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Abstract

Center of Mass (CoM) estimation realizes a crucial role in legged locomotion. Most walk-
ing pattern generators and real-time gait stabilizers commonly assume that the CoM po-
sition and velocity are available for feedback. In this thesis we present one of the first
3D-CoM state estimators for humanoid robot walking. The proposed estimation scheme
fuses effectively joint encoder, inertial, and feet pressure measurements with an Extended
Kalman Filter (EKF) to accurately estimate the 3D-CoM position, velocity, and external
forces acting on the CoM. Furthermore, it directly considers the presence of uneven ter-
rain and the body’s angular momentum rate and thus effectively couples the frontal with
the lateral plane dynamics, without relying on feet Force/Torque (F/T) sensing.

Nevertheless, it is common practice to transform the measurements to a world frame
of reference and estimate the CoM with respect to the world frame. Consequently, the
robot’s base and support foot pose are mandatory and need to be co-estimated. To this
end, we extend a well-established in literature floating mass estimator to account for the
support foot dynamics and fuse kinematic-inertial measurements with the Error State
Kalman Filter (ESKF) to appropriately handle the overparametrization of rotations. In
such a way, a cascade state estimation scheme consisting of a base and a CoM estimator
is formed and coined State Estimation RObot Walking (SEROW). Additionally, we employ
Visual Odometry (VO) and/or LIDAR Odometry (LO) measurements to correct the kine-
matic drift caused by slippage during walking. Unfortunately, such measurements suf-
fer from outliers in a dynamic environment, since frequently it is assumed that only the
robot is in motion and the world around is static. Thus, we introduce the Robust Gaussian
ESKF (RGESKF) to automatically detect and reject outliers without relying on any prior
knowledge on measurement distributions or finely tuned thresholds. Therefore, SEROW
is robustified and is suitable for dynamic human environments. In order to reinforce fur-
ther research endeavors, SEROW is released to the robotic community as an open-source
ROS/C++ package.

Up to date control and state estimation schemes readily assume that feet contact sta-
tus is known a priori. Contact detection is an important and largely unexplored topic in
contemporary humanoid robotics research. In this thesis, we elaborate on a broader ques-
tion: in which gait phase is the robot currently in? To this end, we propose a holistic frame-
work based on unsupervised learning from proprioceptive sensing that accurately and ef-
ficiently addresses this problem. More specifically, we robustly detect one of the three gait-
phases, namely Left Single Support (LSS), Double Support (DS), and Right Single Support
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(RSS) utilizing joint encoder, IMU, and F/T measurements. Initially, dimensionality reduc-
tion with Principal Components Analysis (PCA) or autoencoders is performed to extract
useful features, obtain a compact representation, and reduce the noise. Next, clustering
is performed on the low-dimensional latent space with Gaussian Mixture Models (GMMs)
and three dense clusters corresponding to the gait-phases are obtained. Interestingly, it is
demonstrated that the gait phase dynamics are low-dimensional which is another indica-
tion pointing towards locomotion being a low dimensional skill. Accordingly, given that
the proposed framework utilizes measurements from sensors that are commonly available
on humanoids nowadays, we offer the Gait-phase Estimation Module (GEM), an open-
source ROS/Python implementation to the robotic community.

SEROW and GEM have been quantitatively and qualitatively assessed in terms of ac-
curacy and efficiency both in simulation and under real-world conditions. Initially, a sim-
ulated robot in MATLAB and NASA’s Valkyrie humanoid robot in ROS/Gazebo were em-
ployed to establish the proposed schemes with uneven/rough terrain gaits. Subsequently,
the proposed schemes were integrated on a) the small size NAO humanoid robot v4.0 and
b) the adult size WALK-MAN v2.0 for experimental validation. With NAO, SEROW was im-
plemented on the robot to provide the necessary feedback for motion planning and real-
time gait stabilization to achieve omni-directional locomotion even on outdoor/uneven
terrains. Additionally, SEROW was used in footstep planning and also in Visual SLAM
with the same robot. Regarding WALK-MAN v2.0, SEROW was executed onboard with
kinematic-inertial and F/T data to provide base and CoM feedback in real-time. Further-
more, VO has also been considered to correct the kinematic drift while walking and facil-
itate possible footstep planning. GEM was also employed to estimate the gait phase in
WALK-MAN’s dynamic gaits.

Summarizing, a robust nonlinear state estimator is proposed for humanoid robot walk-
ing. Nevertheless, this scheme can be readily extended to other type of legged robots such
as quadrupeds, since they share the same fundamental principles.

Keywords: Humanoid Robots, Nonlinear CoM State Estimation, Nonlinear Base State Es-
timation, Outlier Detection, Gait-phase Estimation, Kalman Filtering, Unsupervised Learn-
ing.



��������

� �������� ��� ������� ����� (CoM) ������������� ������� ���� ��� ���������

������. �� ������������ ���������� ������� ��� �������� ������� ����������� ���-

��� ��������� ��� � ���� ��� � �������� ��� CoM ����� ���������� ��� ����������-

���� ��� ���� ������. �� ���� �� �������� ������������� ���� ��� ���� �������

�������������� ��������� ���������� CoM ��� �� ��������� ��� ������������

������. � ������������� ��������� ��������� �������������� ��� ��������� ���

���������� ������ ��� �����, ������������� ���� ��������� ��� ����������� ��-

����� (IMU) ��� ���� �� ��� ���������� ������ ������ (EKF) ��� ��� ������

�������� ���� ��� ����� ��� ��� ��������� ��� CoM ���� ��� ��� ���������� ��-

������ ��� ����� ���� �� ����. ��������, �������� ������ ��� ����������� ���

������� ��� ��� ��������� ��� ������� �� ���������� �� ��������� �� ��������

�� �� �������� ������� �������, ����� �� ��������� �� ���������� ������� / �����

(F/T) ��� �����.

������, ����� ����� �������� �� ������������ � ��������� ��� ��������� �� ���

���������� ������� �������� ���� � �������� ��� CoM �� ������� �� ����� ��

����. ���� ��������, ��� ��� �������� ��� �������� ����� ����������� �� ����-

��������� � ���� ��� �� ���� �������� ��� ������. ��� �� ����� ����, ������������

���� ����������� ��� ������������ �������� ����������� ����� �� �� �������� ���

������ �������� ��������������� ��������� ����������� ��� ����������� �������

�� �� ������ ������ ��������� ���������� (ESKF) ��� ��� ��������� ����������

��� ����-���������������� ��� �����������. �� ���� �� �����, �������������

��� ������� ��������� ��������� ���������� ��� ����������� ��� ���� ��������

����� ��� ���� �������� CoM �� ����� ���������� State Estimation RObot Walking

(SEROW). ��������, ��� �� ����������� ��� ���������� �������� ��� �����������

��� ��� �������� ��� ������ ���� �� ���������, �������������� ��������� ����-

��� ���������� (VO) ���/� ���������� LIDAR (LO). ��������, ������� ���������

��������� ��� ������� ����� �� ��� �������� ����������, ���� ���� ��� �������-

��� ���� ��������������� � ������� ��� ���� �� ������ ��������� �� ������ ��� �

������ ���� ��� ����� ��������. ��� ���� �� ����, ��������� �� ������� ��������-

�� ������ ������ ��������� ���������� (RGESKF) ��� ��� �������� ���������

��� �������� ��� ������� ���������. �� ������������ ������ ��� ��������� ��

������� ����� ������� �� ��� ��������� ��� ��������� ��� ��� ������������ ����-

�� ���������� ��������. �� �� ������, �� SEROW ������� ��� ������� �������
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��������� ����������, ��������� ��� �������� ��������� ������������. ���-

�������� �� ���������� ��������� �� ����������� �����������, �� SEROW �������

�������� ��� ��������� ��������� �� ��� ������ ROS/C++ �������� ������.

�� �������� ��������� ������� ��� ��������� ���������� ������������ ��-

���� ��������� ��� � ��������� ������ ������-������� ����� ������ �� ��� ���-

�����. � ��������� ������� ������ ����� ��� ��������� ��� �� ������ �����

������������ ���� ��� �������� ��������� ������. �� ���� �� ��������, �����-

������� ��� �������� �������: �� ���� ���� ������� ��������� �� ������; ����

�� ����� ����, ����������� ��� �������� ������� ��������� �� ��-������������

������ ��� �������� ������������ �������� ��� ������������� �� �������� ��� �-

����������������� ���� �� ��������. ������������, ����������� �� �������� ���

��� ��� ����� ������ �������, ��� �������� ���������� (LSS), ��� ����� ����������

(DS) ��� �� ����� ���������� (RSS), ��������������� ��������� ��� �������������,

IMU ��� F/T. ������, ���������������� ������ ��� ���������� �� ������� ������

��������� (PCA) � �� ���������� ������������� ���� �� �������� ������� ����-

����������, ��� �������� ������������ ��� �� ������� � ������� ��� ��������.

��� ��������, ���������������� ��� ����������� ���� ���� ������� ����������

�� ���������� ������� �������� (GMMs). �� ���������� ����������� ���� ��-

��� ����������� ��� ������������ ���� ������ ��� �������. ���� �������� ��� �

�������� ��� ����� ��� ���������� ����� ������� ��������� �� ����� ����������

�� ���� ��� ������� ��� ��� �������� � ���������� ��� ������� ����� ������� ���-

������. ��������, ��������� ��� �� ������������ ������� ������������ ���������

��� ���������� ��� ����� ������� ���������� ��� �������� ����������� ������,

����������� ��� ��������� ��������� �� Gait-Phase Estimation Module (GEM), ���

�������� ������ �������� �� ROS/Python.

�� SEROW ��� �� GEM ����� ����������� �������� ��� �������� ������� �� ���

�������� ��� ��� ������������� ���� ���� �� ����������� ��� ��� �� �����������

��������. ������, ��������������� ��� ������������� ������ ��� MATLAB ���

�� ������������ ������ Valkyrie ��� NASA ��� ROS/Gazebo ��� �� ������������ ��

������������ ������� ��� ������� ���� �� ������������/������� ������. ���

��������, �� ������������ ������� ������������� ��� �) ������ �������� �����-

������� ������ NAO v4.0 ��� �) ��� ������� �������� ������������ WALK-MAN

v2.0 ��� ��������� ����������� ���������. �� �� NAO, �� SEROW �����������

��� ������ ��� �� �������� ��� ���������� �������������� ���� ��������� ���

������� ��� �� ������������� ��� ���������� �� ���������� �����. �� ���� ��

����� ����������� ���������������� ������ ����� ��� �� ���������/�����������

�����. ��������, �� SEROW ��������������� ���� ��������� ������� ��� ���

�������� ��� ������ ��� Visual SLAM �� �� ���� ������. ����� ����� �� WALK-

MAN v2.0, �� SEROW ����������� �� �������� �����������, ����������� �������



��� F/T ��� �� ������� �������������� ����� ��� CoM �� ���������� �����. ����

�������� ������� ����� ��� �� VO ��� ��� �������� ��� ����������� ���������

���� �� ���������. �� ���� �� ����� ������������� ��������� � ������� ������-

���� �������. �����, �� GEM ��������������� ������ ��� ��� �������� ��� �����

��� ������� ��� �������� ��������� ��� WALK-MAN.

������������, �� ���� �� �������� ����������� ���� �������� ��-��������� �-

�������� ���������� ��� �� ������� ������������ ������. ������ ����, �� ���-

��������� ������� ������ ������ �� ��������� ��� �� ������ ������ ������ ��

�����, ���� �� ���������, ���� ��� ��������� ��� ����� ������� ����� �������.

������ �������: ����������� ������, ��-�������� �������� ���������� ��-
����� �����, ��-�������� �������� ���������� �������, ��������� �������

�����, �������� ����� ����������, ������ ������, ��-������������ ������.
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Chapter 1

Introduction

There is a driving force more powerful than steam, electricity and atomic energy:
the Will.

Albert Einstein (1879 – 1955)

The most effective type of locomotion in uneven and/or rough terrains is legged loco-
motion. During the past three decades, significant advances have occurred in humanoid
robot gait control and estimation. This has been motivated by the desire to develop ad-
vanced humanoid platforms and, in turn, help people in their daily lives, assist the ones
with disabilities to walk, and even replace humans in hazardous environments. Accord-
ingly, for robots to operate in structured or unstructured human environments, they need
to mimic our morphology and effectively utilize their legs.

Inspired by the Fukushima disaster and the lack of disaster-response robots, the DARPA
Robotic Challenge (DRC) tested humanoid robots within a range of tasks that might be
needed in emergency situation, such as driving cars, opening doors, walking over rough
terrain and climbing stairs. Yet the DRC showed just how far the humanoids are from truly
being as useful as we’d like, or maybe even as we would imagine. For a humanoid to be
successful in the challenge it must be able to constantly walk and maintain its balance
over unknown types of terrain. Nevertheless, that was not the case for many humanoids
participating in the challenge.

Generating robust and stable omni-directional gaits for humanoid robots can be very
demanding. The major difficulties can be summarized as follows:

• Limb coordination. Humanoid robots are high degree of freedom mechanisms, and
consequently, coordination of their links to achieve stable dynamic walking is far
from trivial.

• Hybrid nature of locomotion. The presence of the impact in foot touchdown and
liftoff leads to a hybrid by nature system, consisting of multiple continuous and dis-
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2 Chapter 1. Introduction

crete phases. Instantaneous discrete phases arise when feet impact or liftoff the
ground, whereas ordinary differential equations describe the evolution of locomo-
tion during continuous phases.

• Underaction. During the single support phase, namely one foot touching the ground,
humanoid robots have fewer actuators than degrees of freedom.

• Overactuation. During the double support phase e.g. both feet on the ground, hu-
manoid robots have fewer degrees of freedom than actuators. Thus, the control in-
put corresponding to a specific trajectory in the state space is not unique.

• Unilateral multi-contacts. Forces acting on the feet can only push the humanoid up-
wards and not pull on the ground. Therefore, arbitrary motions are not possible and
questions such as: where to place the feet, how hard to push, or in which direction
to move the body must be explicitly considered.

1.1 The Landscape of Humanoid Locomotion

Up-to-date, stable omni-directional walking constitutes a challenging and open research
problem worldwide. Towards that direction numerous conditions to characterize the sta-
bility of the gait were proposed. The latter were then properly considered for walking pat-
tern generation and real-time gait stabilization. In the current section, the most impor-
tant stability criteria are briefly introduced and contemporary gait planning and control
schemes are outlined.

Evidently, the Center of Mass (CoM) dynamics naturally arise in stability analysis and
subsequently in motion planning and control. To this end, the accuracy, effectiveness, and
robustness of the latter are directly linked to the accuracy of the employed CoM feedback.

When considering omni-directional walking over flat terrain, the CoM dynamics in the
x and y axes are deemed sufficient for the task at hand. Nevertheless, when locomotion
over rough and/or uneven terrain is considered, the 3D-CoM dynamics must be taken into
account. Thus, quantities such as the 3D-CoM position, velocity, and external forces on
the CoM are of vital importance and must be accurately estimated.

1.1.1 Stability Analysis

Since the origins of this research area, the formulation of dynamic stability criteria for ob-
taining a stable walking gait has always been a main point of interest. The most popular
and widely-accepted criterion, the Zero Moment Point (ZMP), has been proposed by Vuko-
bratovic et al. [1] and defined as the point inside the support polygon where the horizontal
ground reaction moments vanish. In section 8.1 (Appendix A) a brief presentation for the
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ZMP is given. Although ZMP has proven very successful even with the most advanced hu-
manoid robots, other researchers have proposed new criteria for stable locomotion. The
Foot Rotation Indicator (FRI) point [2] was proposed by Goswami; it extends the notion
of ZMP, in the sense that it is not necessary for the ZMP to remain inside the convex hull
to obtain a stable dynamic gait. FRI is briefly presented in section 8.2. To facilitate omni-
directional walking over rough or uneven terrain, a universal stability criterion based on
the Contact Wrench Cone (CWC) was proposed by Hirukawa et al. [3] and presented in
section 8.2.1. Capturability is the ability of a legged system to come to a complete stop, i.e.
reach a captured state. The Capturability theory is presented in section 8.3 as proposed by
Koolen et. al [4]. This notion is closely related to the notion of Viability [5] which was in-
troduced to humanoid locomotion by Wieber [6]. Finally, the Gait Sensitivity Norm (GSN),
shown in section 8.4, is a metric to quantify the disturbance rejection capabilities of limit
cycle walkers, as proposed by Hobbelen and Wisse [7].

1.1.2 Planning and Control Approaches

In biped locomotion, the introduction of the ZMP [1] has been very influential. Most ap-
proaches use the ZMP with concentrated-mass models, such as the Linear Inverted Pen-
dulum Model (LIPM) [8, 9], to approximate the complex dynamics and achieve on-board
execution. In this direction, predictive schemes have been proposed to control the ZMP.
In [10, 11] the Preview control was used with the Cart and Table model, while in [12] the
Preview control with the LIPM was employed. Moreover, in [13] the Model Predictive Con-
trol (MPC) was combined with the Cart and Table model and ZMP constraints to reinforce
the stability of the gait. In [14] a sparse solution to the afore-mentioned problem was pro-
posed whereas in [15] an approximation was formulated to facilitate real-time execution.

Pratt et al. [16] and Hof [17] independently introduced the Capture Point (CP). Intu-
itively speaking, the CP is the point on the floor onto which the robot has to step to come
to a rest. The CP was extended to the three dimensions by Takenaka et al. [18] with the
introduction of the Divergent Component of Motion (DCM). The latter was utilized by En-
glsberger et al. [19, 20] for 3D walking pattern generation and real-time gait control on un-
even terrain. Consequently, the notion of capturability was introduced in [21, 22] defining
in which states the humanoid can avoid falling by taking one or more consecutive steps.

Caron et al. [23], proposed a rough terrain walking pattern generator with the Floating-
base Inverted Pendulum (FIP). Starting from the COP-based Inverted Pendulum Model
(IPM) with full contact stability constraints the FIP model is derived where the ZMP is
allowed to leave the contact surface while the CoM translates freely in 3D. Subsequently,
walking patterns are generated with nonlinear MPC and stabilized in real-time with a con-
strained LQR. In [24] the capturability analysis of the LIPM was generalized with the IPM
to demonstrate how 3D walking over uneven terrains can be realized with the notation of
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capture inputs. Interestingly, in the zero-step capturability two balance strategies natu-
rally arose, one by regulating the COP and another by regulating the CoM height [25].

Simplified dynamical models may be efficient and computational inexpensive in prac-
tice, but they may lack important dynamic features arising from the complete models.
Westervelt and Grizzle [26, 27] treated the steady walking cycle as a periodic motion. To
study the motion of a hybrid, nonlinear and typically high dimensional underactuated
system is far from trivial. To this end, the authors proposed the concept of Hybrid Zero
Dynamics (HZD), an idea quite similar to the Partial Feedback Linearization (PFL). This
procedure leads to a feedback design process in which Poincare stability analysis is di-
rectly and insightfully incorporated. Nevertheless, successful results were only realized in
the planar 2D walkers with one degree of underactuation [27,28], since when generalizing
to 3D walking the HZD are unstable and further stabilization is needed [29–32]. Further-
more, the double support phase was considered instantaneous. Sadati et al. [33] intro-
duced the double support phase in the design but again for planar walking. Only recently
3D omni-direnctional was achieved through the concept of Partial Hybrid Zero Dynamics
(PHZD) [34] and demonstrated with the DURUS humanoid [35,36]. One step asyptotically
stable solutions were found by solving a high-dimension constrained nonlinear program
with direct collocation. Both the HZD and PHZD result in more energy efficient and dy-
namic gaits contrasted to stiff/rigid gait generated with the simplified models.

1.2 Motivation and Aim of this Thesis

In every motion planning and gait control scheme presented above, accurate CoM feed-
back is assumed. More specifically, for locomotion over flat terrain, the 2D-CoM position
and velocity is sufficient. On the contrary, when omni-directional walking over rough / un-
even terrain is considered, the 3D-CoM position and velocity is mandatory for feedback.
Nevertheless, 3D-CoM estimators at the time this research work began were not available.
At the present time this work serves as one out of three 3D-CoM estimators available world-
wide that applies not only for humanoid robots but for legged robots in general.

In order to achieve sufficiently accurate 3D-CoM state estimation, multiple states (be-
sides CoM) must be accurately co-estimated. To this end, in the contents of this thesis,
the term ‘state’ has multiple definitions which their significance will be made clear in the
chapters to come. In summary, the states to be estimated are:

• Joint State: angular position and velocity of each DoF.

• Contact State: determine which leg serves as support (contact frame).

• Base State: 3D position, velocity, and orientation of torso frame.

• CoM State: 3D position and velocity of CoM.
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Figure 1.1: Proposed State Estimation Scheme

• External force State: 3D forces acting on the CoM.

Joint state estimation is effectively addressed by numerical differentiation followed by low-
pass filtering. Therefore, will not be examined in this thesis. Nevertheless, contact, base,
and eventually, CoM estimation are contemporary research topics and collectively consti-
tute the aim of this work. The proposed state estimation scheme is conceptually illustrated
in Figure 1.1. The minimum hardware requirements assumed by this work are:

• Joint encoders in every DoF.

• An Inertial Measurement Unit (IMU) on the base link.

• Pressure or Force/Torque sensors in each foot.

All sensors considered above are commonly available in contemporary humanoids and
hence this work is amendable to generalization in different robotic platforms. Exterio-
ceptive sensing, such as LIDAR or Cameras, are optionally considered to compensate for
kinematic drift during the gait.
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1.3 State of the Art

In this section, related work regarding humanoid, biped and quadruped robot state esti-
mation is presented. Initially, section 1.3.1 outlines the state-of-the-art in CoM estimation.
Nevertheless, as mentioned above, in order to accurately estimate the CoM, base and con-
tact status information must be available. Thus, section 1.3.2 introduces the related work
in base estimation and section 1.3.3 presents the state-of-the-art in contact detection.

1.3.1 Center of Mass Estimation

In many popular walking pattern generators and real-time gait controllers, the CoM po-
sition and velocity is needed. Towards that direction, Pongsak et al. [37] proposed one of
the very first approaches. The measurements considered were provided by two linear ac-
celerometers and a gyroscope. The estimation strategy assumed the humanoid as a single
rigid body subject to an external wrench which represented the input in the rigid-body
dynamics. The resulting dynamical system was linearized about the horizontal and stable
position and an optimal H2-filter for the associated estimation problem was employed.

Stephens [38] used simplified models based on the the LIPM dynamics [39] for state-
estimation in order to control the posture of the force-controlled Sarcos Primus humanoid.
He was able to estimate modeling errors as incoming external forces, and possible CoM bi-
ases by fusing CoM and COP measurements from the joint encoders and the Foot Sensitive
Resistors (FSRs) respectively. Nevertheless, he observed that there was a trade-off between
disturbance estimation and state estimation, since time-varying disturbances demanded
a carefully tuning of the noise covariances. Based on that approach, Xinjilefu and Atke-
son [40] compared two Kalman Filter (KF) schemes; one based on the LIPM dynamics and
one based on robot’s planar dynamics. They observed that LIPM KF was simple to de-
sign and implement, easy to tune, robust to modeling errors, and can generalize to other
robots, while, as expected, the Planar KF yielded more accurate estimates since it is based
on a more accurate representation of the robot’s dynamics. Another approach based on
the LIPM dynamics was presented by Kwon and Oh [41], where the current COP measure-
ment was the input of a KF and the output was the CoM position. The filter’s state was
augmented with a CoM bias and a state for external forces. A similar approach but with-
out the CoM bias in the state vector was proposed by Wittmann et al. [42], where a state
estimator for biped robots fusing encoders, IMU, and force/torque measurements with a
KF based on the LIPM dynamics was presented. Bae and Oh [43] considered the robot’s
flexibility with a compliant inverted pendulum model to enhance estimation accuracy. Ex-
perimental results were demonstrated with a simulated DRC-HUBO robot [44].

However, when the LIPM dynamics are employed, one postulates that the dynamics
in the x and y axes are independent and furthermore, that the CoM lies on a constant
height plane, thus only 2D-CoM estimation can be achieved. Presumably this is not the
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case in real conditions, and definitely not when the robot walks on uneven ground. Hence,
Carpintieri et al. [45] used a complimentary filter for 3D-CoM estimation based on consis-
tent dynamics. The latter approach could accurately estimate the 3D-CoM position but
not its velocity. Rotela et al. [46] proposed a momentum estimator for 3D-CoM position,
velocity and external wrench estimation based on an Extended Kalman Filter (EKF). Nev-
ertheless, both [45], [46] explicitly assumed that 6D-Force/Torque (F/T) sensors are em-
ployed on the robot’s feet. At the same time, the 3D-CoM estimation scheme [47–49] was
proposed which does not rely on feet F/T sensing and additionally considers IMU mea-
surements in the estimation process.

1.3.2 Floating Base Estimation

Base estimation has a vital role in humanoid robot locomotion. In [50] the base orien-
tation of the planar humanoid Rabbit was estimated. Although, orientation estimation
can be effectively achieved with IMUs [51, 52], the authors in [50] conducted an observ-
ability analysis based on the existence of a state-space transformation of the nonlinear
humanoid’s dynamics. This transformation led to almost linear dynamics which allowed
the application of state-of-the-art linear observers. Among the proposed observers similar
accuracy was recorded, namely 2 degs error on the base orientation and less than 37 deg/s
on the angular velocities.

Recently, Kuindersma et al. [53] proposed a base estimator based on Newton-Euler
dynamics of a floating mass for estimating the body position, orientation, and velocity
utilizing an IMU, the robot kinematics, and a LIDAR sensor with a Gaussian particle filter,
yielding very low drift [54]. The orientation was considered as a rotation matrix linking
the base to the world frame, whereas the orientation uncertainty was expressed as a screw
in exponential coordinates around the base frame. This scheme was extended in [55] by
considering the visually obtained terrain landscape, rendering an ATLAS robot able to walk
continuously up and down staircases.

A similar approach was proposed by Bloesch et al. [56] for quadruped robots, where
the IMU and the kinematic measurements were used to estimate the base motion, the
contact positions, and the IMU biases. The underlying state-space included point con-
tact dynamics, modeled as random walks, to serve as kinematic constraints. The pro-
posed filter considered a quaternion-based representation for the base attitude to obtain
a global singularity-free representation. Subsequently, the latter scheme was appropri-
ately adapted in [57] for humanoids while also considering the feet orientation again as
quaternions. State estimation was accomplished in both cases with an EKF. In addition,
an interesting observability analysis was conducted by the means of the local nonlinear
observability matrix. Estimation errors were 0.05 m/s on linear velocities and 0.05 rad on
orientation in a 120s walking experiment.
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In [58] a base estimation scheme for the HRP-2 humanoid was proposed. The authors
assumed perfect kinematics for the whole body but uncertain kinematics at the ankles.
The latter were modeled as series of elasticity concentrated at the robot’s feet. Contact
constraints where represented as virtual measurements as in [40]. The estimated state
was composed of the base’s angular and linear position, velocity, and acceleration and
estimation was carried out with an EKF and IMU measurements. Results demonstrated a
reduction on position error from 20 to 2 cm.

Xinjilefu et al. [59] examined the problem of concurrent base, joint position and ve-
locity estimation. As before, the orientation was considered as a quaternion to avoid sin-
gularities. A Quadratic Program (QP) was formulated with joint velocities, joint torques,
contact forces, and base angular velocity and linear acceleration measurements. This ap-
proach was advantageous, in the sense that it did not require a state-space model as in
the KF case, could naturally handle equalities and inequalities as constraints and consider
modeling error in the state vector. However, due to the imposed constraints and the high-
dimensionality the framework was computationally expensive for real-time execution, did
not generalize since it was based on the robot’s dynamics and required joint torque sens-
ing. Nevertheless, validation experiments were conducted on the Atlas humanoid proved
that the QP estimates demonstrated good tracking performance and less delay which sub-
sequently reduced controller chattering.

