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Abstract

IntelliSense has a major impact in the development process. The automations during
source code editing assist developers in navigating, understanding, avoiding errors, and
speeding-up the overall editing process. Currently, the use of untyped languages and
the quantity of untyped code in software systems tends to escalate, including the
deployment of third-party untyped code libraries. However, many errors are still
shadowed by the dynamic nature of untyped code making semantic analysis a difficult
and sometimes undecidable job. While there are typed language extensions, and
sometimes newer versions introducing class-based constructs, not only there is still a
lot of untyped legacy code, but many programmers prefer the abstraction flexibility and
expressive economy of the untyped universe, although acknowledging this is traded for
lack of type safety. In this context we believe there is a need for improved editing tools
capable to analyze and evaluate incrementally the source code fragments of untyped
languages while being edited, which eventually deliver more informative on-demand

type feedback to programmers.

We present the techniques for the semantic analysis of untyped source code during
editing focusing on the JavaScript language. Our system is implemented on top of the
Visual Studio Code IDE and exploits the editor extension hooks offered by the
Language Server Protocol for incremental parsing and editing automations. Our
approach is based on the notion of type carriers which are associated to instructions that
change the value or the type of a variable, and their chaining during editing in a way



enabling to precisely track from any given source location the stack of active type

carriers per symbol, thus being able to on-demand tell its plausible context-dependent

type.



Behtiopévo IntelliSense pe Metagopeic Tomwv
MAPIOX NTOYAAZ
Metantuyaxn Epyacia

[Tavemomuo Kpnng
Tunuo Emotung Ymoloyiotdv

MepiAnyn

To IntelliSense €yel onuovtikd avtiktvmo ot dadkacio avarntuéng Aoyiopkod. Ot
avtopoticpol  Katd v emeEepyacia tov wnyaiov  kddwo  PBonBodv  Tovg
TPOYPOUUUOTIOTEG GTNV TAONYNON, TNV KATAVONGT, TV OTOPLY GCOUALAT®OV Kol TV
EMTAYLVOT TNG GLVOMKNG Oldikaciog emefepyaciog. XTic HEPEG MHOG, M YPNoN
YAOGO®DV TPOYPOUULATIGUOV Y®PIC TOTOVG KoL 1) TOGHTNTA TOV KOJIKA Y®PIC TOTOVG G
GLGTNLATO AOYIGUIKOV TEIVEL VO KAMULOKAOVETOL, OTT®G KoL 1) xpnon PpAodnkadv kdduco
tpitov. Qo1060, TOALE c@AAipaTo e&okolovBohv va emoKlaloviot amd T SVVOLIKY
@HOMN TOV KOO Y®PIg TOTOVE TOL KAOIGTA TN GNUOGIOA0YIKT OVOAVGT ol SVGKOAN
KOl PHEPIKEG QOPEG Un vroAoyiowun gpyocio. Evd vrdpyovv enektdoelg yio TETOEG
YADOGCEG Kol VEOTEPES EKOOCELS TOV ELGAYOVV KATOOKEVES PACIGUEVES OTIC KAAGELS,
VIAPYEL OKOUO TOAVG KMOKOG YOPIG TOTOLG 7OV YPNCIUOTolEiTol oAAd dgv
vrooTnPileTan, OAAL KOl TOAAOL TPOYPAUUATIOTES TPOTIHOLY TNV gveMéio Kol TNV
EKPPACTIKT OUKOVOUIO TOV GUUTOVTOG YWPIG TOTOVG, OMOOEXOUEVOL TNV EALEYN TNG
AGPAAELNG TTOV B0l TOVG TPOGEPEPOY AVTOL. L€ AVTO TO TANIGIO TIGTELOVUE OTL VILAPYEL
avaykn yio Bertiopéva epyolreio eneEepyaciag, tkavd vo avaAHovV Kot Vo, OTOTILOVY
OTAOOKA TO KOUUATIL 7NYoiov KMOKA TV YAOOo®V Yopic TOMOVE KoTd TNV
enefepyacia TOVG, TO OO0 TEAMKA TOPEXOVY BEATIOUEVT AVATPOPOSOTNON TUTMV KATA

ameiTNON GTOVG TPOYPUUUATIOTES.

[Tapovcstdlove TIg TEYVIKES Y10, TN CTLLOGLOAOYIKT 0VAALGT TOV TTYOioL KOSKA Ywpig

TOmovg Katd v enelepyacio eotialovrag ot yAwoosa JavaScript. To chotnud pog



viomoteitonl whve and to Visual Studio Code IDE kot expetaliedeTon To AyKioTpo
EMEKTOONG TTPOYPAULOTOS TTOV TTpocpEpel To Language Server Protocol yio avEntikn
eneEepyaocia Kot avtopoticpovs. H mpocéyyion pog Pociletor ommv évvola tov
HETAPOPEWV TOTWV 01 010101, oYeTILOVTaL e TIG EVTOAES TTOL OAAGLOVV TNV TIUN 1) TOV
TOO U0G LETOPANTAG KOl TNV GUVOEST] OLTMV KATA TNV eNeEepyacio Le TPOTO TOL
emrpénel va mopakorovdeiton pe okpifelo omd omoladnmote Tonobecio mpoérevong
OTOV KOJIKA 1] GTOIP0 TV EVEPYDV HETAPOPEMV TUTT®V avA GUUPOLO, MGTE Vo propel

KOTd amaitnomn vo omoeaciotel 0 eEapTduevog amd to GLUEPALOUEVE EDAOYOS TOTTOG,.
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1. Introduction

1.1 Background

1.1.1 IntelliSense or Editing Automations

On the early stages of software development there were only simple text editors. Later
Integrated Development Environments (IDEs) came to increase productivity by
providing tools not only to write code, but also compile, execute, debug and many more
features all in one application. IDEs also provide another useful feature called
IntelliSense [1] which intelligently helping the developers to write code.

IntelliSense is a collection of different language specific features running in source code
editors, assisting the developers in real time as they write code. There are numerous
features under the IntelliSense term but the four basic are code completion, parameter
help, quick information and goto definition.

The objective of these editing automations is to increase productivity and make the lives
of the developers a lot easier. First of all, editing automations help the developers to
avoid syntax errors that they would discover during the compilation. IntelliSense
underlines the syntax errors during the editing and saves the time that they would have

to come back and fix them.

Additionally, IntelliSense enables the developers to speed up the development process.
It typically understands the programming language and knows the structure of the
source code. Thus, it is able to suggest possible completions as the developer types.
Otherwise, developers should have to memorize or spend time searching in the source
code and documentations the names of classes, the names and the types of their
members, the name of each function they use, the names and the types of their

parameters, etc.

13



Moreover, there are editing automations that help the developers to refactor the source
code quickly. IntelliSense suggests them possible recommendations to improve the
quality of the code and it can apply them with a press of a button. It can restructure the
code to improve maintainability without affecting the runtime behavior. There are
editing automations to format code, rename symbols, move pieces of code to new

functions, etc.

/f Place the frame in the current Window
Window::Current->Content = rootFrame;

Window::C
s"':"l Ensur g public : void Windows:Ul:Xaml:IWindow:Close()
Window:: § Closed File: Windows.winmd
}, task_cont # Content + 1 overload
5 ilse & CoreWindow
{ & Current

Figure 1 — IntelliSense example (suggesting code completions)

1.1.2 Typed vs Untyped IntelliSense

The way IntelliSense works varies from language to language. Every programming
language has its own characteristics and it is unique in its own way. The implementation
of those features is different especially when we have to deal with a typed and an

untyped language, typically with the latter being inferior.

Implementing all those editing automations in a typed language is not a big deal. The
static type information carries everything someone needs to provide all those results.
The fields of all the objects and their types, the return types of the functions and the

types of their parameters. All this information is well known at compile-time.

On the other hand, implementing any editing automation in a language that has a weak
dynamic typing discipline is non-trivial. A symbol can have different types on different
locations in the source code which can also be different on each execution of the same
program. However IntelliSense works with type information which in case of untyped
languages is absent until runtime. Objects are typically populated during runtime and

those languages usually support first-class functions. The analysis on these languages

14



has to compute the types and the possible values from the code semantics. But tracking

the flow of data and control can be really hard.

