Definition 2.2.1. Let G = (V,E) be an undirected biconnected graph. We say that G is
st-recursively biconnected on P if there is a permutation of vertices P = v1, v2, . . . , vn with
v1 = s and vn = t such that the graphs Gi = Gi−1 − {vi−1}, vi ∈ NGi−1(vi−1) ∼ {t},
i = 2, . . . , n− 1 and G1 = G are biconnected.

Following we present a Lemma that gives an algorithm for the transformation of an
st-recursively biconnected undirected graph to an st-oriented graph.

13
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Lemma 2.2.2. Let G = (V, E) be an undirected st-recursively biconnected graph on P =
v1, v2, . . . , vn with v1 = s and vn = t. Then the set of directed edges

E′ = {(v1, NG1(v1)), (v2, NG2(v2)), . . . , (vn−1, NGn−1(vn−1))}

forms an st-oriented graph.

Proof. We prove the Lemma by giving an algorithm for st-orienting an st-recursively bicon-
nected graph. Suppose we remove one by one the nodes on P starting with v1 = s. Each
time we remove a node, it becomes a current source of the remainder of the graph and all
its incident edges are oriented away from it. First we must prove that, beginning with v1,
we can reach every node vi, i ≥ 2. Suppose there is a node vk that is never reached by a
previously removed node. This can be done only if the removal of adjacent nodes discon-
nects a graph Gl, l < k. This is not true, as all graphs Gi are biconnected and hence all
nodes will finally be removed from the graph by following neighbors of previously removed
nodes.

Gj

vj-1

vj

t

Figure 2.1: Proof of Lemma 2.2.2.

It remains to see that the directed graph produced by following this procedure is st-
oriented. Suppose we have removed all nodes and we have computed the edge directions. We
backtrack from vn = t by adding the computed directed edges to a new graph F = (V ′, E′)
and finally conclude (by induction) that F is st-oriented: The last directed edge computed
is the edge (vn−1, t). Let Fn−1 be the directed graph that contains (vn−1, t). Fn−1 is
vn−1t-oriented and the base case holds. Suppose after the k-th backtracking Fn−k is vn−kt-
oriented. After the (k + 1)-th backtracking, Fn−k−1 is vn−k−1t-oriented, as a new source
vn−k−1 is added to an already vn−kt-oriented graph Fn−k. This source is connected through
a directed edge (vn−k−1, vn−k) with the previous source and hence vn−k is no longer a
source and no cycles are created. By induction, F1 is an st-oriented graph and the Lemma
holds.

Following, we give the recursive algorithm (Algorithm 3) for computing an st-orientation
of an st-recursively biconnected graph as implied in Lemma 2.2.2. Note that, in order to use
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this algorithm, we must know the permutation P on which G is st-recursively biconnected.
This algorithm has no practical interest but is certainly an introduction to the problem we
will tackle next.

Algorithm 3 runs in O(nm) time in the worst case, as the recursion is executed exactly
n − 1 times, the main body (lines 8-12) of the algorithm takes at most O(m) and lines
13-17 (taking into consideration that we know the permutation P on which G is recursively
biconnected) take time O(1).

In Figure 2.2a, the execution of Algorithm 3 is depicted. The selected sources are 1,2,3,4.
Note that all the graphs produced after the removal of these sources are biconnected. As
shown in Figure 2.2a, the length of the longest path of the final produced st-oriented graph
is maximum (=4). If sources are chosen in a different way, not according to Lemma 2.2.2,
we can obtain an st-oriented graph with lower longest path length. This is shown in Figure
2.2b, where sources are chosen in the following sequence: 1,3,2,4. The removal of vertex
3 results in an one-connected graph (the path 2 → 4 → 5) and the longest path length is
3 < 4.

Algorithm 3 STNRB(G, s, t)

1: Initialize F = (V ′, E′); {F is the final st-oriented graph}
2: Q = {s}; {Insert s into Q}
3: STREC(G, s); {Call the recursive algorithm}
4: ————————————————————-
5: function STREC(G, v)
6: V = V − {v}; {A source is removed from G}
7: V ′ = V ′ ∪ {v}; {and is added to F}
8: for all edges (v, i) ∈ E do
9: E = E − {(v, i)};

10: E′ = E′ ∪ {(v, i)};
11: end for
12: Q = {i : i 6= t ∧ (v, i) ∈ E′}; {The set of possible next sources}
13: if Q == {Ø} then
14: return;
15: else
16: choose u ∈ Q such that G− {u} is biconnected;
17: STREC(G, u);
18: end if

Corollary 2.2.3. Let G = (V, E) be an undirected biconnected graph and s, t two of its
nodes. Lemma 2.2.2 can produce up to (n− 2)! st-oriented graphs. Moreover, this bound is
achieved for the Kn graph.

Proof. At each stage of the recursive procedure described in Lemma 2.2.2, a source that
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does not ”disbiconnect” the graph is removed. If there is always exactly one such source,
then we produce exactly one st-oriented graph. In the case of the Kn graph, all nodes,
except for t, can be chosen as future sources, as we must remove exactly n − 1 nodes
to loose biconnectivity. This means that when a node vi is removed, we have exactly
|NGi(vi) ∼ {t}| = n−i−1 choices to continue. Hence we get exactly

∏n−1
i=1 (n−i−1) = (n−2)!

st-oriented graphs (see Figure 2.3).

1 2 3 4 5

2 3 4 5

3 4 5

4 5

1 2 3 4 5

2 3 4 5

2 4 5

4 5

(a) (b)

1 2 3 4 5 1 2 3 4 5

Figure 2.2: (a) The execution of Algorithm 3 (the current source is each time depicted with
a rectangle), (b) An alternative choice of sources yields lower longest path length.

n = 4

n = 5

Figure 2.3: Kn st-oriented graphs. Sources are the gray nodes, whereas sinks are the black
nodes.

Corollary 2.2.4. Algorithm 3 produces st-oriented graphs of maximum longest path length
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l(t) = n− 1.

Proof. Immediate from Lemma 2.2.2, as the nodes that are gradually removed lie on a
common path from s to t and finally all nodes are removed by the algorithm. Hence, the
longest path length will be n− 1.

2.3 General Graphs Case

2.3.1 Preliminaries

In the previous section, we examined a special class of graphs. We now present the general
case, where there is no other option than to remove a node that produces a one-connected
subgraph. Before continuing with this section, we will introduce some useful terminology.

c1 c2

c3

c4

c5 c6

c7

B1

B2 B3

B4

B5

B6

B7

B8

B9

B4

c3

B3

c4c5c2

B2

c1

B1

B5

c7

B6

B8

c6

B9

B7

Figure 2.4: A one-connected graph and the t-rooted block-cutpoint tree rooted on B4

Let G = (V, E) be a one-connected undirected graph, i.e., a graph that contains at least
one vertex whose removal causes the initial graph to disconnect. The vertices that have that
property are called separation vertices, articulation points or cutpoints. Each one-connected
graph is composed of a set of blocks (biconnected components) and cutpoints that form a
tree structure. This tree is called the block-cutpoint tree of the graph and its nodes are the
blocks and cutpoints of the graph. Suppose now that G consists of a set of blocks B and a
set of cutpoints C. The respective block-cutpoint tree T = (B ∪ C, U) has |B|+ |C| nodes
and |B|+ |C|−1 edges. The edges (i, j) ∈ U of the block-cutpoint tree always connect pairs
of blocks and cutpoints such that the cutpoint of a tree edge belongs to the vertex set of
the corresponding block (see Figure 2.4).
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The block-cutpoint tree is a free tree, i.e., it has no distinct root. In order to transform
this free tree into a rooted tree, we define the t-rooted block-cutpoint tree with respect to a
vertex t. Consequently, the root of the block-cutpoint tree is the block that contains t (see
Figure 2.4).

Finally, we define the leaf-blocks of the t-rooted block-cutpoint tree to be the blocks,
except for the root, of the block-cutpoint tree that contain a single cutpoint. The block-
cutpoint tree can be computed in O(n + m) time with an algorithm similar to DFS [13].
Following, we give some results that are necessary for the development of the algorithm.

Lemma 2.3.1. Let G = (V, E) be an undirected biconnected graph and s, t be two of its
nodes. Suppose we remove s and all its incident edges. Then there is at least one neighbor
of s lying in each leaf-block of the t-rooted block-cutpoint tree of G − {s}. Moreover, this
neighbor is not a cutpoint.

Proof. If graph G − {s} is still biconnencted, the proof is trivial, as the t-rooted block-
cutpoint tree consists of a single node (the biconnected component G−{s}), which is both
root and leaf-block of the t-rooted block-cutpoint tree.

Bm B1

s

Bl

Bk

B2

Figure 2.5: Proof of Lemma 2.3.1.

If graph G− {s} is one-connected (see Figure 2.5), suppose that there is a leaf-block `

of the t-rooted block-cutpoint tree defined by cutpoint c such that N(s) ∩ ` = {Ø}. Then
c, if removed, still disconnects G and thus G is not biconnected, which does not hold. The
same occurs if N(s)∩ ` = {c}. Hence there is always at least one neighbor of s lying in each
leaf-block of the t-rooted block-cutpoint tree, which is not a cutpoint.

As each t-rooted block-cutpoint tree will have at least one leaf-block, we have:

Corollary 2.3.2. Let G = (V, E) be an undirected biconnected graph and s, t be two of its
nodes. Suppose we remove s and all its incident edges. Then there is at least one neighbor of
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s lying in a leaf-block of the t-rooted block-cutpoint tree of G−{s}. Moreover, this neighbor
is not a cutpoint.

The main idea of the algorithm is based on the successive removal of nodes and the
simultaneous update of the t-rooted block-cutpoint tree. We call each such node a source,
because at the time of its removal it is effectively chosen to be a source of the remainder
of the graph. We initially remove s, the first source, which is the source of the desired
st-orientation and give direction to all its incident edges from s to all its neighbors. After
this removal, there exist three possibilities:

• The graph remains biconnected

• The graph is decomposed into several biconnected components but the number of
leaf-blocks remains the same

• The graph is decomposed into several biconnected components and the number of
leaf-blocks changes

This procedure continues until all nodes of the graph but one are removed. Finally, we
encounter the desired sink, t, of the final st-orientation. The updated biconnectivity struc-
ture gives us information about the choice of our next source. Actually, the biconnectivity
maintenance allows us to remove nodes and simultaneously maintain a ”map” of possible
vertices whose future removal may or may not cause dramatic changes to the structure of
the tree.

As it will be clarified in the next sections, at every step of the algorithm there will be a set
of potential sources to continue the execution. Our aim is to establish a connection between
the current source choice and the length of the longest path of the produced st-oriented
graph.

2.3.2 The Algorithm

Now we describe the procedure in a more formal way. We name this procedure STN. Let
G = (V,E) be an undirected biconnected graph and s, t two of its nodes. We will compute
an st-orientation of G. Suppose we recursively produce the graphs Gi+1 = Gi−{vi}, where
v1 = s and G1 = G for all i = 1, . . . , n− 1.

During the procedure we always maintain a t-rooted block-cutpoint tree. Additionally,
we maintain a structure Q that plays a major role in the choice of the current source. Q

initially contains the desired source for the final orientation, s. Finally we maintain the
leaf-blocks of the t-rooted block-cutpoint tree. During every iteration i of the algorithm
node vi is chosen so that

• it is a non-cutpoint node that belongs to Q
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• it belongs to a leaf-block of the t-rooted block-cutpoint tree

Note that for i = 1 there is a single leaf-block (the initial biconnected graph) and the
cutpoint that defines it is the desired sink of the orientation, t. When a source vi is removed
from the graph, we have to update Q in order to be able to choose our next source. Q is
then updated by removing vi and by inserting all of the neighbors of vi except for t.

Each time a node vi is removed we orient all its incident edges from vi to its neighbors.
The procedure continues until Q gets empty. Let F = (V ′, E′) be the directed graph
computed by this procedure. We claim that F = (V ′, E′) is an st-oriented graph.

Lemma 2.3.3. During STN, every node becomes a source exactly once. Additionally, after
exactly n− 1 iterations (i.e., after all nodes but t have been processed), Q becomes empty.

Proof. Let v 6= t be a node that never becomes a source. This means that all incident edges
(u, v) have direction u → v. As the algorithm gradually removes sources, by simultaneously
assigning direction, one u must be a cutpoint (as v 6= t will become a biconnected component
of a single node). But all nodes u are chosen to be neighbors of prior sources. By Corollary
2.3.2, u can never be a cutpoint, hence node v 6= t will certainly become a source exactly
once. Finally, Q gets empty at the end of the algorithm as each time at least one node is
added into Q and exactly one node is removed from it.

