
A Rule-Based Data Mining Assistant

Roubini Xenou

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department

Thesis Advisors: Prof. Ioannis Tsamardinos

This work was partially supported by Institute of Computer Science, Foundation of Research and
Technology Hellas

Abstract

Data mining, as well as Data Analysis and Machine Learning are utilized during the last
few years, by a variety of people of different experience level and from different fields,
to provide solutions in a variety of different domains and applications. Machine Learning
algorithms are applied to any dataset, regardless of the type or content, and regardless of
source e.g. real world or simulated, observations, and can generate a model describing
them.
The available data mining algorithm and methodologies space, is increased day by day,
making it difficult even for experts to follow this changes. As different dataset types may
demand, a different approach in terms of methodology or algorithmic analysis, the Data
Analysis process is becoming even more complex. A lot of effort has been given towards
the development of Data Mining Assistants (usually referred as IDAs - Intelligent Data
Assistants), in order to overcome the above obstacles.
In this Thesis we designed and developed an automated intelligent system, the RB-DMA
(Rule Based Data Mining Assistant), which, based on an extension of the OntoDM data
mining ontology [1] and combined with a set of rules written in Drools [2], proposes
the most appropriate data mining workflows, ranked based on their efficiency for a given
analysis.
Our approach provides, all the decisions the end-user will need, regardless of their expe-
rience or knowledge, in order to conduct an analysis with trustful results.
Data Analysis depending on the amount and complexity of data, usually require a consid-
erable amount of time in order to produce results. Our system, addresses this issue, by
proposing to the user the n best workflows, where n is considerably small and optimized
to produce close to best results.
Last, but not least, the system covers up to 200 data analysis scenarios (binary classifica-
tion and regression, on a variety of data types and sizes)..

Περίληψη

Η ανάλυση των δεδομένων είναι μια αναδυόμενη και σε κάθε περίπτωση χρήσιμη

επιστήμη. Οι διάφοροι αλγόριθμοι μηχανικής μάθησης παρέχουν τη δυνατότητα να εκ-

παιδεύονται σε ένα σύνολο δεδομένων, αποτελούμενο από κάθε είδους, πραγματικές

ή προσομοιωμένες, παρατηρήσεις, και να δημιουργούν ένα μοντέλο που τα περιγράφει.

Με το πέρασμα του χρόνου, ο αριθμός των περιπτώσεων, σε επαγγελματικό ή καθημε-

ρινό επίπεδο, που διευκολύνεται από την ανάπτυξη μιας μεθόδου εξόρυξης δεδομένων

γίνεται όλο και μεγαλύτερος. Προκειμένου να καλύφθούν οι πολυποίκιλες ανάγκες

που προκύπτουν, ο χόρος των διαθέσιμων αλγορίθμων και μεθοδολογιών εξόρυξης

δεδομένων ολοένα αυξάνεται, καθιστώντας την εξερεύνηση τους ως μια επίπονη και

χρονοβόρο διαδικασία, ακόμη και για τους πιο πεπειραμένους αναλυτές δεδομένων.

Μία ακόμη δυσκολία, είναι η απαίτηση ξεχωριστής κατάλληλης μαθοδολογίας και ερ-

μηνείας για κάθε διαφορετικό τύπο δεδομένων. Μια μεγάλη προσπάθεια έχει δοθεί

στην ανάπτυξη καθοδηγητών εξόριξης δεδομένων, με σκοπό να βοηθήσουν το χρήστη

να ξεπεράσει τα παραπάνω εμπόδια. Μέχρι στιγμής, οι καθοδηγητές ταξινομούνται

ως αυτοματοποιημένοι και συνεργατικοί. Στην εργασία αυτή, σχεδιάστηκε και ανα-

πτύχθηκε ένα αυτοματοποιημένο έξυπνο σύστημα, το RB-DMA, το οποίο, βασισμένο

στην OntoDM οντολογία, σε συνδυασμό με ένα σύνολο κανόνων εκφρασμένων με

την βοήθεια του συστήματος δροολς, προτείνει τις πιο κατάλληλες ροές εργασιών ε-

ξόρυξης δεδομένων , διατεταγμένες με βάση την αποτελεσματικότητά τους για μια

δεδομένη ανάλυση. Η προσέγγισή μας παρέχει, σε χρήστες οποιουδήποτε επιπέδου

γνώση, όλες τις αποφάσεις που χρειάζονται προκειμένου να προβούν σε μία ανάλυση με

αξιόπιστα αποτελέσματα. Για έναν χρήστη με πλήρη άγνοια, η ανάγκη ¨να γίνει έμπει-

ρος’ εξαλείφεται. Από την άλλη πλευρά, το σύστημα θα λειτουργεί περισσότερο ως

ένας μηχανισμός υπενθύμισης των διαθέσιμων βέλτιστων πρακτικών για τον εμπειρο

χρήστη. Ακόμη, το σύστημά μας βοηθάει στην μείωση του απαιτούμενου χρόνου για

να πραγματοποιηθεί μία ανάλυση, εγγυόμενο, στις περισσότερες περιπτώσεις, σχεδόν

βέλτιστα αποτελέσματα εκτελώντας μόνο τις πρώτες K καλύτερες ροές. Τελευταίο,

αλλά όχι λιγότερο σημαντικό, το σύστημα καλύπτει έως 200 σενάρια ανάλυσης δε-

δομένων (ταξινόμηση δύο κλάσεων, και παλινδρόμηση με διαφορετικούς τύπους και

μεγέθη δεδομένων), βοηθώντας των αναλυτή να ξεπεράσει το προαναφερθέν πρόβλημα

της ξεχωριστής διαχείρησης διαφορετικών δεδομένων.

Acknowledgements

First of all, I would like to thank my supervisor, Professor Yannis Tsamardinos, for giving
me the opportunity to become a member of his team, for his guidance and trust that he
showed during the time we worked together.
I would also like to thank all my colleagues at the Laboratory. Thank you Giorgos A. ,
Lisa, Michalis, Maria, Giorgos Mp, Paulos, and all the others!
Of a great help were the long discussions with Dr. Theodore Patkos, member of the In-
formation Systems Laboratory - FORTH. I owe him, at least, a great Thank you!!
I would also like to thank my closest friends Kaiti, Dora, and Elena, for their love, trust
and support all these years.
Last but not least, the greatest “thank you” to my family: my parents, Panagiotis and Eu-
tuxia, for their love, trust, encourage and patient during the years of my studies. My sister
Marilena for showing so much patient and love. Finally, but most important, I would like
to thank my grandmother Maria for taking good care of me during all these years, living
in the same house!
Thank you all!

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Motivating Example . 3
1.3 Organization of this Thesis . 5

2 Related Work 9
2.1 CITRUS . 9
2.2 Similarity Matching Approach . 9
2.3 Generating and Scoring workflows using meta-mining 10
2.4 IDEA . 10
2.5 PDM . 11

3 Implementation 13
3.1 The employed Ontologies . 13

3.1.1 OntoDM Ontology . 13
3.1.2 Incorporating and Extending OntoDM 15

3.2 The systems architecture . 17
3.3 Scoring workflows using heuristics . 21

3.3.1 The scoring function . 21
3.3.2 The scoring heuristics . 22

4 Evaluation 33
4.1 The datasets analyzed . 33
4.2 Evaluating the system . 33
4.3 Evaluating the proposed workflow instances 34

4.3.1 Data analysis results . 34

5 Conclusions and Future Work 47

I

II

List of Figures

1.1 The phases of a data mining workflow, considering the standard frame-
work developed in CRISP-DM [3] . 2

1.2 The five first steps executed by the system in order to identify the required
data mining task (step 1, green arrows), and obtain the compatible com-
ponents for the different workflow phases (step 2 - 5, brown, purple, pink,
and black arrows). The thin dashed arrows denote the repeated execution
of the get-Hyperparameter sub-steps. The knowledge base consists of a
data mining ontology, and the rule mechanism is a set of heuristics related
to the data mining entities. Following the different color paths one can see
the process executed during each of the five steps. 6

1.3 The sixth and last step executed by the system, in order to compose the
proposed workflow instances for a dataset and rank them, considering also
user preferences . 7

3.1 The main structure of the BFO and IAO ontologies, which OntoDM is
extending . 14

3.2 The structure of the OntoDM entities mainly used in RB-DMA. OntoDM:output
data specification represents the target type of a dataset, OntoDM: Algo-
rithm implementation represents an algorithm implementing a data min-
ing algorithm, OntoDM: parameter represents the hyperparameters of a
data mining algorithm implementation. The bold lines represent sub-
ClassOf relations, showing which are the OBI, BFO, and IAO extended
classes. 15

3.3 OntoDM extension, the red font rectangles represent the newly created en-
tities. Data preprocessing algorithm, Dimensionality reduction algorithm,
and Imputation algorithm are extending the OntoDM: Data processing al-
gorithm, in order to represent the algorithms of the respective workflow
phases. Imputation is part of the data preprocessing phase, but is rep-
resented as a separate entity. The entities represented as subclasses of
the OntoDM: Algorithm Implementation entity are the algorithms imple-
menting the respective workflow phases. 16

III

3.4 rbf kernel support vector machine (r_svm) use case example: Assuming a
dataset with binary target (represented by OntoDM: boolean output), the
system following the Has part relation, identifies a binary classification
task (represented by OntoDM: binary classification task). Starting from
the binary classification task entity, and following the Has part relation, it
concludes that binary classification algorithms are the appropriate model-
ing components. Through the isConcretizationOf relation, the rbf kernel
svm is returned as an implementation of a binary classification algorithm.
Finally, the Has quality relation is being used, in order to identify the
methods’ appropriate tuning hyperparameters, gamma and cost, which
are represented as binary r_svm parameter instances. 18

3.5 The system contains two main mechanisms, the knowledge base, which
consists of data mining entities represented in the OntoDM ontology, and
the rule mechanism, a set of rules expressed using the Drools system.
The system executes 6 steps in order to compose and rank the proposed
workflow instances. The process of the first step is represented through
the arrow denoting the dataset given as input to the knowledge base, and
the DM_task arrow, which represents the identification of the appropri-
ate data mining task, after reading the dataset. The arrow connecting the
knowledge base to the rule mechanism, represents the possible compo-
nents of the workflow instances for each of the four workflow phases (i).
The arrows labeled as ranked_Si_components, represent the ranked and
filtered workflow components, according to the rules of the rule mecha-
nism. In the last step the workflow composer and ranker takes as input all
the possible methods for each workflow phase, retrieved during the pre-
vious 4 steps, composes the appropriate workflow instances, and finally
ranks them. 19

3.6 Best performing cost and gamma configurations, according to scikit-library
documentation’s experiments. 24

4.1 plot of the performance obtained from the best model, after cross validat-
ing N workflow instances, evaluated on a test set. x axes represent the
AUC performance, y axes represent the number of workflow instances
executed, to obtain the respective performance. Bernstein datasets. . . . 36

4.2 plot of the performance obtained from the best model, after cross vali-
dating N workflow instances, evaluated on a test set. x axes represent the
AUC performance, y axes represent the number of workflow instances ex-
ecuted, to obtain the respective performance. Vsmall,small sample sizes
Classification, (* = dataset with missing values) 37

4.3 plot of the performance obtained from the best model, after cross vali-
dating N workflow instances, evaluated on a test set. x axes represent the
AUC performance, y axes represent the number of workflow instances ex-
ecuted, to obtain the respective performance. Medium sample size Clas-
sification, (* = dataset with missing values (NaN)) 42

IV

4.4 plot of the performance obtained from the best model, after cross validat-
ing N workflow instances, evaluated on a test set. x axes represent the
AUC performance, y axes represent the number of workflow instances
executed, to obtain the respective performance. Large sample size Classi-
fication . 43

4.5 plot of the performance obtained from the best model, after cross validat-
ing N workflow instances, evaluated on a test set. x axes represent the
R2 performance, y axes represent the number of workflow instances ex-
ecuted, to obtain the respective performance. Vsmall,small sample sizes
Regression . 44

4.6 plot of the performance obtained from the best model, after cross vali-
dating N workflow instances, evaluated on a test set. x axes represent
the R2 performance, y axes represent the number of workflow instances
executed, to obtain the respective performance. Medium sample size Re-
gression . 45

4.7 plot of the performance obtained from the best model, after cross validat-
ing N workflow instances, evaluated on a test set. x axes represent the
R2 performance, y axes represent the number of workflow instances exe-
cuted, to obtain the respective performance. Large sample size Regression 46

V

VI

List of Tables

3.1 The relations used to represent the data mining entity qualities in the ex-
planation column. 17

3.2 Table of general support vector machine heuristics. Cost is an svm tuning
hyperparameter, representing the svm penalty factor. Epsilon is another
svm hyperparameter, used mainly when training regression models, af-
fecting the support vectors quantity. AvgAccuracy is a metric, defined
in our system, which represents the average performance capability of
an algorithm, taking values in the range of 1 - 5, where 1 is the lowest
performance capability, while 5 is the highest one 22

3.3 Table of linear kernel svm heuristics. AvgAccuracy ε [1 - 5]. 22
3.4 Table of rbf kernel svm heuristics. The condition c == median(range)

denotes, cost equal to the median of cost range. Gamma is a tuning hy-
perparameter for rbf and polynomial kernels, controlling the area of the
support vectors influence. AvgAccuracy ε [1 - 5]. 23

3.5 Gamma is a tuning hyperparameter for rbf and polynomial kernels, con-
trolling the area of the support vectors influence. AvgAccuracy ε [1 - 5].

