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Abstract

The consumer wearable market has been growing relentlessly since 2013, reaching un-

precedented sales numbers during the first two years of the COVID-19 pandemic. At

present, hundreds of millions (potentially billions) of users worldwide use such devices to

monitor their private lives twenty-four hours a day and seven days a week. However, the

lightning spread of wearable device and commercial fitness trackers, in particular, has not

been complemented by the adequate security and privacy protection of their ever-growing

userbase.

In this dissertation, we investigate if average consumers of commercial wearable devices

are at risk. More specifically, whether conventional usage of fitness trackers by regular

people may lead to a significant loss of privacy. In particular, we explore 2 aspects of

consumer wearables: the devices with the associated ecosystem, and the data they produce.

We demonstrate that private information on users of prominent consumer fitness

trackers may be inferred, when the devices transmit the collected data to the permanent

storage of their manufacturer. An adversary may obtain insights on how often users exercise

and measure their heart rate, whether they have trouble sleeping, or if they are overweight.

We proceed to study the third-party companies that are contacted by wearable devices as

part of their functioning. We show that significant and sometimes deeply personal data

may be transferred to these “unwanted” third parties without explicit consent from users.

We further establish that sharing data generated by wearable “as is” may lead to signifi-

cant privacy exposure and even full re-identification of users. By possessing very limited

amounts of wearable data, a competent adversary may learn insights on person’s gender,

weight, height, and even reconstruct a “wearable fingerprint” – a unique pattern of daily

routine.

To combat the above threats, we suggest a methodology for blocking unwanted connec-

tions of wearables, severely limiting the possibilities for privacy leaks. We further present

comprehensive guidelines for privacy-preserving release of wearable data by both regular

users and data controllers, who aggregate such information into datasets.

We emphasize that all proposed defense mechanisms can be easily employed by regular

users with limited technical expertise and do not require any additional equipment.

Supervisor: Professor Evangelos P. Markatos
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Περίληψη

Η αγορά των έξυπνων ρολογιών, και των έξυπνων συσκευών γενικότερα, αυξάνεται αδιάκοπα,

έχοντας φτάσει σε ανεπανάληπτους αριθμούς πωλήσεων κατά τα δύο πρώτα χρόνια της πανδημίας

του COVID-19. Αυτή τη στιγμή, εκατομμύρια ή ακόμη και δισεκατομμύρια χρήστες παγκοσμίως

χρησιμοποιούν τέτοιες συσκευές για να παρακολουθούν τις προσωπικές τους δραστηριότητες

(π.χ. άθληση, ύπνο, περπάτημα, κλπ.) είκοσι τέσσερις ώρες το εικοσιτετράωρο και επτά μέρες

την εβδομάδα. Ωστόσο, η γρήγορη διάδοση αυτών των συσκευών δεν συνοδεύεται απαραίτητα

από επαρκή προστασία ασφαλείας και προστασία της ιδιωτικότητας της ραγδαία αυξανόμενης

βάσης χρηστών τους.

Σε αυτή τη διατριβή, ερευνούμε εάν η χρήση αυτών των συσκευών μπορεί να οδηγήσει σε

σημαντική απώλεια της ιδιωτικότητας. Ειδικότερα, εξετάζουμε δύο πτυχές αυτών των συσκευ-

ών: (1) τις συσκευές μέσα στο σχετικό οικοσύστημά τους σε συνδυασμό με το λογισμικό που

χρησιμοποιούν, και (2) τα δεδομένα που παράγουν.

Δείχνουμε ότι ιδιωτικές πληροφορίες των χρηστών μπορούν να εξαχθούν, όταν οι συσκευές

μεταδίδουν τα συλλεγόμενα δεδομένα στη μόνιμη αποθήκευση του κατασκευαστή τους. Τέτοιες

πληροφορίες περιλαμβάνουν (1) πόσο συχνά ασκούνται οι χρήστες (2) ποιος είναι ο παλμός της

καρδιάς τους, (3) εάν αντιμετωπίζουν προβλήματα ύπνου, (4) αν είναι υπέρβαροι, κλπ. Παράλληλα

δείχνουμε ότι αυτές οι συσκευές επικοινωνούν με ιστοσελίδες που ανήκουν σε τρίτες οντότητες

(όχι στον κατασκευαστή της συσκευής) και στέλνουν δεδομένα σε αυτές τις ιστοσελίδες.

Επιπλέον, δείχνουμε ότι η κοινοποίηση δεδομένων που δημιουργούνται από αυτές τις συσκευ-

ές, μπορεί να οδηγήσει σε σημαντική αποκάλυψη προσωπικών δεδομένων και ακόμη και πλήρη

επαναταυτοποίηση των χρηστών. Κατέχοντας πολύ περιορισμένες ποσότητες δεδομένων από αυ-

τές τις συσκευές, μια επιδέξια εχθρική πλευρά μπορεί να αποκτήσει πληροφορίες σχετικά με το

φύλο, το βάρος και το ύψος του χρήστη και ακόμη και να ανακατασκευάσει ένα ‘αποτύπωμα της

συσκευής’ – ένα μοναδικό μοτίβο καθημερινής ρουτίνας.

Για να αντιμετωπιστούν οι απειλές που αναφέρθηκαν, προτείνουμε μια μεθοδολογία για τον

αποκλεισμό ανεπιθύμητων συνδέσεων αυτών των συσκευών, περιορίζοντας σοβαρά τις δυνατότη-

τες διαρροής προσωπικών πληροφοριών. Παρουσιάζουμε επίσης οδηγίες για την διατήρηση της

ιδιωτικότητας κατά τη δημοσίευση δεδομένων αυτών των συσκευών, τόσο από τους κανονικούς

χρήστες όσο και από τους ελεγκτές δεδομένων, οι οποίοι συγκεντρώνουν αυτές τις πληροφορίες

σε σύνολα δεδομένων. Επισημαίνουμε ότι όλοι οι προτεινόμενοι μηχανισμοί άμυνας μπορούν ε-

ύκολα να χρησιμοποιηθούν από κανονικούς χρήστες με περιορισμένες τεχνικές γνώσεις και δεν

απαιτούν επιπλέον εξοπλισμό.

xi



Επόπτης: Καθηγητής Ευάγγελος Π. Μαρκάτος



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Authors’ Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Security of Wearables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Background and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Workflow of Wearable Devices . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Analysis of Encrypted Traffic. Man in the Middle . . . . . . . . . . . . 11

2.1.3 Previous Attacks on Wearables . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Attacks on Wearable Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Attack Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Xiaomi Wearable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Samsung Wearable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Automatic Activity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Applicability of the Attack and Countermeasures . . . . . . . . . . . . . . . . 30

2.6 What Can Regular Users Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Privacy of Wearables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Unwanted Connections of Wearables . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Identification Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Analysis of Popular Wearable Models . . . . . . . . . . . . . . . . . . . 35

3.1.3 Analysis of Fitbit Partner Apps . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Preventing Unwanted Connections of Wearables . . . . . . . . . . . . . . . . 43

3.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xiii



3.2.3 Analysis of Third Parties . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Blocking Unnecessary Traffic . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 Blocklists Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.6 Applicability of Blocking Approach . . . . . . . . . . . . . . . . . . . . 52

3.3 What Can Regular Users Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Attacks on Wearable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Methods and Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Threat Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Identity-based inference . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Routine-based inference . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Deanonymization Based on Physical Parameters . . . . . . . . . . . . . . . . 65

4.6 Inference of Physical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Inference Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.2 Incomplete Records Deanonymization . . . . . . . . . . . . . . . . . . 72

4.6.3 Utilizing Additional Fitness Features. . . . . . . . . . . . . . . . . . . . 75

4.7 User Deanonymization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 De-anonymization Based on Daily Routine . . . . . . . . . . . . . . . . . . . 79

4.9 What Can regular Users Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Privacy-preserving Release of Wearable Data . . . . . . . . . . . . . . . . . . . . . 81

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Privacy-preserving Wearable Data Publishing . . . . . . . . . . . . . . . . . . 86

5.2.1 Types of Wearable Data Release . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Wearable Data Release. Common Misconceptions . . . . . . . . . . . 88

5.2.3 Wearable Data Release. Guidelines . . . . . . . . . . . . . . . . . . . . 90

5.3 Lifesnaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 What Can Regular Users Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Synopsis of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Security of Wearables (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2 Privacy of Wearables (RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.3 Attacks on Wearable Data (RQ3) . . . . . . . . . . . . . . . . . . . . . . 102

6.1.4 Privacy-preserving Release of Wearable Data (RQ4) . . . . . . . . . . 102

6.2 Directions for Future Work and Research . . . . . . . . . . . . . . . . . . . . . 103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



List of Publications

In this dissertation I refer to the following published works by their Roman numerals.

I Kazlouski, A., Marchioro, T., Manifavas, H. and Markatos, E.P., 2021, February. “I still

See You! Inferring Fitness Data from Encrypted Traffic of Wearables.” In HEALTHINF

(pp. 369-376).

II Kazlouski, A., Marchioro, T., Manifavas, H. and Markatos, E., 2021, March. “Do partner

apps offer the same level of privacy protection? The case of wearable applications.”

In 2021 IEEE International Conference on Pervasive Computing and Communications

Workshops and other Affiliated Events (PerCom Workshops) (pp. 648-653). IEEE.

III Kazlouski, A., Marchioro, T. and Markatos, E.P., 2022, November. “I just wanted to

track my steps! Blocking unwanted traffic of Fitbit devices.” In Proceedings of 12th

International Conference on the Internet of Things (pp. 96-103).

IV Kazlouski, A., Marchioro, T. and Markatos, E.P., 2022. “What your Fitbit says about you:

De-anonymizing users in lifelogging datasets.” In SECRYPT (pp. 341-348).

V Marchioro, T., Kazlouski, A. and Markatos, E., 2022. “How to Publish Wearables’ Data:

Practical Guidelines to Protect User Privacy.” Studies in Health Technology and Infor-

matics, 294, (pp.949-950).

VI Yfantidou, S., Karagianni, C., Efstathiou, S., Vakali, A., Palotti, J., Panteleimon Giakatos,

D., Marchioro, T., Kazlouski, A., Ferrari, E. and Girdzijauskas, S., 2022. “LifeSnaps, a

4-month multi-modal dataset capturing unobtrusive snapshots of our lives in the wild.”

Scientific data, 9(1):663, Oct 2022.

This work also discusses the following related publications that are not included in the

main body of the thesis:

a Kazlouski, A., Marchioro, T., Manifavas, H. and Markatos, E., 2020. Do you know who

is talking to your wearable smartband?. Integrated Citizen Centered Digital Health and

Social Care, p.142.

b Marchioro, T., Kazlouski, A. and Markatos, E., 2021. “User Identification from Time Series

of Fitness Data.” In SECRYPT (pp. 806-811).

xv



c Marchioro, T., Kazlouski, A. and Markatos, E., 2023. “Practical Crowdsourcing of Wearable

IoT Data with Local Differential Privacy.” In Proceedings of the 8th ACM/IEEE Conference

on Internet of Things Design and Implementation (pp. 275-287).



Author’s Contributions

Publication I: “I still See You! Inferring Fitness Data from Encrypted Traffic of Wear-

ables.”

All authors conceived and designed the study. I collected the data. I led the imple-

mentation of the experiments, assisted by Thomas Marchioro. Thomas Marchioro

and I wrote the paper with the help of other co-authors. All authors reviewed and

commented on the manuscript.

Publication II: “Do partner apps offer the same level of privacy protection? The case

of wearable applications.”

The methodology of the paper was designed by all authors. Thomas Marchioro and I

performed the experiments. Thomas Marchioro and I led the writing of the article

with the assistance and feedback of other co-authors.

Publication III: “I just wanted to track my steps! Blocking unwanted traffic of Fitbit

devices.”

Thomas Marchioro and I conceived the study and wrote the manuscript. I performed

the data collection. I led the implementation of the experiments, assisted by Thomas

Marchioro. All authors read and approved the final manuscript.

Publication IV: “What your Fitbit says about you: De-anonymizing users in lifelogging

datasets.”

All authors conceived the study. Both presented de-anonymization attacks were

designed and analyzed by Thomas Marchioro and I. Thomas Marchioro and I imple-

mented the experiments. Thomas Marchioro and I wrote the article with the help of

our co-author. All authors reviewed the paper.

Publication V: “How to Publish Wearables’ Data: Practical Guidelines to Protect User

Privacy.”

Evangelos Markatos conceived and supervised the study. Thomas Marchioro and

I designed the study and wrote the manuscript. All authors commented on and

approved the submitted manuscript.

xvii



Publication VI: “LifeSnaps, a 4-month multi-modal dataset capturing unobtrusive

snapshots of our lives in the wild.”

Sofia Yfantidou, Stefanos Efstathiou, Athena Vakali and Šarūnas Girdzijauskas con-
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Chapter 1

Introduction

Technological advances have made wearable devices more sophisticated and accessible for

the average consumers in recent years. Therefore, wearables market have been showing an

unprecedented growth over the past decade, reaching a stunning total of 500 million units

in 2021 [64, 135]. The most recent available data suggest that almost 150 million wearables

have been sold in Q3 2022 [136]. In fact, the wearable market has never been in decline

since 2013 [64], making it one of the most demanded electronic products readily available.

The present surge of remote working, deteriorating lifestyles, and self-tracking are likely

to maintain the interest in wearables in the foreseeable future. Pew Research Center has

estimated that at least one in five Americans utilized a fitness tracker as of 2020 [19]. The

up-to-date number is likely significantly higher due to the sharp increase for shipment

of wearables during the recent pandemic. COVID-19 has become a driving force in sales

of wearable devices, especially during the period of lockdowns and gym closures. Since

the possibility to exercise had been severely restricted, users have been seeking alternative

ways to exercise and keep active. Therefore, the highest number of wearables ever sold has

been recorded in Q4 2020 – at the height of the pandemic – with more than 153.5 million

devices shipped [136]. Furthermore, major providers of exercising apps have recorded

unprecedented number of new users during COVID-19 [67, 139, 149, 159]. According to

MoEngage, the number of downloads for health and fitness apps grew by 46% between

Q1 and Q2 2020 [159]. In particular, one of the most popular fitness tracking application

Strava has reported a 33% downloads increase during 2020, gaining 2 million new users

each month. Given that the pandemic restrictions are still enforced in some parts of the

world (as of Q1 2023), it is highly likely that the current trend will continue. Unfortunately,

the proportion of privacy-aware individuals among the userbase of wearables remains

extremely low [7]. The issue of protecting wearable devices is of paramount importance in

light of the aforementioned insights.

Categories of wearables considered in this Thesis. Technically, wearable devices com-

prise a wide range of on-body devices, including smartbands and smart watches, earbuds

3
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and headphones, smart jewelry, smart clothes, implantable devices, etc. In this dissertation,

however, we mostly focus on wrist-worn fitness trackers. We center our research on such

devices for a number of reasons:

• Consumer fitness trackers constitute a significant amount of the total shipment for

wearables [136].

• Consumer-level fitness trackers collect much more data than any other category of

wearables. Moreover, such information are often aggregated into datasets, which may

become publicly available.

• Consumer fitness trackers can be paired with an ever-growing number of various

fitness applications that communicate sensitive data over the Internet.

• Consumer-level activity trackers are vastly employed not only for activity/recreational

purposes but also for medical and health studies.

• Most importantly, consumer fitness trackers are easily accessible and can be operated

by regular users with limited technical/medical expertise.

Henceforth, we interchangeably employ various wearable-related terms, including

wearable devices, wearables, consumer wearables, smartbands, wristbands, smart watches,

fitness trackers, activity trackers or just trackers to specifically refer to the consumer-level

wearable fitness trackers.

The wearables we consider in this thesis collect a vast amount of fitness information

and other activity-related data. Such devices are able to track a wealth of various diverse

fitness parameters, including steps, distance, calories, workouts, weight, heartbeat, sleep,

etc. According to a recent consumer study [24], most users purchase wearables to monitor

the above parameters. Note that such data are not measured directly by the trackers but

instead calculated from the low-level sensor information. At present, commercial wearable

trackers may be equipped with modern sensors, including accelerometer, gyroscope, GPS

receiver, altimeter, as well as heartbeat, blood pressure, and skin temperature sensors.

Occasionally, fitness trackers may contain ambient light and multi-purpose electrical

conductance sensors as well. All the above sensors collect raw data that are being converted

to the higher granularity metrics. Finally, the latest generations of wearables are able to

monitor even more sophisticated attributes, such as stress, mood, anxiety, and emotional

levels.

Naturally, given the penetration of consumer fitness trackers throughout the world, a

number of privacy-related concerns have been raised in recent years [25, 61]. Despite the

recent consumer surveys indicating that users of wearables are somewhat aware of the

privacy risks [39, 118, 152], the vast majority of consumers tend to view them as mostly
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hypothetical and rarely exert caution when using their devices. Indeed, why should regular

individuals care if “they” (i.e., vendors or any other entities) learn some information on

steps and calories of users? Unfortunately (for regular users), the possible information

exposure goes way deeper. Indeed, consumer wearable devices not only monitor fitness-

related parameters but also regularly synchronize with the mobile companion applications

that, in turn, constantly communicate with the Internet (the communication pipeline

for consumer wearables is depicted in Figure 2.1 and is discussed in more detail in the

next sections). This, in turn, raises significant concerns in regards to ubiquitous data

collection by wearables. This term has been widely accepted in association with mobile

phones [127], which gather enormous volumes of high-granularity information. Indeed,

modern cellphones are endowed with a wide-variety of sensors and broadcasting modules;

they transmit Wi-Fi and Bluetooth signals, communicate with GPS satellites, connect to the

cell towers, and gather wealth of accelerometer, gyroscope, and other sensor data. More

importantly, however, mobile phones are constantly connected with the Internet and are

practically spying on users with their implicit consent. It is evident that ubiquitous data

collection may lead to mass surveillance and profiling of both individual users, as well as

particular groups based on the collected information.

Given that consumer wearables are literally worn 24/7 and constantly collecting or

monitoring sensitive information, which may be communicated over the Internet, such

devices reiterate the problem of ubiquitous data collection. Moreover, since fitness trackers

do not only collect arguably “more sensitive” data compared to mobile phones but also are

constantly on-body, even when sleeping, they may be considered more privacy-unfriendly.

Overall, we believe that consumer wearable devices do represent the second coming of

ubiquitous data collection, and the above concerns are extremely relevant and should not

be neglected.

Another aspect of consumer wearables that has been flagged by privacy activists is

related to a so-called quantified self – the concept of self tracking using digital technology

[87]. In principle, any device that enables users to track some elements of their lifestyles

may be characterized as providing quantified self. At present, wearables are one the most

wide-spread tools for self tracking, since they are able to collect and aggregate a wide

range of various health metrics, as well as analyze other physiological and psychological

metrics. Since these data may potentially be accessed by external entities, quantified

self, in the context of wearables, have been considered as a valid privacy concerns. More

specifically, wearable data of users are available not only to the manufacturers of the

devices; some of the aggregated statistics or even unmodified samples may be shared with

various third parties. Furthermore, users themselves tend to share their fitness snippets

with the general public via Fitness Tracking Social Networks (FTSN) such as Strava and

Fitbit. Regular users of wearables may be also recruited for various fitness studies, involving

usage of wearables, where their activity data may be disclosed to the research community.



6 Chapter 1. Introduction

Nevertheless, relinquishing self-tracked data may not appear overly threatening to a regular

user of wearables. For example, fair questions to ask would be:

Why is it so bad if my daily step count and calories consumption are being

shared? What can they realistically infer from my data? Surely, it is not possible

to deduce any sensitive information from just my steps, calories, and daily

distance, isn’t it?

However, the recent research indicates that wearable data may contain a wealth of

insights that can be extremely incriminating. Naturally, simply analyzing the daily activity

patterns of users may indicate their routine, lifestyle, and fitness proficiency. Conversely,

it may enable identification of routine irregularities, such as whether a user went out at

night or did not go to work, etc. Moreover, previous articles have suggested that even more

nuanced insights can be derived from wearable data, such as detecting unhealthy habits,

diseases, pregnancy, and even the precise location of secret military bases [34, 73, 111, 147,

169]. In fact, in 2017, a provider of FTSN services, Strava, released a global heatmap of all

GPS activity ever uploaded to their servers. The world map depicted the location-specific

fitness trends using more than 3 trillion fitness routes. Military analysts were able to identify

undisclosed facilities of the US Army in Afghanistan, Djibouti, and Syria by studying the

territories where consistent usage of wearables seemed unlikely. Moreover, consumer

wearable trackers, and Fitbit devices in particular, have been of utmost assistance to law

enforcement in solving a number of homicides. By analyzing the activity data of victims

and/or perpetrators, authorities were able to solve these crimes [106, 146, 158]. Finally,

data produced by wearable devices have been widely used recently to infer COVID-related

attributes of regular consumers. Such insights include predicting the pandemic trends [172]

and detecting positive cases [6, 103, 116].

Nevertheless, it appears that the vast majority of wearable owners tend to critically

underestimate the importance of the collected data. For example, Fitbit has its own internal

FTSN, where thousands of individuals around the globe share their daily fitness snippets,

disclosing their activity trends, workouts, and even quality of sleep data to the world.

Such information may be utilized not only for profiling a single person (e.g., by stalkers

and doxers), but also by various data harvesters, who may infer insights about specific

demographic groups and minority individuals.

Furthermore, once the wearable data have been collected, users tend to eventually lose

control over them [28]. In particular, they may be unable to execute several fundamental

rights of the data subject granted by GDPR [27], e.g., the right to be forgotten (Art. 17-19) and

data portability (Art. 20). In other words, it may be challenging for regular users of wearable

devices to erase all traces of their data or obtain information that has been generated by

their device and shared with the manufacturer, including low-level data collected directly

by sensors.
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Overall, at present millions of wearable consumers use their devices in the out-of-the-

box mode without being aware for the extent of privacy risks. In this settings, regular users

purchase their trackers, set them up according to the instructions, download the corre-

sponding companion app (Figure 2.1), and never change the default settings. Henceforth,

we may refer to such settings as the off-the-shelf mode for convenience. There is, thus, a

need to raise awareness of potential privacy risks and suggest simple but effective ways to

combat possible leaks, in order for regular consumers with limited technical expertise to

utilize them.

1.1 Research Questions

This dissertation discusses several aspects of consumer wearables that motivate the in-

cluded works. In particular, the research areas concerning the privacy of wearables are

covered by the following primary research questions (RQs):

• Attacks on consumer wearables – RQ1: Are there any practical attacks that may com-

promise the security and privacy of average wearable users?

• Privacy of consumer wearables – RQ2: What are the privacy risks for regular consumers

of wearable devices? How can they be mitigated?

• Attacks on wearable data – RQ3: Is it safe for regular users to share data generated by

wearable devices with the research community or post it online?

• Privacy-preserving release of wearable data – RQ4: What can be done to mitigate

privacy risks when sharing wearable data?

Research area
Concern w.r.t. to wearables

Ubiquitous collection Quantified self

A
vg

.U
se

r Attacks on consumer wearables Publication I –
Privacy of consumer wearables Publications II, III –

Attacks on wearable data – Publication IV
Privacy-preserving release of such data – Publications V, VI

Table 1.1: Summary of the problems studied in this thesis and their relation to the
included publications. We emphasize that we focus on the perspective of
an average user for all research questions and areas. The articles that have
not been included in the main body of the thesis are also related to the
studied research question (in particular, Publications a and b).

We depict the distribution of the published articles across the studied research areas in

Table 1.1.
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1.2 Contributions

Thesis Statement: In this dissertation, we empirically show that out-of-the-box usage of

consumer wearables is associated with significant and realistic privacy leaks. We demon-

strate that both wearable devices and the data they produce may be successfully attacked by

a competent adversary. We propose several defense strategies, the effectiveness of which we

prove empirically.

The central contributions of this thesis are as follows:

– Attacks on consumer wearables: The thesis demonstrates that it is possible to infer

personal fitness data of users by analyzing encrypted communication traffic for

companion applications of prominent vendors (Publication I).

– Privacy of consumer wearables: The thesis shows that popular companion applica-

tions and their partner apps share sensitive insights with various “unwanted” third-

party entities. It also proposes and empirically attests an effective mechanism to

mitigate these leaks (Publication II and III, respectively).

– Attacks on wearable data: The thesis identifies several novel attacks against wearable

data that may lead to user de-anonymization and inference of sensitive undisclosed

attributes (Publication IV).

– Privacy-preserving release of wearable data: The thesis summarizes the most ef-

fective ways to protect wearable data against sensitive inference (Publication V). We

publicly release an anonymized wearable data collection that outperforms previous

datasets in terms of privacy provided to the participants (Publication VI).

1.3 Outline

The rest of the dissertation is structured as follows. In Chapters 2-5, we address the research

areas depicted in Table 1.1. Of these, Chapters 2-3 discuss the insufficient security and

privacy of the prominent wearable devices and the associated companion applications.

More specifically, Chapter 2 focuses on practical attack against wearable devices. Chapter 3

examines the exposure for sensitive information of regular users, with Section 3.1 investi-

gating data sharing to unwanted third parties, and Section 3.2 introducing the mechanisms

for preventing such leaks. In contrast, Chapters 4-5 address the possibilities for inferring

undisclosed insights from data collected by consumer fitness trackers. Building on the

aforementioned threats, Chapter 5 presents guidelines for protecting wearable data and

discusses the fitness dataset we have publicly released to the research community. Finally,

Chapter 6 summarizes our research, outlines the main contributions of this thesis, and

details relevant directions for future work.