By combining Lemmas 2.3.1, 2.3.3 and Corollary 2.3.2, we see that at each iteration of
the algorithm there will be at least one node to be chosen as a future source:

Corollary 2.3.4. Suppose after vertex vk−1 is removed, r different leaf-blocks are created.
Then in each leaf-block of the t-rooted block-cutpoint tree there exists at least one non-
cutpoint node that belongs to Q.

Lemma 2.3.5. The directed graph F = (V ′, E′) has exactly one source s and exactly one
sink t.

Proof. Node v1 = s is indeed a source, as all edges (v1, N(v1)) are assigned a direction from
v1 to its neighbors in the first step. Node t is indeed a sink as it is never chosen to become
a current source and all its incident edges are assigned a direction from its neighbors to
it during prior iterations of STN. We have to prove that all other nodes have at least one
incoming and one outgoing edge. As all nodes v 6= t become sources exactly once, there
will be at least one node u such that (v, u) ∈ E′. Sources v 6= t are actually nodes that
have been inserted into Q during a prior iteration of the algorithm. Before being chosen to
become sources, all nodes v 6= s 6= t are inserted into Q as neighbors of prior sources and
thus there is at least one u such that (u, v) ∈ E′. Hence F has exactly one source and one
sink.

Lemma 2.3.6. The directed graph F = (V ′, E′) has no cycles.
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Proof. Suppose STN has ended and there is a directed cycle vj , vj+1, . . . , vj+l, vj in F .
This means that (vj , vj+1), (vj+1, vj+2), . . . , (vj+l, vj) ∈ E′. During STN, after an edge
(vk, vk+1) is inserted into E′, vk is deleted from the graph and never processed again
and vk+1 is inserted into Q so that it becomes a future source. In our case after edges
(vj , vj+1), (vj+1, vj+2), . . . , (vj+l−1, vj+l) will have been oriented, nodes vj , vj+1, . . . , vj+l−1

will have been deleted from the graph. To create a cycle, vj should be inserted into Q as
a neighbor of vj+l, which does not hold as vj /∈ NGj+l

(vj+l) (vj has already been deleted
from the graph). Thus F has no cycles.

Algorithm 4 STN(G, s, t) (rec)

1: Initialize F = (V ′, E′);
2: Initialize m(i) = 0 for all nodes i of the graph; (timestamp vector)
3: j = 0; {Initialize a counter}
4: Q = {s}; {Insert s into Q}
5: STREC(G, s); {Call the recursive algorithm}
6: ————————————————————-
7: function STREC(G, v)
8: j = j + 1;
9: f(v) = j;

10: V = V − {v}; {A source is removed from G}
11: V ′ = V ′ ∪ {v}; {and is added to F}
12: for all edges (v, i) ∈ E do
13: E = E − {(v, i)};
14: E′ = E′ ∪ {(v, i)};
15: end for
16: Q = Q ∪ {N(v) ∼ {t}} − {v}; {The set of possible next sources}
17: m(N(v)) = j;
18: if Q == {Ø} then
19: f(t) = n;
20: return;
21: else
22: T (t, B1

j , B2
j , . . . , Br

j )=UpdateBlocks(G); {Update the t-rooted block-cutpoint tree; hi
j

is the cutpoint that defines the leaf-block Bi
j}

23: for all leaf-blocks (Bi
j , h

i
j) do

24: choose v` ∈ B`
j ∩Q ∼ {h`

j};
25: STREC(G, v`);
26: end for
27: end if

By Lemmas 2.3.5, 2.3.6 we have:

Theorem 2.3.7. The directed graph F = (V ′, E′) is st-oriented.
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Algorithm 4 is the STN pseudocode for the st-orientation computation of a biconnected
undirected graph G. During the execution of the algorithm we can also compute an st-
numbering f (line 9) of the initial graph. Actually, for each node vi that is removed from
the graph, the subscript i is the final st-number of node vi. The st-numbering can however
be easily computed in linear time after the algorithm has ended, by executing a topological
sorting on the computed st-oriented graph F .

Note that in the algorithm we use a vector m(v) (line 17), where we store a timestamp
for each node v of the graph that is inserted into Q. These timestamps will be of great
importance during the choice of the next candidate source and will give us the opportunity
to control the length of the longest path. Actually, they express the last time that a node
v becomes candidate for removal.

Regarding the time complexity of the algorithm, the recursion is executed exactly n− 1
times and the running time of each recursive call is consumed by the procedure that updates
the block-cutpoint tree, which is O(n+m) [13]. Hence it is easy to conclude that STN runs
in O(nm) time. However, it can be made to run faster by a more efficient algorithm to
maintain biconnectivity.

In fact, Holm, Lichtenberg and Thorup [12] investigated the problem of maintaining
a biconnectivity structure without computing the block-cutpoint tree from scratch. They
presented a fully dynamic algorithm that supports the insertion and deletion of edges and
maintains biconnectivity in O(log5 n) amortized time per edge insertion or deletion. In our
case, only deletions of edges are done. If we use this algorithm in order to keep information
about biconnectivity, we obtain the following:

Theorem 2.3.8 (Holm, Lichtenberg and Thorup [12]). There exists a deterministic
fully dynamic algorithm for maintaining biconnectivity in a graph, using O(log5 n) amortized
time per operation (edge insertion or deletion).

Therefore, if we use the above algorithm for the biconnectivity maintenance, the time
complexity of our algorithm can be clearly reduced to O(m log5 n). Hence we have the
following:

Theorem 2.3.9. Algorithm STN can be implemented to run in O(m log5 n) time.

The st-orientation algorithm defines an st-tree Ts. Its root is the source of our graph
s (p(s) = −1). It can be computed during the execution of the algorithm. When a node
v is removed, we simply set p(u) = v for every neighbor u of v, where p(u) is a pointer to
the father of each node u. Note that the father of a vertex can be updated many times
until the algorithm terminates. This tree is a directed tree that has two kinds of edges, the
tree edges, which show the last father-ancestor assignment between two nodes made by the
algorithm and the non-tree edges that include all the remaining edges. The non-tree edges
never produce cycles. Finally, note that the sink t is always a leaf of the st-tree Ts. As it
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Figure 2.6: The algorithm execution.
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happens with every st-oriented graph, there is a directed path from every node v to t and
hence the maximum depth of the st-tree will be a lower bound for the length of the longest
path, l(t):

Theorem 2.3.10. Let G be an undirected biconnected graph and s, t two of its nodes.
Suppose we run STN on it and we produce the st-oriented graph F and its st-tree Ts. If
d(Ts) denotes the maximum depth of the st-tree then l(t) ≥ d(Ts).

In Figure 2.6, the algorithm execution on a biconnected graph G is depicted. In Figure
2.7, we can see the final st-oriented graph F and the respective st tree Ts. Algorithm 4 can
also be implemented non-recursively. Actually, for large-size graphs, we can only use the
following non-recursive algorithm (Algorithm 5) in order to avoid stack overflow problems.

Algorithm 5 STN(G, s, t) (non-rec)

1: Q = {s}; {insert s into Q}
2: j = 0;{Initialize a counter}
3: Initialize F = (V ′, E′);
4: Initialize the t-rooted block-cutpoint tree T to be graph G; Its cutpoint is sink t;
5: while Q 6= Ø do
6: for all leaf-blocks Bi

j do
7: j = j + 1;
8: choose v` ∈ B`

j ∩Q ∼ {h`
j}; {h`

j is the cutpoint that defines B`
j}

9: f(v`) = j;
10: V = V − {v`} {a source is removed from G}
11: V ′ = V ′ ∪ {v`} {and is added to F}
12: for all edges (v`, i) ∈ E do
13: E = E − {(v`, i)};
14: E′ = E′ ∪ {(v`, i)};
15: end for
16: Q = Q ∪ {N(v`) ∼ t} − {v`}; {the set of possible sources}
17: end for
18: T (t, B1

j , B2
j , . . . , Br

j )=UpdateBlocks(G);
19: end while
20: return F , g;

Algorithm 5 works as follows. It does not update the t-rooted block-cutpoint tree at
every iteration (see line 18). After the first node is removed, it updates the t-rooted block-
cutpoint tree and it removes one node from each leaf-block. That means that it actually
calls the biconnectivity update procedure, only after all the leaf-blocks have been processed.

Finally, we must make an important remark. Instead of each time processing nodes that
belong to the leaf-blocks of the t-rooted block-cutpoint tree, we could process non-cutpoint
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Figure 2.7: The final st-oriented graph (left) and the st-tree Ts (right).

nodes that belong to some block of the t-rooted block-cutpoint tree. It is easy to prove that
there will always exist such a node and therefore all the Lemmas presented before would
certainly apply to this case as well. However, choosing nodes that belong to the leaf-blocks
of the t-rooted block-cutpoint tree gives us the opportunity to control the length of the
longest path of the final directed graph more efficiently.



Chapter 3

Longest Path Parameterized

st-Orientations

3.1 General

As stated in Chapter 2, our algorithm aims at producing st-oriented graphs of predefined
longest path length, i.e., to determine the ”quality” of the produced st-oriented graphs.
There are exponentially many st-oriented graphs that can be produced for a certain bicon-
nected undirected graph and it is desirable to be able to influence the length of the longest
path by taking advantage of the freedom of choices the algorithm gives us. Note that in the
classical algorithms for st-numbering computation [8], there is no clear way to influence the
longest path length.

Observe that the key in determining the length of the final longest path is the sequence
of sources the algorithm uses. These sources are non-cutpoint nodes that belong both to Q

and to a leaf-block of the t-rooted block-cutpoint tree.
Hence during iteration j of the algorithm, we have to pick a leaf-block of the t-rooted

block-cutpoint tree (say the l-st) and we always have to make a choice on the structure (see
line 24 of the Algorithm 4):

Q′ = Bl
j ∩Q ∼ {hl

j}
We have used two approaches in order to produce st-oriented graphs with long longest path
length and st-oriented graphs with small longest path length. As presented in Chapter 2,
during each iteration of the algorithm a timer j (line 8 of Algorithm 4) is incremented and
each vertex x that is inserted into Q gets a timestamp m(x) = j.

Our investigation has revealed that if vertices with high timestamp are chosen then long
sequences of vertices are formed and thus there is higher probability to obtain a long longest
path. We call this way of choosing vertices MAX-STN. Actually, MAX-STN resembles a
DFS traversal (it searches the graph at a maximal depth). Hence, during MAX-STN, the
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next source v is arbitrarily chosen from the set

{v ∈ Q′ : m(v) = max{m(i) : i ∈ Q′}}.
On the contrary, we have observed that if vertices with low timestamp are chosen, then
the final st-oriented graph has relatively small longest path. We call this way of choosing
vertices MIN-STN, which in turn resembles a BFS traversal. Hence, during MIN-STN, the
next source v is arbitrarily chosen from the set

{v ∈ Q′ : m(v) = min{m(i) : i ∈ Q′}}.
Note that the above sets usually contain more than one element. This means that ties exist
and have to be broken. Breaking the ties in both cases is very important in determining
the length of the longest path.

Finally, we must make a very important remark. During STN, when a node u is removed
from the graph, a sink set W is formed. This set contains nodes that were most recently
explored. It is computed as follows. Initially, W contains the source of the graph s, i.e.,
W = {s}. Let F = (V ′, E′) be the directed graph that is constructed during the execution of
the algorithm. For each node vi, i = 2, . . . , n−1 that is removed from the graph during the
iterations of the algorithm the sink set W is updated by inserting node vi and by removing
every node x for which (x, vi) ∈ E′. Note that (x, vi) is a directed edge of graph F .

Additionally, the length of the longest path from the source s of the final directed graph
to the currently removed node u is immediately determined (when u is removed, i.e., u

enters the sink set W ) and cannot change during future iterations of the algorithm. This
happens because during u’s removal, the direction of all its incident edges is determined,
and there is no way to end up to u with a path that includes nodes that have not yet been
removed (and that would probably change l(u)). Hence, we can either execute the longest
path algorithm to the so far produced sW -oriented graph or apply a relaxation method
during the execution of the algorithm (see in next sections), and compute l(u):

Remark 3.1.1. Suppose a node u is removed from the graph during STN and at this time
we run the longest path algorithm to the so far produced sW -DAG, getting a longest path
length from s to u equal to l(u). The longest path length from s to u in the final st-oriented
graph is also l(u).

This remark is very important because it gives us a sense of how the developed algorithm
can be related with the length of the longest path.

In order to have an upper bound on the length of the longest path of a biconnected
graph, we are going to present our longest path results for a special class of biconnected
graphs that have an a priori length of longest path equal to n− 1:

Definition 3.1.2. Let G = (V,E) be an undirected biconnected graph. We say that G is
st-Hamiltonian if and only if G has a simple path from a node s to a node t that includes
all the other vertices of G.
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3.2 Maximum Case (MAX-STN)

Lemma 3.2.1. Let G = (V,E) be an undirected st-Hamiltonian graph. MAX-STN com-
putes an st-oriented graph with length of longest path equal to n−1 if and only if the t-rooted
block-cutpoint tree is a path (of blocks and cutpoints).