. 23
3.6 Table of elastic-net heuristics. Alpha is the elastic-net mixing hyperpa-

rameter, controlling the weighted combination of L1 and L2 penalties of
the model. Lambda is the hyperparameter controlling the amount of fea-
ture coefficients shrinkage. AvgAccuracy ε [1 - 5]. 25

3.7 Table of Random Forests heuristics. NumPredictorsToSample is the num-
ber of features to select at random for each decision split, for a decision
tree of a random forest. Minleaf, controls the minimum accepted size for
the leafs of a decision tree. FeatNum denotes the dataset dimensionality.
AvgAccuracy ε [1 - 5]. 26

3.8 Table of knn heuristics. K is the hyperparameter controlling the amount
of neighbors considered in the knn model. AvgAccuracy ε [1 - 5]. 27

3.9 Table of Decision Trees heuristics. AvgAccuracy ε [1 - 5]. 27
3.10 Table of ses heuristics. Maxk sets the maximum conditioning set to use in

the multiple conditional independence tests performed. Threshold is the
parameter used for assessing the p-value significance in the independence
tests. AvgAccuracy ε [1 - 5]. 27

3.11 Rank of interpretability for the 5 modeling methods 28

VII

3.12 Train and Predict Complexity of the methods (used as ranking heuristic).
S represents the sample size, F represents the feature size, k, T , and
maxk are the selected hyperparameter values for the respective algorithms. 28

3.13 Preprocessing Stage heuristics. NumFeat represents the dataset dimen-
sionality. 29

3.14 The Model Selector and Performance Estimator stage heuristics. The
evaluation of the heuristics conditions is executed sequentially. The pro-
cess stops when a condition evaluates to true. Diff equals |SampleRank−
FeatureRank|, for example small - vsmall = 1. min(ClassSize) repre-
sents the size of the dataset’s smallest class. TS stands for Train Set, and
VS stands for Validation Set. 30

3.15 Sample size ranks . 30
3.16 Feature size ranks . 30

4.1 Table presenting the datasets analyzed to evaluate the system.The datasets
having underscore and a number, concatenated to their name are subsam-
ples of the original ones. The last column indicates those that were also
analyzed by Bernstein et.al [4].(vsmall and vlarge refers to very small and
very large sizes, respectively). 39

4.2 Time needed to generate the workflow instances for 11 different datasets,
evaluated in seconds . 40

4.3 Pearson’s rs between the system’s workflow instance ranking, and the
actual one, for the classification task datasets. Brs column depicts the
correlations resulted in Bernstein et.al [4] for the same datasets. 40

4.4 Comparing IDEA and RB-DMA mean - median Pearson’s rs 41
4.5 Pearson’s rs between the system’s resulted workflow instance ranking,

and the actual one, for the regression task datasets. 41

VIII

Chapter 1

Introduction

1.1 Motivation

In this era data analysis is considered to be applicable and provide solutions in a variety
of different domains. Machine Learning algorithms can be trained on any kind of dataset,
real world or simulated, and generate a model describing their structure. These models
can be used for the classification of future data instances or/and the extraction of conclu-
sions regarding the investigated subject.
Nowadays machine learning is being used in everyday situations, to make future deci-
sions, to predict, to prevent malicious events and also in automation. In order for data
analysis tools to produce good quality results, those who will use it need to have, at least,
some basic knowledge and understanding of the algorithms, pipelines and methodologies
that are used in machine learning.
As the algorithms and the methodologies are enriched more and more, even senior data
analysts find it difficult to keep up with the pace, and select the most appropriate and ef-
fective methods in each case.
There are also cases, that due to time or resource limitations, the application and compari-
son of different methodologies upon the same dataset, in order to find the best performing
one, is prohibited.
Another reason why Data Analysis can be a challenging and difficult process, is the qual-
ity of the data itself. Datasets can vary in the form and the content. A dataset may consist
of categorical, numerical, binary, or mixed data instances. Also, each data instance may
be annotated or not annotated. There can be cases that the data are incomplete, in the
sense that feature values for data instances are missing. All of the above, lead to the con-
clusion that separate interpretation may be needed, in each case.
In order to resolve these issues, a lot of effort has been given to create intelligent au-
tomated systems known as IDA (Intelligent Data Mining Assistants) that can help data
analysts to choose and apply the appropriate data mining workflow instance. The IDAs
can either be “automated” or “cooperative”. Automated IDAs are the systems that will
compose efficient workflow instances without the need of any interaction by the user. [5],
[4], [6]. Cooperative IDAs are the systems that guide the user, step by step, by asking for

1

2 CHAPTER 1. INTRODUCTION

her feedback throughout the whole procedure. [7], [8].
In this Thesis, we designed and developed an IDA system which uses an extended version
of the OntoDM ontology [1] and a set of rules (heuristics), written in Drools [2]. The use
of the above technologies, make it feasible to express any kind or amount of heuristics
(rules), annotate semantically the provided dataset and propose a series of appropriate
workflow instances. These workflow instances are ordered based on their estimated effi-
ciency in each case.
A workflow, according to CRISP-DM, 2000 [3], is organized into a small number of top
level phases. Figure 1.1 depicts an idealized sequence of discrete steps (phases / tasks)
(preprocessing, feature selection, model, model selector & performance estimator, more
detailed explained in chapter 3, section 2), performed according to the indicated order. In
practice, many of the tasks may be omitted, or executed in a different order. Sometimes it
may be necessary to backtrack to previous tasks and repeat certain actions.
Our approach provides the user with all the decisions he needs in order to conduct an
analysis, and extract reliable results without the need of much effort or experience.

Figure 1.1: The phases of a data mining workflow, considering the standard framework developed in
CRISP-DM [3]

Our implementation provide, if needed, the ability to the user to freely intervene in
the proposed pipelines before using them in his preferred platform and implementation.
It acts as a knowledge base repository that the user can ask for advices in order to achieve
the most efficient solution.
The system can easily be used by both experienced and inexperienced users.
Our approach offers the ability to safely execute only the first K (K « 0.5*NumWork-
flows) from the proposed series of workflow instances, assuring that results closest to best
will be obtained. This allows the user to override time limitations, as he can achieve the
same or better result in less time. For the rest of the Thesis we will refer to this claim as
"the first K workflows" claim.
Furthermore, the user can select which weights he wants the system to use, choosing be-
tween accuracy, time and comprehensiveness. This way he can customize, based on his
own needs and limitations, the obtained series of workflow instances.
Our implementation covers a wide range of 200 data analysis scenarios. More detailed,
our system is capable of handling 25 different sample size, and feature size dataset cate-
gories, classification and regression datasets (2), datasets with and without missing values
(2), and also datasets with continuous and categorical feature type (2). Summing up,
the total number of different dataset categories, which our system is capable of handling
equals to Total = 25∗2∗2∗2 = 200. The large number of cases covered by our system,

1.2. MOTIVATING EXAMPLE 3

is a fact that enables the data analyst to deal with a diversity of datasets, without the need
of separate prior understanding and interpretation.
To summarize, our system intends to act as an analyst itself. It collects all the knowledge
related to the data analysis tasks in one place, and continuously leverages it in order to
suggest decisions. Thus, the system reduces the effort and time the user would need to
spend, while providing more reliable and comprehensive results.
In order to test the confidence and performance of our system, we proceeded with the
analysis of 31 datasets of binary classification and regression tasks from multiple sources
and fields, with different data sizes, using the proposed by our system pipelines. The re-
sults are presented in this document.

1.2 Motivating Example

RB-DMA (Rule-Based Data Mining Assistant) produces a series of data mining workflow
instances for a given dataset, which implies a data mining task, taking also into considera-
tion the additional user preferences (i.e: accuracy vs time, comprehensibility vs accuracy
or time vs comprehensibility). We are briefly presenting the generated workflow instances
for a real world dataset.
Consider the case where one wants to analyze these data [9]. The dataset is related with
direct marketing campaigns of a Portuguese banking institution, based on phone calls.
The outcome is a binary, "yes" or "no", trying to predict if a client will subscribe a term
deposit. Each data instance refers to one client and is composed by 17 features describing
some of his personal information.
The figures 1.2, and 1.3 are depicting the series of steps executed by the system in order
to construct the appropriate data analysis workflow instances. The light blue rectangle
in fig 1.2 represents the main system, which is responsible for the coordination of the
whole process, and also for the communication between the knowledge base and the rule
mechanism, represented by the beige and dark red rectangles, respectively. The dashed
blue vertex between them, implies an indirect connection through the main system. All
the important and useful information and components for conducting the bank dataset
analysis (i.e DM techniques, algorithms, hyperparameters e.t.c.) are being stored into
the knowledge base. The rule mechanism is responsible for filtering and/or ranking the
obtained information (i.e the data mining workflow components), and returning the final
components for the composition of the appropriate workflow instances. More precisely,
the execution steps are six (thoroughly described in section 3.2)

1. "Requested task identification"

2. "Preprocessing"

3. "Feature Selection"

4. "Modeling algorithm"

4 CHAPTER 1. INTRODUCTION

5. "Model Selection and Performance Estimation"

6. "Final Workflow Composition and Ranking"

There is also one more sub-step executed as part of the Preprocessing and Feature Se-
lection main steps, the "hyperparameter tuning". The colored vertices in the figure are
representing the different execution steps (for the steps 2 - 5 the colors used are the same
as in Figure 1.1)
The green path represents the "Requested task identification" step during which,

1. The task is retrieved from the knowledge base based on the dataset

2. The returned task is passed as input to the knowledge base for the next steps (rep-
resented using the double arrow)

In order to identify the preprocessing needs of the dataset the brown colored path is exe-
cuted, during which

1. The Preprocessing methods are retrieved from the knowledge base

2. Both data size and feature type are passed as input to the rule mechanism

3. The answer is filtered through the rule mechanism (that keeps only those necessary
for the dataset)

4. The variable fs:true is passed to the main system in order to enable the execution of
Feature Selection step

Following the purple vertices path we can see that, during the Feature Selection step,
the system:

1. The Feature Selection methods are retrieved from the knowledge base

2. The results are ranked through the rule mechanism

3. For each FS method returned by (1) && (2):

(a) The Hyperparameters are retrieved from the knowledge base

(b) The results are ranked through the rule mechanism

(c) The respective Preprocessing configurations are returned from the composer
i.e Elastic-net conf 1 ...

The dashed arrows represent the recursiveness of steps 3a, 3b, and 3c.
The same exact process is also executed for the Modeling step, represented by the pink
vertices path.
In order to obtain the Model Selection and the Performance Estimation components,
which are the last of the workflow, RB-DMA executes the black arrow path which,

1.3. ORGANIZATION OF THIS THESIS 5

1. Takes into consideration the bank data size which is already passed to the rule mech-
anism

2. The rule mechanism outputs, “three-fold cross validation” and “hold out” as model
selection and performance estimation methods, respectively

The last step, which is depicted in figure 1.3 is represented as the purple rectangle "work-
flow composer and ranker" and it wraps three different system components. The composer
and rule mechanism, and a ranking function giving the final rank of the composed work-
flows, taking into consideration the user preferences.
Our system autonomously leverages all the available information (knowledge base) and
rules (rule mechanism) in order to take complex decisions, similar to those listed in the
example above, and automatically provide to the user the final constructed workflow in-
stances.

1.3 Organization of this Thesis

The rest of the Thesis is structured as follows. Chapter 2 briefly describes work that has
been done related to Intelligent data mining systems. Following, section 3.1 describes the
OntoDM ontology and our extension. In 3.2 and 3.3 the architecture of the system and
the workflow ranking heuristics and methodology are presented, respectively. Finally, in
the last two sections we describe the evaluating methodology that we followed, present
the results of the evaluation, and conclude.

6 CHAPTER 1. INTRODUCTION

Fi
gu

re
1.