Chapter 2

Security of Wearables

In this chapter, we discuss how consumer-level wearable trackers operate (Section 2.1.1),

and the ways to learn what data they share (Section 2.1.2), even when such data are en-

crypted. Finally, we present a novel practical attack on fitness trackers in Section 2.2. We

mostly discuss Publication I, but Publications II, III are also mentioned.

2.1 Background and Tools

This section outlines the setup that was utilized to study the security and privacy of con-

sumer wearable devices. As it is not feasible to directly observe the data that trackers send to

the manufacturer’s cloud, it is necessary to somehow intercept and analyze the traffic. The

setups employed in Publications I-III are described in this section. Additionally, previous

attack vectors on commercial wearables are also discussed.

2.1.1 Workflow of Wearable Devices

As this thesis focuses on the privacy and security threats associated with consumer-level

wearables, it is important to first understand how these devices operate. Regular users of

fitness trackers typically (i) purchase the device, (ii) download the companion application

from an app store, (iii) create an account, (iv) pair the wearable with the app, and, finally,

use the device. However, in practice, the data collected by the wearable do not solely belong

to the user. The manufacturer of the device ultimately obtains all the collected information

when the fitness tracker is synchronized. In this section, we describe the typical operation

of consumer-level wearables and how they collect and store data. Understanding this

process is crucial in identifying potential security and privacy risks that may arise. The full

synchronization pipeline is as follows:

1. The wearable collects the data with the built-in sensors. Some of the data are aggre-

gated into high-level metrics and activities, such as steps, heart rate, and distance,

which can be instantly visible on the device screen. Other data are transferred further

as is.

9
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2. Both low- and high-level data are sent via Bluetooth to the companion application.

3. The data arrive to the companion application, which is a mobile app that enables most

of the functionality for the device. It aggregates the low-level data into sophisticated

metrics, such as sleep, workout, stress, etc., and provides a user interface (UI).

4. The companion application sends the data over the open Public Internet to the final

destination, which is the permanent storage of the vendor. At this stage data are in

transit and may traverse countries and even continents.

5. The data reach the vendor’s servers, where they are stored and can be accessed by the

user and the manufacturer of the tracker at any time. Furthermore, additional data

preprocessing and insight inference may be done in the cloud.

Figure 2.1 depicts how commercial wearable trackers operate and handle the collected

data. Note that there are ways to utilize some models of the trackers without sending

any data to the cloud whatsoever. In particular, several models of the fitness trackers are

compatible with non-official custom applications, such as GadgetBridge [42, 45]. These

application process all the data locally and do not connect to the Internet. We will mention

these “jailbreak” applications in the next chapters.

Fitness Tracker
Companion App

fitpulse

871
Steps

0.49

Miles

1018

Cals

Manufacturer’s Server

Figure 2.1: Workflow of wearable data in modern consumer-level fitness trackers. Data
are being collected on the device which is connected to a companion
mobile application via Bluetooth. The app processes and aggregates the
data on the smartphone and dispatch them to the permanent storage of
the manufacturer via the open Public Internet.
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2.1.2 Analysis of Encrypted Traffic. Man in the Middle

According to Google Transparency Report [51], approximately 94% of the total Internet

traffic is encrypted, adopting the HTTPS protocol. Therefore, it is reasonable to expect

the communication between the smartphone and the cloud to be encrypted. In that case,

although we can capture the IP packets, the payload of these packets will be encrypted.

Now, unless we are able to decrypt the data, we will never be sure about the information

being exchanged. One might naively think that capturing all IP packets will also result

in intercepting the IP packets that contain the “keys” for the decryption of the encrypted

traffic. However, this is not possible. The “keys” are themselves encoded and they can not

be found. This is a fundamental property of the Public Key Infrastructure on the Internet

and can not be broken with existent algorithms [101]. Such naive approaches to decrypting

encrypted information just do not work. We need to find another way.

To decrypt the data being sent from the smartphone to the cloud, it is feasible to

interpose a specific proxy known as Man in the Middle (MITM). Such a proxy (i) decrypts

the traffic, (ii) examines the packet contents, (iii) re-encrypts the traffic, and (iv) finally

sends the traffic to its destination. Step (ii) above enables inspection of packets to determine

what exactly is being communicated between the smartphone and the cloud. Steps (iii) and

(iv) are necessary to ensure that communication between the smartphone and the cloud

happens uninterrupted.

Adding a MITM proxy for the above steps (i)-(iv) is easier said than done. Indeed, since

it is not possible to find the decryption keys and decrypt the communication between the

smartphone and the cloud, the only way to intercept the communication (and implement

the above step (ii)) is for the MITM proxy to convince the smartphone, that it (i.e., the proxy)

is the manufacturer’s server. Indeed, when the smartphone wants to communicate with

the cloud, the MITM proxy responds, “I am the cloud server – connect to me.” When the

smartphone receives this response, it will demand proof that the contacting entity (i.e., the

MITM proxy) is indeed the cloud server – evidence in the form of a certificate signed by a

trusted third party [112]. It is apparent that if no such proof is demanded, any computer

on the Internet can impersonate any server on the Internet, which would lead to chaos.

Obviously, a MITM proxy does not have such a certificate because no respectable trusted

third party would issue a certificate accrediting that the proxy is not a proxy but a cloud

server instead. Fortunately, if one has physical access to the smartphone, it is relatively

trivial to add a special MITM certificate – known as certificate authority (CA) certificate –

as a trusted certificate. Once this is done, the companion application will be convinced

that the MITM proxy is a trusted third party that has issued a valid certificate, essentially

making the proxy appear as the manufacturer’s server! However, even if the companion

application is convinced to treat the proxy as a cloud server, there still might be an obstacle

to overcome: the wristband may employ a technique used to avoid MITM proxies (and
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associated attacks) which is called SSL pinning [109]. SSL pinning essentially remembers

(pins) the previous certificates (or encryption keys), and when it sees a new one, it wonders,

“Why did the certificate of the cloud server change? Could this possibly be an attack?”

Several tools can be used to disable validation of manually added certificates. In this thesis,

we utilized a reverse engineering toolkit Frida [43], and the EdXposed framework1. Both

solutions disable code responsible for certificate validation. Therefore, it is feasible to see

the plaintext data that the companion app sends to the cloud. A possible MITM setup is

illustrated in Figure 2.2. In our works, for MITM we utilize the Burp suite scanner [113]. To

summarize, in order to analyze encrypted traffic of consumer-level wearables, the following

two steps need to be undertaken: (i) installing a MITM proxy between the smartphone and

the cloud server, and (ii) tricking the smartphone to believe that the MITM proxy is the

cloud server.

Phone with a
custom CA certificate

871

Steps

BURP
Certificate

Computer with
MITM running, kB

BURPSUITE

Manufacturer’s server, kS

enckB(steps : 871) enckS(steps : 871)

deckB(enckB(steps : 871))

Figure 2.2: Man in the Middle (MITM) between the companion application and the
vendor’s servers. This setup enables analysis of the encrypted traffic, de-
coding all the fitness activities shared with the manufacture of the devices.
If the companion app supports SSL certificate pinning, it needs to be dis-
abled to validate the custom certificate.

2.1.3 Previous Attacks on Wearables

Since the penetration of consumer-level wearables has been steadily increasing, a consider-

able amount of research has been conducted on their security and privacy. In particular,

a significant number of works have investigated various attack models against wearables,

including:

1https://www.xda-developers.com/edxposed/

https://www.xda-developers.com/edxposed/
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• Firmware modifications attacks [26, 88, 120, 128].

• Attacks on the Bluetooth communication of the devices [29, 52, 170].

• Utilizing wearables as a Side-Channel [85, 86, 90, 91, 125, 153, 154].

• Other specific attacks [14, 77].

While most of the above works have demonstrated that several prominent commercial

devices may be vulnerable to the mentioned attacks, we argue that they might not be of

great concern to regular users of fitness trackers. Firstly, the vast majority of the previous

threat models require an adversary to be in close proximity to the device/user, thus, making

the attack rather impractical. Furthermore, physical access to the tracker is often required,

making the malicious user the only possible adversary for the attacks. Moreover, the

previously described attacks are active, meaning that they will inevitably leave a trace.

Therefore, most of the described threats tend to be short-lived as the vulnerabilities can be

discovered and “patched” quite conveniently. Finally, such attacks may work only against

specific manufacturers and models of wearable devices and are unable to target the vast

majority of regular wearable users.

2.2 Attacks on Wearable Devices

Background. It has long been established that encrypted HTTPS traffic may leak informa-

tion under several conditions [17, 21, 22, 30, 62, 82, 141]. Therefore, several previous works

have studied the possibilities for the privacy leaks of the encrypted Internet of Things (IoT)

communications [2, 5, 8, 12, 13, 63, 99, 102, 121, 122, 126, 130–132]. In these works, the

adversary utilizes the size, frequency, order, and destination of the packets generated by

IoT devices (other than consumer wearable trackers) to identify the device and its activ-

ities. We briefly provide several notable examples of the inferred IoT activities. In [12],

the adversary was able to learn insights on users from the encrypted traffic of four IoT

devices, including a camera, sleep monitor, and smart speaker. In particular, the authors

were able to identify whether a user is in bed, and the security camera is recording footage.

Furthermore, by monitoring the IP addresses of the destinations domains, they were able

to distinguish the interactions with the smart speaker system. Acar et al. [2] studied the

encrypted communications for a wide range of the IoT devices and showed that adversary

may identify the devices and some of their actions with more than 90% probability. Some

of the identified activities include live view of the camera, opening the smart door, turning

lights off/on, and measuring weight. Alshehri et al. [8] also investigated the possibility of

identifying the IoT devices based on the encrypted packets and were able to achieve 83%
accuracy for a dataset of 14 units. They utilized the similar features, including packet size
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and order. To our knowledge, however, we are the first to apply traffic analysis mechanisms

to consumer-level fitness trackers.

As mentioned in the introduction, wearable devices collect personal and sometimes

deeply confidential information. This includes a user’s heart rate, sleep patterns, stress, and

oxygen saturation levels, all of which contain important medical information that should

remain confidential. Moreover, this information can be used to draw critical conclusions

about the user’s physical and mental health. For instance, knowing that a user has experi-

enced severe sleep deprivation for several nights is alarming and sensitive information that

should not be leaked to unauthorized third parties. Similarly, if a user measures their heart

rate every five minutes, it is a sign of significant concern for both the user and their health.

Although such information leaks seem to be a problem that concerns only a small

number of privacy-conscious individual users, it is not. It is a problem that concerns the

entire society. Indeed, the problem it is not about whether a single person slept well at

night or not. It is about monitoring millions of users without their knowledge, their clear

understanding, or even their consent. As a result, it is important to understand what kind

of information can these devices leak, who would be able to access this information, and

how easy such leaks can be.

Although there are several places where this information can be leaked, including (i) the

wristband used by the end user, (ii) the smartphone running the companion app, or even

(iii) the cloud where the data are stored (see Figure 2.1), we believe the communication link

between the smartphone and the cloud is the most vulnerable. Our choice is based on the

following reasons:

• The devices themselves (i.e., the wearable, the smart phone, and the cloud storage

of data) can be “hardened” by their manufacturer, making them more resilient to

leaks and attacks [41, 138]. They can also be protected with traditional security

defenses, such as antivirus systems, firewalls, and similar services that detect and

mitigate cyberattacks [55, 140]. As a result, attacking the devices themselves is getting

increasingly difficult, limiting the applicability of such a threat model.

• Data “at rest” in the wristband, in the smartphone, and even in the cloud storage, can

be protected via strong encryption. Even if they are leaked or stolen, it will be very

difficult to reverse the encryption and decrypt the original data [76, 80, 156]. Given

the relevant recommendations of the European General Data Protection Regulation

(GDPR), lots of providers move towards encrypting data “at rest” [27].

• Data “in transit” between the smartphone and the cloud are the most vulnerable:

they traverse the open Internet, they may cross several ISPs, country boundaries,

legal jurisdictions, and even continents. Any one of these entities (i.e., ISPs, countries,

etc.) may have the motives and the technical capabilities to extract information from
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these data. To make matters worse, end users of the wearable device have little, if

any, choice over the decisions taken during these data transfers. Indeed, regular

consumers generally have no say in which ISPs will carry their data (except possibly

for the first one) and they also have no choice in which countries their data will

cross over. To make matters worse, even if the user carefully monitors all ISP-related

information, the dynamic nature of the Internet Protocol implies that data transfers

may be carried over new and unexpected paths without asking any permission from

the user.

As a result, data “in transit” are the most vulnerable as they cross potentially hostile

territories with different or unfriendly legal jurisdictions. Specifically we focus on attacking

regular end users of wearables who utilize their devices in the out-of-the-box mode.

2.2.1 Threat Model

Fitness Tracker
Companion App

fitpulse

871
Steps

0.49

Miles

1018

Cals Honest ISP
Honest but Curios ISP

!

Honest ISP

Manufacturer’s Server

Figure 2.3: Threat model of a novel attack against consumer-level wearables. We
assume that the device is paired to the companion application, which
uploads activity data to the manufacturer’s servers over the Public Internet,
with the data traversing one or more ISPs along the way. We assume that
at least one of the ISPs is honest but curious: it accepts and delivers IP
packets (and the data they contain) to the manufacturer’s cloud. At the
same time, however, the ISP tries to infer as much insights as possible from
the encrypted data. The ISP does never try to actively attack the user: it
does not modify or delay the incoming IP packets.

We consider the following threat model for attacking consumer-level wearable devices:

The device is connected to a mobile phone via Bluetooth and the smartphone is connected

to the manufacturer’s servers (where the data collected by wearables are permanently

stored) via the open Public Internet. We assume that one of the ISPs who connects the

user’s mobile phone to the server aims to find information on the user. Such insights may

include whether the user owns a smartband, how often the user exercises, and what the

duration of the workouts is. This assumed ISP may be the first one that links the user to
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the Internet, or even another ISP in the connection path between the user’s mobile phone

and the cloud. We assume this ISP to be “honest but curious.” Note that such ISP is not

trying to actively attack the user by manipulating the Internet traffic generated by the

individual. Indeed, the attacker will not install a MITM proxy (Figure 2.2) or try to exploit

any vulnerabilities in the mobile phone or the companion application. The ISP will honestly

do its job: deliver the user’s IP packets to their destination. At the same time, however, the

ISP is expected to be “curious” and may try to find as much information as possible from

the IP packets it was given to deliver to their destination.

Previous works [37, 38] in this area assumed that the ISP is malicious and may try to

attack the user by installing a MITM proxy. This MITM proxy will actively try to break

encryption and will attack the user in order to find all the information contained in the IP

packets sent by this user to the cloud.

Although it is a valid threat model, we chose not to focus on it for two main reasons:

• This threat model is short-lived. Indeed, installing a MITM proxy to decrypt users’ IP

packets is illegal, similar to opening a user’s mail. Therefore, actors who engage in

this type of illegal attack can only do it for a short time, risking exposure, capture by

Law Enforcement Agents, and shutdown of their activities.

• This threat model is very difficult to deploy on a large scale. In fact, most of the

current MITM attack deployments require physical access to the user’s smartphone

for installing a forged certificate, which is usually difficult to achieve. Thus, while it

can be used to monitor a small number of individuals, it cannot be used for mass

surveillance of regular users.

On the contrary, the threat model we propose (i.e., an “honest but curious” ISP in the

path from the user’s smartphone to the cloud)

• is much easier to deploy ( any ISP can do it), and

• is very difficult to discover, as ISPs do not actively engage in any hostile activities: they

just passively collect information from the IP packets they are given to deliver to their

eventual destination. They do not break any encryption, they do not engage with

either the users, or with the cloud servers.

In Figure 2.3 we summarize the threat model we consider. We assume that the user has

a wearable device which collects information. The device is connected to a smartphone

app via Bluetooth. The smartphone is connected via Wi-Fi to a router and from there to an

ISP (or directly via cellular Internet). As said, the ISP is assumed to be “honest but curious.”

That is, since it is honest, it will receive the IP packets, and it will transmit them promptly

to their destination. However, since it is also “curious,” the ISP will try to extract as much

information about the user as possible from those IP packets, even if the data within the

packets are encrypted.
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2.2.2 Attack Description

Following the above threat model (Figure 2.3), the adversary aims to passively profile users

of wearables based on the encrypted traffic it receives. To execute the proposed attack, the

ISP follows the following 3-step pipeline:

1. Learning the ground truth.

2. Discovering leaks in the encrypted traffic.

3. Mass profiling of regular users for consumer wearables.

The first two phases are performed on a local isolated setup to prepare for the attack.

The ISP then launches the third step globally by analyzing all the IP traffic it receives and

navigates.

Obtaining a wearable. A malicious ISP begins by purchasing a wearable tracker (preferably

one that is widely used) in order to determine whether it is vulnerable to the attack. Unlike

attacks in other domains, without access to the device itself, it is not possible to simulate a

regular user and send health data to the manufacturer’s servers. The attacker’s goal is to

produce and send all possible activity values to the cloud and learn what traffic is generated

during synchronization. The attacker then collects and analyzes the resulting dataset,

which consists of various activity names and their corresponding encrypted traffic.

Discovering ground truth. The adversary begins by studying the data that are sent from

the mobile phone before encryption. By synchronizing a single activity at a time, the

adversary can isolate the encrypted traffic that corresponds to a specific activity. This traffic

partitioning enables the ISP to identify patterns in encrypted traffic that indicate which

activity data are being communicated. To analyze the traffic, the adversary installs a MITM

proxy between the smartphone running the companion app and the manufacturer’s server.

Such proxy allows the adversary to observe all the data in plain text. To clarify, the adversary

utilizes MITM only on a preliminary local setup; it does not attempt to intercept the actual

traffic produced by regular users, unlike in [37, 38].

Identifying data leaks. Once the adversary learns what data are communicated to the server

after synchronization, it can correlate them with the encrypted traffic they produce. More

specifically, the attacker relies on the particularities of the HTTPS/TLS encryption: unlike

hashing, the size of the output is not constrained. In other words encryption algorithms

approximately retain the size of the input. To learn the ground truth for all possible fitness

activities, the ISP synchronizes a single activity at a time, constructing all possible variation.

The attacker tries to retrieve information about this activity based on the MITM data and

the size of the corresponding encrypted packets. However, if the activity produces more

than one encrypted packet, in addition to packet size, the attacker needs to consider packet

order. For example, an adversary may record workouts of various duration and observe the

difference between the sent packets.
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Establishing mass profiling. The attack can be extended to all the traffic that the ISP

operates once it identifies activities that are represented by specific sequences of encrypted

packets. However, as mentioned previously, the attacker cannot utilize MITM on its global

setup; it can only operate with the encrypted IP packets that need to be delivered to their

final destinations. Say, the ISP has established that the running activity produces three

packets of 2000, 3000, and 4000 bytes. Since major ISPs forward billions of encrypted

packets from potentially millions of different IP addresses, just the sizes of packets may

not be enough to accurately pinpoint the exact packets of interest. Therefore, the attacker

needs to utilize additional features to increase the recall of the packets that do contain data

generated by wearable trackers. In practice, the unique IPs assigned to the manufacturer’s

servers are one of the most “telling” features in wearable traffic analysis. By constantly

synchronizing the companion application, the adversary eventually learns all the unique

static IP addresses of the cloud storage. While TLS enables limited encryption of the URL

addresses, there is no way to conceal IP addresses and prevent an honest but curious ISP

from learning them during the first 2 stages of the attack. Indeed, the ISP needs to somehow

send the packets towards the destination. Consistent with previous works on traffic analysis,

in our threat model, the attacker utilizes the size, frequency, and the order of the packets,

as well as the corresponding IP addresses. Overall, to launch a mass profiling of regular

wearable users, the ISP needs to:

• Filter the incoming traffic by the list of IP addresses known to belong to the manufac-

turer’s servers.

• Apply the metadata patterns (features) established in previous steps, including types

of activities, size, order, and frequency of the packets.

2.2.3 Settings

Studied fitness trackers. We studied two of the most popular wearables readily available

(as of 2020): Xiaomi MiBand 4 and Samsung GearFit 2. Both vendors are in the top

5 of wearable market share as of Q3 2022 [65, 136]. Henceforth, for convenience, we

refer to the smartbands as MiBand and GearFit respectively. In the published version of

Publication I, we do not use the real company and product names, and adopt pseudonyms

instead to adhere with the responsible disclosure policies. Typically, responsible disclosure

introduces a 90- to 120-day interval that allows the affected party to “patch” the vulnerability.

However, since it has been more than 2 years since the publication, in this dissertation,

we fully report our results. When submitting Publication I, in a responsible disclosure, we

notified the affected companies about the vulnerabilities. We also had shared with them

the corresponding sections of our manuscript draft version. Both companies responded

that they were considering our submission.
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Discovering ground truth. For MITM, we employ the application security testing software

Burp Suite [113]. In Publication I, we utilize an open-source Frida toolkit [43] to disable

certificate pinning. To analyze the encrypted traffic, we employ the network protocol

analyzer Wireshark [161]. We evaluate the latest Android companion applications (as of

June 2020) on a Google Nexus 6 phone.

2.3 Results

We begin by presenting the activity data that can be learned for both fitness trackers studied.

The high-level insights that can be inferred by an honest but curious ISP are presented in

Table 2.1. We proceed to explain our findings and data leaks in more detail in Section 2.3.1

for MiBand 4 and Section 2.3.2 for GearFit 2.

Activity MiBand 4 GearFit 2
Measuring heart rate Record Record & extreme values

Measuring weight Record Record & extreme values
Workout Record & duration Record

Steps - Record
Sleep Record Record

Table 2.1: Insights on the activities of 2 popular wearable trackers that can be inferred
by an honest but curious ISP from encrypted traffic only. The Record
field indicates that the attacker can identify whether an activity has been
performed since previous synchronization.

2.3.1 Xiaomi Wearable

The official companion mobile application for Xiaomi MiBand 4 is called MiFit . Being

downloaded 50 million times (as of July 2020), it is one of the most used wearable app.

MiFit utilizes a number of state-of-the-art security techniques, such as encryption of

the outgoing wearable traffic, certificate pinning, and source code obfuscation. These

mechanisms enhance the overall security and reduce the effectiveness of tampering with

the devices/application.

Detected Activities

The Xiaomi smartband provides users with various functionality, such as measuring their

heartbeat, counting their steps, tracking their sleep, recording their workouts, and receiv-

ing weather updates. To obtain sensitive information about a user, an ISP must identify

activities from the corresponding encrypted traffic We define an activity as an action that a
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Activity Type File(s) Size of File(s)

Heart rate Band
H1 981 + 142 ∗K± 1
H2 16450 ± 50

Workout Band
W1 ≥ 1293
W2 S = 1725 ± 25

Sleep Band S1 8140 ± 40
Weight App We1 1182 ± 3

Table 2.2: Sizes of encrypted packets corresponding to activities of MiFit . Some activi-
ties result in multiple plaintext JSON files that are sent to the manufacturer’s
cloud. Size is measured in bytes. For heart rate detection, K represents the
number of measurements done before synchronization.

person can perform using their wearable alone or in combination with a mobile application.

We differentiate between phone activities initiated by the user from the companion app and

band activities that are measurements collected by the wearable and then synchronized

with the phone. It came to our attention that different activities correspond to different

traffic patterns in the encrypted communication of the wearable (as expected). As a re-

sult, we set out to explore whether it is possible to “fingerprint” different services (and

the associated user actions) by studying these patterns. To explore this possibility, we

performed various actions related to the above services and collected the corresponding

encrypted traffic to analyze the traffic patterns associated with different activities. We

also observed that for most of the supported activities, MiFit encodes data in URL format

before sending them. Each activity is represented by a specific sequence of packets that are

almost the same length. The slight differences in the packet sizes for the same activities

may be due to metadata that are sent with the wearable information. For example, the

URL representation for the activity timestamp may differ by 1 character due to the 24-hour

format (e.g., 6 : 00 and 21 : 30). This disparity is also reflected in the corresponding en-

crypted traffic, which would differ by 1 byte. For such activities, we introduce the range of

potential payload sizes±Xbytes that accounts for such possibilities. We describe individual

traffic sequences in greater detail in the following sections. The summary of the encrypted

packets, corresponding to activities that can be recorded by MiBand 4, is depicted in Table

2.2.

In general, by analyzing the encrypted traffic, the attacker can determine the frequency

and duration of a user’s exercise and heart rate measurements, as well as whether they have

recorded weight changes and slept since the last synchronization.
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Listing 1 An example of H2(/v1/data/heartrate.json) for heart rate = 80 BPM. The 142-
byte value that records a heart measurement is enclosed in square brackets. userid, time,
device id, and timezone are anonymized.

1 userid=<userid>&appid=428135909242707968&callid=1593161115220&channel=

2 play&country=US&cv=50309_4.1.1&device=android_23&device_type=android_

3 phone&heart_rate=[{"time":1***161075,"rate":"UA==","type":2,"device_id":

4 "<device_id>","source":25}]&lang=en_US&timezone=<timezone>

Heart Rate Detection

Measuring heart rate is deemed by many users as an essential reason for purchasing a

wristwatch [24]. Monitoring one’s heartbeat, and reacting to anomaly heart rates is an

important step towards a healthy lifestyle. Although the precision of wearable devices in

general may be somewhat lower than that of specialized medical blood pressure monitors

[47], still these are highly sensitive data and should not be relinquished.