Every base estimation scheme above is subject to outlier measurements that can com-
monly occur in dynamic environments. To this end, in [60] we proposed the Robust Gaus-
sian Error State Kalman Filter, that automatically detects and rejects outliers in base state
estimation without relying on any prior knowledge on measurement distributions or finely
tuned thresholds.

1.3.3 Contact Detection

Contemporary research approaches in motion planning, control and estimation for legged
robots readily assume that contact states are known a priori. Whole body control [61–63]
and gait planning [36, 64, 65] are explicitely based on contact models. Even when simpli-
fied dynamical models are employed in the design [10,66,67], the contact state is implicitly
considered in the computation of the COP. Nevertheless, detecting ground contact and fur-
thermore, determining which is the support leg, e.g. experiences a rigid contact with the
ground, is non-trivial in legged robotics [68].

Base state estimators [53, 56, 57] and CoM estimators [46, 47, 49] utilize explicitly or
implicitly leg odometry as a measurement in the filter’s update step. Still, computing leg
odometry requires information about the kinematics of the robot and the current contact
state.

In [69] an active probabilistic contact sensing method was proposed, estimating also



1.3. State of the Art 9

the in contact link’s shape and environment’s attributes by executing compliant motions
with a robotic arm. Contact estimation approaches can be classified into two categories,
namely approaches that rely on kinematics and dynamics to estimate the Ground Reac-
tion Forces (GRFs) and estimators that directly incorporate the measured GRFs.

Ortenzi et al. [70] demonstrated an approach to estimate the contact constraints en-
forced by the environment on the robot’s motion using only joint encoder and kinematic
information. Hwangbo et al. [71] proposed a probabilistic framework based on a Hidden
Markov Model that effectively utilizes kinematics, differential kinematics, and dynamics
to infer the contact status. This one dimensional method does not rely on force sensing
but assumes that joint position, velocity, and torque information are available. Neunert
et al. [72] used simple thresholding on the estimated GRFs to infer the contact state of
a quadruped. Camurri et al. [73] demonstrated a logistic regression method to estimate
contact probability. The estimated probabilities, along with kinematic information, were
used in obtaining the base velocity measurement and variance to be fused in a kinematic-
inertial state estimator. The proposed classifier was one dimensional and encoded the
GRF threshold at which contact transition occurred. However, for the classifier to learn
this threshold, the ground truth base velocity is needed. In addition, since no contact
sensing is assumed the authors utilized joint encoder and torque measurements to dy-
namically compute an estimate of the expected GRF.

On the contrary, Bloesch et al. [74] utilized binary contact sensing to determine leg
contact and used the contact constraints along with an outlier rejection methodology in
the update step of an unscented Kalman filter to increase the filter’s robustness. In [53,54]
a Schmitt trigger is used to detect contact for a humanoid robot. More specifically, when
the measured, by F/T sensors, vertical GRF crosses a high threshold, contact is detected
and after the low threshold is crossed, contact is lost. The same approach was adopted
in [49] with pressure sensors. Recently, Rotella et al. [75] proposed an unsupervised learn-
ing framework with a fuzzy C-means for estimating independently the contact probability
for each one of the six DoFs for each leg. Additionally, similarly to [73], the authors pre-
sented a heuristic approach for updating the kinematic measurement covariance for base
state estimation according to the estimated contact probability. The overall scheme was
shown to perform well on low-friction rough terrain where slip/foot rotation can occur,
since all six DoFs of the end-effector are considered. Nevertheless, in each foot 6D F/T
and IMUs were assumed to be available.

In all state-of-the-art approaches, the objective was to determine whether a specific
foot is in contact or not. Recently, in [76] we raised a broader question: in which gait phase
is the robot currently in? To this end, we proposed a holistic framework, based on unsuper-
vised learning from proprioceptive sensing that accurately and efficiently addresses this
problem.
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1.4 Thesis Contributions

The main contribution of this thesis is a complete robust nonlinear state estimator for
humanoid robots. Accordingly, multiple contributions to CoM, base, and contact state
estimation are made.

Initially, we introduce the first 3D-CoM estimator that considers the full nonlinear cen-
troidal dynamics of the humanoid and does not rely on 6D F/T sensing in the feet. In
addition, since it is common practice to estimate the CoM with respect to a world frame of
reference, a base estimator that relies on Newton-Euler dynamics of a floating mass is ex-
tended to provide the mandatory base and support affine transformations. In such a way
a cascade state estimation scheme is formed and coined State Estimation Robot Walking
(SEROW). The latter is mathematically formulated and in detail presented in chapters 2–3.
The proposed cascade estimation scheme is:

• Humanoid robot generic and facilitates real-time execution.

• Quantitatively and qualitatively assessed in terms of accuracy and performance. Pri-
marily, a simulated robot in MATLAB and a Valkyrie robot in Gazebo are employed
to establish SEROW with uneven/rough terrain gaits. Next, SEROW is integrated on
a NAO robot and the WALK-MAN humanoid for experimental validation.

• Released as an open-source ROS/C++ package to reinforce further research ende-
vours (https://github.com/mrsp/serow).

Subsequently, the robust Gaussian Error State Kalman Filter (RGESKF), a closed-form
robust to outlier measurements base estimator, is mathematically established and pre-
sented in chapter 4. The RGESKF:

• Automatically detects and rejects outlier measurements, without relying on finely
tuned thresholds or prior assumptions regarding the measurement distributions. Fur-
thermore, automatically adjust the measurement noise when non-ideal but also non-
outlier measurements arrive.

• Facilitates real-time execution and although demonstrated for humanoids it is read-
ily amendable to generalization in other robotic platforms such as mobile robots or
UAVs.

• Is quantitatively and qualitatively assessed in terms of accuracy and robustness with
two actual humanoids, namely the WALK-MAN humanoid and a NAO robot, under
realistic world conditions.

• Is released as an open-source ROS/C++ implementation within the SEROW frame-
work.

https://github.com/mrsp/serow
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Next, we introduce the Gait-Phase Estimation Module (GEM) to answer, to the best of
our knowledge, for the first time the following question: in which gait phase is the robot
currently in? The proposed framework is presented in chapter 5 and:

• Relies on Unsupervised Learning with proprioceptive sensing to accurately estimate
the gait-phase e.g. Left Single Support (LSS), Right Single Support (RSS), or Double
Support (DS).

• Is quantitatively and qualitatively assessed in terms of accuracy and efficiency both
in simulation and under real-world conditions. Initially, GEM is employed for estima-
tion in statically stable gaits with a simulated Valkyrie robot in Gazebo. Subsequently,
the latter is employed to estimate the gait phase for the WALK-MAN dynamic gaits.

• Is released as an open-source ROS/Python package to reinforce further research en-
devours (https://github.com/mrsp/gem).

Finally, the efficiency and applicability of the proposed robust nonlinear state estima-
tor is demonstrated with various robotic modules in chapter 6, namely with:

• Visual Simultaneous Localization and Mapping (SLAM).

• Footstep planning for navigation.

• Real-time motion generation and gait stabilization for uneven terrain walking.

1.4.1 Contributed Papers

Parts of the research work within this thesis have already been published and presented in
relevant scientific fora, as follows:

• S. Piperakis, D. Kanoulas, N. G. Tsagarakis and P. Trahanias, ”Outlier-Robust State Es-
timation for Humanoid Robots,” Proceedings of the IEEE/RSJ International Confer-
ence of Intelligent Robots and Systems (IROS), Macau, China, November, 2019 [60].

• S. Piperakis, N. Tavoularis, E. Hourdakis, D. Kanoulas and P. Trahanias, ”Humanoid
Robot Dense RGB-D SLAM for Embedded Devices,” in IEEE International Confer-
ence on Robotics and Automation (ICRA): 3rd Full-Day Workshop ”Towards Real-
World Deployment of Legged Robots”, Montreal, Canada, May, 2019 [77].

• S. Piperakis, S. Timotheatos and P. Trahanias, ”Unsupervised Gait Phase Estimation
for Humanoid Robot Walking,” Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Montreal, Canada, May 2019 [76].

https://github.com/mrsp/gem
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• S. Piperakis, M. Koskinopoulou and P. Trahanias, ”Nonlinear State Estimation for
Humanoid Robot Walking,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3347–3354, October, 2018 [49].

• S. Piperakis, M. Koskinopoulou and P. Trahanias, ”Nonlinear State Estimation for
Humanoid Robot Walking,” Proceedings of the IEEE/RSJ International Conference
of Intelligent Robots and Systems (IROS), Madrid, Spain, October, 2018.

• S. Piperakis and P. Trahanias, ”Cascade Non-Linear State Estimation for Humanoid
Robot Locomotion,” Proceedings of the Dynamic Walking, Mariehamn, Finland, June,
2017 [48].

• S. Piperakis and P. Trahanias, ”Non-Linear ZMP-based State Estimation for Humanoid
Robot Locomotion,” Proceedings of the IEEE-RAS International Conference of Hu-
manoid Robots (HUMANOIDS), Cancun, Mexico, November, 2016 [47]. (Finalist for
the best interactive paper award)

1.4.2 Contribution to Relevant Studies

Our work has additionally provided contributions to the research pursued by peers in the
Computational Vision and Robotics Laboratory at FORTH:

• S. Timotheatos, S. Piperakis, A. Argyros, P. Trahanias, ”Vision Based Horizon De-
tection for UAV Navigation”, Proceedings of the 27th International Conference on
Robotics in Alpe-Adria Danube Region (RAAD), Patras, Greece, June, 2018 [78].

• S. Timotheatos, S. Piperakis and P. Trahanias, ”Visual Horizon Line Detection for
UAV Navigation,” International Journal of Mechanics and Control, June, 2019 [79].

• M. Maniadakis, E. Hourdakis, M. Sigalas, S. Piperakis, M. Koskinopoulou and P. Tra-
hanias, ”Time-aware multi-agent symbiosis”, Frontiers in Robotics and AI (submit-
ted).

• M. Koskinopoulou, S. Piperakis, P. Trahanias, ”Learning from Demonstration Facili-
tates Human-Robot Collaborative Task Execution,” Proceedings of the ACM/IEEE In-
ternational Conference of Human-Robot Interaction (HRI), Christchurch, New Zealand,
March, 2016 [80].
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1.4.3 Contributed Open-Source Software

Currently, four major open-source software modules are offered to the community as
Robot Operating System (ROS) packages, namely:

• ROS/C++: State Estimation RObot Walking (SEROW)
https://github.com/mrsp/serow

• ROS/Python: Gait-phase Estimation Module (GEM)
https://github.com/mrsp/gem

• ROS/C++ and CUDA: Kinect Fusion with SEROW (KFusion + SEROW)
https://github.com/tavu/kfusion_ros

• ROS/C++: NAO humanoid robot omni-directional walk engine (nao walk)
https://github.com/mrsp/nao_walk

1.4.4 At the Time of this Writing

The research developed in the context of this thesis has received over 45 citations and over
3000 reads by the robotics community worldwide. In addition, the developed software
has been adopted in various robotic platforms and continues to receive proper attention
by the community.

1.5 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents the Nonlinear ZMP estimator, a 3D-CoM estimator for flat terrain.

• Chapter 3 introduces State Estimation RObot Walking (SEROW), a cascade 3D-CoM
estimation scheme. The latter extends the previous estimator by directly considering
the presence of uneven terrain and the angular momentum around the CoM.

• Chapter 4 proposes a closed form solution to robustify base estimation when outlier
measurements are present.

• Chapter 5 introduces Gait-Phase Estimation Module (GEM), a hollistic approach to
gait-phase estimation as an alternative solution to contact detection.

• Chapter 6 demonstrates how SEROW can be integrated in multiple robotic modules
and platforms.

• Chapter 7 concludes the thesis and discusses possible future directions and emerg-
ing research topics.

https://github.com/mrsp/serow
https://github.com/mrsp/gem
https://github.com/tavu/kfusion_ros
https://github.com/mrsp/nao_walk
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• Appendix A compliments this thesis with a brief presentation of important criteria
to characterize the gait stability.

• Appendix B provides all the neccessary mathematical formulations and derivations
for this thesis.



Chapter 2

Nonlinear ZMP-based State Estimation

Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.

Marie Curie (1867–1934)

This chapter presents a novel state estimation scheme for humanoid robot locomo-
tion using an Extended Kalman Filter (EKF) for fusing encoder, Inertial Measurement Unit
(IMU) and Foot Sensitive Resistor (FSR) measurements. The filter’s model is based on the
nonlinear Zero Moment Point (ZMP) dynamics and thus, coupling the dynamic behavior
in the frontal and the lateral plane. Furthermore, it provides state estimates for variables
that are commonly used by walking pattern generators and posture balance controllers,
such as the Center of Mass (CoM) and the linear time-varying Divergent Component of
Motion (DCM) position and velocity, in the 3D space. Dynamic modeling errors are taken
into account in the acceleration level. In addition, an observability analysis for the nonlin-
ear system dynamics and the linearized discrete-time EKF dynamics is presented. Subse-
quently, by utilizing ground-truth data obtained from a vicon motion capture system with
a NAO humanoid robot, we demonstrate the effectiveness and robustness of the proposed
scheme contrasted to the linear filters, even in the case where disturbances are introduced
to the system. Finally, the proposed approach is implemented and employed for feedback
to a real-time posture controller, rendering a NAO robot able to walk on an outdoors in-
clined pavement.

2.1 Aim and Contribution

Humanoid robot locomotion is a challenging task with many difficulties. Mainly, due to
the nonlinear multi-body dynamics along with the many DoFs the humanoid robots have,
the under-actuation which occurs during the gait, and the unilateral type of contact the
robots experience with the ground. The nonlinear multi-body dynamics prohibit exact so-

15
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lutions to be obtained in real-time. Therefore, many researchers approximated those dy-
namics with simplified models that could describe the dynamic behavior of a humanoid
while walking. However, those models are based on the assumption that the robot’s dy-
namics are decoupled in the frontal and the lateral plane, which is not true, especially
when the robot exhibits highly dynamic motions. In addition, since the robot does not
have a fixed base, it is under-actuated. Nevertheless, when the assumptions that a rigid
type contact between the support leg and the ground along with sufficient friction exist,
all the under-actuated DOFs vanish. Unfortunately, this is not the case in a realistic envi-
ronment. Vertical displacement with respect to the ground can cause acceleration in the
same direction which must be taken into consideration while planning or controlling the
robot in order to avoid undesired ground reaction forces.

Contemporary CoM estimation schemes rely on the LIPM for the underlying estima-
tion. Nevertheless, by using the LIPM dynamics, one assumes that the CoM is constrained
to lie on a constant horizontal plane and furthermore that the motion in the x and y axes
are decoupled. Unfortunately, neither holds in real world conditions and especially when
a robot locomotes on uneven and/or rough terrain. In this chapter, we propose a state
estimator that fuses effectively three different kind of sensors, generalizes with little to no
effort to other humanoids, can be easily tuned, and yields accurate 3D estimates for im-
portant quantities in humanoid planning and control, even in the z-axis contrasted to the
LIPM approaches. More specifically, we propose a novel estimation scheme with an EKF
which has its dynamics based on the nonlinear ZMP [1] formulation, thus, effectively cou-
pling the dynamic behavior in the frontal and lateral plane and fusing information from
sensors that are widely available on humanoids, namely, encoders, IMU, and FSRs. This
filter provides accurate estimates for variables that are commonly used by walking pattern
generators and posture stabilization controllers, such as the 3D-CoM and the linear time-
varying DCM [81] position and velocity, in the x, y, and z axes, as experimentally validated
with a NAO humanoid robot under real world conditions.

2.2 Center of Mass Estimation

In this subsection, we present the EKF’s process and measurement model which are used
for the state estimation task. The dynamics are based on the nonlinear ZMP equation,
where we treat the ZMP location on the plane and the vertical GRF as the input to the
system and the output are the position and the acceleration of the CoM in the 3D space.

The ZMP is defined as the point on the ground at which the moments generated by the
reaction forces vanish. By also considering external forces acting on the robot’s body, the
equations of motion are formulated as:
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c̈x =
cx � zx

cz
(c̈z + g) +

1

m
fx (2.1)

c̈y =
cy � zy

cz
(c̈z + g) +

1

m
fy (2.2)

where zx, zy, fx, fy are the ZMP coordinates and modeling errors in the x and y axes re-
spectively, cx, cy, cz is the position of the CoM with respect to an inertial frame of refer-
ence, c̈x, c̈y, c̈z is the corresponding acceleration, g is the gravitational acceleration and m

is the robot’s mass. Furthermore, for the z-axis the dynamics are:

c̈z =
1

m
fN � g +

1

m
fz (2.3)

where fN is the vertical GRF and fz the modeling error in the z direction.
Replacing (2.3) in (2.1), (2.2), yields the following 3D nonlinear dynamics:

c̈x =
cx � zx
mcz

(fN + fz) +
1

m
fx (2.4)

c̈y =
cy � zy
mcz

(fN + fz) +
1

m
fy (2.5)

c̈z =
1

m
(fN + fz)� g (2.6)

2.2.1 Process Model

Assume the following state vector for the process dynamics:

xt =

h
cx cy cz ċx ċy ċz fx fy fz

i>

with ċx, ċy, ċz the CoM velocity. Furthermore, assume the input u to the filter is the ZMP
in the x and y axes along with the vertical GRF as measured by the FSRs:

ut =

h
zFSRx zFSRy fFSR

N

i>
(2.7)

Consequently, the process model takes the standard nonlinear form:

ẋt = f(xt,ut, ✏t) (2.8)
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where

d

dt

2

6666666666666664

cx
cy
cz
ċx
ċy
ċz
fx
fy
fz

3

7777777777777775

=

2

6666666666666664

ċx
ċy
ċz

cx�u1
mcz

(u3 + fz) +
1
m
fx

cy�u2

mcz
(u3 + fz) +

1
m
fy

1
m
(u3 + fz)� g

0

0

0

3

7777777777777775

+ ✏t (2.9)

and ✏t is a Gaussian zero-mean additive noise with covariance Qt, ✏t ⇠ N (0,Qt).

Taking the appropriate continuous dynamic linearization, yields the following Jaco-
bian matrix of the state vector x:

Gt =
@f

@x
=

2

64
0 I 0

Ct 0 Dt

0 0 0

3

75 (2.10)

with

Ct =

2

64

u3+fz
mcz

0 � (u3+fz)(cx�u1)
mc2z

0
u3+fz
mcz

� (u3+fz)(cy�u2)
mc2z

0 0 0

3

75 (2.11)

Dt =

2

64

1
m

0
cx�u1
mcz

0
1
m

cy�u2

mcz

0 0
1
m

3

75 (2.12)

Although, a more accurate approximation could be used to compute the discretized matrix
Gk, Euler integration is used for simplicity:

Gk = I +Gt�t (2.13)

where�t is the sampling time.
To this end, the prediction step of the EKF is readily formulated as:

x̂k|k�1 = f(x̂k�1|k�1,uk,0)�t+ x̂k�1|k�1 (2.14)

Pk|k�1 = GkPk�1|k�1G
>
k +Qk (2.15)

with P being the estimate error covariance matrix.
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2.2.2 Measurement Model

For the output dynamics we employ sensors that are commonly available on humanoid
robots nowadays. We assume that the robot is equipped with encoders on every joint
and thus we are able to compute the CoM position with respect to the torso local frame.
Moreover, with the IMU we compute the corresponding CoM accelerations, again in the
torso’s local frame. Notice that all measurements, denoted as yi, need to be transformed
to the inertial frame of reference.

y1 = cENC
x , y2 = cENC

y , y3 = cENC

z ,

y4 = c̈IMU
x , y5 = c̈IMU

y , y6 = c̈IMU

z ,

Subsequently, since the CoM acceleration is not part of the state vector, the output
equation is nonlinear:

yt = h(xt,ut) + �t (2.16)

with

h(xt,ut) =

2

666666664

cx
cy
cz

cx�u1
mcz

(u3 + fz) +
1
m
fx

cy�u2

mcz
(u3 + fz) +

1
m
fy

1
m
(u3 + fz)� g

3

777777775

(2.17)

and �t be the Gaussian zero-mean measurement noise with covariance Rt, �t ⇠ N (0,Rt).
After discretizing, the Jacobian matrix Hk =

@h

@x
can be readily computed, following the

derivation of Gt. Then, the EKF update step is realized as:

Kk = HkPk|k�1H
>
k +Rk (2.18)

x̂k|k = x̂k|k�1 +Kk(yk � h(x̂k|k�1,uk)) (2.19)

Pk|k = (I �KkHk)Pk|k�1 (2.20)

where Kk is the Kalman gain.
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2.3 Observability Analysis

2.3.1 Nonlinear Observability Analysis

Nonlinear observability analysis is far from trivial, as it is in the linear time-invariant case,
where the observability properties are excessively studied over the years and thus, well-
understood. This is mainly due to the strong dependence the analysis has on the under-
lying nonlinear dynamics and the neighborhood of the current system’s state and input.
Therefore, we have included section 9.3 in appendix B to briefly present some important
results from the nonlinear geometric control theory that are used in our analysis.

Following the notation introduced in the appendix B, the dimension of the state-space
and the measurement’s model is n = 9 and m = 6 respectively, therefore, by choosing
the following coordinates (h1,'1

1, h2,'
1
2, h3,'

1
3, h4, h5, h6), defined on the current operating

point (x⇤
t , u⇤

t ), we obtain the following map:

�(x
⇤
t ,u

⇤
t ) =

2

66666666666666664

c⇤x
ċ⇤x
c⇤y
ċ⇤y
c⇤z
ċ⇤z

c
⇤
x�u

⇤
1

mc⇤z
(u⇤3 + f⇤

z ) +
1
m
f⇤
x

c
⇤
y�u

⇤
2

mc⇤z
(u⇤3 + f⇤

z ) +
1
m
f⇤
y

1
m
(u⇤3 + f⇤

z )� g

3

77777777777777775

(2.21)

By re-ordering the quantities to obtain a mathematically convenient form �̄ and then tak-
ing the Jacobian with respect to x

⇤
t , we get the local nonlinear observability matrix:

O =
@�̄(x

⇤
t ,u

⇤
t )

@x⇤
t

=

2

64
I 0 0

0 I 0

C
⇤
t 0 D

⇤
t

3

75 (2.22)

and since detO =
1
m3 we have that

rankO = 9 (2.23)

rendering the nonlinear dynamics in (2.8), (2.16) to be locally observable in all cases.
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2.3.2 Linear Time-Varying Observability Analysis

Since, we are using a discrete EKF for the state estimation task, we must explore the ob-
servability of the filter which is based on the following linear time-varying dynamics:

xk+1 = Gkxk + ✏k (2.24)

yk = Hkxk + �k (2.25)

We will give the local observability analysis based on the linear time-varying observ-
ability matrix M, as proposed by Chen et al. [82]. Notice, in the general case, the observ-
ability properties of a discrete linear time-varying system, can differ from the observability
properties of the true underlying nonlinear continuous system. This is due to the errors
that arise by the linearization and/or discretization procedure.

For the state-space and output model in (2.24), (2.25), this matrix is defined as:

M =

2

66664

Hk

Hk+1Gk

...
Hk+8Gk+7 . . .Gk

3

77775
(2.26)

and the sufficient condition for the local observability is:

rankM = 9 (2.27)

By examining the first 9⇥ 9 submatrix of M:

M
⇤
=

2

64
I 0 0

Ck 0 Dk

0 �tI 0

3

75 (2.28)

where Ck and Dk are the matrices in (2.11), (2.12) evaluated at the k-th discrete time in-
stant, it is straightforward to derive:

detM
⇤
=

✓
�t

m

◆3

(2.29)

Therefore, the linear time-varying observability matrix M is full rank and cannot drop
rank under any circumstances.
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2.4 Results

In the current section we outline representative results that demonstrate the effectiveness
and robustness of the proposed scheme, contrasted to others well-established approaches.
All conducted experiments were performed with a real NAO humanoid robot. First, the
EKF is compared to a KF based on the LIPM dynamics, on ground-truth data sets obtained
with a vicon motion capture system. Next, the proposed approach is employed to feed-
back a posture stabilization controller based on the DCM, enabling a NAO robot to walk
outdoors on an inclined pavement. The filter’s response is contrasted to an EKF based on
Newton-Euler dynamics. In all our experiments the covariance matrices were determined
experimentally and set to:

Q = diag(1e� 6I, 1e� 5I, I) (2.30)

R = diag(5e� 6I, 5e� 4I) (2.31)

2.4.1 Evaluation on Motion Captured Data Sets

A first result regards an estimation accuracy study, in terms of the Root Mean Square Error
(RMSE), contrasted to a KF based on the LIPM, as proposed by Wittman et al. [42]. The
LIPM KF can estimate the following state vector:

xt =

h
cx cy ċx ċy fx fy

i>
(2.32)

utilizing the CoM position and velocity, as measured by the encoders, and transformed
to the inertial frame with the IMU. The employed covariance matrices are given by (2.30),
(2.31), where this time the matrices-dimensions are obtained by neglecting the z-axis dy-
namics.

We’ve selected 10 ground-truth data sets, collected with a vicon motion capture sys-
tem consisting of 15 infra-red cameras, and a NAO v3.3 humanoid robot [83]. To begin
with, we calibrated the IMU, to remove the biases and cut off unwanted high frequencies
with a low-pass filter. Then, we computed the CoM with respect to the local torso frame
using kinematics and the COP using the FSR in the feet which was then transformed to the
torso local frame with kinematics. Subsequently, all the acquired data were transformed
to the inertial frame of reference using the estimated rotation matrix obtained by the IMU.
Notice, since the NAO robot is not equipped with a 3-axis gyroscope, namely no gyro rate
is available about the z-axis, the vicon yaw angle was used instead. This is why no drifting
is observed in all our data, although the robot drifts in many cases. Nevertheless, this does
not pose any limitation, since the same data are used as input and measurements signals
for both approaches.

Since we cannot plot the response for every data set, we selected one where the motion



2.4. Results 23

0 5 10 15 20 25

c x
(m

)

-2

-1

0

1
EKF
KF
vicon

11.2 11.3 11.4
-0.7
-0.65
-0.6

0 5 10 15 20 25

c y
(m

)

-0.4

-0.2

0

0.2
EKF
KF
vicon

11.2 11.6 12

-0.04
0

Time(s)
0 5 10 15 20 25

c z
(m

)

0.2

0.25

0.3

0.35

EKF
vicon

9 10 11

0.32
0.34

Figure 2.1: CoM position in the 3D space, blue lines indicate the ground-truth trajec-
tories, red dotted lines the EKF estimated trajectories and green dotted the
KF estimated trajectories, notice in the z axis no KF estimate is available
since cz is assumed constant.

is unstable and thus more dynamic [83]. In Figure 2.1, the CoM trajectories are shown
where the EKF estimated trajectory is overlapped by the actual signal, notice in the start
the robot rises from a sitting position, the EKF can accurately capture that motion. In
addition, Figure 2.2 shows that the EKF estimated more accurately the corresponding CoM
velocites in all axes.

Figure 2.3 illustrates the external forces/modeling error for the corresponding motion;
notice that there is no delay in the force estimation as observed in the KF’s case, also re-
ported in [42]. This is due to the fusion of the acceleration measurement which yields a
lag free estimation. Furthermore, notice in the z-axis, at time 0–2s where the robot is prac-
tically still, the estimation is almost 15N , this is reasonable since the NAO’s FSR have a
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Figure 2.2: CoM velocity in the 3D space, blue lines indicate the ground-truth trajec-
tories, red dotted lines the EKF estimated trajectories and green dotted the
KF estimated trajectories, notice in the z axis no KF estimate is available
since cz is assumed constant.

reliable working range up to 25N and when the robot is still they measure approximately
35N , therefore since the robot weights 4.789kg the modeling error needs to be approxi-
mately 1.5kg.