2:
T

he
fiv

e
fir

st
st

ep
s

ex
ec

ut
ed

by
th

e
sy

st
em

in
or

de
rt

o
id

en
tif

y
th

e
re

qu
ir

ed
da

ta
m

in
in

g
ta

sk
(s

te
p

1,
gr

ee
n

ar
ro

w
s)

,a
nd

ob
ta

in
th

e
co

m
pa

tib
le

co
m

po
ne

nt
s

fo
rt

he
di

ff
er

en
tw

or
kfl

ow
ph

as
es

(s
te

p
2

-5
,b

ro
w

n,
pu

rp
le

,p
in

k,
an

d
bl

ac
k

ar
ro

w
s)

.T
he

th
in

da
sh

ed
ar

ro
w

s
de

no
te

th
e

re
pe

at
ed

ex
ec

ut
io

n
of

th
e

ge
t-

H
yp

er
pa

ra
m

et
er

su
b-

st
ep

s.
T

he
kn

ow
le

dg
e

ba
se

co
ns

is
ts

of
a

da
ta

m
in

in
g

on
to

lo
gy

,a
nd

th
e

ru
le

m
ec

ha
ni

sm
is

a
se

to
fh

eu
ri

st
ic

s
re

la
te

d
to

th
e

da
ta

m
in

in
g

en
tit

ie
s.

Fo
llo

w
in

g
th

e
di

ff
er

en
tc

ol
or

pa
th

s
on

e
ca

n
se

e
th

e
pr

oc
es

s
ex

ec
ut

ed
du

ri
ng

ea
ch

of
th

e
fiv

e
st

ep
s.

1.3. ORGANIZATION OF THIS THESIS 7

Fi
gu

re
1.

3:
T

he
si

xt
h

an
d

la
st

st
ep

ex
ec

ut
ed

by
th

e
sy

st
em

,i
n

or
de

rt
o

co
m

po
se

th
e

pr
op

os
ed

w
or

kfl
ow

in
st

an
ce

s
fo

ra
da

ta
se

ta
nd

ra
nk

th
em

,c
on

si
de

ri
ng

al
so

us
er

pr
ef

er
en

ce
s

8 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

During the recent years, a lot of effort has been spent towards the development of efficient
Data Mining Assistants. The currently existed ones are separated in two categories, the
automated, and the cooperative assistants (as reviewed in [10]). The automated, automat-
ically generates and provides a list of valid workflows instances. The cooperative, guides
and cooperates with the user through the whole process of the workflow instance compo-
sition, taking into account his preferences. Both of them, employ a planning algorithm
which, relying on meta-learning and/or a data-mining Ontology, composes the appropriate
workflow instances, based on available DM Method’s preconditions and postconditions.

2.1 CITRUS

CITRUS [7] was the first full step IDA, (guiding the user through the whole procedure
of the workflow instance composition) and was designed to perform as a cooperative
assistant. The system initially performs a top level decomposition of the KDD-task into
subtasks. A recursive refinement of the subtasks is accomplished from a PSM library
(Problem Solving Methods) which finally, by exploiting data characteristics (i.e standard
deviations, attribute types, missing values), it ends up with the proposed algorithms. Tasks
are mapped to the proper PSM using same concept preconditions and postconditions. This
approach forms a kind of hierarchical task planning system.

2.2 Similarity Matching Approach

Diamantini et al. in [5] introduced a Similarity matching approach of a cooperative as-
sistant which is relying on KDDONTO Ontology [11]. Their system goes backwards
iteratively, starting from the given task, adding the appropriate algorithms for each work-
flow stage. The quality of each proposed algorithm depends on a similarity matching
function ensemble with the algorithm’s performance. Processes are ranked using this
quality assessment, so that users are provided with a criterion to choose the most suitable
with respect to their requests. This system, in a similar way that our system does, is less
strict on the process composition (unlike [8], [7] in Hierarchical Task Network (HTN)

9

10 CHAPTER 2. RELATED WORK

decomposition), considering that any algorithm could possibly match the previous one by
adding the appropriate preprocessing steps. Moreover, their approach, just like our own
RB-DMA, is aimed to achieve abstract and reusable KDD prototype processes, that can
be seen as suggested sequences of the conceptual steps.

2.3 Generating and Scoring workflows using meta-mining

eProPlan [8] is designed to perform mainly as a cooperative assistant but also can be
used as an automated workflow instance generator. The system, similarly to CITRUS,
carry out an initial decomposition of the user-specified task into sub-steps, which can be
further decomposed afterwards, through a GUI. The implementation depends on a HTN
planner combined with the DMO ontology which consists of the DMOP (Data Mining
Optimization Ontology)[12] and the DMWF (Data Mining Workflow Ontology). Alter-
native execution plans are generated, composed by the several methods available for a
given (sub)task. The user is provided with the set of the workflow instances and makes
the final decision. What is more, compared to CITRUS, is that they are making the hier-
archical planning a part of their ontology. They also take into account each data attribute
separately into their final proposed algorithms. The system lacks of a method for ranking
the proposed workflow instances in order to guide the user better. Automated experimen-
tation is a viable but yet computationally expensive solution.

For this purpose, later on, [13] Nguyen et al. implemented a meta-mining approach
which, for the first time, move meta-learning one step forward. In contrast to other ap-
proaches they stop considering learning algorithms a “black box”. More precisely, they
employ as predictors, not only the features of the previously analyzed datasets (meta-
learning), but also characteristics of the algorithm, such as the model structure, the ob-
jective functions and search strategies used, or the type of data partitions produced,(meta-
mining). By doing so they manage to generalize over the modeling algorithms. This
method is used in combination with eProPlan in order to label the proposed workflow
instances as best or rest. One drawback of this system is that it has to analyze a respect-
ful number of datasets with various different workflow instances and store the resulted
datasets in order to become efficient. This is an expensive process in terns of time and
computations. Also, the reliability of such a ranking system is tightly connected to the
efficiency of the trained meta-models.

2.4 IDEA

IDEA(Intelligent Discovery Electronic Assistant) [4], [14] is an approach really close to
ours. The System relies on an Ontology of Data Mining Operators which also expresses
some preconditions and postconditions of them. The Knowledge Discovery process is
being segmented into three consecutive (sub)processes, pre-processing, induction, and
post-processing. In addition to them, our own RB-DMA (Rule Based Data Mining As-
sistant) moves one step forward and wraps the workflow segments into a Model Selector

2.5. PDM 11

combined with a Performance Estimator which are both appropriately selected for the cur-
rent dataset and are treated as parts of the workflow. Moreover, we also incorporate the
method’s hyper-parameters tuning as part of the induction step.(the induction segment is
further decomposed into two smaller (sub)processes, the model training and the method’s
hyperparameters tuning). The IDEA acts as an assistant to the user, as it provides a ranked
list of all the potentially valid processes for his task. An AI-planner uses the restrictions
and effects (preconditions and postconditions) of applying each operator, in order to com-
pose appropriate workflow instances for a given task and dataset. Bernstein et al. [14]
are using heuristics, in the same way we do, in order to offer the capability to rank the
processes by many different aspects, such as speed, accuracy, cost, sensitivity, compre-
hensibility and weighted combinations of the above components. This approach has the
restriction of defining all the heuristics inside the ontology and only uses the internal in-
ference engine, a fact that limits the expressiveness. In our approach, except from the
ontology we also use an external rule engine which enables us to express unobtrusively,
to add and combine easily heuristics and intuitions related to each of the (sub)-processes.

2.5 PDM

PDM [6] describes KDD operators, their preconditions, and effects, by defining a plan-
ning domain in PDDL (Planning Domain Definition Language)[15]. The cost effects (i.e
time complexity, accuracy) are computed based on a meta-learning technique. It uses the
DM standard language PMML [16], to describe KDD tasks. The system receives as input
a KDD task, specified in a PMML file, which is automatically translated into a planning
problem described in PDDL. Any planner can be used to generate a plan (or plans) which
are then translated into DM workflows .Thus, it is considered as an automated workflow
generator. Similarly to our approach, they incorporate a Model Selector as a part of their
workflows, but yet they are only using default values as hyperparameters.The system is
relying on meta-learning rules which, as already mentioned, is not considered as an ad-
vantage. Finally, the system lacks the potential of ranking the workflow instances by
different (weighted) factors.

12 CHAPTER 2. RELATED WORK

Chapter 3

Implementation

3.1 The employed Ontologies

3.1.1 OntoDM Ontology

OntoDM [1] is a Heavy-Weight Ontology describing the outcomes of DM (Data Mining)
research, and thus covering completely the domain, and supporting more intelligent data
mining methods. On the contrary, most of the other efforts are mostly designed to deal
with a specific task and thus are characterized as Light-Weight ontologies. The OntoDM
Ontology is designed with a sound theoretical foundation and intends to share and reuse
existing knowledge. For this purpose, the top-level classes of BFO 1 ,(depicted in figure
3.1), IAO 2, and OBI 3 ontologies, are being extended by data mining specific classes. It
also uses the relations of the OBO 4 and RO ontologies in order to ensure completeness
and single inheritance for all entities. All the above form good practices in ontology
development field.

In figure 3.1 the main structure/entities of the IAO, BFO and OBI Ontologies are
depicted, together with the relations that express their in-between relationships. The
bold arrows denote rdfs:subClassOf(+) (is-a) relations. The entities Specifically Depen-
dent Continuant (SDC) and Generically Dependent Continuant (GDC) are connected
through IAO:isConcretizationOf relation. The descendants of SDC and GDC, OBI:plan
and IAO:plan specification, are also connected through the same relation. An IAO:plan
specification has_part an IAO: objective specification. Finally, BFO:Quality entity
which represents the is-a SDC.

As a result, OntoDM is an advantageous ontology which exploits the above character-
istics, in order to improve the KDD process. The main super-classes (entities) of OntoDM
are:

• data specification

1BFO: http://www.ifomis.org/bfo
2IAO: http://code.google.com/p/information-artifact-ontology/
3OBI: http://purl.obolibrary.org/obo/obi
4OBO: http://ontoworld.org/wiki/OBO_foundry

13

14 CHAPTER 3. IMPLEMENTATION

Figure 3.1: The main structure of the BFO and IAO ontologies, which OntoDM is extending

• datatype

• data mining task

• generalizations

• data mining algorithm

In figure 3.2 we can see the OntoDM extension of IAO, BFO, and OBI ontologies. The
Algorithm Implementation class is defined as an OBI:plan descendant. OntoDM, also
extends IAO:plan specification with Data Mining Algorithm class which represents an al-
gorithm aiming to solve a data mining task. As a result the OntoDM mentioned classes
are connected through the isConcretizationOf relation. Furthermore, a Data Mining Task
is to produce a generalization from a given set of data and is defined as a subClassOf
IAO:objective specification. Thus, Data Mining Algorithm has_part a Data Mining Task.
A Data Mining Task also has_part an output data specification entity class, which repre-
sents the predictions (output) of an algorithm. A simple example of the above relations
is a rbf kernel support vector machine (r_svm), which is concretization of a binary clas-
sification algorithm. A binary classification algorithm intents to solve (has_part) a binary

3.1. THE EMPLOYED ONTOLOGIES 15

classification task, which produces (has_part) a binary prediction output. Finally, an Al-
gorithm Implementation has_quality an OntoDM:parameter, which represents the tuning
hyperparameters of an algorithm and is an extension of the BFO:quality class. Back, to
the previous example, an r_svm has_quality the hyperparameters, cost, sigma e.t.c.

The above is the ontology structure of the main entities which describe a simple DM
process and also the one that we exploited and extended for the purposes of our imple-
mentation.

Figure 3.2: The structure of the OntoDM entities mainly used in RB-DMA. OntoDM:output data
specification represents the target type of a dataset, OntoDM: Algorithm implementation represents an

algorithm implementing a data mining algorithm, OntoDM: parameter represents the hyperparameters of a
data mining algorithm implementation. The bold lines represent subClassOf relations, showing which are

the OBI, BFO, and IAO extended classes.

3.1.2 Incorporating and Extending OntoDM

The incorporation of a knowledge base describing the different data mining workflow
phases is vital for the efficiency of our system. For this purpose we employed and partially
extended the OntoDM ontology.