Proof. For the direct, suppose MAX-STN computes an st-oriented graph of maximum
longest path length n − 1 and at some iteration of STN a vertex v is removed and the
block-cut point tree is decomposed into a tree that has more than one (say k) leaves. Then,
there are formed k different directed paths from vertex v to the final sink t of the graph. The
longest path cannot be the union of these paths, because all these paths have orientations
towards t. Hence l(t) < n− 1, which does not hold and the direct is proved.

The inverse of Lemma 3.2.1 is the following statement: If the block-cutpoint tree always
contains one leaf-block, then MAX-STN produces an st-oriented graph of maximum longest
path length (=n− 1) when applied to a st-Hamiltonian graph. Suppose that the produced
length of longest path is less than n−1. This means that at some iteration i of the algorithm
a source v of timestamp j < i is removed. In this case the source removed before v must
belong to a leaf-block other than the leaf-block of v, because if they belonged in the same
leaf-block, v would have a timestamp equal to i. By hypothesis, only a single leaf-block is
maintained, which does not hold. Hence l(t) = n− 1.

s

t

Figure 3.1: Choosing vertices with MIN-STN for a biconnected component that remains
biconnected throughout the execution of the algorithm.

Note that the inverse holds only for the case of the MAX-STN procedure. Figure 3.1
provides a counter example showing that if the general STN procedure is applied, a Hamilton
path cannot always be achieved, even if a single leaf-block is maintained. Hence, we come
to the conclusion that in order to produce an st-oriented graph with long longest path, one
necessary condition is to maintain a single leaf-block of the t-rooted block-cutpoint tree. We
will see later (in the Complexity Issues section) that achieving this is an NP -hard problem.

MAX-STN tries to mimic the DFS traversal of a graph, as it tries to explore the cur-
rent biconnected component at a maximal depth. In this way long paths of vertices are
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created which are more likely to contribute to a longer longest path of the final directed
graph, something that is illustrated in the experimental results chapter. If MAX-STN could
choose vertices in a way that the maximum sequence of vertices is created, then we could
probably compute an st-oriented graph with maximum longest path length. Instead, MAX-
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Figure 3.2: MAX-STN applied to a 2-1 Hamiltonian graph. No optimal DAG is produced
(longest path length = 4).

STN ”approximates” the long paths by creating different individual paths of vertices. An
individual path of vertices Pr computed by our algorithm is defined as follows: Suppose
the algorithm enters the k-th iteration and k − 1 vertices of the graph have been removed
with the following order: v1, v2, . . . , vk−1. All r individual paths P1, P2, P3, . . . , Pr can be
computed during the execution of the algorithm as follows. Initially we insert the first ver-
tex removed into the first path (v1 >> P1). Suppose vj (j < k) is removed and r different
paths have been created till this iteration. Vertex vj has a timestamp m(vj). To decide if
vj will be added to the current individual path Pi or to a next (new) path Pi+1, we execute
the following algorithm:

1: if m(vj) < m(vj−1) + 1 then
2: i = i + 1;
3: end if
4: vj >> Pi;

Actually, when the creation of a new path begins (i.e., when m(vj) < m(vj−1) + 1), we
say that MAX-STN backtracks. The length of the longest path of the final st-oriented
graph is strongly dependent on the number of times that MAX-STN backtracks. All these
observations lead to the following remark:

Remark 3.2.2. Suppose MAX-STN enters iteration j. m(vj) < m(vj−1) + 1 implies that
all nodes v ∈ Q with m(v) = j = max{m(i) : i ∈ Q} do not belong to Q′.



30

The longest path length of the final directed graph will be that union of pieces of some
of the created individual paths (hence l(t) ≥ maxi=1,...,r{|Pi|}) that achieves the largest
number of successive (neighboring) vertices and can be computed in polynomial time after
the algorithm execution or during the algorithm execution (by applying some a relaxation
method).

Figure 3.2 depicts the execution of the algorithm for a 6-node 2-1 Hamiltonian graph.
The vertices are chosen by the algorithm in the following order: 2, 4, 3, 5, 6, 1. Note that
two leaf-blocks are created and that’s why the final longest path length is not optimal. If
node 6 were chosen first, an st-oriented graph with maximum longest path length would be
computed. During the execution of the algorithm, two paths are created, the path 2,4,3,5,1
and the path 6,1. The final longest path is the first path.

Generally, the length of the longest path computed by the STN algortihm is also con-
nected with the structure of the t-rooted block-cutpoint tree. Next, we investigate the
connection between the length of the longest path of the resulting directed graph and the
leaf-blocks that are produced during the execution of the algorithm.

Theorem 3.2.3. Suppose MAX-STN is run on an undirected st-Hamiltonian graph G.
Let ki denote the number of the leaf-blocks of the t-rooted block-cutpoint tree after the i-th
removal of a node, for i = 1, 2, . . . , n− 1. Then l(t) ≤ n− 1−∑

ki>ki−1
(ki − ki−1).

Proof. Suppose the i-th iteration of the algorithm begins. Then node vi is removed. The
removal of vi gives a block-cutpoint tree of ki leaf-blocks. When an iteration i causes the
increase of the leaf-blocks from ki−1 to ki, then, in the best case, there are at least ki−ki−1

nodes that for sure will not participate in the final longest path. Hence we can derive an
upper bound for l(t) that equals the maximum longest path that can be achieved minus the
number of vertices which are lost for sure, i.e., l(t) ≤ n− 1−∑

ki>ki−1
(ki − ki−1).

In the experiments conducted on st-Hamiltonian graphs we have observed that the
length of the longest path computed by MAX-STN is usually very close to n−1−∑

ki>ki−1
(ki−

ki−1). Note that Theorem 3.2.3 also holds for the MIN-STN and generally for the STN al-
gorithm.

3.3 Minimum Case (MIN-STN)

MIN-STN is a procedure that computes st-oriented graphs with relatively small length of the
longest path. In this section, we give some theoretical results that justify this assumption.

MIN-STN works exactly the same with MAX-STN with the difference that it backtracks
for a different reason. As we saw before, MAX-STN creates long directed paths of vertices
and it backtracks when it encounters a cutpoint (no matter if its timestamp is the maximum
one), which is prohibited by the algorithm to be chosen as a next source. During this
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procedure, r different directed paths of vertices are created and the length of the longest
path of the final directed graph is always longer than the length of these paths. In MAX-
STN, the criterion of backtracking is: If you encounter a cutpoint, continue execution from
the node with the maximum timestamp. On the other hand, MIN-STN works as follows: It
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Figure 3.3: MAX-STN (left) and MIN-STN (right) applied to the same biconnected com-
ponent. The black node is a cutpoint. The thick lines show the different orientation that
results in different length of the longest path. The number besides the node represents the
visit rank of each procedure.

creates small paths of vertices because backtracking occurs more often, as nodes of minimum
timestamp usually lie on previously explored paths. Actually suppose during the execution
of MIN-STN r′ such paths of vertices P1, P2, P3, . . . , Pr′ are created. These paths can be
computed with exactly the same algorithm that computes the MAX-STN paths, with the
difference that the case m(vj) < m(vj−1)+1 is likely to occur more times during MIN-STN
than during MAX-STN.

3.4 Useful Observations

3.4.1 Longest Path Computations

In this section, we make some observations about both MAX-STN and MIN-STN concerning
longest path computations. During STN, there are formed two sets of nodes R, R′ with
V = R∪R′. R contains the nodes that have have been removed from the graph whereas R′

contains the nodes that have not yet been removed. All edges (v, x) such that v ∈ R have
already been oriented and hence the directed paths leading to all nodes v ∈ R have been
determined. That’s why the length of the longest path from s to a removed node v ∈ R is
immediately determined at the time of its removal (Remark 3.2.2).
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Actually, if we apply a relaxation algorithm during STN, we can compute the longest
path length l(v) from s to every node v ∈ R during the execution of STN. This can be
achieved as follows: At the beginning, we initialize the longest path vector l to be the zero
vector, hence

l(v) = 0 ∀v ∈ V

Suppose that at a random iteration of the algorithm we remove a node u ∈ R′ and we orient
all u’s incident edges (u, i) away from u. For every oriented edge (u, i) ∈ E′ we relax l(i) as
follows:

1: for all (u, i) ∈ E′ do
2: if l(i) < l(u) + 1 then
3: l(i) = l(u) + 1;
4: end if
5: end for

This relaxation is exactly the same used by the algorithm that computes longest paths in
directed acyclic graphs. Note that nodes i belong to R′ and hence all nodes that belong
to Q (or Q′) will have an updated value l(i) different than zero. Additionally, at the time
a node v is removed from the graph (and enters R), its longest path length l(v) is always
equal to l(v′) + 1, where v′ is a node that that had previously removed from the graph.
Suppose now we enter the k-th iteration of the algorithm and vk is removed. Let

Mk = max{l(vj) : j = 1, . . . , k}

, i.e., Mk denotes the maximum longest path length computed by STN till iteration k. All
the observations presented lead to the following Lemma:

Lemma 3.4.1. Suppose STN enters iteration k and vk is removed. Then Mj ≤ Mj−1 + 1
for all j = 2, . . . , k.

Actually, Lemma 3.4.1 points out the fact that when STN enters iteration k, no dramatic
changes can happen to the maximum longest path length computed till iteration k. The
increase is always at most one unit. This is actually happening when vk has a previously
removed neighbor vl, l < k and (vl, vk) ∈ E′, such that l(vl) = Mk−1. If there is no such
node, it holds Mk = Mk−1 and no increase is observed.

Suppose now `(v), λ(v) denotes the length of the longest path from s to a node v com-
puted by MAX-STN and MIN-STN respectively. We analogously define Lk and Λk as
follows:

Lk = max{`(vj) : j = 1, . . . , k}
and

Λk = max{λ(vj) : j = 1, . . . , k}
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Conjecture 3.4.2. Let G be an n-node undirected biconnected graph and s, t be two nodes
of its vertex set. Then if we apply MAX-STN and MIN-STN on it, it is ÃLn ≥ Λn.

If this conjecture finally holds, then `(t) = Ln ≥ λ(t) = Λn and MAX-STN computes
st-oriented graphs of greater or equal longest path length than MIN-STN does. This is
actually something that experimentally (as we will see in the Experimental Results section)
holds for sure.

To face this conjecture, suppose both MIN-STN and MAX-STN are executed on the
same graph G and they enter iteration k. MIN-STN has removed the nodes v1, v2, . . . , vk

and MAX-STN has removed the nodes w1, w2, . . . , wk. We use induction and we describe
the problem with the proof. For the base case, it obviously holds L1 ≥ Λ1. Suppose, after
iteration k it holds Lk ≥ Λk. We would like to prove that, concerning the way MAX-STN
and MIN-STN work, it is

Lk+1 ≥ Λk+1

There are four cases:

• `(vk+1) > Lk ∧ λ(wk+1) > Λk

• `(vk+1) > Lk ∧ λ(wk+1) ≤ Λk

• `(vk+1) ≤ Lk ∧ λ(wk+1) ≤ Λk

• `(vk+1) ≤ Lk ∧ λ(wk+1) > Λk

Note that by Lemma 3.4.1, the first three cases imply that Lk+1 ≥ Λk+1, given that Lk ≥ Λk.
The problem is with case 4, where Lk+1 = Lk and Λk+1 = Λk + 1. In this case we would
like to prove that

Lk+1 ≥ Λk+1 ⇒ Lk ≥ Λk + 1 ⇒ Lk > Λk

If we suppose that Lk = Λk, then we should try to derive something false, for example that
the condition `(vk+1) ≤ Lk ∧ λ(wk+1) > Λk does not hold. The problem with the proof
is that in the general case the sequences of vertices v1, v2, . . . , vk and w1, w2, . . . , wk are
different.

3.4.2 Longest Path Timestamps

Till now we have defined the timestamps in accordance with a current timer j, which is
updated during the execution of the algorithm: Each node v inserted into Q is associated
with a timestamp value m(v), which is set equal to i, every time that v is discovered by a
removed node vi, i.e., v is a neighbor of vi. We call this method current timestamp method.

There is however another way to define the timestamps. As we saw in the previous
section, during the execution of the algorithm we can compute (by using the relaxation
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method) the longest path length from s to each processed node u. We call this method
the longest path timestamp method and it works as follows. Each node v inserted into Q

is associated with a timestamp value m(v), which is set equal to the relaxed longest path
length l′(v), which is lower than the final longest path length l(v) (this is determined by
the time of v’s removal). As we will discuss later, it has been experimentally observed, that
the current timestamp method is a more efficient way to control the length of the longest
path of the final directed graph.