1.2 Motivation

1.2.1 Limitations of Untyped IntelliSense

Most of the tools designed for untyped languages are lacking in comparison to the same
tools for typed languages. The same applies to editing automations. The nature of
untyped languages makes the development of tools for them difficult. In the meanwhile
the use of those languages has sky-rocketed, from writing simple scripts to writing

large-scale systems causing the need for such tools to increase.

There are many attempts to support editing automations by giving the ability to the
developers to add type annotations on the source code. Many typed languages have
been created on top of weakly typed languages to be able to provide such automations.
We would like to see in real life automations for weakly typed languages, known only
from strongly typed languages without requiring the developers to write any additional

code, just by analyzing their existing code.

1.3 Objectives

This work targets the field of editing automations focusing on weakly typed languages
and explores the techniques that can be used to analyze the source code and extract type

information from it. Specifically the objective of this work is to:

o Explore ways to make the IntelliSense more informative as the title of this thesis
implies.

e Describe the source code analysis and the collection of the type information.

e Compose type information to create more complex type sets to provide all the

different plausible types according to the different paths on the source code.
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e Design algorithms that compute the type information of a symbol according to
the context.

e Implementan IntelliSense system supporting the four basic editing automations.

The work in this thesis has been implemented for the JavaScript language. The most
important reason we choose JavaScript is because it is an object based weakly typed
language and we wanted to focus on such languages. Additionally it is the most popular
untyped language for web-development which can also be used to develop back-end

services.

1.4 Outline

This thesis is organized as follows. Section 2 provides some background information
on editing automations and discusses the related work, focusing on tools for the
JavaScript programming language. Section 3 is an overview of the system we built and
the technologies that we used to support this thesis. Section 4 introduces the basic
structures we use during the analysis to collect information about the symbols of the
source code. Sections 5 — 8 present how the structures described in Section 4 are created
and stored during the analysis of the definitions and the expressions of the language.
Section 9 focuses on how we use some of the statements of the language to compose
more complex type information sets for the symbols. Section 10 shows how all the
information we collect during the analysis is utilized during the editing of the source
code to implement the basic editing automations. Finally, Section 11 summarizes the
key points of this thesis, and discusses directions for future research.

16



2. Related Work

2.1 Type-Annotation Based Systems

One of the most common categories of tools that are enhancing the editing experience
in untyped languages, is consisted of tools that let the developer to add Type
Annotations on the source code. These Type Annotations could be part of the language,
or it could be comments on the source code, without affecting the syntax of the
language. In the former case, the source code is transpiled to the target language.
IntelliSense parses the Type Annotations and uses this information to improve the
editing experience. These systems grant the user the ability to have the benefits that
statically typed languages typically offer during editing.

2.1.1 TypeScript

TypeScript [2] is a programming language developed by Microsoft that extends
JavaScript by adding static type definitions through Type Annotations. It also has a
Type Checker that validates that the source code is working correctly. Moreover it
supports declaration files, much like C++ header files, to let the developers have the

editing experience of TypeScript without porting their projects to TypeScript.

logPoint(p: ) {
console.log( ${p.x Y1) logPoint(p: Point

console. log( pP.X},

logpointd);

Figure 2 — TypeScript Type Annotations used by IntelliSense
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TypeScript is a super set of JavaScript, thus besides Type Annotations, its IntelliSense
can also provide type information for pure JavaScript source code by applying type
inference on it. In this way developers are not required to write any additional code and

still have a more precise but still limited experience.

isToday(date)

PR P
toda Vo=

isToday(date: any): boolean

iSTnday{h

Figure 3 — TypeScript IntelliSense (using type inference)

2.1.2 Flow

Flow [3] is a static type checker for JavaScript developed by Facebook. It is possible to
work with type inference like TypeScript. Moreover it offers the developers the ability
to add static type definitions through type annotations. It is pretty similar to TypeScript,
even the syntax differences between them is not significant. They both provide a static
Type Checker and tools that utilize the type annotations to enrich the editing
experience. Although, Flow is less popular than TypeScript because there is tiny

support from the most used JavaScript libraries.

data: {
participants: [],
serialize: () string

[] doc_method
] data
[1define

[[] dowhile

18



Figure 4 — Flow Type Information in Code completion (through type annotation)

2.1.3 JSDoc

JSDoc [4] is an open source Application Programming Interface (API) [5]
documentation generator [6] for JavaScript. Developers use Type Annotations inside
comments in their JavaScript source code and the tool generates an HTML website
from the source files with the documentation. Many editing automation tools take
advantage of this information and parse the comments to provide better code analysis.
The difference between the previous systems and JSDoc is that JSDoc comments are
standard JavaScript comments. Hence, there is no need for a build step to transpile the
source code to JavaScript. The major drawback of all these systems is that they need

the developer to annotate the source code, to work as expected.

logPoint(p) {

console. log( pP.-X},

Figure 5 —JSDoc Type Annotations used by IntelliSense

2.2 Evaluation Based Systems

Another category of tools that are enhancing the source code editing experience is
consisted of tools that actually execute the code as the developer is writing the code.
These tools are less popular than the ones described in the previous section. They
provide more precise results since they are executing the code, without requiring the

users writing any additional code to work, but they have many limitations. The source
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code must be syntactically correct for them to be able to provide any results and the

delay could be huge making them impractical for large-scale projects.

2.2.1 Quokka.js

Quokka.js [7] is a rapid prototyping playground in the editor that offers inline reporting,
code coverage and rich output formatting. Runtime values are updated and displayed
in the IDE next to the source code, as the developer types. Quokka.js executes the
source code during the editing and the results of the execution are displayed right in the
editor.

J5_auokka,is C: > > De p » I8 quokkajs > ..

line &: goodBoy: {name: '...
age: 2

name: ‘Scooby’

Figure 6 — Quokka.js Code Coverage in Action
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3. Overview

3.1 Software Architecture

To support this thesis we have built an extension for Visual Studio Code [8], and a
JavaScript Language Server, which the extension communicates with to provide
programmatic language features. Also Microsoft’s TypeScript compiler was used by
the Language Server to parse the source code to Abstract Syntax Tree (AST) [9]. The
AST is analyzed to collect various information about the source code. The Language

Server is listening specific notifications coming from Visual Studio Code editor and

provides the following editing automations:

e Code Completion
e Parameter Help

e Quick Information
e Goto Definition

e Document Symbols

Host (VSCode)

Language Server

Text Editor

Document
Synchronization

]

TypeScript Parser

l

Semantic Analysis

Figure 7 — System Architecture

21

Language Services




Microsoft Visual Studio Code is a powerful source code editor that is built with
extensibility in mind. Almost every part of it, from the User Interface (Ul) to the editing
experience, can be enhanced or customized through its extension API. It comes with
built-in support for JavaScript, TypeScript, and Node.js but it has a rich ecosystem of

extensions for other programming languages and runtimes.
3.2 Language Server Protocol (LSP)

The Language Server Protocol (LSP) [10], was originally developed for Microsoft
Visual Studio Code, and now it is a standard protocol for use between source code
editors or IDEs and servers that provide language-specific programming features. The
objective of the LSP is to allow the implementation and distribution of programming

language support independently of any given editor or IDE.

NO LSP LSP

JS ) s == %)

diagnostics

hover
! J formatting

definition

o )
Java Java

Figure 8 — No LSP vs LSP (A Language Server communicates with multiple IDES)

When a user edits a source code file using a tool that supports Language Server
Protocol, the tool acts as a client that consumes the language services provided by a
language server. Every action of the user during editing is sent by the client to the
language server that stores the full state of the client, such as which documents exist in
the workspace, the text that they contain, or which of them are currently open. Then,

the client may request the server to perform a language service, e.g. when a character
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is inserted in a specific position, the client will request the server to provide a list of

possible words for auto-completion.

