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Περίληψη 

Η ζννοια τθσ γραμμικισ κικθσ είναι μια από τισ πρϊτεσ αφθρθμζνεσ ζννοιεσ που ςυναντοφν 

οι φοιτθτζσ ςε ζνα μάκθμα Γραμμικισ Άλγεβρασ ςτο Πανεπιςτιμιο. Στθν παροφςα εργαςία 

μελετϊνται αρχικά οι δυςκολίεσ και οι παρανοιςεισ που πικανϊν να ζχουν οι φοιτθτζσ του 

τμιματοσ Μακθματικϊν και Εφαρμοςμζνων Μακθματικϊν του Πανεπιςτθμίου Κριτθσ, 

ςχετικά με τθν ζννοια τθσ γραμμικισ κικθσ μζςα από τισ απαντιςεισ τουσ ςτθν γραπτι 

εξζταςθ του μακιματοσ “Γεωμετρία και Γραμμικι Άλγεβρα”. Στθ ςυνζχεια 

χρθςιμοποιϊντασ το ερευνθτικό εργαλείο εννοιακι εικόνα και εννοιακόσ οριςμόσ (Tall & 

Vinner, 1981) ςε ςυνδυαςμό με παρατθριςεισ ςχετικά με τθ μάκθςθ και τθν διδαςκαλία 

τθσ Γραμμικισ Άλγεβρασ, παρουςιάηονται τρεισ δραςτθριότθτεσ που ζχουν ςχεδιαςτι για 

να εμπλουτίςουν τισ εννοιακζσ εικόνεσ των φοιτθτϊν ςχετικά με τθν γραμμικι κικθ. Οι 

δραςτθριότθτεσ αυτζσ κα μποροφςαν να ςυμπεριλθφκοφν ςε ζνα εργαςτιριο 

προβλθμάτων ενόσ ειςαγωγικοφ πανεπιςτθμιακοφ μακιματοσ ςτθν Γραμμικι Άλγεβρα. 

Κάκε μια από τισ δραςτθριότθτεσ ζχει ςχεδιαςτεί και/ι επιλεγεί ζτςι ϊςτε να προςφζρει 

τθν ευκαιρία ςε πικανοφσ παράγοντεσ ςφγκρουςθσ να ζρκουν ςτθν επιφάνεια και να 

αντιμετωπιςτοφν. Μια πρϊτθ αξιολόγθςθ των δραςτθριοτιτων δείχνει ότι οι φοιτθτζσ 

φαίνεται να τισ δζχονται κετικά και ότι οι δραςτθριότθτεσ επιτυγχάνουν τθν αντιμετϊπιςθ 

ςυγκεκριμζνων παραγόντων ςφγκρουςθσ. 

Λζξεισ κλειδιά: Διδαςκαλία και μάκθςθ Γραμμικισ Άλγεβρασ, Διδακτικζσ πρακτικζσ ςτο 

Πανεπιςτιμιο, Γραμμικι κικθ, Δραςτθριότθτεσ. 
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Abstract 

The concept of linear span is one of the first abstract notions that students encounter in a 

course on Linear Algebra at the University Level. This work focuses initially on the study of 

the difficulties and misconceptions which students at the Department of Mathematics and 

Applied Mathematics of the university of Crete might have regarding the notion of linear 

span through their answers in the written exams of the course “Geometry and Linear 

Algebra”. Next, using the theoretical structure of concept image and concept definition (Tall 

& Vinner, 1981) along with observations about teaching and learning Linear Algebra, we 

present three tasks designed to enrich students’ concept image regarding linear span. These 

tasks could be included in a problem workshop of an introductory university course on Linear 

Algebra. Each task is carefully created and/or selected so as to foster the ground for 

potential conflict factors to arise and be confronted. A preliminary evaluation shows that the 

tasks are well received by students and succeed in addressing certain conflicting factors.  