The longest path timestamp method can be used to produce long or short st-orientations
of weighted graphs. The presented algorithm, implemented with the longest path timestamp
method can be used to compute weighted numberings on the weighted st-oriented graph
that is produced. Let cuv be the weights of the graph edges (u, v) ∈ E. Suppose we update
the longest path lengths using the following algorithm:

1: for all (u, i) ∈ E′ do
2: if l(i) < l(u) + ciu then
3: l(i) = l(u) + ciu;
4: end if
5: end for

Then we can use the computed longest paths to update the timestamps and implement the
algorithm for weighted graphs as well.

3.5 Computational Complexity Issues

In this section, we will investigate some issues concerning the complexity of the developed
algorithm. First of all it is easy to see that maintaining a block-cutpoint tree of a sole
leaf-block during STN is NP -hard1. The proof comes from the fact that if we could do
so, we could apply MAX-STN (see Lemma 3.2.1) to an st-Hamiltonian graph and find its
longest path, which is a well known NP -hard problem [10]. Following we define two decision
problems and prove their NP -hardness.

Definition 3.5.1 (Maximum st-Oriented Graph Problem). Given an undirected bi-
connencted graph G = (V,E), two of its nodes s, t, an integer bound k, can we transform
G to an st-oriented graph F than contains a longest path of length at least k?

Theorem 3.5.2. The Maximum st-Oriented Graph Problem is NP -hard.

Proof. We reduce the st-Directed Hamilton Path, which is NP -complete [10], to it. The st-
directed Hamilton Path problem seeks an answer to the following yes/no question: Given
a directed graph G = (V,E) and two vertices s, t is there a directed path from s to t

1Actually, it is NP -hard to decide whether or not the removal of a vertex vi will cause a future decom-
position of the block-cutpoint tree into more than one leaf-blocks.



35

that visits all vertices exactly once? The polynomial reduction follows. Given an instance
G′ = (V ′, E′), s′, t′ of the st-directed Hamilton Path problem, count the number |V ′| of
nodes of G′ and output the instance G = G′, k = |V ′|, s = s′, t = t′ for the maximum
longest path length st-oriented graph problem. Obviously, G has a simple directed path of
length k = |V ′| from s to t if and only if G′ has a directed hamilton path from s′ to t′.

Definition 3.5.3 (Minimum st-Oriented Graph Problem). Given an undirected bi-
connencted graph G = (V,E), two of its nodes s, t, an integer bound k, can we transform
G to an st-oriented graph F than contains a longest path of length at most k?

Theorem 3.5.4. The Minimum st-Oriented Graph Problem is NP -hard.

Proof. We will reduce Graph Coloring to it. Let G = (V, E) be a graph. Suppose we
produce G′ = (V ′, E′) as follows

V ′ = V ∪ {s, t}
and

E′ = E ∪ {(s, i)} ∪ {(i, t)} ∀i ∈ V

We will prove that G can be colored with c colors if and only if the edges of G′ can be
oriented in a way that the longest path length from s to t is c + 1. Then if χ(G) is the
chromatic number of G, the minimum st-orientation of G′ will have longest path from s to
t equal to χ(G) + 1.

For the direct, suppose we have a coloring of G consisting of c colors. We can orient
the edges of G′ from the lowest to the highest color. For every st-path p of G′, the colors
increase along p and hence p has length at most c + 1. For the inverse, if we have an
st-orientation of G′ with L being the longest path from s to t, assign a color to each node
u of G equal to the longest path length from s to u. Then we need at most L− 1 colors to
color the graph.

3.6 Inserting Parameters into the Algorithm

As it has already been reported, it would be desirable to be able to compute st-oriented
graphs of length of longest path within the interval [λ(t), `(t)]. This is called a parameterized
st-orientation. So the question that arises is: Can we insert a parameter into our algorithm,
for example a real constant p ∈ [0, 1] so that our algorithm computes an st-oriented graph
of length of longest path that is a function of p? This is feasible if we modify STN. As
the algorithm is executed exactly n times (n vertices are removed from the graph), we can
execute the procedure MAX-STN for the first pn iterations and the procedure MIN-STN
for the remaining (1 − p)n iterations. We call this method PAR-STN(p) and we say that
it produces an st-oriented graph with length of longest path from s to t equal to ∆(p).
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Algorithm 6 PAR-STN(G, s, t, p) (rec)

1: Initialize F = (V ′, E′);
2: Initialize m(i) = 0 for all nodes i of the graph; (timestamp vector)
3: Initialize l(i) = 0 for all nodes i of the graph; (longest path length vector)
4: j = 0; {Initialize a counter}
5: Q = {s}; {Insert s into Q}
6: PAR-STREC(G, s); {Call the recursive algorithm}
7: ————————————————————-
8: function PAR-STREC(G, v)
9: j = j + 1;

10: f(v) = j;
11: V = V − {v}; {A source is removed from G}
12: V ′ = V ′ ∪ {v}; {and is added to F}
13: for all edges (v, i) ∈ E do
14: E = E − {(v, i)};
15: E′ = E′ ∪ {(v, i)};
16: if l(i) < l(v) + 1 then
17: l(i) = l(v) + 1;
18: end if
19: end for
20: Q = Q ∪ {N(v) ∼ {t}} − {v}; {The set of possible next sources}
21: m(N(v)) = j;
22: if Q == {Ø} then
23: f(t) = n;
24: return;
25: else
26: T (t, B1

j , B2
j , . . . , Br

j )=UpdateBlocks(G); {Update the t-rooted block-cutpoint tree; hi
j

is the cutpoint that defines the leaf-block Bi
j}

27: for all leaf-blocks (Bi
j , h

i
j) do

28: if j ≤ pn then
29: choose v` ∈ B`

j ∩Q ∼ {h`
j} of MAXIMUM m(vl) (or l(vl));

30: else
31: choose v` ∈ B`

j ∩Q ∼ {h`
j} of MINIMUM m(vl) (or l(vl));

32: end if
33: PAR-STREC(G, v`);
34: end for
35: end if
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Note that PAR-STN(0) is equivalent to MIN-STN, thus ∆(0) = λ(t) while PAR-STN(1)
is equivalent to MAX-STN and ∆(1) = `(t). PAR-STN has been tested and it seems
that when applied to st-Hamiltonian graphs (biconnected graphs that contain at least one
path from s to t that contains all the nodes of the graph) there is a high probability that
∆(p) ≥ p(n−1). Actually, ∆(p) is very close to p(n−1). Additionally, it has been observed
that if we switch the order of MAX-STN and MIN-STN execution, i.e., execute MIN-STN
for the first pn iterations and MAX-STN for the remaining (1 − p)n iterations, there is a
high probability that ∆(p) ≤ p(n − 1). In this case, ∆(p) is again very close to p(n − 1).
As far as the parameterized st-orientation is concerned, we can extend our idea and insert
more parameters p1, p2, . . . , pk. In this case the algorithm would compute a longest path
equal to ∆(p1, p2, . . . , pk). These parameters will certainly define a choice on the structure
that candidate sources are stored with more detail. For example, we can insert a parameter
k such that each time the k-th order statistic (or the median) from the timestamp vector is
chosen. Algorithm 6 is the full pseudocode of the parameterized algorithm. Note that the
algorithm can either use the current timestamp or the longest path timestamp method.

The efficiency of the parameterized st-orientation algorithm is fully indicated in the
Experimental Results section.



Chapter 4

Applications of Parameterized

st-Orientations

4.1 General

The purpose of this work has always been the computation of st-oriented graphs with certain
parameters, such as the length of the longest path from s to t. In this chapter we show that
this research direction is indeed important for many applications.

4.2 Graph Drawing

4.2.1 General

During the past decades, a lot of algorithms have been proposed for drawing st-oriented
graphs [3]. The structure of these graphs (actually the length of the longest path) is vital
in the final drawing. Namely, the length of the longest path from s to t determines some of
the most important features of the drawing, such as the width and the length of it, which
are also dependent on the algorithm that is every time used in order to visualize the specific
graphs.

It is also interesting to use the algorithms that apply to directed acyclic graphs as means
to visualize general undirected graphs. In this case, we transform a general undirected graph
G to a directed acyclic graph with a single source s and a single sink t, i.e., an st-oriented
graph. This is feasible if and only if G ∪ {s, t} is biconnected [15]. The transformation can
be achieved by computing an st-numbering (which implies an st-orientation or a bipolar
orientation) of the respective graph G.

There are many linear time algorithms to compute bipolar orientations but clearly do
not define some properties on the produced orientation [8, 7, 24]. Actually, they produce
an orientation at random without a guarantee for the length of the longest path of the
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final st-oriented graph. Therefore, the presented algorithm could be used by many graph
drawing algorithms and produce drawings of certain aesthetics. Following we refer to some
graph drawing algorithms and techniques that are used for the visualization of st-oriented
graphs and where the length of the longest path from s to t determines major characteristics
of the final solution:
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(a) (b) (c)

Figure 4.1: An undirected graph (a) and two (b), (c) possible st-orientations of it.

• Hierarchical Drawings. One of the most common algorithms in hierarchical draw-
ing is the longest path layering [4]. This algorithm applies to directed acyclic graphs.
The height of such a drawing is always equal to the length of the longest path of
the directed acyclic graph, l(t). If we want to visualize an undirected graph G using
this algorithm, we must firstly st-orient G. The height of the produced drawing will
be equal to the length of the longest path l(t) of the produced st-orientation. By
computing an st-orientation of the graph with low length of longest path (”short st-
orientations”), we can produce drawings of low height. On the contrary if we want
to produce maximal height drawings, we must compute an st-orientation of greater
length of longest path (”long st-orientations”). This gives us the opportunity to
produce drawings of desired sizes, according to the application.

• Visibility Representations. In order to compute visibility representations of planar
graphs, we must compute an optimal topological numbering of an st-orientation of
the input graph [22]. This can be done if we assign unit-weights to the edges of
the graph and compute the longest path to each one of its vertices from source s.
The longest path that each vertex is assigned is its optimal weighted topological
number. The y-coordinate of each vertex in the visibility representation is equal to its
topological number. Hence the length of the longest path of the used st-orientation is
decisive in visibility representations of undirected graphs. Moreover, in the visibility
representations, the length of the longest path l∗(t) of the dual graph is also important.
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How a different primal st-orientation impacts on the dual orientation is very crucial
for visibility representations.

• Orthogonal Drawings. The first step of algorithms that compute orthogonal draw-
ings [18] is to compute an st-numbering of the input undirected graph G. These
algorithms compute some variables (such as the row pairs or the column pairs in [18])
that are functions of the st-orientation and which determine the width and the height
of the drawing. Applying different st-orientations for the orthogonal drawing of a
graph G, can result in different drawing area bounds.

Figure 4.1 depicts an undirected graph G (Figure 4.1a) and two different st-orientations of
it. The length of the longest path (from s to t) of the first st-orientation (Figure 4.1b) is
equal to 4, while the second st-orientation (Figure 4.1b) has length of longest path from s to
t equal to 3. There is no other st-orientation of longest path length different than 3 or 4 for
graph G. Figure 4.2 shows two different longest path and visibility representation layouts
for the two different st-orientations (4.1b), (4.1c) of the same graph (4.1a). The drawings
have different characteristics, for example drawings in Figure 4.2a are more ”longer” and
”thinner” whereas drawings in Figure 4.2b are ”shorter” and ”wider”. Additionally, in the
visibility representations layout, the required area is different. The length of the longest
path of the dual graph also changes.

a

b

c

a

b

ca

b

c

a

b

c

(a) (b)

Figure 4.2: Longest path layering and visibility representation layouts for the st-orientation
of Figure 4.1b (a) and for this of Figure 4.1c (b).

4.2.2 Primal and Dual st-Orientations

Now we present some results concerning the impact of parameterized st-orientations on
st-planar graphs. As it is referred in [4], st-planar graphs G are planar graphs having two
distinct nodes s, t on the outer face of their embedding. If we st-orient such a graph, we
can define a single orientation for the dual graph G∗ which is also an s∗t∗-orientation.
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This method is used in the visibility representations algorithms [22], when we have
to compute the dual s∗t∗-oriented graph. The length of the longest path of this graph
determines the width of the geometric representation. Thus, the questions that arise are
natural. What is the impact of the parameter p on the length of the longest path of the dual
s∗t∗-oriented graph G∗ of an st-planar graph G, which (the graph G) has been st-oriented
with PAR-STN(p)? Intuitively, we would expect that l∗(t) (the length of the longest path
of the dual graph G∗) will grow inversely proportional to l(t) (the longest path length of
the primal graph G) (see Figure 4.3). As we will see, this is not always the case. In

p = 0
l = 4
l*= 10

(a) (b)

p = 1
l = 6
l*= 8

(c)

Figure 4.3: Constructing the dual graph for different values of the parameter p (p = 0, 1).