As previously mentioned, data mining task class represents the process which aims to
produce a generalization from a given dataset. In data mining, there are 4 fundamental
tasks which are also described in OntoDM, clustering, pattern discovery, probability dis-

16 CHAPTER 3. IMPLEMENTATION

Figure 3.3: OntoDM extension, the red font rectangles represent the newly created entities. Data
preprocessing algorithm, Dimensionality reduction algorithm, and Imputation algorithm are extending the

OntoDM: Data processing algorithm, in order to represent the algorithms of the respective workflow phases.
Imputation is part of the data preprocessing phase, but is represented as a separate entity. The entities

represented as subclasses of the OntoDM: Algorithm Implementation entity are the algorithms
implementing the respective workflow phases.

tribution estimation, and predictive modelling. The last one is further decomposed into
primitive output prediction, and structure output prediction tasks. In our implementation
we focused on the latter, which encapsulates binary, multi-class classification and regres-
sion tasks, which give output (has_part) boolean, discrete, and real respectively, defined
in OntoDM as output data specification subclasses.

For the purposes of our system’s implementation, we expressed our modelling phase
algorithms as subclasses of the predictive modelling algorithm implementation entity,
which itself extends the algorithm implementation entity. In order to also incorporate
the rest of the DM workflow phases into the OntoDM ontology, we invented an entity, as
it is shown in figure 3.3, which extends algorithm implementation, named data processing
algorithm implementation, and has three descendants. Each one of them corresponds to
a different workflow phase, data preprocessing algorithm implementation, dimensional-
ity reduction algorithm implementation, and imputation algorithm implementation . The
aforementioned classes are connected through the isConcretizationOf relation to the, also
newly created, data preprocessing algorithm, dimensionality reduction algorithm, and im-
putation algorithm, respectively, which are all subclasses of the algorithm entity. Our
system’s in-charge methods are listed as subclasses of the corresponding implementation
entity.

Furthermore, the classes representing the tuning hyperparameters of the system’s
methods are inheriting the OntoDM:parameter class. Each one of a method’s hyperpa-
rameters is expressed as instance of the respective parameter class. Those classes are
connected through the has_quality relation to the corresponding algorithm implementa-
tion subclasses. As a working example for all the above we can refer to figure 3.4 which

3.2. THE SYSTEMS ARCHITECTURE 17

depicts the r_svm example, mentioned in the previous section.

Relation Explanation

ExplanationEasiness interpretability
hasTrainTimeConsumption train time complexity

hasPredictTimeConsumption predict time complexity
hasAvgAccuracy average generalization efficiency

has_data_items_number maximum sample size

has_features_number maximum feature size

Table 3.1: The relations used to represent the data mining entity qualities in the explanation column.

Finally, we also introduced 4 relations and employed 2 already existing in OntoDM,
in order to express some quality attributes for each algorithm. They all take a range (an
integer between 1 and 5), which denotes the score related to each of the qualities for the
respective algorithm. We present them in table 3.1.

3.2 The systems architecture

RB-DMA accepts as input the dataset to be analyzed, and executes a series of steps in or-
der to output a suggested ranked list of compatible, for this analysis, workflow instances.
The architecture of the system is depicted in figure 3.5. The first and last step, (Requested
task identification, and Final Workflow Composition and Ranking), are responsible
for processing the input and generating the final output, respectively. The intermediate
ones correspond to the processes of identifying the appropriate methods for each of the
workflow phases. Our approach mainly consists of two essential and complementary
mechanisms. The first one is the knowledge base which is represented through the ontol-
ogy described in section 3.1. SPARQL query language is used as an inference engine on
the ontology, in order to retrieve the information required, throughout the different work-
flow instance constructing steps. The other one, is the rules mechanism, which consists
of a set of heuristics, described in section 3.3, expressed using the rules management sys-
tem, Drools. Its responsibility is filtering and processing the retrieved information. The
system’s steps are described in detail in the following paragraphs. For convenience and
simplicity the bank dataset example is being used.

3.2.0.0.1 Requested task identification Our system, will read the bank dataset, and
try to identify what is the requested data mining task. Given the binary target, and after
inferencing on the ontology it concludes to a binary classification task. The blue arrow
labeled as DM_task in fig 3.5 represents the data mining task, returned as output of the
knowledge base, which is then used as input to the following steps.

18 CHAPTER 3. IMPLEMENTATION

Figure 3.4: rbf kernel support vector machine (r_svm) use case example: Assuming a dataset with binary
target (represented by OntoDM: boolean output), the system following the Has part relation, identifies a
binary classification task (represented by OntoDM: binary classification task). Starting from the binary

classification task entity, and following the Has part relation, it concludes that binary classification
algorithms are the appropriate modeling components. Through the isConcretizationOf relation, the rbf

kernel svm is returned as an implementation of a binary classification algorithm. Finally, the Has quality
relation is being used, in order to identify the methods’ appropriate tuning hyperparameters, gamma and

cost, which are represented as binary r_svm parameter instances.

3.2.0.0.2 Preprocessing Right after, there is a need to investigate if the dataset will be
needing other preprocessing (imputation, standardization, feature selection) before try-
ing to build a model describing it. In order to proceed, the system specifies the predictors
datatype, verifies their completeness (possibility of missing values), and refers to the rules
repository (later described in section 3.3.2) to identify the appropriate preprocessing com-
ponents of the workflow instances. The dataset in our case has no missing values so there
is no need to add imputation in the generated workflow instances. Most of the features
are categorical, so RB-DMA decides to apply binarization, as Long and Jeremy suggest
in [17], as first phase of all the generated workflow instances. The rest of the features are
numerical (integers or doubles). It is a good practice in data mining to standardize the
numerical attributes, ensuring that all values reside in a similar numerical range. Normal-
ization, would be another valid option, but as it is claimed in [18], there is no significant
difference between the impacts of the two methods. Because of that we decided to only
include the former in our system, and thus it is added as next phase in the workflow in-
stances. Finally, in this step a boolean parameter is set to a value indicating whether the

3.2. THE SYSTEMS ARCHITECTURE 19

Figure 3.5: The system contains two main mechanisms, the knowledge base, which consists of data mining
entities represented in the OntoDM ontology, and the rule mechanism, a set of rules expressed using the

Drools system. The system executes 6 steps in order to compose and rank the proposed workflow instances.
The process of the first step is represented through the arrow denoting the dataset given as input to the

knowledge base, and the DM_task arrow, which represents the identification of the appropriate data mining
task, after reading the dataset. The arrow connecting the knowledge base to the rule mechanism, represents

the possible components of the workflow instances for each of the four workflow phases (i). The arrows
labeled as ranked_Si_components, represent the ranked and filtered workflow components, according to the

rules of the rule mechanism. In the last step the workflow composer and ranker takes as input all the
possible methods for each workflow phase, retrieved during the previous 4 steps, composes the appropriate

workflow instances, and finally ranks them.

next phase will be feature selection or not. In our case the variable is set to true because
the feature dimensionality is considered large enough to require reduction.

3.2.0.0.3 Feature Selection Considering rules related to the predictors amount (fea-
tures), RB-DMA decides whether there is a need for adding feature selection in the work-
flow instances. Feature selection refers to the process of reducing the inputs for process-
ing and analysis, or of extracting useful information or features from existing data. This
phase is crucial before applying almost every machine learning algorithm, because it, (a)
enhances the integrity of estimated efficiency, (b) reduces the model training time, (c)
positively affects the final model’s interpretability. For the current analysis, the system
decides that feature selection would be beneficial. A query is performed on the ontology
to obtain a set with the applicable methods for the current task. Elastic-net [19], is one
of the options. It is a modeling method which is commonly used for the current task,
because of its benefit to inherently give importance weights to the predictors, as part of
the building process. Ses [20], is a multiple signature method which is also performing
feature selection, and is the other member of the proposed set. Both are scalable methods
and are proved to accurately reduce the features to the most important subset. Our sys-

20 CHAPTER 3. IMPLEMENTATION

tem generates appropriately ranked workflow instances having both of these methods as
options, for the feature selection phase.

3.2.0.0.4 Modeling algorithm The next, and one of the most important workflow
phases is modeling. At this point the system has to select the machine learning algo-
rithms which are compatible to perform the machine learning task obtained in the first
step. This is going to be accomplished again through inference. For the binary classifica-
tion task in our example, all the available binary classification algorithms are going to be
retrieved. RB-DMA employs Random Forests, support vector machine with linear, radial,
and polynomial kernel, knn, Classification Decision Trees, and elastic-net.

3.2.0.0.5 Hyperparameter tuning An integral part of the successful workflow in-
stance composition is the appropriate algorithm hyperparameter tuning of, both the feature
selection and modeling steps. Hyperparameters are algorithm parameters whose values
are set prior to the learning process. Their tuning process is crucial for each of the re-
trieved algorithms in order to succeed an optimized performance. To accomplish this, the
system combines the power of its two main components, the knowledge base and the rules
mechanism. The best performing ranges of hyperparameter values are obtained through
the knowledge base, and afterwards efficient combinations of them are constructed under
the guidance of the rules mechanism.

3.2.0.0.6 Model Selection and Performance Estimation The last two components,
with major importance, are the proposed model selector and performance estimator tech-
niques. The former is the method that is used to estimate the generalization performance
of the models and to select the best. The latter, is the method used to estimate the real
performance of the selected model. The most commonly used model selection and perfor-
mance estimation methods, are “N fold Cross Validation (CV)” [21] , ”Hold Out (HO)”,
and variations of them. During the execution of a Cross Validation process, the dataset
is split into N equal sized folds. Recursively, N times, the amount of N -1 folds is used
for fitting a model , whereas the last fold is kept for assessing the predictive ability of
the model. Cross-validation, selects the model with the best average predictive ability,
calculated based on all different fold splits (N in total). Hold Out is a simpler process,
during which, the data is partitioned into 2 mutually exclusive subsets which are called a
training set and a test set, or holdout set.
The main factor the system is taking into account in order to select the most appropriate
method to apply is the dataset itself, the feature size, sample size, and the ratio between
them. In the case of large sample size, with respect to the feature size, even a simple
“hold out” model selector, and a “test set” as performance estimator, are enough. The
rule mechanism is responsible for taking these decisions. In our working example the
sample size is classified as large and the feature size as small. Consequently, the system
proposes “3 fold cross validation” as a model selector and a simple “hold out” method for
the performance estimation.

3.3. SCORING WORKFLOWS USING HEURISTICS 21

3.2.0.0.7 Final Workflow Composition and Ranking After executing the above steps,
the appropriate workflow components are available, and the system needs to combine
and rank them. The finally recommended workflow instances consist of all the possible
combinations of the previously obtained components, minus some special cases. Despite
what discussed in the Feature Selection step, some algorithms perform feature selec-
tion as part of the model building process, offering the benefit of eliminating the added
overhead. Elastic-net is classified in this category and thus workflow instances (with
or without feature selection) are produced when the modeling is processed by the algo-
rithm. Furthermore, there is no workflow instance where both the feature selection and
the modeling phases are processed by an elastic-net model. The compatibility, among
the workflow instance’s components, and the dataset, is assured due to the Preprocessing
step. Finally, the system provides the user with a ranked list of the workflow instances,
based on a weighted function of each components rank (described in section 3.3.1), which
is obtained through both the systems mechanisms.

3.3 Scoring workflows using heuristics

3.3.1 The scoring function

The final objective of the system, as already discussed, is to provide the user with a ranked
list of DM workflow instances, depending on his initial task, dataset, and demands. In
order to accomplish this, a weighted function of three components (function 3.1) is em-
ployed to score each of the workflow phases.

R = waA+ wttTT + wtpTP + wcC (3.1)

A, TP, TT,C ∈ [1, 5] (3.2)

wa + wtt + wtp + wc = 1 (3.3)

• A stands for Accuracy

• TT stands for Train Time Complexity

• TP stands for Predict Time Complexity

• C stands for Comprehensibility

• wa, wtt, wtp, wc, represent the "weights" for the respective function components

The scoring function consists of A, TT, TP, and C, multiplied by the respective weight
w, which is supplied by the user. Components with larger weight factor are considered
of higher importance for his task. Summing up the weights should equal to 1 (equation
3.3). Accuracy, Train (Predict) Time Complexity, and Comprehensibility, as shown above

22 CHAPTER 3. IMPLEMENTATION

in equation 3.2, are taking values in the range [1,5], denoting the lowest and the highest
score, respectively.

In order to obtain the final rank of a workflow instance we compose the scores of the
separate phases using the relation 3.4

TotalR =

n=5∑
n=1

wn ∗Rn (3.4)

A workflow instance’s final rank (TotalR) is a linear combination of its component’s ranks,
calculated using equation 3.1.

3.3.2 The scoring heuristics

Each workflow instance component is separately scored based on the rating function,
described in section 3.3.1. Ontology reasoning combined with a set of heuristics are
used to obtain each phase’s matching algorithm. Furthermore, the same mechanisms are
employed to calculate the values for the components of the respective rating function. The
heuristics are referring not only on the methods quality and applicability, but also on the
range and quality of the current tuning hyperparameters. The rest of this section describes
and justifies the system’s heuristics.