Keywords: Teaching and learning of linear algebra; Teachers’ and students’ practices at 

university level; Linear span; Tasks. 
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CHAPTER 1  

 
Introduction 

In recent years, the teaching of Linear Algebra at the undergraduate level attracts the 

interest of researchers in Mathematics Education. Linear Algebra is a subject with many 

applications in Mathematics and other sciences, but its teaching and learning proves to be 

demanding both for lecturers and students (Dorier et al., 2000). Research in teaching and 

learning Linear Algebra at the university level initially focused on identifying the reasons 

behind students’ difficulties (see for example Dorier et al., 2000, Sierpinska, 2000) and key 

characteristics of the nature of Linear Algebra linked to its teaching (e.g. Hillel,  2000). 

Moreover, the role of Analytic Geometry on the teaching and learning of Linear Algebra was 

also an aspect that researcher debated on (Dorier et al, 1999; Harel, 2000; Gueudet-

Chartier, 2004; Watson et al, 2003). More recent developments on the matter concern 

experimental studies and alternative approaches of teaching Linear Algebra (e.g. Stewart & 

Thomas, 2009; Warwo et al, 2013). 

This work focuses on the teaching and learning of the notion of linear span and aims to 

contribute to the existing literature about teaching and learning Linear Algebra in two ways. 

Firstly, it identifies a misconception regarding the notions of linear combination and linear 

dependence in relation to the notion of linear span. Secondly, it aims to develop a set of 

tasks for an introductory course in Linear Algebra to enrich the understanding of the 

concept of linear span.  

The choice of linear span as the focus of this study was not made at random. The concept of 

linear span is one of the fundamental notions in Linear Algebra, based solely on the 

definition of a vector space. In the literature, it has been mainly studied as part of larger 

inquiries regarding the most important concepts of Linear Algebra. We believe that there is 

a gap between studying the teaching and learning of the essential concepts of Linear 

Algebra and focusing on a particular concept as the center of attention. Moreover, other 
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concepts such as linear combination, linear dependence and independence have been 

studied more extensively than linear span. These reasons support our decision to study how 

to improve the understanding of this particular notion.  

This work addresses not only researchers in Mathematics Education but also university 

teachers of mathematics who are interested in creating tasks for students. We approach the 

subject from the perspective of a reflexive practitioner and our goal is to design tasks 

inspired by the needs of our students. We make observations about students’ difficulties 

and misconceptions around the concept of linear span and the learning of Linear Algebra 

based on the way the subject is taught in the Department at the moment.  Taking advantage 

of research in Mathematics Education is going to help in linking these observations to the 

state of the art. Finally, the theoretical constructs used in the study are presented and 

discussed in a way we believe educators can relate to, and perhaps find it inspiring for 

future use, adaptation or improvement. 

In Chapter 2 we present the theoretical background of the study. We review the basic ideas 

of task design and present the main theoretical construct used in the study. We also review 

the literature related to the learning and teaching of Linear Algebra.  

In Chapter 3 we present a preliminary study based on the written answers given by students 

of the “Geometry and Linear Algebra” course in response to a question in the final 

examination for the course. In the study we identify a common misconception of the 

students that will be used later, in the design of the tasks. 

Chapters 4 and 5 are concerned with task design. Chapter 4 is dedicated to presenting the 

initial task design, including the framework, design principles and presentation of the tasks. 

Chapter 5 focuses on the initial evaluation of the tasks through interviews with seven 

students. In this chapter we analyze the students’ reactions to each task and take note of 

some interesting findings.  
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CHAPTER 2  

 
Theoretical Perspectives& 

Literature Review 

This chapter is an overview of the theoretical background used in this work in order to 

develop the tasks. Firstly, we give some general information about task design. Secondly, we 

make a detailed report of the theoretical notions most used in this text. The theoretical 

notions that we use are believed to be easy to handle for Mathematicians that are not 

experienced in the research of Mathematics Education. The chapter ends with a literature 

review on the teaching and learning of Linear Algebra. 

2.1 Task Design 

Tasks play a very important role in teaching and learning mathematics. By its nature, 

mathematics includes the study of (unsolved) problems to produce new results by bringing 

together well established and new ideas. In simple terms, tasks can be viewed as the means 

by which students may explore the world of mathematics, engage into the activity of solving 

problems that are new to them, and acquire knowledge by making connections with prior 

knowledge. Through tasks students encounter concepts, ideas and/or common strategies 

and develop mathematical thinking and modes of inquiry (in Margolinas, 2013: 10). 