Furthermore, we computed the position and velocity of the DCM. In the KF’s case, we
are forced to compute the Linear Time-Invariant (LTI) DCM since the assumption that the
CoM lies on constant horizontal plane during the motion is made. The LTI-DCM is given
by:

⇠LTI = c+
1

!0
ċ (2.33)
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Figure 2.3: Modeling error in the x, y and z-axis respectively, KF estimates are delayed
contrasted to the EKF ones.

where !0 =

q
g

l
and l is the constant CoM height. The corresponding LTI-DCM velocity is

thus:

⇠̇LTI = !0(⇠LTI � c) +
1

!0
c̈ (2.34)

On the other hand, in the EKF’s case we can compute the Linear Time-Varying (LTV)
DCM to approximate the true nonlinear DCM more effectively. The LTV-DCM is formu-
lated as:

⇠LTV = c+
1

!t

ċ (2.35)

where !t =

q
g

cz
. Since !t is now time-depended, the corresponding LTV-DCM velocity is

given by:
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Figure 2.4: DCM position in the 3D space, blue lines indicate the ground-truth LTV-
DCM, red dotted lines the EKF estimated LTV-DCM trajectories, and green
dotted lines the KF estimated LTI-DCM trajectories, no KF estimate is
available in the z-axis since is assumed constant.

⇠̇LTV =

✓
!t �

!̇t

!t

◆
(⇠LTV � c) +

1

!t

c̈ (2.36)

with !̇t = � g
1/2

2c
3/2
z

ċz.

In both DCM velocity cases, we used the calibrated low-pass filtered acceleration by
the IMU, and the corresponding CoM position and velocity estimate by each filter respec-
tively.

Figure 2.4 shows the corresponding DCM trajectories for this case of study, while Fig-
ure 2.5 demonstrates the DCM velocities. Finally, in Figure 2.6 the average RMSE for all
quantities of interest for the 10 data sets used in our study is presented. Notice that the
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Figure 2.5: DCM velocity in the 3D space, blue lines indicate the ground-truth LTV-
DCM, red dotted lines the EKF estimated LTV-DCM trajectories, and green
dotted lines the KF estimated LTI-DCM trajectories, no KF estimate is
available in the z-axis since is assumed constant.

EKF not only yields more accurate estimates in the RMSE sense, but also more certain
ones, especially when the estimated quantities are the velocities.
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bars indicate the EKF’s accuracy, green bars the KF’s accuracy, and black
lines the standard deviation from the corresponding mean values.
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Figure 2.7: NAO humanoid robot walking diagonally on a 7
� inclined pavement (from

left to right).

2.4.2 Walking Outdoors on an Inclined Pavement

In this section, the proposed estimation scheme is experimentally validated on a v4.0 NAO
robot. The estimates obtained by our ZMP based EKF are used to feedback a real-time
posture stabilizer based on the DCM [81], rendering the robot able to keep the balance
even while walking outdoors on a 7

� inclined pavement, as shown in Figure 2.7. Although
the slope of the ground is mild, please note that for a robot of the size of NAO it represents
a rather significant challenge.

Since no ground truth data are available in outdoor environments, to verify the estima-
tion task we implemented an EKF based on the IMU, as proposed by Rotella et.al [57], but
modified in such a way to estimate the CoM quantities instead of the rigid base ones. This
IMU based EKF can estimate the following state vector:

xt =

h
c ċ q bf b!

i>
(2.37)

where q, bf , and b!, are the torso’s attitude quaternion, the acceleration and the gyroscope
biases respectively, utilizing the inertial CoM position as measured by the encoders. No-
tice, we’ve collected raw IMU data for 48 hours in order to perform an Alan variance anal-
ysis [84] and carefully tune the process noise covariance, as also suggested by the authors,
to maximize in such a way the filter’s efficiency.

Figure 2.8 and Figure 2.9 illustrate the CoM position and velocity in the 3D space as
estimated by the two filters, for a diagonally forward gait on a 7

� inclined pavement for
approximately 25s. Figure 2.10 shows the external force/modeling errors during the gait,
notice only the ZMP based EKF can estimate those quantities. In addition, note that the
magnitude of the external forces can be justified by considering that when the robot loco-
motes on an uneven and rough terrain, early ground contact can commonly occur, giving
rise to larger external forces. Moreover, Figure 2.11 and Figure 2.12 demonstrate the LTV-
DCM position and velocity respectively, as estimated by the two filters for the correspond-
ing gait.

Furthermore, we’ve conducted a variety of indoors and outdoors experiments, namely,



30 Chapter 2. Nonlinear ZMP-based State Estimation

0 5 10 15 20 25

c
x
(m

)

0

0.5

1

1.5
ZMP-EKF
IMU-EKF

11.5 12 12.5 13 13.5
0.4
0.6

0 5 10 15 20 25

c
y
(m

)

-0.3

-0.2

-0.1

0

0.1
ZMP-EKF
IMU-EKF

11.5 12 12.5 13 13.5
-0.15
-0.1
-0.05

Time(s)
0 5 10 15 20 25

c
z
(m

)

0.2

0.25

0.3

0.35

0.4
ZMP-EKF
IMU-EKF

11.5 12 12.5 13 13.5
0.3
0.32
0.34

Figure 2.8: CoM position in the 3D space, red dotted lines indicate the ZMP based
EKF estimated trajectories while the black lines indicate the IMU based
EKF estimated trajectories.

walking indoors on a hallway, walking outdoors on an even pavement, walking in place on
grass while heavily disturbing the robot and, as also illustrated in https://goo.gl/by3cB5,
all the ZMP based EKF estimates were pretty similar, within noise margins, to the IMU
based EKF ones, validating in such a way the proposed estimation scheme.

Notice that in all experiments reported above, the estimated z-axis components con-
tain higher noise compared to the x and y-axis ones. This is due to the fact that the noisy
FSR measurements are employed in the z-axis dynamics.

https://goo.gl/by3cB5
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Figure 2.9: CoM velocity in the 3D space, red dotted lines indicate the ZMP based
EKF estimated trajectories while the black lines indicate the IMU based
EKF estimated trajectories.
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Figure 2.11: LTV-DCM position in the 3D space, red dotted lines indicate the ZMP
based EKF estimates and black lines the IMU based estimates.
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2.5 Conclusion

In this chapter, a novel state estimation scheme for humanoid robot locomotion was pre-
sented, fusing effectively three different sensor sources, namely the joint encoders, the
IMU, and the FSRs. We utilized the nonlinear ZMP equation with an EKF to surpass the
limitation of the constant CoM height and the planar dynamic decouple, as assumed by
the LIPM, and readily estimate control variables commonly used by walking pattern gener-
ators and posture stabilization controllers. In addition, modeling errors were considered
acting on the CoM in the acceleration level.

Someone would assume that the observability would be lost when the robot experi-
ence accelerations in the z-axis equal to g, e.g. the robot is in free fall. As proved by our
observability analysis for both the nonlinear dynamics and the EKF this is not the case,
since the local-observability matrix is full rank under all circumstances. Nevertheless, the
ZMP is not well-defined when the robot is in flight.

Our experimental result demonstrated that the filter showed robustness to perturba-
tions, quick convergence properties and provided more accurate estimates contrasted to
a KF based on the LIPM. In addition, when incorporated with a real-time stabilization
controller, a NAO robot was able to walk on an outdoors inclined pavement and on grass,
effectively sensing and negotiating the incoming disturbances. Moreover, the filter’s es-
timates were pretty similar to the ones obtained by an EKF based on generic rigid body
dynamics and the IMU, validating the proposed approach.

In the next chapter, we will include the external forces/torques that act on the robot’s
CoM and the ground-height in the design, to provide more accurate estimates for the 3D-
CoM position and velocity. In addition, we will outline the importance of base estimation
and indicate how errors in base estimation propagate to CoM estimation.
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Chapter 3

Cascade Nonlinear State Estimation

If I have seen further it is by standing on the shoulders of giants.
Isaac Newton (1642–1727)

This chapter presents a novel cascade state estimation framework for 3D-CoM esti-
mation of walking humanoid robots. The proposed framework, called SEROW (State Es-
timation RObot Walking) fuses effectively joint encoder, inertial, feet pressure and visual
odometry measurements. Initially, we consider the humanoid’s Newton-Euler dynamics
and rigorously derive the nonlinear CoM estimator. The latter accurately estimates the
3D-CoM position, velocity and external forces acting on the CoM, while directly consid-
ering the presence of uneven terrain and the body’s angular momentum rate and thus
effectively coupling the frontal with the lateral plane dynamics. Furthermore, we extend
an established floating mass estimator to take into account the support foot pose, yielding
in such a way the mandatory, for CoM estimation, affine transformations and forming a
cascade state estimation scheme. Subsequently, we quantitatively and qualitatively assess
the proposed scheme by comparing it to other estimation structures in terms of accuracy
and robustness to disturbances, both in simulation and on an actual NAO robot walking
outdoors over an inclined terrain. To facilitate further research endeavors, our implemen-
tation is offered as an open-source ROS/C++ package.

3.1 Aim and Contribution

Accurate 3D-CoM estimation is of vital importance for both walking pattern generation
and real-time gait stabilization. In this chapter, we propose a nonlinear state estimation
framework (illustrated in Fig. 3.1) for accurately estimating the 3D-CoM position, veloc-
ity and external forces acting on the CoM by effectively utilizing joint encoder, FSR, and
IMU measurements. Starting from the Newton-Euler humanoid dynamics, we rigorously
derive a nonlinear CoM estimator that uses as input the 3D-COP, the vertical GRF, and
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Figure 3.1: Cascade state estimation scheme consisting of a rigid body estimator and
a CoM estimator.

the horizontal angular momentum rate. The output of the estimator is formulated as the
3D-CoM position along with the 3D-CoM acceleration. To the best of our knowledge, this
is the first time that a CoM estimator explicitly considers the ground height and the an-
gular momentum rate without relying on F/T sensors to yield, besides the 3D-CoM posi-
tion and velocity, accurate 3D external force estimates. Contrasted to 3D-CoM estimation
scheme presented in Chapter 2, the modeling errors in the acceleration level in this for-
mulation represent exactly the external forces acting on the CoM and, furthermore, the
angular momentum rate is taken into direct account. Thus, it is possible to provide more
accurate estimates, when the motion is highly dynamic and the angular momentum rate
is significant. In addition, this estimator can cope with cases of walking on uneven terrain,
since the height of the ground is properly considered. As it is standard practice in CoM
estimators, all measurements before fused are transformed from their local frames to the
world frame. Therefore, by extending the rigid body estimator in [53], we provide the in-
dispensable transformations that link the robot’s body and support foot to a world frame,
by fusing the onboard joint encoders, IMU and the pose obtained with visual odometry.
Contrasted to [53], our approach differs in that: (a) the 3D-support foot position and orien-
tation are properly considered, (b) kinematically computed 3D-relative support foot posi-
tion and orientation are fused, (c) visual odometry measurements are considered, and (d)
the linearizations for the aforementioned quantities are derived. In addition, contrasted
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to [57], the proposed estimator: (a) maintains a robocentric state-space which improves
the linearization accuracy and reduces drift [85], (b) incorporates visual odometry mea-
surements, (c) considers only the support foot in the state which reduces the dimension
of the filter by six, and (d) maintains rotational quantities directly as rotation matrices.

3.2 Center of Mass Estimation

In this section, we formally derive a nonlinear CoM state estimator and investigate its ob-
servability properties. In the following all quantities listed are in the world frame and the
x, y, z superscripts indicate the corresponding vector coordinates. Consider the Newton-
Euler equations of motion for a humanoid robot, where the ground contact forces fi are
explicitly separated from the external forces fe acting on the CoM:

m(c̈� g) = fe +

X

i

fi (3.1)

mc⇥ (c̈� g) + L̇ = c⇥ fe +

X

i

si ⇥ fi (3.2)

where c is the CoM position, c̈ is the CoM acceleration, L̇ is the rate of angular momentum,
m is the mass of the robot, and g is the gravity vector. Since si are the position of the
contact points, the COP is defined as:

p =

hP
i s

x
i f

z
iP

i f
z
i

P
i s

y
i f

z
iP

i f
z
i

sz
i

(3.3)

where we assume that in each foot, contact points are coplanar with respect to the local
foot frame.

Then, by solving the first two equations of (3.2) for c̈x and c̈y while also considering
(3.1), we get:

c̈x =
(cx � px)(m(c̈z � gz)� f z

e )� L̇y

m(cz � pz)
+

1

m
fx

e (3.4)

c̈y =
(cy � py)(m(c̈z � gz)� fz

e ) + L̇x

m(cz � pz)
+

1

m
fy

e (3.5)

Examining the z component of (3.1) and introducing
P

i
f z
i
= fN as the vertical GRF,

we get:

c̈z =
1

m
(fN + fz

e ) + gz (3.6)

By substituting (3.6) in (3.4) and (3.5), we readily obtain the nonlinear dynamics that
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our CoM estimator is based on:

c̈x =
cx � px

m(cz � pz)
fN �

L̇y

m(cz � pz)
+

1

m
fx

e (3.7)

c̈y =
cy � py

m(cz � pz)
fN +

L̇x

m(cz � pz)
+

1

m
fy

e (3.8)

c̈z =
1

m
(fN + fz

e ) + gz (3.9)

3.2.1 CoM Estimator Process Model

For deriving the state-space needed in the EKF formulation, we assume a flying-wheel on
the body with inertia Ib. The latter is constantly computed based on the configuration of
the limbs, to approximate the rate of angular momentum:

L̇ = Ib !̇b + !b ⇥ Ib!b (3.10)

where!b is the gyro rate. Note that the second term in (3.10) accounts for the Coriolis and
centrifugal effects. Subsequently, the following state vector is formulated:

x
c

t =

h
cx cy cz ċx ċy ċz fx

e fy
e fz

e

i>

where the superscript c denotes the CoM estimator.

Furthermore, let the filter’s input uc
t be the location of the COP p in the 3D space with

respect to the world frame, along with the vertical GRF fN as measured by the FSRs. In ad-
dition, we compute the gyro acceleration !̇b by numerical differentiation of the IMU’s gyro
rate. Since numerical differentiation amplifies noise, we filter the gyro acceleration with
a small window moving average filter to avoid introducing significant delays and phase
shifts.

To this end, the input vector is:

u
c

t =

h
px py pz fN L̇x L̇y

i>
(3.11)

and the process model assumes the standard nonlinear form:

ẋ
c

t = f(x
c

t ,u
c

t) +w
c

t (3.12)
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ċz

fx
e

fy
e

fz
e

3

7777777777777775

=

2

66666666666666664

ċx
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with w
c
t the process additive noise. The linearization of the state-space is straightforward.

The state Jacobian of the dynamics is:
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@f

@x
=
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3.2.2 CoM Estimator Measurement Model

The measurements fused in the update step are the kinematically computed CoM position
c
enc and the IMU CoM acceleration c̈

imu, computed as in [86]. This approximation, as well
as the approximation in (3.10), are valid as long as the actual CoM is located inside the
same rigid link as the IMU, i.e. the body link. The latter has been proved valid in [87].

Accordingly, since the CoM acceleration is not part of the state, the measurement model
is also nonlinear:

y
c

t = h(x
c

t ,u
c

t) + n
c

t (3.15)
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and n
c
t the additive Gaussian noise. The measurement model linearization is derived sim-

ilarly as in section 3.2.1.

Notice, by using (3.7)-(3.9) both in the process and in the measurement model, the
disturbance input noise correlates with the measurement noise. Still this has no effect on
the estimation error itself but rather on the error covariance. Moreover, when the cross-
correlation is zero, all expressions reduce to the EKF formulas. A formal proof is included
in the appendix B section 9.4. In all our walking experiments, including ones of sufficient
duration, we haven’t noticed any degradation in the estimation accuracy of the error co-
variance. Thus, the cross-correlation noise ought to be insignificantly small.

3.2.3 Nonlinear Observability Analysis

In this section, we investigate the observability properties of the proposed CoM estimator
in terms of the local nonlinear observability matrix. Following the approach in [88], that
allows the nonlinear observability analysis to take into account output dynamics that de-
pend explicitly on the inputu, we define the following coordinates (h1,'1

1, h2,'
1
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1
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t , ⇤uc

t) where hj is the j�th row of h(⇤xc
t ,
⇤
u
c
t) and

'1
i
= Lfhi is the Lie derivative of hi in the direction of the vector field f(

⇤
x
c
t ,
⇤
u
c
t). Using

these coordinates, we form the map [88]:
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Subsequently, the components are re-ordered for convenience to form �̃. Computing the
Jacobian with respect to ⇤

xt, we get the local nonlinear observability matrix:

O =
@�̃(

⇤
xt, ⇤ut)

@⇤xt

=

2

64
I 0 0

0 I 0
⇤
Gt 0 ⇤

Mt

3

75 (3.17)

Ignoring the unrealistic case where cz = pz, meaningly the CoM lies exactly on the ground,
we find that the nonlinear local observability matrix is full rank and cannot drop rank,
since detO =

1
m3 . Thus, the dynamics in (3.12), (3.15) are locally observable in all cases.

3.2.4 The need for Rigid Body Estimation

All measurements fused by the CoM estimator must be in an inertial frame of reference.
Still, the latter are typically obtained in local frames, i.e. the kinematically computed CoM
b
c
enc is derived in the body frame and the measured by the FSR COP s

p
fsr is in the support

foot frame. Accordingly, they must be transformed to the world frame as:

w
c
enc

=
w
rb +

w
Rb

b
c
enc (3.18)

w
p
fsr

=
w
rs +

w
Rs

s
p
fsr (3.19)

with w
rb and w

rs the position of the body and support foot with respect to the world frame,
w
Rb and w

Rs the corresponding orientations expressed as rotation matrices, as shown in
Fig. 3.2. To this end, having reliable estimates of the body and support foot transforma-
tions is crucial in CoM estimation.

3.3 Rigid body Estimation

In [53] a rigid body state estimator based on Newton-Euler dynamics of a floating mass
was presented. Since, the transformation linking the support foot to the world frame is
mandatory to use quantities measured in the support foot frame such as the GRFs and the
COP, we appropriately extend the process and measurement models to be able to estimate
the following state vector:

x
r

t =

h
b
vb

w
Rb

w
rb

w
Rs

w
rs b! ba

i>

where the superscript r denotes the rigid body estimator, bvb is the body’s velocity, and b!,
b↵ are the gyro and accelerometer biases, all expressed in the body local frame.

This EKF provides the necessary for CoM estimation rigid body transformations and
accordingly preserves their affine properties. Hence, given Gaussian inputs the probabil-
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Figure 3.2: Illustration of frames needed for CoM estimation. Ellipses represent the
orientation uncertainties in the corresponding local frame.

ity densities of the transformed output quantities remain Gaussians and thus the formed
cascade estimation scheme does not give rise to inconsistencies during filtering.

3.3.1 Rigid Body Estimator Process Model

Let b
!̄b =

b
!

imu
b
� b! and b

↵̄b =
b
↵

imu
b
� b↵, represent the IMU bias-removed gyro rate and

linear acceleration, respectively. Then the nonlinear state-space takes the form:

b
v̇b = �(b!̄b �w!)⇥ b

vb +
w
R

>
b g +

b
↵̄b �wa (3.20)

w
Ṙb =

w
Rb(

b
!̄b �w!)[⇥] (3.21)

w
ṙb =

w
Rb

b
vb (3.22)

w
Ṙs =

w
Rsws[⇥] (3.23)

w
ṙs = wrs (3.24)

ḃ! = wb! (3.25)

ḃ↵ = wb↵ (3.26)

where [⇥] denotes the wedge operation and (3.23), (3.24) have been introduced to model
the support foot orientation and position as random walks, since the foot in contact may
or may not be stationary due to possible slippage. Furthermore, w! and w↵ are the IMU
noise vectors for the gyro rate and the linear acceleration, respectively, ws and wrs are the
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support foot orientation and position noises and wb! , wb↵ are the IMU bias noises.
To track the body’s and support foot’s orientation uncertainty we consider perturba-

tion rotations in the corresponding local frames. Thus, if the true body and support rota-
tion matrices are w

Rb and w
Rs, then w

Rb =
w
R̂be

�[⇥] and w
Rs =

w
R̂se

�[⇥] where w
R̂b, wR̂s

are the estimated rotation matrices and�,� are the corresponding error exponential coor-
dinates. An illustration of those quantities is given in Figure 3.2, where the black frame is
the world frame, the yellow frames indicate the local body and support foot frames, while
green and purple circles represent the corresponding orientation errors.

Subsequently, the linearization of (3.20) - (3.26) is derived as:

b
�v̇b =� b

!̄b ⇥ b
�vb +

⇣
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>
b g

⌘
⇥ �
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(3.29)

�̇ =ws (3.30)

�ṙs =wrs (3.31)

�ḃ! =wb! (3.32)

�ḃ↵ =wb↵ (3.33)

3.3.2 Rigid Body Estimator Measurement Model

The output model, formulated in [53], consists of the global body velocity using the robot’s
kinematics and the global body position and orientation using a LIDAR sensor and a Gaus-
sian particle filter. To obtain the body velocity, the body position was computed using the
filter’s estimated orientation and the kinematically computed relative position of the sup-
port foot with respect to the body b

r
enc
s and then it was numerically differentiated. How-

ever, when using the estimated orientation (which is part of the state) for a measurement,
correlation is induced to the filter. In addition, numerical differentiation commonly am-
plifies the noise and further filtering is needed.

Interestingly, it is possible to directly fuse b
r
enc
s since both the body and support foot

position are available in our state. Moreover, the relative orientation b
R

enc
s must be also

fused to render the support foot orientation observable:

b
r
enc
s =

w
R

>
b (

w
rs � w

rb) + nrs (3.34)
b
R

enc
s =

w
R

>w

b Rse
nr[⇥] (3.35)

with nrs , nr the kinematics measurement noise.
The previous measurements are typically available at a very fast rate. In this work, we
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also employ measurements of the global head position and orientation by mounting an
external camera on the head of the robot and using a visual odometry algorithm. The latter
are then kinematically transformed to obtain the global body position and orientation and
fused as:

w
r
cam
b =

w
rb + nrb (3.36)

w
R

cam
b =

w
Rbe

nb[⇥] (3.37)

where nrb , nb the camera measurement noise. This addition is essential, since leg odom-
etry tends to drift and become inaccurate (see appendix B section 9.2 for leg odometry
computation). Interestingly, this is also verified in the outdoors walking experiments pre-
sented in section 3.4.2.

For the linearization of the output model we consider the error exponential coordi-
nates ⇣enc and  str related with b

R
enc
s and w

R
cam
b

, respectively. To this end, the lineariza-
tion of (3.34) - (3.37) is given by:
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w
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b =

w
�rb + nrb (3.40)

 
cam

= �+ nb (3.41)

Formal proofs of the linearized process and output models are included in the ap-
pendix B section 9.5.

3.4 Results

The proposed framework has been implemented and experimentally validated. In the next
section we outline quantitative, simulation-based results, that demonstrate the accuracy
and robustness of the proposed estimator in simulated gaits over uneven terrain. Sub-
sequently, we present results on a NAO robot, and demonstrate accurate external force
estimation and how drift affects the CoM estimation, highlighting the significance of the
proposed cascade scheme. Given that disturbances tend to be sudden and discrete events,
we employ in all experiments high process noise in order to facilitate fast convergence of
the estimated external forces.
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3.4.1 Simulation Experiments

Humanoid Robot Walking over Rough Terrain

In order to obtain quantitative assessment results, we simulated a humanoid robot walk-
ing over uneven terrain, while our nonlinear CoM estimator is employed for feedback. The
proposed CoM estimator, termed as EKF1, is contrasted to the nonlinear estimator in [47],
termed as EKF2, and to a Linear KF (LKF) variant of [86], which is the only linear scheme
fusing CoM acceleration. The latter estimates a CoM offset instead of the external forces,
thus the offsets are transformed to forces as:

fx,y

e = m
g

hc
cx,yo↵set (3.42)

where hc is the nomimal CoM height. The selection of EKF2 and LKF schemes for compar-
ison is due to the fact that EKF2 has been shown to be an accurate 3D-CoM estimator [47]
and LKF is broadly utilized in the literature [86].

For all employed filters ideal base/support state estimation was assumed and the same
noise covariances Q and R are used. The 3D-step positions are computed based on the
terrain’s shape while the motion generation is based on the DCM ⇠ with continuous Dou-
ble Support (DS) phases [89]. The mass m and inertia Ixx,yy

b
of the robot along with hc and

step time Ts are shown in Table 3.1.

In this experiment, illustrated in Figure 3.3, the robot stands up, initializes its posture
by taking two steps in place and starts to walk. During the third step and at t = 6s, a
disturbance in the x axis of 2200N is introduced. After recovering within a step, another
push happens in the y axis with intensity of 1500N . Subsequently, in the following step the
robot is perturbed in both x and y axes with 1800N and 1600N , respectively. Due to this
last push, early swing leg landing occurs causing a disturbance of approximately 1000N in
the vertical axis. Finally, the robot manages to walk down the terrain unperturbed.

Figure 3.4 shows both the 3D-CoM position (top) and velocity (bottom) as estimated by
the employed estimators contrasted to the ground-truth trajectories. In addition, Figure
3.5 illustrates the corresponding 3D-DCM position (top) and velocity (bottom) trajectories
computed as in [47]. We observe that the proposed CoM estimator yields more accurate
estimates, which is due to the fact that the ground height in the denominators of (3.7)

Table 3.1: Simulation Parameters.
m (kg) Ixx

b
(kgm2

) Iyy
b

(kgm2
) hc(m) Ts (s)

156.5 0.33 0.30 0.812 1

c ċ fe co↵set

Q 1e�8
1e�4

5e1 1e�8

c
enc

c̈
imu

R 1e�5
4e�2
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Figure 3.3: CoM/DCM trajectories in the 3D space, black / black–dotted lines indi-
cate the ground truth trajectories, blue / blue–dotted lines the EKF1 esti-
mated trajectories, green / green–dotted lines the EKF2 estimated trajecto-
ries and red / green the left and right support foot respectively. LKF yields
no estimates since the z-axis is neglected.

and (3.8) along with the angular momentum rates translate to modeling errors, yielding
inaccuracies for all the estimated quantities of EKF2 and LKF, while in the EKF1 case they
are directly considered. This is also evident in Figure 3.6 illustrating the external forces,
where as seen strong pushes, e.g. in x-axis, cause the robot to rotate about the y-axis,
generating angular momentum and false appearing as external forces for EKF2 and LKF in
that axis.

Moreover, EKF1 and EKF2, as expected, yield similar response in the z-axis since they
are both based on (3.9). On the other hand, LKF yields no estimates since it assumes that
CoM lies on a constant height plane.