Development Language Server Protocol Language
Tool (JSON-RPC) Server

Notification: textDocument/didOpen; Params: document

User opens document

Notification: textDocument/didChange; Params: {documentURI, changes}

User edits document

Notification: textDocument/publishDiagnostics; Params: Diagnostic(] Server publishes

errors and warnings
Request: textDocument/definition Params: {documentURI, position}

User executes
“Goto definition” Response: textDocument/definition; Result: Location

Notification: textDocument/didClose; Params: documentURI
User closes document >

Figure 9 - LSP in action (Host — Language Server communication)

Developer Tool || Language Server Protocol : Language Server
(Host) (JSON-RPC)
l I
| | l S
inition o
i tDocumentldei\m l
‘rex

I B S| -.\.ocat\on |

| ResPC i

| |
Development p | l

I |

A
R que
St

I te DOCU t/d |

| Respor,se. efinitiop ]

| “ Locatip,, |

| | .
I l
I I

Figure 10 — LSP in action (Host communicating with multiple Language Servers)

Implementing editing features for a programming language could be hard and needs
considerable effort. Also, each development tool usually provides its own API to
implement those features, and it is written in different programming languages.
Language Server Protocol came to unify that API by providing a Language Server and
a common way for development tools to communicate with it. Without LSP, language
providers should have to implement editing features for every development tool they
would like to support. With LSP, they are able to reuse their implementation to any
LSP-compliant code editor. In addition, editing features could be resource intensive,
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causing significant CPU and memory usage. Language Servers run in their own

process, avoiding this performance cost and let the performance of the development

tools unaffected.

As described in the previous paragraphs, the Language Server Protocol provides some

hooks for specific events, like document change, and hover, that may occur during the

editing of a source code file. The Language Server must handle these events to update

its state and provide language services like quick information and code-completion.

The following table shows the language features that are currently supported in a

language server.

Feature

Description

Document N :
e e Highlights all symbols in a document
Highlighting gniig y
Provides hover information for a symbol selected in a text
Hover
document
Completion Provides a list of possible completions

Completion Resolve

Resolves additional information for a given completion item

Signature Help

Provides signature help for a symbol selected in a document

Goto Definition

Provides go to definition support for a symbol selected in a
document

Implementation

Goto Type Provides go to type/interface definition support for a symbol
Definition selected in a document
Goto Provides go to implementation definition support for a

symbol selected in a document
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Finds all project-wide references for a symbol selected in a

Find References
document

Document Symbols | Lists all symbols defined in a document

Workspace Symbols | Lists all project-wide symbols

Compute commands to run (typically beautify/refactor) for a

Code Actions .

given document and range
CodelLens Compute Codelens statistics for a given document
Document This includes formatting of whole documents, document
Formatting ranges and formatting on type
Rename Project-wide rename of a symbol
Document Links Compute and resolve links inside a document

Compute and resolve colors inside a document to provide

Document Colors . .
color picker in editor

Table 1 — List of currently supported language features in LSP

3.3 Syntax Analysis

To be able to provide such language services, the Language Server needs to analyze
semantically the source code and gather any related information about it. Hence, the
source code should be in a form that someone could easily do some reasoning on it. A
suitable form that is typically used is the Abstract Syntax Tree (AST). So, as the user
edits the source code document, the language server must perform syntax analysis [11]
on it to generate the AST and then perform semantic analysis [12] on the AST to collect

the information it needs.
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3.3.1 Error Tolerance

During development the code in the editor is usually incomplete and syntactically
incorrect. But developers would still expect the editing experience to remain unaffected
and code completion and other editing automations to work. Therefore, an error tolerant
parser is necessary for a Language Server. To be able to provide editing features based
on the AST, Language Servers should utilize a parser that should be able to generate

meaningful AST from partially complete or invalid code.

This is usually achieved by introducing some additional error tokens to prevent the
parser from stopping and making it continue the syntax analysis. One could be used for
tokens that are missing, e.g. when a semicolon is missing, the parser inserts an
imaginary semicolon. Another one could be used for pieces of text that makes no sense

e.g. when a character exists in a place that should not be.

function parseIf($str, $parent) {
$n = new IfNode();
$n->ifKeyword = eat("if");
$n->openParen = eat("(");
$n->expression = parseExpression();
$n->closeParen = eat(")");
$n->block = parseBlock();
$n->parent = $parent;

}

The above function parses an if statement and generates the appropriate AST node. But
let's say we run it with the following if statement and input, which is missing a close
parenthesis token. In this case, eat(")") will generate a Missing Token because the
grammar expects a token to be there, but it does not exist.

if ($expression // ) <- MissingToken
{
}

3.3.2 Incremental Document Synchronization

As described above, Language Servers needs to keep the state of the documents in the

development tool to be able to analyze them and provide the editing automations.
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Language Server Protocol provides two options to synchronize the documents in the

Language Server.

By default, the development tool will send the whole content of a document to the
Language Server every time a change occurs in the document. Thus, lots of data is
transferred to the server repeatedly. The other option that LSP supports is the
incremental text document synchronization. By enabling it, the server can install a
notification handler that is called when the content of a text document is changed. In
this way, only an array that contains the content changes of the document is sent to the
server. Each change is described by an object that contains the range of the text being

replaced, and the replacement text.

3.3.3 Incremental Parsing

Parsing time is proportional to the source code size and the user changes to the source
code are usually small and frequent. That means that performing syntax analysis on the
whole source code on every change is impractical causing large delays since it may be
executed multiple times per second. But execution time could be saved by reusing
nodes from the old AST.

Instead of reparsing the whole document again and again, only the part of the
corresponding edit range could be reparsed. In this way, the AST is generated
incrementally [13] as the user edits the source code. When a piece of code is removed,
the appropriate nodes are removed from the AST. When a piece of code is added, only
that piece of code needs to be parsed and added to the AST.

To achieve this, a mapping between the AST and the source code is needed. This is
usually done by storing to the AST nodes their position as an offset in the text.
Additionally, we need to consider that after every change in the source code the stored
position in each AST node after the edit needs to be adjusted. Those nodes may move
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forward in cases that new characters were inserted or they may move backward in cases

that characters were deleted.

ASSIGN

IVAMABLEI ||cousrl |VARmBLE‘

name value name
| | VARIABLE

|VARMBLE| [lcoNST

name value

while (x<20)

x={x _+y*2] % i ll

Figure 11 — Incremental Parsing (Marking the affected AST nodes as volatile)

To make a parser incremental, the AST nodes should be annotated with the original text
per grammar symbol. When an editing change occurs, the smallest affected non-
terminal node is located in the AST and its subtree is marked as volatile. Then the
affected source text constitutes the input to the incremental parser. Finally, the
incremental parsing is performed with a surgical parsing and an AST modification

action that is very fast.

lex.Push(PARSE_EXPR_TOKEN);
lex.Input(<the text fragment>);
AST* ast = parser.Parse(lex);
<update the main tree>;
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4. Type Carriers

4.1 Basic ldea

In a typed language, the type of variables is specified in their declaration. Their type is
known at compile time and it is fixed in the whole program. In weakly typed languages,
variables do not have types, instead their values do. Therefore, the type of a variable is
dependent on the value that is assigned to it and may change during the execution of a
program. In this system, we analyze the AST and we keep track of all the locations that
the value of a variable may change. When information about a symbol is asked, based
on the position in the document, we find the closest locations that a value was assigned
to this symbol, and we can provide information about the type of its value.

4.2 Type Information

A Type Information object is used to describe the type of an expression. It can also
provide information about its value. For example, the Type Information object for a

numeric literal ‘2’ will store that the type is number, that it has a value, and that the

value is 2. The following table shows the structure of a Type Info object:

Property  Description

Type The type of the expression.

Has Value | It stores whether or not it provides value information.

Value Depending on the Type property it stores information about the value.

Table 2 — Type Info specification
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The type property of a Type Information object should be able to describe all the basic
types of the language. But there are cases, such as the call of a variable that is not
declared, that we have no type information. A compiler would terminate its execution
providing an error, but the IntelliSense should work and provide information. Thus,
the set of the types that a Type Information object can describe are the basic types of
the language, plus one any type that indicates that we have no idea what the type could

be. These types are:

e Class

e Function
e Number

e String

e Boolean

o Array

e Object

e Undefined
e Null

e Any

4.3 Type Carrier

In its pure notion, a Type Carrier is basically a set of instructions of how to find the
type information for a symbol. They are generated during the semantic analysis, they
are associated with the symbols through Type Binders, which will be discussed in the
next section, and they are evaluated to gather all the type information of a symbol.