Unlike what a mathematician might think, the words “task” and “activity” are often used to 

describe different things. To avoid confusing terminology, we use the term “activity”, in line 

with Christiansen & Walther (1986) and Mason & Johnston-Wilder (2004), as the interaction 

between the teacher, the student and the content. The term “task”, on the other hand, 

denotes the “devices for initiating activity” (Mason & Johnston-Wilder, 2004: 238). 

Therefore, task design can be seen as the process of developing tools to be used to generate 

activity.  This process is usually prolonged and includes multiple cycles of design and 

evaluation. 



18 
 

At a first glance, each research informed task design is unique in many ways. For example, 

the researchers may choose or formulate different theories of teaching and learning to 

frame their work which will be reflected in the tasks. Moreover, the researchers may make 

different choices about the focus of the tasks, the time dedicated to the project or the use 

of tools. Aside from some differences, design typically shares basic characteristics among 

the different perspectives. Plomp (2009) identifies three phases in which designs agree, 

preliminary research (context analysis, literature review, development of a framework), 

prototyping phase (includes iterative stages of research and formative evaluation) and 

assessment phase (summative evaluation, recommendations for improvements). Nieeven et 

al (2006) included systematic reflection and documentation, as a last common stage.  

One of the first concerns of the researchers during task design is to develop the framework 

and the principles. The term theoretical framework refers to the theoretical base of the task 

design, or a study in general. The theoretical framework consists of the notions and the 

theory that is used to support the task design; it presents the definitions of these notions, 

the reasoning and connection between them along with references to the relevant 

literature. In other words, it is the frame in which the design is developed. While the 

theoretical framework might illustrate the general ideas about the design, the principles are 

the “heuristic guidelines” (McKenney et al, 2006: 73) that include desired characteristics, 

based on the framework, and can be applied to the development of the tasks. They depict 

the most important characteristics of the tasks based on the theoretical framework or other 

important factors. The choice of framework and principles depends, among others, on 

institutional aspects, learning environment and researchers’ perspectives (Kieran et al, 

2015). Moreover, task design is frequently part of a larger project (i.e. Curriculum 

development) in which case the theoretical framework and principles of the design may be 

part of a larger framework. Kieran et al (2015) also remark that, depending on the 

complexity of the factors involved, the design may involve a network or synthesis of 

theoretical frameworks and principles. 

To determine the appropriate tasks one should take into account not only the theoretical 

framework and principles but also the priorities of the designers in respect to curricular 

aims or goals in mathematics (Kieran et al, 2015). Therefore, it is important that task design 
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includes multiple cycles through which the developers choose, evaluate and improve their 

design. The type of tasks the designers choose depends heavily on the particular goals. For 

example, Fujii (2015) refers to four types of tasks typically used in Japanese Lesson Study (as 

identified by Doig et al (2011)). These four types are tasks that: 

 Directly address a concept 

 Develop mathematical processes 

 Are chosen based on rigorous examination of scope and sequence 

 Address a common misconception (Fujii, 2015: 279) 

The above categorization of the tasks focuses on the main purpose of each task. The 

purpose of the task partially reveals the intentions of the designers and task users. Another 

characteristic of the tasks which should be taken into account is the amount of information 

or directions that are given to students through the tasks; this intention is usually described 

through the term scaffolding. In simple words, scaffolding is the process by which a tutor 

can support a student to solve a problem without rushing a correct answer. Wood, Bruner & 

Ross (1976) introduced the term in relation to the Vygotskian notion of the zone of proximal 

development. They identified six stages in the process of scaffolding: recruitment, deduction 

in the degrees of freedom, direction maintenance, marking critical features, frustration 

control and demonstration. 