Based on the above, in order to demonstrate the accuracy of the proposed CoM estima-
tor, we conducted 100.000 simulations of 12 random omni-directional steps each. In every
run, random disturbances varying in magnitude from 1� 1.5, 0.5� 1, and 0.25� 0.5 times
the weight of the robot in the x, y and z axes respectively, were introduced at random time
instances during the gait. Figure 3.7 illustrates the Root Mean Square Error (RMSE) from
the ground truth trajectories during the perturbation periods for each estimator employed.
The external forces are scaled by 10

�3 for clarity. As evident, we gained a significant boost
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Figure 3.4: Top: 3D-CoM trajectories, Bottom: 3D-CoM velocities, light beige regions
indicate the DS phases, black dotted lines indicate the ground truth trajec-
tories, blue lines, green lines, and orange lines are the estimated trajecto-
ries by EKF1, EKF2, and LKF respectively.
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Figure 3.5: Top: 3D-DCM trajectories, Bottom: 3D-DCM velocities, light beige re-
gions indicate the DS phases, black dotted lines indicate the ground truth
trajectories, blue lines, green lines, and orange lines are the estimated tra-
jectories by EKF1, EKF2, and LKF respectively.
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Figure 3.6: 3D-External forces, light beige regions indicate the DS phases, black dot-
ted lines indicate the ground truth trajectories, blue lines, green lines, and
orange lines are the estimated trajectories by EKF1, EKF2, and LKF respec-
tively.

in accuracy for all quantities of interest in the x and y axes, especially in external forces,
for only 14.32% extra computational cost.
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(𝒎) (𝒎/𝒔) (𝒎) (𝒎/𝒔) (𝟏𝟎−𝟑𝑵)

Figure 3.7: RMSE for CoM, DCM, and external forces during perturbation periods for
100.000 simulations; blue bars indicate the EKF1s error, green bars the
EKF2s error, orange bars the LKFs error, and black lines the standard devi-
ation from the corresponding mean values.
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Figure 3.8: Valkyrie walking over uneven/rough terrain in Gazebo.

Valkyrie Humanoid Walking over Uneven Terrain

Next, we employ the proposed cascade framework in Gazebo with NASA’s Valkyrie hu-
manoid using our ROS open-source implementation running in real-time every 2ms, where
also the parameters used for this experiment are listed in the Valkyrie configuration file [90].
For walking over the uneven terrain, as evident in Figure 3.8, we utilized the control frame-
work in [63]. The IMU measurments are available at 1kHz while the joint encoders and
FSR measurements are obtained at 500Hz. Furthermore, to compute the visual pose fused
in our filter, we used the Semi-Direct Visual Odometry (SVO) [91] with the multisense
stereo running at 40Hz. In Figure 3.9 the 3D-Body position and velocity are illustrated.
Notice the kinematically computed trajectories inevitably drift as the robot continuously
walks, whereas, our rigid-body estimator, termed as EKF1, yielded accurate estimates for
all quantities with respect to the ground-truth trajectories. Specifically, the RMSE for the
body position were 0.0034m, 0.0036m and 0.001m, and for the body velocity 0.0139m/s,
0.0159m/s and 0.0128m/s for the x, y and z axes, respectively.

Since Valkyrie is employed with 6D-F/T sensors in the feet (as opposed to the simu-
lated robot in section 3.4.1 and NAO in Section 3.4.2), we compare the proposed CoM
estimator (termed as EKF1 for simplicity) to the Momentum Estimator (ME) with external
wrenches [46]. For both filters the same base/support information and noise covariances
for the measurements in common are used, whereas the torque and external torque co-
variances were fine tuned in the ME case. Figure 3.10 illustrates the 3D-CoM position and
velocities as estimated by each method. As evident, for the 3D-CoM position both estima-
tors yielded the same response, while small differences arose in the estimated 3D-CoM ve-
locities. Table 3.2 summarizes the RMSE of all estimated quantities for both filters. In this
static, low pace gait, Valkyrie experienced mostly co-planar contacts, thus the proposed
CoM estimator yielded very accurate estimates. Nevertheless, we expect ME to provide
more accurate estimates in the general case where the robot exhibits non co-planar con-
tacts, but at the cost of employing 6D-F/T sensors at the robot’s end-effectors.
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Figure 3.9: Top: 3D-Body trajectories, Bottom: 3D-Body velocities, light beige re-
gions indicate the DS phases, black dotted lines the ground truth trajec-
tories, blue lines the estimated trajectories by EKF1 and black lines the
kinematically computed trajectories.
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Figure 3.10: Top: 3D-CoM trajectories, Bottom: 3D-CoM velocities, light beige regions
indicate the DS phases, blue and green lines are the estimated trajectories
by EKF1 and ME.
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Figure 3.11: NAO humanoid walking over a pavement.

3.4.2 Real Robot Experiments

The proposed cascade framework was further implemented on a NAO v4.0 humanoid
robot (Figure 3.11, running in real-time every 10ms. The joint encoder, IMU and FSRs
measurements needed by the scheme are available at a 100Hz rate. For obtaining the
pose, we used SVO with a ZED stereo camera, running on an Nvidia Jetson TX2 module,
communicating with NAO through ethernet with a TCP/IP server. The latter was available
to NAO at an average rate of 40Hz. The estimation parameters used can be found in the
NAO configuration file in [90].

A first result regards estimation of the external forces, where the robot was disturbed
and the pushes were accurately measured with an Alluris force gauge. The NAO robot was
commanded to stand up, initialize its posture by making two steps, and then stand still. As
we can see in Figure 3.12, from 6s to 13s where the NAO robot is unperturbed in the z-axis
the external force counter balance the false measurement from the FSR for the total weight
so that the resultant force (fN + fz

e ) yields the mass of the robot which is approximately
5.19kg. Moreover, a disturbance in the x-axis is performed at 13s and settles at 16.6s. This
disturbance was measured to have a peak magnitude of 5.96N , as also estimated by fx

e .
Finally, a constant lateral disturbance was enforced at 21.4s until 25.3s with peak at 11.64N

Table 3.2: RMSE of Estimated Quantities.
cx(m) cy(m) cz(m) ċx(

m

s
) ċy(

m

s
) ċz(

m

s
)

EKF1 0.0036 0.0037 0.0011 0.0179 0.0174 0.0123
ME 0.0036 0.0037 0.0011 0.0205 0.0212 0.0099
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Figure 3.12: 3D-External forces, light beige regions correspond to the DS phases, blue
lines indicate the estimated external forces by the proposed CoM estima-
tor, orange is the vertical resultant force f z

e +fN , green is the FSR measured
vertical GRF fN , and black are the measured external force peaks.

making NAO tilt; again our estimator yielded an accurate estimate fy
e .

To fair contrast the proposed cascade scheme, we constructed another serial state es-
timation scheme, based on the rigid body estimator of [53] and EKF2; for simplicity this is
termed EKF2 in the sequel. Since a LIDAR sensor was not available, we used the camera
pose for the global body position and orientation measurement. Furthermore, to remove
the correlation explained in section 3.3.2, we computed the body velocity in the world
frame using kinematics.

In addition, the transformation of the support foot with respect to the world frame was
computed using the kinematic relative transformation from the body to the support and
the estimated body to world transformation, since it cannot be estimated directly, as in
our approach.

Subsequently, we let our robot walk outdoors on a challenging inclined terrain where
the slope in the forward and in the lateral directions was 16

� and 5
�, respectively. To ac-

curately measure the final pose, since in outdoor environments ground truth data are not
available, we used both conventional measuring tools and digital laser rangefinders to
measure the final position and orientation (termed as Ground-Truth) at the end of the gait.
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Figure 3.13: Top: 2D-Body pose trajectory, Bottom: 2D-CoM trajectory, light beige re-
gions indicate the DS phases,⇥ the ground truth positions, blue lines and
green lines are the estimated trajectories with EKF1 and EKF2 respectively,
and black lines are the kinematically computed trajectories.

In order to observe the drift and how drift can affect CoM estimation, we ordered NAO to
walk straight up the inclined road. Figure 3.13 (top) shows the 2D body pose as estimated
by the employed schemes and as computed using the kinematics. Both estimators yielded
pretty similar results while walking straight where the drift was negligible. Small differ-
ences arise from the fact that in the proposed cascade scheme the support foot dynamics
also work as constraints for respecting the robot kinematic chains. Nevertheless, when the
robot started to drift, EKF2 accuracy started to degrade, since the kinematically computed
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body velocity in the world frame is fused. EKF2 final pose error was 7.56cm and 8.43cm

in the x and y-axes and 10.06� for the body yaw angle, while for the EKF1 it was 3.06cm

and 2.88cm in the x and y-axes and 2.81� in the yaw angle. Notice, the kinematically com-
puted odometry was completely off, since it shows that the robot had actually performed
a straight gait. Accordingly, Figure 3.13 (bottom) shows that the same degradation in ac-
curacy is inevitably inherited in the CoM estimation, demonstrating one more time that
accurate rigid body estimation is vital to CoM estimation. In addition, we note that EKF1
yields a more oscillatory response, which is expected since when walking over inclined ter-
rains early swing leg landing commonly occurs causing the robot to rotate and producing
angular momentum, which is not considered in EKF2. All the presented experiments can
be visualized in high resolution at https://goo.gl/7kbcuf.

3.5 Conclusion

In this chapter we proposed a novel cascade estimation scheme that fuses IMU, joint en-
coders, FSR and visual input to provide with accurate estimates of important quantities in
humanoid planning and control.

After implementing the proposed scheme both in simulation and on a real NAO robot,
we demonstrated its accuracy, robustness to disturbances and efficacy in realistic scenar-
ios. Given that the proposed cascade scheme is based on generic/simplified dynamics,
it is readily amenable to generalization to other humanoids. To this end, we released
SEROW [90], an open-source ROS package to reinforce robotic research endeavors.

Nevertheless, state-of-the-art Visual Odometry (VO) or LIDAR Odometry (LO) algo-
rithms implicitly assume that the world the robot exists in is static. To this end, the accu-
racy of the latter approaches significantly degrades in dynamic envinronments i.e. daily
human environments, giving rise to outlier measurements. In the next chapter, we will
propose a robust base estimator that automatically detects and discards outlier VO and
LO measurements.

https://goo.gl/7kbcuf
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Chapter 4

Outlier-Robust State Estimation

The worthwhile problems are the ones you can really solve or help solve, the ones
you can really contribute something to. ... No problem is too small or too trivial
if we can really do something about it.

Richard Phillips Feynman (1918–1988)

Contemporary humanoids are equipped with visual and LIDAR sensors that are effec-
tively utilized for Visual Odometry (VO) and LIDAR Odometry (LO). Unfortunately, such
measurements commonly suffer from outliers in a dynamic environment, since frequently
it is assumed that only the robot is in motion and the world is static. To this end, robust
state estimation schemes are mandatory in order for humanoids to symbiotically co-exist
with humans in their daily dynamic environments. In this chapter, the robust Gaussian
Error-State Kalman Filter for humanoid robot locomotion is presented. The introduced
method automatically detects and rejects outliers without relying on any prior knowledge
on measurement distributions or finely tuned thresholds. Subsequently, the proposed
method is quantitatively and qualitatively assessed in realistic conditions with the full-
size humanoid robot WALK-MAN v2.0 and the mini-size humanoid robot NAO to demon-
strate its accuracy and robustness when outlier VO/LO measurements are present. Finally,
in order to reinforce further research endeavours, our implementation is released as an
open-source ROS/C++ package.

4.1 Aim and Contribution

Modern humanoids are commonly employed with cameras and LIDAR sensors to rein-
force their perception in unstructured environments. Based on consecutive camera frames
one can derive the camera’s egomotion with respect to the environment and directly relate
it to the robot’s motion. In literature this is known as Visual Odometry (VO). Prominent
approaches rely on sparse [92] or semi-dense [91] schemes to facilitate real-time execu-

61
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b
!"

!#

!$

Figure 4.1: Illustration of frames used in base estimation on the 29DoF WALK-MAN
v2.0 humanoid robot: w corresponds to the inertial world frame, b is the
base frame, and blue ellipses indicate the orientation uncertainty.

tion. Similarly, based on sequential LIDAR scans it is straightforward to match the beams
and compute the LIDAR Odometry (LO) [93, 94]. Both approaches are advantageous in
the sense that they are unaffected by slippage in uneven/rough terrain when contrasted
to the kinematically computed leg odometry. However, in all aforementioned schemes,
the world is assumed to be mostly static and only the robot is in motion, e.g. the static
world assumption. Presumably, this is not the case in human daily environments, due to
humans moving along with the robots and/or changing the scene. Hence, the static world
assumption is frequently violated. To this end, in order for humanoids to co-exist with hu-
mans in a dynamically changing environment it is mandatory to robustify their odometry
estimates. Interestingly, in [74] a base estimator with outlier detection for quadruped lo-
comotion was presented. The authors of [74] utilized a probabilistic threshold to quantify
weather a measurement is an outlier or not before fusion. Nevertheless, this raises two
important questions: a) how can this threshold be determined in advance and b) does this
threshold depend on the conditions at hand? Other works [95], not in the scope of base
estimation, assumed that the measurements follow a Student-t distribution. Again the
obvious question arises whether this is a valid assumption in the case of VO/LO measure-
ments.

In this chapter, we propose a novel formulation of the Error-State Kalman Filter (ESKF)
which is robust to outlier VO/LO measurements that can commonly occur in humanoid
walking in dynamic human environments. The contribution to the state-of-the-art is as
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follows:

• The Robust Gaussian ESKF (RGESKF) is mathematically established based on [53,96].
More specifically, we present an analytical solution for the general nonlinear Gaus-
sian formulation for outlier detection of [96]. The latter results in a computationally
efficient implementation that accomplishes real-time execution.

• The above method does not rely on prior assumptions regarding the measurements
probability distributions [95] neither thresholding [74] for the imminent outlier de-
tection.

• We quantitatively and qualitatively assess the proposed method and demonstrate
its accuracy and robustness in real-world conditions with two robots, the full-size
humanoid WALK-MAN v2.0 [97], and a mini-size NAO humanoid.

• Since this framework relies on sensing that is commonly available on contemporary
humanoids and furthermore, is based on generic nonlinear dynamics, we release
an open-source ROS/C++ implementation [90] to reinforce further research endeav-
ours.

4.2 Base Estimation Revisited

Kuindersma et al. [53], presented a base estimator with Newton-Euler dynamics of a float-
ing mass that is effectively used in humanoid walking. At time t, the state to be estimated
is:

xt =

h
b
vb

w
Rb

w
pb b! ba

i>

where w
pb, w

Rb denote the base position and rotation with respect to the world frame w,
b
vb is the linear velocity, and b!, b↵ are the gyro and accelerometer biases, in the base

frame b. However, w
Rb is an overparametrization of the base’s orientation. To this end,

to track the orientation uncertainty we consider perturbation rotations in the base frame.
Thus, if the true base rotation matrix is w

Rb then w
Rb =

w
R̂be

�[⇥] where w
R̂b, is the esti-

mated rotation matrix and�denotes the perturbation exponential coordinates. For clarity
all aforementioned quantities are depicted in Figure 4.1.

4.2.1 Process Model

In order to properly define the nonlinear dynamics f(xt, ut,wt), let b
!̄b =

b
!

imu
b
� b!

and b
↵̄b =

b
↵

imu
b
� b↵, be the IMU bias-compensated gyro rate and linear acceleration,

respectively, then:
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whereut =

h
b
!

imu
b

b
↵

imu
b

i
is the input vector, g is the gravity vector, wt =

h
w! wa wb! wb↵

i
⇠

N (0,Qt) is the input�process noise that follows a normal zero mean distribution with co-
variance Qt, and [⇥] is the wedge operation.

Subsequently, denoting the error state vector as:

�xt =

h
b
�vb �

w
�pb �b! �ba

i>
(4.2)

the error-state dynamics assume the following linear form:

�ẋt = Ft�xt +Ltwt (4.3)

with
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To this end, the ESKF predict step is readily realized as:

x̂
�
k
= f

d

k (x̂
+
k�1,uk,0) (4.6)
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d
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+
k�1F
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k +L

d

kQ
d

kL
d>
k (4.7)

where the superscript d indicates the discretized variables at the discrete-time k, which
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are obtained by means of the Euler method for simplicity. Moreover, x̂�
k

, P�
k

denote the
ESKF mean estimate and error covariance respectively, prior to update, while x̂

+
k�1, P+

k�1

are the same quantities after the update at discrete-time k � 1.

4.2.2 Measurement Model

The output model of [53], was formulated with the base velocity using the robot’s kinemat-
ics and the base position, orientation obtained with a Gaussian particle filter on LIDAR
measurements, all expressed in the world frame. In this chapter, besides the kinematically
computed base velocity, we consider external measurements of the base position and ori-
entation from either LIDAR Odometry (LO) or Visual Odometry (VO). Nevertheless, such
measurements can potentially suffer from outliers in human daily environments due to
the static-world assumption, as presented in Sec. 4.1. Thus, we distinguish the latter with
the superscript o for possible outliers as:

y
o

k =

h
o(xk)���nkz }| {"

w
pb + npb

w
Rbe

nb[⇥]

#
(4.8)

where nk =

h
npb nb

i
denote the external position and orientation measurement noise

that follows normal zero mean distribution with covariance R
o

k
. The operator � denotes

the proper summation which applies to rotation matrices as composition of rotations.

On the contrary, we normally consider the kinematically computed base velocity as:

y
n
k =

h
n(xk)+nvbz }| {

w
Rb

b
vb + nvb (4.9)

with nvb ⇠ N (0,Rn

k
) be the normal zero mean kinematic velocity noise with covariance

R
n

k
. The above measurements do not accumulate leg odometry drift during the gait and

are commonly not contaminated with outliers when accurate contact states are estimated [75,
76]. Thus, we distinguish them with the superscript n for nominal measurements that will
be not examined for outliers.

To derive the linearization of Eq. (4.8) we consider the error exponential coordinates
related with the external rotation [49], then:

�y
o

k = H
o

k�xk + nk (4.10)
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with
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On the other hand, the linearization of (4.9) is straightforward to compute:
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Subsequently, the ESKF update step is formulated as:
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where the superscript * can be either o or n depending on the set of measurements consid-
ered.

4.2.3 Outlier Detection

In this section, the main result of this chapter is presented. The outlier detection frame-
work presented in [96] is integrated with the ESKF to introduce a base estimator robust to
outliers.

In order to detect outlier measurements, Wang et al. [96], utilized a beta-Bernouli distri-
bution to probabilistically quantify whether a measurement is outlier or not. Beta-Bernouli
distributions have been proved effective in various outlier resilient algorithms in the past [98,
99]. To this end, in [96] a binary indicator variable zk was introduced. Accordingly, when
zk is one, yo

k
is a nomimal measurement while when zk is zero, yo

k
is an outlier. The latter

can be formulated as:

p(yo

k|xk, zk) = N (h
o
(xk),Rk)

zk (4.18)

Evidently, when zk = 0, Eq. (4.18) becomes a constant and cannot contribute to the state
estimation, since the distribution is measurement independent.

Subsequently, in order to properly infer the indicator variable, a beta-Bernoulli hierar-
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chical prior [100] is enforced. In such a way, zk is a Bernoulli variable influenced by ⇡k:

p(zk|⇡k) = ⇡zk
k
(1� ⇡k)

(1�zk) (4.19)

where ⇡k follows a beta distribution:

p(⇡k) =
⇡e0�1
k

(1� ⇡k)f0�1

B(e0, f0)
(4.20)

with B denoting the beta function, parametrized by e0 and f0.

Since, zk is modeled as a beta-Bernoulli variable, when the mean hzki is close to zero,
e.g. 10�5, we treat the measurement as an outlier and ignore it, thus:
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otherwise, we weight the measurement noise R
o

k
as:

R
o

k = R
o

k/hzki (4.23)

and perform the regular update as in (4.14)-(4.17).

The expectation of zk is computed in each iteration as follows:

hzki =
p(zk = 1)

p(zk = 1) + p(zk = 0)
(4.24)

with
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1
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p(zk = 0) = ce (fk)� (ek+fk) (4.26)

where c is the normalization constant to guarantee that (4.25), (4.26) are proper probabili-
ties, denotes the digamma function [100], and Bk is given by:
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The integral in (4.27) is not straightforward to compute in the general nonlinear Gaus-
sian case. In [96] the cubature rules [101] to obtain an approximate solution are used. In
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the context of the EKF, (4.27) can be derived analytically as:
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The proof is given for completeness in the section 9.6 of appendix B.
Finally, ek, fk are updated in each iteration as:

et = e0 + hzki (4.29)

ft = f0 + 1� hzki (4.30)

The proposed robust Gaussian ESKF (RGESKF) is summarized in Algorithm 1. We note,
that no further knowledge of the measurement distribution [95] other than the covariance
R

o

k
is needed or empirically obtained thresholds as in [56] are required to perform outlier

detection. The only tunable parameters are the beta-Bernoulli prior parameters e0 and
f0. Experimentally, e0 and f0 have been set to 0.9 and 0.1 respectively. The latter values
have been used in all conducted experiments, including real tests with the two robots (cf.
Sec. 4.3 below) and in our open-source implementation [90]. As also stated in [96], we
observed that the outlier detection process is insensitive to the latter parameters as long
as e0/(e0+f0) is close to 1. Presumably, this is the case, since it is more probable to observe
a nomimal measurement rather than an outlier.
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Algorithm 1: Robust Gaussian ESKF
Data: yo

1:T ,y
n

1:T , x̂0,P0,Q1:T ,Ro

1:T , Rn

1:T
Result: x̂+

k
, P

+
k

for k = 1 : T
1 for k = 1, . . . , T do
2 Compute x̂

�
k

and P
�
k

via (4.6), (4.7);
3 Initialize i = 0, e0 = 0.9, f0 = 0.1, and (i)zk=1;
4 repeat
5 Update R

o

k
with (4.23);

6 i = i+ 1;
7 if (i�1)zk > 10

�5 then
8 Update (i)

x̂k and (i)
P

+
k

via (4.14)-(4.17) with position and orientation;
9 Update (i)zk via (4.24);

10 Update (i)ek and (i)fk via (4.29), (4.30);
11 else
12 Update (i)

x̂k and (i)
P

+
k

via (4.21), (4.22);
13 break;
14 end
15 until k(i)x̂k � (i�1)

x̂kk < 10
�3;

16 x̂
+
k
=

(i)
x̂
+
k

and P
+
k

=
(i)
P

+
k

;
17 Update x̂k and P

+
k

via (4.14)-(4.17) with velocity;
18 end
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Figure 4.2: Illustration of conducted experiments – Left: WALK-MAN v2.0 and VO out-
liers, Middle: NAO and VO outliers, Right: NAO and LO outliers.

4.3 Results

In this section, we outline representative results that demonstrate the accuracy and effi-
ciency of the proposed scheme under real world conditions. Two actual humanoids were
employed in our experiments, the full-size 29DoF WALK-MAN v2.0 humanoid [97] and a
mini-size NAO robot. The WALK-MAN v2.0 robot uses the walking module introduced
in [102, 103], with step time of 0.8s, using the XBotCore [104] and OpenSoT [105] control
infrastructure in a 500Hz control-loop. The walking module utilized with the NAO robot
is based on [67] with a step time of 0.4s and achieves a control-loop of 100Hz. The IMUs
noise standard deviations used in our experiments are shown in Table 4.1. For the WALK-
MAN v2.0 VectorNav VN-100 IMU, we employed the noise densities given by the manu-
facturer at 200Hz, while for the IMU utilized in the NAO experiments an Allan variance
analysis [106] was performed with 13 hour stationary data at 100Hz to properly derive the
values.

Additionally, joint angle measurements are available at 200Hz for the WALK-MAN v2.0
robot and at 100Hz for NAO.

Table 4.1: IMU Noise stds
w!(

rad

s
) w↵(

m

s2
) wb!(

rad

s2
) wb↵(

m

s3
)

WALK-MAN 9.77e-4 2.21e-2 1.53e-5 2.43e-4
NAO 5.63e-3 1.58e-2 9.66e-4 4.33e-3
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To facilitate a quantitative assessment, we compare the proposed RGESKF, to the ESKF
without outlier detection, and to an ESKF where the outlier detection method in [74] is
employed. The latter is termed as ESKF-TH since in each experiment we had to fine tune
in advance a probabilistic threshold TH to achieve accurate detection according to the
Mahalanobis distance dM :

dM =
�
y
o

k � h
o
(x̂

�
k
)
�>

S
�1
k

�
y
o

k � h
o
(x̂

�
k
)
�

(4.31)

with

Sk = H
o

kP
+
k
H

o>
k +R

o

k (4.32)

In all our experiments, the aforementioned estimation schemes achieved real-time ex-
ecution at the corresponding IMU rates.

4.3.1 VO Outliers

In the case of VO, we conducted two independent experiments, one with the WALK-MAN
v2.0 while the ground-truth was recorded with an OptiTrack motion capture system and
another one with a NAO robot navigating to a desired position in space. In the former
case the PointGrey BlackFly BFLY-U3-23S6C camera at 40fps and 1080p resolution was
used while in the latter, the Matrix-Vision mvBlueFOX-MLC-200w running at 30fps and
VGA was utilized. Both cameras are monocular and global-shutter. To obtain the VO in
both cases we used SVO [91]. The measurement noise standard deviations used in our VO
experiments, are listed in Table 4.2.

In the WALK-MAN v2.0 experiment, shown in Fig. 4.2 (left), a human unexpectedly
crosses the Field of View (FoV) of the robot, causing sudden changes in the image inten-
sity levels, and furthermore removes an object that is a strong feature source for VO. As a
result, the scene changes rather drastically and henceforth, VO diverges while generating
consecutive outlier measurements.

In Figure 4.3, the estimated 3D position and orientation errors w.r.t ground-truth for
all three employed schemes is illustrated. Notice, at t = 17.6s where the human appears in
the FoV, VO starts to misbehave and at t = 19.9 when static scene changes, VO eventually

Table 4.2: VO/LO and Kinematic Measurement Noise stds
npb(m) nb(rad) nvb(

m

s
)

WALK-MAN - VO 0.035 0.05 0.015
NAO - VO 0.04 0.05 0.013
NAO - LO 0.04 0.05 0.013
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Figure 4.3: Top: 3D - position error, Bottom: 3D - orientation error for the WALKMAN
2.0 - VO experiment, blue lines indicate the VO, red lines the proposed Ro-
bust Gaussian ESKF, green lines the ESKF, and black lines the finely tuned
ESKF-TH. The first vertical dotted line corresponds to when a human en-
ters the FoV of the camera, while the second one when he removes a strong
feature source for VO which diverges.
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Table 4.3: RMSE for the WALK-MAN v2.0 VO experiment
w
p
x

b

w
p
y

b

w
p
z

b
roll pitch yaw

VO 0.217 0.162 0.043 0.075 0.022 0.160
ESKF 0.071 0.045 0.009 0.066 0.011 0.105

RGESKF 0.018 0.033 0.003 0.062 0.011 0.098
ESKF-TH 0.017 0.025 0.003 0.059 0.010 0.102

diverges. Consequently, the ESKF without outlier detection diverges as well and thus large
positional errors are recorded. Nevertheless, this is not the case for the RGESKF and the
ESKF-TH, where low errors were observed for both the position and the orientation. To
finely tune the ESKF-TH, we had to run the filter and log the Mahalanobis distances (4.31),
in order to determine a proper threshold TH. A value of TH = 23 achieved the lowest
estimation error. On the contrary our approach, RGESKF, which does not rely on finely
tuned threshold or prior knowledge on the measurements, achieved very accurate and
similar results to the tuned in advanced ESKF-TH. The Root-Mean Square Error (RMSE)
for this experiment is shown in Table 4.3. All employed schemes realized errors in the case
of yaw estimation since it is unobservable [56, 57].

Similarly in the NAO’s case, a human, present in the scene removes a strong feature
source for VO, while the robot is walking. For clarity, this is illustrated in Fig. 4.2 (middle).
Since, we do not have ground-truth data available for the NAO experiments and given
that a fine tuned ESKF-TH can yield pretty accurate estimation, as evident by our previous
experiment, we assume it as baseline to compare to. Subsequently, to properly derive
the threshold needed, we computed (4.31) at t = 39.6s, the exact time when the human
changes the scenery. The previous, was found to be TH = 16. Figure 4.4 demonstrates
the 3D position and orientation error w.r.t the ESKF-TH. As illustrated, the ESKF realizes
large errors for both positional and rotational quantities, when VO diverges at t = 39.6s.
However, once again the RGESKF yielded practically identical results to the ESKF-TH as
also evident in Table 4.4, where the RMSE is presented.