All the expressions of a program generate Type Carriers that are stored in the expression
nodes. As an example, the number literal ‘2’ will generate a Type Carrier. When this
Type Carrier is evaluated, it will result to a Type Info Object that its type is Number. A
variable reference x will generate a Type Carrier, which will search and return the type
information of x when it is evaluated. The following table contains all the different

kinds of Type Carriers that are generated and on which nodes:

30



Expression

Description

Evaluation

Literal A Type Carrier is created that stores | Just returns the stored type
type information about the literal. information.
Identifier A Type Carrier is created that stores | It finds the active type carriers
the referenced symbol and the | of the referenced symbol
Identifier node which is used to | evaluates them and returns the
resolve the context of the reference | type information.
when it is evaluated.
Binary A Type Carrier is created that stores | It evaluates the carriers of the
Expression | the carriers of the operands. operands and tries to apply the
operation if it is possible.
Unary A Type Carrier is created that stores | It evaluates the carrier of the
Expression | the carrier of the operand. operand and returns the type
information.
Call A Type Carrier is created that stores | It evaluates the carriers
Expression | the call expression. returned by the callee and
returns the type information. If
there are no carriers, it returns
undefined as type info. If the
callee cannot be determined, it
returns any as type info.
New Similar to call expressions, a Type | It evaluates the carriers
Expression | Carrier is created that stores the new | returned by the constructor

expression.

function and returns the type
information.

Table 3 — Type Carriers for expressions
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4.4 Binding Type Carriers to Symbols

4.4.1 Symbols

IntelliSense needs to keep track of all the symbols in the source code to be able to
provide information about them. Therefore the first step of the semantic analysis is to
traverse the AST and spot nodes that they declare variables. Such nodes are:

e Function Declarations
e Variable Declarations
e Class Declarations

e Property Declarations
e Constructors

e Method Declarations

e Attribute Accessors

e Function Expressions

e Class Expressions

Like a compiler, for each declaration node met, a symbol object is created and stored
in a symbol table. A symbol table is created for each scope in the source code and it is
stored to the node that introduces the scope. Each symbol is stored in the symbol table

of its corresponding scope. The structure of a symbol is shown in the following table.

Symbol Property  Description

Name The name of the symbol
Declaration A reference to the AST node that the symbol is declared
Type Binders A list of all the Type Binders of the symbol

Table 4 — Symbol specification
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4.4.2 Type Binders

Given that the type of a symbol may change on different parts of a program, IntelliSense
should be able to answer questions like “What is the type of x in line 5”. Thus, a
mechanism to tell a symbol type on a specific position in the program is required. For
this purpose Type Binders are used. A Type Binder simply binds a symbol and a Type
Carrier together. It is created and stored on every AST node that may change the type

of a symbol. The structure of a Type Binder is shown in the following table.

Type Binder Property  Description
Symbol The symbol that is referring
Type Carrier The Type Carrier for that symbol

Table 5 — Type Binder specification

Type Binders are context sensitive because they are stored on the AST. As an example,
when an assignment x = 2 is met, a new Type Binder for x is created and is stored on
the Assignment node. The existence of the Type Binder on that Assignment node,
signals that after this node, the type of x could be resolved by evaluating the Type

Carrier which is stored on the binder.

4.5 Type Computation

In the previous section all the basic structures of the system have been described. This
section presents the usage of them, and the algorithms used to actually compute type
information for a symbol. As said earlier, our system is able to provide different type
information for a symbol in different locations of the program. Also, our worktable is
the program’s AST, which is extended to store symbols and binders. Thus, all the

algorithms are traversing the AST to find the information they need from it.
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4.5.1 Symbol Look Up

To gather type information for a symbol the first step is to identify that symbol. The

following algorithm shows how a symbol is retrieved from the AST.

function lookUp(node, name) {

if(!'node) { return; }

const symbol = node.symbols.get(name);

if(symbol) {
return symbol;

} else {
const previousNode = getPreviousNode(node);
return lookUp(previousNode, name);

}

function getPreviousNode(node) {
const leftSibling = findLeftSiblingWithoutScope(node);
if(leftSibling) {
return leftSibling;
} else {
return node.parent;

If the left sibling of the current node is a node that introduces a new scope (e.g. Block
node) it should be ignored. In that way we avoid finding symbols that are not visible in

the current context.
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Figure 12 — Symbol Look up Visualization

4.5.2 Determination of Active Type Binders

In a similar manner, the active type binders for a symbol are found. The AST is
traversed and if a node contains a binder for that symbol, that binder is the active one.
But some modifications are needed for this algorithm to work as expected. Consider

the following case:

let x = 2;
/]l ...
{
x = 'hello’;
}
/] ...

After the execution of this code, the type of x is string and its value is ‘hello’. During
our analysis two binders for x are generated in the two nodes that change its value. The
second one is generated and stored in the assignment node which is descendant of the
block node. Applying the previous algorithm to find the active binders of symbol x
starting from an AST node subsequent to the code above, we would never find the
correct binder because the children nodes of the block are never searched. Instead, the

type binder in the declaration of x would be found.

35



VELELIE]

Statement

Numeric Expression
Literal Statement

Identifier — Symbol{x} TC{“hello”}

Binary
Expression

String
Literal

Identifier

Figure 13 — Searching the active Type Binder of x

Therefore, the algorithm is modified to also search in the children nodes of the previous
node, in cases where the previous node is the left sibling of the current node and its
node type is Block. In this way any binders that live inside a block are exposed to the

nodes that are subsequent to the block node.

function findActiveTypeBinder(node, symbol) {
if(!node) { return; }
const binder = node.binders.get(symbol);
if(binder) { return binder; }
const leftSibling = findLeftSibling(node);
if(leftSibling) {
return findActiveTypeBinderInLeftSibling(leftSibling, symbol);
} else {
return findActiveTypeBinder(node.parent, symbol);

function findActiveTypeBinderInLeftSibling(node, symbol) {
if(isBlock(node)) {
node = findRightMostDescendant(node);

}

return findActiveTypeBinder(node, symbol);

function findRightMostDescendant(node) {
if(!node.children.length) { return node; }
return findRightMostDescendant(node.lastChild);
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Figure 14 — Searching the active type binder of x inside a block

But not only Block nodes are affecting this algorithm, there are also other kind of nodes
that we need to consider to form the final algorithm. So the presented algorithm is not
on its final form, other cases like this will be presented throughout this paper (e.qg. calls,
if statements, for statements, etc.) and it will be adjusted to solve all the problems that

each case will generate. So this algorithm is just the base that we will work on.

Of course traversing all these nodes has an impact on performance and the IntelliSense
is required to execute its operations quickly. Hence, we skip the traverse of nodes that
it is certain that they cannot contain binders. Most of terminal nodes are skipped and
the performance of this algorithm is boosted and it can run several times faster.
Moreover, during the analysis we store the symbols for which binders exist on their
scope nodes and when we search for active binders and a block is met we can quickly

decide if we are going to search inside.
4.5.3 Evaluation of Type Carriers

To compute Type Information for a variable, given the symbol object and its active
binder, the only thing left to do is to evaluate the Type Carrier that is stored on the
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active binder. It is important to note that the evaluation of the Type Carriers is not
performed during the analysis of the code. It is performed on demand when the
IntelliSense is asked to provide information for a symbol. In this way, the analysis is
more efficient because it only creates the instructions to get the Type Information and

the evaluation of these instructions is postponed until it is necessary.

Additionally, in this way Type Carriers act as a graph that shows the path of how the
Type Information is computed. Therefore, our system could be able to answer questions
like “why the type of x is this?”” and allow users to trace the respective path. But there
is no support to do this using the LSP. This could be achieved by violating the LSP and
sending custom messages between the host and the server, but this solution is not
portable to other development tools.

The evaluation of Type Carriers is similar to the way an Interpreter would evaluate the
AST. A dispatcher is used to call the right function depending on the kind of the carrier.
The different types of Carriers and the steps to evaluate them have been presented in
the beginning of this chapter. Thus, here are presented the general evaluate function
and the evaluate functions for a constant, and a variable Type Carrier. The functions for

the other kinds of Type Carriers are similar to these.

function evaluate(carrier) {
const evaluateFunction = evaluateFunctions[carrier.kind];
return evaluateFunction(carrier);

}s

evaluateFunctions[TypeCarrier.Kind.Constant] = function(carrier) {
return carrier.typelnfo;

¥
evaluateFunctions[TypeCarrier.Kind.Variable] = function(carrier) {

const binder = findActiveTypeBinder(carrier.node, carrier.symbol);
return evaluate(binder.carrier);

}s

/] ...
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5. Handling Variables and Expressions

5.1 Declarations

In JavaScript, since ECMAScript 2016 — ES6 specification, there are three keywords to
declare a variable, each one providing different semantics. The first one is the var
keyword which was in the specification before ES6. The two new keywords are the let
and the const keywords. The problem with the var keyword is that it is not block scoped,
but it is function / program scoped. Declaring a variable using the var keyword inside
a block, is going to declare the variable as a global variable, unless a function

declaration is mediated.