In relation to the role of scaffolding in the development of tasks, Burkhardt & Swan (2013) 

give a different classification of tasks based on types of performance:  

“Mathematical skills and practices can be taught and/or assessed partly in isolation, 

partly under scaffolded conditions, and partly when students face substantial 

problems without scaffolded support. We call tasks that assess these three different 

types of performance novice, apprentice, and expert tasks respectively” (p.434) 

Both classifications are quite general and easy to understand; therefore we believe that 

they can be useful when making decisions upon the development of the tasks. In particular, 

when designing sequences of tasks, it is important for the resulting sequence to involve 

different types of tasks and maintain a balance across and within the tasks (Burkhardt & 

Swan, 2013; Ruthven, 2015). 
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Furthermore, we draw attention upon Burkhardt & Swan’s (2013) observation that task 

difficulty is a parameter often ignored in task classification and design. Moreover, they 

identify complexity, unfamiliarity, technical demand and student autonomy as four notable 

factors that affect task difficulty. In our experience, these factors, very often, have an 

impact on the resulting activity.  

In conclusion, task design is usually a complex procedure which includes the use of 

theoretical constructs and cycles of research to plan, develop and organize tasks. Regardless 

of the different theoretical perspectives the main purpose of task design is to aid teaching 

and learning mathematics. 

2.2 Concept Image – Concept Definition 

“…the axioms are no longer the “self-evident” truths of the Greeks, but concept 

definitions which are set-theoretically formulated abstractions.”  

(Tall 1988b:  5) 

To illustrate the difference between the nature of mathematics and the nature of 

mathematical thinking, one can think of a mathematician presenting his/her findings. During 

the presentation, the truth of mathematics is displayed in a logical order based on abstract 

concepts of an axiomatic theory. On the other hand, the journey of the mathematician to 

discover this truth was far more complex. The mathematician worked months, or even 

years, moving back and forth, studying the roots of the problem, searching for links and 

gaps between his/her thoughts and testing hypotheses. In this process the mathematician 

was not always working in a logical order nor thinking about the mathematical entities as 

abstractions. 

Tall & Vinner (1981) presented a cognitive model of mathematical thinking, highlighting the 

difference between a mathematical concept formally defined and the processes through 

which it is conceived, known as concept definition and concept image. Their theoretical 

construct became a paradigm for future cognitive research and grew to become one of the 

best known theories in mathematics education.  
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The notions of concept image and concept definition were introduced for the first time by 

Vinner & Herschowitz (1980) to analyze geometrical thinking of students. A year later, Tall & 

Vinner (1981) published a paper generalizing the theory beyond geometry and introduced 

the terminology as known today. We note that Tall and Vinner have different perceptions 

about the notions concept image and concept definition (Tall, 2003). In our work we are 

focusing more on the construct as it is presented in Tall &Vinner (1981) making comparisons 

where relevant. 

According to Tall & Vinner (1981) concept image is “the total cognitive structure that is 

associated with the concept” (p. 152). For each individual a concept image includes all the 

mental pictures (graphs, symbols, formulas etc) generated about the concept, associated 

properties and processes. The concept image is unique for each student, “a result of his or 

her experience with examples and nonexamples of the concept” (Vinner and Dreyfus, 1989: 

356) and is changing over time when the student meets new stimuli. 

For example, in Linear Algebra students encounter the concept of matrix. At first, a matrix is 

typically introduced to the students as an algebraic object that is used to solve linear 

equations. At this point, a student’s concept image is likely to contain mental pictures of the 

form  𝐴 =  

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

 (symbolic form) or the idea that the elements of the matrix represent 

the coefficients of a system of linear equations, properties of a matrix such as the 

operations of matrix addition, scalar and matrix multiplication and the process of Gaussian 

elimination. This imagery is not created spontaneously, it requires time and it is developed 

through different experiences and stimuli. Later, students encounter again matrices this 

time as elements of a vector space. This experience requires from the individual to enrich 

part of the concept image. For instance, up until that point a part of a student’s concept 

image is the ability to create linear combinations from the lines or the columns of a matrix. 