3.3.2.1 support vector machine performance heuristics

support vector machine
Condition Consequence

cost ↑ rbf.AvgAccuracy ↑
epsilon ↑ rbf.AvgAccuracy ↓

Table 3.2: Table of general support vector machine heuristics. Cost is an svm tuning hyperparameter,
representing the svm penalty factor. Epsilon is another svm hyperparameter, used mainly when training

regression models, affecting the support vectors quantity. AvgAccuracy is a metric, defined in our system,
which represents the average performance capability of an algorithm, taking values in the range of 1 - 5,

where 1 is the lowest performance capability, while 5 is the highest one

Linear Kernel support vector machine
Condition Consequence

FeatureSize > SampleSize linear.AvgAccuracy = 4
FeatureSize < SampleSize linear.AvgAccuracy = 2

Table 3.3: Table of linear kernel svm heuristics. AvgAccuracy ε [1 - 5].

A Support vector machine [22] is an algorithm which can be applied in both classifi-
cation and regression tasks. According to [23], svm is one of the top performing methods
compared to 169 others, on 121 UCI datasets. AvgAccuracy is a quality metric, defined in

3.3. SCORING WORKFLOWS USING HEURISTICS 23

rbf Kernel support vector machine
Condition Consequence

FeatureSize > SampleSize rbf.AvgAccuracy = 2
FeatureSize < SampleSize rbf.AvgAccuracy = 4

c == median(range) rbf.AvgAccuracy = 5
- gamma = 1 / cost

Table 3.4: Table of rbf kernel svm heuristics. The condition c == median(range) denotes, cost equal to the
median of cost range. Gamma is a tuning hyperparameter for rbf and polynomial kernels, controlling the

area of the support vectors influence. AvgAccuracy ε [1 - 5].

polynomial Kernel support vector machine
Condition Consequence

FeatureSize > SampleSize polynomial.AvgAccuracy = 3
FeatureSize < SampleSize polynomial.AvgAccuracy = 3

- gamma = 1 / cost

Table 3.5: Gamma is a tuning hyperparameter for rbf and polynomial kernels, controlling the area of the
support vectors influence. AvgAccuracy ε [1 - 5].

our system, which represents the average performance capability of an algorithm, taking
values in the range of 1 - 5, where 1 is the lowest performance capability, while 5 is the
highest one. We decided to use this higher range of values, instead of 1 - 3 (bad , medium,
best), in order to better differentiate algorithms with slighter differences on their qualities.
In [23] they concluded that rbf svm AvgAccuracy > polynomial svm AvgAccuracy > lin-
ear svm AvgAccuracy. The previous relation is valid, when the sample size of the data
set is larger than the feature size. When this is not the case (Feature size > Sample size) ,
the dataset is possibly linear and, consequently linear methods are more promising. Thus,
the opposite relation, rbf svm AvgAccuracy < polynomial svm AvgAccuracy < linear svm
AvgAccuracy, is the valid one, in this case. These heuristics are expressed in rows 1 - 2
of tables 3.3 - 3.5.
Hyperparameter tuning is viable for a method. By using it, one can tremendously affect
the methods complexity and performance. A good choice of hyperparameter values can
lead to extremely accurate results while in the opposite it may lead to extremely inaccu-
rate results. For this reason, our system ranks differently the multiple configurations of
the same method. Table 3.2 lists the support vector machine hyperparameter rankings.
Svm hyperparameter cost represents the penalty factor. Quoting Alpaydin et Ethen in [24]
"If it is too large, we have a high penalty for nonseparable points and we may store many
support vectors and overfit. If it is too small, we may have underfitting." In other words,
higher values for cost almost exactly describe the training set, leading to high training
accuracy, but may not operate best on test set. Lower values, describe the training set in a
general(abstract , constrained) way, resulting in poor performances.

24 CHAPTER 3. IMPLEMENTATION

Based on the above, according to scikit-library documentation 5, best practise is choosing
cost values in a logarithmic grid of 10−3 to 103. In our approach we are using values in the
grid 10−1 to 102, and scoring them in ascending order (table 3.2, first cell). While testing
those rules on multiple datasets, we noticed that on the svm with an rbf kernel, the middle
value of the previous cost grid (i.e cost = 10) presents way better performances than the
rest of the grid values, a fact that verifies the above mentioned theory. Consequently, we
adopted the heuristic located in the third cell of table 3.4, giving higher priority between
rbf support vector machine methods to those having cost equal to 10.
Gamma is a parameter which controls the area of the support vectors influence. If gamma
is too high, the radius of the area only includes the support vector itself and so the model
overfits. When gamma is very low, the radius of the area is almost containing the whole
training set, resulting again in poor dataset description. Concluding from the above,
gamma and cost are inversely proportional on influencing the method’s accuracy. Ac-
cording to some experiments reported in the scikit-library documentation, the results of
which are depicted in figure 3.6, the best performing svm configurations consist of cost
and gamma values which are connected through the relation depicted in tables 3.4 and
3.5.

Figure 3.6: Best performing cost and gamma configurations, according to scikit-library documentation’s
experiments.

Another support vector machine hyperparameter, which is only used on regression tasks,
is epsilon. Its role is to control the width of the epsilon-insensitive zone, used to fit the
training data. The value of epsilon affects the support vectors quantity. The higher the
epsilon value is, the fewer the support vectors will be. Hence, epsilon affects the model’s
effectiveness and complexity, like cost does, but in an opposite way (table 3.2, second
cell).

5scikit: http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

3.3. SCORING WORKFLOWS USING HEURISTICS 25

3.3.2.2 elastic-net performance heuristics

elastic net (modeling)
Condition Consequence

FeatureSize < SampleSize en.AvgAccuracy = 3
SampleSize < FeatureSize en.AvgAccuracy = 4

FeatureSize == vsmall en.AvgAccuracy = 2
Alpha ↑ en.AvgAccuracy ↓

Lambda ↑ en.AvgAccuracy ↓

Table 3.6: Table of elastic-net heuristics. Alpha is the elastic-net mixing hyperparameter, controlling the
weighted combination of L1 and L2 penalties of the model. Lambda is the hyperparameter controlling the

amount of feature coefficients shrinkage. AvgAccuracy ε [1 - 5].

Elastic net [25] is a regression method, compatible with classification and regression
tasks, that linearly combines the L1 and L2 penalties of the lasso [19] and ridge[26] meth-
ods.
Referring to the experiments of Fernandez et.al in [23], we conclude that elastic-net,as
classifiers, are medium - performing methods, and thus our system ranks them with a
value of 3, see No 1 heuristic of Table 3.6. Elastic-net is mainly efficient when Fea-
tureSize > SampleSize. After conducting experiments, we ended up that in this case the
method achieves better performances (heuristic No 2 Table 3.6). Finally, we noticed that
in very small dimensionality datasets the performances seem to be poor (heuristic No 3
Table 3.6).
In case of the lasso performing as a feature selection method, we decided to rank its Av-
gAccuracy, which, in this case stands for "how descriptive are the selected features", with
a value of 4. We concluded to this, due to the fact that on average lasso accurately selects
the most descriptive features, increasing the predictive performance of the most modeling
methods. Alpha is the Elastic net’s mixing parameter. It takes values in the range of (0,1].
The upper and lower values represent lasso with L1 penalty and ridge with L2 penalty,
respectively. Models with intermediate Alpha values are weighted combinations of the
two methods. Waldmann et.al in [27] conducted some experiments comparing lasso and
multiple elastic-net configurations on real and simulated genome-wide data. The results
point out that configurations with lower values of Alpha achieve better performances and
more accurately select the important features, compared to those with higher values. Ac-
cording to these results we incorporated to our system the heuristic No 4 in Table 3.6.
Finally, Lambda is elastic-nets shrinkage parameter. When Lambda equals to zero, no co-
efficient shrinkage is performed. As Lambda increases the feature coefficients are shrunk
even more strongly, resulting to even less features selected as important. Deciding the
amount of features that need to be selected (more or less), most of the times depends on
the problem. Selecting a very small Lambda may cause misleading results, due to irrele-
vant features being part of the final model. On the other side, setting Lambda with very
large values may lead to the elimination of high relevance features, resulting to underesti-
mating performances. Thus, in our implementation the main system performs a five-fold

26 CHAPTER 3. IMPLEMENTATION

cross validation of the elastic-net in order to select the best performing Lambdas. These
values are afterwards ranked in an ascending order, meaning that as Lambda increases the
models AvgAccuracy decreases (heuristic No 5 in Table). This is decided because most
of the times the highest selected Lambda value results to a feature set of size one or two,
and thus to seriously underestimated performances.

3.3.2.3 Random Forest performance heuristics

Random Forests
Condition Consequence

Always rf.AvgAccuracy = 4
NumPredictorsToSample ↑ rf.AvgAccuracy ↓

minleaf ↑ rf.AvgAccuracy ↑
NumPredictorsToSample x ∗

√
FeatNum

Table 3.7: Table of Random Forests heuristics. NumPredictorsToSample is the number of features to select
at random for each decision split, for a decision tree of a random forest. Minleaf, controls the minimum

accepted size for the leafs of a decision tree. FeatNum denotes the dataset dimensionality. AvgAccuracy ε [1
- 5].

As already discussed, radial support vector machines is the best performing classi-
fication algorithm. Random Forests [28] [29] is a classification and regression method,
which, according to the aforementioned comparison study [23], performs competitively
well. Thus, our system is equally rating their AvgAccuracy, as it is shown in table 3.7
heuristic 1. Referring also to other studies comparing regression methods on datasets of
manifold fields, such as student performance [30], and spatial data [31], we are verifying
this conclusion. The only exception is in [32], which also refers to spatial data, where
random forests seem to perform worse than svm.
NumPredictorsToSample is the number of features to select at random for each decision
split, for a decision tree of a random forest,. According to Bernard et.al in [33], NumPre-
dictorsToSample =

√
FeatNum is one of the best performing value settings. In our

approach, we are proposing multipliers of this setting, as it is shown in heuristic No 4 of
Table 3.7. Bernard et.al, after conducting experiments on a number of datasets, concludes
that, in most of the cases, best performances are succeeded for smaller values of the hy-
perparameter (heuristic No 2).
Finally, minleaf is another crucial hyperparameter for the Random Forests method. The
larger leaf size, the smaller tree will be build. In general building smaller trees is desir-
able, because they are less biased to the training set, and so overfitting is prevented. Based
on this, our system employs the heuristic No 3.

3.3.2.4 knn and Decision Tree performance heuristics

Knn and Decision Trees are not proven to be in the top performing algorithms [23], and
thus our system lower ranks them (heuristic No 1 Table 3.8 and 3.9). Knn is a classification

3.3. SCORING WORKFLOWS USING HEURISTICS 27

knn
Condition Consequence

Always knn.AvgAccuracy = 2
k ↑ knn.AvgAccuracy ↓

Table 3.8: Table of knn heuristics. K is the hyperparameter controlling the amount of neighbors considered
in the knn model. AvgAccuracy ε [1 - 5].

algorithm, and Decision Tree is capable of performing both classification and regression
tasks.
K is knn’s tuning hyperparameter, controlling the number of neighboring instances that the
algorithm considers in order to predict the target value of a new point. The less neighbors
the algorithm considers the better the prediction, and thus the system introduces heuristic
No 2 in Table 3.8.

Decision Tree
Condition Consequence

Always dt.AvgAccuracy = 2

Table 3.9: Table of Decision Trees heuristics. AvgAccuracy ε [1 - 5].

3.3.2.5 ses performance heuristics

ses
Condition Consequence

Always ses.AvgAccuracy = 4
maxk ↑ rf.AvgAccuracy ↑

threshold ↑ rf.AvgAccuracy ↓

Table 3.10: Table of ses heuristics. Maxk sets the maximum conditioning set to use in the multiple
conditional independence tests performed. Threshold is the parameter used for assessing the p-value

significance in the independence tests. AvgAccuracy ε [1 - 5].

Ses [20] is a feature selection method. Both Ses and elastic-net feature selection
algorithms , are scalable, and efficiently reduce the features to the most important subset.
Due to this fact we have equally ranked their AvgAccuracy, as it is illustrated in heuristic
No 1 of Table 3.10. The efficiency of this method is tightly connected with the setting
of two hyperparameters, maxk and threshold. In order to perform feature selection, ses is
conducting multiple conditional independence tests, maxk sets the maximum conditioning
set to use in them. The larger the set size, the more accurate the selected feature set
(heuristic No 2 Table 3.10). Threshold is the parameter used for assessing the p-value
significance in the independence tests. Two values are considered significant when the

28 CHAPTER 3. IMPLEMENTATION

pvalue is less than the threshold. As it is easily understood for a smaller pvalue the features
selected are more descriptive, and thus our system employs the heuristic No 3.