/] ...
{

var X = 2;

}
/...
console.log(x); // 2

This was not a problem in JavaScript before ES6 since there was not a way to include /
import files and all the source code was typically in a single file. But ES6 also brought
the import and export keywords to support modules. Thus, the language should provide
a way to declare block scoped variables. The two new keywords, let and const, were
added to achieve this. In this way each module can have its own ‘private’ variables and

export only the ones that are necessary to other modules.

Another thing that should be considered is hoisting. In JavaScript, a variable can be
declared after it has been used. This is equivalent to moving the declarations to the top

of their scope. But only the declarations are hoisted, not the initialization.

In declarations that use the var keyword, the variable is actually declared from the
beginning of the scope and is initialized as undefined. The following example may clear
the things up a bit.

console.log(x) // undefined
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The previous program is correct because of hoisting. The equivalent of this program

after hoisting would be the following:

var X;

console.log(x);

X = 5;

In declarations using the let or const keywords, the declaration is hoisted to the
beginning of the scope but it remains uninitialized until the actual declaration. That

means that the name is reserved but it cannot be used until its actual declaration.

console.log(x) // Reference Error
let x;
console.log(x) // undefined

During our analysis for variable declarations, as described in the previous section, we

need to:

e Create a Symbol for the declared variable

e Store the Symbol in the appropriate symbol table (Find its scope)
e Create a Type Binder for that Symbol.

e Store the Type Binder in the appropriate AST node.

5.1.1 Declarations via var Keyword

During our analysis, when a declaration that uses the var keyword is met, a symbol for
that variable is stored in the symbol table of the closest Function / Script ancestor. Also
a Type Binder with the Type Carrier of the initialization node is created for that symbol
and it is stored in the declaration node. In cases that initialization node is absent (e.g.
‘var x;’), a Type Binder is implicitly stored in the declaration node that binds symbol x

with an undefined constant Type Carrier.

That should be enough, to be able to look up for this variable, and compute type
information for it after its declaration. But as shown in the beginning of this chapter,

the declaration of a variable with the use of the var keyword, actually initializes the
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variable with undefined in the beginning of its scope. Therefore, a second Type Binder
with a constant Type Carrier of undefined is created for that symbol and it is stored in

the closest script, or function body ancestor node.

The following figure illustrates the AST after the analysis of the variable declaration
node of x. It is clear now that a look up for x would find the symbol even when starting
from nodes prior to the declaration. Also, the active binder of x after the declaration
would be the binder generated from the declaration, and prior to the declaration would

be the extra ‘undefined’ binder that was stored in its scope.

symbols

bind
Symbol(x) TC{undefined } tnders

Var binders
Declaration Saeel ) | e

SN
// ™~
S/ ™~

// \\\
72N /
{ Numeric
var x = 2; Literal
}
/1., o

Figure 15 — AST for var declaration (after the analysis)

5.1.2 Declarations via let Keyword

Declarations that use the let keyword are handled in a similar way. Actually they are
even simpler to analyze because the variable remains uninitialized until the declaration
node. During the analysis, when a declaration node that uses the let keyword is met, a
new symbol is stored in the closest block, or script ancestor node. Also a Type Binder
is stored in the declaration node that binds the symbol with the Type Carrier of the
initialization node.
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Figure 16 — AST for let declaration (after the analysis)

The differences between the analysis of var and let declarations are that on the latter we
are storing the symbol in the closest block and not on the closest function body,
although this block could be the closest function body, and that we don’t have to add
an extra Type Binder for this symbol before its declaration node, since the symbol
cannot be used before its initialization.

5.1.3 Declarations via const Keyword

Actually there is no distinction between the declarations that use the let keyword and
the declarations that use the const keyword. They are both handled the same way, the
symbol is stored in the symbol table of the closest block / script ancestor node and the
Type Binder for that symbol is stored in its declaration node. The only difference is that
the initialization node is mandatory to exist on const declarations. But this is already
handled by the TypeScript compiler.

42



5.2 Expressions

As described in the previous chapter each expression generates a new Type Carrier.
During the analysis for every expression met, we create the appropriate Type Carrier
and we store it on the expression node. Outer expressions may refer to inner
expression’s Type Carriers to generate their carriers. The following figure presents the
AST of x + 5; along with its Type Carriers. It is important to note that the carrier of

the Binary Expression references the carriers of its inner nodes.

Expression
Statement
Binary carrier Binary Expression TC
Expression { VariableTC, +, Constant TC}
Variable TC » |dentifier Nl—Jmeric carrier ConstantTC
{ symbol(x), Identifier } ° Literal {Number, 5}

Figure 17 — Type Carriers in expression nodes
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6. Handling Assignments

6.1 Variables

Handling variable assignments is pretty straightforward. During the analysis when an
assignment is met, we just need to bind the Type Carrier of the right part of the
assignment to the symbol of the left part. To achieve this we just create a Type Binder
and store it in the assignment node.

Expression

Statement

binders Binary carrier VariableTC
Symbol(x) | ConstantTC{5} « Sabeeci { symbol(x), Identifier }
Variable TC carrier : Numeric carrier ConstantTC
{ Symbol(x), Identifier } e Literal {Number, 5}

Figure 18 — AST after the analysis of Assignment Expression

6.2 Object Fields

Assigning a value to a field of an object is similar to variables, we just create the
appropriate Type Binder and store it on the assignment node. But there are some tricky
parts here that we would like to show. In weakly typed languages, it is possible to add
or remove properties from an object at runtime. In JavaScript when a value is assigned
to a property of an object, and this property does not exist, it is just created during the
assignment. In the following example, an object is created at line 1 and it is assigned to
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a variable x. The code in the second line, tries to assign the value 2 to x.a. Since the
object assigned to x is empty, it does not have any properties, a new property for this

object will be created.

let x = {};
X.a = 2;
console.log(x.a); // 2

During the analysis, the difference between the assignment to an object field and to a
variable is that in the latter we already know the symbol of the variable. Instead when
an assignment to a property is met, we must resolve the symbol of that property. This
implies that we need, to gather all the properties of the object, decide if it already has
that property, and if it is absent we need to extend its properties dynamically to contain

the new property.

As we described in section 4.2, the Type Information is used to represent an object.
Also, each object needs to have a database of its properties. Therefore our object
representation keeps a symbol table for its properties. When a new property is added to

the object, a new symbol is created and it is stored in its object’s symbol table.

Unfortunately, in order to resolve the object properties and decide if the property
already exists or it is a new one, we must evaluate the carrier of the left part of the
property access expression. Evaluating the Type Carrier gives us its Type Information,
which in case of objects it stores the symbol table of its properties. Since we have the
symbol table, we can resolve the symbol of that property if exists, or extend it with a

new symbol.

Other than resolving the symbol of the object field, every other part works as explained
in the assignment of variables. Type Binders are created and stored on the AST to bind

the symbol of each property to its corresponding Type Carriers.
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7. Handling Function Definitions

A function definition in JavaScript is like a variable definition. A new symbol is
generated and the developer is free to change its value later in the program. Functions
are also hoisted to the closest function / program scope. Thus, the following program is

correct.

foo(); // 2

function foo() {
console.log(2);

}

During the analysis, when a function definition is met, we create a new symbol for it,
and a binders for the symbol which they are stored in the closest function / program
scope. Moreover, the function itself is analyzed since IntelliSense is required to provide
all the language services when the function is edited.