Figure 4.3, we can see the impact of the parameter p on the longest path length of the dual
graph G∗. In 4.3a, an st-planar (undirected) graph G is shown. Note that this graph is
triangulated and thus it has maximum density. In 4.3b, we construct an st-orientation of
G, applying PAR-STN(0), getting l(t) = 4 and l∗(t) = 10. Note that l(t) + l∗(t) = 14 = 2n.
Finally, in 4.3c we use PAR-STN(1) to get a primal st-orientation with l(t) = 6 and a dual
st-orientation with l∗(t) = 8. In this case l(t) + l∗(t) = 14 = 2n.

4.2.3 A Special Class of Planar Graphs

In this section we investigate certain classes of st-planar graphs that can be st-oriented in
such a way that certain lengths of primal and dual longest paths can be achieved. This is
actually a good reason to justify the fact that different st-orientations are indeed important
in many applications.

Definition 4.2.1. We define an n-path planar graph (n ≥ 5) G = (V, E) to be the planar
graph that consists of a path P = v2, v3, . . . , vn−1 of n− 2 nodes and two other nodes v1, vn

such that (v1, vi) ∈ E, (vi, vn) ∈ E ∀i = 2, . . . n− 1 and (v1, vn) ∈ E.
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In Figure 4.4, one n-path planar graph is depicted. Its source is node 1 whereas its sink
is node n−1. Note that an (n+1)-path planar graph Gn+1 can be obtained from an n-path
planar graph Gn if we add a new node and connect it with nodes v1, v2 and vn (nodes v1

and vn are the rightmost and leftmost nodes of Gn’s embedding in Figure 4.4). Let now
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n-1

n

n-2

Figure 4.4: An n-path planar graph. We define node 1 to be the source of the graph and
node n− 1 to be the sink of the graph.

Gn be an n-path planar graph and λ(Gn), `(Gn) denote the minimum and the maximum
longest path length 1(n− 1)-orientations over the set of all the 1(n− 1)-orientations of Gn

respectively. In Figure 4.5, two 1(n − 1)-orientations of a general n-path planar graph are
depicted. In Figure 4.5a, the orientation of minimum longest path length is depicted while
in Figure 4.5b the orientation of maximum longest path length is depicted. Let G1(n) be
the directed graph of Figure 4.5a and G2(n) be the directed graph of Figure 4.5b. Note the
difference between the two orientations of Figure 4.5. In 4.5a, all edges belonging on the
medium path of G1(n) successively change their direction. On the other hand, in 4.5b, all
edges belonging on the medium path of G2(n) have an orientation towards the sink of the
graph, n− 1.

In the following Lemmas, we say that a graph is a minimum (maximum) st-oriented
graph if it is st-oriented and the length of the longest path from s to t is the minimum
(maximum) over all the possible st-orientations of the respective undirected graph.

Lemma 4.2.2. For all n ≥ 5 G1(n) is one minimum 1(n− 1)-oriented graph of an n-path
planar graph Gn. Moreover, for this orientation, it is λ(Gn) = 4.

Proof. We will use induction. For n = 5 examine all the 1-4 orientations (23 orientations
minus the cyclic and the multiple source or multiple sink ones) of G5 and we have λ(G5) = 4
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which is achieved with the st-oriented graph G1(5). Suppose the Lemma holds for n = k.
Hence the minimum 1(k−1)-oriented graph is G1(k) and λ(Gk) = 4. For n = k+1 construct
a directed graph H from G1(k) by inserting a new node v and adding the directed edge
(v, 2) if n is odd or (2, v) if n is even and the directed edges (1, v) and (v, n). Then H is the
graph G1(k+1) and the longest path length does not increase due to the way v is connected
to node 2, as the newly added edge can either replace or not an edge that participated in
G1(k)’s longest path. Additionally, the addition of node v does not create any cycle as it
adds two cycle-free triangles to an already st-oriented graph. Hence λ(Gk+1) = 4 and Gk+1

is 1(k)-oriented, which implies the correctness of the Lemma.
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Figure 4.5: Two 1(n− 1)-orientations of an n-path planar graph, G1(n) (a) and G2(n) (b).

Lemma 4.2.3. For all n ≥ 5 G2(n) is one maximum 1(n− 1)-oriented graph of an n-path
planar graph Gn. Moreover, for this orientation, it is `(Gn) = n− 1.

Proof. The proof is again by induction as in Lemma 4.2.2. The only difference here is that
the addition of a new node each time increments the primal longest path length.

Suppose now we compute the dual graphs of the directed graphs G1(n) and G2(n),
G∗

1(n), G∗
2(n) respectively (see Figure 4.6a and 4.6b respectively). Let λ∗(Gn), `∗(Gn)

denote their respective longest path lengths.

Theorem 4.2.4. For all n ≥ 5 it holds λ∗(Gn) = `∗(Gn) = 2n− 4.

Proof. We will use induction. For n = 5, compute the dual orientations G∗
1(5), G∗

2(5) of the
respective directed graphs G1(5), G2(5). Then it holds λ∗(G5) = `∗(G5) = 6 = 2 × 5 − 4.
Suppose the Lemma holds for n = k, i.e., λ∗(Gk) = `∗(Gk) = 2k − 4. For n = k + 1, add a
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node v (node k + 1 in Figure 4.7) as in previous Lemmas to construct the primal directed
graphs G1(k + 1) and G2(k + 1) and then construct the dual orientations of them as in
Figure 4.7. In both cases, 3 new dual edges are introduced (the thick black edges). Only
two of them participate in the longest path lengths λ∗(Gk+1), `∗(Gk+1) and therefore the
longest path lengths λ∗(Gk+1), `∗(Gk+1) are increased by two. Hence:

λ∗(Gk+1) = λ∗(Gk) + 2 = 2k − 4 + 2 = 2(k + 1)− 4

and
`∗(Gk+1) = `∗(Gk) + 2 = 2k − 4 + 2 = 2(k + 1)− 4

which entail that λ∗(Gn) = `∗(Gn) = 2n− 4.

1

2

3

4

5

n-1

n

n-2

1

2

3

4

5

n-1

n

n-2

(a)
(b)

Figure 4.6: The dual orientations of G1(n) (a) and G2(n) (b).

According to Theorem 4.2.4, the impact of different st-orientations of an n-path planar
graph on the area of their visibility representation is evident. By using the minimum st-
orientation, we will need an area equal to

λ(Gn)λ∗(Gn) = 4(2n− 4) = 8n− 16 = O(n)

If we use the maximum st-orientation, we will need an area equal to

`(Gn)`∗(Gn) = (n− 1)(2n− 4) = 2n2 − 6n + 4 = O(n2)

In this way, we can reduce the area by a factor of n. Note that while `(Gn) + `∗(Gn) =
3n − 5 > 2n, it is λ(Gn) + λ∗(Gn) = 2n ≤ 2n. We therefore introduce the following
conjecture:
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Figure 4.7: The inductive step of the Theorem 4.2.4. The length of the dual longest path
always increases by two.

Conjecture 4.2.5. For every n-node planar biconnected graph G, two nodes s, t of its
vertex set, there exists at least one st-orientation of G such that l(t) + l∗(t) ≤ 2n.

In order to face this conjecture, one should try to devise an algorithm that determinis-
tically st-orients a planar graph in a way that the produced length of the dual longest path
grows at most as much as the primal one does.

As we will see in the experimental results section, the inequality l + l∗ ≤ 2n holds for
the majority of the planar graphs tested. Actually, for all the planar graphs tested, STN
always computes an st-orientation that satisfies this inequality.

4.3 Longest Path Problem

As we saw in the previous chapter, computing an st-orientation of maximum longest path
length is an NP -hard problem (reduction from the directed Hamilton Problem). However,
MAX-STN can be used as a heuristic for the longest path problem in undirected graphs.
Actually, as we will see in the experimental results section, MAX-STN produces near op-
timal results for this problem (for st-Hamiltonian graphs it computes an st-orientation of
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longest path length roughly equal to n− 1.)

4.4 Graph Coloring Problem

In the Computational Complexity section of the previous chapter, we proved that computing
an st-orientation of minimum longest path length is NP -hard. To do so, we reduced the
Graph Coloring Problem to it.

Theorem 3.5.4 shows a strong connection of graph coloring and minimum longest path
length st-orientations. By producing a good solution for the minimum st-orientation prob-

s t

Figure 4.8: Combining graph coloring and st-orientations.

lem we maybe have a good solution for the graph coloring problem. Suppose we are given
a graph G = (V, E) and we want to compute a coloring of G. We produce the graph
G′ = (V ′, E′) by adding two extra nodes s, t and edges from s to all the nodes of G and
from t to all the nodes of G. We apply the MIN-STN algorithm to G′ with source s and
sink t, resulting to an st-oriented graph F with longest path l. Then, by Theorem 3.5.4, we
can color G using l − 1 colors.

We illustrate this thought with an example. Suppose we want to compute a coloring of
a ring G = (V, E) consisting of 6 nodes. Clearly χ(G) = 2. If we add the nodes s, t, the
undirected edges (s, i), (t, i) ∀i ∈ V and apply MIN-STN to it, we produce the st-oriented
graph of Figure 4.8.

Note that all nodes lying on the ring have a longest path length from s either 1 or 2. The
longest path length from s to t is 3, and thus we need 3− 1 = 2 colors to color G. Actually,
this is the chromatic number of G. Hence, we have computed the chromatic number of G by
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applying MIN-STN to G′. The question that arises is whether MIN-STN can compute good
colorings for other graphs as well. This is something that opens new research directions
(maybe the development of new heuristics adjusted to the graph coloring problem in order
to break the ties that appear in the choice of the next source during MIN-STN) and has to
be tested experimentally.

Theorem 3.5.4 is also very important in Graph Drawing. If one could prove that a
minimum longest path length st-orientation implies an optimal drawing area of a layout of
a planar graph, then, by Theorem 3.5.4 it would be easy to conclude that computing such
an optimal layout would be NP -hard.

4.5 st-Orientations of Special Classes of Graphs

Following, we investigate st-orientations of special classes of graphs. The special structure of
some graphs can lead us to useful conclusions concerning their st-orientations. Additionally,
the structure of some graphs does not allow the existence of many st-orientations and hence
the impact of the parameter is not clear. In this section we investigate these hard classes
of graphs and prove some properties.

4.5.1 st-TSA graphs

In this section, we describe a special case of graphs that can be constructed by using the
algorithm that 2-approximates the metric TSP (the TSP where the triangle inequality is
satisfied) problem. Actually this method constructs st-Hamiltonian graphs of low density
(always less than 2− 3

n). These graphs have very important properties that clearly influence
the final orientation and the length of the longest path of the final st-oriented graph. As
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Figure 4.9: Constructing an st-TSA graph.

is widely known, Christophides [6] devised a 3
2 -approximation algorithm for the well known

NP -complete metric TSP problem. This method is an improvement of the algorithm that
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uses preorder numbering and shortcuts in order to achieve a 2-approximation of the metric
TSP problem. We will use the last algorithm in order to construct an st-Hamiltonian
graph of density 2− 3

n or less. We call these graphs st-TSA graphs (st-Travelling Salesman
Approximation Graphs). Following, we present the algorithm we have used in detail (Figure
4.9).

Suppose we want to construct an n-node st-TSA graph. We initialize a Kn graph with
random weights on its edges. Then we compute a minimum spanning tree T ′ = (V, E) of it
by using either the Kruskal or the Prim algorithm.

Afterwards we pick a node r ∈ V to be the root of the tree T ′ and we execute a preorder
traversal of the tree T ′ from the root r. Thus every node vi gets a preorder number d(vi)
such that

d(vi) < d(vj)

if vi occurs before vj in the preorder numbering. Suppose we store the nodes of the tree
in a vector y sorted in increasing preorder number. Note that y1 = r. We now expand the
minimum spanning tree T by setting

Es = E ∪
(

n−1⋃

i=1

(yi, yi+1)

)
∪ (yn, y1)

It is clear now that |Es| ≤ 2n− 3 (tight in the case of a minimum spanning tree where all
nodes except for the root r have the same father r) and hence the density bound follows.
Additionally, there is always a Hamilton path that connects all the nodes of the graph from
r to yn. If we now set s = r = y1 and t = yn, we get an st-Hamiltonian graph G = (V, Es)
of density at most 2− 3

n . We call this graph an st-TSA graph.
Following we describe some properties concerning the st-TSA graphs and play a major

role in the st-orientation. Actually, we refer to the class of outerplanar graphs. Outerplanar
graphs are a subclass of planar graphs with the additional property that all nodes can be
placed on a circle circumference in a way that an embedding with zero crossings is produced.

Theorem 4.5.1. st-TSA graphs are outerplanar.