3.3.2.6 Explanation easiness (interpretability) heuristics

Method Interpretability

SVM 2
Random Forests 2
Decision Tree 4

knn 3
elastic-net 5

Table 3.11: Rank of interpretability for the 5 modeling methods

Decision Tree is a logic-based algorithm and thus it is easily explained [34]. The
random forests consist of many decision trees, but considering that they can be quite
numerous, and that the features selected for splitting are different subsets, random forests,
are not easily interpretable compared to the decision trees . Elastic - net actually is a
simple linear regression model, so it is also easy to explain and interpret it. Furthermore,
knn is considered to have very poor interpretability because it consists of nothing more
than an unstructured collection of training instances. Finally, SVM produce the most
complex and uninterpretable models. Table 3.11 depicts the ranks assigned by our system
for the interpretability of the methods.

3.3.2.7 Train and Predict complexity heuristics

Complexity
Method Train Predict

SVM S3 S ∗ F
Random Forests T ∗ F ∗ S ∗ log(S) S

Decision Tree F ∗ S ∗ log(S) S

knn F ∗ S k ∗ S
elastic-net min(F, S) ∗ F ∗ S min(F, S)

ses F ∗min(F, S)maxk+1 min(F, S)

Table 3.12: Train and Predict Complexity of the methods (used as ranking heuristic). S represents the
sample size, F represents the feature size, k, T , and maxk are the selected hyperparameter values for the

respective algorithms.

Ranking data mining algorithms based on their train and predict time requirements
is quite complex. This is due to the fact that there is not a global value for these mea-
surements. They depend on the algorithm implementation that is being used, but also on
the machine used to run the algorithm. To perform a fair and decent scoring we ended

3.3. SCORING WORKFLOWS USING HEURISTICS 29

up leveraging the (train and predict) complexity of the algorithms as scoring functions,
presented in Table 3.12.
In order to achieve this, we used the complexities as functions of the sample and feature
size of each dataset. The values returned are normalized in the range of [1-5] as the rest
of the rankings.

3.3.2.8 Preprocessing heuristics

Preprocessing
Condition Consequence

Missing values Imputation
Categorical Features Binarization
Numerical Features Standardization

NumFeat > 10 Feature Selection

Table 3.13: Preprocessing Stage heuristics. NumFeat represents the dataset dimensionality.

RB-DMA decides to binarize the categorical features,when they exist, as Long and
Jeremy suggest in [17]. In case the dataset contains numerical features (integers or dou-
bles), it is a good practice in data mining to standardize them, ensuring that all values
reside in a similar numerical range. Discretization, would be another valid option, but
as it is claimed in [18], there is no significant difference between the impacts of the two
methods.
Finally, more than 10 features in the dataset will possibly contain irrelevant, or unwanted
information, and thus the system decides to add feature selection as part of the workflow
instances to keep only the useful information.

3.3.2.9 Model Selection and Performance Estimation heuristics

The accurate selection of the appropriate model selector and performance estimator meth-
ods is essential to produce a reliable result. Picking the wrong method for these workflow
phases may lead to overestimating the algorithm performance, and/or selecting the wrong
one as best performing. Table 3.14 presents the heuristics guiding the selection of the
appropriate methods, sorted in the order that the system evaluates them. When a true
condition is reached the algorithm stops and returns the resulted methods. For instance, if
both the first and the third conditions are true, then the first is the appropriate one.

The most important factor is the data size. We have classified the sample and fea-
ture sizes into 5 categories, presented in Table 3.15, and 3.16, respectively. In the case
where the sample size is very large, there is no need to spend time on training the models
multiple times. It is equally effective to split the dataset in 3 parts. The train set, for
training the models, the test set, needed to select the best model, and the validation set,
in order to asses the true performance of the selected model. This is what heuristic No
1 demonstrates. For a large sample size, we should use a 3 fold cross validation for the
model selector and a hold out validation set as the performance estimator. If the dataset

30 CHAPTER 3. IMPLEMENTATION

Condition Model Selector Performance Estimator

VLarge (SampleSize) HO (TS = 0.3 ∗ TrainSize) HO (V S = 0.3 ∗ SampleSize)
Large SampleSize 3 FOLD CV HO (V S = 0.3 ∗ SampleSize)
VLarge FeatSize 3 FOLD CV BBC-CV Method

Diff = 2 or Large FeatSize 5 FOLD CV BBC-CV Method
Diff = 1 10 FOLD CV BBC-CV Method
Diff = 0 5 Repeats 3 FOLD CV BBC-CV Method
Diff = -1 5 Repeats 5 FOLD CV BBC-CV Method
Diff = -2 3 Repeats 5 FOLD CV BBC-CV Method

Task = classificasion and Folds > min(ClassSize) FOLD = min(ClassSize)

Table 3.14: The Model Selector and Performance Estimator stage heuristics. The evaluation of the heuristics
conditions is executed sequentially. The process stops when a condition evaluates to true. Diff equals
|SampleRank − FeatureRank|, for example small - vsmall = 1. min(ClassSize) represents the size of

the dataset’s smallest class. TS stands for Train Set, and VS stands for Validation Set.

Sample
Size Rank

1 - 99 vsmall
100 - 999 small

1000 - 9999 medium
10000 - 49999 Large

> = 50000 VLarge

Table 3.15: Sample size ranks

Feature
Size Rank

1 - 9 vsmall
10 - 99 small

100 - 999 medium
1000 - 9999 Large
> = 10000 VLarge

Table 3.16: Feature size ranks

dimensionality is larger than medium sized, the feature selection process is time consum-
ing. In order to avoid executing it multiple times when we have more folds, as it is shown
in heuristic No 3, and No 4, we choose for model selection, 3 fold cross validation and 5
fold cross validation, respectively. In order to evaluate the third heuristic of the table, we
have already rejected the first two. This denotes that the dataset should be at most medium
sized. Due to this lack of data observations a simple "Hold Out" performance estimator
is not enough. We choose to apply the Bootstrap Bias Corrected CV (BBC-CV) method
as the performance estimator, which is equally well performing as the Nested Cross Vali-

3.3. SCORING WORKFLOWS USING HEURISTICS 31

dation (NCV) method [35] , while it is less time consuming than that. In heuristics No 4
- 8 Diff represents the difference between the sample size rank and the feature size rank.
For example, Medium SampleRank - Large FeatureRank = -1. The smaller the Diff, the
larger the amount of folds. A good practice in this case, is also to perform repeated cross
validation, as proposed in heuristics No 6 - 8. In the case where diff equals -2 the feature
size is medium size rank, and thus, for the same reason explained earlier, we perform less
repeats compared to the previous heuristics.
Finally, the last heuristic of Table 3.14, is the only one that is evaluated after the ap-
propriate methods have been selected. It is a common heuristic in data mining that, for
classification tasks, the number of folds should be no more than the size of the datasets’
smallest class, when performing cross validation. Thus, if the previously selected amount
of folds is greater, then, we set it equally sized to the smallest class. This is happening
because, if more folds are selected for the cross validation, then, when splitting the dataset
in a stratified way, one, or more of the folds will not have representative instances of the
smallest class.

32 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

4.1 The datasets analyzed

In this work we claimed that RB-DMA is a system capable of covering a wide range of
200 different data analysis scenarios, eliminating the prior separate interpretation for each
one of them. Due to time limits, we were not able to test all of the scenarios. To support
our claims, we managed to generate workflow instances for datasets from manifold fields,
with different, sizes, descriptor data types, and preprocessing needs. The datasets are
presented in Table 4.1. Five of them, indicated in column "B", were already analyzed
by Bernstein et.al, in [4]. We chose to analyze them ourselves, in order to compare our
results to the Bernstein et. al results, due to the resemblance of our works . The column
named "NaN" indicates the datasets having missing values. The tested data mining tasks
are binary classification and regression.

4.2 Evaluating the system

The first thing to be evaluated on an automated system, is the ability to complete its in-
tended task without inconsistencies or missing results, and the ability to complete that, in
a bearable amount of time.
For all the datasets that we gave as input to the system, there were no inconsistent or
missing values in the answer set (produced workflow instances). This is due to the consis-
tency and completeness of the ontology employed to act as the system’s knowledge base.
Furthermore, the user does not need to wait for a long period of time in order to obtain the
requested results. It takes just a few seconds for RB-DMA to read the dataset, coordinate
the cooperation of its main mechanisms and finally generate the appropriate workflow in-
stances. Table 4.2 presents the amount of time needed to produce results for some of the
(later described) datasets. In order to conduct a fair evaluation we recorded the execution
time for multiple datasets, and multiple sample sizes. The second column of the table
presents the time needed for the R glmnet function of the R CRAN package 1, which is

1glmnet: https://cran.r-project.org/web/packages/glmnet/glmnet.pdf

33

34 CHAPTER 4. EVALUATION

called through the rJava package 2, to analyze the dataset and return the best operating
lambda values for the elastic-net method. We decided to subtract this value from the total
running time, and consider the values in the third column as the real execution time of the
system.
The system’s execution time is tightly connected and depended on the size of the dataset
that is being processed. As it is shown in Table 4.2, p53_1000, dexter, and bank, which,
regarding the dimensionality and/or the sample size, are large or very large datasets, so
they require the highest execution time. CASP, which is also a large sample dataset seems
to need less execution time, considering the fact that no feature selection queries are ex-
ecuted in this case, while the total time value needed was almost equal to the ones with
feature selection.
The mean time required to produce the ranked workflow instances was 15 seconds, the
lowest possible time we recorded was 4.6 seconds and the maximum went up to 20 sec-
onds.

4.3 Evaluating the proposed workflow instances

In order to test our system’s efficiency, we conducted a series of experiments. We col-
lected 31 manifold datasets. The workflow instances, generated by the system, were ex-
ecuted using another automated system. The final results are demonstrated and evaluated
in the following section.

4.3.1 Data analysis results

For each dataset, two methods were employed in order to evaluate the generated work-
flow instances. First, we calculated the Spearman’s rs, between the rank generated by our
system and the true rank of the workflow instances after executing them on the current
dataset. We did that, in order to assess the efficiency of our system’s rankings, as well
as to compare our results to those of Bernstein et.al, where the same evaluation method
was used. To demonstrate our next, "first K workflows" claim, we created plots for each
dataset indicating the maximum performance obtained after executing the first K of the
generated workflow instances, where K ∈ [1−NumWorkflows].
In Tables 4.3, and 4.5 we depict the Spearman’s correlations of the classification and
regression datasets, respectively. The last 5 rows of table 4.3 also contain a second corre-
lation, which is the one scored by Bernstein et.al for the same dataset.
Analysing the classification correlations of Table 4.3, we noticed that, almost 50% of them
(9/20) have scored a rs equal to 0.5 or above, and a 30% is close to 0.6 or more.
Table 4.4 presents the median and mean ranking correlations of the classification datasets,
for both systems. The same metrics are also presented for the 5 datasets and also analysed
by both systems . At first sight, the mean ranking correlations scored by the two systems,
for both cases, are close to each other. In 2 of the 5 datasets RB-DMA outperforms IDEA.
The opposite occurs 3 times, thus the two systems are almost equally outperforming each

2rJava: https://cran.r-project.org/web/packages/rJava/rJava.pdf

4.3. EVALUATING THE PROPOSED WORKFLOW INSTANCES 35

other. Comparing the scored median values for the two systems, gives the impression that
IDEA is a more accurate one. It is noticed that the mean and median correlations scored
by our RB-DMA are almost equal. This fact, empowers the certainty that our system is
capable of generating equally accurate workflow instances for any classification dataset.
At the same time, IDEA, as we observed, seems to produce much higher median than the
mean value, which could indicate a less confident system.
Furthermore, our implementation integrates 3 more stages in the workflow, model se-
lection, performance estimation, and hyperparameter tuning, in order to produce a fully
featured system, which also justifies the resulted lower mean and median Pearson’s values
of our system.
Based on the above remarks, the two systems can be considered as competitive, at least
for the binary classification task

The resulted correlations for the regression datasets are not equally satisfying . Re-
gression, is a more difficult and complex analysis task. In this case, probably, more dataset
characteristics, (such as feature variance and standard deviation, which are also used on
meta-learning analysis tasks) need to be considered in the rules mechanism. However, 7
out of the 11 regression correlations (with value between 0 and 0.4), presented in Table
4.5, are better than a random execution order. Another 3 of them are close to, or above
0.5. In any case, there is still place for improvement regarding this analysis task.