7.1.1 Parameter Type Prediction / Speculation

During the editing of a function, its parameters have no values assigned to them, so the
IntelliSense has no type information for them. Instead, a value is assigned to each
parameter during the call of that function. However, during the analysis of the function
body all the usages of these symbols are available. Therefore, we try to predict their
plausible types by analyzing how they are used inside the function. This type
information is used when the developer inspects a function parameter during the editing
of the function and can also be composed to show the function signature when the
developer calls that function.

Although JavaScript has type coercion which solves most of the representation
mismatches inside the expressions with silent type conversions. Therefore, there are

cases in which our type predictions for the function parameters are not correct, since
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the actual arguments could be of any type and there would be no runtime error but still

there are too close to reality.

function add(a, b) {
return a + b;

}

Consider the above example. The developer could use the ‘add’ function and pass as
arguments any expression and JavaScript would still execute the addition between them
and return valid results. Even though, the type of those results would always be either
number, or string depending on the type of the operands. Despite that we don’t know
the actual type of ‘a’ and ‘b’ we are still able to tell that during the execution of this

function they will be converted to either number or string if they are not already.

In order to predict the type of a parameter, we also need to consider the indirect usages
of the parameter. In the following example, ‘a’ could still be converted to number or
string even if it is not used directly as operand in the addition. Thus, when we meet the
addition during the analysis we need to partially evaluate its operands to decide whether

or not they are references to a parameter.

function add(a, b) {
const ¢ = a;
return c + b;

}

The concept described below could be used for most of the expressions in the source
code. Even though that these predictions are not always correct, we believe that this

information is still really useful to the developers when they edit the source code.

7.2 Plausible Return Types

It is also possible to apply type inference to find the plausible return types of a function.
The plausible return types of a function can be used to compose its signature. When a
return statement is met during the analysis, its next statements, or in this case its right
siblings, are marked as unreachable. If the current return statement is reachable it is
stored in the function definition node. After the analysis, the function has stored in it
all the return statements that it is possible to be executed when it is called. From the
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return statements we have access to the returned expressions which store their type
carriers. When they are needed later, we can compute the plausible return types by

evaluating these type carriers.

Another thing to consider to form the plausible return types, is that in JavaScript when
a function does not explicitly returns a value, it implicitly returns undefined. Therefore,
the control flow needs to be analyzed to determine if there are any paths in the body of
the function that do not return a value. In case such paths exist, we need to include a
constant Type Carrier for the undefined value to the plausible return types of the

function.

We are able to tell whether or not a function returns a in every control flow path, by

applying the following logic:

e A set of statements returns on all control paths if at least one of its statements
returns on all control paths.

e A return statement returns on all control paths.

e An if statement returns on all control paths if both its then and else statements
return on all control paths.

e A switch statement returns on all control paths if all of its clauses return on all

control paths or any of them but the last falls-through.
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8. Function Calls (Call Sites)

Function calls provide various information about the program. First of all, in cases that
the result of the function is stored, we care about the plausible return types of the called
function to provide more precise results. Additionally, we need to consider the side-
effects of a call. The body of the called function may contain assignments to symbols
defined out of the function and thus mutate their type. Finally, the plausible types of the
actual arguments could be used to provide more information on future calls of the same

function during the editing.

8.1 Side Effects

When a function is invoked, it may change the type of variables declared out of it. Such
functions are called non-pure. In the following example the £ has an assignment to x in
its body. Before the call of £, the type of x is undefined. After the call of f, x is a string

since the body of £ mutates it. Therefore f is a non-pure function.

let x;

function f() {
x ="'a';

}

0

Also a function may mutate, or add new object fields in global variables or parameters.
In case that it mutates an object field a new binder is created for it and in case of new
field, we also create a symbol for it. Considering all these cases, during the search of
the active binders of a symbol, we need to also search inside the body of any function

that is called when the function mutates that symbol.

Thus during the analysis, when a call is met, we evaluate the called expression to
resolve its AST node and its subtree is replicated to be able to store the binders of the
affected symbols. Its body is analyzed and the new binders are added to the AST. When

we search for active type binders and a call is reached, we also search inside the
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replicated function body. To achieve this we modify the way we search the active type

binders when the next node is the parent node.

function findActivelInParent(node, symbol, startNode, stopNode) {
if(node === stopNode) { return; }
/...
if(isCalllLikeExpression(node) && node.callee) {
return findActiveInCallee(node, symbol, startNode, stopNode);

}
// ...
return findActive(node, symbol, startNode, stopNode);

}s

8.2 Function Dependencies

8.2.1 Parameters

As described in Section 7, during the analysis of function declarations, we have no type
information for its parameters. Instead their type information is available during the call
of a function where the actual arguments are passed in. Thus, when a call is met during
the analysis, we generate new type binders for the parameters of the called function and
we store them in the call node. In cases that arguments are omitted, we implicitly add

an undefined binder for each omitted argument.

When the type information of a parameter is requested, its type binders can be found in
the appropriate call node. Thus, function nodes are extended to also store their call sites.
Also, to be able to reach their binders, during the search when we reach a function body

as a parent we need to continue the search in the appropriate call node.

function findActiveInParent(node, symbol, startNode, stopNode) {
if(node === stopNode) { return; }
/...
if(isFunctionLike(node) && node.call) {
return findActiveInCallSite(node, symbol, startNode, stopNode);
}

/...
return findActive(node, symbol, startNode, stopNode);

}s
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8.2.2 Free Variables

Functions may have access to variables that are neither locally declared nor passed as
parameters. Such variables are called free variable. Free variables can be mutated by
code written between different calls of a function. So, free variables may have different
values and thus types between different calls of a function. In the following example,
during the first call of £, symbol x is type of number, but during the second call of f, x

is type of string.

let x;
function f() {
console.log(x);

}

X = 10;

()5 // 10
Xx ="a';

0O /] 'a’

Therefore, when the type information of a symbol inside the body of a function is
requested and there is no type information in the function, we need to continue the

search in its call node.

Although this information is used by our system to gather more precise results for other
symbols, it could also be used during the inspection of a function. When the users aim
to inspect during the editing the types of free variables, they could be presented with
choices of the call sites of the function if such exist. Also, when irrespective of the call
sites, the symbol types remain the same, there is no need to actually request the call site

selection.
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9. Branches and Loops

Branches and loops introduce a major problem. How could we resolve the Type
Information of a symbol that may have different outcomes in a conditional statement?
We could probably try to evaluate the Type Carrier condition and search for Type
Binders in the block that is going to be executed. But in real life it is almost impossible
to know what the value of a condition is going to be. The condition could be an
expression that has a random factor in it, or its origin could be from somewhere around
the network. Even if we could actually execute the program, the results could be
different on every run. Thus we compose Type Carriers as needed to identify more
composite Type Carrier sets and provide all the plausible outcomes.

9.1 If-Else Statement

Since JavaScript is an untyped language, a variable could hold values of different type
on different paths of execution. After the execution of the following source code, given
that we don’t know anything about the condition of the if statement, the x could be a
number or a string. Therefore that’s exactly what we are aiming to do, we are going to
provide all the plausible types of a variable. We are going to retrofit our system to

provide that information to the developer.

let x;
/...
if(e) {
X =
} else {
x = 'hello’';

2;

}
/] ...

The system in its current state is providing type information for a symbol based on the

last statement that changes its value. Each possible change of a value is marked on the

52



AST with a Type Binder. Then depending on the position on the AST we search for the

closest Type Binder which is called active.

In the previous example, there are two Type Binders for x inside the if statement, one
inside its then statement and one inside its else statement. Thus, in order to deliver to
the users multiple plausible types for a symbol, we just need to have more than one

active Type Binder. Each active Type Binder gives a plausible type to a symbol.