Proof. Let G = (V, E) be an n-node st-TSA graph. Let y be the preorder vector with y1 = s

and yn = t. We want to prove that if we place all nodes with the order they appear in the
preorder vector on a circle circumference, an embedding with zero crossings is produced.
Suppose there is at least one crossing. Then there will exist at least one quadruple of
integers (k, i, j, l) such that k < i < j < l ≤ n such that

(yk, yj) ∈ E ∧ (yi, yl) ∈ E

The crossing x defined by this quadruple will be the intersection point of the line segments
[yk, yj ] and [yi, yl]. (Figure 4.10a). Note that both edges (yk, yj) and (yi, yl) should be tree
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edges because all added edges must lie on the circumference of the circle and could not
create a crossing.

The edge (yk, yj) is a tree edge and from hypothesis it is k < j. As k < i < j, yi is
discovered before yj . Hence it is (yi) the root of a dfs subtree on the left of yj (all the nodes
on the left of yj must have less preorder number than the preorder number of yj) (Figure
4.10b). The edge (yi, yl) is also a tree edge. Therefore yl must lie on the left of yj , as its tree
father yi lies on the left of yj . This means that yl lies before yj in the preorder numbering,
i.e., l < j, which does not hold as from hypothesis we have that k < i < j < l ≤ n. Hence
there is no crossing x and therefore G is outerplanar.

yk

yi

yj

yl

x

yk

yjyi

yl

(a) (b)

Figure 4.10: Proof of theorem 4.5.1.

4.5.2 Series-Parallel Graphs and Outerplanar Graphs

Following we refer to a special case of graphs called series-parallel graphs and their orienta-
tions. We are going to show relation between outerplanar graphs and series-parallel graphs.
A series-parallel graph Gs,t is recursively defined as follows:

• Base Case: A graph G consisting of two nodes s, t connected by an edge is a series
parallel graph. Nodes s, t are called source and sink of G respectively. Let G1 and
G2 be two series parallel graphs with sources s1, s2 and sinks t1, t2 respectively.

• Serial Combination: The graph Gs that emerges from identifying t1 with s2. The
source of Gs is s1 and the sink of Gs is t2.
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• Parallel Combination: The graph Gp that emerges from identifying s1 with s2 and
t1 with t2. The source of Gp is s1/s2 and the sink is t1/t2.

Note that a series parallel graph admits a single st-orientation. This is so because any series
parallel graph can be decomposed into base-case series parallel graphs (two nodes s, t and
one connecting edge (s, t)) which all admit a single st-orientation from s to t. Hence:

Theorem 4.5.2. Let G be a series-parallel graph with source s and sink t. Then G admits
exactly one st-orientation.

Following, we must make a very important remark. All biconnected outerplanar graphs
(outerplanar graphs with a Hamilton cycle, such as the st-TSA graphs) are series-parallel
graphs if and only if the source s and the sink t are carefully chosen to be two nodes that
satisfy certain properties.

Let G = (V,E) be a biconnected outerplanar graph. Then all nodes of G lie on the
circumference of a cycle according to a certain ordering. We now define two relations on
the nodes of G. For every two nodes u, v ∈ V we say that u ½ v if and only if u, v are cycle-
adjacent, i.e., they lie in neighboring positions on the circle of G and (u, v) ∈ E. In similar,
we say that u → v if and only if u, v are out-adjacent, i.e., they lie in non-neighboring
positions on the circle of G and (u, v) ∈ E. We can now divide the set of edges E of each
biconnected outerplanar graph in two subsets Ec and Eo such that

Ec = {(u, v) ∈ E : u ½ v}

and
Eo = {(u, v) ∈ E : u → v}

where E = Ec∪Eo. Suppose now we choose two random nodes s, t on the circle of G. This
random choice defines two paths Π(s,t), Π′(s,t) on the circumference of the circle (see Figure
4.11).

For each biconnected outerplanar graph with one distinct source s and one distinct sink
t, we define an edge set C(s,t) ⊆ Eo such that

C(s,t) = {(u, v) ∈ Eo : u ∈ Π(s,t) ∧ v ∈ Π′(s,t)}

Lemma 4.5.3. Let G be a biconnected outerplanar graph and s, t be two nodes of it. G is
a series-parallel graph with source s and sink t if and only if C(s,t) = {Ø}

Proof. For the direct, suppose G is a series-parallel graph with source s and sink t and
C(s,t) 6= {Ø}. Then an edge (vi, vj) ∈ C(s,t) splits G into two subgraphs Gl (which contains
s) and GR (which contains t). If we now execute a parallel combination of Gl, GR (which
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Figure 4.11: Choosing two nodes s, t defines two paths Π (white vertices), Π′ (black ver-
tices). C(s,t) contains edges with different color endpoints.

are both series-parallel of source vi and sink vj), we get a series-parallel graph of source vi

and sink vj . This series-parallel graph is G. But G has source s and sink t, hence our initial
assumption does not hold and C(s,t) = {Ø}.

For the inverse, we must prove that if C(s,t) = {Ø} then G is a series-parallel graph with
source s and sink t. As C(s,t) = {Ø} all the edges e = (vi, vj) of the graph have both their
endpoints either on Π(s,t) or on Π′(s,t). Without loss of generality, let vi, vj ∈ Π(s,t). Then
there exist k1, k2, . . . , kl such that vi ½ k1, k1 ½ k2, . . . , kl ½ vj . This path is actually a
series-parallel graph with source vi and sink vj , which, if combined (in parallel) with the
edge e = (vi, vj) gives a series-parallel of source vi and sink vj , which we call a gadget.
If this operation is performed for all such edges, we can serially combine all gadgets and
remaining edges on the circle and get two series parallel graphs GΠ and GΠ′ (one for each
path Π(s,t) and Π′(s,t)). Both GΠ, GΠ′ have source s and sink t. A parallel combination of
GΠ, GΠ′ gives the desired result. Hence G is a series-parallel graph with source s and sink
t.

By Theorem 4.5.2 and Lemma 4.5.3 we get:

Corollary 4.5.4. Let G be a biconnected outerplanar graph and s, t be two nodes of it. If
C(s,t) = {Ø}, then G admits a single st-orientaton.

Corollary 4.5.4 implies that st-TSA graphs also admit a single st-orientation.



Chapter 5

Experimental Results

5.1 General

In this chapter, we present our experimental results produced by executing the presented
parameterized algorithms on various classes of graphs. It will be made clear to the reader
that the algorithms perform exceptionally good on the used graphs and finally achieve their
mission (and initial purpose of their development), which is the influence of the length of
the longest path of the final st-oriented graph. All the presented experiments were run on a
Pentium IV processor of 512 MB RAM running at 2.8 GH under Windows 2000 Professional
(entpc2 machine in the C031 room at the basement of the Computer Science Department
of the University of Crete). The algorithms were implemented in Java v.1.4, using the Java
Data Structures Library (http://www.jdsl.org) [11].

5.2 st-Hamiltonian Graphs

The first tests were conducted on st-Hamiltonian Graphs. We used this class of graphs as
they have an a priori known upper bound for the maximum longest path length equal to
n− 1. In this way, we could see how effective the parameter p is.

5.2.1 Construction of Graphs

In order to construct the graphs in random, we use the following algorithm. Initially, we
compute a random permutation P of the vertices of the graph. Then we construct a cycle
by adding the undirected edges (P (1), P (2)), (P (2), P (3)), . . . , (P (n−1), P (n)), (P (n), P (1))
and we chose at random two adjacent nodes of the cycle to be the source s and the sink t of
our graph. This guarantees the existence of a Hamiltonian path from s to t and a possible
maximum longest path length of every st-oriented graph of length n − 1. Finally we add
the remaining nd−n edges, given that the density of the desired graph is d. We keep a list

52
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Table 5.1: Results for parameterized st-orientations of density 2.5 st-Hamiltonian graphs.
n p=0 p=0.3 p=0.5 p=0.7 p=1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

100 16.20 0.164 43.10 0.435 59.50 0.601 75.80 0.766 93.00 0.939
200 20.50 0.103 74.70 0.375 111.60 0.561 146.30 0.735 183.10 0.920
300 25.80 0.086 107.00 0.358 163.00 0.545 212.20 0.710 275.30 0.921
400 27.70 0.069 139.20 0.349 216.60 0.543 287.40 0.720 368.30 0.923
500 28.50 0.057 170.30 0.341 263.30 0.528 358.60 0.719 458.80 0.919
600 30.60 0.051 199.30 0.333 314.10 0.524 422.20 0.705 553.50 0.924
700 33.80 0.048 232.40 0.332 364.70 0.522 492.20 0.704 644.90 0.923
800 36.90 0.046 266.80 0.334 416.00 0.521 555.80 0.696 736.70 0.922
900 37.50 0.042 294.70 0.328 462.00 0.514 627.30 0.698 834.60 0.928
1000 38.10 0.038 324.60 0.325 515.40 0.516 694.50 0.695 924.20 0.925
1100 38.10 0.035 356.80 0.325 567.60 0.516 766.40 0.697 1010.30 0.919
1200 37.80 0.032 388.00 0.324 616.10 0.514 834.20 0.696 1108.80 0.925
1300 46.70 0.036 416.80 0.321 665.70 0.512 904.90 0.697 1197.00 0.921
1400 40.20 0.029 450.90 0.322 714.00 0.510 971.40 0.694 1291.30 0.923
1500 48.90 0.033 479.20 0.320 769.80 0.514 1038.90 0.693 1387.90 0.926
1600 50.70 0.032 508.80 0.318 815.60 0.510 1111.20 0.695 1478.30 0.925
1700 43.00 0.025 541.20 0.319 864.80 0.509 1176.00 0.692 1583.00 0.925
1800 41.80 0.023 571.30 0.318 912.70 0.507 1245.10 0.692 1667.30 0.927
1900 47.60 0.025 603.30 0.318 965.60 0.508 1311.40 0.691 1750.30 0.922
2000 50.8 0.025 629.40 0.315 1016.40 0.508 1378.80 0.690 1847.00 0.924

Table 5.2: Results for parameterized st-orientations of density 3.5 st-Hamiltonian graphs.
n p=0 p=0.3 p=0.5 p=0.7 p=1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

100 14.00 0.141 38.90 0.393 59.20 0.598 76.50 0.773 92.20 0.931
200 18.60 0.093 74.10 0.372 113.00 0.568 147.90 0.743 186.60 0.938
300 23.30 0.078 104.80 0.351 165.10 0.552 219.20 0.733 280.70 0.939
400 23.30 0.058 139.10 0.349 213.80 0.536 289.30 0.725 376.30 0.943
500 29.20 0.059 169.40 0.339 267.30 0.536 361.20 0.724 470.70 0.943
600 27.90 0.047 202.10 0.337 318.90 0.532 428.90 0.716 566.60 0.946
700 30.90 0.044 231.60 0.331 369.40 0.528 499.00 0.714 663.40 0.949
800 30.00 0.038 264.90 0.332 415.30 0.520 566.50 0.709 755.60 0.946
900 31.70 0.035 294.30 0.327 469.90 0.523 640.20 0.712 848.10 0.943
1000 36.20 0.036 322.10 0.322 518.20 0.519 709.30 0.710 940.00 0.941
1100 38.90 0.035 353.90 0.322 576.30 0.524 782.90 0.712 1033.40 0.940
1200 34.40 0.029 387.00 0.323 622.10 0.519 845.50 0.705 1127.80 0.941
1300 34.30 0.026 421.10 0.324 674.50 0.519 917.00 0.706 1223.10 0.942
1400 38.90 0.028 448.80 0.321 718.40 0.514 983.90 0.703 1319.90 0.943
1500 38.00 0.025 478.30 0.319 775.70 0.517 1056.40 0.705 1417.10 0.945
1600 39.30 0.025 515.00 0.322 824.30 0.516 1137.20 0.711 1499.10 0.938
1700 38.50 0.023 539.30 0.317 872.00 0.513 1190.40 0.701 1604.00 0.944
1800 41.10 0.023 571.90 0.318 923.60 0.513 1263.80 0.703 1691.30 0.940
1900 41.40 0.022 605.60 0.319 978.60 0.515 1331.80 0.701 1786.30 0.941
2000 44.00 0.022 632.40 0.316 1023.80 0.512 1403.50 0.702 1883.90 0.942
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Table 5.3: Results for parameterized st-orientations of density 4.5 st-Hamiltonian graphs.
n p=0 p=0.3 p=0.5 p=0.7 p=1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