This image implies a particular connection between the concept of a matrix and the concept 

of linear combination. Encountering matrices as elements of a vector space, the student will 

come up against the idea of linear combinations between matrices as a whole. This requires 

a shift on this part of his/her concept image to fit the new information. Other parts of the 

concept image, such as Gaussian elimination, may remain undisturbed. 
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As a result, different incentives may cause different parts of the concept image to be 

recalled at a specific time; Tall & Vinner (1981) named the activated parts of the concept 

image the evoked concept image. Moreover, the different parts of the concept image are 

not always coherent. As mentioned above, part of the concept image may be developed 

whereas others remain the same for the time being. Therefore, it is possible for different 

parts of the concept image to contain conflicting aspects. For instance, in Matrix Calculus 

students encounter for the first time a groundbreaking idea of Algebra, the idea of non-

commutative operations. Until that point, students’ experience in Algebra and real numbers 

may suggest that commutativity is inseparable from the concept of multiplication. Contrary 

to their prior knowledge and experience matrix multiplication is not commutative. Students 

are introduced to this seemingly strange fact through several examples of matrix 

multiplication and are expected to enrich their images of multiplication. Although in conflict 

with their prior knowledge, the new information does not cancel the previous one about 

commutativity, instead both ideas are “stored” in different parts of one’s concept image 

which may be triggered by different stimuli. These conflicting aspects are called potential 

conflict factors (Tall &Vinner, 1981) and they are not evident to the individual until a 

stimulus causes the conflicting images to be evoked simultaneously and create confusion, in 

which case they are referred to as conflict factors. 

The term concept definition is referring to “the form of words used to specify that concept” 

(Tall & Vinner, 1981: 152). The concept definition might be a reflection of an evoked 

concept image associated with the definition or a rote memorization of a given definition 

with little or no meaning to the student. Tall & Vinner (1981) stress the difference between 

the personal concept definition and the formal definition of a concept. The latter is the 

definition accepted by the mathematical community as a whole, whereas the personal 

concept definition is constructed by the individual. The personal concept definition might 

contain aspects not included in the formal definition and/or ignore others. Finally, the 

(personal) concept definition creates its own concept image, which is part of the concept 

image as a whole, called concept definition image. 
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It is worth mentioning that whereas Tall & Vinner (1981) and Tall (1988a) directly mention 

the difference between personal and formal concept definition, in Vinner & Hershkowitz 

(1980) and Vinner (1983) the distinction is not always clear. In addition, Tall (2003) states: 

“Shlomo has always written about ‘concept image’ and ‘concept definition’ as being 

‘two distinct cells’ which enables him to make subtle analyses of different ways of 

employing the two distinct ideas. As the concept definition is a form of words that 

can be written or spoken, I regard this as part and parcel of the total concept image 

in the mind/brain” 

This observation might explain the need for Tall to distinguish the formal definition and 

personal concept definition. In this case, only the personal concept definition can be linked 

with the concept image in the individual’s mind. In this thesis, we make use of the 

distinction to help us design tasks that offer the opportunity to create coherent concept 

images including links between the formal definition of the concept of linear span. 

Furthermore, the distinction may allow more detailed analysis between students’ personal 

definitions and the formal concept definition. 

Upon studying Linear Algebra for the first time, students encounter many new formally 

defined concepts, i.e. subspace, linear combination, linear dependence, linear span etc. All 

the basic concepts in Linear Algebra are directly interlinked and create a net of ideas crucial 

for understanding both the need to study Linear Algebra and the structure of the theory. 

Tall & Vinner (1981) argue that potential conflict factors can be an obstacle in understanding 

the formal theory, especially the ones that are in contrast with the formal concept 

definition.  

After its creation in the 1980s, the construct of concept image – concept definition became 

one of the most popular cognitive theories in Mathematics Education. The theory is 

primarily linked with cognitive studies in higher levels of education. Tall & Vinner (1981) 

focus on limits and continuity, since then there is a plethora of articles that made use of this 

construct to analyze notions in Calculus (e.g. Vinner & Dreyfus, 1989; Artigue, 1992; Biza & 

Zachariades, 2010). In Linear Algebra, Warwo et al (2011) investigated students’ concept 

images of subspace and the links students create with the formal definition of a linear 
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subspace. Even after more than 30 years, the construct is not only respected among 

scholars but continues to grow and adapt to contemporary trends. 