So, the algorithm to find the active Type Binder presented in section 4.5.2 needs to be
modified to return multiple Type Binders. When an if statement is met, it should return
all the individual active binders found in each one of its possible paths. Also in some
cases, an if statement is not changing the value of a variable definitely and we also need
to include the active binders in its conditions and in statements prior to the if statement

if there are no binders in the conditions.

function findActive(node, symbol, startNode, stopNode) {
if(!'node) { return; }
const binder = node.getBinder(symbol);
if(binder) { return [ binder ]; }
if(node == stopNode) { return ; }
const leftSibling = findLeftSibling(node);
if(leftSibling) {
return findActiveInLeftSibling(leftSibling, symbol, startNode,
stopNode) ;
} else if(node.parent) {
return findActiveInParent(node.parent, symbol, startNode,

stopNode) ;

}
¥
function findActiveInLeftSibling(

node,

symbol,

startNode,

stopNode
) {

if(node == stopNode) { return; }

return findActiveInStatement(node, symbol, startNode, stopNode) ||

findActive(node, symbol, startNode, stopNode);

}

function findActiveInStatement(node, symbol, startNode) {
switch(node.kind) {
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case Block:
return findActiveInBlock(node, symbol, startNode);
case IfStatement:
return findActiveInIfStatement(node, symbol, startNode);

The function findActiveInStatement searches for binders in the statements of a
block and stops when it reaches the block. In this way, when we search for active
binders in if statements, we avoid searching outside of then-else blocks multiple times
and end up with duplicities.

function findActiveInBlock(node, symbol, startNode) {
const lastStatement = findLastStatement(node);
if(!lastStatement) { return ; }
return findActiveInStatement(lastStatement, symbol,
startNode, node);

function findActiveInIfStatement(node, symbol, startNode) {
const statements = findThenElseStatements(node);
const binders = [];
const conditionsToSearch = new Set();
for(const s of statements) {
const sBinders = findActivelInStatement(s, symbol, startNode);
if(sBinders) {
binders.push(sBinders);
} else {
conditionsToSearch.add(s.parent.expression);

}
if(!hasElse(node)) {

conditionsToSearch.add(statements.last.parent.expression);
}
if(!conditionsToSearch.isEmpty) {
binders.push(
findActiveOutOfIfStatement(conditions, symbol, startNode)
)s
}

return binders;

function findActiveOutOfIfStatement(conditions, symbol, startNode) {
const topLevelIfStmt = findTopLevelIfStatement(conditions);
const binders = findActiveInIfConditions(
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conditions, symbol, startNode
)
if(conditions.length) {
binders.push(
findActive(ifStatement, conditions, startNode)
)
}

return binders;

u TC { undefined }

VELELIE
Declaration

Expression Expression

Statement Statement
Binary Binary

Expression Expression

T i}

Figure 19 — Search the Active Type Binders of x Inside an If Statement

As we described previously, there are cases that if statements do not change the type of
a symbol definitely and we need to identify those cases and include the active binders
prior to the if statement. The first case is when the if statement does not have an else

statement:

X = true;

if(el) {
X = 2;
} else if(e2) {

x ="'";

In this case, it is possible that both el and e2 evaluate to false and thus the type of x

after the if statement remains boolean. The second case is when the if statement contains

55



at least one path that does not change the type of the symbol that we are searching for
its active binders. This case also covers the case in which the if statement does not

change the type of the symbol at all:

Also, we need to do a last modification to the algorithm to work properly. When we
search for an active binder starting inside a then-else statement and we reach its parent
if statement, we need to bypass all the other then-else statements and continue the
search out of the top-level if statement. In the previous example if the developer typed
x inside the else statement, we want to tell them that the type of x is number and not

string.

function findActivelInParent(node, symbol, startNode, stopNode) {
if(node === stopNode) { return; }

if(node && isIfStatement(node)) {
return findActiveOutOfIfStatement(
[ node.expression ],
symbol,
startNode
)
}

return findActive(node, symbol, startNode, stopNode);

1
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Figure 20 - Search active binders of x starting inside a then/else statement

9.2 Switch Statement

Switch statements are handled in a similar way to if statements. When we search for
the active type binders of a symbol and a switch statement is met, we collect all the
active binders found in its possible paths. But in some occasions we are not able to
provide so accurate results as in if statements. The problem here is that switch cases
might fall-through and a simple break detection in its case clauses won’t do the trick,
because the break statements could be inside if statements and the things get much more

complicated.

Thus, we simply assume that there is no fall-through in the switch-cases. We search for
active binders in each case clause individually and we always include the active binders
found prior to the Switch Statement. In this way the results may not be so accurate, but
the resulting type set is always a superset of the actual type set and we are not missing

any possible type.

let x = 2;

switch(e) {
case el:
X = true;
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default:
X = 5
break;

After the execution of the previous program, the type of x would always be number,
because the el case clause falls-through. Our system will not detect this but it can tell

that the type of x could be undefined, or boolean, or number.

Since we assume that there is no fall-through, when we search for active binders of a
symbol starting inside a case clause and we reach the case clause, which means that in
this path there is no assignments to that symbol, we just continue the search out of the
Switch Statement. Of course, the way we choose to handle this has an important
drawback which may give misleading results in switch-cases that they indeed fall-
through. In the following program, the type of x inside the default clause would be

boolean but our system is not able to detect that.

let x = 2;

switch(e) {
case el:
X = true;
default:
// Search for Active Binders of 'x' starting here

9.3 For Statement

When we search for the active binders of a symbol and a for statement is met, we collect
the active binders inside its statement and we also include the active binders in its
increment node and the active binders in its condition and all the previous statements.

After the execution of the previous program, the type of x is just number or string.

let x = 2;
for(; e; ) {

x = "hello";
¥
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function findActiveInStatement(node, symbol, startNode) {
switch(node.kind) {
case Block:
return findActiveInBlock(node, symbol, startNode);

/...
case ForStatement:
return findActiveInForStatement(node, symbol, startNode);

function findActiveInForStatement(node, symbol, startNode) {
const binders = findActiveInStatement(
node.statement, symbol, startNode

)s
binders.push(findActiveOutOfForStatement(node, symbol, startNode));
return binders;

function findActiveOutOfForStatement(node, symbol, startNode) {
const binders = [];
binders.push(
findActiveInIncrement(node.increment, symbol, startNode)

)s
binders.push(
findActiveInForCondition(node.condition, symbol, startNode)

)5

return binders;

}
Also we need to consider the case in which the search started inside a for statement. In
order to achieve this, we need to modify findActiveInParent to search out of the

for statement when the top-level node of the statement is reached.

9.4 While Statement

Handling while statements is similar to how we handle for statements. In fact it is
simpler since while statements do not have an increment node. Also JavaScript supports
three different kinds of for loops, the classic for loop, and the for/in and for/of loops to
iterate objects and arrays respectively. All these kinds of loops are handled exactly the

same way.
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10. Editing Automations

10.1 Code Completion

Code completion or content assist is helping the users to write code faster, by suggesting
them possible completions as they type. It also helps programmers to remember API
names that they would have to search in documentations instead. In Visual Studio Code
when a character is typed, the suggestions will pop up in a list. If you continue typing
characters, that list is filtered to only include suggestions containing your typed

characters.

Depending on the language, it may be needed to trigger the code completion in different
cases. When a Language Server or an extension with programmatic language features
is created, a list of trigger characters can be defined to trigger the code completion (such

as the dot .’ character in many programming languages.).

The first step in almost all editing automations is to find the AST node that corresponds
to a specific position. For instance, when the developer hovers over a variable we want
to know the corresponding AST node of the text under their pointer. The following
algorithm was used for this purpose. Also, sometimes it is useful to implement an extra

version of this algorithm that searches for nodes of a specific type (e.g. CallExpression).

function findInnermostNode(ast, offset) {
return ast.fortEachChild(function (node) {
if(node.start <= offset && node.end >= offset) {
const innermostNode = findInnermostNode(node);
return innermostNode || node;

}
1)
}

To support code completion, a handler for the LSP Completion event was implemented.
When the user types a character, the AST node under the cursor is found. If the type of
the node is Identifier, all the visible symbols from that node are collected. The list of

the visible symbols is filtered to match the typed text and it is displayed by the client.
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Moreover, a handler for the LSP Completion Resolve event was implemented. Every
time the user navigates between completion items, a request is sent to the server to
resolve additional information for the given completion item. The active binders for
that symbol are found and their carriers are evaluated to be able to provide extra

information about its possible types.

function onCompletion({ document, position, triggerCharacter }) {

const ast = getAst(document);
const node = findInnermostNode(ast, position);

if(!'node || !'isIdentifier(node) || isDeclarationName(node)) {
return;

if(isNameOfPropertyAccessExpression(node)) {

return computePropertyCompletions(node.parent);
} else {

return computeldentifierCompletions(node);

function computeIdentifierCompletions(node) {
const completions = [];
const visibleSymbols = findVisibleSymbols(node);
for(const s of visibleSymbols) {
const binders = findActiveTypeBinders(node, s);
const typeInfo = binders.flatMap(b => evaluate(b.carrier));
completions.push(computeCompletion(s, typeInfo));