100 13.40 0.135 40.60 0.410 59.60 0.602 76.90 0.777 94.20 0.952
200 18.90 0.095 72.70 0.365 110.90 0.557 147.80 0.743 188.50 0.947
300 20.20 0.068 105.70 0.354 163.40 0.546 219.10 0.733 285.10 0.954
400 23.40 0.059 138.10 0.346 215.50 0.540 290.40 0.728 379.20 0.950
500 23.50 0.047 170.10 0.341 267.10 0.535 361.50 0.724 475.50 0.953
600 25.30 0.042 201.30 0.336 317.90 0.531 432.60 0.722 568.30 0.949
700 28.80 0.041 232.40 0.332 369.00 0.528 505.10 0.723 669.70 0.958
800 28.80 0.036 261.60 0.327 419.70 0.525 570.40 0.714 758.60 0.949
900 31.20 0.035 294.10 0.327 473.00 0.526 643.40 0.716 855.70 0.952
1000 30.60 0.031 321.00 0.321 521.50 0.522 713.80 0.715 952.40 0.953
1100 33.70 0.031 353.60 0.322 570.10 0.519 783.80 0.713 1051.50 0.957
1200 33.40 0.028 388.30 0.324 622.40 0.519 853.40 0.712 1141.40 0.952
1300 33.70 0.026 417.00 0.321 676.30 0.521 922.10 0.710 1236.50 0.952
1400 32.70 0.023 446.30 0.319 723.60 0.517 991.40 0.709 1335.80 0.955
1500 35.20 0.023 477.50 0.319 769.30 0.513 1061.60 0.708 1423.90 0.950
1600 37.30 0.023 512.00 0.320 825.00 0.516 1137.00 0.711 1523.10 0.953
1700 38.50 0.023 541.20 0.319 876.70 0.516 1199.30 0.706 1617.50 0.952
1800 38.30 0.021 567.10 0.315 929.40 0.517 1274.20 0.708 1709.40 0.950
1900 36.50 0.019 601.20 0.317 978.30 0.515 1340.30 0.706 1812.30 0.954
2000 40.60 0.020 632.70 0.317 1030.40 0.515 1410.40 0.706 1903.90 0.952

Table 5.4: Results for parameterized st-orientations of density 5.5 st-Hamiltonian graphs.
n p=0 p=0.3 p=0.5 p=0.7 p=1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

100 14.70 0.148 40.50 0.409 59.10 0.597 76.50 0.773 95.90 0.969
200 17.80 0.089 72.20 0.363 111.00 0.558 149.30 0.750 189.50 0.952
300 19.10 0.064 106.40 0.356 163.60 0.547 219.80 0.735 288.20 0.964
400 22.50 0.056 137.00 0.343 214.40 0.537 290.60 0.728 383.40 0.961
500 22.40 0.045 169.60 0.340 266.30 0.534 363.30 0.728 479.90 0.962
600 23.90 0.040 199.30 0.333 319.20 0.533 433.00 0.723 574.90 0.960
700 24.70 0.035 230.10 0.329 367.70 0.526 503.00 0.720 667.10 0.954
800 25.40 0.032 264.00 0.330 419.50 0.525 574.90 0.720 768.30 0.962
900 28.10 0.031 290.30 0.323 472.10 0.525 642.60 0.715 865.40 0.963
1000 30.10 0.030 323.60 0.324 518.80 0.519 716.30 0.717 958.20 0.959
1100 34.20 0.031 352.20 0.320 572.90 0.521 784.20 0.714 1053.30 0.958
1200 33.20 0.028 385.50 0.322 625.00 0.521 854.20 0.712 1152.40 0.961
1300 31.60 0.024 417.20 0.321 673.70 0.519 923.80 0.711 1245.60 0.959
1400 31.10 0.022 446.60 0.319 724.70 0.518 995.90 0.712 1343.00 0.960
1500 34.20 0.023 479.30 0.320 776.00 0.518 1067.10 0.712 1442.70 0.962
1600 35.70 0.022 507.40 0.317 825.50 0.516 1138.60 0.712 1531.50 0.958
1700 34.00 0.020 537.60 0.316 879.30 0.518 1207.40 0.711 1631.00 0.960
1800 40.40 0.022 567.70 0.316 926.30 0.515 1278.80 0.711 1728.20 0.961
1900 37.30 0.020 597.40 0.315 980.80 0.516 1346.10 0.709 1827.80 0.963
2000 37.30 0.019 632.80 0.317 1027.10 0.514 1413.70 0.707 1920.20 0.961



55

Table 5.5: Results for parameterized st-orientations of density 6.5 st-Hamiltonian graphs.
n p=0 p=0.3 p=0.5 p=0.7 p=1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

l(t)
l(t)
n−1

100 14.30 0.144 41.40 0.418 58.90 0.595 76.70 0.775 95.20 0.962
200 16.90 0.085 74.10 0.372 113.00 0.568 147.90 0.743 191.70 0.963
300 20.10 0.067 103.70 0.347 162.20 0.542 220.10 0.736 287.20 0.961
400 20.30 0.051 136.20 0.341 215.30 0.540 291.70 0.731 384.50 0.964
500 23.60 0.047 168.20 0.337 265.00 0.531 362.40 0.726 482.60 0.967
600 24.40 0.041 198.90 0.332 318.40 0.532 434.70 0.726 576.80 0.963
700 27.60 0.039 229.90 0.329 369.20 0.528 506.30 0.724 677.80 0.970
800 26.70 0.033 263.60 0.330 421.20 0.527 576.10 0.721 769.00 0.962
900 25.70 0.029 293.20 0.326 470.50 0.523 647.70 0.720 869.60 0.967
1000 26.90 0.027 324.40 0.325 520.10 0.521 715.10 0.716 966.00 0.967
1100 27.70 0.025 355.40 0.323 575.60 0.524 785.30 0.715 1063.60 0.968
1200 29.20 0.024 385.80 0.322 625.00 0.521 860.60 0.718 1157.20 0.965
1300 33.10 0.025 414.90 0.319 674.00 0.519 927.80 0.714 1253.60 0.965
1400 34.20 0.024 445.40 0.318 720.80 0.515 998.20 0.714 1348.50 0.964
1500 30.00 0.020 478.80 0.319 772.60 0.515 1069.10 0.713 1447.70 0.966
1600 32.70 0.020 509.10 0.318 823.90 0.515 1139.10 0.712 1541.40 0.964
1700 31.50 0.019 536.60 0.316 873.30 0.514 1210.00 0.712 1643.00 0.967
1800 36.50 0.020 566.70 0.315 924.20 0.514 1277.30 0.710 1738.50 0.966
1900 35.60 0.019 597.40 0.315 977.60 0.515 1349.90 0.711 1831.70 0.965
2000 37.2 0.019 627.50 0.314 1026.80 0.514 1420.10 0.710 1928.00 0.964
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Figure 5.1: Length of longest path as a function of the parameter p for various graph sizes
n and various density values d.
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Figure 5.2: Execution time for various graph sizes n and various density values d.

of edges that have not been inserted and make exactly nd− n random choices on this list,
by simultaneously inserting the chosen undirected edge into the graph and updating the
list of the remaining undirected edges. During the execution of the algorithm, ties between
the timestamps of the candidate sources are broken at random. We isolate the nodes that
satisfy the current timestamp condition (i.e., the nodes with maximum timestamp in case
of MAX-STN and the nodes with minimum timestamp in case of MIN-STN) and afterwards
we choose a node from the isolated set at random.

5.2.2 Computational Results

From Tables 5.1, 5.2, 5.3, 5.4, 5.5 and Figure 5.1 we can see that there is indeed a big
influence of the parameter p on the length of the longest path of the final st-oriented graph.
Actually, for a value p = p0 the length of the longest path length of the produced st-oriented
graph is roughly p0(n−1). Note that for each pair (n, d) we have tested 10 different randomly
generated graphs (and we present the mean of the length of the longest path) in order to
get more reliable results.

Following we justify why PAR-STN(p) computes st-oriented graphs of longest path
length roughly equal to p(n − 1). To do this, we use the presented experimental results
and support that ∆(1) = Ω(n) and ∆(0) = Ω(1) as for p = 1 the induced longest path
length is at least 0.9n and for p = 0 the induced longest path length is almost constant.
Suppose now we apply PAR-STN(p) to an st-Hamiltonian graph G. This means that we
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apply PAR-STN(1) (i.e., MAX-STN) for the first dpne iterations and PAR-STN(0) (i.e.,
MIN-STN) for the remaining b(1− p)nc iterations.

During PAR-STN(1), suppose the nodes v1, v2, . . . , vdpne are removed. Let G(1) be the
subgraph of G that includes v1, v2, . . . , vdpne. PAR-STN(1) is totally applied on G(1) and
thus gives an orientation of longest path length equal to Ω(pn), given that ∆(1) = Ω(n).

During PAR-STN(0) the remaining nodes vdpne+1, vdpne+2, . . . , vn are removed. In the
same way, let G(0) be the subgraph of G that includes these vertices. PAR-STN(0) is totally
applied on G(0) and thus gives an orientation of longest path length equal to Ω(1), given
that ∆(0) = Ω(1).

As the final length of longest path will roughly be the sum of the lengths of longest
path of each one of the graphs G(0), G(1), we get that the approximate value for the total
longest path length will be

Ω(pn) + Ω(1) = Ω(pn)

Note that the above result is totally based on experimental results. In fact, PAR-STN(1) is
an experimental constant approximation algorithm for the longest path problem. Finding
a theoretical constant approximation algorithm for this problem has been proved to be
NP -hard [25].

Finally, in Figure 5.2, the execution time of the algorithm is shown. The algorithm
clearly runs in quadratic time (O(nm) = O(dn2)) which depends on the density of the
graph.

5.3 Planar Graphs

In this section we present our results for planar graphs. We have actually tested two classes
of planar graphs (low density and triangulated planar graphs) and finally verify that the
parameter works in a very efficient way for this class of graphs as well.

5.3.1 Construction of the Graphs

Low density (roughly equal to 1.5) st-planar graphs are constructed as follows: We build
up a tree of n nodes by randomly picking up a node and setting it to be the root of the
tree. Then we connect the current tree (initially it only consists of the root) with a node
that does not belong to the current tree and which is chosen at random. We execute the
same procedure till all nodes are inserted into the tree. Then we connect the leaves of the
tree following a preorder numbering so that all crossings are avoided.

Maximum density (m = 3n−6) st-planar graphs were computed with a certain software
for graph algorithms and visualization called P.I.G.A.L.E.1. This software produces graphs
in ascii format which are easily transformed to an input for our algorithm.

1Public Implementation of a Graph Algorithm Library and Editor (http://pigale.sourceforge.net/)
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Table 5.6: Results for low density planar graphs.

n p=0 p=0.5 p=1
l(t) l(t) l(t)

250 123.10 168.90 216.90
500 229.50 297.40 399.60
750 360.10 489.40 629.10
1000 485.20 639.60 831.40
1250 592.30 818.00 1060.70
1500 651.00 991.60 1304.10
1750 842.10 1145.70 1486.30
2000 910.30 1302.80 1686.10
2250 1077.20 1448.40 1892.60
2500 1134.10 1539.80 2053.50
2750 1350.70 1700.70 2198.10
3000 1451.30 2025.80 2590.20
3250 1418.80 2156.00 2814.40
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Table 5.7: Results for triangualted planar graphs.

n p=0 p=0.5 p=1
l(t) l(t) l(t)

109 25.00 65.00 98.00
222 34.00 114.00 192.00
310 59.00 175.00 280.00
436 71.00 237.00 404.00
535 44.00 287.00 497.00
678 78.00 383.00 623.00
763 90.00 393.00 695.00
863 65.00 475.00 780.00
998 106.00 486.00 882.00
1117 88.00 579.00 1008.00
1197 103.00 615.00 1012.00
1302 112.00 607.00 1114.00
1410 196.00 719.00 1254.00
1501 172.00 771.00 1357.00
1638 143.00 754.00 1420.00
1719 176.00 864.00 1578.00
1825 144.00 912.00 1683.00
1990 98.00 865.00 1715.00
2089 162.00 1059.00 1862.00 0 500 1000 1500 2000 2500
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5.3.2 Computational Results

In Tables 5.6, 5.7 the results for low density planar graphs and triangulated planar graphs
are presented. Note that the effect of the parameter is again evident. For low density planar
graphs (Table 5.6), 10 graphs of the same size were again tested and the mean of the longest
path length is finally presented.

5.3.3 Visibility Representations

As we saw in the previous chapter, when we want to compute a visibility layout of a planar
graph G, we must compute the dual graph of it [22]. The area of the computed layout is
wholly dependent on the length of the primal longest path l(t) and the length of the dual
longest path l∗(t) (actually it is the product l(t) × l∗(t)). In this section we present the
impact of the parameter p on the length of the dual longest path which finally translates
into savings in the area of visibility layouts and justifies the importance of parameterized
st-orientations in Graph Drawing applications.