For MiBand 4, heart rate can be measured by pressing an associated button on the

device or recorded automatically by the band, although this requires changing the default

settings. The recordings of heart rate are stored in two JSON files: (i) H1 and (ii) H2,

which are sent to the cloud upon synchronization. Both files contain data in the URL

encoding format. The H1 file includes metadata such as the user ID, time since the last

synchronization, and application ID, as well as the user’s profile settings including their

daily step goal, number of steps taken, and current number of calories burned. However,

only H2 contains the “numbers” of heart rate measured by the device. It contains all the

heart rate measurements (could be more than one measurement) that were taken by a

user since the preceding synchronization with the manufacturer’s cloud. We noticed that a

single heart rate measurement always results in H2 of 1123 bytes. We have observed that if

a user measures their heart rate twice, the application will send a 1123 + 142 = 1265 bytes

file. Similarly, if a user takes three heartbeat measurements before synchronization, the app

will send a file that is 1123 + 2 × 142 = bytes. In fact, each extra heart rate record increases

the length of H2 by 142 bytes.

For example, a heart rate measurement of 69 Beats Per Minute (BPM) would result in

the following string been added to the JSON file: ‘,{"time":1591966729,"rate":"RQ==",

"type":2,"device id":"16-digit-ID","source":25}’, as depicted in Listing 1. Each value

of heartbeat is represented by four characters (e.g., RQ== or UA==) regardless of the BPM

value, which makes it BPM agnostic. We verified that the URL encoding of the produced

sequence corresponds to a 142-byte string. A similar behavior is observed if the user takes

four, five, etc., heart rate measurements. It appears that for each extra measurement, the
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appended value is always 142 bytes. For example, if 3 measurements are taken before

synchronizing, the packet would be appended by two 142 byte-long strings, etc. We took as

many as 50 measurements before synchronization, and verified that the following formula

always holds: S = 981 + 142 ×K± 1, where S is the size of the H2 file and K is the number

of heart rate records.

Listing 2 An example of W2(/v1/sport/summary.json) for a workout of 10 minutes. userid,
deviceid, and timezone are anonymized.

1 max_stroke_speed=-1&trackid=1593163064&swolf=-1&type=16&left_landing_

2 time=-1&userid=<userid>&right_landing_time=-1&avg_stride_length=0&

3 avg_frequency=0&forefoot_ratio=-1&dis=0&avg_heart_rate=75&total_trips=-1

4 &distance_ascend=-1&total_step=0&landing_time=-1&right_flight_ratio=-1&

5 total_strokes=-1&climb_dis_descend=-1&run_time=600&avg_stroke_speed=-1&

6 avg_distance_per_stroke=-1&climb_dis_ascend_time=-1&climb_dis_descend_

7 time=-1&end_time=1593163665&altitude_ascend=0&version=12&swim_style=

8 -1&altitude_descend=0&swim_pool_length=-1&flight_ratio=-1&min_heart_rate=

9 -1&calorie=13&max_heart_rate=0&left_flight_ratio=-1&add_info=&appid=

10 428135909242707968&avg_pace=0.0&bind_device=0:MILI_CINCO_L:25:V0.25.17.5&

11 callid=1593164715329&channel=play&city=&country=US&cv=50309_4.1.1&device=

12 android_23&device_type=android_phone&deviceid=<deviceid>&lang=

13 en_US&location=&max_pace=0.0&min_pace=1.8000001&sn=dba7aab636e2&source=

14 run.25.huami.com&timezone=,<timezone>

Workout Duration Detection

MiBand 4 can record a number of various workouts, including walking, running, cycling,

swimming, etc. Pressing the associated button on the device will invoke one of the above

exercises. All types of workouts produce similar activity packets, making it impossible do

distinguish them from each other. We established that a workout record is sent to the cloud

via 2 JSON files: (i) W1 and (ii) W2. W2 contains statistical information on the workout,

including the maximum reached speed, average stride length, minimum and maximum

BPM during the exercise, and the number of burned calories. The structure of W2 appears

to be independent of the workout type, duration, and intensity. That is, the size of W2

is always S = 1725 ± 25 bytes. Listing 2 shows the summary file of a 10-minute workout

recorded by MiBand 4.

W1, instead, describes the intensity of the workout at every given moment. More

specifically, it encodes the “trace” of the user’s heart rate during the workout, detailing

every change in heartbeat. In Listing 3 an example of a heart rate trace generated during a

1-minute workout is depicted.
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Listing 3 An example of W1(/v1/sport/run/detail.json) for a 1-minute workout. The heart
rate trace grows linearly over time (starts with &heart rate=). UserID and timezone are
anonymized.

1 trackid=1591346638&userid=<userid>&version=12&accuracy=

2 &air_pressure_altitude=&altitude=&appid=428135909242707968

3 &callid=1591348077861&channel=play&country=US&cv=50300_4.1.0

4 &device=android_23&device_type=android_phone&distance=

5 &flag=&gait=&heart_rate=23,79;2,-1;,-1;,-1;2,-1;2,-1;,-1;6,-2;,

6 -1;3,-1;5,-1;4,-1;5,-1;5,0;3,2;,1;,-1;2,-1;5,0;2,1;3,1;,-1;

7 2,-1;2,1;3,1;5,0;3,-1;,-1;,-1;,-1;2,-1;5,0;4,1;4,1;,1;,-1;

8 3,-1;4,-1;,-1;3,-2;4,3;,1;5,2;,-1;2,-2;,-1;5,0;5,-2;6,0;,1;,

9 1;3,-2;5,0;5,0;5,0;6,0;5,2;5,0;5,0;5,0;4,-1;2,-1;2,2;4,1;3,1;

10 2,2;2,3;,1;,1;4,-1;5,0;4,-1;2,-1;2,1;,2;6,0;,1;,2;5,1;2,1;,-2;

11 2,-2;5,0;5,-2;3,1;5,0;2,-1;3,-1;5,1;2,-3;,-1;5,0&kilo_pace=

12 &lang=en_US&longitude_latitude=&mile_pace=&pace=&pause=

13 &provider=gaode&source=run.25.huami.com&speed=&stroke_speed=

14 &time=&timezone=<timezone>&v=2.0

In the above example, the trace record begins with 79; 2,−1, indicating that the starting

heart rate is 79 BPM, followed by an increase of 2 (79 + 2 = 81), and then a drop to 80
(81 + −1 = 80), and so on. Since W1 accounts for every change of user’s heart rate, we

assumed that the length of W1 should be nearly linearly correlated with the duration of

the workout. To verify this hypothesis, we manually performed a total of 21 workouts of

various lengths, plotted the resulting sizes of payload, and attempted to fit the linear curve

to the data points. According to Figure 2.4, the empirical data can be approximated by the

equation: payload = 1145 + 2.9 × length, where payload is in bytes and length is measured

in seconds. By analyzing the plaintext packets, we established that the actual size of a

0-second workout (without any hear beat change) is 1194 ± 1 bytes. Hence, the obtained

empirical results appear to align with the ground truth for workout detection.

Unlike heart rate records, workout data are not transferred as a single JSON file. Instead,

they are sent as corresponding pairs W1 and W2. To detect when regular users synchronize

workouts, the ISP needs to filter adjacent IP packets that fall within the size ranges for W1

and W2. Similarly to heart rate, the workout activity is represented by multiple consecutive

packets, which significantly increase the probability of successful detection. Therefore,

an honest but curious ISP may be able to estimate the number and duration of workouts

performed by the user since the previous synchronization. This information could reveal

whether users are engaging in irregular workouts or following a specific training program.

The above insights could be a basis for profiling users based on their activity routines.
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Figure 2.4: Size of the encrypted payload depending on the duration of the workout
recorded by MiBand 4. Note that once the workout exceeds ≈ 100 minutes,
the payload is divided into multiple packets, making it significantly harder
to detect the workout activity. Such split occurs because the maximal
payload size of a TLS packets is 16 KB, and, generally, after 100 minutes
the payload exceeds this amount.

Sleep Tracking

Tracking sleep is another vital feature supported by MiBand 4, which appeals to many

users [24]. The fitness tracker utilizes the built-in heart rate sensor to automatically detect

sleep. For the wearable to start recording sleep, two conditions need to be satisfied: the

user’s heart rate must remain temporarily unchanged, and this must occur during night time

(midday naps would not be recorded). Unlike other activities, sleep synchronization does

not correspond to a file/files that are exclusive to sleep. Instead, MiBand 4 communicates

the sleeping activity via the S1 file, which also contains other device information such as

firmware version, hardware version, battery level, etc. We noticed that the corresponding

file appears to be transferred only if a user has slept since the previous synchronization.

Our experiments suggest that the encrypted S1 file is 8180 ± 2 bytes. Since the activity

is represented a single file, the attacker needs to specifically find lone packets that are
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around 8180 bytes. Naturally, there are other activities that can produce similarly sized

packets (as indicated in the previous paragraphs). Therefore, the probability of correctly

detecting sleep is expected to be lower than that of the previous activities. However, it works

the other way around: if an ISP does not see any packets of the representative size since

the preceding synchronization, it can safely assume that the user has not slept since the

previous session with a very high probability. This information allows the attacker to learn

if a victim has sleep troubles or was out of bed. Moreover, if an individual synchronizes

their band frequently, the adversary might be able to recover a complete sleeping schedule

of the user.

Step Count Tracking

MiBand 4 allows users to track their daily steps, which would be valuable information for

our curious ISP. However, it appears that step data are sent in the H2 file, which is sent

practically every time the band is synchronized, even when the device has been idle. This

makes it challenging for the attacker to pinpoint the exact H2 file that carries the actual

data, rendering it practically impossible for the ISP to obtain any insights regarding step

count. The sleep detection approach cannot be employed here since the H2 file is always

present and sent during every synchronization, leaving no opportunity for absence-based

detection.

Weight Tracking

Listing 4 An example of huami.health.scale.save.json (We1) for a 113 kg (250.0 lbs), 170 cm
(5’6”) person. UserID and timezone are anonymized.

1 userid=<userid>&devicetype=1&appid=428135909242707968&

2 callid=1593166280695&channel=play&country=US&cv=50309_4.1.1&device=

3 android_23&device_type=android_phone&jsondata=[{"fuid":-1,"wt":113.3975,

4 "ts":1593166246,"uid":"3061134679","dt":1,"ht":170,"wdt":2,"bmi":39.2,

5 "src":-1}]&lang=en_US&timezone=<timezone>

Users of MiFit can input/adjust their weight in the application. Since this activity can

only be initiated from the application and not from the device itself, it is considered an “app

activity.” Our observations indicate that the corresponding We1 packet is 1182 ± 2 bytes.

Similarly to detection of sleep, recording weight produces only a single packet per activity,

which increases the probability of false positives. Users who measure their weight frequently

may be viewed as health-conscious individuals who prioritize tracking their physical fitness.

Alternatively, they may be individuals with obsessive tendencies or body image concerns.
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Such insight can be used for profiling by an adversarial ISP. An example of We1 is illustrated

in Listing 4.

2.3.2 Samsung Wearable

This section describes the results obtained for Samsung GearFit 2. The official mobile

application for GearFit 2 is called SamsungHealth , which is a popular application for

wearables available on Play Market. The app encrypts data using TLS, but unlike MiFit ,

it does not obfuscate the source code or use certificate pinning (as of July 2020). GearFit

2 has the same sensors as MiBand 4 (heart rate monitor, etc.), but allows users to input

more of their fitness and health data. Moreover, unlike MiBand 4, the GearFit 2 uses regular

Bluetooth instead of Bluetooth Low Energy (BLE). Similarly to the Xiaomi wearable, we

focus on detecting heartbeat, sleep, number of steps, workouts. and weight changes.

Synchronization of Packets

In contrast to MiFit , FitB sends all the data in one go during synchronization, which can

be initiated manually by the user or set to occur automatically. During synchronization,

a total of 113 distinct files that represent activities in the JSON format are transmitted

to the server. However, some of these files can be mapped to a single bigger activity.

For example, 9 distinct files are related to food (e.g., a burger) that a user inputs into

the app, including total bilirubin, total cholesterol, total protein, food info, food intake,

food favorite, food frequent, food goal, food image. By contrast, only a single heart rate file

is generated for the heart rate activity. Even if the user has not recorded any new data, all

113 files with the /changes suffix (e.g., heart rate/changes) will be sent to the server during

synchronization. We discovered that for each of the files the app checks whether the value

has changed (user did a corresponding action); if it is the case, it will send two files: (i)

/set, and (ii) /changes. If the value has not changed, the app will only send a (ii) /changes

file. Hence, it is the /set file that contains the actual data, which the adversary would like

to obtain. If a user performs every possible activity before synchronizing, the app would

send 2 ∗ 113 = 226 files at ones. If a user does nothing before synchronization, the app

would send 113 files, all with the /changes affix. Therefore, if an ISP observes a 119-file

synchronization, it can conclude that user’s activity led to the change of 6 files (113 /changes

and 6 /set). Each file is carried by a single TLS data packet. All 113 /changes packets can

be easily detected, as their POST requests contain the default fields (URL, User-Agent,

Content-Type, etc.) without any content. This translates into their encrypted payload being

between 580 and 620 bytes long (depending on the URL length). Hence, packets that

exceed this size are /set packets that actually carry the personal data of users. Naturally, the

ISP aims to find patterns in encrypted /set packets to detect various activities.
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Order of Synchronized Files

By studying the source code and observing MITM data, we were able to split 113 /changes

files in two “buckets.” The first bucket consists of 10 files that are always sent before others:

device profile, step count, step daily trend, activity.goal, tracker.pedometer day summary,

goal history, user profile, exercise, food info and tracker.pedometer event. The remaining

103 JSON files represent the second bucket; they are sorted alphabetically before being

sent. Files in the first bucket, however, are not sorted. Unfortunately for the attacker, the

app does not always retain the same order when sending the files. Occasionally, it slightly

(by 1 − 5 positions) changes the arrangement of records. Since the attacker does not have

access to the plaintext data, they cannot deterministically infer that the file #42 represents

heartbeat. Instead the adversary has to consider the interval between #41-#46; any file in

this range could potentially correspond to heart rate. In the previous paragraph we mention

that if an activity was performed, the app sends two files: /changes and /set. It turns out that

/set files always precede the corresponding /changes files by 1 − 5 positions. These findings

suggest that every encrypted /set file can correspond to up to 10 different activities.

Detected Activities

Summarizing previous paragraphs, an adversary can intercept encrypted synchronization

session containing between 113 and 226 files. Each JSON is represented by a single TLS

data packet. All 113 /changes packets can be easily detected because they are always empty.

Their POST requests contain default fields (URL, User-Agent, Content-Type, Accept, etc.)

without any content. This translates into their encrypted payload being between 580 and

620 bytes long (depends on the URL length). Hence, packets that exceed this interval are

/set packets that actually carry the personal data of users. Therefore, even without any

patterns the ISP can guess with at least 10% probability which activity an encrypted /set

packet represents due to alphabetical sorting of the files before synchronization. For the

attacker to successfully detect an activity two conditions need to be satisfied:

• The packet’s TLS payload needs to be of a length corresponding to a particular activity

(e.g., for heartbeat it is 1077 bytes).

• The packet needs to be within a sending order interval for this activity (e.g., for heart

rate it is between #41 and #46 out of 113 JSON files).

Table 2.3 depicts studied activities and corresponding encrypted patterns. To summa-

rize, the attacker is able to detect heart rate measuring frequency, and the instances that are

above 100 BPM, workout frequency, whether the user slept, took steps, or recorded weight.
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Activity Files Interval Size of File(s)

Heart rate H 42-47 751 + (326 + 1
2) ·K± K

2

Workout
W 1-10 ≥ 1720
C 72-73 > 700

Sleep S 111-113 998 or 1002

Steps

St 1-10 ≥ 1216
St2 1-10 > 700
T 1-10 > 700
C 72-73 > 700
A 61-65 > 700

Weight We 60-61 901 or 902

Table 2.3: Size of encrypted activity packets for GearFit 2. The column Files depicts
what and how many plaintext JSON files are submitted to the cloud. Inter-
val describes possible order of the packets during synchronization. Size is
measured in bytes. For heart rate detection, K represents the number of
measurements done before synchronization.

Heart Rate Detection

To measure heart rate using the wearable, users can press a representative button on the

screen to send the heartbeat data to the server via the heart rate/set (denoted as H ) file.

The H file is alphabetically located between positions 42 − 47 and has a size of 1077 − 1078
bytes. The 1 byte difference occurs because in real-world settings person’s heart rate can be

either a 2- or a 3-digit number. Multiple measurements of heartbeat are sent in a single file,

and the size of the H file increases by 326 − 327 bytes for every additional measurement

before synchronizing the app. We verified that for an arbitrary K heartbeat measurements,

the size of the H file lies within the I = [751+326×K, . . . , 751+326×K+K] bytes interval.

Note that the size interval accounts for up to K measurements possibly being 3-digit heart

rates. Hence, the adversarial ISP is able to detect both the number of measurements and

the exact number of those over 100 BPM.

Workout Detection

Users of GearFit 2 have the option to select from 17 different workout types such as running,

walking, cycling, and hiking, etc. The workout data are sent to the server in the form of

a JSON file exercise/set called W, which is part of the first non-alphabetic bucket and can

occupy positions 1 − 10. This file includes information about the workout such as the

description of the exercise and the trace of the user’s heartbeat during the session. However,

the detection technique from Section 2.3.1 cannot be applied to this file because multiple

workouts are sent together in W, making it difficult to distinguish between a long workout



2.3. Results 29

or multiple exercises. Despite this, the attacker can still estimate the minimal size of the

file, with the shortest value obtained being 1720 bytes for a single workout that lasted only

one second. The size of W has no upper limit, except for the 16 KB TLS limit. Therefore,

detecting this activity is significantly more difficult for the adversary, and they can only

infer whether a user did exercise since the last synchronization. The calories burned JSON

file calories burned, denoted as C, is also affected by the workout and occupies positions

72 − 73.

Sleep Detection

GearFit 2 has an automatic sleep recording feature. However, users also have the option

to manually edit or input their sleep data and provide a quality score. The sleep data is

transmitted via the sleep/set (denoted as S) file which takes positions 111 − 113. The size of

the sleep file can either be 998 or 1002 bytes, depending on the user’s rating of their sleep

on a scale of 1 to 5. Detecting sleep activity appears to be relatively easy for the attacker

since the encrypted payload can only be of two possible sizes. As a result, an adversary may

be able to determine whether a user has slept since the last synchronization.

Retrieving Number of Steps

The GearFit 2 wearable automatically tracks the number of steps taken by users, and this

information is recorded in the step count/set (denoted as St) file that occupies positions

1 − 10. When users take steps, it triggers the transmission of 4 other files to the server:

step daily trend (#1 − 10), tracker.pedometer day summary (#1-10), calories burned (#72 −
73), activity.day summary (#61 − 65). The St file records all the steps taken since the last

synchronization and displays them as intervals based on the user’s speed. For instance,

if a user takes 1000 steps at a normal pace and then runs another 1000 steps, the data

will be recorded as two separate intervals. Therefore, similar to Section 2.3.2, there is no

upper limit on the size of the St file (except 16 KB). To determine the minimum size of the

file, we performed an experiment where we took a single step before synchronizing. In

this case, the St file was 1216 bytes long. Given that taking steps triggers changes in four

different files, the attacker can detect this activity with a high probability compared to other

activities.

Weight Detection

The SamsungHealth application enables users to enter their weight, which is then trans-

mitted to the cloud via the weight/set file (denoted as We) located in positions 60 − 61. The

size of the file can be either 901 or 902 bytes, depending on whether the weight entered is

a 2- or 3-digit number in kilograms. This information can be exploited by an adversary to
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identify users who weigh over 100 kg and may be classified as overweight.

2.4 Automatic Activity Detection

In this section, we propose an approach for automatic activity detection. Obviously, an

“honest but curious” ISP would prefer to profile many users automatically rather than

manually analyze each packet. The ISP handles vast amounts of IP traffic daily, including

wearable data as well as millions of other packets from other users. It is impractical to store

all the packets, and it is not crucial to detect activities “on-the-fly,” since identifying health

patterns of users requires multiple data synchronization sessions. The proposed pipeline

for automatic activity detection is as follows:

• Gathering all relevant IPs. The attacker collects a list of IP addresses the wearables

talks to. This is achieved by continuously initiating a connection with the smartband

and recording corresponding IP addresses.

• Traffic filtering. The adversary filters traffic by the collected IP list, using an intrusion

detection system, e.g., Snort [133].

• Applying metadata rules. The ISP applies the previously learned rules for detecting

activities. For instance, TShark2, a Python implementation of the network proto-

col analyzer Wireshark, can be used as it provides additional functionality for TLS

processing.

Note that this approach can be transformed from a purely rule-based to a data driven

method by changing the last step of the pipeline. In particular instead of relying purely on

hand-crafted heuristics, the adversary may attempt to collect enough activity the data for a

particular wearable (e.g., via parallelization), and train Machine Learning (ML) inference

models. Given that a number of recent works on inferring insights from IoT traffic [2, 8]

successfully utilized ML in their research, we believe a similar approach may be appropriate

for consumer-level wearable trackers. We leave development of such an experiment for

future work.

2.5 Applicability of the Attack and Countermeasures

TLS and wearables. There have been instances of side-channel leaks in the TLS encryption

of various web-based systems. Although most of these attacks have only been successful

in decreasing the entropy of the encrypted data, in our specific scenario, the attacker

can derive significant insights on the activities of the users. In contrast to TLS leaks in

2https://www.wireshark.org/docs/man-pages/tshark.html
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web services, where multiple requests can be sent in a single packet, our setup allows

the adversary to transmit one activity at a time, which enables accurate identification of

encrypted packets related to a specific activity. This capability allows the ISP to discover

data leaks and gain sensitive insights on users

Possible countermeasures.

• Modifying plain→ cipher text size ratio. It is possible to change the size of the en-

crypted payload by altering the plaintext JSON files. Since pruning those files may

result in data corruption, the natural solution would be to selectively increase some

of the transmitted files. This can be achieved by padding these files with “dummy”

text until they reach a desired size. It should be noted that this approach may result

in internet bandwidth loss for end users. However, if the amount of collectable data is

not vast, the overhead should be negligible.

• Concealing frequency of packets transmission. To make it more challenging for an at-

tacker to match pairs of plaintext with encrypted traffic, the app may introduce delays

in sending user data to the server. Additionally, transmitting occasional meaningless

or “fake” packets can further confuse the attacker. Similarly to the above approach,

this security mechanism would “cost” additional bandwidth for the owners of the

wearables.

• Introducing randomness for order of packets. Randomizing the order in which activ-

ities are sent to the server can make it more difficult for an adversary to map each

activity to its encrypted counterpart. This adds an extra layer of complexity to the

process and makes it harder for the attacker to identify patterns in the encrypted

traffic.

Our suggestions are consistent with previous works in the area. We leave development

of such a secure wearable traffic transmission system for future research.

2.6 What Can Regular Users Do?

As mentioned earlier, privacy activists have been developing so-called “jailbreak” apps that

do not connect to the Internet whatsoever [42, 45]. Naturally, if no data are transmitted,

there are no insights to be inferred. However, such apps may not support the full function-

ality of the original companion apps, potentially worsening the expected user experience.

Furthermore, users lose the possibility of storing their data in the manufacturer’s cloud;

if they change/break their phone, all the valuable information is lost forever. Neverthe-

less, overly cautious users might still consider using a custom application over the official

companion app if they own a supported device.
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Another trick that does not require any additional installations or software manipu-

lations involves synchronizing large amounts of wearable data at once. That is, if users

do not synchronize their data every day, it may be significantly harder for an honest but

curious ISP to infer specific activities among many encrypted packets. Even if the adversary,

manages to recover all the fitness activities, the daily routine of users will likely be less

reconstructable. We leave the identification of the optimal “synchronization delay” period

for future work.
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Privacy of Wearables

This chapter discusses privacy leaks in consumer-level wearable devices. We identify

connections of wearable apps that leak sensitive information in Section 3.1. Section 3.2

demonstrates the ways to reduce or completely prevent such leaks. While the discussion of

this section is centered around Publications II and III, we also refer to another work of ours

on the topic [68] (Publication a).

3.1 Unwanted Connections of Wearables

In our research, we mainly investigate the privacy leaks that occur when users utilize their

consumer-level wearable fitness trackers in the out-of-the-box mode (as shown in Figure

2.1). We focus specifically on the third-party connections of wearable applications and the

data that are shared with them. By third parties we imply any services that are provided

by external entities (rather than the manufacturer of the device). Naturally, third-party

connections of smart devices may be essential for their functioning. However, it is also

entirely possible that some of the third parties are not required or even could be considered

malicious. Previous works have analyzed third parties of various IoT devices [104, 119, 151],

such as smart TVs, smart speakers, smart appliances, cameras, etc. In our research, we apply

a similar approach to study the third-party connections of wearable devices. In particular,

we focus on unwanted, undesired, untrusted, or unnecessary third parties, which we define

as connections that are not essential for the functioning of the devices/applications.

The sharing of any personal data of users, including data derived from the network

connections of a wearable, is regulated by the privacy policies of the vendor. Wearable

suppliers must explicitly state which personal information they may disclose to third parties.