Table 4.4: RMSE w.r.t ESKF-TH for the NAO VO experiment
w
p
x

b

w
p
y

b

w
p
z

b
roll pitch yaw

VO 0.246 0.653 0.227 0.066 0.246 0.152
ESKF 0.238 0.643 0.223 0.037 0.061 0.146

RGESKF 2.8e-6 2.6e-7 2.3e-6 6.8e-7 1.6e-6 9.2e-6
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Figure 4.4: Top: 3D - position error, Bottom: 3D - orientation error for the NAO -
VO experiment, blue lines indicate the VO, red lines the proposed Robust
Gaussian ESKF, and green lines the ESKF. The vertical dotted line specifies
when a human removes a strong feature source for VO which diverges.
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Figure 4.5: 2D - pose error, for the NAO - LO experiment, blue lines indicate the LO,
red lines the proposed Robust Gaussian ESKF, and green lines the ESKF.
The vertical dotted lines corresponds to when a human suddenly covers
the robot’s LiDAR with a box, causing LO to diverge.

4.3.2 LO Outliers

Next, we examine how LO outlier measurements can degrade the estimation performance.
To do so, we utilize an RP-LiDAR360 mounted on NAO’s head to obtain planar scans every
5Hz. Subsequently, we employed RF2O [93] to compute the 2D pose e.g. position x,y and
yaw, with scan matching. The measurement noise assumed in this experiment is shown
at Table 4.2.

In order to generate LO outliers, a human covers the spinning laser while NAO walks,
as depicted in Fig. 4.2 (right). This corresponds to the scenario where a robot in motion
is suddenly surrounded by people. To this end, the static world used to derive the LO is
drastically changed which in turn gives rise to outliers.

In the conducted experiment, NAO is commanded to walk straight, stop, and then walk
straight again. While walking a human covers the LiDAR twice to generate LO outliers. As
previously, we compare the estimation results to the ESKF-TH, which we have accurately
tuned in advance as before. A threshold of TH = 9 was experimentally found to be suffi-
cient for this specific experiment. The 2D pose error is shown in Figure 4.5. Time t = 21.5s

marks the instant where the human covers the LiDAR for the first time. At that time, a large
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Table 4.5: RMSE w.r.t ESKF-TH for the NAO LO experiment
w
p
x

b

w
p
y

b
yaw

LO 0.197 0.066 0.174
ESKF 0.180 0.054 0.173

RGESKF 0.004 0.002 0.006

jump in the LO position in x axis is recorded which in turn causes large error to the ESKF es-
timation in the same axis. Subsequently, after 23.5s the human covers the LiDAR one more
time. This time larger errors are evident in the base’s y position and the base’s yaw angle
causing again the ESKF to misbehave. Interestingly, the proposed scheme was proven to
be robust and automatically ignore the inaccurate LO measurements. The RMSE for this
particular experiment is indicated in Table 4.5. As demonstrated, the RGESKF yields a sim-
ilar estimation result for all quantities of interest when compared to a finely tuned ESKF-
TH. All our experiments are illustrated in high quality at https://youtu.be/ojogeY3xSsw.

4.3.3 Qualitative Assessment

As evident, the proposed RGESKF is characterized by high accuracy and strong outlier
rejection capabilities. The latter hold true, even when consecutive VO/LO outlier mea-
surements were observed. Additionally, no prior knowledge of the measurement distri-
butions [95] or finely tuned thresholds [74] are required for the success of the proposed
scheme. On the contrary, notice that the ESKF-TH needed three different thresholds, one
for each experiment, to achieve accurate performance. This is evident by (4.31), where an
optimal threshold depends on the measurement noise R

o

k
and the error-state uncertainty

P
+
k

. In addition, in all our VO/LO experiments, the outlier detection part in Algorithm 1
took at most three iterations to complete. Thus, in the open-source released implementa-
tion [90], we loop three times instead of computing in every iteration the condition in line
15. Moreover, it is noteworthy that in the VO experiments the initial derived SVO orienta-
tion can be erroneous. We suspect this is probably due to a) inaccurate scale initialization,
b) imperfect extrinsic and intrinsic calibrations. Nevertheless, as also seen in the results,
this does not degrade the estimation accuracy since the fused IMU and kinematically com-
puted base velocity measurements also carry information that contribute to the orienta-
tion estimation. Furthermore, it is important to clarify that the RGESKF does not only de-
tect and reject outliers as the ESKF-TH does, but automatically weights the measurement
noise according to (4.23) in order to avoid information loss when non-ideal/non-outlier
measurements arrive. Finally, the proposed method can be appropriately employed to
other robotic platforms, such as Unmanned Aerial Vehicles (UAVs), which also utilize the
ESKF [107] for state estimation.

https://youtu.be/ojogeY3xSsw


4.4. Conclusion 77

4.4 Conclusion

Prominent examples of VO/LO approaches readily assume that the world in which the
robot acts, is static. Nevertheless, to enable humanoids co-exist with humans in dynami-
cally changing environments, their state-estimation schemes must be robustified. In this
chapter, we tackled the presence of VO/LO outlier measurements in base estimation by
proposing the RGESKF. After mathematically establishing the proposed scheme, we pro-
vided a quantitative and qualitative assessment with two robots, namely a full-size WALK-
MAN v2.0 humanoid and a mini-size NAO robot, demonstrating the accuracy and effi-
ciency of the proposed scheme in real-world conditions. Finally, in order to reinforce fur-
ther research endeavours, we released our implementation as an open-source ROS/C++
package [90].

However, when computing the base velocity needed in the EKF measurement model,
we’ve implicitly assumed that the contact status of the legs is known in advanced. Contact
detection is a topic of vital importance in legged robotics with application in gait control
and state estimation. In the next chapter, we will propose an unsupervised learning frame-
work that accurately estimates the gait phase and thus, implicitly the contact status.
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Chapter 5

Unsupervised Gait-Phase Estimation

Look up at the stars and not down at your feet. Try to make sense of what you
see, and wonder about what makes the universe exist. Be curious.

Stephen Hawking (1942–2018)

Contact detection is an important topic in contemporary humanoid robotic research.
Up to date control and state estimation schemes readily assume that feet contact status
is known in advance. In this chapter, we elaborate on a broader question: in which gait
phase is the robot currently in? We introduce an unsupervised learning framework for
gait phase estimation based solely on proprioceptive sensing, namely joint encoder, iner-
tial measurement unit and force/torque data. Initially, a meaningful physical explanation
on data acquisition is presented. Subsequently, dimensionality reduction is performed
to obtain a compact low-dimensional feature representation followed by clustering into
three groups, one for each gait phase. The proposed framework is qualitatively and quan-
titatively assessed in simulation with ground-truth data of uneven/rough terrain walking
gaits and insights about the latent gait phase dynamics are drawn. Additionally, its efficacy
and robustness is demonstrated when incorporated in leg odometry computation. Since
our implementation is based on sensing that is commonly available on humanoids today,
we release an open-source ROS/Python package to reinforce further research endeavors.

5.1 Aim and Contribution

Contemporary research approaches in motion planning, control and estimation for legged
robots readily assume that contact states are known a priori. Whole body control [61–63]
and gait planning [36, 64, 65] are explicitely based on contact models. Even when simpli-
fied dynamical models are employed in the design [10,66,67], the contact state is implicitly
considered in the computation of the Center of Pressure (COP). Nevertheless, detecting
ground contact and furthermore, determining which is the support leg e.g. experiences a

79
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rigid contact with the ground, is non-trivial in legged robotics [68]. In all state-of-the-art
approaches, the objective was to determine whether a specific foot is in contact or not. In
this chapter we raise a broader question: in which gait phase is the robot currently in? To
this end, we propose a holistic framework based on unsupervised learning from proprio-
ceptive sensing that accurately and efficiently addresses this problem. The contributions
of this work to the state of art are:

• Robust classification to three gait phases, namely Left Single Support (LSS), Double
Support (DS), and Right Single Support (RSS).

• Fusion of joint encoder, IMU, and F/T measurements in a solely unsupervised learn-
ing framework.

• A meaningful physical explanation on this particular data selection is provided.

• It is demonstrated that gait phase dynamics are low-dimensional which is another
indication pointing towards locomotion being a low dimensional skill.

• Given that the proposed framework utilizes measurements from sensors that are
commonly available on humanoids nowadays, we offer the Gait-phase Estimation
Module (GEM), an open-source implementation to reinforce further research en-
deavors [108].

5.2 Unsupervised Gait Phase Estimation

In this section the proposed gait phase estimation framework is presented. The latter illus-
trated in Figure 5.1, is completely unsupervised, meaning no labels or ground-truth data
are required in training. Initially, we argue on the suitability of unsupervised learning for
the task at hand. Next, a meaningful physical explanation on data acquisition is given. Sub-
sequently, dimensionality reduction is performed to obtain a compact low-dimensional
feature representation followed by clustering into three groups, one of each gait phase.

5.2.1 Why Unsupervised Learning?

Let the Newton-Euler equations of motion for a humanoid robot:

m(c̈� g) =

X

i

fi (5.1)

mc⇥ (c̈� g) + L̇ =

X

i

si ⇥ fi + ⌧i (5.2)
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Figure 5.1: Gait-Phase Estimation Module.

where c is the CoM position, c̈ is the CoM acceleration, L̇ is the rate of angular momentum,
fi and ⌧i are the contact forces/moments, si are the contact points, m is the mass of the
robot, and g is the gravity vector.

In addition, for a foot to experience a rigid contact with the ground and do not slip or
rotate, the following inequalities must hold:

p
(fx)2 + (fy)2  µx,yf

z (5.3)

�⌧y/fz  px (5.4)

⌧x/fz  py (5.5)

|⌧ z|  µzf
z (5.6)

where µx,y, µz are the contact friction coefficients, and p is the COP.

Accordignly, while walking, (5.1) and (5.2) with the contact constraints (5.3)-(5.6) de-
scribe the humanoid’s motion during both SS and DS phases. Nevertheless, the gait phase
cannot be derived analytically from the above equations since the contact friction coeffi-
cients are commonly unknown and depend on environmental properties. To this end, the
gait phase needs to be inferred from data. In addition, since ground-truth contact labels
are very hard to obtain even in simulation, unsupervised learning is appropriate for the
task at hand.
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5.2.2 Data Acquisition

As evident by (5.1) and (5.2), the current contact status, and hence the gait phase, gives
rise to the CoM dynamics and the angular momentum around the CoM. Furthermore,
during various omni-directional gaits the CoM motion is similar to the body motion [87],
since most of the humanoid’s mass commonly exists above the legs. Therefore, the angular
momentum around the CoM can be readily approximated by the body’s angular momen-
tum [49].

Thus, it is meaningful to infer the gait phase based on a) the kinematically computed
CoM position, relative to the base frame, b

c, b) the body’s ✓roll and ✓pitch angles, as esti-
mated with an IMU, and c) the contact wrenches (

L,R
f ,L,R ⌧ ) as measured by F/T in the

left and right leg, respectively. All aforementioned quantities can be readily computed or
directly measured from three different sensor sources, namely joint encoders, IMU and
F/T.

During omni-directional walking, bc, ✓roll and ✓pitch realize oscillatory behaviors. In ad-
dition, when taking the differences�f =

L
f � R

f and�⌧ =
L
⌧ � R

⌧ similar oscillatory
patterns arise. This is illustrated in Figure 5.2, where four indicative quantities are shown
for the sake of brevity. Therefore, the latter quantities are excellent candidates to facili-
tate clustering [109]. Note, that we don’t include the ✓yaw angle in our data, since it is not
observable [56, 57] and does not provide useful information about the gait phase.

Subsequently, to remove possible offsets in our data caused either by kinematic or IMU
biases and to consider a more dynamical aspect of the data, we take the sequential differ-
ences:

b�cn =
b
cn � b

cn�1 (5.7)

�✓rolln = ✓rolln � ✓rolln�1 (5.8)

�✓pitchn = ✓pitchn � ✓pitch
n�1 (5.9)

where the subscript n stands for the n-th measurement. Summarizing the dataset D is 11
dimensional:

D =

8
><

>:
b�cn, �✓

roll
n , �✓pitchn ,�f ,�⌧| {z }

x(n)

9
>=

>;
2 R11⇥N (5.10)

with N be the size of the dataset and x
(n) be the n-th data in the set. Notice, all data are

normalized in the range [�1, 1] after acquisition.
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Figure 5.2: Indicative segment of the dataset D. Top: lateral CoM and pitch trajec-
tories. Bottom: Differential normal force and lateral torque for omni-
directional gaits on uneven/rough terrain with the NASA’s Valkyrie hu-
manoid in Gazebo. Oscillatory patterns emerge in all quantities.
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5.2.3 Dimensionality Reduction

In order to get a compact representation of the data, reduce the noise in the dataset, ex-
tract useful features from it and facilitate their visualization, we search for an embedded
low-dimensional manifold.

Dimensionality reduction can be beneficial when a representative latent space is hid-
den in the data. Furthermore, as we will see in section 5.3, it is mandatory for the success
of the proposed framework since noisy data/outliers tend to degrade the clustering accu-
racy.

In this chapter, we employ two dimensionality reduction approaches, namely the Prin-
cipal Component Analysis (PCA) and the autoencoders [110]. The former is a linear projec-
tion method while the latter employs Neural Networks (NN) that can discover nonlinear
relationships between the high dimensional data and the latent space, yielding potentially
a more accurate low-dimensional representation. Both approaches minimize the reprojec-
tion error:

J = kD � D̂k2F (5.11)

where F is the Frobenius norm and D̂ is the reconstructed dataset. A notable difference
is that PCA computes an orthonormal mapping, thus the linear projection, while autoen-
coders generate a nonlinear mapping with no such constraints.

5.2.4 Clustering

Based on the obtained low-dimensional space we cluster the latent data into three groups,
one for each gait phase, namely LSS, DS, RSS.

K-means, being a common clustering technique, searches for cluster centers lk by
minimizing the squared euclidean distance of each data from a cluster center:

J =

NX

n=1

KX

k=1

kx(n) � lkk2 (5.12)

where K is the number of clusters, in our case K = 3, e.g. the number of gait phases.
Consequently, K-means and its variants can only identify spherical clusters with the

same radius. Thus, in order to cluster data that don’t belong to spherically shaped clusters,
i.e. ellipsoids, a more robust approach is needed. In addition, K-means does not take into
account the density of the data, meaning that cluster centers will be always located where
dense data groups are, ignoring any underlying data distribution.

To this end, we employ the Gaussian Mixture Models (GMMs) for clustering. GMMs is
a kernel density estimation method which is commonly applied to approximate the prob-
ability distribution of multi-modal data as a sum of Gaussian distributions. Training is
done with Expectation-Maximization (EM) in two steps:
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E-step: Compute the responsibilities:

�(n)
k

=
⇡kN (x

(n)|µk,⌃k)P
K

j=1 ⇡jN (x(n)|µj ,⌃j)
(5.13)

with �(n)
k

be the probability of the n-th data to be generated from the k-th Gaussian distri-
bution.

M-step: Compute the model parameters:

µk =
1

Nk

NX

n=1

�(n)
k

x
(n) (5.14)

⌃k =
1

Nk

NX

n=1

�(n)
k

(x
(n) � µk)(x

(n) � µk)
> (5.15)

with ⇡k =
Nk

N
and Nk =

NX

n=1

�(n)
k

(5.16)

where µk and ⌃k are the mean and covariance of the k-th Gaussian, respectively.
With GMMs the cluster shape is directly related to the estimated cluster covariance,

thus flexible and elliptical clusters can be obtained. In addition, for each data item a mem-
bership probability is assigned to declare its assignment to any of the three clusters. On
the contrary, in the case of K-means, each data is directly assigned to a specific cluster.
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Table 5.1: Clustering Accuracy in 11-D.
DS LSS RSS

K-means 66% 100% 100%

GMMs 66% 100% 100%

5.3 Results

The proposed framework has been implemented and experimentally validated. In the cur-
rent section we present quantitative results that demonstrate the accuracy in uneven/rough
terrain gaits. Subsequently, the efficiency is evaluated when computing leg odometry in a
simulated gait. Since, to the best of our knowledge, there aren’t contemporary works that
directly estimate the gait phase, our comparisons are in all cases against ground-truth
data.

5.3.1 Experimental Validation

Initially, to obtain quantitative assessment results, we performed omni-directional gaits
on uneven/rough terrain with the NASA’s Valkyrie robot in Gazebo for approximately 15

minutes to record the training dataset. The IMU, joint encoder, and F/T measurements
are available at a 500Hz rate, thereby resulting in a dataset of approximately 450000 entries.
In addition, i.i.d. Gaussian noise is added to the measurements to provide an accurate
assessment with realistic noise levels.

Furthermore, we logged the ground-truth forces fgt, torques ⌧gt, and COP pgt that
Valkyrie experienced in each leg while walking, as well as the true contact friction coef-
ficients (µx,y, µz). The latter varied from 0.7 to 1.5 depending on the environment surfaces.
Subsequently, to generate the gait phase ground-truth labels, at each sample we evaluated
the contact constraints (5.3)-(5.6). If those hold for both legs, then both feet experience a
rigid contact with the ground and the robot is in DS. Accordingly, if the latter are true for
the left or the right leg only, then the robot is in LSS or RSS, respectively. The ground-truth
labels serve only to quantify the accuracy of the clustering methods.

As already detailed in section 5.2.3 the raw 11-D data tend to carry redundancies and
be quite noisy, mostly due to outliers. The latter are observed in abnormal gaits, i.e. when
the robot contact the ground earlier than expected very large GRFs are measured. This
was also experimentally verified by the fact that clustering with the original 11-D dataset
was erroneous as shown in Table 5.1, where a significant error in the DS phase is observed
for both K-means and GMMs.

Accordingly, the intermediate step of dimensionality reduction plays an essential role
in conditioning the data. In order to determine the appropriate latent dimension, data
were projected with PCA to 3D and 2D and in both cases the reprojection error and the
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Figure 5.3: Dimensionality reduction. Left: Latent Space generated with PCA. Right:
Latent Space generated with Autoencoders.

explained variance ratio of each principal component [109] were computed. Interestingly,
we discovered that the 2D reprojection error was 10e � 04 and pretty similar to the one
obtained with the 3D projection namely, 7.81e � 04. Furthermore, the first principal com-
ponent could represent 90.6% of the data variance while the second one another 3.7%. To
this end, we concluded that a 2D latent space, shown in Figure 5.3 left, can effectively rep-
resent the training dataset.

Subsequently, autoencoders were employed to investigate whether a lower reprojec-
tion error could be achieved when reducing to 2D. While experimenting with the NN struc-
ture and activation functions, we observed that good results were obtained when the en-
coder was formulated with two hidden layers and linear activation functions which facili-
tated reduction to five and two dimensions sequentially. For the decoder part the reverse
structure was used. The obtained reprojection error was 8.83e � 04, which is almost iden-
tical to the one obtained with PCA. Additionally, the derived latent-space has the same
shape as the one computed with the PCA transformation but different orientation and
scale (Figure 5.3 right). Accordignly, it is deduced that linear projection is sufficient for this
particular data selection and, therefore, is adopted for simplicity in the proposed frame-
work. The extracted latent-space with the ground-truth labels is illustrated in Figure 5.4.

Next, the 2D-latent space is clustered into three groups with K-means as shown in Fig-
ure 5.5. When contrasting the obtained clusters to the ground-truth ones, a significant
error in the DS phase can be observed. This is due to K-means clustering the space into
three equal parts. Furthermore, this is also evident when computing the confusion matrix
(Figure 5.6) where as expected all data belonging to either LSS or RSS have been correctly
assigned but at the cost of misclassifying the DS phase.

To significantly improve the clustering accuracy, one needs to search for non-spherical
clusters. Thus, the GMMs, as presented in section 5.2.4, are employed to perform proba-
bilistic clustering. The obtained clusters are illustrated in Figure 5.7. Although, visually
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Figure 5.4: Latent space with the Ground-Truth labels, orange indicate the RSS, blue
the DS, and green the LSS gait phase. Red crosses and white ellipses are
the classes means and covariances respectively.

there exist some points that are incorrectly classified as DS, most points have been cor-
rectly classified according to the estimated densities. This is also verified when computing
the confusion matrix, shown in Figure 5.8, where we notice that a very small average classi-
fication error is achieved, namely 5% for all classes, verifying the accuracy of the proposed
framework.
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Figure 5.5: Clustering obtained with K-means. Orange indicate the RSS, blue the DS,
and green the LSS gait phase. Red crosses are the cluster means.

Figure 5.6: K-means confusion matrix. Note the significant error in the DS phase clus-
tering.
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Figure 5.7: Clustering obtained with GMMs. Orange indicate the RSS, blue the DS,
and green the LSS gait phase. Red crosses and white ellipses are the cluster
means and covariances respectively.

Figure 5.8: GMMs confusion matrix. Clustering is more accurate on average when
contrasted to K-means.
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Table 5.2: Leg Odometry RMSE.
wpx(m)

wpy wpz roll (rad) pitch yaw
0.0038 0.0231 0.0199 0.0044 0.0034 0.0064

5.3.2 Application to Leg Odometry

Next, the trained GMMs are employed to predict the gait phase in real-time in order to
compute the leg odometry, namely the 3D body position w

pb and rotation w
Rb with re-

spect to the world frame w, for an uneven terrain gait. In this particular gait, Valkyrie
climbs up and down a terrain of various friction coefficients.

To compute the leg odometry we initialize the affine transformation linking the cur-
rent support foot to world frame as w

Ts. Subsequently, when the GMMs predict a single
support exchange, we compute the affine transformation from the new support foot to the
previous one ps

Ts with kinematics and update w
Ts as:

w
Ts(t) =

w
Ts(t� 1)

ps
Ts(t) (5.17)

where t indicates the discrete-time index.
Leg odometry w

Tb is computed at each sampling instant as:

w
Tb(t) =

w
Ts(t)

s
Tb(t) (5.18)

where s
Tb is the kinematically computed transformation from the body to the current sup-

port foot frame.
In Figure 5.9 the 3D body position and orientation error, when contrasted to the ground-

truth trajectories, is illustrated. The conducted gait was cyclic, meaning that Valkyrie was
initialized in DS, then went to LSS followed by RSS and the pattern repeats. Thus, for
visualization purposes we highlight only the DS phase, which as evident in the previous
section is harder to estimate. The final drift was �0.7, 3.3, and �2.0 cm for the position
and 1e � 5, 2.5e � 5, and 0.0045 rad for the orientation, respectively for this 76s gait. The
RMSE for all quantities of interest is shown in Table 5.2. The employed GMMs predicted
with 96% accuracy the DS phase, with 89% the LSS and 94% the RSS phase.
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Figure 5.9: Top: 3D Body position error, Bottom: 3D Body orientation error. Blue
regions indicate the estimated DS phases. Since this is a cyclic gait, the
first white region corresponds to a LSS phase while the next to a RSS phase
and the pattern repeats.
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5.3.3 Qualitative Assessment

As evident, the proposed gait phase estimation framework is characterized by accurate
performance, which is further preserved when computing leg odometry that can be po-
tentially used in control and/or state estimation.

Additionally, one important remark is that the obtained 2D latent space can appropri-
ately represent the higher dimension gait phase dynamics. To further demonstrate this
we executed simple motion primitives e.g. move forward, move backwards, rotate, such
primitives are well-captured with specific patterns in the 2D latent space. These observa-
tions indicate that locomotion may be a low-dimensional skill, in the sense that a lower di-
mensional dynamic model can be used for agile and stable omni-directional walking with
the high dimensional mechanism. Similar remarks are reported by Westervelt et al. [111]
where the full robot dynamics are reduced to a lower dimension manifold called the Hy-
brid Zero Dynamics and effectively utilized to generate stable walking gaits.

Furthermore, we noticed that K-means does not yield accurate clustering in this partic-
ular problem. Nevertheless, when using K-means for binary clustering e.g. LSS or RSS we
would have obtained a very accurate classification as also shown in Figure 5.6. This result
agrees with [75] where the fuzzy C-means was employed for inferring the contact proba-
bility of an end-effector. Consequently, this implies that geometrically the latent-space is
not well-separated and can only be clustered when data density is considered.

Finally, GMMs is a probabilistic clustering approach thus, the obtained probabilities
can be also interpreted as a measure of uncertainty/quality about the current gait phase.

5.4 Conclusion

In this chapter, we proposed a novel unsupervised learning framework for gait phase es-
timation and subsequently demonstrated its accuracy when compared to ground-truth
data, and efficacy in leg odometry. We demonstrated that a PCA-based 2D latent space is
a valid representation of the gait phase dynamics and we established that those dynam-
ics exhibit specific patterns while the robot is omni-directional walking. Such observa-
tions point towards locomotion being a low-dimensional skill. Finally, since the proposed
framework is based on sensing commonly available on humanoids today, we released
GEM [108], an open-source ROS/Python implementation to reinforce further research en-
deavors.
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Chapter 6

Application to other Modules and Plat-
forms

Progress is made by trial and failure; the failures are generally a hundred times
more numerous than the successes; yet they are usually left unchronicled.

William Ramsay (1852–1916)

6.1 SEROW in SLAM

Visual Simultaneous Localization and Mapping (visual SLAM) constitutes a challenging
task when applied to humanoid robots. While walking, the robot’s feet strike the ground
and generate sudden accelerations due to rapid and sequential contact switching. These
in turn give rise to visual motion blurriness that greatly compromises the performance
of the system. In this section we present a dense visual SLAM approach that integrates
information from IMU, robot kinematics and contact measurements, to overcome these
issues.

Localization is an essential piece of information for autonomous mobile robots, that
is usually computed directly using the kinematic information of the platform. For hu-
manoids, however, the kinematics often produces inaccurate estimates since they do not
account for the dynamic effects caused by slippage, discontinuous ground contacts and
actuation errors. In this context, Visual SLAM can provide an off-the-shelf method to com-
pute the state of a humanoid accurately, using a light and low-cost sensor that is easily
mountable on the robot.

However, the motion of a camera mounted on a humanoid has distinctive differences
to the motion models assumed in traditional visual SLAM systems. It has a much wider
spread, compared to the one for wheeled robots, and follows the oscillating trajectory of
the center of mass, as designated by the bipedal gait. This results in blurriness during the
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image acquisition process, and reduced performance of the image registration methods.

To solve the aforementioned problems, research focused into new ways of integrating
visual SLAM algorithms to humanoid robots [112]. Kagami et al. [113] proposed a vision-
based, full-body motion planning method that fuses vision with the localization modules
of a humanoid robot. In [114], visual information and a simplified dynamic model of the
HRP-2 robot are utilized to improve the robustness of pose tracking. In [115] the authors
investigated the performance of a monocular visual SLAM system on the NAO humanoid
for which, due to hardware limitations, a robust visual SLAM algorithm was intractable.
To overcome those limitations, the authors in [116] mounted an RGB-D sensor to NAO in
order to integrate depth information to the robot’s footstep planning. In [117], to estimate
NAO’s pose, a sparse visual SLAM system is employed along with an Extended Kalman Fil-
ter, based on kinematic and inertial information. More recently, dense visual SLAM meth-
ods are gaining interest, due to resilience to environments with poor features. The authors
in [118] developed a dense RGB-D SLAM system for the HRP-4 humanoid, utilizing a re-
construction method suited for dynamic human environments. Finally, in [119] a dense
visual SLAM method, with a semi-dense mapping, was embedded on NASA’s Valkyrie hu-
manoid.