In Figures 4.1 - 4.7 the results of our second evaluation method are presented. The
plots represent the maximum performance (AUC for classification, and R2 for regression)
obtained, after executing the first K ranked of the proposed workflow instances for each
dataset. These figures were generated using the following process

1. for N in NumWorkflows

(a) Run the first K workflow instances using the appropriate model selector

(b) Select the best performing one

(c) Estimate the performance of the selected model on a hold out test set

(d) Save the estimated as best performance

2. plot the set of best performances

We decided to use a test set as a performance estimator due to time limits. Any other
method would require a prohibitive amount of time, in order to be executed N times.
Initially, the Figures are grouped based on the data mining task (classification Figure 4.2
- 4.4 , regression Figure 4.5 - 4.7). Next they are grouped based on the sample size (Fig-
ure 4.2 depicts classification datasets with very small and small sample size, Figure 4.3,
medium sample size, Figure 4.4, large sample size, while Figure 4.5 depicts regression
datasets with very small and small sample size, Figure 4.6, medium sample size, Figure
4.7, large sample size), and finally, based on missing values (datasets with a * on their
name, are those having missing values). Figure 4.1 is separately presenting the Bernstein
five datasets results.
There are cases where, the method chosen as best, during the model selection process, is

36 CHAPTER 4. EVALUATION

not the truly optimum one. In these cases, the performance reported during the perfor-
mance estimation process may be lower than the expected. This phenomenon is visible in
the figures below, by sudden drops of the line describing the performance.
Our main intention is to examine if the relation K < 0.5 ∗NumWorkflows(1), (where
NumWorkflows is the amount of the proposed workflows) is satisfied for the majority
of the cases. In other words, what we want to report is the point on the x axes where
the line of the graph reaches its maximum value on the y axes. Starting with the re-
sults depicted in Figure 4.2, we can see that for all the datasets in this figure, K equals
1, strongly proofing our claim that at least for very small and small data sizes, execut-
ing only the first workflow instance will produce the best analysis. In the parkinson and
Nomao_50 figures, a reduction of the performance is observed, in a portion of the first
0.1 ∗ NumWorkflows. Even if the user decides to execute K workflow instances, that
are all contained in the "not the best performing" portion, the final performance will still
remain very close (more than 90%) to best.

(a) heart_c (b) diabetes

(c) adult_10 (d) insurance (e) adult

Figure 4.1: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the AUC performance, y axes represent the number of

workflow instances executed, to obtain the respective performance. Bernstein datasets.

Regarding the medium sized classification datasets of Figure 4.3, the results are almost
equally satisfying, compared to those of the very small and small sized. The amount of
worst case K is calculated around 5 or less, considering the secom, farmads, gina and
hiva subfigures, resulting to the satisfaction of relation (1).(K − 5 << 200). Once more
the best case K equals to 1.

Finally, the plots demonstrated in Figure 4.4 and 4.1, represent the performance of the

4.3. EVALUATING THE PROPOSED WORKFLOW INSTANCES 37

(a) dexter (b) leukemia

(c) GSE20994 (d) parkinson

(e) Nomao_50* (f) Nomao_100*

Figure 4.2: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the AUC performance, y axes represent the number of

workflow instances executed, to obtain the respective performance. Vsmall,small sample sizes
Classification, (* = dataset with missing values)

large sized datasets and the 5 Bernstein datasets, respectively, and confirm that relation (1)
is satisfied for any kind of classification task, and most of the times for a K value equal

38 CHAPTER 4. EVALUATION

to one.
Regarding the regression datasets, the expectations should be lower, considering the

results of their ranking correlations. Figure 4.5 illustrates the plots of the very small and
small sized regression datasets. At a first sight, it appears that the phenomenon of the
“misjudged as best selected methods” is more frequent. Not surprisingly, the value of K
for the studentmat dataset is the smallest one and the only one dissatisfying relation (1).
Even in this worst case, though, the violation of relation (1) depends on the user requests.
After executing less than 20 workflow instances (K < 20), the system scores an R2 equal
to 0.1, which is the closest to best, compared to the rest of the performances in the plot.
If the user is willing to sacrifice the best possible performance for the shake of the time
saving, the system can be again considered as successful, and relation (1) could possibly
still considered as satisfied (20 < 340).
Disregarding the previous result, the rest of the Figure 4.5 results are strengthening the
validity of our claim, even for the regression task. The best K equals to 1, while in the
worst case K equals to 20 out of more than 600 workflow instances.

Moving to the next rank size, Table 4.6 presents the results of the medium regression
sample size. The values of K here are ranging from 1, remaining still the best case, to
almost 500 (out of 600) that are dissatisfying relation (1).
Finally, there is only 1 dataset analyzed for the large sample size of the regression task.
More results would be needed to extract strong conclusions. Based on the results, a value
of 3 (out of 60) is obtained for K, scoring an R2 equal to 0.6, very close to best, which is
0.62, a result which is enforcing our claim.

Concluding, we found out that for most of the cases, although the confidence was less
and the amount of the workflow instances (K) were more, compared to classification, the
regression tasks are still satisfying relation (1).

4.3. EVALUATING THE PROPOSED WORKFLOW INSTANCES 39
N

am
e

Sa
m

pl
e

Si
ze

Fe
at

ur
e

Si
ze

Sa
m

pl
e

R
an

k
Fe

at
ur

e
R

an
k

Ta
sk

N
aN

D
es

cr
ip

to
rs

B

ai
rf

oi
ls

el
fn

oi
se

15
03

5
m

ed
iu

m
vs

m
al

l
R

eg
re

ss
io

n
C

on
tin

uo
us

ya
ch

t
30

8
6

sm
al

l
vs

m
al

l
R

eg
re

ss
io

n
C

on
tin

uo
us

di
ab

et
es

76
8

8
sm

al
l

vs
m

al
l

cl
as

si
fic

at
io

n
C

on
tin

uo
us

X
C

A
SP

45
73

0
10

la
rg

e
vs

m
al

l
R

eg
re

ss
io

n
C

on
tin

uo
us

he
ar

t_
c

29
4

13
sm

al
l

sm
al

l
cl

as
si

fic
at

io
n

X
C

on
tin

uo
us

X
ad

ul
t_

10
32

56
14

m
ed

iu
m

sm
al

l
cl

as
si

fic
at

io
n

X
M

ix
ed

X
ad

ul
t

32
56

1
14

la
rg

e
sm

al
l

cl
as

si
fic

at
io

n
X

M
ix

ed
X

ca
da

ta
_5

0
50

16
vs

m
al

l
sm

al
l

R
eg

re
ss

io
n

C
on

tin
uo

us
ca

da
ta

_5
00

50
0

16
sm

al
l

sm
al

l
R

eg
re

ss
io

n
C

on
tin

uo
us

ca
da

ta
50

00
16

m
ed

iu
m

sm
al

l
R

eg
re

ss
io

n
C

on
tin

uo
us

ba
nk

45
21

0
17

la
rg

e
sm

al
l

C
la

ss
ifi

ca
tio

n
M

ix
ed

pa
rk

in
so

n
19

5
22

sm
al

l
sm

al
l

cl
as

si
fic

at
io

n
C

on
tin

uo
us

st
ud

en
tm

at
39

5
30

sm
al

l
sm

al
l

R
eg

re
ss

io
n

M
ix

ed
ad

a
45

62
46

m
ed

iu
m

sm
al

l
C

la
ss

ifi
ca

to
n

C
on

tin
uo

us
in

su
ra

nc
e

98
22

86
m

ed
iu

m
sm

al
l

cl
as

si
fic

at
io

n
M

ix
ed

X
N

om
ao

_5
0

50
12

0
vs

m
al

l
m

ed
iu

m
cl

as
si

fic
at

io
n

X
M

ix
ed

N
om

ao
_1

00
10

0
12

0
sm

al
l

m
ed

iu
m

cl
as

si
fic

at
io

n
X

M
ix

ed
N

om
ao

_1
00

0
10

00
12

0
m

ed
iu

m
m

ed
iu

m
cl

as
si

fic
at

io
n

X
M

ix
ed

C
om

m
un

iti
es

C
ri

m
e

22
15

12
5

m
ed

iu
m

m
ed

iu
m

R
eg

re
ss

io
n

X
M

ix
ed

sy
lv

a
14

39
4

21
3

la
rg

e
m

ed
iu

m
cl

as
si

fic
at

io
n

C
on

tin
uo

us
bl

og
D

at
a_

50
50

28
1

vs
m

al
l

m
ed

iu
m

R
eg

re
ss

io
n

M
ix

ed
bl

og
D

at
a_

10
0

10
0

28
1

sm
al

l
m

ed
iu

m
R

eg
re

ss
io

n
M

ix
ed

bl
og

D
at

a_
10

00
10

00
28

1
m

ed
iu

m
m

ed
iu

m
R

eg
re

ss
io

n
M

ix
ed

se
co

m
15

67
59

0
m

ed
iu

m
m

ed
iu

m
cl

as
si

fic
at

io
n

X
C

on
tin

uo
us

G
SE

20
99

4
57

86
4

vs
m

al
l

m
ed

iu
m

C
la

ss
ifi

ca
tio

n
C

on
tin

uo
us

gi
na

34
68

97
0

m
ed

iu
m

m
ed

iu
m

C
la

ss
ifi

ca
tio

n
C

on
tin

uo
us

hi
va

42
29

16
17

m
ed

iu
m

la
rg

e
C

la
ss

ifi
ca

tio
n

C
on

tin
uo

us
le

uk
em

ia
39

30
51

vs
m

al
l

la
rg

e
C

la
ss

ifi
ca

tio
n

C
on

tin
uo

us
p5

3_
10

00
10

00
54

08
m

ed
iu

m
la

rg
e

C
la

ss
ifi

ca
tio

n
X

C
on

tin
uo

us
de

xt
er

60
0

11
03

5
sm

al
l

vl
ar

ge
C

la
ss

ifi
ca

tio
n

C
on

tin
uo

us
fa

rm
ad

s
41

43
54

87
7

m
ed

iu
m

vl
ar

ge
C

la
ss

ifi
ca

tio
n

C
on

tin
uo

us

Ta
bl

e
4.

1:
Ta

bl
e

pr
es

en
tin

g
th

e
da

ta
se

ts
an

al
yz

ed
to

ev
al

ua
te

th
e

sy
st

em
.T

he
da

ta
se

ts
ha

vi
ng

un
de

rs
co

re
an

d
a

nu
m

be
r,

co
nc

at
en

at
ed

to
th

ei
rn

am
e

ar
e

su
bs

am
pl

es
of

th
e

or
ig

in
al

on
es

.T
he

la
st

co
lu

m
n

in
di

ca
te

s
th

os
e

th
at

w
er

e
al

so
an

al
yz

ed
by

B
er

ns
te

in
et

.a
l[

4]
.(v

sm
al

la
nd

vl
ar

ge
re

fe
rs

to
ve

ry
sm

al
la

nd
ve

ry
la

rg
e

si
ze

s,
re

sp
ec

tiv
el

y)
.

40 CHAPTER 4. EVALUATION

Name Total time glm time Real Time
insurance 45.25 40.1 5.15
heart_h 5.68 1.05 4.6
bank 21.5 1.88 20.0
Nomao_100 6.1 1.1 5.0
Nomao_1000 6.7 1.2 5.5
sylva 84.5 78.3 6.2
blogData_50 6.1 1.1 5.0
blogData_1000 8.6 3.6 5.0
CASP 8.1 3.0 5.1
dexter 27.7 8.4 19.3
p53_1000 20.0 5.2 14.8
mean 15.5
median 5.32

Table 4.2: Time needed to generate the workflow instances for 11 different datasets, evaluated in seconds

Name rs Brs

ada 0.50
leukemia 0.41
hiva 0.58
GSE20994 0.44
bank 0.67
parkinson 0.48
farmads 0.62
sylva 0.24
gina 0.54
secom 0.43
dexter 0.68
p53_1000 0.08
Nomao_50 0.39
Nomao_100 0.35
Nomao_1000 0.63
heart_c 0.46 0.62
diabetes - 0.08 - 0.52
adult 0.56 0.80
adult_10 0.48 0.75
insurance 0.64 0.31

Table 4.3: Pearson’s rs between the system’s workflow instance ranking, and the actual one, for the
classification task datasets. Brs column depicts the correlations resulted in Bernstein et.al [4] for the same

datasets.