It is evident that disclosing personal data to the entities not covered by privacy policies

may result in heavy fines. However, allowing users to accept a policy without reading it

significantly reduces the number of individuals who review privacy agreements. Meinert et

al. found that fewer than 50% of users had ever read a privacy agreement [100]. Moreover,

when users can skip through a privacy policy without reading it, they are less motivated to

33
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consider the privacy risks [3, 137]. Besides, companies often deliberately draft terms and

conditions in a specific way: to not clearly define how and to whom personal data may

be shared [16]. Hence, vague policies authorize companies to uncontrollably gather and

sell (or share) private data of users. In practice, end users of wearable trackers have very

little control over which of their personal data are shared, and are largely unaware what

third parties receive them. Clients are mandated to accept user agreements in order to use

partner applications. Once that is done, users lose control over their own data. Therefore,

unwanted connections of wearable applications may receive, in some cases, extremely

sensitive information on regular users. In our research, we study such connections for both

companion applications of wearable devices and their partner applications.

Partner applications. At present, major wearable vendors offer end users of wearables

the ability to synchronize some of their health and activity data with partner-compatible

applications of their choice. Such partners include various health services, major retailers,

service applications, and even voice assistants. Regular users are able to authorize these

apps to access various specific categories of their personal data, in order to improve the

quality of service or enjoy a richer user experience.

In our research, we study the various aspects of privacy leakage in wearable devices, by

answering the following questions:

Who is communicating with consumer-level smartbands as part of their opera-

tion, and vice versa? What entities are being contacted by prominent wearable

companion applications and their partner apps? Are they connecting only to

the vendor servers in order to store wearable data? Are they only connecting

with the vendor servers to store wearable data, or are they also communicating

with other third-party entities? In the latter case, who are these third parties? Do

regular users anticipate communicating with such entities? What data are being

shared with them? Can unwanted third parties glean any sensitive insights?

3.1.1 Identification Pipeline

In this section, we describe the procedure to establish the contacted third parties and

analyze data shared with them. To detect what third parties are contacted by partner apps

we employ the following three-step pipeline.

Detecting contacted domains and IP addresses. Since wearable applications encrypt

the communicated data, we intercept the traffic between the app and the cloud, using

MITM (Figure 2.2). We obtain both the full URLs and IP addresses of third parties from

such setup. We employ the Burp Suite [113] implementation of MITM. Since some of the

studied companion/partner apps employ certificate pinning to prevent MITM, we utilize

the EdXposed framework to disable it.

Identifying the data shared with third parties. Since MITM allows to view the IP packets,
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we are able to check the contents of traffic that is sent from the partner apps to third parties.

Once we have access to the plaintext data that are shared with third parties, we search for

any private information inside. Contrary to popular belief, personal information can be

sent via both POST and GET requests. We distinguish between fitness data that are collected

by wearables, and other private information, including IP, location, phone characteristics,

etc.

Learning about third parties. Finally, we try to establish what is the nature of the contacted

third parties, i.e., what service they provide. This step is much more challenging than it

appears at first glance. Indeed, some domain names for detected third parties may not

instantly reveal who owns them or what they focus on. For example, a discovered third-

party domain d34yn14tavczy0.cloudfront.net is one of the millions Content Delivery

Network (CDN) hosted by private entities at Amazon CloudFront1. To learn the physical

location of third parties we utilize Geoip [46]. To investigate the nature of third-party

services, we employ Whois [160], Similarewb [129], and web search in general.

Note that since we conduct our experiments from Europe, the obtained results may

not be reproducible in other parts of the world (e.g., America) due to different location of

company servers, etc.

To summarize, for every wearable partner application we identify:

• The contacted third parties.

• Whether and what type of sensitive data are being shared.

• Origins and physical location of their servers.

3.1.2 Analysis of Popular Wearable Models

In our preliminary research [68], we analyzed unwanted third parties of 7 popular consumer-

level wearable devices and their companion applications. In this dissertation, we briefly

summarize our findings and describe the studied smartbands.

We start by describing the wearables and their associated companion applications:

1. Wearable: Xiaomi MiBand 4, Companion app: MiFit. The MiFit app is a popular

health app developed by Xiaomi, which is one of the largest wearables producer [64].

We employed this device for our traffic analysis attack in Chapter 2.

2. Wearable: Samsung Gear Fit 2 Pro, Companion app: Samsung Health. Samsung is

also present amongst the most popular wearable providers [64]. Likewise, we utilized

this device for our traffic analysis attack in Chapter 2.

1https://aws.amazon.com/cloudfront/
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3. Wearable: Huawei Band 3 Pro, Companion app: Huawei Health. Produced by Huawei,

which is also a major manufacturer of wearables [64].

4. Wearable: the Arbily smartwatch, Companion app: VeryFitPro. VeryFitPro is a well-

downloaded fitness application, but not as popular as the first three.

5. Wearable: the RoHs device, Companion app: Wearfit. A cheap device connecting to

an outsourced companion app.

6. Wearable: the M4 device, Companion app: Tband. Also a cheap device connecting to

an outsourced companion app.

7. Wearable: the Naxius device, Companion app: Yoho Sports. Similar to the previous

two, a cheap device connecting to an outsourced companion app.

App Domain name IP address ISP Origin Site Role

VeryFitPro

IdoBleLogs 47.244.67.196 Alibaba China Hong Kong Logs
abroad.apilocate.amap.com 205.204.101.28 Alibaba USA USA

Location
cgicol.amap.com 198.11.136.99 Alibaba China USA

control.aps.amap.com 140.205.230.4 Alibaba China China
restapi.amap.com 47.246.74.109 Alibaba China USA

MiFit

api.weibo.com 114.134.80.166 HGC Hong Kong Hong Kong
Social

cgi.connect.qq.com 203.205.254.62 Tencent China Hong Kong
Network

graph.facebook.com 31.13.84.8 Facebook USA Austria
logs.amap.com 203.119.211.252 Alibaba China China

Location
abroad.apilocate.amap.com 47.88.68.79 Alibaba China USA

apilocate.amap.com 205.204.101.31 Alibaba China USA
restapi.amap.com 47.246.74.104 Alibaba China USA
login.sina.com.cn 58.63.236.212 ChinaNet China China

Ads
xtrapath2.izatcloud.net 52.85.156.111 Amazon USA Greece

Samsung Health app-measurement.com 172.217.21.78 Google USA Germany Analytics
Huawei Health api.geetest.com 54.77.192.2 Amazon USA Ireland API

TBand iwhop.com 47.56.106.31 Alibaba China China Weather

Wearfit

hmma.baidu.com 111.202.114.42 China Unicom China China

Ads
openrcv.baidu.com 39.156.66.235 China Mobile China China

dxp.baidu.com 39.156.66.180 China Mobile China China
plbslog.umeng.com 203.119.214.123 Alibaba China China

iwhop.com 47.56.106.31 Alibaba China China Weather

Yoho Sports
plbslog.umeng.com 203.119.214.124 Alibaba China China

Adsulogs.umeng.com 203.119.214.124 Alibaba China China
log.umsns.com 203.119.215.106 Alibaba China China

Table 3.1: Third parties that are contacted by various consumer-level wearable de-
vices. Origin indicates the country of origin for ISPs. The Site column
shows the physical location of the server. Role describes why the domain is
contacted. The domain ido-ble-lib.cn-hongkong.log.aliyuncs.com is
referred to as IdoBleLogs. Results for the Fitibt wearable are reported in the
next sections along with its partner apps.

In Table 3.1 we summarize the third parties that are contacted by each smartband/app

pair. Overall, companion apps contain a significant number of third-party services that

ido-ble-lib.cn-hongkong.log.aliyuncs.com
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may not be anticipated by regular users. Notably, two applications (MiFit and VeryFitPro)

contact a mapping service provided by Alibaba Group called Amap, sending location data

to China even if a user registers from Europe. Moreover, MiFit establishes connections with

three popular social networks: Tencent QQ (China), Weibo (China), and Facebook(US).

Data are being exchanged with these networks even if the user is not registered there. Since

users are never asked to consent to this contact and data sharing, they are likely largely

unaware that their personal information is being disclosed. For example, Tencent QQ is

contacted with a plain text GET request that contains the phone name and the OS version.

Although this may seem not significant, it still enables the social network to gather data on

individuals beyond its userbase.

For further details on the companion applications and results please refer to our pub-

lished manuscript [68].

3.1.3 Analysis of Fitbit Partner Apps

We continue the work on identifying unwanted third-party connections of partner appli-

cations in Publication II. In our research, we focus on partner apps of Fitbit – one of the

most popular wearable companies with very advanced API. While major vendors, including

Apple, Samsung, Xiaomi, Fitbit, Huawei, etc., are challenged to protect privacy of their users,

the partner apps often do not receive the same attention from privacy activists. Andrade et

al. established that users are more likely to grant access to their personal data to companies

with a credible reputation [9]. Given Fitbit’s universal reputation as a company that values

user privacy, its credibility may extend to its affiliated apps. In our research, we set out to

investigate whether partner apps provide the same high standards of privacy protection

and transparency as Fitbit.

Fitbit is currently partnering with over 40 apps2. In our research, we focused on 10
Android apps from partners that offer health services and have at least 50,000 downloads

on Google Play. That is, we did not study official retail partners such as Walgreens or Dick’s

Sporting Goods, which offer discounts based on how active a person has been. We also

did not investigate applications like Amazon Alexa that are not directly fitness-related.

Furthermore, we did not rigorously analyze apps that require special equipment. Many of

the studied apps support other wearable trackers. We present partner apps sorted by the

number of downloads (as of October 2020) in descending order:

1. MyFitnessPal. Downloads: 50 million. A popular health app that allows users to track

various aspects of their health. It collects a number of burned calories from Fitbit to

modify daily calories goal. The app is one of the most popular health apps available.

2The detailed description of the apps and the supported interactions with Fitbit can be found here: https:
//staticcs.fitbit.com/partnership

https://staticcs.fitbit.com/partnership
https://staticcs.fitbit.com/partnership
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2. Strava. Downloads: 10+ million. A well-known fitness tracking app. GPS workouts

recorded by Fitbit can be synchronized with the Strava application.

3. MapMyRun, RunKeeper and Endomondo. Downloads: 10+ million each. These apps

are tracking running activities. Synchronization with Fitbit allows them to access

workouts recorded by the smartband.

4. MINDBODY. Downloads: 1+ million. A training app that allows users to sign up for

the classes in their local area. Mindbody requests the training data collected by a

Fitbit device.

5. Weightloss Running. Downloads: 1+ million. An app that offers personal training

plans for its users. The application pulls the training data from Fitbit.

6. Hidrate Spark. Downloads: 100 thousand. A health app that tracks water intake. It

receives the steps information from Fitbit and adjusts the daily water consumption

goal.

7. Wokamon. Downloads: 100 thousand. A mobile game that encourages adopting a

healthy lifestyle. It accounts step data from a Fitbit tracker for in-game rewards.

8. Nudge Health Tracking. Downloads: 50 thousand. A health app, enabling users to

connect with real-life coaches. The Nudge app synchronizes various health snapshots

from the Fitbit account.

Contacted third parties. We depict a detailed description of the third parties and ISPs

that host their servers in Table 3.2. We provide a comprehensive overview of the most

“interesting” findings about the studied partners and report the most contacted third-party

services.

Strictly speaking, Fitbit can be considered a third party, since it is not owned by any of

the studied partner applications. However, since contacting Fitbit is expected for every app,

we do not mention it in this section.

Facebook. We found that 9/10 (90%) of the analyzed apps share sensitive data with the

Facebook social media. Since these apps allow users to register or sign in with their Face-

book profile, it is natural to assume that the social network will be contacted. However, we

established that Facebook is contacted, and the data are shared even when a user does not

have a Facebook profile. This means that the social network can gather information about

people beyond its own userbase. Most of the partner apps interact with Facebook through

the graph.facebook.com domain, which facilitates easy interaction with the social graph.

However, this process inevitably leads to the sharing of sensitive user data.
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Data Apps

Phone manufacturer, model, etc.
MyFitnessPal, Strava, Runkeeper,

Weightloss Running, Wokamon, Nudge

AAID
MyFitnessPal, Strava, Runkeeper,
Weightloss Running, Wokamon

Email MyFitnessPal, Strava, Runkeeper
Connection details MyFitnessPal, Runkeeper

Location MyFitnessPal, Strava, Weightloss Running
Demographics MyFitnessPal

Table 3.3: Sensitive information shared by studied apps with third parties (as of July
2022). For each app the data are shared with at least one of the unwanted
third parties.

In particular, Facebook records every session of each partner app, collecting information

on the phone manufacturer, localization, timezone, location (country), Sim carrier, and in

some cases, even the gyroscope parameters. Facebook also obtains Android Advertising

ID (AAID) – a unique cross-app identifier that allows for profiling users across different

apps. For instance, if a user registers for Facebook, Instagram, and WhatsApp using three

different email addresses, Meta (formerly Facebook) can still associate all three accounts

with a single user. The ability to link multiple identities to a single user characterizes a

so-called “permanent record.”

Crashlytics/Google. Firebase, a platform for developing Android apps owned by Google, is

used by half of the apps in the study (5/ 10). In particular, 40% of the partner apps make

use of Crashlytics, a crash report service that is a subsidiary of Firebase. While Crashlytics

is a helpful tool for identifying and fixing app crashes, it also records a significant amount

of app-related information. In fact, it records every action taken by the user within the

app and the state of the phone parameters during that step, including the battery level and

velocity, proximity, screen orientation, and the amount of RAM and disk space being used.

This can result in an unprecedented amount of data being collected about app usage and

user behavior.

Branch. Half of the apps examined (5/ 10) use a deep linking service called Branch, which

improves navigation within the app. However, in addition to providing its linking service,

the Branch API also sends a large amount of private data to its servers. These data include

details about the user’s phone model and manufacturer, screen resolution and DPI, OS

version and architecture, and the times of app installation and updates.

Leaked sensitive insights. In Table 3.4 we detail the sensitive data third parties receive

from Fitbit partner apps. The obtained results suggest that most of the studied partner

applications contact “unexpected” third parties. These third parties include social networks,
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analytics providers, advertisement services, and weather APIs.

Since the original data presented in Table 3.4 were collected in October 2020, we

repeated the procedure for discovering leaks in Publication III (July 2022). In Table 3.3 we

report the “newer” high-level insights that are leaked. The most interesting findings include

approximate and exact location, connection specifics (Wi-Fi or cellular), email, and even

demographics.

For example, most of the apps share a unique cross-app AAID with graph.facebook.com.

Additionally, events.mapbox.com receives precise latitude and longitude information every

second (as seen in Listing 6), while api.segment.io receives massive amounts of private

data, including email, gender, age, and lifestyle (as seen in Listing 5). Naturally, these types

of data are extremely sensitive and can be used for mass profiling. Thus, unwanted third

party may be able to identify individuals who lead sedentary lifestyles and rarely exercise,

which in turn may be used for extensive profiling.

Despite most of the popular partner applications offering their service free of charge,

the real price that the users pay is their sensitive data. That is, partner apps utilize the data

of their users to indirectly “pay” for the convenience and service. Hence, it is an individual

user who contributes data to fund a better application experience.

Listing 5 Fragments of a file shared with api.segment.io by MyFitnessPal. Email, gender,
userId, and age are anonymized. The leaked data also include weight goal, and lifestyle.

1 "traits":{"device_theme_state":"light","gender":gender,"profile_country":

2 "US","email_encrypted":"07cc4d9626e09476ef577e464b03157ebd9e9ea1",

3 "facebook_connected":false,"email":email,"day_of_week":

4 "Monday","primary_step_source_set":"fitbit","anonymousId":

5 "85504873-d4d9-4210-b957-3b5ef0a45f28","weight_goal":"lose","email_

6 verified":true,"weekly_weight_goal":"lose_1.5_pound_per_week","userId":

7 "userId","age":age}

8 ...

9 "lifestyle":"Sedentary"

Listing 6 Fragment of a file sent by Strava to events.mapbox.com. Precise coordinates
(which are anonymized) are disclosed. Date and timezone are anonymized.

1 {"horizontalAccuracy":4.0,"altitude":99.0,"applicationState":"Background",

2 "created":"2022-**-**T**:**:**.000+**00","event":"location","lat":**,

3 "lng":**,"operatingSystem":"Android - 9","permissionStatus":"AllowAlways",

4 "sessionId":"74221bb1-f94b-4c40-a4de-50bb32139e00","source":"mapbox"}
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App Domain name IP address ISP Origin Site Role

MyFitnessPal

z.moatads.com 104.107.144.129 Akamai tech USA Greece

Ads

ads.mopub.com 192.48.236.12 MoPub USA USA
cdn.branch.io 52.85.158.100 Amazon USA Greece
api2.branch.io 52.85.158.120 Amazon USA Greece

aax-eu.amazon-adsystem.com 52.95.123.41 Amazon USA Ireland
s3.amazonaws.com 52.216.132.85 Amazon USA USA
api.amplitude.com 35.160.169.182 Amazon USA USA

Analytics
crashlyticsreports-pa.googleapis.com 216.58.212.163 Google USA USA

api.ua.com 52.85.158.128 Amazon USA Greece
API

config.88-f.net 104.19.161.19 Cloudflare USA Canada
d34yn14tavczy0.cloudfront.net 52.85.158.22 Amazon USA Greece Photo

graph.facebook.com 69.171.250.15 Facebook USA USA Social

Strava

app.adjust.com 185.151.204.13 Adjust GmbH Germany Netherlands
Analytics

sessions.bugsnag.com 35.190.88.7 Google USA USA
firebaseinstallations.googleapis.com 216.58.206.74 Google USA USA

APIapi2.branch.io 52.85.158.114 Amazon USA Greece
api.iterable.com 52.205.72.116 Amazon USA USA

dgalywyr863hv.cloudfront.net 52.85.155.138 Amazon USA Greece Photo
graph.facebook.com 31.13.84.8 Facebook USA Austria Social

MapMyRun

ads.mopub.com 192.48.236.12 MoPub USA USA

Ads
hub.samsungapps.com 34.254.23.31 Amazon USA Ireland

pubads.g.doubleclick.net 216.58.206.34 Google USA USA
pagead2.googleadservices.com 216.58.209.34 Google USA USA

cdn.branch.io 52.85.158.100 Amazon USA Greece
api.amplitude.com 54.203.10.108 Amazon USA USA Analytics

api2.branch.io 52.85.158.120 Amazon USA Greece API
graph.facebook.com 31.13.84.8 Facebook USA Austria Social

RunKeeper

id-prod-age.prod.asics.digital 34.197.96.234 Amazon USA USA Ads
launches.appsflyer.com 18.203.26.15 Amazon USA Ireland

Analyticsapi.amplitude.com 52.40.97.110 Amazon USA USA
crashlyticsreports-pa.googleapis.com 216.58.206.67 Google USA USA

api.iterable.com 52.55.152.71 Amazon USA USA API
graph.facebook.com 31.13.84.8 Facebook USA Austria Social

Endomondo
api.amplitude.com 52.40.97.110 Amazon USA USA Analytics

graph.facebook.com 31.13.84.8 Facebook USA Austria Social

MINDBODY

cdn.branch.io 52.85.158.72 Amazon USA Greece Ads
mobile-collector.newrelic.com 151.101.2.110 Fastly USA USA Analytics

identity.mparticle.com 151.101.242.133 Fastly USA Italy

API
sdk.iad-03.braze.com 151.101.17.208 Fastly USA USA

api2.branch.io 52.85.158.37 Amazon USA Greece
logx.optimizely.com 52.4.25.221 Amazon USA USA

Weightloss

t.appsflyer.com 79.125.107.112 Amazon USA Ireland

Ads
ads.mopub.com 192.48.236.9 MoPub USA USA

ads.verv.com 5.9.122.176 Hetzner Online USA Germany
cb.mopub.com 192.48.236.12 MoPub USA USA

firebase-settings.crashlytics.com 172.217.16.163 Google USA Germany Analytics
api.rockmyrun.com 52.89.196.53 Amazon USA USA API
graph.facebook.com 69.171.250.15 Facebook USA USA

Social
www.facebook.com 69.171.250.35 Facebook USA USA

api.darksky.net 52.21.90.77 Amazon USA USA Weather

HidrateSpark
reports.crashlytics.com 54.243.164.158 Google USA USA Analytics

graph.facebook.com 69.171.250.15 Facebook USA USA Social

Wokamon

a.appbaqend.com 104.17.72.8 CloudFlare USA Canada
Adsoutcome-ssp.supersonicads.com 52.85.158.20 Amazon USA Greece

gum.criteo.com 178.250.0.157 Criteo SA France France
devs.data.mob.com 116.211.155.227 ChinaNET China China Analytics
api.share.mob.com 118.212.233.191 China Unicom China China API

graph.facebook.com 69.171.250.15 Facebook USA USA Social

Nudge

cdn.branch.io 52.85.158.64 Amazon USA Greece Ads
stats.pusher.com 52.90.41.11 Amazon USA USA Analytics

exp.host 104.197.216.164 Google USA USA
APId1wp6m56sqw74a.cloudfront.net 52.85.155.179 Amazon USA Greece

api2.branch.io 52.85.158.37 Amazon USA Greece
graph.facebook.com 69.171.250.15 Facebook USA USA Social

Table 3.2: Third parties that are contacted by the partner apps (as of October 2020).
Origin represents the headquarters location of ISPs. The Site column refers
to the physical location of the contacted servers. Role describes services
that third parties provide.



42 Chapter 3. Privacy of Wearables

App Shared Data Third Party

MyFitnessPal

Phone model Facebook
Location Facebook

Phone Data Branch
Connection Data Amplitude

Phone Data Amazon
Phone Details Google

Strava
Connection Data Branch

Phone Data Branch
Phone Details Bugsnag

MapMyRun
Phone Data Branch
Phone Data Amplitude

RunKeeper

Phone Data Facebook
Location Facebook

Email Iterable
Phone Data Iterable
Phone Data Amplitude

Location Amplitude
Phone Details Google

Endomondo

Phone Data Facebook
Location Facebook
Location Amplitude

Phone Data Amplitude

MINDBODY

Email Mparticle
Connection Data Branch

Phone Data Branch
Connection Data Newrelic

Weightloss

Phone Model Facebook
Location Facebook

Sim Carrier Facebook
App Data Appsflyer

Phone Details Google
Phone Data Facebook

HidrateSpark

Phone Data Facebook
Location Facebook

App Details Facebook
Phone Details Google

Wokamon

Phone Data Supersonicads
Connection Data Supersonicads

Sensor Data Facebook
Phone Data Facebook

Nudge

Phone Data Facebook
Location Facebook

Sim Carrier Facebook
Connection data Branch

Phone Data Branch

Table 3.4: Data that are shared with the third parties during runtime of the Fitbit part-
ner apps (as of October 2020). Phone data accounts for the manufacturer,
model, OS, and screen resolution. Location is approximate, not precise
coordinates.
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3.2 Preventing Unwanted Connections of Wearables

Given the severe sensitivity of private data that are sent to unwanted third parties, as

described in previous sections, the question arises: is it feasible to mitigate such leaks? In

Publication III, we propose a methodology for blocking undesired traffic, and evaluate it

empirically.

The methods currently available for using wearable devices while avoiding unwanted

third-party contact include installing custom mobile applications [42, 45]. These apps

prevent the device from connecting to the Internet, but may not support all the features

of the original applications. They are also only compatible with a limited number of

commercial wearable devices. Naturally, the above details renders such an approach not

applicable for most of the regular users for wearables. Another solution designed to block

unnecessary third-party communications in IoT devices [94,95] uses a dynamic approach to

identify and block undesired traffic. However, the proposed methodology involves different

blocking strategies for various device groups, making it difficult for regular end users to set

up. Additionally, since it does not rely on existing maintained blocking lists, there could

be false positives that lead to improper functioning of the devices or applications. Finally,

since the previously proposed approaches require a specifically configured Internet access

point, they cannot be used when the device is outside of designated networks.

Therefore, we set out to investigate if there is a simpler solution available for regular end

users of wearables. Specifically, we aimed to determine if adblockers, which are browser

content filtering extensions, could be a feasible solution. In 2019, an estimated 763.5
million people used adblockers [134] because they are easy to install, user-friendly, and

highly effective at blocking advertisements and trackers without disrupting the user’s

browsing experience. Additionally, adblockers often have regularly updated blocklists that

are tested to minimize the risk of false positive entries. The focus of our study is to analyze

the third-party entities contacted by apps associated with Fitbit. We examine two popular

blocklist collections: uBlock Origin [150] – one of the most popular browser content filtering

extensions – and Firebog [40] – another well-known collection of maintained domain

lists. We study whether blocking such unwanted destinations would cause any functional

disruption to the official Fitbit apps and its partners.

The research questions that we investigate for this problem are as follows:

(Q1) Which third parties are being contacted by the applications associated with

Fitbit?

(Q2) Does blocking domains from highly ranked blocklists impact the core

functionality of the devices?

(Q3) What are the “most unwanted” third-party entities, and which blocklists

are most effective in detecting them?
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To the best of our knowledge, we are the first to investigate blocking unwanted traffic of

wearable applications. Unlike previous studies on disabling unnecessary IoT communica-

tions, our approach is not affected by changes in network traffic of the analyzed applications

because our blocking rules are based entirely on existing blocklist collections. Moreover, our

method can be readily utilized by regular users of the devices, such as via mobile filtering

applications (i.e., adblockers), and does not necessitate specialized network equipment.