However, the performance of dense visual SLAM, when computational power and sen-
sor quality are limited, still remains an open question. In the current section we present a
robust RGB-D dense SLAM framework, based on KinectFusion [120, 121], that effectively
considers the humanoid’s kinematics, feet contact status, and IMU measurements to: a)
accurately estimate the robot’s pose during locomotion, b) construct a dense map of the
environment. Our implementation is offered as an open-source ROS C++ and CUDA pack-
age at www.github.com/tavu/kfusion_ros and achieves real-time execution on an Nvidia
Jetson TX2 mounted on a NAO robot.

6.1.1 Method and Results

To efficiently consider the robot’s kinematics and contact effects we employ the State Es-
timation Robot Walking (SEROW) framework [47, 49, 76]. The latter fuses IMU, joint en-
coder, and Force/Torque (F/T) measurements to accurately estimate the following state
vector xt:

xt =

h
b
vb

w
Rb

w
pb b! ba

i>

where w
pb, wRb denote the base position and rotation with respect to a world frame w, bvb

is the linear velocity, and b!, b↵ are IMU biases, in the base frame b.

The kinematic information derived from SEROW are used to improve the performance
of the localization and mapping processes in visual SLAM. To accomplish this we modify

www.github.com/tavu/kfusion_ros
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Figure 6.1: Dense RGB-D Humanoid SLAM architecture. The framework utilizes RGB-
D images along with IMU, encoder, and F/T measurements in an consis-
tent loop.

KinectFusion [120] and separate two functionalities: a) Estimate the robot’s pose using
VO and b) Generate a dense map of the environment and rectify pose estimates using
this map. In such it is straightforward to add SEROW in the loop, as illustrated in Fig. 6.1.
SEROW incorporates the VO to estimate a more accurate robot pose that is then propa-
gated to the mapping module.

We evaluate our system by executing it on a NAO humanoid, while navigating in an
office environment (Fig. 6.2 top). Figure 6.3 demonstrates the corresponding 3D base
position (Fig. 6.3, top) and orientation (Fig. 6.3, bottom) as estimated by KinectFusion,
kinematics and KinectFusion with SEROW respectively. As it is shown, the estimates pro-
vided by KinectFusion alone exhibit large errors in the vertical axis, and are subject to
drift. The latter is further illustrated in Table 6.1 that presents the final pose drift for the
three implementations. Evidently, the fusion of KinectFusion with SEROW yields accu-
rate estimates for all quantities, and improves the quality of the obtained map, as de-
picted in Fig. 6.2 bottom. The conducted experiment is available in HD quality at https:
//youtu.be/mLdNwHl9cgo. Our implementation achieved 29Hz on the Jetson TX2 module,
given that RGB-D images are available at 30fps and volumetric rendering is disabled.

https://youtu.be/mLdNwHl9cgo
https://youtu.be/mLdNwHl9cgo
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Figure 6.2: Top: NAO navigating in an office environment. Bottom: Reconstructed
3D map.

Table 6.1: Pose Drift
wpx(m)

wpy wpz roll (deg) pitch yaw
KF 0.025 0.047 0.287 2.80 2.35 2.86
Kin 0.261 0.331 0.023 6.5e-4 0.65 7.01
KF+S 0.011 0.038 0.031 6.5e-4 0.65 3.69
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Figure 6.3: Pose estimates generated by the three algorithms. Top: 3D body position.
Bottom: 3D body orientation. Blue lines indicate the estimates from VO,
red lines from the kinematics, green lines from KinectFusion and SEROW.
Black crosses are the measured final states.
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6.1.2 Conclusion

In this section, we presented a method to fuse a dense visual SLAM algorithm with the
kinematic information from a humanoid robot. Our framework exhibits increased perfor-
mance when compared to a solely RGB-D SLAM and can achieve real-time execution on
an embedded GPU device.
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Figure 6.4: WALK-MAN humanoid. All dimensions are specified in mm. [122]

6.2 SEROW integrated with WALK-MAN

WALK-MAN [122–124] is a humanoid robot designed and constructed by the Instituto
Italiano di Tecnhologia (IIT) within the context of the European WALK-MAN integrated
project, funded in 2013. The robot has dimensions similar to the dimensions of an adult
human, as evident in Figure 6.4. More specifically, its height from the sole of its foot to the
top of its head is 1.915m. The shoulder width is 0.815m while its depth at the torso is 0.6
m. The total weight of WALK-MAN is 132kg of which 14kg is the mass of the power pack
and 7kg is the mass of the protection roll bar structure around the torso and head.

WALK-MAN’s upper body (not considering hands and neck) has 17 DoF; each arm has
7 DoF and the trunk has a 3 DoF waist. WALK-MAN arm kinematics closely resembles an
anthropomorphic arrangement with 3 DoF at the shoulder, 1 DoF at the elbow, 1 DoF for
the forearm rotation and 2 DoF at the wrist.

WALK-MAN is employed with two absolute magnetic encoders in every actuator unit
for accurately measuring the joint states. Joint torque sensing is implemented using an
elastic torsion bar whose deflection is measured by two high resolution absolute encoders
as in position sensing. Subsequently, to derive the joint torque measurement the stiffness
of the bar is used which is accurately determined in the calibration phase. Furthermore,
WALK-MAN has four 6D F/T sensors located at the wrist and ankle joints that can measure
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Figure 6.5: SEROW in ROS rviz. In top, the yellow line indicates the Ground-Truth,
purple is the base trajectory, green is the base leg odometry, and teal is the
CoM trajectory. In bottom, green and red lines indicate the left and right
feet trajectory, while the orange line is the support foot trajectory.

the contact wrenches the robot experiences with the environment.
WALK-MAN also has a VectorNav VN-100 IMU at the pelvis link and incorporates a

Multisense M7 sensor at the head to provide a stereo vision system with an integrated
FPGA unit, an IMU, and a LIDAR. To facilitate vision-based applications an i7 quad core
processor COM express PC has been installed in the back side of the head. Additionally,
another COM express PC based on an i7 quad core processor exists in the torso to facilitate
motion planning and real-time gait control.

Footstep planning on various type of terrains [125] is accomplished according to [126]
based on visual feedback [127]. Walking pattern generation is achieved as in [102, 103]
through the XBotCore [104] middleware and stabilization is performed with the Open-
SoT [105] whole-body controller every 500Hz. Desired joint positions are realized with
PID position control, implemented in a distributed embedded electronic system with one
board per joint running at 1kHz.

SEROW is implemented on the robot and achieves real-time execution with a 200 Hz
cycle, which is the rate the IMU provides new measurements through ROS. State esti-
mation with kinematic-inertial-F/T data is illustrated on Figure 6.5 for a dynamic omni-
directional gait. The ground-truth base pose was recorded with an OptiTrack motion cap-
ture system at 120Hz. Figure 6.6 depicts the 3D-base position and orientation as estimated
with SEROW and with a contact based EKF [56]. Notice, both filters exhibit large errors in
the y-axis position, this is due to drift. Commonly while walking, the robot hits the ground
and generates enormous GRFs that often cause the feet to bounce back and slip. These
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Figure 6.6: Top: 3D-Base position, Bottom: 3D-Base orientation. Blue lines indicate
the Ground-Truth trajectories, green lines are the estimated trajectories
with SEROW and red lines the estimated trajectories with a contact-based
EKF.
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Figure 6.7: 3D-Base velocity. Blue lines indicate the Ground-Truth trajectories, green
lines are the estimated trajectories with SEROW and red lines the esti-
mated trajectories with a contact-based EKF.

errors are also evident in the estimated 3D-base linear velocities shown in Figure 6.7. Al-
though both filters demonstrated similar accuracy, SEROW was marginally more accurate.

Subsequently, the 3D-CoM position and velocity was estimated with SEROW. Since the
CoM ground-truth was not available, we employed the base pose as estimated by the con-
tact based EKF and the kinematically computed CoM for comparison. Figure 6.8 illustrates
the 3D-CoM position and velocity as estimated by the two schemes. Notice, once again
base estimation drift propagates to CoM estimation. Furthermore, in the vertical axis the
CoM as estimated with SEROW exhibits a more dynamic behavior that the kinematically
computed CoM, probably due to the feet impacting the ground.

State estimation incorporating additionally external VO has been already demonstrated
in section 4.3.

Accordingly, GEM was employed to derive the gait phase, as presented in chapter 5.
The dataset had 8069 entries:

D =

n
b�cn, �✓

roll
n , �✓pitchn ,�f ,�⌧

o
2 R11⇥8069 (6.1)

Contact ground-truth data were not available. Dimensionality reduction to two dimen-
sions was performed with both PCA and autoencoders. PCA yielded a reprojection error of
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Figure 6.8: Top: 3D-CoM position, Bottom: 3D-CoM velocity. Green lines indicate
the estimated trajectories with SEROW and red lines the estimated trajec-
tories with a contact-based EKF and kinematics.

0.0070 while autoencoders achieved reprojection error of 0.0064. As in section 5.3 the de-
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Figure 6.9: Left: Latent space with PCA, Right: Clusters obtained with GMMs, orange
indicates the LSS, blue the DS, and green the RSS, crosses indicate the
cluster centers.

Figure 6.10: Left: Latent space with autoencoders, Right: Clusters obtained with
GMMs, orange indicates the LSS, blue the DS, and green the RSS, crosses
indicate the cluster centers.

rived latent spaces are similar in shape. More specifically, the PCA latent space (Figure 6.9
left) is a rotated/scaled version of the latent space obtained with the autoencoders (Fig-
ure 6.10 left). Subsequently, GMMs are employed for clustering. Once again, three dense
clusters are obtained in both cases as depicted in Figure 6.9 right and Figure 6.10 right. In-
terestingly, this latent space does not sufficiently represent the higher dimensional space.
To this end, we expect the estimated gait phase to not be very accurate. This is evident
from the explained variance of the two principal components obtained with the PCA. The
first principal component has an explained variance of 0.3936% while the second explains
another 0.1621% of the data variance. This suggests that more dimensions are needed to
sufficiently represent the 11D dataset.

The major difference from the experiments conducted with the Valkyrie robot in sec-
tion 5.3 is that Valkyrie performed slow pace statically stable walking while WALK-MAN
achieved faster and more dynamic gaits. Thus, an important remark is that more fea-
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tures are needed to derive an accurate gait phase while dynamic walking. To this end,
approaches that rely only on the vertical GRF to determine the feet contact status are not
suitable for agile dynamic walking.
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Figure 6.11: Aldebaran NAO v4.0 components

6.3 SEROW integrated with NAO

The hardware platform that is currently used for the RoboCup Standard Platform League
(SPL) is NAO, an integrated, programmable, medium-sized humanoid robot originally de-
veloped by Aldebaran Robotics in Paris, France and today owned by Softbank robotics.
The robot’s development began with the launch of Project NAO [128] in 2004. In August
2007, NAO officially replaced Sony’s Aibo quadruped robot in the RoboCup SPL. In the
past few years NAO has evolved over several designs and several versions up to the very
recent version 6.0.

NAO (version 4.0), shown in Figure 6.11, is a 58cm, 5.18kg humanoid robot. The NAO
robot carries a fully capable computer on-board with an ATOM Z530 processor at 1.6GHz,
1GB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It is pow-
ered by a 6-cell Lithium-Ion battery which provides about 30 minutes of continuous oper-
ation and communicates with remote computers via an IEEE 802.11g wireless or a wired
ethernet link.

NAO has 25 degrees of freedom; 2 in the head, 6 in each arm, 5 in each leg and 1 in
the pelvis (there are two pelvis joints which are coupled together on one servo and cannot
move independently). NAO, also, features a variety of sensors. Two cameras are mounted
on the head in vertical alignment providing non-overlapping views of the lower and dis-
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Figure 6.12: Embedded and desktop software for the NAO robot

tant frontal areas, but only one is active each time and the view can be switched from one
to the other almost instantaneously. Each camera is a 640 ⇥ 480 VGA devise operating at
30fps. Four sonars (two emitters and two receivers) on the chest allow NAO to sense obsta-
cles in front of it. In addition, NAO has a rich inertial unit, with one 2-axis gyroscope and
one 3-axis accelerometer, in the torso that provides real-time information about its instan-
taneous body movements. Two bumpers located at the tip of each foot are simple ON/OFF
switches and can provide information on collisions of the feet with obstacles. Finally, an
array of force sensitive resistors on each foot delivers feedback of the forces applied to the
feet, while encoders on all servos record the actual values of all joints at each time.

Aldebaran Robotics has equipped NAO with both embedded and desktop software [129]
to be used as a base for further development (Figure 6.12). The embedded software, run-
ning on the motherboard located in the head of the robot, includes an embedded GNU /
Linux distribution and NAOqi, the main proprietary software that runs on the robot and
controls it. NAO’s desktop software includes Choregraphe, a visual programming appli-
cation which allows the creation and the simulation of animations and behaviors for the
robot before the final upload to the real NAO, and Telepathe which provides elementary
feedback about the robot’s hardware and a simple interface to accessing its camera set-
tings.

As far as the NAOqi framework is concerned, it is cross-platform, cross-language, and
provides introspection which means that the framework knows which functions are avail-
able in the different modules and where. It provides parallelism, resources, synchroniza-
tion, and events. NAOqi, also, allows homogeneous communication between different
modules (motion, audio, video), homogeneous programming, and homogeneous infor-
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Figure 6.13: The NAOqi process

mation sharing. Software can be developed in C++, Python, and Urbi. The programmer
can state which libraries have to be loaded when NAOqi starts via a preference file called
autoload.ini. The available libraries contain one or more modules, which are typically
classes within the library and each module consists of multiple methods (Figure 6.13).

Recently, we developed an omni-directional walking engine for the NAO robot based
on MPC with ZMP constraints and the Cart and Table model [67]. The latter achieved
fast stable bipedal walking on flat terrain and was employed in the context of Robocup
by the Greek Kouretes team [130]. Feedback was available from FSR and kinematics. In
this section, we propose a 3D omni-directional walk engine that naturally encapsulates
SEROW and achieves 3D walking with step location and step duration adjustment. Our
implementation achieves real-time execution on NAO’s 10ms control cycle, is open-source
as a NAOqi module with a ROS C/C++ wrapper [131]. The latter are publicly available at
www.github.com/mrsp/nao_walk.

The proposed module consists of three parts: a) the footstep planner that provides with
desired footstep locations, b) the motion planner, which generates stable walking patterns,
c) posture controllers, that stabilize the walking patterns. In all parts SEROW provides the
mandatory body and feet affine transformations, as well as the 3D-CoM position, velocity,
and external forces acting on the CoM.

The footstep planner is based on [133, 134], which efficiently generates 2D step plans
for humanoid robot navigation with anytime repairing A⇤

(ARA⇤
) and/or randomized

A⇤
(R⇤

) search. This framework has been extended to 3D by Stumpf et al. [135] to prop-

www.github.com/mrsp/nao_walk
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Figure 6.14: NAO navigation in a lab environment. Dynamic footstep planning allows
NAO to reach the workspace of a JACO manipulator [132] in order to ob-
tain some fruits. Green/Red steps indicate the right/left leg reference foot-
steps respectively, while color cubes are the LIDAR measurements.

erly consider the perceived world during step planning. In this work, we employ an RP-
LIDAR360� on NAO’s head and utilize SEROW with the ROS gmapping [136] package to
perform SLAM. The generated 2D map is then used for dynamic footstep planning along
with the ROS amcl package [137], as shown in Figure 6.14. In this experiment, NAO navi-
gates in a lab environment to reach the workspace of a JACO manipulator [132]. When this
happens, JACO detects a bowl mounted on NAO and fetches some fruits.

Subsequently, the generated footstep plan is propagated to the walk engine for exe-
cution. The complete walk engine is illustrated in Figure 6.15, where as evident SEROW
provides feedback for both the motion planning and the real-time gait stabilization mod-
ule.

At the beginning of each SS phase, 2D-step location and timing adjustment is per-
formed as in [138]. To this end, the following QP is solved to optimally determine the
desired step location and duration that achieve zero-step capturability [21]:
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Figure 6.15: NAO Walk Engine consisting of: a) the state estimation module, b) the
motion planning module, and c) the gait stabilization module.

min
uT ,⌧,b

↵1kuT � u0 �L
x

nomk2+↵2k⌧ � ⌧nomk2 + ↵3kb� bnomk2 (6.2a)

subject to e!Tmin  ⌧  e!Tmax , (6.2b)

Lmin  w
R

>
s (uT � u0)  Lmax. (6.2c)

uT � (⇠0 � p0)⌧ + b = p0 (6.2d)

where ↵⇤ are optimization weights, u0, uT are the support and swing foot position,
Lnom is the nomimal displacement, ⌧ and ⌧nom are the exponential step and nomimal step
duration, b, bnom are the DCM and nomimal DCM offset at the end of the step, and w

Rs is
the support foot rotation. The only feedback required is the initial COP p0 and the DCM
position ⇠0 as estimated by SEROW. Consequently, step duration can be obtained as:

T =
1

!
log ⌧ (6.3)

This QP is five dimensional and is efficiently solved on NAO with an active set convex
optimization algorithm. The DCM offset b is directly related to the stability of the robot. To
this end, in order to obtain stable gaits ↵3 should be larger than the other weights. Never-
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Figure 6.16: Step adjustment in the 2D plane. Red/Green dotted lines indicate the
planned steps, while red/green solid lines are the adjusted steps. The blue
line is the measured ZMP with the FSRs and the dark green line is the CoM
as estimated with SEROW.

theless, it is often the case the desired DCM offset cannot be realized. In the latter scenario,
if the robot is capturable [21], multiple steps are required to converge back to the nomimal
gait. A consecutive step adjustment to a reference footstep plan is shown in Figure 6.16,
where also the ZMP as measured with the NAO’s FSRs and the CoM as estimated with
SEROW is depicted. Subsequently, the reference ZMP, swing foot and swing arm trajecto-
ries are generated with cubic splines.

In order to generate stable walking patterns we formulate a novel MPC scheme based
on the DCM. The CoM and the DCM dynamics are described by the following first order
differential equations [20]:

⇠̇ = !(⇠ � p) (6.4)

ċ = !(⇠ � c) (6.5)

Notice, the CoM dynamics are linear independent from the DCM dynamics and further-
more stable in the sense that CoM follows the DCM. To this end, it suffices to stabilize only
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the unstable DCM dynamics to obtain stable CoM walking patterns. Consider the x-axis
for simplicity, although the same relations hold for the dynamics in y and z axes. Let the
input u be the derivative of the ZMP żx. Then, the state-space can be formulated as:

d

dt

"
⇠x

zx

#
=

Az }| {"
! �!
0 0
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xz }| {"
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zx
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+

Bz}|{"
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#
u (6.6)

y =

Cz }| {h
0 1

i
x (6.7)

Additionally, consider the embedded integrator state xe:

x
e
=

2
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�⇠x

�zx

zx

3

75 (6.8)

The embedded integrator has been demonstrated to eliminate steady state errors since an
integral term is added to the control law [67]. The discrete-time state-space with embed-
ded integrator is given by:
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Subsequently, an MPC problem can be formulated as:
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with Np be the prediction horizon and C⇠ =

h
1 0 0

i
be a selection matrix. Consequently,

(6.11) can take the standard quadratic form:

J =min
�U

�U
>
H�U + f

>�U (6.16)

where
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⇠uQ⇠�⇠u +�>

zuQz�zu +R (6.17)
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= 2
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Quasi-static stability constraints can be added by constraining the ZMP to lie withing the
convex polygon of the feet.

Zmin  �zu�U +�zx
e

k  Zmax (6.19)

whereZmin, Zmax indicate the minimal and maximal bounds within the prediction horizon
Np.

In such a way, a stable walking pattern is generated once per step. Nevertheless, a
humanoid can be subject to disturbances that commonly occur during the gait. To this
end, further stabilization is needed.

The desired CoM trajectory is stabilized in two stages. First, the desired ZMP is stabi-
lized according to the DCM control in [139]:

zx ⇤
= zx d �

⇣
1 +

Kp

!

⌘⇣
⇠x d � ⇠̂x

⌘
� Ki

!

Z ⇣
⇠x d � ⇠̂x

⌘
dt (6.20)

where Kp and Ki are proportional and integral gains, zx d and ⇠x d is the desired ZMP and
DCM obtained from the pattern generator, and ⇠̂x is the estimated DCM with SEROW.

Subsequently, an admittance controller [140] stabilizes the desired CoM acceleration
with ZMP feedback:

c̈x ⇤
= c̈x d

+Kc

�
zxFSR � zx ⇤� (6.21)

with Kc be a proportional gain, c̈x d is the desired CoM acceleration and zxFSR the mea-
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Figure 6.17: Top: 2D-CoM/ZMP: blue/black lines indicate the measured and desired
ZMP, while green/orange lines are the estimated with SEROW and desired
CoM trajectories. Bottom: 2D-DCM: blue/black are the estimated with
SEROW and desired DCM trajectories respectively.
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sured ZMP with the FSRs. The desired ZMP and CoM trajectories along with the measured
ZMP and the estimated CoM are shown in Figure 6.17 top for a segment of the lab navi-
gation experiment. Additionally, Figure 6.17 bottom illustrates the desired and estimated
DCM trajectories.

Next, the desired joint states are computed with inverse kinematics from the target
CoM and the target arm/feet poses. So far this control scheme facilitates walking over flat
terrain. Nevertheless, when omni-directional over uneven terrain is considered, further
postural stabilization is mandatory. Therefore, we regulate the body orientation with a
damping control similarly to [141]:

��̇b = Kcx

⇣
�d

b � �b

⌘
� 1

Tcx

��b (6.22)

�✓̇b = Kcy

⇣
✓db � ✓b

⌘
� 1

Tcy

�✓b (6.23)

where �d

b
, ✓d

b
and �b, ✓b are the desired and estimated roll and pitch angles respectively. Kcx,

Kcy are proportional gains and Tcx, Tcy are time constants to reach neutral points.

In this work, we chose to directly regulate the joint space rather than the task space e.g.
body/feet orientation as in [141]. In the joint space, the joint limits are known in advance
and thus one can easily observe when the controllers saturate. In addition, inverse kine-
matics can be inaccurate, since implicitly it is assumed that the robot is fully rigid. The
latter is not the case, every robot has a degree of compliance/elasticity.

To this end, for each leg in contact, the hip roll and pitch joints are modified as:

LHipRoll = LHipRoll
d � ��b (6.24)

LHipPitch = LHipPitch
d � �✓b (6.25)

RHipRoll = RHipRoll
d � ��b (6.26)

RHipPitch = RHipPitch
d � �✓b (6.27)

Subsequently, we employ the ZMP distributor, proposed in [141], to compute the desired
ankle torque ⌧d

l
and ⌧dr for the left and right foot respectively. A similar damping control is

used to realize the desired torques:

�⌧̇ix = Kax

⇣
⌧dix � ⌧ix

⌘
� 1

Tax

�⌧ix (6.28)

�⌧̇iy = Kay

⇣
⌧diy � ⌧iy

⌘
� 1

Tay

�⌧iy where i = l, r (6.29)

where as before Kax, Kay are proportional gains and Tax, Tay times constants to reach
neutral points, while ⌧l, ⌧r are the measured left and right foot ankle torques.
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Accordingly, for each leg in contact, the ankle roll and pitch joints are modified as:

LAnkleRoll = LAnkleRoll
d � �⌧lx (6.30)

LAnklePitch = LAnklePitch
d � �⌧ly (6.31)

RAnkleRoll = RAnkleRoll
d � �⌧rx (6.32)

RAnklePitch = RAnklePitch
d � �⌧ry (6.33)

Finally, the modified joint angles are tracked on NAO with a PID control loop at 100hz.
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Conclusions

The art and science of asking questions is the source of all knowledge.
Thomas Berger (1924–2014)

7.1 Summary

In this thesis, a complete state estimation framework for humanoid robot walking over un-
even terrain was presented. Initially, we considered the humanoid’s centroidal dynamics
and rigorously derived a nonlinear CoM estimator without relying on simplifying dynamic
assumptions. The latter fuses joint encoder, IMU, pressure measurements to accurately
estimate the 3D-CoM position, velocity, and external forces acting on the CoM, while di-
rectly considering the presence of uneven terrain and the CoM’s angular momentum rate
and, thus, effectively coupling the frontal with the lateral plane dynamics. To the best of
our knowledge this is the first 3D-CoM estimation scheme that does not rely on F/T sens-
ing at the robot’s feet for the task at hand and at the present time constitutes one out of
three 3D-CoM estimation schemes available worldwide.

Subsequently, we extended an established floating mass estimator to take into account
the support foot pose, yielding in such a way the mandatory, for CoM estimation, affine
transformations of the base and the support foot and forming a cascade state estimation
scheme coined State Estimation RObot Walking (SEROW).

In order to robustify base state estimation against Visual Odometry/LIDAR Odometry
outliers, we derived an analytical outlier detection algorithm in the context of the EKF. The
latter approach termed as Robust Gaussian Error State Kalman Filter (RGESKF) proved to
be robust for humanoid walking in dynamic environments where the ‘static world assump-
tion’ speculated in most contemporary VO/LO algorithms does not hold. Since floating
mass base estimation is fluently utilized both in UAVs and mobile/marine robotics, the
RGESKF can be readily generalized to other robotic platforms beside humanoids.

119
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Up to date control and state estimation schemes readily assume that feet contact status
is known in a-priori. Nevertheless, contact detection is an important topic and in our opin-
ion remains largely unexplored in the humanoid robotic literature. In this thesis, we elab-
orated for the first time on a broader question: in which gait phase is the robot currently
in? To this end, we introduced an unsupervised learning framework called Gait-Phase Es-
timation Module (GEM) for gait phase estimation based solely on proprioceptive sensing,
namely joint encoder, IMU and F/T data. Additionally, in our analysis we observed that a
lower dimension latent space can appropriately represent the higher dimension gait phase
dynamics. This observations along with similar remarks reported in [111] and the success
of simplifying dynamic models, such as the LIPM [10], in walking, indicates that locomo-
tion may be a low-dimensional skill.

7.2 Future Work

7.2.1 CoM Estimation

Since humanoid robot locomotion is hybrid and highly nonlinear by nature, possible fu-
ture work aims at considering other nonlinear estimation techniques, such as the UKF
or the particle filter, to further increase the estimation accuracy and also overcome the
input-output correlation described in Chapter 3. Additionally, the Invariant EKF [142] and
the Invariant UKF [143] have been employed in localization for mobile robots/UAVs and
faster convergence properties have been demonstrated when contrasted to the EKF/UKF.
Recently, such approaches proved effective also in humanoid base estimation [144, 145],
thus it is worth investigating whether geometrical properties such as left or right invari-
ance also apply in CoM estimation. Finally, it would be interesting to employ gyros in ev-
ery link and determine how much the estimation accuracy increases when incorporating
a direct measurement for the CoM velocity.

7.2.2 Base Estimation

Planned future work regards, a) studying how base drift accumulates when the humanoid
walks over terrains with various unevenness and/or compliance, b) utilizing the proposed
scheme in humanoid navigation in human/gradually changing environments, where out-
liers are harder to detect [77]. In addition, the study of estimation performance in locomo-
tion manipulation tasks, where the humanoid has to walk to a desired location and grasp
an object is interesting. Commonly while grasping, multiple self-parts appear in the FoV
and possibly give rise to outliers. Furthermore, how to recover from VO/LO divergence
and continue integrating VO/LO measurements needs to also be addressed. Finally, it is
promising to investigate whether mounting additional IMUs on the feet and properly con-
sider them in the dynamical model does increase base estimation accuracy when slippage
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on the ground occurs.