4.3. EVALUATING THE PROPOSED WORKFLOW INSTANCES 41

mean median
5 datasets analyzed by both systems
IDEA 0.39 0.62
RB-DMA 0.41 0.49

Classification (general)
IDEA 0.53 0.70
RB-DMA 0.46 0.48

Table 4.4: Comparing IDEA and RB-DMA mean - median Pearson’s rs

Name r_s
CASP 0.50
cadata 0.28
yacht 0.34
studentmat 0.01
CommunitiesCrime 0.24
cadata_50 0.09
cadata_500 -0,07
blogData_100 0.56
blogData_50 0.03
blogData_1000 0.39
airfoilselfnoise 0.48
mean 0.26
median 0.28

Table 4.5: Pearson’s rs between the system’s resulted workflow instance ranking, and the actual one, for the
regression task datasets.

42 CHAPTER 4. EVALUATION

(a) ada (b) gina

(c) hiva (d) farmads

(e) Nomao_1000* (f) secom*

(g) p53_1000*

Figure 4.3: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the AUC performance, y axes represent the number of

workflow instances executed, to obtain the respective performance. Medium sample size Classification, (* =
dataset with missing values (NaN))

4.3. EVALUATING THE PROPOSED WORKFLOW INSTANCES 43

(a) sylva (b) bank

Figure 4.4: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the AUC performance, y axes represent the number of

workflow instances executed, to obtain the respective performance. Large sample size Classification

44 CHAPTER 4. EVALUATION

(a) yacht (b) cadata_50

(c) blogData_50 (d) blogData_100

(e) studentmat (f) cadata_500

Figure 4.5: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the R2 performance, y axes represent the number of

workflow instances executed, to obtain the respective performance. Vsmall,small sample sizes Regression

4.3. EVALUATING THE PROPOSED WORKFLOW INSTANCES 45

(a) airfoilselfnoise (b) cadata

(c) blogData_1000 (d) CommunitiesCrime

Figure 4.6: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the R2 performance, y axes represent the number of
workflow instances executed, to obtain the respective performance. Medium sample size Regression

46 CHAPTER 4. EVALUATION

(a) CASP

Figure 4.7: plot of the performance obtained from the best model, after cross validating N workflow
instances, evaluated on a test set. x axes represent the R2 performance, y axes represent the number of

workflow instances executed, to obtain the respective performance. Large sample size Regression

Chapter 5

Conclusions and Future Work

In this Thesis we designed and developed an automated intelligent data mining assistant,
which, based on two cooperative components, a knowledge base and a rule mechanism,
composes a ranked list of proposed, appropriate, data mining workflow instances for a
given dataset.
We claimed that our system can be useful, for both the experienced and the novice users,
acting advisory, as a knowledge repository of up to 200 different analysis scenarios. We
also advocated that our implementation enables the user to save time, by safely executing
only the first small portion of the proposed series of workflow instances, while our system
guarantees that the results will be the closes to best.
In order to evaluate our system and defend our claims we setup an evaluation process.
We employed 31 manifold classification and regression datasets of different dimensional-
ity and data type - we did that in order to prove that our system is capable of analyzing
datasets of any kind and source. Afterwards, we used our system to generate workflow
instances for these 31 datasets. Finally we executed the workflow instances on an auto-
mated system.
Two methods were employed, in order to evaluate the generated workflow instances. A
Spearman’s rs, between the rank generated by our system and the true rank of the work-
flow instances, after executing them, and a plot for each dataset indicating the value of K
(size of the portion) on which performance close to best is obtained.
The results of the evaluation, in general, proved our claims valid. In more details, the val-
ues of the classification ranking correlations (rs) had 0.46 and 0.48 as mean and median
values, which are considered as good correlations compared to the random ranking. We
also concluded that the minor difference between the two values empowers the certainty
that our system is equally capable of generating accurate workflow instances for any clas-
sification dataset. As for the regression ranking correlations, the results were not the best.
What possibly is the main reason for this fact is that regression is a more complex and
unpredictable task, compared to the simple classification task. In order to deal with this
problem the system needs to incorporate more specific rules regarding the regression task
and mostly related to other more descriptive characteristics of each different dataset, such
as, mean correlation coefficient for any two continuous attributes, mutual information of

47

48 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

each discrete attribute and target class, median entropy of features, and chi2 of discrete
attributes and target class, which are of the most descriptive meta-features in the meta-
learning, according to [36].
Furthermore, the K values resulting from the plots proved that indeed a user can trust our
system and reliably execute only a few of the highest ranked workflow instances in order
to save time, at least for the classification datasets, even though there were some datasets,
such as the student, and the CommunitiesCrime which scored bad results. The student
dataset is coming from the educational field, trying to predict the grade of a student on
a subject. As it is claimed in [30] the decision trees are of the most efficient methods
for the analysis of educational datasets. In our analysis a workflow instance containing
a decision tree as the modeling method, was the one that scored the best performance.
The malfunction in this case is that our system is taking into consideration general heuris-
tics regarding any classification or regression dataset. Based on them, the decision tree
workflow instances are lower scored, and thus the generation of an appropriate workflow
instance ranking fails (as it is seen in Figure 4.5). In order to eliminate this, we should
also incorporate domain specific rules, to enable the system, to express a rule, regarding
the educational domain, which will higher score the decision trees. Gratefully, the archi-
tecture and the technologies used in the system are offered to easily express any kind of
knowledge and heuristic available, so it would be a matter of time for someone to collect
all the information needed, and express them as rules.
Finally, as one more future direction, more data mining algorithms and tasks, such as
multi-label and multi-class classification, will be an added-value, once they are incorpo-
rated into the system.

Bibliography

[1] P. Panov, S. Džeroski, and L. N. Soldatova, “Representing entities in the ontodm
data mining ontology,” in Inductive Databases and Constraint-Based Data Mining.
Springer, 2010, pp. 27–58.

[2] M. Proctor, “Drools: a rule engine for complex event processing,” in International
Symposium on Applications of Graph Transformations with Industrial Relevance.
Springer, 2011, pp. 2–2.

[3] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth,
“Crisp-dm 1.0 step-by-step data mining guide,” 2000.

[4] A. Bernstein, S. Hill, and F. Provost, “Intelligent assistance for the data mining
process: An ontology-based approach,” Information Systems Working Papers Series,
Vol, 2002.

[5] C. Diamantini, D. Potena, and E. Storti, “Supporting users in kdd processes design:
a semantic similarity matching approach,” in Planning to Learn Workshop (Plan-
Learn’10) at ECAI, 2010, pp. 27–34.

[6] S. Fernández, R. Súarez, T. De La Rosa, J. Ortiz, F. Fernández, D. Borrajo, and
D. Manzano, “Improving the execution of kdd workflows generated by ai planners,”
in Planning to Learn Workshop (PlanLearn’10) at ECAI, 2010, pp. 19–25.

[7] R. Engels, G. Lindner, and R. Studer, “A guided tour through the data mining jun-
gle.” in KDD. Citeseer, 1997, pp. 163–166.

[8] J.-U. Kietz, F. Serban, A. Bernstein, and S. Fischer, “Data mining workflow
templates for intelligent discovery assistance and auto-experimentation,” Third-
Generation Data Mining: Towards Service-oriented Knowledge Discovery (SoKD-
10), pp. 1–12, 2010.

[9] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the success of
bank telemarketing,” Decision Support Systems, vol. 62, pp. 22–31, 2014.

[10] F. Serban, J.-U. Kietz, and A. Bernstein, “An overview of intelligent data assistants
for data analysis,” in Planning to Learn Workshop (PlanLearn’10) at ECAI, 2010,
pp. 7–14.

49

50 BIBLIOGRAPHY

[11] C. Diamantini, D. Potena, and E. Storti, “Kddonto: An ontology for discovery and
composition of kdd algorithms,” Third Generation Data Mining: Towards Service-
Oriented Knowledge Discovery (SoKD’09), pp. 13–24, 2009.

[12] M. Hilario, P. Nguyen, H. Do, A. Woznica, and A. Kalousis, “Ontology-based meta-
mining of knowledge discovery workflows,” in Meta-Learning in Computational
Intelligence. Springer, 2011, pp. 273–315.

[13] P. Nguyen, M. Hilario, and A. Kalousis, “Using meta-mining to support data mining
workflow planning and optimization,” Journal of Artificial Intelligence Research,
vol. 51, pp. 605–644, 2014.

[14] A. Bernstein, F. Provost, and S. Hill, “Toward intelligent assistance for a data min-
ing process: An ontology-based approach for cost-sensitive classification,” IEEE
Transactions on knowledge and data engineering, vol. 17, no. 4, pp. 503–518, 2005.

[15] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins, “Pddl-the planning domain definition language,” 1998.

[16] R. Grossman, S. Bailey, A. Ramu, B. Malhi, P. Hallstrom, I. Pulleyn, and X. Qin,
“The management and mining of multiple predictive models using the predictive
modeling markup language,” Information and Software Technology, vol. 41, no. 9,
pp. 589–595, 1999.

[17] J. S. Long and J. Freese, Regression models for categorical dependent variables
using Stata. Stata press, 2006.

[18] S. F. Crone, S. Lessmann, and R. Stahlbock, “The impact of preprocessing on data
mining: An evaluation of classifier sensitivity in direct marketing,” European Jour-
nal of Operational Research, vol. 173, no. 3, pp. 781–800, 2006.

[19] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[20] I. Tsamardinos, V. Lagani, and D. Pappas, “Discovering multiple, equivalent
biomarker signatures,” in 7th Conference of the Hellenic Society for Computational
Biology and Bioinformatics (HSCBB12). Heraklion, 2012.

[21] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Ijcai, vol. 14, no. 2. Stanford, CA, 1995, pp. 1137–1145.

[22] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning
theory. ACM, 1992, pp. 144–152.

[23] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hun-
dreds of classifiers to solve real world classification problems,” J. Mach. Learn. Res,
vol. 15, no. 1, pp. 3133–3181, 2014.

BIBLIOGRAPHY 51

[24] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[25] J. Friedman and T. Hastie, “Tibshirani r. glmnet: lasso and elastic net regularized
generalized linear models; 2008,” R language, 2013.

[26] A. E. Hoerl and R. W. Kennard, “Ridge regression: applications to nonorthogonal
problems,” Technometrics, vol. 12, no. 1, pp. 69–82, 1970.

[27] P. Waldmann, G. Mészáros, B. Gredler, C. Fuerst, and J. Sölkner, “Evaluation of the
lasso and the elastic net in genome-wide association studies,” Frontiers in genetics,
vol. 4, p. 270, 2013.

[28] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[29] C. Strobl, J. Malley, and G. Tutz, “An introduction to recursive partitioning: ratio-
nale, application, and characteristics of classification and regression trees, bagging,
and random forests.” Psychological methods, vol. 14, no. 4, p. 323, 2009.

[30] P. Strecht, L. Cruz, C. Soares, J. Mendes-Moreira, and R. Abreu, “A comparative
study of classification and regression algorithms for modelling students’ academic
performance.” International Educational Data Mining Society, 2015.

[31] S. F. Santibanez, M. Kloft, and T. Lakes, “Performance analysis of machine learning
algorithms for regression of spatial variables. a case study in the real estate industry.”

[32] A. Okujeni, S. Van der Linden, B. Jakimow, A. Rabe, J. Verrelst, and P. Hostert, “A
comparison of advanced regression algorithms for quantifying urban land cover,”
Remote Sensing, vol. 6, no. 7, pp. 6324–6346, 2014.

[33] S. Bernard, L. Heutte, and S. Adam, “Influence of hyperparameters on random forest
accuracy,” in International Workshop on Multiple Classifier Systems. Springer,
2009, pp. 171–180.

[34] S. Kotsiantis, “Supervised machine learning: A review of classification techniques,”
Informatica, vol. 31, pp. 249–268, 2007.

[35] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehen-
sive evaluation of multicategory classification methods for microarray gene expres-
sion cancer diagnosis,” Bioinformatics, vol. 21, no. 5, pp. 631–643, 2004.

[36] J. W. Lee, Relationships among learning algorithms and tasks. Brigham Young
University, 2011.

	1 Introduction
	1.1 Motivation
	1.2 Motivating Example
	1.3 Organization of this Thesis

	2 Related Work
	2.1 CITRUS
	2.2 Similarity Matching Approach
	2.3 Generating and Scoring workflows using meta-mining
	2.4 IDEA
	2.5 PDM

	3 Implementation
	3.1 The employed Ontologies
	3.1.1 OntoDM Ontology
	3.1.2 Incorporating and Extending OntoDM

	3.2 The systems architecture
	3.3 Scoring workflows using heuristics
	3.3.1 The scoring function
	3.3.2 The scoring heuristics

	4 Evaluation
	4.1 The datasets analyzed
	4.2 Evaluating the system
	4.3 Evaluating the proposed workflow instances
	4.3.1 Data analysis results

	5 Conclusions and Future Work