3.2.1 Setup

Similar to Publication II, in our experiments, we utilize two Fitbit Versa 2 fitness trackers

and two Xiaomi Redmi 7 phones that run the official Fitbit companion application and

studied partner apps. The mobile phones are connected to the Internet through a Wi-Fi

hotspot hosted by a laptop computer.

Discovering Third Parties. We employ the MITM approach (Figure 2.2) to identify all

entities that are being contacted by the studied applications. We leverage the EdExposed

framework to bypass certificate pinning.

Blocking Domains. To prevent unnecessary third parties from accessing the applications,

we modify the hosts file for each app being studied. This file is generated by the operating

system and maps domain names to their respective IP addresses. Since the hosts file is

examined before the Domain Name System (DNS), unwanted domains can be resolved

as a localhost (127.0.0.1), preventing packets from traversing the global web. Since the

phone’s Internet connection is established through a Wi-Fi hotspot, all traffic essentially

goes through the laptop. Therefore, disabling domains on the computer also restricts the

phone from connecting to them. We maintain a separate hosts file (a list of blocked domain

names) for each application.

Employed Blocklist Collections. Our original plan was to test the possibility of blocking

certain domains that adblockers typically filter, without breaking the wearable applications.

To make this happen, we chose to use uBlock Origin (henceforth Ublock), a well-known and

widely used content blocker with over 10 million Chrome3 and nearly 6 million Firefox4

users. Currently, Ublock has over 50 domain-based filtering lists that are regularly updated

by developers and researchers. These lists cover a range of categories, including default,

anti-advertisement, anti-tracking, anti-malware, and “annoyancess,” as well as regional-

specific. Overall, Ublock supports up to 600K blocking rules. It is worth noting that despite

the high number of filters, the blocklists are regularly maintained, and there are very few

instances of false positives, resulting in website breakage. Similarly to the previous works on

content blocking [94, 151], in our research, we consider another blocklist collection called

Firebog [40]. It aggregates various categories of rules, including malicious, advertising,

3https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
4https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/

https://chrome.google.com/webstore/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/
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suspicious, and tracking & telemetry lists. Firebog contains a total of 60 blocklists, with

over 5.3 million domains (excluding non-recommended sources).

It is worth noting that several blocklists are present in both collections, such as actively

supported EasyList and EasyPrivacy.

3.2.2 Experiment

In this section, we detail the experiments that were carried out to block unwanted third

parties. Again, the high level idea of these experiments is to investigate whether blocking

undesired third parties would affect the operation of apps and devices.

Official Fitbit app. Specifically, our experiments aim at not only assessing the impact on the

application’s workflow, but also on fitness data produced by wearables. However, wearable

activity trackers are more complex than other IoT devices, which makes it challenging to

ensure that every aspect of the application/device remains unaffected. Unlike a smart bulb,

which can easily be identified as malfunctioning if it stops turning on/off, wearable devices

gather various types of data and do not have a single most important function. As a result,

we need to verify whether disabling a third-party would have any impact on fitness data

that have already been collected. For example, would disabling test.com result in incorrect

step counts being recorded? Therefore, we conduct empirical experiments to confirm that

filtering rules do not have any impact on the fitness data collected by wearables.

We created two identical Fitbit accounts, with matching information for gender, weight,

height, age, and other parameters. Each account was paired with a separate Fitbit Versa

2 device. In the experiment, I simultaneously wore both fitness trackers on the same

hand, with one having all unwanted third parties disabled according to the blocklists,

and the other being used in its off-the-shelf mode without blocking or interception. We

then compared the collected data from both trackers to identify any malfunctions. As the

devices were not worn in exactly the same position, there was a natural difference in the

collected fitness data. To address this issue, we conducted a second round of experiments in

which I wore both devices without blocking any domains to establish a baseline difference

due to errors and wrist placement. Both rounds lasted five days, from Monday to Friday,

during which I tried to engage in as many trackable activities as possible, including various

workouts, measuring my heartbeat, and monitoring my sleep. Finally, we compared the

differences between the two rounds to determine whether blocking the contacted domains

significantly affected the discrepancy between the simultaneously worn trackers.

A user study by Chong et al. [24] found that individuals who use wearables consider

tracking their steps, sleep, and exercise the primary factors when purchasing a fitness

tracker. We use the same metrics to evaluate and compare the results of 2 different devices.

Partner apps of Fitbit. It is not feasible to thoroughly analyze all of the features for each

app that we study when we block unwanted third parties. Instead, we only confirm that the
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data imported from Fitbit match the corresponding values in the Fitbit cloud. We examine

some of the partner apps for Fitbit that we previously studied in Section 3.1.3, selecting the

apps that allow users to synchronize their Fitbit activity data, so as to verify whether it is

feasible to disable unwanted connections. We use the most recent available versions of the

applications (as of July 2022), which are specified in Table 3.5.

App and version All Third Parties # Blocked

Fitbit
graph.facebook.com, api.mixpanel.com, decide.mixpanel.com, cdn.optimizely.com,

10/12
v3.18

m.stripe.com, mcbs1myt8rhvg1jhw6dlgdpy4fly.device.marketingcloudapis.com,
s7.device.marketingcloudapis.com, app-measurement.com, logx.optimizely.com,
firebase-settings.crashlytics.com, settings.crashlytics.com, in.appcenter.ms

Pa
rt

n
er

A
p

p
s

MyFitnessPal

graph.facebook.com, sdk.iad-06.braze.com, z.moatads.com, api2.branch.io,

20/21
v22.15.0

firebase-settings.crashlytics.com, crashlyticsreports-pa.googleapis.com,
cdn.branch.io, sdk.split.io, api.segment.io, aax-eu.amazon-adsystem.com,
c.amazon-adsystem.com, mads.amazon-adsystem.com, api2.amplitude.com,
ads.mopub.com, googleads.g.doubleclick.net, pubads.g.doubleclick.net,

auth.split.io, streaming.split.io, events.split.io,
d34yn14tavczy0.cloudfront.net, pagead2.googleadservices.com

Strava graph.facebook.com, sessions.bugsnag.com, api2.branch.io, cdn.branch.io,
7/8

v267.9 app.adjust.com, api.iterable.com, events.mapbox.com, api.mapbox.com

Runkeeper
graph.facebook.com, api.iterable.com, launches.appsflyer.com,

6/6
v13.4

api2.amplitude.com, crashlyticsreports-pa.googleapis.com,
beacons.gcp.gvt2.com

Weightloss Running graph.facebook.com, launches.appsflyer.com,
4/4

v6.8.13 ads.mopub.com, api2.amplitude.com

Wokamon
graph.facebook.com, api.share.mob.com, c.data.mob.com, api.exc.mob.com,

15/15
v2.17.5

m.data.mob.com , ms.applovin.com, rt.applovin.com, connect.tapjoy.com,
a4.applovin.com, d.applovin.com, rpc.tapjoy.com, placements.tapjoy.com,

googleads.g.doubleclick.net, pagead2.googleadservices.com, data.flurry.com
Nudge exp.host, sentry.io, ws-mt1.pusher.com,

1/5
v6.3.3 sockjs-mt1.pusher.com, sock252-mt1.pusher.com

Table 3.5: Third parties contacted by the studied apps. The domains that are not
contained in the blocklists are in blue; while the rest are considered unnec-
essary and can be disabled.

3.2.3 Analysis of Third Parties

To address Q1, we first describe the third parties that Fitbit and its partner apps communi-

cate with. A complete list of third parties contacted by these apps as part of their operation

is provided in Table 3.5. We do not consider the Fitbit API a third party for the partner

apps, as it is an expected destination in order to request fitness data. Our findings reveal

that both the official Fitbit app and partner applications communicate with a significant

number of external domains. In fact, 3 out of the 7 studied apps communicate only with

undesired third parties. Our results indicate that these unwanted entities primarily consist

of advertising providers, tracking/analytics services, and various content delivery networks.

Notably, 6 out of 7 apps send data to Facebook, even if users do not use/have the social

network credentials.

We further investigate which unnecessary destinations are most frequently contacted
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by wearable apps. Figure 3.2 shows the data flows between the studied apps and unwanted

third parties, with third parties grouped according to the organizations that operate them.

For instance, Google is represented not only by Google ads but also by Crashlytics, an

analytics provider owned by Google. The width of the flows in the figure is proportional

to the number of second-level domains, where a wider flow indicates a larger number

of second-level domains. For example, the flow for apps that contact Branch via both

api2.branch.io and cdn.branch.io is twice as wide as that for Iterable, which is repre-

sented by a single domain (api.iterable.com). Our results demonstrate that Facebook

(Meta) and Google are the most frequently contacted third-party organizations, with 6/ 7
and 4/ 7 apps communicating with them, respectively. Furthermore, several companies,

including Google, Amazon, and Branch, provide more than one second-level domain per

their services. Table 3.6 provides a breakdown of the individual third parties contacted by

multiple apps, with most domains being contacted by 2 applications.

Third Party Contacted by Apps

graph.facebook.com
Fitbit, MyFitnessPal, Runkeeper

Strava, Weightloss Running, Wokamon
firebase-settings.crashlytics.com Fitbit, MyFitnessPal
crashlyticsreports-pa.googleapis.com MyFitnessPal, Weightloss Running

pagead2.googleadservices.com MyFitnessPal, Wokamon
googleads.g.doubleclick.net MyFitnessPal, Wokamon

*.branch.io MyFitnessPal, Strava
api2.amplitude.com MyFitnessPal, Runkeeper

launches.appsflyer.com Runkeeper, Weightloss Running
ads.mopub.com MyFitnessPal, Weightloss Running
api.iterable.com Strava, Runkeeper

Table 3.6: Unnecessary domains contacted by multiple partner apps.

Fitb
it

MyFitn
essPal

Stra
va

Runkeeper

Weightlo
ss

Running
Wokamon

Nudge
0

10

20

30

To
ta

l#
o

fd
o

m
ai

n
s Unnecessary (Blocklisted) domains

Others domains

Figure 3.1: The proportion of unnecessary third-party connections to all the contacted
domains (including first parties).
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Fitbit
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MyFitnessPal
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Runkeeper
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Appsflyer

MoPub
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Figure 3.2: Mapping of the Fitbit-associated apps to the companies that provide un-
necessary third-party services. The width of the flows corresponds to the
number of second-level domains per organization. The most frequently
contacted organizations are depicted.

To gain a better understanding for the proportion of all contacted entities that need to

be disabled, we present the results for each app individually in Figure 3.1. This comprises all

connections, including first parties, the Fitbit API, and other entities that were not reported

in Table 3.5. The results show that for almost all applications, the number of unwanted

connections exceeds 50%. In other words, at least half of the contacted destinations may

be unnecessary or even harmful.

Overall, the obtained results suggest that more than 88% of the third parties are un-

wanted and, hence, have negative added value for the end users.

3.2.4 Blocking Unnecessary Traffic

In this section, we present the results of our experiments that address Q2. The raw daily

cumulative data for both rounds of the experiment are displayed in Table 3.7. We detail daily



3.2. Preventing Unwanted Connections of Wearables 49

Activity Wearable
Round 1

Day 1 Day 2 Day 3 Day 4 Day 5

Steps
1 2184 4869 2960 5140 7685
2 2110 4862 3019 5035 7706

Distance
1 1650 3700 2120 3900 7710
2 1600 3690 2060 3820 7060

Sleep Total
1 425 546 408 429 449
2 424 538 418 447 462

Light Sleep
1 294 317 283 277 303
2 289 353 274 257 312

REM Sleep
1 98 162 65 71 98
2 102 113 78 103 106

Deep Sleep
1 33 67 60 81 48
2 33 72 66 87 44

Round 2

Steps
1 2077 6670 4888 2859 3194
2 2023 6660 4759 2799 3032

Distance
1 1530 7190 3710 2160 2390
2 1500 6420 3610 2120 2300

Sleep Total
1 427 407 452 470 390
2 426 399 432 467 403

Light Sleep
1 287 276 319 268 285
2 276 310 314 252 289

REM Sleep
1 88 71 93 116 60
2 103 44 78 140 68

Deep Sleep
1 52 60 40 86 45
2 47 45 40 75 46

Table 3.7: Complete listing of the obtained results. Both wearables are simultaneously
worn on the same hand. For the second device in Round 2 the unnecessary
third parties were disabled. Distance is measured in meters; sleep in min-
utes.

steps, distance, and calories, as well as various type of sleep. Again, during the experiment,

I wore both devices simultaneously on the same non-dominant hand. In the first round,

both wearables were set up to contact all the default third parties to establish the baseline

difference due to varying positions of the trackers. In the second round we disable all the

unnecessary connections listed in Table 3.5. Based on visual inspection, there does not

appear to be a significant difference between the discrepancies observed in the two rounds.

We also observed that concurrently worn trackers sometimes interchange REM and light

sleep minutes. However, the total nightly sleep seems to be consistently recorded.

Nevertheless, for the sake of formality, we present statistical analyses to compare the
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Activity RMSE R1 RMSE R2 NRMSE R1 NRMSE R2
Steps 64 99.5 0.011 0.021

Distance 295 350.3 0.048 0.062
Sleep Total 11.5 11.3 0.083 0.141
Light Sleep 19.4 17.7 0.202 0.264
REM Sleep 27.1 19.1 0.279 0.199
Deep Sleep 4.8 8.7 0.089 0.189

Table 3.8: Comparison of Root Mean Square Error (RMSE) and Normalized RMSE
(NRMSE) for round 1 (R1) and 2 (R2).

errors between the two rounds of the experiment. In fact, standard statistical tests, such as

the t-test or Kolmogorov-Smirnov test, are only able to reject the null hypothesis that the

data points are from the same distribution. In other words, it is not feasible to accept the

null hypothesis and claim that the data from both rounds are similar, despite the fact that

they originate from identical devices on the same hand. Therefore, we present statistical

values that can be interpreted for our case in Table 3.8. More specifically, we report the

Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) for the

daily values of activities between the devices. We separately calculate these metrics for

both rounds and estimate the difference between the errors. The obtained results indicate

that the highest NRMSE difference is observed for light/REM sleep, whereas the lowest is

for the total sleep duration. Our findings suggest that there is no significant discrepancy

between the errors of the identical and modified pairs of the devices.

Regarding partner apps, we verified that blocking unnecessary destinations does not

affect the correct import of Fitbit data, as the values observed in the partner apps match

those in the Fitbit cloud. We experimented with all types of fitness data that can be exported

from Fitbit for every partner application that we studied.

Overall, it appears that blocking unwanted destinations has no impact on the workflow

of the official Fitbit application and the partner apps examined in our study.

3.2.5 Blocklists Ranking

Having verified that domain-based filtering rules do not affect the core functionality of

the wearable applications, we proceeded to address Q3, which involves identifying the

third-party applications that are considered “the most undesirable.”

In Table 3.9 we rank third parties by counting the number of blocklists that include

their domains. Essentially, we identify as “the most unwanted” those entities that are

included in many blocklists designed to prevent various types of unwanted content. Based

on this method, we find Google’s DoubleClick and Amazon’s AdSystem to be the highest

hitting services, as they are present in more than 15 different filtering lists. It is worth
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# Occurrences Third Parties Collection Ublock Default
18 googleads.g.doubleclick.net UF Yes
16 pubads.g.doubleclick.net UF Yes
15 aax-eu.amazon-adsystem.com UF Yes
14 c.amazon-adsystem.com UF Yes
13 ads.mopub.com, mads.amazon-adsystem.com UF, UF No, Yes
11 z.moatads.com UF Yes
10 app-measurement.com UF No
9 api.mixpanel.com, pagead2.googleadservices.com, data.flurry.com UF, UF, F No, Yes, No
8 decide.mixpanel.com, launches.appsflyer.com, d.applovin.com UF, UF, UF No, No, No

7
api2.branch.io, api2.amplitude.com, events.mapbox.com, UF, UF, UF No, Yes, Yes
m.data.mob.com, api.exc.mob.com, api.share.mob.com, UF, UF, UF No, No, No
ms.applovin.com, rt.applovin.com, *.tapjoy.com UF, UF, UF No, No, Yes

6
settings.crashlytics.com, api.segment.io, UF, UF Yes, No

events.split.io, cdn.branch.io, c.data.mob.com UF, F, UF Yes, No, No

5
logx.optimizely.com, sdk.iad-06.braze.com, UF, UF Yes, No

crashlyticsreports-pa.googleapis.com, app.adjust.com UF, UF Yes, Yes

4
cdn.optimizely.com, firebase-settings.crashlytics.com, F, UF No, Yes

sessions.bugsnag.com, api.iterable.com UF, UF No, Yes
3 sdk.split.io, auth.split.io, beacons.gcp.gvt2.com, a4.applovin.com F, F, UF, UF No, No, Yes, No
2 graph.facebook.com F No
1 *.device.marketingcloudapis.com, streaming.split.io, sentry.io F, F, F No, No, No

Table 3.9: Ranking of the unnecessary third parties based on the number of blocklists
containing them. We indicate whether a third party is detected by a col-
lection of blocklists (U = Ublock, F = Firebog, UF = both). We also report
whether a third party is blocked by a default installation of uBlock Origin.

noting that all these domains are disabled by default in the Ublock adblocker that runs on

millions of computers worldwide. We also find that among the third parties contained in

the blocklists, only 8 were present exclusively in the Firebog collection (which is used for

more advanced filtering), while all other entities are included in both collections. As a result,

simply employing a popular adblocker may immensely help regular users in safeguarding

their privacy, while their wearable devices can still function without any issues. Overall, on

average wearable third parties are present in 7 blocklists (with a median of 7 as well).

Continuing our investigation into Q3, we examine the most effective blocklists for

preventing unwanted connections of wearable applications. The results are presented in

Table 3.10, and it comes as no surprise that the highest hitting lists are those that target

mobile tracking and advertising (top 4 in the table). Notably, the widely used and well-

maintained EasyList and EasyPrivacy lists contain only 4 unnecessary domains each. This

is likely because they are primarily designed to combat web advertising and tracking, as

opposed to the mobile ecosystem.

We further stress that the proposed approach can be set up by an average Fitbit user via

adblocking apps.
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Blocklist # Blocked Collection
bigdargon 38 Firebog

ads-and-tracking-extended 38 Firebog
adaway 36 Firebog

anudeepND 32 Firebog
VeleSila 17 Firebog

AdGuard Mobile Ads 14 Ublock
Peter Lowe’s list 14 Ublock

someonewhocares 12 Firebog
RooneyMcNibNug 10 Firebog

jdlingyu 10 Firebog
Dan Pollock’s list 10 Ublock

AdGuard Tracking Protection 10 Ublock
neohostsbasic 9 Firebog
winhelp2002 9 Firebog

Perflyst android-tracking 8 Firebog
KOR: List-KR 6 Ublock

POL list 5 Ublock
EasyPrivacy 4 Firebog Ublock

EasyList 4 Firebog Ublock

Table 3.10: Ranking of blocklists based on the number of unnecessary third parties of
wearables. Only lists that contain at least 4 different domains are included.

3.2.6 Applicability of Blocking Approach

To summarize, in Publication III, we propose a traffic filtering methodology for wearable

applications. Our solution is specifically designed to work for average users of consumer-

level wearable applications. Since all studied applications contact at least 1 unnecessary

third party, we believe the problem of disabling undesired communication for wearables to

be of utmost importance. Any contact with an undisclosed third party may leak potentially

sensitive information, making it vital to disable such communications.

Domain-based filtering. Previous studies have suggested that readily available blocklists

may not be the optimal solution for some IoT devices [94] and smart TVs [151]. The

authors of these works argue that such collections do not cover a significant number

of unnecessary third parties, leading to low recall of such entities. However, trying to

block everything raises the risk of encountering false-positive domains and can result in

improper functioning of the devices and the companion applications. In our case, we

prioritize ensuring that the apps function correctly and that the user experience for regular

consumers does not deteriorate, even if it means missing potentially blockable entities.

Furthermore, since many researchers and maintainers are investigating unwanted mobile
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connections, domain-based blocklists likely contain many more unwanted third parties for

wearables compared to other types of IoT devices that do not connect through companion

apps. Our research findings suggest that, indeed, utilizing exclusively existing filtering lists

is appropriate for fitness trackers.

Limitations. In real-world settings it is difficult to guarantee that blocking the traffic

destinations intended by the developers will never cause applications to malfunction.

Nevertheless, this issue is inherent to all content filtering approaches and involves a tradeoff

between maximizing the identification of unnecessary connections and minimizing the

potential to compromise the functionality.

3.3 What Can Regular Users Do?

While “jailbreak” apps [42, 45] are a somewhat applicable solution to mitigate attacks on

encrypted traffic (RQ1 in Chapter 2), they are not really addressing the problem discussed

in this chapter. Since custom jailbreak apps cannot be paired with any partner apps (for

one, partner apps only pull data from the official servers of manufacturers), we recommend

using the methodology outlined in this chapter.

Indeed, installing adblocker is not just extremely effective at disabling unwanted con-

nections, but also can be set up by an average wearable user as shown in Figure 3.3. For

example, the depicted adblocker AdAway5 does not require root access and supports im-

porting various blocklists via URLs.

5https://adaway.org/
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Figure 3.3: AdAway – an open-source adblocker that can be installed and operated
by users with limited knowledge of Android. The right screenshot depicts
importing 4 highest hitting blocklists for wearables as per Table 3.10 via
their corresponding URLs.



Chapter 4

Attacks on Wearable Data

This chapter introduces 2 novel attacks against data collected by consumer wearables

and evaluates their effectiveness (Section 4.3). We also review the ML approaches and

performance measurements that we utilize for the attacks (Section 4.1). Finally, we discuss

the datasets employed in our experiments. This chapter mainly builds on Publication IV,

but a preliminary publication of ours on the topic (Publication b) is also addressed.

4.1 Methods and Performance Metrics

Data-driven approaches, which involve the analysis and interpretation of data, often result

in more accurate decisions than those based on hand-crafted rules. These methods have

been widely discussed in literature.

Classification Metrics. One of the fundamental tasks of data-driven algorithms is to

perform a so-called classification of samples – assigning a class label to an example from

the domain. In order to estimate how precise the algorithm can classify data samples,

several metrics have been proposed over the years. The most fundamental one is called

Accuracy, which, for binary settings, is the ratio of the correct predictions to the total number

of predictions (as shown in Equation 4.1).

Accuracy = #of correct predictions
#of all predictions

= TP+ TN

TP+ FP+ TN+ FN
(4.1)

Where TP are True Positives, TN are True Negatives, FP are False Positives, and FN are

False Negatives.

Although Accuracy is widely used in data science, it may not always provide an accurate

measure of an algorithm’s success. For instance, in the context of TSA airport checks,

predicting everyone as “not carrying anything dangerous” could result in almost 100%
accuracy, but this approach could lead to a disaster since it would allow people with

explosives, weapons, hazardous materials, and so on, to board.

Therefore, alternative metrics, including Precision – Equation 4.2, Recall – Equation 4.3,

55
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and F1 score – Equation 4.4, have been introduced to address for imbalanced datasets and

specific tasks to solve.

Precision = TP

TP+ FP
(4.2)

Recall = TP

TP+ FN
(4.3)

F1 = 2 × Precision × Recall
Precision + Recall

(4.4)

Regression Metrics. In certain ML tasks an example from the domain must be assigned a

numerical value instead of a categorical class. These methods are referred to as regression

problems in the literature. None of the performance metrics previously described are

applicable to these problems.

The most straightforward approach to estimating the effectiveness of a regression model

is to calculate Mean Absolute Error (MAE), which is the sum of absolute errors divided

by the number of data points. However, MAE has limited practical use since it does not

penalize outlier predicted values enough.

MAE = 1
n

n∑
i=1
|yi − ŷi| (4.5)

A more balanced error estimation metric that is widely used in practice is called RMSE.

Since RMSE is proportional to the size of the squared error, it is more sensitive to the

infrequent large errors compared to MAE.

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2. (4.6)

In order to compare RMSE values calculated across multiple tasks, the value can be nor-

malized (NRMSE) to provide a dimensionless estimate of error. In our work, we normalize

RMSE with respect to difference between the maximum and the minimum values of the

true observations, as depicted in Equation 4.7. Note that RMSE can be normalized with

respect to different parameters, such as mean, standard deviation, and interquartile range

(the difference between chosen percentiles).

NRMSE = RMSE
ymax − ymin

(4.7)

For Equations 4.5-4.7, n represents the number of data points, y and ŷ are the true

(actual observation) and predicted (estimation of observation) values respectively.
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We utilize the following ML architectures for the tasks of both de-anonymizing users

and inferring their physical parameters.

Random Forest (RF). RF is an ensemble of decision trees, which are organized hierarchi-

cally in the form of a tree of queries. Typically, specific noise is added to each decision tree

during training in RF.

K-Nearest Neighbors (KNN). KNN is a non-parametric, centroid-based clustering classifier

that uses the proximity to the other nearest data points as the basis for prediction. It assigns

a group (cluster) to individual data samples.

Support Vector Machines (SVM). SVM is a ML algorithm that supports both classification

and regression analysis. It is based on finding a hyperplane in an N-dimensional space to

correctly classify as many data points as possible. This hyperplane is chosen based on the

maximum distance between data points that are closest to it – so-called support vectors.