7.2.3 Gait Phase Estimation

Regarding gait phase estimation, future work aims at identifying a) the latent space com-
ponents with a factor analysis and b) the latent gait phase dynamics by fitting gaussian
processes, to directly utilize them in our control and state estimation scheme. In addi-
tion, how the change of friction coefficients influences the classification accuracy needs
to be investigated. Moreover, one should consider how the proposed gait phase estima-
tion scheme can be transferred to platforms that are not employed with 6D F/T in the feet
and thus the full contact wrench cannot be directly measured. Subsequently, it is impor-
tant to examine how many latent dimensions are sufficient for accurately estimating the
gait phase while dynamic walking. Finally, it worths investigating whether considering the
feet linear accelerations/angular velocities in the estimation procedure increases classifi-
cation accuracy during dynamic walking gaits.

7.2.4 Emerging Topics

Through our research many interesting topics naturally emerged. More specifically, we’ve
identified that the proposed humanoid state estimation scheme, can be transfered to other
legged robotic platforms such as quadrupeds, hexapods etc. Both the CoM and gait phase
estimation originate from the nonlinear 6D centroidal Newton-Euler dynamics, while the
base estimation is formulated from the nonlinear dynamics of a floating mass. The latter
are valid for legged robots and are indenpended of the number of legs. To this end, the
proposed state estimation scheme can be extended to legged robots that have at least an
IMU in the base, joint encoders, and feet pressure or feet F/T sensors by properly consid-
ering the number of legs/contacts in the computations. We strongly believe in the future it
will be important to have a single state estimator that accurately and efficiently addresses
legged locomotion and is independed of the robot’s morphology.

Additionally, we recognized that in state estimation without exterioceptive sensing,
kinematic drift gives rise to inaccuracies. Commonly, this happens when the robot im-
pacts the ground and generates enormous GRFs that in turn cause the feet to slip. There-
fore, it would be interesting to adapt online the control strategy to facilitate more accurate
state estimation. So far state estimation is considered as a mean to allow for feedback con-
trol and not the other way around. Thus, when the state estimator exhibits low confidence
on the provided feedback it should be regarded as a sign of adapting the control in order to
actively improve the state estimation accuracy, i.e. perform slower or smoother motions.

Finally, we formulated and implemented a robust and accurate nonlinear state esti-
mation scheme for the case of a single robot. Morever, we’ve demonstrated its efficacy
in individual modules such as VSLAM, footstep planning, and feedback control. Never-
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theless, It would be extremely interesting to consider a multi-agent complex environment
where robots have to collaborate in order to jointly accomplish a multi-tasking scenario.
In the latter, multi-agent state estimation realizes a vital role in the task’s outcome. Thus,
for example, if a robot visually tracked the location and morphology [146] of the nearest
one, it could deliver a relative base and CoM measurement. These measurements could
be fused by the other robot and potentially improve its state estimation by correcting the
drift.
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Chapter 8

Appendix A: Stability Criteria

8.1 Zero Moment Point

In legged robotics, the Zero Moment Point (ZMP) is a characteristic point that is com-
monly employed not only to infer the gait stability but also for motion generation and
feedback control.

The ZMP is derived from the Newton-Euler equations of motion that describe the cen-
troidal dynamics (section 9.1 of appendix B). The latter are formulated as:

mc̈ = mg + f (8.1)

L̇O = ~OC ⇥mg + ⌧ (8.2)

where m is the total mass of the robot, g the gravity vector, C the Center of Mass (CoM) of
the system, c̈ the CoM acceleration and L̇O the rate-of-change of the angular momentum
taken at a fixed point O. On the right-hand side, f , ⌧ denotes the contact force/torque re-
spectively, i.e. the sum of all contact forces/torques exerted on the robot, with coordinates
taken at the CoM C. An illustration of the latter quantities is given in Figure 8.1.

Subsequently, define the gravito-inertial wrench of the robot, which only depends on
its accelerations:

f
gi
= m (g � c̈) (8.3)

⌧
gi

O
= ~OC ⇥mg � L̇O (8.4)

ZMPs are the points Z belonging to the non-central axis defined by:

⌧
gi

Z
⇥ n = 0 (8.5)

where n is the normal vector of the contact surface, i.e. the ground surface when the robot
is walking on flat terrain. To this end, the ZMP can be formally defined as:
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Figure 8.1: HRP-2 walking on uneven terrain [147]. External forces and torques are
illustrated in red.

Definition 1 (Zero Moment Point) The point on the plane around which the horizontal
rotation momenta vanish is called the Zero Moment Point (ZMP).

The left-hand side of (8.5) can be rewritten with respect to the moment taken at another
point O:

⌧
gi

Z
⇥ n =

⇣
⌧
gi

O
+ ~ZO ⇥ f

gi

⌘
⇥ n (8.6)

= ⌧
gi

O
⇥ n+

⇣
~ZO · n

⌘
f
gi �

�
f
gi · n

�
~ZO (8.7)

Let us suppose for now that O and Z lie in the same plane normal ton, so that ~ZO·n = 0.
Then, injecting the expression above into the definition of the ZMP yields:

~OZ =
n⇥ ⌧ gi

fgi · n (8.8)

This formula is used in practice to compute the ZMP with Force/Torque (F/T) sensors
or with an Inertial Measurement Unit (IMU).

Definition 2 (Quasi-static Stability) If the ZMP remains within the convex hull created by
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the foot/feet, then the humanoid robot is quasi-statically stable.

The Center of Pressure (COP) is a dynamic point defined in between two bodies in con-
tact. Unlike the ZMP, which we defined from the accelerations of the multi-body system,
the COP is a local quantity defined from interaction forces at the contact surface. The COP
is equivalent to the ZMP only when the robot is in single contact with the environment and
the contact is planar.

8.2 Foot Rotation Indicator

In the previous section, the ZMP was defined as a characteristic point that exists only in-
side the support polygon during quasi-statically stable walking. Alternatively, one could
ask which is the point on the contact surface where the net ground-reaction force would
have to act to prevent foot rotation? This idea was investigated by A. Goswami [2] and
coined as the Foot Rotation Indicator Point (FRI). The latter is formally defined as:

Definition 3 (Foot Rotation Indicator Point) The point on the foot/ground contact surface,
within or outside the convex hull of the foot-support area, at which the resultant moment of
the force/torque imposed on the foot is normal to the surface, is the Foot Rotation Indicator
(FRI) point.

Some useful properties of the FRI point which may be exploited in gait planning in-
clude the following:

• The FRI point indicates the ‘occurrence’ of foot rotation, as previously noted.

• The location of the FRI point indicates the ‘magnitude’ of the unbalanced moment
on the foot.

• The FRI point indicates the ‘direction’ of foot rotation.

• The FRI point indicates the ‘stability margin’ of the robot, which may be quantified
as the minimum distance of the support-polygon boundary from the current loca-
tion of the FRI point within the footprint. Conversely, when the FRI point is outside
the footprint, this minimum distance is a measure of instability of the robot. An
imminent foot rotation will be indicated by a motion of the FRI point towards the
support-polygon boundary.

8.2.1 Contact Wrench Cone

The contact wrench cone (CWC) is the friction cone of the net contact wrench acting on
the robot in multi-contact, i.e. the sum of all contact wrenches as illustrated in Figure 8.2.
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Figure 8.2: CWC is represented by a red force cone and a green moment cone. This
is a drawing convenience: in practice, the CWC is a 6D cone where force
and moment are not independent. If you choose a resultant force in the
red cone, it will affect the shape of the green one [148].

In 2006, H. Hirukawa and coworkers proposed a universal stability criterion of the foot
contact of humanoid robots [3]. The proposed method checks whether the sum of the
gravity and the inertia wrench applied to the CoM of the robot is inside the CWC. The
criterion can be used to determine the strong stability of the foot contact when a robot
walks on an arbitrary terrain (even rough terrain) and/or when the hands of the robot are
in contact with it under the sufficient friction assumption. This procedure is equivalent to
checking whether the ZMP is inside the support polygon of the feet when the robot walks
on a horizontal plane with sufficient friction. Finally, when the friction follows a physical
law, the criterion can also be used to determine whether the foot contact is weakly stable.
Therefore, the proposed criterion can be used to judge the behavior of the ZMP in more
general cases.

Definition 4 (Strong Stability Criterion) If (�f ,�⌧ ) is an internal element of the polyhe-
dral convex cone of the CWC, then the contact is strongly stable within (f , ⌧ ).

Nevertheless, the strong stability criterion poses some limitations. Especially in the
case of motion planning where the sufficient friction assumption is commonly lifted it is
not possible to determine the strong stability and thus the generated patterns may not
be feasible in the physical world. To this end, the ‘weak stability criterion’ can be used to
check if the planned motions are feasible, but it does not state if the contacts are stable.
An alternative idea is to judge if (�f ,�⌧ ) should be included in a proper subset of the
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polyhedral convex cone of the contact wrench. Then, the contact is likely to be stable
within a margin, but there is no guarantee that it is stable within the entire polyhedral
convex cone of the contact wrench. The idea is summarized as follows:

Definition 5 (Weak Stability Criterion) If (�f ,�⌧ ) is an element of a proper subset of the
polyhedral convex cone of the CWC, the contact is called sufficiently weakly stable to (f , ⌧ ).

Subsequently, when additional constraints are imposed on the centroidal motion, the
6D centroidal wrench cone reduces to lower-dimensional areas and volumes that can be
used for planning or control:

• When the robot is not moving, contact stability is characterized by the static equilib-
rium polygon [149] the configuration of the robot is feasible (sustainable) if and only
if the CoM lies in a specific polygon, which can be computed efficiently.

• When the robot moves in the Linear Inverted Pendulum Mode (LIPM) [39], i.e. with
conserved angular momentum and the CoM constrained on a plane, the CWC re-
duces to a ZMP support area [149].

• When the robot moves with a conserved angular momentum (L̇ = 0), the CWC re-
duces to a 3D cone over CoM accelerations that can be used e.g. for multi-contact
locomotion [150].

8.3 Capturability-Based Analysis

Wieber [6] used the concept of the Viability theory [5], to reason about the subset of state
space in which the legged system must be maintained to avoid falling. He derived a Lya-
punov stability analysis for standing on non-flat terrain given a balance control law. How-
ever, the standing assumption precludes the use of this method in walking, and it provides
no information on choosing step locations to avoid falling. Moreover, the Viability margin
is difficult to compute, limiting its usefulness.

Nevertheless, the Viability theory is closed related to the Capturability theory proposed
by Koolen et.al [4] and Pratt et. al [151], which focus mainly on states that are most relevant
to normal walking and also provides a method to explicitly compute stepping regions.

For our analysis, let the hybrid system dynamics described by:

ẋ = f(x,u), hi(x) 6= 0 (8.9)

x gi(x), hi(x) = 0 (8.10)

u 2 U(x) (8.11)
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Figure 8.3: State space of a hybrid dynamic system. N-step viable-capture basins
are shown. The boundary between two N-step viable-capture basins are
shown. The boundary between two N-step viable-capture basins is part
of a step surface. The1-step viable-capture basin approximates the via-
bility kernel. Five different trajectories are shown: a) a trajectory starting
outside the viability kernel inevitably ends up in the set of failed states;
b) the system starts in the 1-step viable-capture basin, takes a step, and
comes to a rest at a fixed point inside the set of captured states (i.e. the
0-step viable-capture basin); c) a trajectory that eventually converges to a
limit cycle; d) a trajectory that has the same initial state as c), but ends up
in the set of failed states because the input u was different; e) impossible
trajectory: by definition, it is impossible to enter the viability kernel if the
initial state is outside the viability kernel [4].

for i 2 I ⇢ N, x is the state of the system and u is the control input and is confined to
the state-depended set of allowable control input U(x). When the system state lies on the
switching surface, hi(x) = 0, the discrete jump dynamics reset the state to gi(x) instan-
taneously. Koolen et.al [4] assumed that some part of the state space must be avoided at
all cost, namely the set of failed states, for humanoid walking this is the set with all states
that lead to a fall. The viability kernel proposed by Aubin et al. [5] and introduced in the
field of legged locomotion [6], is the set of all states from which these failed states can be
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avoided. To this end, for every initial state inside the viability kernel, there exists at least
one trajectory that can never converge to a failed state. As long as the system state remains
within its viability kernel, the system characterized as viable.

The viability theory is a very natural concept and can be seen as a very generic defi-
nition of stability for a dynamic system. However, determining the viability kernel is gen-
erally analytically intractable, and approximation is computationally expensive as seen in
Wieber’s work [6]. Furthermore, it is far from trivial to design a controller based solely on
the viability kernel. Towards that direction, Koolen et.al [4], proposed the N-step cap-
turability, which is a more restrictive definition of walking stability. N-step capturability
dictates that the legged system must come to a stop by taking exactly N or fewer steps.

Definition 6 (N-step Capturable) Let Xfailed be the set of failed states associated with the
hybrid dynamic system given in Eq.(8.9). A state x0 of this system is N-step capturable with
respect to Xfailed, for N 2 N, if and only if there exists at least one trajectory starting at x0

that contains N or fewer crossings of switching surfaces (steps), and never reaches Xfailed.

Inspired by the viable-capture basin [152] defined with the viability kernel, the authors
defined the N-step viable-capture basin as the set of all N-step capturable states. The
0-step viable-capture basin was referred to as the set of captured states, and if a system’s
state is within the 0-step viable-capture basin, the system was referred to as captured. The
N-step viable-capture basins, illustrated in Figure 8.3, describe the subsets of state space
which can be achieved by a control input u and the system can come to a stop (a captured
state) by taking N or fewer steps.

For N > 0 the N-step viable-capture basin is equivalent to the set containing every
initial state x0 for which at least one trajectory containing a single step and starting from
x0 reaches the (N�1)-step viable-capture basin in finite time, while never reaching a failed
state. This property allow us to recursively compute the N-step viable-capture basin.

As Koolen et.al [4] pointed out, the N-step viable-capture basins as well as the viability
kernels do not provide a direct means of controller design. This motivated them to intro-
duce the notion of N-step capture points and N-step capture regions. Capture points and
capture regions are defined in the Euclidean space, contrasted to the viability kernel and
the viable-capture basin that are defined in the state-space. Subsequently, they describe
places where the legged robot can step to to come to a stop (reach a captured state). Fig-
ure 8.4 shows the N-capture regions for illustration purposes.

Definition 7 (N-step capture point, region) Let x0 be the state of a hybrid dynamic system
defined by Eq.(8.9), with an associated set of failed states Xfailed. A point r, is an N-step
capture point for this system, for N > 0, if and only if there exists at least one trajectory
starting atx0 that contains one step, never reachesXfailed, reaches an (N�1)-step capturable
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Figure 8.4: a) A conceptual representation of the N-step capture regions for a human
in a captured state (standing at rest). b) N-step capture regions for a run-
ning man. The capture regions have decreased in size and have shifted,
as compared to a). c) N-step capture regions for the same state as b), but
with sparse footholds (e.g. stepping stones in a pond). The set of failed
states has changed, which is reflected in the capture regions [4].

state, and places a contact reference point at r at the time of the step. The N � step capture
region is the set of all N-step capture points.

8.4 The Gait Sensitivity Norm

So far, we presented various stability measures, that were based on the assumption that a
biped can prevent a fall by placing its foot within an appropriate way to the ground. These
measures, indicate how close a humanoid is to tipping by measuring the distance from the
edge of the support foot to the projection of the center of mass (the static stability margin)
or the COP (the ZMP stability margin [153] or the FRI [2]).

Nevertheless, continuous flat foot contact is not necessary to prevent falling, this is
proven with the limit cycle walkers, e.g bipeds that show stable limit cycle motion without
having local controllability at all times during the gait. Such an example is the passive
walker by McGeer [154]. His biped was equipped with arc-shaped feet, which make it
impossible to achieve local controllability at any point in time, and nonetheless, it showed
perfectly stable gait.

For limit cycle walkers, worldwide there exist three additional measures to quantify dis-
turbance rejection. First, the Basin of Attraction (BoA), is the total set of system states of a
limit cycle walker for which its gait converges to its nominal limit cycle [155]. To compute
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the BoA can either be computationally expensive if a full evaluation of the nonlinear sys-
tem behavior is done or hard to find if a Lyapunov stability analysis is followed, since the
‘correct’ Lyapunov function need to be found in advance. However, the benefit of the BoA
is the good correlation between the actual disturbance rejection and the distance from
the limit cycle to the borders of the BoA. Another measure is the largest Floquet multi-
plier. Floquet multipliers indicate how fast small deviations from the limit cycle converge
on a step-to-step basis [156]. For a stable limit cycle, the Floquet multipliers have to be
within the unit circle, the closer to zero, the faster the convergence rate. The benefit of
the Floquet multipliers is that they require a short computation time as they involve only
small deviations from the limit cycle. The drawback is the limited correlation between the
actual disturbance rejection and the distance from the largest Floquet multiplier to the
unit circle [155]. Finally, some researcher have measured the disturbance rejection of the
limit cycle walkers by measuring the largest deterministic disturbance a biped can handle
without tipping over. This measure obviously shows good correlation with the disturbance
rejection properties, however, it requires long experimentation.

Hobbelen and Wisse [7] introduced the Gait Sensitivity Norm (GSN)
���@g
@e

���
2
. This mea-

sure is used to quantify the effect of a set of disturbances on a walking gait. Let e be a set of
disturbances (system inputs) and g be a set of gait indicators (system outputs). The GSN
measures the size of the dynamic response of this system. The selection of the disturbance
set e and the gait indicators g are open parameters to the designer, however they need to
have expert knowledge to this measure, i.e possible disturbances e can be the motion once
per step, such as floor irregularities, and continuous disturbances such as sensor noise or
torque ripple, while possible gait indicators g can be step width, step time or ground clear-
ance at midswing.

The authors compared the GSN with the Floquet multipliers and the largest allowable
single disturbance measure using a simple 2D walking model. They used floor irregulari-
ties as disturbance e and step time as indicator for the chance of falling g. The reciprocal
of the GSN (1/

���@g
@e

���
2
), was faster in computation time and better in correlation with the

actual disturbance rejection, contrasted to the maximum Floquet multiplier distance from
the unit cycle (1�max (|�|)) and the largest allowable deterministic disturbance (max (|e|)).
Moreover, they obtained similar results by the same comparison on the ‘Meta’ physical
prototype. Nonetheless, the experiment indicates that the measured Gait Sensitivity Norm
on the real prototype gives a good prediction of the actual disturbance rejection.

Although this is a systematic attempt to quantify the stability of the limit cycle walkers
and provide a better insight on the stability of the walking limit cycle, the analysis is strictly
based on the experience and the knowledge of the designer in the walking system, since
the set of e of disturbances and g of the gait indicators must be defined.
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8.5 Summary

In the previous sections, five popular stability analysis approaches, which received atten-
tion by researchers worldwide, were introduced.

Initially, the well-known Zero Moment Point (ZMP) criterion, which is most often ap-
plied in humanoid robots, was presented.

• Quasi-static stability of a humanoid robot is maintained, while the ZMP remains in-
side the convex hull created by the support foot/feet.

• The ZMP realized and continues to realize an essential role in both theoretical con-
siderations and practical development of humanoid and biped locomotion.

Next, the Foot Rotation Indicator (FRI) point was briefly presented, providing a deeper
insight into the humanoid robot stability.

• The farther away the FRI point is from the support boundary, the larger the unbal-
anced moment on the foot and the greater the instability.

• The distance between the FRI point and the nearest point on the polygon boundary
is a useful indicator of the static stability margin of the foot.

• The ZMP/FRI point is extensively used for gait planning and control.

Subsequently, the Contact Wrench Cone (CWC) universal stability criterion was briefly
described. This criterion checks if the sum of the gravity and the inertia wrench applied to
the CoM of a humanoid robot is inside the polyhedral convex cone of the contact wrench
between the feet of the robot and its environment.

• Possible to determine strong stability of the foot contact even when a robot walks on
an arbitrary terrain and/or when the hands of the robot are in contact.

• While walking on horizontal flat terrain the criterion reduces to the ZMP criterion.

• CWC constraints can be enforced in gait planning and control.

Following, the Capturability theory was presented, based on the general idea of the
Viability theory. The Captured States were defined as the states were the robot can come
to a complete stop by stepping on the capture point, maintaining its balance.

• More efficient to compute than the Viability kernel.

• Capture regions and Capture Points can be used for gait planning and control.

Finally, the Gait Sensitivity Norm (GSN) was presented as a metric to quantify the sta-
bility of the limit cycle walkers under a particular control law.
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• More efficient in terms of computational time and good disturbance-rejection corre-
lation contrasted to the BoA, the Floquet multipliers, and the largest allowable deter-
ministic disturbance.

• Strong dependence to the input disturbance set and the output gait indicators that
must be pre-determined by the designer experience.

• No direct implications to gait planning and control.
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Chapter 9

Appendix B: Mathematical Formulations
and Derivations

9.1 Newton-Euler Equations of Motion

In this section, the Newton-Euler equations of motion for the six unactuated DoFs of walk-
ing robot are derived. The final result is:

Ṗ = mg +

X

contact i

fi (9.1)

L̇ =

X

contact i

(pi � c)⇥ fi + ⌧i (9.2)

9.1.1 Newton’s Equation

Let pi denote the position with respect to the world frame of a reference point on the
robot’s ith link. Furthermore, let c denote the Center of Mass (CoM) and mi the mass of
link i with m =

P
link imi the total mass.

While walking, the robot is subject to gravity and contact forces. Let g denote the grav-
ity vector and for each link i in contact with the environment fi represent the resultant
force exerted on the link. Subsequently, let hij denote the internal force exerted by link i

on link j. By convention hij = 0 if link i and j are not connected and fi = 0 if link i is not
in contact with the environment.

Newton’s equation of motion relates the resultant accelerations and forces:

X

link i

mip̈i =

X

link i

mig + fi +

X

link j 6=i

hij (9.3)

Newton’s third law of motion states that hij = �hji. To this end all internal forces vanish:

X

link i

X

link j 6=i

hij = 0 (9.4)
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In concise form, Newton’s equation binds the acceleration of the CoM with the whole body
resultant force. Thus, let P denote the linear momentum of the robot defined by:

P = mċ (9.5)

Consequently, Newton’s equation can be re-written as:

Ṗ = mg +

X

contact i

fi (9.6)

stating that the rate of change of the linear momentum is equal to the resultant of external
forces exerted on the robot.

9.1.2 Euler’s Equation

As described above, the Newton’s equation binds the translations of the robot’s links. Eu-
ler’s equation provides a similar binding for the links orientation.

Let Ri denote the rotation matrix from the link frame i to the world frame of reference.
In addition, let!i denote is angular velocity and Ii be the inertia matrix taken at the center
of mass of the link, both expressed in the world frame.

For a link i in contact with the environment, we define ⌧i to be the resultant moment
of contact forces exerted on the link at the reference point pi. If the link is in point contact
with the environment atpi, the moment will be zero. On the contrary, if the link is in planar
contact, both fi and ⌧i are non-zero.

Euler’s equation of motion links the angular momenta and resultant moments of exter-
nal forces:

X

link i

(pi � c)⇥mip̈i + Ii!̇i + !i ⇥ (Ii!i) =

X

link i

(pi � c)⇥ (fi +mig) + ⌧i (9.7)

Nevertheless, by a similar argument to the vanishing of internal forces in the transla-
tional case, moments of internal forces do not appear in (9.7). Furthermore, by the defini-
tion of the CoM,

P
link i (pi � c)⇥mig = 0.

The angular momentum of the robot is defined as:

L =

X

link i

(pi � c)⇥miṗi + Ii!i (9.8)

Then, Euler’s equation can be formulated in concise form as:

L̇ =

X

contact i

(pi � c)⇥ fi + ⌧i (9.9)
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stating that the rate of change of the angular momentum is equal to the resultant moment
of the external forces exerted on the robot.

9.2 Leg Odometry

Humanoids locomote by alternating their supporting feet on the ground. The forward
kinematics along with the time derivatives of the base and the supporting foot are given
by:

w
ps =

w
pb +

w
Rb

b
ps (9.10)

w
vs =

w
vb +

w
!b ⇥ w

Rb
b
ps +

w
Rb

b
vs (9.11)

w
Rs =

w
Rb

b
Rs (9.12)

w
!s =

w
!b +

w
Rb

b
!s (9.13)

where the notation is according to chapter 3.

Commonly, b
ps, b

vs, b
Rs, and b

!s, are computed with forward kinematics, while w
Rb

and w
!b can be accurately estimated with a complementary filter and IMU measurements [51,

52].

Under the assumption that the supporting foot is stationary and in contact with the
environment during a step, wps can be initially defined and w

vs is zero. Subsequently, wpb

and w
vb can be derived from (9.10) and (9.11) as:

w
pb =

w
ps � w

Rb
b
ps (9.14)

w
vb = �w

!b ⇥ w
Rb

b
ps � w

Rb
b
vs (9.15)

Nevertheless, in dynamic locomotion the supporting foot commonly rotates about the
contact points, rolls over the ground, or even loses contact with it. To this end, the previous
assumption does not hold true under all circumstances. In order to improve the accuracy
of leg odometry, Masuya et al. [157, 158] proposed a dead reckoning method based on the
Anchoring Pivot (AP), defined inside the supporting foot. The forward kinematics between
the AP and the supporting foot are:

w
psa =

w
ps +

w
Rs

s
psa (9.16)

w
vsa =

w
vs +

w
!s ⇥ w

Rs
s
psa (9.17)

since s
vsa = 0.

When s
psa is computed it provides the current w

vsa, which is also the pivot at the next
time instance, as illustrated in Figure 9.1. This is true under the assumption that w

vsa ⇡ 0
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w

/0 01

s

Figure 9.1: HRP-2 walking on uneven terrain [147]. Updating the support foot pose
based on the AP.

and w
psa is invariant momentarily. Consequently, wps and w

vs can be obtained as:

w
ps =

w
vsa � w

Rs
s
vsa (9.18)

w
vs = �w

!s ⇥ w
Rs

s
vsa (9.19)

To this end, wpb and w
vb can be derived with (9.14) and (9.15) respectively.

Let us consider the case where the left foot is the support foot. In order to compute the
l
pla, the following hypotheses are employed:

• AP is the point with the instantaneous minimum velocity with respect to the support
frame, e.g. l

vla ⇡ 0.

• AP is invariant for a short amount of time namely, l�psa ⇡ 0

• AP is located near the point of action of the total GRF.

The above hypotheses can be mathematically formulated as:

min
lpla

J [k] = J [k]0 + a1J [k]1 + a2J [k]2 (9.20)
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where k is the k-th discrete time instant, a1, a2 are optimization weights, and

J [k]0 =
1

2⇣0
k�lplak2 (9.21)

J [k]1 =
1

2
kwvl + w

!l ⇥ w
Rl

l
plak2 (9.22)

J [k]2 =
1

2⇣1
kl⌧l +

⇣
l
plf � l

pla

⌘
⇥ l

flk2 (9.23)

with l
plf be the point of action of the total GRF in the left foot and ⇣0, ⇣1 be dimension

transformation constants e.g. ⇣0 = dt2 and ⇣1 = (mgdt)2.

Subsequently, the left foot odometry can be updated as:

w
pl[k] =

w
pl[k � 1] +

w
Rl[k � 1]

l
pla[k]� w

Rl[k]
l
pla[k] (9.24)

and the base with respect to the left foot is:

w
pbl[k] =

w
pl[k] + +

w
Rb[k]

b
pl[k] (9.25)

Likewise, the same quantities can be computed for the right foot.

Finally, the leg odometry w
pb is derived as a weighted sum for both feet namely:

w
pb = wl

w
pbl + wr

w
pbr (9.26)

with

wl =

w
f
z

l
+ ✏

wf
z

l
+ wf z

r + 2✏
(9.27)

wr =

w
f
z
r + ✏

wf
z

l
+ wf z

r + 2✏
(9.28)

where ✏ is a small positive constant to avoid division by zero.