}

return completions;
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Figure 21 — Code Completion
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Figure 22 — Code Completion on objects

10.2 Parameter Help

Parameter Help, as its name suggests, helps users to fill the arguments in a call. It is
usually triggered by some characters as the user types. These trigger characters are
language dependent, since they must reflect the syntax of the call. As an example, in
JavaScript and in most of the programming languages, the trigger characters are the left
parenthesis ‘(’, which indicates that a call has begun, and the comma °,”, which indicates
that another argument is going to be passed in the call. When the parameter help is
triggered, a popover appears that typically displays the signature of the called function,
along with extra information such as the documentation comments above its
declaration. Like Code Completion, Parameter Help is essential to speed up the

development process. It is nearly impossible for a programmer to remember the order
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and all the parameters of every function in any API. Parameter Help saves all that time
that they would need to search for these information in documentations. In Visual
Studio Code, the Parameter Help popover appears when one of the predefined trigger
characters is typed. Users can also trigger Parameter Help explicitly with some macros.
Additionally, the current argument that the programmer is passing, is underlined in the

function signature inside the Parameter Help popover.

In many languages, like C++ or C#, function overloading is supported. Function
overloading allows multiple functions to have the same name but different parameters.
In such cases, Parameter Help allows the programmers to select which implementation
they mean, and the signature in the popover is adjusted to match the selected
implementation. In Visual Studio Code, you can navigate between different
implementations by pressing the Up or Down arrow while the Parameter Help popover

is active.

To support Parameter Help, a handler for the LSP Signature Help event was
implemented. When the user types a left parenthesis, or a comma, this event is fired.
First of all, based on the offset of the cursor, we search for the inner-most call node that
encloses the current offset. Then, we evaluate the Type Carrier of the called expression,
and the resulting types are filtered to not contain any non-callable type. Afterwards, the
signature of each possible called function is computed and returned to the client. In
order to provide more information about each parameter, the induced types of the
parameters are used in the signature. Moreover, we compute and show the plausible
return types of each callee. Along with the signatures, the serial number of the current
argument that the user is filling is computed and returned. Client collects these
information and displays the Parameter Help popover.

Moreover, we use Parameter Help to collect information about the called function and
solve ambiguities. When the called expression could be more than one function, and
the user navigates between the passible functions of the call, he actually can select and
lock which of those functions is actually called. This information is saved and updated
during the changes of the document and is used to also determine the plausible types of
other symbols, e.g. when the result of the function is stored in a variable, to compute its

plausible types.

63



foo(a: number ||_string, b: number || string):
number || string

Dreturns The sum of the arguments.

(a,
return a + b;

foo(a: number, b: number): number

foo( )

Figure 24 — Parameter Help (2/2)
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10.3 Quick Information

This automation allows the user to hover the mouse over various text items to view
details about them. They can hover over the name of a variable and if the name is

recognized, a quick information tooltip will be displayed.

To support quick information, a handler for the LSP Completion event was
implemented. When the user hovers over a text item, the Completion event is fired.
First of all, the focused AST node is found. Then, based on the type of the node we
provide different information. In this section, we present the computation of quick
information for Identifier nodes. Since we have the node under the cursor, and we know
that it is an Identifier, we resolve its Symbol. As we described previously, symbols store
their binders, so we are showing all the Type Information for that symbol throughout
the program. Additionally, we search for its active Type Binders and we mark the
appropriate Type Information, to let the developer know which of them are plausible

on that specific position.

function onHover({ document, position }) {
const ast = getAst(document);
const node = findInnermostNode(ast, position);
if(!node) { return noInfo; }
switch(node.kind) {
/] ...
case ts.SyntaxKind.Identifier:
return createldentifierInfo(ast, node);
/] ...
default: return nolInfo;

}

function createldentifierInfo(ast, node) {

const contents = [];

const symbol = getIdentifierSymbol(node);

if(!symbol || !symbol.binders.length) {
return createAnyInfo(node);

}

for(const b of symbol.binders) {
contents.push(createQuickInfo(b));

}

return { contents };

65



function getIdentifierSymbol(node) {
if(isNameOfPropertyAccessExpression(node)) {
const propertyName = node.getText();
const properties = getPropertySymbols(node.parent);
return properties.find(p => p.name === propertyName);
} else {
return lookUp(node, node.text);

at line 1
x: number = 2 at line 4 (up to here)

x: boolean = at line 6 (up to here)

Figure 25 — Quick Information (Showing all plausible types after an if statement)

at line 1
¥: number = 2 at line 4

boolean = at line 6 (up to here)

Figure 26 — Quick Information (In Else Statement)
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10.4 Goto Definition

This editing automation grants the user the ability to find the definition of a symbol
quickly. In Visual Studio Code, the user can find a definition by clicking on a symbol
while holding Ctrl, or by pressing F12 while hovering over a symbol, or by right-

clicking to a symbol and selecting ‘Go to Definition’.

To support Goto Definition, a handler for the LSP definition event was implemented.
When a user triggers this event, the first thing to do is to find the AST Node under their
cursor. If the type of the node is any other than Identifier, it is ignored. Then, a look up
to the AST is performed, to find a symbol named as the text of the Identifier node. Since
symbols store their declaration AST nodes, it is trivial to get the file which the symbol
was declared in and its text range inside that file. This information is sent to the client,

which opens the specified file, scrolls to the specified text range and highlights it.

J5 goto-definitionjs X

Js goto-definition.js > crea cle
1ine.opeglin CEFOLNT{DeglnAa, DEgINY),

line.end = createPoint(endX, endY);

return line;

createCircle(centerX, centerY, radius) ]

circle = {};

center createPoint({centerX. centerY):

radius = Go to Definition

Peck

circle;
Change All Occurrences Ctri+F2
Cut Cirl+X

Copy Ctrl+C

Figure 27 - Go to Definition (Before)
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createPoint(x, y) {
point = {};

point.x = x;
point.y = y;

return point;

createLine(beginX, beginY, endX, endY) {

line = {}:

Figure 28 - Go to Definition (After)

10.5 Document Symbols

This IntelliSense feature provides all the symbols in a document, usually in a hierarchy.
The user can click on any symbol and navigate to its declaration. It is very useful when
programmers want to navigate around a document and understand its structure. Visual
Studio Code has a document outline tree view in the Explorer tab. Additionally, it has
a code navigation bar (Breadcrumb), on the top of the editor, that displays the symbol
path up to the cursor position. Finally, the ‘Go to Symbol’ command can be used to
display a searchable list of all the symbols in a document. In any case, symbols are

presented as buttons that navigate you to the symbol declaration when clicked.

To support the features described above, a handler for the LSP Document Symbol event
was implemented. This event is triggered when a document is changed. The symbols
are stored in symbol tables on AST nodes. So, by iterating the nodes of the AST, the

symbol tree is created and is passed to the client.
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Figure 30 - Go To Symbol Command
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11. Conclusions and Future Work

In this thesis we focused on the most prominent of the identified requirements, while
some of the areas remain open and require additional research work. Below, we briefly

discuss key topics for future work.

First of all, there are features of the language that we are not handling yet. Some of
these features are:

e Class Inheritance
e Prototypal Inheritance
e Destructuring Pattern

e Import / Export

Another topic for future work is the implementation of more source code editing
automations. Our work covers the basic editing automations but there are still numerous
automations like Rename or Find References that we have to consider for this work to
be complete. Also, providing some common diagnostics and an automatic way to fix

them is really helpful.

Another identified issue is the performance of the system. Our system is able to analyze
some hundred lines of code without any noticeable delay, but more work is needed to
be able to analyze large-scale systems that are consisted of thousands of lines of code.
The most time consuming operation is the analysis. Thus, a big first step to be able to

handle larger projects is to make the analysis incremental.

Finally, when we search for the active type binders of a symbol, we actually try to find
the reverse control flow of the program on the AST. We believe that it would be saner
to create an actual Control Flow Graph (CFG) [14] of the program during the analysis
of the source code that will also store references to the previous nodes and search on
the CFG all those information instead. That would reduce dramatically the complexity

of our algorithms.
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