Table 5.8: Primal and dual longest path length for low density st-planar graphs.
p=0 p=0.5 p=1 l× l∗

n 2n l l∗ l + l∗ l l∗ l + l∗ l l∗ l + l∗ p=0 p=0.5 p=1
100 200 54 31 85 62 30 92 75 19 94 1674 1860 1425
200 400 111 36 147 138 26 164 173 14 187 3996 3588 2422
300 600 149 39 188 199 32 231 251 20 271 5811 6368 5020
400 800 190 112 302 257 81 338 346 19 365 21280 20817 6574
500 1000 165 129 294 339 73 412 454 16 470 21285 24747 7264
600 1200 302 118 420 378 120 498 462 32 494 35636 45360 14784
700 1400 412 208 620 502 130 632 626 17 643 85696 65260 10642
800 1600 447 156 603 565 156 721 717 19 736 69732 88140 13623
900 1800 396 178 574 501 108 609 664 32 696 70488 54108 21248
1000 2000 619 188 807 757 118 875 884 41 925 116372 89326 36244
1100 2200 438 287 725 649 221 870 841 31 872 125706 143429 26071
1200 2400 596 283 879 832 196 1028 1014 43 1057 168668 163072 43602
1300 2600 756 361 1117 970 182 1152 1150 34 1184 272916 176540 39100
1400 2800 599 497 1096 1010 315 1325 1260 29 1289 297703 318150 36540
1500 3000 835 345 1180 1047 281 1328 1281 46 1327 288075 294207 58926
1600 3200 617 599 1216 865 313 1178 1407 36 1443 369583 270745 50652
1700 3400 671 327 998 963 296 1259 1100 44 1144 219417 285048 48400
1800 3600 926 499 1425 1258 292 1550 1635 32 1667 462074 367336 52320
1900 3800 681 685 1366 1241 333 1574 1536 35 1571 466485 413253 53760
2000 4000 1147 337 1484 1503 239 1742 1803 44 1847 386539 359217 79332
2500 5000 1010 712 1722 1471 511 1982 2146 33 2179 719120 751681 70818
3000 6000 1652 683 2335 2114 555 2669 2608 44 2652 1128316 1173270 114752
3500 7000 1486 695 2181 2804 695 3499 2804 49 2853 1032770 1948780 137396
4000 8000 1500 1115 2615 2271 745 3016 3619 50 3669 1672500 1691895 180950
5000 10000 2101 1358 3459 2500 763 3263 3482 59 3541 2853158 1907500 205438
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Figure 5.3: Absolute (left) and normalized (divided by n2) (right) results for visibility
representation area requirement for different values of the parameter p and low density
planar graphs.

Table 5.9: Primal and dual longest path length for maximum density st-planar graphs.
p=0 p=0.5 p=1 l× l∗

n 2n l l∗ l + l∗ l l∗ l + l∗ l l∗ l + l∗ p=0 p=0.5 p=1
109 218 31 167 198 75 95 170 100 74 174 5177 7125 7400
222 444 42 374 416 105 216 321 151 129 280 15708 22680 19479
310 620 44 503 547 186 319 505 280 163 443 22132 59334 45640
436 872 100 524 624 248 412 660 397 178 575 52400 102176 70666
535 1070 98 785 883 240 534 774 402 293 695 76930 128160 117786
678 1356 80 1019 1099 382 449 831 625 195 820 81520 171518 121875
763 1526 144 1114 1258 385 780 1165 691 241 932 160416 300300 166531
863 1726 105 1286 1391 453 791 1244 767 270 1037 135030 358323 207090
998 1996 83 1419 1502 425 862 1287 846 340 1186 117777 366350 287640
1117 2234 109 1561 1670 551 902 1453 1013 208 1221 170149 497002 210704
1302 2604 134 2024 2158 704 1154 1858 1173 451 1624 271216 812416 529023
1410 2820 122 2120 2242 730 835 1565 1291 298 1589 258640 609550 384718
1501 3002 119 2203 2322 784 1073 1857 1403 224 1627 262157 841232 314272
1638 3276 110 2487 2597 833 1436 2269 1477 263 1740 273570 1196188 388451
1719 3438 131 2550 2681 856 1661 2517 1555 515 2070 334050 1421816 800825
1825 3650 180 2729 2909 886 1391 2277 1618 353 1971 491220 1232426 571154
1990 3980 208 2339 2547 1013 1581 2594 1773 400 2173 486512 1601553 709200
2089 4178 136 3095 3231 1002 1648 2650 1789 347 2136 420920 1651296 620783
2159 4318 142 3238 3380 930 1816 2746 1823 445 2268 459796 1688880 811235
2213 4426 162 3400 3562 1093 2082 3175 2008 551 2559 550800 2275626 1106408
2268 4536 148 3136 3284 952 1666 2618 1887 336 2223 464128 1586032 634032
2413 4826 154 3033 3187 971 1968 2939 1631 513 2144 467082 1910928 836703
4323 8646 356 5852 6208 2238 3589 5827 3957 841 4798 2083312 8032182 3327837
5102 10204 525 7155 7680 2597 4473 7070 4582 1139 5721 3756375 11616381 5218898
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Figure 5.4: Absolute (left) and normalized (divided by n2) (right) results for visibility
representation area requirement for different values of the parameter p and maximum den-
sity planar graphs. The parameter p = 0 (low longest path st-oriented graphs) is clearly
preferable.

From Table 5.8, it is clear that the primal and the dual longest path length are inversely
proportional for various values of the parameter p. We have used the values p = 0, 0.5, 1, as
the most representative ones. Additionally, it seems that for low density st-planar graphs
the sum l(t) + l∗(t) is no more that n (the number of the primal graph nodes), something
that does not hold in general.

The last three columns of Table 5.8 show the product l(t) × l∗(t). This is actually the
area that is needed in order to construct a visibility representation of the given graph using
the algorithms proposed in [22]. The impact of the parameter p on the area is very evident.
The savings in the area for different values of the parameter p is clear and actually for low
density it is preferable to use the parameter p = 1. In Figure 5.3, we present a plot of the
product l(t)× l∗(t) as a function of the size of the graph and the value of the parameter p.

In Table 5.9 and in Figure 5.4 the same results for triangulated planar graphs are
presented. Note that for triangulated planar graphs the parameter value p = 0 is clearly
preferable.

In Figure 5.5, we show 3 visibility representation frames of a 21-path planar graph pro-
duced with Pigale. The difference in the area is evident. Note that the visibility represen-
tation that uses the minimum st-orientation (p = 0) consumes the less area. Additionally,
we present some other frames of parameterized visibility representations for both maximum
and low density planar graphs (see Figures 5.6,5.7,5.8).
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Figure 5.5: Visibility Representations of a 21-path planar graph for different st-orientations
(p = 0, 0.5, 1).

Figure 5.6: Visibility Representations of a 85-node triangulated planar graph for different
st-orientations produced with PAR-STN(p) (p = 0, 0.5, 1).

Figure 5.7: Visibility Representations of a 100-node planar graph of density roughly equal
to 1.5 for different st-orientations produced with PAR-STN(p) (p = 0, 0.5, 1).
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Figure 5.8: Visibility Representations of a 10x10 grid graph for different st-orientations
produced with PAR-STN(p) (p = 0, 0.25, 1).

From Figures 5.6,5.7, we can see that the impact of the parameter p for different kind of
graphs is obvious. Actually, for triangulated planar graphs (Figure 5.6) it is preferable to use
the st-orientation computed with p = 0 whereas for low density planar graphs (Figure 5.7) it
is preferable to use the orientation computed with p = 1, something that is indicated in the
experimental results as well. Finally, in Figure 5.8 we present some visibility representations
frames produced by st-orienting a grid graph. In this case, the importance of the parameter
is clear. Using a parameterized st-orientation with p = 0.25 is preferable, as it produces a
more compact drawing.

5.4 Orthogonal Drawings

In this section we present some applications of the parameterized st-orientations in orthog-
onal drawings.

Table 5.10: Area bounds for orthogonal drawings and different st-orientations.
n width w height h wh

n2

n p = 0 p = 0.5 p = 1 p = 0 p = 0.5 p = 1 p = 0 p = 0.5 p = 1
200 174 156 152 157 167 169 0.68 0.65 0.64
400 317 310 303 332 335 337 0.66 0.65 0.64
600 478 467 444 493 501 511 0.65 0.65 0.63
800 627 618 600 661 668 669 0.65 0.65 0.63
1000 790 742 728 819 848 850 0.65 0.63 0.62
1200 939 903 874 985 1009 1021 0.64 0.63 0.62
1400 1099 1052 1012 1146 1172 1191 0.64 0.63 0.61
1600 1240 1204 1166 1319 1346 1360 0.64 0.63 0.62
1800 1402 1363 1308 1479 1507 1525 0.64 0.63 0.62
2000 1527 1512 1444 1662 1673 1667 0.63 0.63 0.60

As we will see, the impact of longest path-parameterized st-orientations is not so big in
the area of orthogonal drawings but it is worth mentioning it as a possible future research
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direction. In [18], an area-efficient algorithm to compute an orthogonal drawing is presented.
Actually, this algorithm is applied to 4-degree graphs (the maximum degree is 4) and needs
area at most 0.76n2. In the paper, it is stated that there is an impact of the st-numberings
on the shape of the final orthogonal drawings. The algorithm uses an st-numbering is
within a specific algorithm (pairing algorithm) that computes pairs of vertices. After the
pairing algorithm is run on G we can compute the variables p1 (number of column pairs),
p2 (number of unassigned degree-2 nodes) and p3 (number of unassigned degree-3 nodes),
k2 (number of row pairs). Then by setting

k1 = p1 + p2 +
p3

2

it is proved (in the paper) that the width of the drawing is n + 1 − k1 and the height
of the drawing is n + 1 − k2. The pairing technique has been implemented (by using the
parameterized st-numberings for p = 0, 0.5, 1) and we present some experimental results
(see Table 5.10).

The impact of the different st-orientations is not very clear in orthogonal drawings, as
indicated in Table 5.10. However, for the algorithm described in [18], where the area upper
bound is roughly 0.76n2, we are able to produce st-numberings that produce drawings of
area upper bound roughly equal to 0.68n2 or less.

5.5 Graph Coloring

In this section we present some experimental results concerning the use of MIN-STN in
coloring graphs with the method described in the previous section. We have tested known
benchmarks available at http://mat.gsia.cmu.edu/COLOR/instances.html.

From Table 5.11, we see that MIN-STN computes an almost optimal coloring for many
of the benchmark graphs used. Actually, for the first 17 benchmark graphs G of Table
6, MIN-STN computes the chromatic number χ(G). For the last 7 benchmark graphs,
MIN-STN computes a coloring equal to χ(G) + 1. Note that all graphs used are of various
densities. Additionally, they are constructed in a special way, which is fully described in
the web address mentioned and which allows us to precompute their chromatic number.

In Table 5.12, we show the results for some benchmark graphs for which MIN-STN
did not perform so well. Using MIN-STN to compute a good coloring of a graph G is
not obviously the best approach to the graph coloring problem. It however reveals a cute
application of parameterized st-orientations. The question that arises is whether MIN-
STN can compute good colorings for other graphs as well. This is something that opens
new research directions (maybe the development of new heuristics adjusted to the graph
coloring problem in order to break the ties that appear in the choice of the next source
during MIN-STN) and has to be tested experimentally.
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Table 5.11: Benchmark graphs for which MIN-STN has computed an almost optimal col-
oring.

file name n m optimal coloring MIN-STN (p=0) coloring
myciel6.col 95 755 7 7
myciel5.col 47 236 6 6
myciel4.col 23 71 5 5
myciel3.col 11 20 4 4
games120.col 120 368 9 9
jean.col 80 254 10 10
huck.col 74 301 11 11
zeroin.i.1.col 211 4100 49 49
mulsol.i.5.col 186 3973 31 31
mulsol.i.4.col 185 3946 31 31
mulsol.i.3.col 184 3916 31 31
mulsol.i.2.col 188 3885 31 31
mulsol.i.1.col 197 3925 49 49
inithx.i.3.col 621 13969 31 31
inithx.i.1.col 864 18707 54 54
fpsol2.i.3.col 425 8688 30 30
fpsol2.i.1.col 496 11654 65 65
myciel7.col 191 2360 8 9
miles250.col 128 387 8 9
david.col 87 406 11 12
anna.col 138 493 11 12
zeroin.i.3.col 206 3540 30 31
zeroin.i.2.col 211 3541 30 31
inithx.i.2.col 645 13979 31 32

Table 5.12: Benchmark graphs for which MIN-STN has computed a relatively good coloring.
file name n m optimal coloring MIN-STN (p=0) coloring
queen8 12.col 96 1368 12 15
queen7 7.col 49 476 7 10
queen6 6.col 36 290 7 9
queen5 5.col 25 160 5 7
miles500.col 128 1170 20 23
homer.col 561 1629 13 15
fpsol2.i.2.col 451 8691 30 32

MIN-STN was used to compute coloring of other graphs (of known chromatic number)
as well and computed a near optimal coloring.
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