Kernel Density Estimation (KDE). KDE is a non-parametric algorithm to smooth a distri-

bution of probability density estimation. Essentially, KDE centers and smooths a chosen

kernel function at each data point.

Deep Neural Network (DNN) approaches. Unsurprisingly, we obtained the best results

for most of our experiments with DNN approaches. Artificial Neural Networks (ANN) are

inspired by biological neural networks, such as those found in mammalian brains. ANNs

are a set of connected elements called artificial neurons that are based on the conception

of multilayer perceptron. Unlike multilayer perceptron, DNNs use continuous activation

functions, which allows differentiation with respect to parameters of the neurons – weights

and bias – enabling the training of the whole network. A DNN is an ANN with one or more

layers between the input and output layers (as shown in Figure 4.1).

A more complex model utilized in this thesis includes a Recurrent Neural Network

(RNN) - based algorithm called Long Short-term Memory networks (LSTM). LSTMs are

typically used for deeper processing of sequential data, especially that of long sequences.

While the input for regular RNNs at a certain timestamp depends not only on the current

input token but also on the hidden state from the previous timestamp, LSTMs employ

more sophisticated mechanisms to retain sequential dependencies. Thus, an additional

parameter is added to a timestamp cell – called cell state – which retains such dependencies

in parallel with the hidden state. Finally, a total of 3 gates decide at every timestamp (i)

what should be remembered from the preceding sequence, (ii) what should be learned from

the current input, and (iii) what should be passed further to the next timestamp. These

gates are:

• Forget gate quantifies how much of the information from the previous time step

should be retained or “forgotten.”

• Input gate is used to evaluate the importance of the new data provided as the input.
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Figure 4.1: Depiction of a deep neural network used for a classification task. Number of
features equals the number of neurons in the input layer N = |(I1, . . . , In)|.
Number of classes equals the number of neurons in the output layer N =
|(O1, . . . ,On), |. This example network has 1 hidden layer, which implicitly
encodes the impact of each feature. Adding hidden layers may improve
the performance of the model, but increases the required computation for
training.

• Output gate constructs the output.

An example of a LSTM cell is depicted in Figure 4.2.
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Figure 4.2: LSTM cell. X⟨t⟩, and h⟨t⟩ are the input and output at timestamp t. The
hidden and cell states, denoted by h and c, respectively, are calculated at
each timestamp and passed throughout the full sequence of inputs.

4.2 Datasets

This section summarizes the 3 open-source, publicly available wearable fitness datasets

that we employ throughout this dissertation. Since all the data were collected with Fitbit

fitness trackers (although different models of the devices), the published information

follows the same format.

Openhumans.1 The Openhumans dataset was collected by the online data sharing plat-

form Open Humans and consists of data from 40 users who shared their data for a period

ranging from 17 to 3509 days. Participant of this dataset are volunteers who have con-

nected their Fitbit accounts to share data from Fitbit activity trackers or other Fitbit devices.

Openhumans contains weight and height data of participants, allowing for the calculation

of Body Mass Index (BMI). Since gender as such is missing, we reconstruct it from the un-

ambiguous “nicknames” of the users. We discard the data of users who have unisex names

for the gender inference part of our experiment. Furthermore, we remove participants who

do not have any recorded data.

Crowd-sourced Fitbit datasets.2 The Crowd-sourced Fitbit datasets dataset (CSFD) was

generated via the Amazon Mechanical Turk crowdsourcing platform. This dataset includes

30 Fitbit users who consented to the submission of their fitness data. CSFD includes only

weight, and height and has no record of participants’ gender. We drop all the empty (0 daily

1https://www.openhumans.org/activity/fitbit-connection/
2https://zenodo.org/record/53894#.YMoUpnVKiP9

https://www.openhumans.org/activity/fitbit-connection/
https://zenodo.org/record/53894#.YMoUpnVKiP9
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steps) entries, and remove users for whom we could not compute the BMI. The number of

recorded days per user for this dataset ranges from 2 to 49 days.

PMData.3 The PMData dataset was created during a 5-months life logging experiment,

counting 16 users. It contains gender, height, weight, and age information for all partic-

ipants except one (for them only the weight data is missing). Unlike Openhumans and

CSFD, this dataset was produced during a controlled experiment, resulting in a similar

amount of data for each user. After discarding empty time series, the number of recorded

days per participant ranges from 80 to 152 days. Furthermore, PMData contains the data

from athletes, rather than regular Fitbit users. All participants had been using the Fitbit

Versa 2 wristband.

4.3 Threat Models

We investigate whether an adversary can re-identify a target user in a public wearable

dataset, only using information they infer from solely the fitness data without employing

any other personal identifiers.

De-anonymization based on physical parameters. The first threat model involves learn-

ing physical characteristics from wearable data and comparing the obtained results with

real-world information. Specifically, we aim to determine if it is possible to identify the

gender of users4 and whether they are overweight based on their BMI. We chose to use

a BMI threshold of 25 for our experiments since people with a BMI over 25 are typically

considered overweight, assuming a normal body type. We further investigate the possibility

of identifying individuals who are taller than the average male height in Europe, which

is 177.6 cm [164]. Henceforth, when we use the term “overweight,” we are referring to

individuals whose BMI is greater than 25. Similarly, when we use the terms “tall” or “taller,”

we are referring to people who are above 177.6 cm in height, and when we use the terms

“short” or “shorter,” we are referring to individuals who are below 177.6 cm. To extract the

insights on physical attributes from daily records, we train cross-dataset inference machine

learning models, using (i) daily steps, (ii) distance, and (iii) calories as features. The models

are trained using datasets described in Section 4.2. By utilizing a limited number of features,

we aim to improve the usability of inference models and visualize the obtained results. Our

research also examines the number of data samples required to correctly infer personal

attributes. After the attacker learns the physical characteristics of all users in the dataset,

they proceed to compare them with those of the targeted individual. If there is only one

user with the same set of parameters as the victim, the adversary concludes that they are

the target. However, if there are multiple users, say k, the attacker can only guess with a

3https://datasets.simula.no/pmdata/
4In this work by gender we imply the binary choice of male/female offered by Fitbit.

https://datasets.simula.no/pmdata/
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probability of 1/ k. Figure 4.3 provides more detailed information on this threat model.

User 1 User 2 . . . User N

D
ay

1 steps 17873 9243 . . . 14306
distance 14424 6136 . . . 10343
calories 4007 1999 . . . 3703

D
ay

2 steps 13118 10246 . . . 13235
distance 10584 7109 . . . 9646
calories 3529 2095 . . . 3381

. . . . . . . . . . . . . . . . . .

D
ay

T steps 14312 11489 . . . 9037
distance 11460 7631 . . . 6546
calories 3747 2223 . . . 3324

Intel on target!
1. Target is in
the dataset

2.
Male
≈ 161 cm
≈ 71 kg

Fitness dataset

Adversary
Target

Figure 4.3: In the first threat model we consider, the adversary aims to link a person
known to be in an aggregated dataset back to their fitness records. Assum-
ing that the attacker has learned a basic profile of the victim, they infer
physical attributes for all the users based on the daily fitness data, and
chooses the most matching individual.

De-anonymization based on daily routine. In the second threat model, the adversary

aims to de-anonymize users by analyzing their daily activity patterns. This approach differs

from the first threat model, as the attacker does not need to know the physical parameters

of the target in advance. However, the adversary must have access to external samples

of the target’s data (which are not part of the anonymized dataset) to re-identify them.

These extra samples may be obtained through the target’s medical records or through

FTSN. For Fitbit, for example, it is possible to follow the activity progress of friends in the

dedicated app. Furthermore, a significant number of Fitbit users belong to so-called fitness

communities that allow sharing fitness data online. In this case, we also train machine

learning inference models, where the final prediction indicates the person who produced

the input data sample, effectively de-anonymizing them. For these models the features

are wearable data time series of length 24, where each entry represents an hourly tuple

(from 00:00 to 23:00) that contains (i) the number of steps taken, (ii) distance covered, (iii)

calories burned, and (iv) average heart rate for that hour. These data are combined with

information about the day of the week, distinguishing between weekdays and weekends

to account for potential changes in routine on Saturdays and Sundays. Our threat models

differ significantly, with the first one identifying users based on their identity, and the

second one categorizing them based on their activities. The differences between the two

are illustrated in Figure 4.4, emphasizing the unique aspects of our second threat model.
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User 1 User 2 . . . User N

D
ay

1

. . .

D
ay

2

. . .
...

...
...

...

D
ay

T

. . .

Intel on target!
1. Target is in
the dataset

2.

Fitness dataset

Adversary
Target

Figure 4.4: In our second threat model, instead of knowing personal attributes of the
target, the attacker is in possession of additional victim’s fitness samples.
E.g., such extra data might be obtainable from social network posts (Fitbit
communities). Time series are represented as 1-D for convenience, but are
actually 4-D.

4.4 Setup

In this section, we describe the inference models, the hyperparameters used, and the data

utilized for both identity- and routine-based inference.

4.4.1 Identity-based inference

We employ several well-known machine learning approaches to infer physical parameters

of users. These approaches leverage training data to learn a map that takes the aforemen-

tioned features as input and outputs a binary answer (true or false) in response to queries

about personal attributes.

In particular, the three binary maps that we learn are:

1. qgender: “Is an individual a male?”

2. qBMI: “Is the BMI of an individual above 25?”

3. qheight: “Does the height of an individual exceed 177.6 cm?”

We utilize the following machine learning approaches to learn the maps:

• DNN. We train a 2-layer fully connected deep network with early stopping. We utilize

the following hyperparameters for training:
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– Architecture: 120 hidden neurons + ReLU; 60 hidden neurons + ReLU; 2 output

neurons + Softmax.

– Loss: binary cross-entropy.

– Batch size: 64.

– Optimizer: Adam, learning rate = 0.001.

• SVM. We utilize the RBF kernel with penalty coefficient C = 1 and smoothing param-

eter γ = 1/ (number of features × variance of the data).

• KNN. We fit the training data with k = 5.

User-wise Prediction. All the models that we present throughout this chapter infer binary

information from a single daily sample. That is, they are all maps q : X → {0, 1}, whereX is

the domain of the features (i.e., all the possible combinations of steps, calories and distance)

and {0, 1} is the set of possible answers to a binary query (0 if the answer is negative, 1 if

it is positive). However, a user producing a time series of daily samples x = (x(1), . . . , x(T))
provides T samples on which a map can be applied. Also, since our models are not 100%
accurate sample-wise, a map q will likely provide different predictions for different samples

of the same users. A final prediction r̂ for a time series x is made according to a majority

rule, i.e.,

r̂ = arg max
r∈{0,1}

∣∣∣∣{x(t) : q(x(t)) = r

}∣∣∣∣ (4.8)

In a binary-decision setting, this is equivalent to the simpler criterion

r̂ =
1, if 1

T

∑
T

t=1 q̂(x(t)) > 1
2

0, otherwise
(4.9)

meaning that if the average of the binary answers is above 50%, we conclude that the most

likely answer is positive, otherwise we conclude that it is negative.

Datasets in use. For gender inference – since the CSFD dataset does not have gender as

a ground truth parameter – we utilize only PMData and Openhumans: Openhumans for

training and PMData for testing. For the overweight, and tall people detection we train

our models on the combination of the Openhumans and CSFD datasets, and test them on

PMData.

Training procedure. We employ a 80/20 training/validation split for all the inference

models. We apply 5-fold cross-validation when training, and select the best performing

model.
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4.4.2 Routine-based inference

We train an LSTM neural network that considers the day of the week as an extra categorical

input, differentiating between weekdays and weekends. To achieve this, two bits – 01 for

weekdays and 10 for weekends – are combined with the LSTM output, as shown in Figure

4.5. During training, we use the following hyperparameters:

• Architecture: as in Figure 4.5.

• Loss: categorical cross-entropy.

• Batch size: 64.

• Optimizer: Adam, learning rate = 0.001.
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Figure 4.5: LSTM-based architecture for de-anonymization based on activity routine.
Input consists of 24 tuples of S: Steps, D: Distance, C: Calories, and HR:
Heart Rate that are measured every hour. Two bits are concatenated to
the output of the LSTM layer to model weekdays: Monday to Friday (10)
or weekends: Saturday and Sunday (01). The output corresponds to the
probability of the input routine being produced by every user in the dataset.

Datasets in use. Since PMData has the most even spread of samples between all the users

and a suitable number of samples for each user, we choose to use it for re-identifying

individuals based on their daily routine.

Training procedure. We opt for an 80/ 20 split between training and validation data.

Additionally, we apply 5-fold stratified cross-validation, selecting the best model.
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4.5 Deanonymization Based on Physical Parameters

For the first threat model the corresponding de-anonymization attack goes as follows. We

assume an aggregated dataset, consisting ofNusers θ1, . . . , θN, whose personal information

is unknown. Each user is identified by a pseudonym, which distinguishes their time series

of daily records from the others. The objective of the attacker within this threat model is

to find a target user θ∗ that they know to be among θ1, . . . , θN and for whom the gender,

and approximate values of height and BMI are known. If the user is identified, the attacker

may learn some information based on their daily steps, calories and distance, e.g., exercise

routines, whether they went to the office on a given day, etc. To do so, the attacker applies

the three inference models to each of the N time series x1, . . . , xN present in the dataset.

Before any prediction is made, all the users belong to a same anonymity group of size N,

meaning that an adversary can guess the correct user with probability 1/N. The adversary

leverages the prediction models to answer three binary queries (qgender, qBMI, qheight), where

each query splits a group into 2 subgroups. Therefore, 3 queries divide the dataset into

23 = 8 anonymity groups. Depending on the queries, and on the population of the dataset,

the subgroups may vary in size. A lower bound to the size of the largest subgroup is given

by ⌈N/ 8⌉, implying that if N is greater than 8, it is impossible to identify all the users.

Nonetheless, if the target belongs to a minority (e.g., a female in a dataset with prevalence

of male users), it might be easy for an adversary to identify them.

4.6 Inference of Physical Parameters

This section summarizes the obtained results, and illustrates the most interesting findings.

Tables 4.1, 4.2, and 4.3 depict the inference results for gender, overweight and height

detection respectively. In these tables, we present the accuracy achieved by our models on

the validation split and the PMData test split, which was not observed during training at

any point. We also report the count of users correctly classified in the test split. A user is

considered accurately classified if the model can correctly identify over 50% of the samples

for that individual, as per Equation 4.9. This metric is crucial as it demonstrates the number

of users for whom we can learn their physical parameters. Additionally, we report other

metrics of interest, such as Recall, Precision, and F1 score for each of the label for all the

problems.

It is evident that all the models perform considerably better on the task of gender

detection, achieving higher user and sample classification accuracies. For the task of gender

inference DNN outperforms all other models across all the observed metrics, reaching the

perfect 100% accuracy, and classifying all 16 users correctly. SVM and KNN also perform

well, and are both able to classify 14/ 16 users correctly. However, for the task of profiling

overweight people the models do not reach similar higher accuracies. Nevertheless, DNN
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Model Val accuracy Test accuracy Labels F1 Users User accuracy

DNN 0.925 0.925
Male 0.96 13/13

1.000
Female 0.78 3/3

KNN 0.91 0.853
Male 0.91 12/13

0.875
Female 0.63 2/3

SVM 0.826 0.901
Male 0.95 12/13

0.875
Female 0.68 2/3

Table 4.1: Gender inference. Test accuracy is computed based on all the samples that
have been classified, whereas user accuracy indicates whether most of the
data samples for each user in the test have been classified accurately.

Model Val accuracy Test accuracy Labels F1 Users User accuracy

DNN 0.81 0.731
Overweight 0.75 7/7

1.000
not Overweight 0.71 8/8

KNN 0.817 0.6
Overweight 0.63 7/7

0.667
not Overweight 0.54 3/8

SVM 0.689 0.732
Overweight 0.76 7/7

0.867
not Overweight 0.67 6/8

Table 4.2: Detection of overweight users. Similarly to gender inference, the most
relevant metric is the user accuracy.

Model Val accuracy Test accuracy Labels F1 Users User accuracy

DNN 0.968 0.821
Tall 0.88 12/12

0.938
Short 0.66 3/4

KNN 0.939 0.654
Tall 0.74 10/12

0.813
Short 0.49 3/4

SVM 0.839 0.655
Tall 0.74 9/12

0.688
Short 0.47 2/4

Table 4.3: Detection of users beyond the height threshold. Height inference models
are unable to attain perfect user classification accuracy, which sets them
apart from earlier binary queries.

is still able to classify all 15 users correctly, despite having only 73% accuracy of identifying

the individual data points. Relatively low sample accuracy might be attributed to the fact

that many users from the PMData dataset are very close to the 25 BMI margin, as depicted

in Figure 4.6. As for the non-neural network models, KNN performs better than other

models on the validation split, but struggles with classifying previously unseen users. SVM
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is comparable to DNN on the test dataset when classifying separate data points, but is

slightly worse at identifying the actual users.

Regarding detection of tall people, the best results are obtained with the DNN model

likewise, achieving 93.8% accuracy. However, for this problem the best model does not

attain the perfect classification accuracy, misclassifying one user in the test collection. Tra-

ditional machine learning approaches perform reasonable on the validation test, achieving

81.3% user accuracy for KNN, and 68.8% for SVM. Similarly to overweight detection, for

this dataset height is also a non-binary parameter. Hence, it is significantly more challeng-

ing to classify users whose physiological parameters are close to the classification threshold,

as can be observed in Figure 4.6. In general, it is clear that both the amount and quality of

the data enables the precise predictions of physiological parameters for users who have not

been previously seen during training.
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Figure 4.6: BMI of users in PMData (left) and their height (right). For the test set at
least 4 users are within less than “1 BMI” of the overweight threshold. Only
4 users (including females) are shorter than the average male height in
Europe.

4.6.1 Inference Visualization

As we only use three attributes (steps, distance, and calories) in our models, we can create

3D graphs that show the decision regions for each binary query, indicating the predicted

labels for various combinations of these attributes. To make these regions more visible, we

evaluate rectangular grids of steps and distance for different fixed calories values. This way,

we obtain the “layered” regions that can be observed in Figure 4.7 for the gender model,

Figure 4.8 for the BMI model, and Figure 4.9 for the height model, where the layers are

evaluated every 250 calories. The axis for each feature ranges from 0 to mean(feature) +
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Figure 4.7: Gender inference decision regions. Red color indicates the male areas; blue
color corresponds to females. Males tend to burn more calories per same
activity, and have a higher ratio of distance to steps.

2 × stddev(feature).

The Harris-Benedict (HB) equations provide two separate empirical formulas for esti-

mating the daily basal calories burned by females and males [57], which refer to the number

of calories required for basic metabolic functions without exercise. Figure 4.10 depicts the

basal calories of all the users in the test PMData dataset. It shows that the three females in
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Figure 4.8: Decision regions for the detection of overweight people. Red color corre-
sponds to the overweight predictions; blue color indicates non-overweight
areas. Overweight people achieve the same number of daily calories with
less daily activity.

the dataset burn significantly fewer calories compared to the males. The gender inference

model (Figure 4.7) also conforms to this pattern, with blue points representing females and

red points representing males. Indeed, very few male samples fall below the 1500 calorie

hyperplane, which is in agreement with the HB equations. Furthermore, it can be observed
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Figure 4.9: Decision regions for detecting people above 177.6 cm. Red regions cor-
respond to taller people, while blue areas represent shorter users. Taller
people have bigger stride, and rarely burn less than 2000 calories daily.

that areas with the same number of calories, but a higher ratio of steps to distance, generally

correspond to female users. This may suggest that females, being typically lighter, need to

take more steps and travel a longer distance to burn the same number of calories as males.

Regarding the detection of overweight users, the decision regions for the inference

model are depicted in Figure 4.8. We use the red color to illustrate overweight people



4.6. Inference of Physical Parameters 71

A B C D E F G H I J K L M N P

1,400

1,600

1,800

2,000

2,200

2,400

User

B
as

al
ca

lo
ri

es

Male Female, Fitbit
Male Female, Harris-Benedict

Figure 4.10: Depiction of the Harris-Benedict equations for the studied test dataset
PMData. Blue points correspond to the basal calories as recorded in the
dataset, while red calories are calculated from the equation. It appears that
the estimation of basal calories for Fitbit closely follows HB. Since the users
4, 10, and 11 are females, no males appear to burn less than 1600 calories
per day (even when they take no steps).

and the blue color to represent non-overweight users. It can be observed that, for the

same number of burned calories, non-overweight people tend to take more steps/distance.

This can be explained by the fact that heavier people burn more calories according to

the HB equations, and as a result, they have to do less exercise to achieve the same daily

number of calories. Furthermore, the image shows that the reason the labels are not almost

perfectly separated by a single hyperplane is due to a number of red (overweight) outliers

for daily calories that exceed 3500. We believe that this is because there are not enough

non-overweight users in the training data who consistently burned that many calories.

The decision regions for detecting tall people are illustrated in Figure 4.9. As the chosen

threshold of 177.6 cm represents the average height of males in Europe, it is expected for

them to be outnumbered by other groups, such as shorter males and females who are below

177.6 cm. Hence, the volume of shorter people significantly exceeds the areas of their taller

counterparts. The image suggests that taller people tend to cover more distance with the

same number of daily steps, which appears to be appropriate. Furthermore, as taller people

are expected to weigh more and therefore burn more calories, the inference model has

estimated that they rarely burn less than 2000 calories per day, even with minimal daily

activity. This assumption is heavily reinforced by empirical data.
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4.6.2 Incomplete Records Deanonymization

As expected, the accuracy of revealing personal attributes depends on the number of

available fitness samples per user. In the previous analyses, the adversary utilizes all the

data per user to perform the de-anonymization attack. In practice, however, users in a

wearable dataset may have as little as 10 daily fitness records. We set out to investigate

whether our attack still performs well in case of limited data. To do so, we run a 1000-

round Monte Carlo simulation for different number of samples per user. We still utilize the

PMData dataset for this experiment. The experimental pipeline goes as follows:

• We restrict the number of fitness samples per user to the interval I = {1, . . . , T̄}, where

T̄ = min
i=1,...,N

Ti = 80 (4.10)

is the number of records for the user with the least amount of data.

• We randomly draw T samples per user for each value of T ∈ I, and predict them. We

utilize the majority rule on those T predictions to establish the final estimated value

for that user as in Equation 4.9 (i.e. choose the most frequent prediction for that user).

We repeat the procedure for n = 1000 rounds and average the obtained results.

• We repeat the above process for every user in the dataset.

The obtained results are illustrated in the Figures 4.11. The classification results for the

individual labels are depicted in red and blue, while the combined (total) accuracies are

represented by the black lines.

Moreover, it appears that, overall, increasing the number of samples per user leads to

higher user classification accuracies, as expected. Furthermore, it seems that to achieve

higher identification accuracies for the minority labels of the test dataset (females, non-

overweight, and short), more samples for such users are required. Such a tendency holds

across all three personal attribute inferences, and can be explained by the fact that the test

dataset consists of athletes who tend to produce time series containing more daily activity

and, hence, more steps taken, calories burned, etc. Nevertheless, for all attributes except

height, the identification accuracy eventually reaches 100%.

The obtained figures do not appear smooth, with final accuracies slightly declining for

every even value of samples per user. These spikes are caused by our approach to defining

a successful classification of users. That is, we count a user to be identified correctly only if

strictly more than half of their samples are accurately classified. Thus, ties between correct

and incorrect predictions are interpreted as a misclassification. As ties are impossible for

odd-numbered sample counts, the accuracy does not decline in such cases.
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Figure 4.11: Accuracy of predicting gender (top), overweight users (middle), and height
(bottom) with limited samples per user .
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Figure 4.12: Comparison between theoretical analysis and Monte Carlo simulation for
gender prediction. The empirical results show a strong correlation with the
theoretical estimation.

Theoretical analysis. We show that the behavior of the incomplete-samples curves is

correct by comparing them with a theoretical analysis of the majority rule. The objective

of this analysis is to estimate the probability for an adversary to correctly predict a binary

characteristic using the majority rule, given a time series of T samples. We assume that

for user θi the predictions are independent and have all probability pi. The value of pi is

estimated as the fraction of samples from that user that are correctly classified. However,

this assumption does not hold in our Monte Carlo simulation, since we have a finite number

of samples per user, and drawing a sample changes the distribution of the remaining ones.

Nonetheless, it still provides a good approximation.

For user θi, the probability of correctly predicting the entire time series is the probability

of correctly predicting more than half of the samples. This probability is given by

T∑
t=⌊T/ 2+1⌋

(
T

t

)
p
k
i (1 − pi)T−t (4.11)

that is the complementary cumulative distribution of a binomial random variable com-

puted at T/ 2, i.e., Pr(Bin(T, pi) > T/ 2). The overall accuracy is calculated by averaging the

accuracy for all users, assuming they are chosen with equal probability. Figure 4.12 shows a

comparison between curve (as in Equation 4.11) and the empirical results obtained from

the Monte Carlo simulation for gender.
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4.6.3 Utilizing Additional Fitness Features.