9.3 Nonlinear Observability

Consider the following nonlinear dynamical system:

ẋ = f(x,u) (9.29)

y = h(x,u) (9.30)

with x 2 Rn, u 2 Rl is the input vector and y 2 Rm is the measured output. In addition,
without the loss of generality we assume that f and h are smooth functions. The general
question is under which conditions we are able to reconstruct the state vector x by observ-
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ing the system’s output y. There are many results on nonlinear observability i.e [159–162],
nevertheless, we will follow the results presented by Del Vecchio and Murray [88], and ef-
fectively used in [163], since our output dynamics are depended on the input u.

Let h(x,u) =

h
h1(x,u), . . . , hm(x,u)

i>
and ū =

h
u1, . . . , u

(n1�1)
1 , . . . , ul, . . . , u

(nl�1)
l

i>

with
P

l

i=1 ni = nu.

Subsequently, define the following functions:

'0
i = hi (9.31)

'j

i
= Lf'

j�1
i

=
@'j�1

i

@x
f +

j�1X

k=0

@'j�1

@u(k)
u
(k+1)

= y(j)
i

(9.32)

where Lf'
j�1
i

is the Lie derivative of 'j�1
i

in the direction of the vector field f and coin-
cides with the j-th derivative of the i-th output, y(j)

i
.

Next, define the map �(x, ū) : Rn ⇥ Rnu ! Rn to be:

�(x, ū) =
h
h1,'1

1, . . . ,'
k1�1
1 , . . . , hm,'1

m, . . . ,'km�1
m

i>

8 ki |
P

m

i=1 ki = n.

Then, the system in (9.29), (9.30) is locally observable if there exits a non-empty set
X ⇥ U ⇢ Rn ⇥ Rnu , such that the map �(x, ū), for some ki, is invertible with respect to x

and its inverse is smooth 8 (x, ū) 2 X ⇥ U , in other words:

rankO = rank

✓
@�(x, ū)

@x

◆
= n (9.33)

where O is the local nonlinear observability matrix.

Notice, the choice of coordinates needed to define the map � depend on the dynamics
and are not unique, since there are many combination of ki’s that sum up to n. To this end,
it suffices to find a map that satisfies the condition in (9.33).

9.4 Cross-Correlation of Disturbance Input and Measurement Noise

Contents of this proof are adopted from section 4.4 Correlated Disturbance Inputs and
Measurement Noise, pp. 361-364 of [164] and reproduced following the notation intro-
duced in Chapter 3

Assume the linearized discrete-time system:

xk = Fxk�1xk�1 + Fuk�1uk�1 +wk�1

yk = Hxkxk +Hukuk + nk



9.4. Cross-Correlation of Disturbance Input and Measurement Noise 157

where xk is the state, uk is the input, wk is zero mean Gaussian noise with covariance Qk

(process noise), yk is the output, nk is zero mean Gaussian noise with covariance Rk (mea-
surement noise), and Fxk , Fuk , Hxk , Huk are the linearizations of f(xk,uk) and h(xk,uk)

with respect to xk and uk respectively.

A linear minimum-variance filter for this system takes the form:

x̂k(�) = Fxk�1x̂k�1(+) + Fuk�1uk�1

x̂k(+) = x̂k(�) +Kk(yk �Hxk x̂k �Hukuk)

where Kk is the optimal filter gain to be determined, x̂k(�) is the state estimate be-
fore the measurement update and x̂k(+) is the estimate after the update. Defining the
equivalent state residuals as:

ek(�) = xk � x̂k(�)
ek(+) = xk � x̂k(+)

the dynamics of the estimation error can be described by:

ek(�) = Fxk�1ek�1(+) +wk�1 (9.34)

ek(+) = ek(�)�Kk(Hxkek(�) + nk) (9.35)

Thus, the known control input has no effect on the estimation error, therefore Hxk is
rewritten as Hk for simplicity in the following.

The disturbance input and measurement noise are modeled as a time-skewed, white
joint stochastic process such that:

E

("
wk�1

nk

# h
w

>
k�1 n

>
k

i)
=

"
Qk�1 Mk

M
>
k

Rk

#

and

E

"
wk�1

nk

#
=

"
0

0

#

Mk expresses the cross-correlation between the disturbances and the measurement at
discrete time k.

The covariances of the state estimate error before and after the measurement update
are expressed by forming the outer products of the corresponding state residuals (Eqs.9.34,
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9.35) and taking the expected values:

E[ek(�)ek(�)>] = Pk(�)
= E[Fxk�1ek�1(+)ek�1(+)

>
F

>
xk�1

+wk�1w
>
k�1]

= Fxk�1Pk�1(+)F
>
xk�1

+Qk�1 (9.36)

E[ek(+)ek(+)
>
] = Pk(+)

= E[(ek(�)�Kk(Hkek(�) + nk)(ek(�)�Kk(Hkek(�) + nk)
>
]

= Pk � E[ek(�)ek(�)>H>
k K

>
k + ek(�)n>

k K
>
k ]

� E[KkHkek(�)ek(�)> +Kknkek(�)>]
+ E[KkHkek(�)ek(�)>H>

k K
>
k

+KkHkek(�)n>
k K

>
k +Kknke

>
k (�)H>

k K
>
k

+Kknkn
>
k K

>
k ] (9.37)

Substituting (9.34) in (9.37) and moving the expectation operation inside the determin-
istic system matrices, the postupdate covariance can be written in the Joseph form as:

Pk(+) =(I �KkHk)Pk(�)(I �KkHk)
>
+KkRkK

>
k +Kk(HkMk +M

>
k H

>
k )K

>
k

�MkK
>
k �KkM

>
k (9.38)

The optimal gain matrix that minimizes the expected value of the state-residual squared
at each step:

Jk = E[ek(+)
>
ek(+)] = Tr[Pk(+)] (9.39)

Consequently,

@Jk
@Kk

= 2

⇣
Kk

⇣
HkPk(�)H>

k +HkMk +M
>
k H

>
k +Rk

⌘
� Pk(�)H>

k �Mk

⌘
= 0 (9.40)

and the optimal gain is:

Kk =

⇣
Pk(�)H>

k +Mk

⌘⇣
HkPk(�)H>

k +HkMk +M
>
k H

>
k +Rk

⌘�1
(9.41)
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Using this optimal gain in (9.38), the updated state error covariance matrix is:

Pk(+) =Pk(�)�
⇣
Pk(�)H>

k +Mk

⌘⇣
HkPk(�)H>

k +HkMk +M
>
k H

>
k +Rk

⌘�1

⇣
HkPk(�) +M

>
k

⌘

=Pk(�)�Kk

⇣
M

>
k +HkPk(�)

⌘
(9.42)

Notice if Mk is zero the expression in (9.41) reduces to the standard Kalman Gain of the
Extended Kalman filter (EKF) and (9.42) to the updated covariance estimate of the EKF.

9.5 Derivation of the Error State-space

In the following sections the linearizations for the EKF process and measurement model
presented in sec. 3.3.1 and sec. 3.3.2 respectively, are derived. In the literature this is known
as the error state-space, since the state-space is obtained with perturbations from the
nomimal model and accordingly the formulated EKF is known as the Error State Kalman
Filter (ESKF).

9.5.1 Preliminaries

Quaternions and rotation matrices are means for representing a rotation in the three di-
mensional Special Orthogonal (SO(3)) Lie group. In the following we adopt the Hamilton
quaternion convention contrasted to the JPL convention [165]. A quaternion is denoted
as:

q =

2

6664

qw
qx
qy
qz

3

7775
(9.43)

where qw the scalar real part and qv =

h
qx qy qz

i>
is the vector imaginary part. A rota-

tion matrix R corresponding to a quaternion q will be denoted as R[q].

In addition, a consecutive rotation e.g. c
Ra =

c
Rb

b
Ra represents a rotation from the

frame a to the frame b followed by a rotation to a frame c. Similarly, the same rotation is
obtained with quaternions as c

qa =
c
qb ⌦ b

qa, where ⌦ is the quaternion multiplication
defined as:
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p⌦ q =

0

BBB@

pwqw � pxqx � pyqy � pzqz
pwqx + pxqw + pyqz � pzqy
pwqy � pxqz + pyqw + pzqx
pwqz + pxqy � pyqx + pzqw

1

CCCA
(9.44)

which using the matrix-vector product rule [166] is equivalent to:

p⌦ q = L(p)q =

 
pw �p>

v

pv pwI + pv[⇥]

! 
qw
qv

!
(9.45)

p⌦ q = R(q)p =

 
qw �q>v
qv qwI � qv[⇥]

! 
pw
pv

!
(9.46)

where [⇥] is the skew-symmetric operation defined as:

qv[⇥] =

0

B@
0 �qz qy
qz 0 �qx
�qy qx 0

1

CA (9.47)

The exponential map is used to connect a twist ! of the Lie algebra so(3) to the SO(3)

Lie group:
e![⇥] = I + ![⇥]

sin(k!k)
k!k + !

2
[⇥]

1�cos(k!k)
k!k2 (9.48)

which in quaternion form is:

e! =

0

@
cos

⇣
k!k
2

⌘

!

k!k sin
⇣
k!k
2

⌘

1

A (9.49)

Subsequently, assume an infinitesimal twist �, in (9.48) and (9.49):

�q = e� ⇡
 

1

1
2�

!
(9.50)

�R = e� ⇡ I + �[⇥] (9.51)

This is the first-order approximation of an infinitesimal rotation, also known as the small
angle approximation. To this end, if we assume a infinitesimal perturbation � around a
nomimal rotation R̄, q̄ then:

R = R̄
�
I + �[⇥]

�
(9.52)

q = q̄ ⌦
 

1

1
2�

!
(9.53)

(9.54)
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In the next sections, we will formally derive the linearized error state dynamics, the proofs
for the linear quantities are inspired by [166], while the derivations for the angular quanti-
ties are based on [57].

9.5.2 Relative Base Linear Velocity Dynamics

The process model for the dynamics of the base linear velocity is:

b
v̇b = �

⇣
b
!b � b! �w!

⌘
⇥ b

vb +
w
R

>
b g +

b
↵b � b↵ �wa (9.55)

Let a perturbation b
�vb from the nomimal value b

v̄b of b
vb so that b

vb =
b
v̄b +

b
�vb. Accord-

ingly, let b! = b̄! + �b! and b↵ = b̄↵ + �b↵ then (9.55) becomes:

b
v̇b =

b ˙̄vb +
b
�v̇b (9.56)

= �
⇣
b
!b � b̄! � �b! �w!

⌘
⇥
⇣
b
v̄b +

b
�vb

⌘
+
�
I � �[x]

�
w
R̄

>
b g � b

↵b � b̄↵ � �b↵ �w↵

(9.57)

where in (9.57) we used the small angle approximation of w
Rb =

w
R̄b

�
I + �[⇥]

�
. Subse-

quently, after eliminating products of small quantities, such as products of perturbations
and noises and splitting the expression into ”large signal” and ”small signal” [166]:

b ˙̄vb +
b
�v̇b = �

⇣
b
!b � b̄!

⌘
⇥ b

v̄b +
b
v̄b ⇥ (��b! �w!)�

⇣
b
!b � b̄!

⌘
⇥ b
�vb (9.58)

+
w
R̄

>
b g +

w
R̄

>
b g ⇥ �� b

↵b � b̄↵ � �b↵ �w↵ (9.59)

To this end, the linearized base velocity dynamics are:

b
�v̇b =

b
v̄b ⇥ (��b! �w!)�

⇣
b
!b � b̄!

⌘
⇥ b
�vb +

w
R̄

>
b g ⇥ �� �b↵ �w↵ (9.60)

9.5.3 Absolute Base Orientation Dynamics

The process model for the dynamics of the base orientation with respect to the world
frame is:

w
Ṙb =

w
Rb(

b
!b � b! �w!)[⇥] (9.61)

which can be rewritten in quaternion form as:

w
q̇b =

w
qb ⌦

1

2

 
0

b
!b � b! �w!

!
(9.62)

where⌦ denotes the quaternion multipication. In addition, for the clarity of presentation,
notation with respect to frames is dropped.
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Let a local perturbation �q from the nomimal value q̄ of q so that q = q̄ ⌦ �q and b! =

b̄! + �b!. Subsequently, using the chain rule, the time derivative of the quaternion q is:

q̇ =
d

dt
(q̄ ⌦ �q) (9.63)

q ⌦ 1

2

 
0

! � b̄! � �b! �w!

!
= ˙̄q ⌦ �q + q̄ ⌦ �̇q (9.64)

However, the nomimal time derivative of the quaternion is:

˙̄q = q̄ ⌦ 1

2

 
0

! � b̄!

!
(9.65)

Thus, (9.64) becomes:

q ⌦ 1

2

 
0

! � b̄! � �b! �w!

!
= q̄ ⌦ 1

2

 
0

! � b̄!

!
⌦ �q + q̄ ⌦ �̇q (9.66)

Multiplying both sides of (9.66) with q̄
�1 and identifying that �q = q̄

�1 ⌦ q:

�q ⌦ 1

2

 
0

! � b̄! � �b! �w!

!
=

1

2

 
0

! � b̄!

!
⌦ �q + �̇q (9.67)

Solving for the local perturbation �q̇:

�q̇ = �q ⌦ 1

2

 
0

! � b̄! � �b! �w!

!
� 1

2

 
0

! � b̄!

!
⌦ �q (9.68)

= �q ⌦ 1

2

 
0

! � b̄!

!
+ �q ⌦ 1

2

 
0

��b! �w!

!
� 1

2

 
0

! � b̄!

!
⌦ �q (9.69)

where the sum of a pure quaternion is split into the sum of multiple pure quaternions. In
addition, assume the small angle approximation for the quaternion �q:

�q =

 
1

1
2�

!
(9.70)

�q̇ =

 
0

1
2 �̇

!
(9.71)
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Consequently, (9.69) takes the following form:

 
0

1
2 �̇

!
=

 
1

1
2�

!
⌦ 1

2

 
0

! � b̄!

!
+

 
1

1
2�

!
⌦ 1

2

 
0

��b! �w!

!
� 1

2

 
0

! � b̄!

!
⌦
 

1

1
2�

!

(9.72)

Subsequently, using the matrix-vector product property of the quaternion product and
defining !̂ = ! � b̄! and �b̂! = �b! +w! for simplicity:

 
0

1
2 �̇

!
=

1

2

 "
0 �!̂>

!̂ �!̂[⇥]

#
�
"
0 �!̂>

!̂ !̂[⇥]

#! 
1

1
2�

!
+

1

2

 
0 �b̂

>

��b̂ ��b̂[⇥]

! 
1

1
2�

!
(9.73)

=
1

2

 
0 0

0> �2!̂[⇥]

! 
1

1
2�

!
+

1

2

 
0

��b̂!

!
(9.74)

where in the second row of (9.74) we eliminated products of small quantities, such as prod-
ucts of perturbations and noises.

Finally, considering each equation individually:

0 = 0 (9.75)

�̇ = �
�
! � b̄!

�
[⇥]
�� �b! �w! (9.76)

with (9.76) representing the linearized orientation dynamics and (9.75) demonstrating
consistency.

9.5.4 Absolute Base Position Dynamics

The process model for the dynamics of the base position is:

w
ṗb =

w
Rb

b
vb (9.77)

Let the perturbation w
�pb from the nomimal value w

p̄b of w
pb so that w

pb =
w
p̄b +

w
�pb,

then:

w ˙̄pb +
w
�̇pb =

w
R̄b

�
I + �[⇥]

� ⇣
b
vb +

b
�vb

⌘
(9.78)

(9.79)

Ignoring products of perturbations and splitting the expression into ”large signal” and
”small signal”:
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w ˙̄pb +
w
�̇pb =

w
R̄b

b
vb +

w
R̄b

b
�vb � w

R̄b
b
vb ⇥ � (9.80)

Thus, the linearized base position dynamics are:

w
�̇pb =

w
R̄b

b
�vb � w

R̄b
b
vb ⇥ � (9.81)

9.5.5 Absolute Support Foot Linear Velocity and IMU biases Dynamics

The process model for the dynamics of the support foot linear velocity is:

w
ṙs = wrs (9.82)

Let the perturbation w
�r from the nomimal value w

r̄ of w
r so that w

r =
w
r̄ +

w
�r, then:

w ˙̄r +
w
�̇r = wrs (9.83)

Nevertheless, the support foot is assumed to be stationary therefore the nomimal linear
velocity is:

w ˙̄r = 0 (9.84)

Therefore, the linearized suppot foot linear velocity dynamics are:

w
�̇r =

w
wrs (9.85)

In a similar manner, we can derive the linearized dynamics for the IMU biases:

�̇b↵ = w↵ (9.86)

�̇b! = w! (9.87)

9.5.6 Absolute Support Foot Angular Velocity Dynamics

The process model for the dynamics of the support foot angular velocity is:

w
Ṙs =

w
Rsws[⇥] (9.88)

which can be rewritten in quaternion form as:

w
q̇s =

w
qs ⌦

1

2

 
0

ws

!
(9.89)
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For the clarity of presentation, notation with respect to frames is dropped.

Let q = q̄ ⌦ �q so that q̇ = ˙̄q ⌦ �q + q̄ ⌦ �q̇.

˙̄q ⌦ �q + q̄ ⌦ �q̇ = q ⌦ 1

2

 
0

ws

!
(9.90)

However, the nomimal rotational velocity is:

˙̄q = 0 (9.91)

Therefore:

q̄ ⌦ �q̇ = q ⌦ 1

2

 
0

ws

!
(9.92)

Multiplying both sides from the left with q̄
�1 and using the identity �q = q̄

�1 ⌦ q:

�q̇ = �q ⌦ 1

2

 
0

ws

!
(9.93)

As before, using the matrix-vector quaternion product rule and the small angle approxi-
mation:

 
0

1
2 �̇

!
=

1

2

 
0 �w>

s

ws �ws[⇥]

! 
1

1
2�

!
(9.94)

After eliminating the pertubration-noise products the second equation yields:

�̇ = ws (9.95)

while the first yields 0 = 0 for consistency.

9.5.7 Absolute Base Position Measurement

Let the measurement be:
w
p
m
b =

w
pb + npb (9.96)

Next, define the following perturbations: w
p
m
b

=
w
p̄b +

w
�p

m
b

and w
pb =

w
p̄b +

w
�pb. Sub-

sequently, replacing in (9.96):

w
p̄b +

w
�p

m
b =

w
p̄b +

w
�pb + npb (9.97)
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Therefore, the linearized absolute base position measurement is:

w
�p

m
b =

w
�pb + npb (9.98)

9.5.8 Absolute Base Linear Velocity Measurement

Let the measurement model be:

w
v
m
b =

w
Rb

b
vb + nvb (9.99)

Again, assume the perturbations: w
v
m
b

=
w
v̄b +

w
�v

m
b

and w
vb =

w
v̄b +

w
�vb and use the

small angle approximation for w
Rb. Subsequently, (9.99) becomes:

w
v̄b +

w
�v

m
b =

w
R̄b

�
I + �[x]

� ⇣
b
v̄b +

b
�vb

⌘
+ nvb (9.100)

Using the identity w
v̄b =

w
R̄b

b
v̄b and eliminating pertubation products:

w
�v

m
b =

w
R̄b�[x]

b
v̄b +

w
R̄b

b
�vb + nvb (9.101)

which can be rewritten as:

w
�v

m
b =

w
R̄b

b
�vb � w

R̄b

⇣
b
v̄b ⇥ �

⌘
+ nvb (9.102)

9.5.9 Absolute Base Orientation Measurement

Let the measurement model be:

w
R

m
b =

w
Rbe

nb[⇥] (9.103)

which can be rewritten in quaternion form as:

w
q
m
b =

w
qb ⌦

 
1

1
2nb

!
(9.104)

where nb is the quaternion from the rotation enb .
Let the perturbations, wqm

b
=

w
q̄b ⌦ w

�q
m
b

and w
qb =

w
q̄b ⌦ w

�qb. Replacing in (9.104):

w
q̄b ⌦ w

�q
m
b =

w
q̄b ⌦ w

�qb ⌦
 

1

1
2nb

!
(9.105)
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Multiplying both sides from the left with w
q̄
�1
b

:

w
�q

m
b =

w
�qb ⌦

 
1

1
2nb

!
(9.106)

Using the matrix-product quaternion rule and the small angle approximation:

 
1

1
2 

m

!
=

 "
1 �1

2n
>

1
2nb I � 1

2nb[⇥]

#! 
1

1
2�

!
(9.107)

After eliminating noise-peturbation products, the second equation is equivalent to:

 
m

= �+ nb (9.108)

while the first yields 1 = 1 for consistency.

9.5.10 Relative Support Foot Position Measurement

Let the measurement model be:

b
r
m
s =

w
R

>
b (

w
rs � w

pb) + nrs (9.109)

Adding the perturbations, b
r
m
s =

b
r̄s + b

�r
m
s , w

rs =
w
r̄s + w

�rs, w
pb =

w
p̄b + w

�pb, and
using the small angle approximation for w

Rb =
w
R̄b

�
I + �[x]

�
:

b
r̄s +

b
�r

m
s =

�
I � �[x]

�
w
R̄

>
b (

w
r̄s +

w
�rs �

w
p̄b �

w
�pb) + nrs (9.110)

Ignoring the perturbation-noise products and using b
r̄s =

w
R̄

>
b
(
w
r̄s � w

p̄b):

b
�r

m
s =

w
R̄

>
b (

w
�rs � w

�pb) +
w
R̄

>
b (

w
rs � w

pb)⇥ �+ nrs (9.111)

9.5.11 Relative Support Foot Orientation Measurement

Let the measurement model be:

b
R

m
s =

w
R

>
b

w
Rse

nr[⇥] (9.112)

which can be rewritten in quaternion form as:

b
q
m
s =

w
q
�1
b
⌦ w

qs ⌦
 

1

1
2nr

!
(9.113)
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Let b
q
m
s =

b
q̄s ⌦ b

�q
m
s , wqb = w

q̄b ⌦ w
�qb, and w

qs =
w
q̄s ⌦ w

�qs, then:

b
q̄s ⌦ b

�q
m
s =

w
�q

�1
b
⌦ w

q̄
�1
b
⌦ w

q̄s ⌦ w
�qs ⌦

 
1

1
2nr

!
(9.114)

Multiplying both sides from the left with b
q̄
�1
s :

b
�q

m
s =

b
q̄
�1
s ⌦ w

�q
�1
b
⌦ w

q̄
�1
b
⌦ w

q̄s ⌦ w
�qs ⌦

 
1

1
2nr

!
(9.115)

but b
q̄s =

w
q̄
�1
b
⌦ w

q̄s:

b
�q

m
s =

b
q̄
�1
s ⌦ w

�q
�1
b
⌦ b

q̄s ⌦ w
�qs ⌦

 
1

1
2nr

!
(9.116)

A triple product of quaternions can be written as:

�
q ⌦ p⌦ q

�1
�
=

 
pw

R[q]pv

!
(9.117)

To this end:
b
q̄
�1
s ⌦ w

�q
�1
b
⌦ b

q̄s =

 
1

�1
2
s
R̄b�

!
(9.118)

where the small angle approximation for w
�q

�1
b

=

 
1

�1
2�

!
was used.

Furthermore, w�qs =

 
1

1
2�

!
, b�qms =

 
1

1
2⇣

m

!
, and (9.116) becomes:

 
1

⇣
m
s

!
=

 
1

�1
2
s
R̄b�

!
⌦
 

1

1
2�

!
⌦
 

1

1
2nr

!
(9.119)

Using the right matrix-product quaternion rule:

 
1

1
2⇣

m
s

!
=

 
1 �1

2�
>

1
2� I � 1

2�[x]

! 
1

�1
2
s
R̄b�

!
⌦
 

1

1
2nr

!
(9.120)

After eliminating products of pertubation-noise:

 
1

1
2⇣

m
s

!
=

 
1

�1
2
s
R̄b�+

1
2�

!
⌦
 

1

1
2nr

!
(9.121)
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Using the right matrix-product quaternion rule one more time:

 
1

1
2⇣

m
s

!
=

 
1 �1

2n
>
r

1
2nr I � 1

2nr

! 
1

�1
2
s
R̄b�+

1
2�

!
(9.122)

After products of pertubation-noise are eliminated, (9.122) is equivalent to:

 
1

1
2⇣

m
s

!
=

 
1

�1
2
s
R̄b�+

1
2�+

1
2nr

!
(9.123)

To this end, the second equation yields:

⇣
m
s = �w

R̄
>
s

w
R̄b�+ �+ nr (9.124)

while the first one yields 1 = 1 for consistency.

9.6 Derivation of Closed-Form Outlier Detection

In this section the closed-form expression for the outlier measurement detection algo-
rithm, presented in section 4.2.3, is derived.

Bk =

Z
(y

o

k � h
o
(xk))(y

o

k � h
o
(xk))

>p(x̂k)dxk

= y
o

ky
o>
k � 2y

o

k

Z
h
o
(xk)

>p(x̂k)dxk

+

Z
h
o
(xk)h

o
(xk)

>p(x̂k)dxk (9.125)

using the first order approximation of (4.8) post to the update:

h
o
(x) = h(x̂

+
k
) +H

o

k(xt � x̂
+
k
)

the first integral of (9.125) can be computed as:
Z

h
o
(xk)

>p(x̂k)dxk =

Z
h
o
(x̂

+
k
)
>p(x̂k)dxk

+

Z
(xt � x̂

+
k
)
>
H

o>
k p(x̂k)dxk = h

o
(x̂

+
k
)
>
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while the second integral of (9.125) is equivalent to:
Z

h
o
(xk)h

o
(xk)

>p(x̂k)dxk =

Z
(x̂

+
k
+H

o

k(xk � x̂
+
k
))

(x̂
+
k
+H(xt � x̂

+
k
))

>p(x̂k)dxk = x̂
+
k
x̂
+>
k

+H
o

kP
+
k
H

o>
k

Thus (9.125) becomes:

Bk = y
o

ky
o>
k � 2y

o

kh
o
(x̂

+
k
)
>

+ h
o
(x̂

+
k
)h

o
(x̂

+
k
)
>
+H

o

kP
+
k
H

o>
k (9.126)



List of Acronyms

DoF Degree of Freedom

DRC Darpa Robotic Challenge

ZMP Zero Moment Point

COP Center of Pressure

CoM Center of Mass

IMU Inertial Measurement Unit

F/T Force/Torque

FRI Foot Rotation Indicator

CWC Contact Wrench Cone

GSN Gait Sensitivity Norm

GRF Ground Reaction Force

LIPM Linear Inverted Pendulum Model

IPM Inverted Pendulum Model

FIP Floating-based Inverted Pendulum

KF Kalman Filter

LKF Linear Kalman Filter

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

QP Quadratic Program

CP Capture Point

DCM Divergent Component of Motion
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MPC Model Predictive Control

PFL Partial Feedback Linearization

LTI Linear Time Invariant

LTV Linear Time Varying

HZD Hybrid Zero Dynamics

PHZD Partial Hybrid Zero Dynamics

ROS Robot Operating System

ME Momentum Estimator

ESKF Error State Kalman Filter

RGESKF Robust Gaussian Error State Kalman Filter

VO Visual Odometry

LO LIDAR Odometry

SS Single Support

DS Double Support

LSS Left Single Support

RSS Right Single Support

SEROW State Estimation RObot Walking

GEM Gait-Phase Estimation Module

KFusion Kinect Fusion

SVO Semi-dense Visual Odometry

SLAM Simultaneous Localization and Mapping

PCA Principal Component Analysis

NN Neural Network

GMM Gaussian Mixture Model

EM Expectation Maximization
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