One may wonder what is the reason behind not using more features for inference of

personal attributes from fitness data. Indeed, all three datasets that are employed in this

work share a number of additional characteristics, such as heart rate, sleep, and 4 types

of daily activity minutes, ranging from very active to sedentary. While the daily activity

level might not be directly correlated to the first two of the above features, it can be clearly

linked to the latter ones. The primary reason for not utilizing them is to make our inference

models more adaptive and usable, as mentioned earlier, by focusing on the most relevant

features for the task. Furthermore, most of the online posts that share fitness data do

not contain any information other than triplets of steps, distance, and calories. In fact,

even when the users share such information, it is never provided as 4 separate activity

minutes features. Regarding daily minutes, shareable data consists of either the sum of

“very” and “moderately” active minutes or is represented by so-called “zone” minutes, which

are calculated based on specific rules5. Moreover, while these features are common to all

data collections, it is worth noting that some participants have no records of daily activity

minutes, making this aspect of the data unusable.

In this section, we enrich our inference models by incorporating additional input fea-

tures and discuss the resulting outcomes. However, we emphasize that our primary findings

pertain to the simpler models described earlier. Table 4.4 illustrates the impact of adding

features that are consistent across all studied datasets on validation, test, and user accura-

cies.

We train the neural network models using the same architecture and incorporating

three additional sets of features: (i) all three types of active minutes, (ii) their sum, and

(iii) the sum of very and moderately active minutes. The obtained results suggest that

adding more features leads to higher validation accuracies. However, this trend is not

consistently observed for the test data, possibly because the users in PMData tend to be

more active, as depicted in Figure 4.13. There, very active minutes typically correspond to

intense workouts, while lightly active minutes are recorded during regular walks.

It appears that the optimal feature combination for the BMI and height inference does

not include any types of daily activity minutes, as the models fail to generalize well on

unseen users when such features are included.

5https://help.fitbit.com/articles/en_US/Help_article/1379.htm

https://help.fitbit.com/articles/en_US/Help_article/1379.htm
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4.7 User Deanonymization

We use the PMData benchmark dataset to establish the number of individuals who can

be uniquely re-identified. PMData contains ground truth information on gender, height,

and BMI for all the users except participant ‘O’, whose BMI logs are unavailable. Table

4.5 summarizes the personal characteristics of the 16 users in the dataset. However, we

exclude participant ‘O’ due to missing information and apply our method to the remaining

15 users.

The attacker leverages the queries previously introduced (q̂gender, q̂height and q̂bmi) to

split the dataset population in buckets and detect outlier participants. Assuming that

the adversary gets the correct results for all queries, they can de-anonymize the minority

users in PMData. The results are presented in Table 4.6. For every possible combination

of queries (parameters), we display the number of users (k) who share such parameters.

While users who share their buckets with other participants are somewhat safe, as the

probability of their re-identification is now 1/ k (which is still higher than a random guess),

some individuals may still be uniquely de-anonymized. For example, participant J is the

only one who matches the criteria of being a tall non-overweight female. Overall, the

attacker is able to de-anonymize 3 minority individuals with 100% probability based on

their physical attributes in PMData.

ID Name Gender Height BMI
p01 A male 195 26.3
p02 B male 180 28.4
p03 C male 184 24.2
p04 D female 163 22.2
p05 E male 176 32.6
p06 F male 179 29.5
p07 G male 177 21.4
p08 H male 186 25.1
p09 I male 180 28.9
p10 J female 179 22.2
p11 K female 171 24.9
p12 L male 178 21.7
p13 M male 183 25.7
p14 N male 181 21.9
p15 O male 180 –
p16 P male 182 19.3

Table 4.5:
Physical parameters of the users in the
PMData dataset. Users are named with
alphabet letters for more convenient re-
ferencing.

User q̂gender q̂height q̂bmi #

D3

male > 177.6 > 25 6
male > 177.6 < 25 4
female < 177.6 < 25 2

E male < 177.6 > 25 1
G male < 177.6 < 25 1
J female > 177.6 < 25 1

Table 4.6:
Number (#) of users, sharing sets of physi-
cal parameters in the PMData dataset.
Those who are re-identified with probabili-
ty 1 are reported and highlighted.
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4.8 De-anonymization Based on Daily Routine

In a preliminary work of ours [96] (Publication b) we establish that users in a wearable

dataset can be re-identified based on the combination of daily calories and steps. By

utilizing classical ML techniques, including KNN, RF, SVM, and KDE, we were able to

achieve ≈ 80% accuracy (Figure 4.14). Although this is a decent number, we set to in-

vestigate how adding more features and increasing their granularity would impact user

de-anonymization.
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Figure 4.14: Re-identification results for PMData obtained in our previous works with
simpler models and less granular data: daily snippets of steps and calories.

By utilizing the architecture from Figure 4.5, we are able to achieve a 93.5% de-

anonymization accuracy for the full 16-user PMData. Again, we utilize time series of

hourly (i) steps, (ii) distance, (iii) calories, and (iV) average hourly heart rate as features.

Furthermore, in Figure 4.15 we report the re-identification results for fewer participants

and compare the trend with that of our previous work (Publication b). We run a Monte

Carlo simulation, where for every number of users N, ranging from 2 to 15, we perform 10
rounds of the experiment. We randomly select Nparticipants from PMData, and train the

inference model. Afterwards, we average the results for each value of N to obtain a final

accuracy estimation. Based on the extrapolation of our findings, it can be assumed that

de-anonymization attacks may still be successful even with larger datasets.
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Figure 4.15: De-anonymization of users in the PMData dataset based on daily activity
patterns. The LSTM-based model trained on hourly data heavily outper-
forms the highest performing previous model (KNN with k = 1) with the
best possible extrapolation for N = 10, 11, . . . , 16.

4.9 What Can regular Users Do?

Since the adversary infers the insights directly from wearable data, traditional anonymiza-

tion methods that sanitize the direct and indirect identifiers, such as k-anonymity, are not

effective against the proposed attacks. A number of recent works [18, 92, 93] incorporated

adversarial learning approaches to dynamically sanitize the raw sensor data collected by

accelerometer and gyroscope. While the proposed approaches were effective at protecting

against inference of physical parameters, the studies were conducted with very limited data

and did not evaluate generalization of their models.

We provide detailed guidelines for privacy-preserving wearable data publishing in the

next chapter (Chapter 5). In summary, users can choose to opt-out of fitness studies to

avoid potential privacy breaches. They can also share their data under pseudonyms when

possible and disclose only the most relevant fitness information.



Chapter 5

Privacy-preserving Release of Wear-
able Data

This chapter suggests defense principles that both regular wearable users and wearable

data controllers may adhere to. Summarizing the privacy leaks of wearable data discovered

in Chapter 4, we outline practical defense strategies in Section 5.2 We present the wearable

dataset collected within our research consortium in Section 5.3. This chapter is mainly

based on Publications V-VI in relation to the attack vectors described in Publication IV.

5.1 Background

Data controllers often need to share personal data of private individuals with third parties or

even make parts of it public. However, directly disclosing personal data of users can result

in ethical concerns, breaches of internal privacy policies, and violations of privacy laws

that have been recently enacted. Such laws include the General Data Protection Regulation

(GDPR) [27], which came into effect on May 25, 2018, and the California Consumer Privacy

Act (CCPA) [105], which went into effect on January 1, 2020. CCPA was amended by the

California Privacy Rights Act (CPRA), commonly referred to as CCPA 2.0, on January 1,

2023. These privacy laws guarantee consumers more control over how their personal

information is being used. In particular, user may:

• Opt out of the sale for their personal data (CCPA).

• Request their data to be deleted, commonly known as the right-to-be-forgotten (CCPA

and GDPR).

• Find out what data are collected on them, the purpose of the collection, and whether

these data are shared (all CCPA and GDPR).

• Exercise their right to privacy and not be discriminated against for that (CCPA and

GDPR).

81
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• Obtain the collected information in a human-readable, portable format and be able

to transmit these data elsewhere without obstruction (CCPA and GDPR).

• Object to any decision made without human interference based on their data (GDPR).

Overall, data protection laws have greatly limited the ability of data controllers to disclose

personal data of individuals.

Hence, personal information of users cannot be shared “as is,” and data controllers

need to find other ways. Typically, the information held by data controllers contains both

sensitive data of individuals and information that identifies them. These identifiers can be

divided into direct ones, which uniquely identify the individual, such as names, telephone

numbers, email addresses, Social Security numbers, etc., and indirect or so-called quasi-

identifiers, such as height, weight, eye color, body composition, etc. The naive way to

“anonymize” a dataset is to remove all direct identifiers that uniquely identify participants.

This process is known as pseudonymization, where all the real names are replaced with

pseudonyms. In Figure 5.1 we depict a “toy” example of such a dataset with various types

of personal data, including pseudonym (UserID), quasi-identifiers (gender, age, race),

sensitive information (vaccine status), and non-sensitive data (number of steps). Note

that what may seem like non-important data at first glance may lead to de-anonymization

of users. For example, a well-known study by Sweeney established more than 50% of

the US population to be uniquely identifiable by only (i) place of birth, (ii) gender, and

(iii) date of birth, using the 1990 US Census summary data [142]. Moreover, researches

found that a person may be re-identified among 1.5 million individuals based on hourly

cellular data, including location, and corresponding carrier antenna information [31]. In

particular, only 4 spatio-temporal data points are enough to uniquely identify 95% of users.

In another study, De et al. showed that 90% of users may be re-identified based on merely

4 spatio-temporal samples of credit card metadata [32].

Data de-identification has been a cornerstone procedure for releasing personal data

for the past few decades. De-identification is the process of masking the data to separate

them from the individual who is associated with the personal records (data subject). De-

identification of already collected information can be achieved through (i) generalizing and

(ii) randomizing. In the next sections we review staple approaches for data de-identification

that are mentioned throughout our works.

5.1.1 Anonymity

The privacy of the pseudonymized dataset (Figure 5.1) can be easily compromised, if an

adversary has access to auxiliary records of a person/persons where quasi-identifiers are

present. Naturally, such de-anonymization works only if a target is known to be included in

both the original and auxiliary datasets.
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UserID Gender Age Race Vaccine Steps

1 M 29 White No 8421

2 F 31 Asian Yes 4256

3 F 32 White Yes 4311

4 M 25 Black No 8848
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Figure 5.1: Pseudonymized dataset. In this example, if quasi-identifiers of individuals
are known to the attacker (e.g., via auxiliary knowledge) all of them can be
re-identified. Note that despite data being marked as “non-sensitive,” they
may still lead to de-anonymization in some cases. In fact, the steps data
may reveal significant insights on users.

k-anonymity. One of the most know techniques to prevent re-identification based on

auxiliary data is known as k-anonymity [124, 143]. k-anonymization is a data generalization

technique that can be applied once direct identifiers have been suppressed. A dataset is

considered to be k-anonymous if information on each participant is indistinguishable from

that of at least k − 1 other people in the dataset. We apply k-anonymity to the dataset from

Figure 5.1 in Figure 5.2. Even if an adversary has access to auxiliary university records of

dataset participants, since every set of quasi-identifiers is indistinguishable from another

record in the table, the dataset is 2-anonymous. The modified dataset contains 2 anonymity

sets (equivalence classes).

However, assuming that sensitive attributes for all users in the anonymity set have

the same value, the adversary can learn this attribute without fully de-anonymizing the

individual. For example, in Figure 5.2, Lea belongs to the equivalence class where all people

have been vaccinated – this information can be learned, regardless of which particular

record in the anonymity set corresponds to her.
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UserID Gender Age Race Vaccine Steps

1 M 25-32 X No 8421

2 F 25-32 X Yes 4256

3 F 25-32 X Yes 4311

4 M 25-32 X No 8848

Equivalence classes

2-anonymous Dataset

Edu. Gender Age Race Name

M.S M 29 White Andy

Ph.D. F 31 Asian Lea

Ph.D F 32 White Eva

B.S M 25 Black Tom

Auxiliary University Records

Figure 5.2: 2-anonymous dataset that does not satisfy l-diversity and t-closeness. Ev-
ery set of quasi-identifiers can be confused with that of at least another user.
Nevertheless, if there is not enough diversity in the sensitive attributes per
anonymity set, the adversary is able to learn the vaccine status of the target.
Assuming that “Steps” is also a sensitive attribute, the attacker can learn
that Lea is relatively inactive (< 5,000 steps), which means that t-closeness
is not satisfied.
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l-diversity. An extension of k-anonymity, l-diversity [89] discusses the potential limitations

of the former, addressing the scenarios when there is lack of diversity for the sensitive

attributes. l-diversity enforces every anonymity set to contain at least l unique values for

the sensitive attribute. A dataset satisfies l-diversity only if every anonymity set is l-diverse.

In our example, if every equivalence class is changed to contain both unvaccinated and

vaccinated individuals, the dataset becomes 2-diverse.

However, even a dataset that is both k-anonymous and l-diverse may leak sensitive

insights. For example, assume that “Steps” becomes a sensitive attribute for the example

dataset in Figure 5.1. Now, despite the modified dataset being k-anonymous and l-diverse

with respect to steps, the adversary may still be able to extract the possible step range for

Lea. With only 4,256 − 4,311 daily steps, she is well below the normal activity levels.

t-closeness. l-diversity was further extended by t-closeness [81]. This approach ensures

that the distance between the distribution of a sensitive attribute in the equivalence class

and in the whole dataset does not exceed t – a settable privacy parameter. A dataset satisfies

t-closeness if every anonymity sets have t-closeness.

5.1.2 Differential Privacy

For cases when some statistics on the users is released instead of the full dataset, different

anonymization techniques need to be applied. If the data controller “honestly” discloses

statistical information, the privacy of users may be compromised. For example, if the

dataset in Figure 5.1 is controlled by a company, who releases the vaccination data on the

employees. Assume that a person known to the adversary (Tom) is furloughed and the new

data on vaccination is released (Figure 5.3). In that event, by comparing the outputs for

both versions of the dataset, the attacker could learn that Tom is unvaccinated.

Differential privacy (global). To insure the safe release of statistical information on users

Differential Privacy (DP) may be applied. DP is a well-established randomization technique

for releasing sensitive information [35, 36], once direct identifiers have been suppressed.

The main idea of the approach is based on introducing noise to the data to ensure that none

of the users individually has a significant impact on the whole dataset. If DP is achieved, the

removal or addition of an extra user would not change the result of the queries applied to

data beyond a fixed εcoefficient. DP, as such, is independent of quasi-identifiers in the data

or any auxiliary knowledge possessed by the adversary, since the anonymized dataset is not

being released. Instead, the data controller provides a response to the statistical queries

about the data.

More formally, DP can be defined as follows: if a DP algorithmA is the function applied

by the data controller when disclosing information, and for any pair of Datasets D1,D2 ∈ D

– where D is the original dataset, and D1,D2 differ by at most a single user – the output of
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the algorithm A should satisfy

Pr[A(D1) ∈ O] ≤ e
εPr[A(D2) ∈ O], ∀O ⊆ Range(A). (5.1)

The parameter ε is called the privacy budget and regulates the amount of noise been

applied to the output of the query.

Name Vaccine Steps

Andy No 8421

Lea Yes 4256

Eva Yes 4311

Tom No 8848

Query: How many people are
unvaccinated?
Output: 2

Output DP: 2 ± noise ≈ 1.5

Name Vaccine Steps

Andy No 8421

Lea Yes 4256

Eva Yes 4311

Attacker knows Tom is removed
(he withdrew consent/recovered)

Query: How many people are
unvaccinated?
Output: 1

Output DP: 1 ± noise ≈ 1.5

Hospital Records (June 2021) Hospital Records (July 2021)

Figure 5.3: The dataset is held by a trusted entity who reports statistical queries about
the data. Assuming the adversary knows that an individual is no longer
present in the dataset, if the data reported as is, the attacker can infer their
vaccination status. When DP is applied, noisy outputs become indistin-
guishable, preserving the privacy of the participants.

In Figure 5.3 we show how adding noise to the output of the queries may hide the

absence of a user in the dataset. DP is heavily applied in practice, e.g., the US Census

Bureau adopted differential privacy for the latest 2020 Census [1].

5.2 Privacy-preserving Wearable Data Publishing

Since activity trackers are constantly worn and monitor various parameters of users, they

collect vast amounts of fitness data. In the previous chapter, we demonstrated that the
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simple metrics of “just” daily steps, calories, and sleep duration captured by wearables

could be used by a smart adversary to compromise the privacy of users. At present, data

collected by wearable devices tend to become available to the general public. There is, thus,

a need to ensure that if such data are released, the potential privacy exposure is negligible.

5.2.1 Types of Wearable Data Release

Dataset release. The uptake of wearables has proven them to be valuable tools in medical

studies [56, 114], and activity research [44, 60, 108, 145]. In the course of such experiments

researches may fully or partially release the collected data to the community. Typically,

fitness wearable information is comprised into the so-called lifelogging datasets, where

participants wear fitness trackers for a fixed number of days. The term lifelog can be

interpreted as a recording of one’s live. While lifelogs originated in the form of diaries [148],

for the past few decades, wearable devices in general and fitness trackers in particular

have been prevalent. Typically, lifelogging studies aim to collect as many various types

of data as possible. In addition to regular wearable data, researchers may collect other

information, including mood and stress questionnaires, injuries reports, food intake, and

many more [145]. It is worth mentioning that wearables are also starting to be used in

various randomized trials with activity intervention, where researchers collect metrics on 2
distinct user groups [15, 74, 78].

Social network release. However, disclosing wearable fitness data in “bulks” (i.e., datasets

of multiple users) is not the only way to share them. In fact, such activity information

may be directly provided by the users who produced it. For example, individual data

samples can be shared with the world in many FTSN, such as Strava, Fitbit, etc. Given

the unprecedented increase in usage of these fitness applications during the COVID-19

pandemic [139], many more users started sharing their wearable data online through

FTSNs. These platforms are mainly used by activity enthusiasts to receive feedback on

their progress and encouragement from like-minded peers. Another popular platform for

individuals to share their activity data is through thematic fitness communities, where a

strong atmosphere of comradery and friendship is preserved. For example, Fitbit maintains

a wide range of communities for various demographic groups, including senior users,

pregnant women, and healthy diet followers, etc. Naturally, since thousands of daily

snippets for fitness data are posted there, it may be a perfect place for adversaries to harvest

data and target users. Indeed, a number of previous works have identified severe privacy

leaks in “conventional” social networks [20, 49, 50, 59, 83, 144, 162, 163]. These papers have

utilized various features, including publicly available data, group membership, and “likes”

to identify various undisclosed attributes. Furthermore, more recent works have managed

to compromise privacy of specifically FTSNs. In particular, Dhondt et al. and Hassan et al.

managed to breach the route anonymization algorithm of the Strava FTSN [33, 58]. They
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showed that an adversary may learn the anonymized endpoints of an activity, which are

likely to be either a user’s home address or workplace. There is, thus, a need to protect

activity information shared online.

Release via crowdsourcing. Finally, wearable data may be disclosed through crowdsourcing

platforms [48, 98]. The main difference between the crowdsourcing and dataset disclosure

is that the former allows for the recruitment of more participants for the study and may

implement additional privacy measures when collecting users data, such as randomized

response [157].

5.2.2 Wearable Data Release. Common Misconceptions

Wearable fitness trackers collect a wide variety of information, and it may be tempting to

disclose all of it, envisioning that someone might find a different use for the data. However,

it should be noted that what has not yet been shared can always be published in the future.

What has already been released, on the other hand, is public forever.

On-the-surface inference. Naturally, some insights may be directly observed just from

the routine of users. Depending on the aggregation of the information, the attacker might

acquire various sensitive information about the participants.

• Daily records. When the dataset contains entries that are collected every 24 hours (e.g.,

as in [108]), the adversary can distinguish between target’s active and sedentary days.

Such insights may be utilized to track the high-level activity and routine changes.

• Hourly records. Observing the data samples that are an aggregation of hourly activity

(as in e.g., [44]) may help the adversary to distinguish periods of activity and inaction

during a day. These findings can be exploited to reveal a wide variety of sensitive

habits for the targeted users.

• Minute-by-minute records. Typically, the data that can be gathered with wearables

like Fitbit and Apple Watch are recorded every minute. It is important to note that the

vast majority of the available public wearable datasets [44, 145] simply release all the

data that have been collected by the devices, which are “minute-by-minute.” Since

such format allows the adversary to infer active periods with even higher precision,

they are likely to learn even more sensitive information in typical cases. Figure 5.4

highlights the differences in activity levels during morning hours between hourly and

minute-by-minute samples of user’s data.

At first glance, it does not appear difficult to mitigate the above-mentioned threats.

However, in practice, the most obvious approaches might not be very effective at protecting
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Figure 5.4: Morning routine of a participant in the CSFD dataset [44] based on burned
calories. The calories are collected hourly (orange line) or every minute
(blue line). For the hourly routine the average number of calories per
minute over that hour is presented. While the wake-up time is detected
around 8 a.m. for both cases, the higher granularity of the data provides
deeper insights into the morning routine of the user.

privacy of the dataset’s participants. In order to effectively address the privacy risks, the fol-

lowing common misconceptions must be dispelled. We present them from the standpoint

of an inexperienced data controller who wants to make their research data public.

Fallacy I: I will remove direct identifiers of the participants, such as name, phone number,

email, etc., and release it. Surely, it is enough to protect their privacy.

Although pseydonimization is a necessary first step to protect any sensitive data, an ad-

versary who possesses any auxiliary information on a known participant can easily link it

to their activity records. Indeed, an adversary may de-anonymize a significant number of

users based on indirect physical identifiers.

Fallacy II: Well, then I will also discard all physical and demographic attributes (age,

weight, height, etc.), in case the attacker knows some users. Now, the protection level has to

be sufficient.

Some of the data produced by the fitness trackers depend on physical parameters of the

wearer. For example, the number of burned calories heavily correlates with weight, gender,
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height, etc. (Chapter 4). Therefore, it may be feasible to reconstruct those characteristics

directly from fitness data.

Fallacy III: OK, in that event, I will remove all quasi-identifiers and release only activity

data and no other information. At last, my dataset is fully protected.

Although removing quasi-identifiers definitely increases the overall privacy level of the

data, some insights still may be inferrable. Since fitness data themselves carry a wealth of

information about the person who produced them, it might be possible to fingerprint users

based solely on their activity information. In fact, as shown in Chapter 4, individuals may

be re-identified based on solely their activity records an no other information.

5.2.3 Wearable Data Release. Guidelines

In this section, we provide practical guidelines to protect wearable data when releasing

them via fitness datasets. However, before diving deep into the specific procedures, a

general principle should be outlined: every dataset, when published, should contain

only the required amount of information for the task. This principle is known as “Data

minimization” – a cornerstone of data science. This approach, applied to the information

release, implies not oversharing more than is needed. For example, for an experiment

that correlates watching horror movies and stress levels, users’ height might not be of

the utmost importance. It is worth noting that entities who collect personal data of users

should adhere to the data minimization principle, according to both GDPR and CCPA.

Therefore, all the irrelevant information should be discarded from a dataset before any kind

of anonymization is applied.

Microdata release. Microdata are the information that is collected once per user, usually

at the start of the study. Such data are typically represented by indirect quasi-identifiers or

sensitive attributes.

• Quasi-identifiers should be anonymized via generalization (k-anonymity) ap-

proaches as indicated in Section 5.1. Typically, quasi-identifiers need to be

generalized/suppressed until they are shared by at least k users.

• Sensitive attributes should be secured by ensuring that both l-diversity and t-closeness

are satisfied (Section 5.1).

Note that data controllers need to put special effort into anonymizing individuals who

belong to minority groups, as they are the most likely to be re-identified.

Time-series data. “Time-series data” are the wearable information that is sampled with

a certain frequency, and that are associated with a particular timestamp. For consumer
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wearable trackers such data include steps, calories, distance, workout, sleep, etc. We suggest

the following techniques to reduce the possibility for inference of sensitive insights:

• Data aggregation. For many fitness studies, it may be feasible to report generalized

values instead of the detailed ones, e.g., steps: 12345 → 10000+; BMI: 29.87 →
overweight; height: 193→ tall. That also applies to e.g., releasing cumulative steps

per day, instead of disclosing their number every minute.

• Data sanitization. Data controllers may attempt to modify the existing data samples

to retain the useful utility information and lose user-specific traits. Unlike DP, such

methods apply changes (noise) directly to the data and not the output of the queries.

Since this method introduces changes to the original data, it may not always be

applicable. Sanitization of sensor data has been introduced in previous works [18, 92,

93]. And while they reported promising results for both preventing re-identification of

users and preserving utility of the accelerometer/gyroscope data, it remains unclear

whether the proposed solutions generalize to other datasets.

• Data generation. It may be achievable to disclose synthetic data samples that appear

to be “similar” to the original ones. Such techniques may be used if generated data

are indistinguishable for the purpose of the data release. For example, generation of

Fitbit fitness samples, using ML, have been investigated in [66]. The authors utilized a

Generative Adversarial Network (GAN) to create fitness samples based on a real-world

Fitbit dataset. The work, however, does not present any evidence that the produced

data are resilient to de-anonymization attacks or provide any theoretical/practical

privacy guarantees.

• Regulating the dataset population. One of the most simple and yet effective ways to

reduce the success rate of de-anonymization attacks is to expand the total number of

participants in the dataset. Increasing the size of the dataset reduces the probability

of naive guessing.

The optimal strategy for disclosing activity information likely involves complementing the

traditional anonymization approaches with wearable-specific techniques proposed in this

section.

5.3 Lifesnaps

To show that the proposed anonymization techniques work in practice, the RAIS consortium

has released its own lifelogging dataset, called Lifesnaps, containing wide-variety of fitness

data collected by wearable devices. Since in the course of this dissertation we do not focus

on the “quality” of the lifelog data, we only address the privacy aspects of our dataset. Other



92 Chapter 5. Privacy-preserving Release of Wearable Data

details of Lifesnaps are extensively discussed in Publication VI. In this dissertation, we

briefly discuss the distribution of demographic parameters, since outliers may be uniquely

de-anonymized under some conditions as indicated in Chapter 4. We conduct 2 rounds of

the experiment, recruiting more than 70 diverse users located in various parts of Europe.

All the users voluntarily contributed to the project and have the ability to withdraw their

consent for data processing at any time. A demographic comparison between Lifesnaps

and other publicly available wearable datasets is depicted in Table 5.1. Lifesnaps has more

unique users than all of the other datasets combined. While the only other dataset to

contain all physical attributes is PMData, its distribution does not seem to reflect real-world

trends in gender statistics.

Dataset Openhumans [108] CSFD [44] PMData [145] Lifesnaps [167]

Users 31 13 16 71
Males 18 - 13 42

Females 13 (42%) - 3 (19%) 29 (41%)
Overweight 15 9 7 15

Not Overweight 16 (52%) 4 (31%) 8 (53%) 54 (78%)
Age ≤ 29 - - 8 35
Age > 29 - - 8 34

Table 5.1: Distribution of demographics and physical parameters of the employed
datasets and that of Lifesnaps. Overall, Lifesnaps appears to be more
balanced and well-represented.

Our commitment to the participants was to protect their privacy and sensitive informa-

tion, so we carefully anonymize the dataset before publishing it. In the process, we adhere

to the following principles: (i) minimizing the probability for successful re-identification of

users by real-world adversaries, (ii) maximizing the amount of retained data that are of use

to the researchers and practitioners, (iii) abiding by the principles and recommendations

of GDPR in regards to the handling of personal information, and (iv) following the estab-

lished anonymization practices and principles. In doing so, we followed several guiding

principles:

• We try to minimize the probability of participant re-identification while preserving

as much relevant data as possible. We protect our dataset against various real-world

attack vectors and adversaries. We specifically focus on retaining information that

may be used by researchers and medical practitioners.

• We comply with GDPR principles and recommendations, regarding the management

of personal information. In particular, before anonymizing the data, we store them

in secure university servers and proprietary cloud services. We delete original data
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of the participants upon withdrawal of their consent. The consent is valid for two

years unless it is revoked by users. Since anonymized data are not subject to GDPR

regulations, they can be stored for an indefinite period of time.

• We follow the established anonymization practices and principles, which we describe

in more detail below.

To start the anonymization process, we pseudonymize the users and remove all direct

identifiers. We then remove some of the quasi-identifiers that are overly sensitive and of

limited interest to the research community, such as ethnicity, country, and timezone. Next,

we aggregate the physical parameters of the users to achieve at least 2-anonymity under the

strongest attack model. However, the aggregation ranges were not only selected to preserve

dataset anonymity but also to align with meaningful real-world categories.

In particular, we categorized the participants into two groups based on their age: in-

dividuals under 30, referred to as young adults, and those above 30. Instead of revealing

the exact height and weight of the participants, we disclosed their BMI rounded off to

the nearest integer. In addition, we replaced the extreme BMI values with ranges, such as

underweight or overweight, to protect the privacy of the outlier users. Only the gender

of the participants was the quasi-identifier released without any modification. Using the

quasi-identifiers (gender, age, and BMI) present in the released version of the data, we

demonstrate that our dataset achieves 2 to 12-anonymity, depending on the strength of the

adversary we consider. The summary of the defense mechanisms applied is presented in

Table 5.2.

Technique Previous datasets Lifesnaps
Pseudomization + +
k-anonymity - +

Data minimization + +
Data aggregation - +
Data sanitization - -
Data generation - -

Dataset size 16-33 71

Table 5.2: Anonymization techniques utilized in Lifesnaps. We do not apply data
sanitization (as defined earlier) or generation to increase the penetration
of our dataset. We utilize the rest of our recommendations put forth in
Publication V.

Threat model. In order to ensure that the anonymity standards are upheld, it is necessary

to confirm that a potential realistic adversary cannot identify any of the participants. For
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Type User 1 User 2 . . . User N
Profile data data . . . data
Steps data data . . . data

Calories data data . . . data
Sleep data data . . . data
IPIP data data . . . data

TTEM data data . . . data
. . . . . . . . . . . . . . .

BREQ data data . . . data

User Gender Age Distinct parameters
John Jones m 44 -
Lea Smith f 25 overweight
Joe Brown m 29 extremely tall

Anna Green f 34 -
. . . . . . . . . . . .

Kim Davis f 19 disabled
Joe Brown = ?

LifeSnaps

Intelligence!
Adversary

Figure 5.5: In the threat model we consider, the attacker has acquired a list of all the
individuals in the dataset, along with their ages and physical descriptions.
The adversary aims to link the participants (or even a single user) back to
their data. Since we do not disclose the participants’ height and weight,
their physical descriptions have significantly less utility in de-anonymizing
them. Lifesnaps achieves 12-anonymity under the relaxed threat model
and at least 2-anonymity under the strongest (most favorable to the at-
tacker) one. For more details on types of data (e.g., BREQ) please refer
to [167].

example, if the attacker possesses information that Anna Green, a participant in the study,

recorded precisely 23,451 steps on a specific day, it would be a straightforward task to

re-identify her. In such scenarios, modifying quasi-identifiers cannot maintain anonymity.

The only available option is to introduce random perturbations to the time-series data,

which would negatively impact their utility.

Instead, we adopt a realistic yet strong threat model. Suppose that the attacker has

acquired a list of all individuals in the dataset and has found their birthdates through

publicly available sources, as shown in Figure 5.5. Furthermore, the adversary has surveilled
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all of the participants from the list either online or in public spaces, and has learned their

physical parameters and some distinctive traits, such as being very tall or overweight. The

privacy of Lifesnaps could be compromised if the attacker is able to de-anonymize even

a single user. Thus, we ensure the anonymity of each individual to safeguard the entire

dataset. If the adversary only has access to the essential quasi-identifiers (age and gender),

our dataset satisfies unconditional 12-anonymity. Moreover, since we do not release precise

information on the height and weight of the participants, the attacker cannot directly use

the physical parameters observations (column “Distinct parameters” in Figure 5.5) to

de-anonymize the users, rendering such insights useless.

Indeed, we show that the attacker cannot utilize the auxiliary information on physical

appearances of the individuals to link them with the public BMI values. Given that BMI

is dependent on both height and weight, the adversary must estimate both attributes to

compute BMI (as per Equation 5.2). Assuming the adversary can make educated guesses for

these parameters, with an error range of ±5kg for weight and ±5cm for height, the resulting

error range for BMI can be determined using error propagation (as per Equation 5.3).

BMI =
weight

height2
(5.2)

εBMI =
∆weight
weight

+
2 ∗ ∆height

height
(5.3)

To illustrate, consider a person with a height of 170 cm and a weight of 70 kg, whose

⌊BMI⌋ value is 24. Due to the error interval of ±5 cm for height and ±5 kg for weight, the

range of possible values for BMI is relatively large, spanning almost from underweight to

obese, and includes 8 integer values in the interval I = {21,22,23, 24,25,26,27,28}. Thus,

it is evident that the adversary cannot gain significant insights on the users due to error

propagation. Even if the attacker could accurately estimate the height and weight of the

participants, which is highly unlikely, the best they could do is to reduce the anonymity

factor k to a minimum of 2.

5.4 What Can Regular Users Do?

We urge users who disclose their wearable data in any form to be mindful of their privacy.

Summarizing the previous paragraphs, we outline simple to implement but yet effective

techniques to limit sensitive exposure when sharing wearable data.

Sharing wearable data online. Perhaps the most effective way to disclose personal wearable

data online is to (i) post it under a pseudonym (Section 5.1). Indeed, an adversary may

have very limited use of such de-identified data as auxiliary information. Nevertheless,

if pseudonymization is not an option, there are other courses to bolster one’s privacy.
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Individuals who post their fitness data online on FTSNs may also consider (ii) reducing

the granularity and modality of shared data by posting fewer fitness parameters that are

aggregated over periods of time. For example, when an individual wants to share a particular

training session, they might publish only their daily steps, instead of posting hourly data

on steps, calories, and heart rate. Indeed, the fitness community will be made aware of the

person’s activity levels in both cases without compromising the user’s privacy. A number

of FTSNs (e.g., Fitbit) allows users to customize the fitness values they want to share with

the community in great detail. Another strategy for sharing information is to (iii) reduce

the frequency and number of online posts. As demonstrated in Chapter 4, the sensitive

inference capabilities increase with more data samples per target. Finally, regular users

may consider sharing only their “anomalous” data (iv), i.e., posting non-typical activity

records rather than their daily routine. Such behavior is consistent with the spirit of FTSNs,

which encourage users to share their greatest achievements or setbacks. Additionally,

this approach heavily skews the distribution of a user’s wearable records, making it more

difficult for adversaries to utilize such data to the same extent as normal wearable samples.

Sharing wearable data to datasets. Participating in various fitness studies that involve

consumer wearables may be associated with significant privacy concerns. As regular users

only wear the devices and submit the generated data, they have little control over them. All

processing and release of data are in the hands of data controllers. Nevertheless, users may

choose not to participate in studies that do not guarantee a sufficient level of privacy. We

outline a set of inquires users should make before agreeing to join a fitness study:

• Public/private dataset. The most important question is whether the collected data

will be made public at the end of the study. Naturally, if only the aggregated results

are planned to be published, it dramatically reduces the chances of exposing private

information (although it does not prevent it completely).

• Shared data. In cases where some portions of fitness data will be made available, it is

sensible to learn which activity data are planned to be included in the release version.

For instance, for a stress study, it may be sensible to opt-out if, besides the actual

stress, all other activity information collected by a wearable is released (full routine,

demographics, injuries, etc.).

• Anonymization efforts. Another vital piece of information concerns the anonymiza-

tion techniques used by the data controller. As we report previously, simply removing

unique identifiers of users is not enough to claim anonymity and may be a reason not

to join the study. However, if the data controller is committed to enhancing privacy

by utilizing state-of-the-art techniques such as k-anonymity, differential privacy, etc.,

users may proceed.

• Dataset population. A reasonable question to ask the experiment organizers is how
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many individuals are/will be participating. As shown in our experiments, the re-

identification accuracy tend to sharply drop with the increase of the dataset popula-

tion. It is evident that an individual is much likely to be identified in a dataset of 20
compared to that of 1,000.

• Data erasure. Finally, users need to know what happens to their data if they withdraw

from the study. Naturally, if their data are not deleted (which goes against GDPR and

CCPA), it may be sensible not to participate.

Sharing wearable data via crowdsourcing. Although sharing wearable data with crowd-

sourcing platforms is largely outside the scope of this dissertation, we still provide some

insights on how to limit the exposure of sensitive information. In general, all the guidelines

for privacy-preserving release of datasets apply. In addition users may choose the crowd-

sourcing platform that supports Local Differential Privacy (LDP) and randomized response

when collecting data from users [98]. If this is the case, users do not need to fully trust the

platform, since the combination of LDP and randomized responses ensures that the data

controller cannot fully recover fitness data beyond a certain threshold. If such data are later

released to the public, LDP provides mathematical guarantees against sensitive inference.
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Chapter 6

Conclusion

We conclude the dissertation by summarizing our contributions to the research questions

presented in the introduction, which include: (i) security and (ii) privacy of consumer

wearables, (iii) attacks on wearable data, and (iv) privacy-preserving release of such data.

Moreover, we outline the directions for future work in relation to the published studies.

Overall, this thesis outlines the potential risks that regular users of consumer wearables

may face when using their devices out-of-the-box. We emphasize the importance of this

problem by demonstrating the significant privacy leaks that may occur with these devices

and the data they generate. Furthermore, we present practical solutions and techniques

that can be easily employed by an average owner of a fitness tracker. Finally, we caution all

tech consumers to remain vigilant and always research the privacy aspects of any device or

service associated with wearable technology.

6.1 Synopsis of Contributions

In this thesis, we explored the privacy and security issues associated with consumer wear-

able devices. We studied not only physical devices themselves but also the various services

associated with them and the data they collect. We consider these problems from the stand-

point of an average fitness tracker user who uses the devices in the “out of the box” mode,

following the official instructions of the manufacturer and installing official companion and

partner applications. Furthermore, many typical consumers participate in fitness social

communities and share the data collected by their devices, which can lead to significant

information leaks due to the inherent security and privacy concerns associated with the

“default” use of wearables.

Our research shows that users may unwittingly provide significant sensitive insights to

third parties who are often unknown and undesired by using companion and partner apps

provided by popular smartband vendors. Installing these apps is often mandatory in order

to access the full functionality of the devices. Moreover, we have identified that several

well-known wearables are vulnerable to the traffic analysis attacks, allowing the passive
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adversary to extract fitness information and other private data on regular consumers. We

present and evaluate defense techniques against these types of leaks and demonstrate that

it is feasible to avoid privacy exposure with minimal effort. The suggested approaches do

not require extensive skills and may be utilized by people with limited technical expertise.

Furthermore, in our works, we extensively analyze the data collected by wearables

that are often exposed to the general public. We demonstrate that uncontrollable and

unsanitized release of such data may greatly compromise the privacy of the users. We

introduce several novel attacks against fitness data and have proposed ways to mitigate

them. Our attacks show that users can be de-anonymized solely based on their activity

records without requiring any non-wearable auxiliary data. We also demonstrate that

sensitive physical attributes, such as gender, BMI, and height, can be inferred from even

a minimal amount of fitness data. Therefore, we emphasize that participating in fitness

studies, even with a large number of participants, can result in significant privacy breaches

for wearable device users.

We present and dispel common misconceptions about privacy-preserving information

sharing and suggested a complete methodology of fitness data release. As part of the RAIS

project, we have published the Lifesnaps dataset, which includes a lifelogging study of

N = 71 users who wore wearable devices. Lifesnaps contains highly granular wearable

data, validated surveys, and ecological momentary assessments, making it significantly

more valuable to the research community than other open datasets. In line with principles

proposed in our research, we thoroughly anonymized the dataset and made it publicly

available.

6.1.1 Security of Wearables (RQ1)

Although attacks on fitness trackers are extensively discussed in the literature, the vast

majority of them are not applicable to average users of such devices. They are typically

based on unrealistic threat models, short-lived, and involve only specific models of fitness

trackers. Instead, in Publication I, we propose, perform, and evaluate a novel attack against

wearable devices that may severely compromise the privacy of regular consumers.

The attack is based on the analysis of encrypted traffic to find patterns for specific

activities and measurements performed by users. Our attack is (i) passive, making it

almost impossible to detect, (ii) device model-agnostic, and (iii) can be executed remotely.

Furthermore, unlike other attacks that require distinct modifications to the device or the

phone (e.g., root), our threat model allows adversaries to specifically target out-of-the-box

users who use their smartbands “as is” [70]. The attacker takes the form of an ISP located

somewhere along the path between the phone running a companion application and

the cloud. This ISP is honest but curious, meaning it accepts and delivers IP packets to

the appropriate destination (the cloud) but attempts to infer information from encrypted
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traffic. The adversary launches the attack when the companion application attempts to

synchronize activity data with the manufacturer’s servers.

We show that such an ISP is able to glean significant insights on the regular users of

wearables, including (i) the frequency of heart rate and weight measurements, (ii) the

length and duration of workouts, (iii) periods of absence for sleep and low activity levels,

and (iv) extreme values of BPM and weight. In Publication I, we empirically demonstrate

that flagship devices (as of 2020) from at least two well-known manufacturers of consumer

fitness trackers, Xiaomi and Samsung, are susceptible to the proposed attack.

6.1.2 Privacy of Wearables (RQ2)

The ubiquitous data collection of consumer wearable devices has long raised concerns

about the privacy of users. While users expect to share their data with the official device

vendors, they are likely to oppose relinquishing any sensitive information to undisclosed

third parties. To our surprise, despite the continuously rising number of device manufactur-

ers and models, no comprehensive analysis of third-party connections for wearables had

been done previously. In our works, we investigate which third parties are being contacted

by well-known brands of wearables via their companion applications as well as the most

popular partner apps. We demonstrate that such third-party connections may not be

anticipated by regular users of fitness trackers. These connections include advertisement

services, analytics providers, various external APIs, and even social networks, as we discuss

in Publications II-III.

We also analyze the data that are being sent to such unexpected entities. Our findings

suggest that private information may indeed be disclosed when users simply use their

wearable devices [69]. In some cases, this information may be extremely sensitive, including

precise location, demographic information (such as age and gender), lifestyle factors (such

as sedentary behavior), email addresses, and Android Advertising IDs (AAIDs). The “less

sensitive” shared data contain phone model, SIM carrier, and connection history. We

conclude that unanticipated entities can glean sensitive information on regular users who

use their wearable devices normally, as discussed in Publication II.

To combat the above privacy threats we investigate whether such unwanted connections

may be reduced or altogether prevented. Inspired by other works in the field of IoT we

examine whether it is feasible to disable the undesired third-party connections of wearable

devices without hindering their essential functionality. In our research, we demonstrate

that disabling connections to the domains that are present in well-known blocklists does

not hinder the correct synchronization of fitness data by Fitbit devices [71]. We perform

extensive empirical evaluation and verify that the most important activity metrics for

regular users of wearables [24] remain intact. In particular, regular users of Fitbit trackers

can accurately track their step count, covered distance, workouts, duration and quality of
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sleep when blocking unwanted third-parties. Our analysis suggests that at least 88% of the

connections for the official Fitbit application and 6 partner apps are contained in credible

blocklists and can be safely disabled. We further discover that all studied apps contact

undesired third parties. To combat this, we suggest a blocking methodology that can be

employed by regular users of wearables. Our proposed approach involves using mobile

filtering services, also known as adblockers, and identifying the most effective blocking

lists for wearable applications ( Publication III). This methodology can be easily utilized by

average fitness tracker users with limited technical competency.

6.1.3 Attacks on Wearable Data (RQ3)

Regular users tend to not only use their wearables but also utilize related accessory ser-

vices. Fitness trackers, in particular, have become essential tools in various medical stud-

ies [15, 23, 56, 74, 78, 114]. Furthermore, users of wearables may join the specialized fitness

social networks within the corresponding companion apps. Consequently, wearable data

may be shared with the research community and the general public. In this thesis, we inves-

tigated whether existing fitness datasets and information sharing techniques are adequate

or can be compromised. In particular, readily available fitness activity datasets employ

conventional approaches to protect the privacy of the participants by removing personal

identifiers, including the full name, e-mail address, and sensitive attributes. Unfortunately,

applying only such direct methods, although seemingly appropriate, may not be enough

to protect the owners of wearable data. We proposed several novel attacks against data

collected by wearable fitness trackers (Publication IV). These attacks enable adversaries

to de-anonymize users of fitness datasets and infer their demographic parameters “solely”

from activity data and no other information. We show that a user’s gender, BMI, and height

can be inferred from Fitbit samples by using a minimal number of features, namely activity

information [72]. Furthermore, by utilizing daily snippets of steps, distance, calories, and

average heart rate, the attacker is able to re-identify users in public wearable datasets with

a 93.5% probability. We demonstrate that the de-anonymization rate reaches 100% for

individuals with distinct physical attributes, such as very tall or obese people.

6.1.4 Privacy-preserving Release of Wearable Data (RQ4)

Since attacks that specifically target wearable IoT data exist (Publication IV), we set out

to investigate ways to minimize the probability of privacy leaks. Furthermore, since con-

ventional anonymization techniques may not be enough to preserve the privacy of wear-

able data (Publication IV), we research other common misconceptions about information

sharing (Publication V). We explain why removing participants’ personal identifiers and

sanitizing their physical attributes may not be enough to fully protect their anonymity. We

present common approaches for privacy-preserving wearable data disclosure (Publication
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V). These methods include: data (i) minimization, (ii) aggregation, (iii) sanitization, and (iv)

generation [97]. Combined with the conventional approaches, the proposed techniques

limit the possibility of inference from wearable data. We further emphasize the impor-

tance of resampling/subsampling, as well as reducing granularity when publishing fitness

samples.

Finally, we demonstrate the practical privacy-preserving wearable data release by pub-

lishing our own lifelogging dataset, Lifesnaps [168] (Publication VI). The data were collected

over a four-month period in an unobtrusive study, with N = 71 unique users wearing Fitbit

fitness trackers. Lifesnaps is geographically distributed across Europe, providing valuable

insights into activity dynamics in various countries during the COVID-19 pandemic. Com-

pared to its publicly available counterparts, Lifesnaps contains more activity types and

higher granularity, making it superior in terms of data volume. We used previously pro-

posed anonymization techniques to protect the privacy and anonymity of all participants.

We show that Lifesnaps is more resilient to both conventional and fitness-specific attacks

compared to other publicly available lifelogging datasets.

6.2 Directions for Future Work and Research

This thesis has investigated a wide range of privacy aspects associated with consumer

wearable devices, with a specific focus on assessing the impact of wearable technology

on the privacy of regular users. However, several elements could be further explored. For

example, the traffic analysis attack mentioned in Section 2.2 was evaluated only in lab-

oratory settings, without assessing it in the wild. Prior research has indicated that such

attacks could be executed on a much larger scale by utilizing data collected by real-world

ISPs [121, 122, 165]. In these works the authors obtained access to the actual traffic of

operating ISPs and were able to run statistical queries to identify and analyze the encrypted

packets of interest. Conducting our attack from the standpoint of an actual “honest but

curious” ISP would further facilitate our findings and raise awareness for out-of-the-box

device usage (Publication I). However, conducting experiments of this nature requires ongo-

ing collaborations with actual Internet providers, which may prove extremely challenging

due to privacy protection laws, internal policies, and ethical considerations. Therefore, a

more adequate continuation of the work done in Publication I would involve collecting

greater volumes of data in laboratory settings and attempting to distinguish the activity

packets from other traffic generated by IoT devices.

To mitigate the traffic analysis of encrypted wearable data we propose several well-

established techniques in Publication I. Their implementation could be a promising direc-

tion for future research. Previous research has shown that traffic padding techniques can be

effective in protecting against inference in web-based applications [11, 84], and we believe

such approaches would be appropriate for wearable apps. However, the main challenge
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does not lie in implementing the defense methodology itself but in ensuring that it can be

used by regular users of wearables.

Another research area that is worth exploring concerns preventing third-party connec-

tions of wearable applications (Publications II, III). Although we have shown that regular

users can effectively use ad-blockers to prevent privacy leaks (Publication III), it remains

an open question whether this approach puts additional strain on mobile phones and

can be utilized as a long-term solution. Several articles have investigated the traffic and

energy consumption of mobile applications in general [79, 107], as well as the built-in

advertisements in particular [53, 54, 110]. The above works have detected a significant

increase of power consumption for the applications that display advertisement to their

users. Moreover, Papadopoulos et al. established up to an 8% increase in Internet traffic

of mobile applications when displaying advertisement [110]. Potential future research in-

cludes assessing the CPU utilization and the energy consumption of the proposed blocking

approach compared to running the default version of the application. It should be noted

that the regular versions of wearable applications contact not only advertisement providers

but also all unwanted third parties (Publications II, III). Furthermore, our aim is to estimate

the reduction in traffic volume of wearable applications when they do not send any requests

to undesired third parties. Additionally, considering a broader set of partner applications

and prominent device manufacturers, especially those that have grown in popularity since

2020, provide an encouraging direction for future research. Finally, we believe that creat-

ing and maintaining our personal blocklist of unnecessary wearable domains could be of

great value for the research community and fitness tracker userbase. This blocklist would

specifically contain URLs of unwanted third parties that are being contacted by the most

popular companion and partner applications of well-known vendors. We plan to actively

maintain our wearable blocking list based on changes in third-party connections and the

release of new models/vendors.

With regard to the attacks against wearable data (Publication IV), exploring other possi-

ble attack vectors seems to be a sensible continuation of our research. This includes not

only utilizing other fitness parameters as features, but also inferring more robust insights

about the users. One of the key limitations of our studies on de-anonymization is the

small number of users present in the fitness dataset. In fact, previous studies employing

fitness trackers have comprised populations of thousands [103], tens of thousands [116],

hundreds of thousands [115, 117], and even millions of individuals [172]. Naturally, none of

the aforementioned studies made their datasets publicly available. Furthermore, obtaining

such large data collections usually requires ongoing partnerships with wearable vendors,

which is not trivial to arrange. We plan to extend our research to explore privacy-preserving

ways of releasing wearable data within fitness communities. As our previous study has

shown that several undisclosed insights on users can be inferred directly from their activity

snippets (Publication IV), it is crucial to identify appropriate online sharing strategies to
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limit privacy exposure.

The data protection techniques proposed in Publication V include data sanitization,

which constitutes a suitable course for future research. Several previous articles have

proposed techniques for sanitizing wearable samples by employing data-driven machine

learning solutions [18, 66, 92, 93]. However, it remains unclear whether these approaches

generalize to other datasets and samples due to the insufficient volume of utilized training

data. Therefore, we plan to investigate other sanitization techniques, including non-data-

driven LDP [155, 166, 171]. LDP solutions have already been utilized to protect the privacy

of general IoT data in previous studies [4, 10, 75, 123]. Our aim is to identify the appropriate

ways of applying LDP to protect the data generated by consumer wearable trackers.
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