Until 2000, concept image – concept definition was considered a purely cognitive 

framework. In other words, the structure of concept image – concept definition was 

interpreted as a tool to examine how notions are developed in an individuals’ mind based 

solely on prior knowledge and stimuli. From then on, other aspects of the structure were 

taken into account too. Mason (2002) stressed the psychological aspects of the formation of 

the concept image. He breaks the concept image into “three interwoven dimensions 

corresponding to aspects of the psyche” (p.191). 

 

2.1 The three dimensions of concept image. Source: Mason (2002) 

According to Mason (2002) the first dimension is the “awareness, images and connections” 

together with “confusions, obstacles and standard misunderstandings”. This dimension 

corresponds to cognition. The second dimension corresponds to behaviour and is all the 

prior and new skills and language connected with the concept. Finally, the third dimension 

represents emotions and contains the root problems and the range contexts in which the 

concept appears that will serve as motivation to the students. 

In addition, Mason (2002) encourages tutors to use this interpretation of the concept image 

as a framework in preparing a tutoring session. In particular, he invites tutors to reflect upon 

his/her own mental images, known students’ misconceptions and struggles and what may 
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be the cause of them, determine the prior knowledge and new skills linked with the concept 

in question and consider a range of contexts and problem types. The language 

accompanying the topic is also important. One should take into account the prior 

knowledge of language together with the new terminology which students might not be 

familiar with.Related to that approach Watson & Thompson (2015) remark: 

“...mathematics cannot be presented as a linear accumulation of ideas with 

assumptions about prior learning, but instead task design needs to develop concept 

images and dispositions that will be sustainable across a range of mathematical 

activity and enable learning at several levels. That is, tasks need to be designed so 

there are multiple entry points, with options for extensions and adaptations.”  

In conclusion, this framework can be viewed as a map that tutors may use to teach any 

mathematical topic. In this thesis we may use Mason’s (2002) framework of concept image 

to help us create a set of tasks that would correspond to the different aspects of one’s 

concept image. 

Bingolbali & Monaghan (2008) demonstrated how the structure of concept image – concept 

definition can be used in socio-cultural research. They argued that although concept image 

is unique to the individual there are aspects that are shared among students. They link these 

aspects to teaching and shared experiences in the department they are studying. To be 

more precise, Bingolbali & Monaghan’s (2008) inquiry of first year Mathematics and 

Mechanical Engineering students show significant differences in the concept images of the 

derivative between prospective mathematicians and engineers which can be attributed to 

teaching and departmental orientations. 

In this thesis we adopt the original concept image – concept definition framework (Tall & 

Vinner, 1981) along with its more recent developments (Mason, 2002 and Bingolbali & 

Monaghan, 2008) to create tasks that can enrich the understanding of the concept of linear 

span of undergraduate Mathematics students. One of our goals is to design tasks that could 

be integrated in the broader context of teaching Linear Algebra in a Mathematics 

Department. In addition, the tasks are meant to be used in situations which encourage 

interaction among students and tutors. Therefore we do not wish to ignore neither the 

psychological nor the socio-cultural aspects of the notions.  
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Finally, we believe that this framework can be easily understood and adopted by 

mathematicians. Since the tasks designed are of no use if they are not implemented, it is 

important that the lecturers and tutors, who might not have any particular knowledge of 

theories in mathematics education, will be able to relate to them. Nardi (2006) presents 

evidence from discussions with mathematicians which support the idea that the concept 

image – concept definition framework can be common ground among Mathematicians and 

Researchers in Mathematics Education. The article provides several examples where 

mathematicians use the construct explicitly or implicitly to describe students learning. Nardi 

(2006) also notes: 

“… it seems to be that the acceptance the CI/CD construct enjoys has emerged from 

its capacity to tell a part *…+ of the ‘story’ of learning mathematics.” 

In our experience, this(cognitive) “part of the story” is what makes mathematicians relate to 

this construct more than to others. It uses simple terminology which reflects valuable 

aspects of their personal journey of learning mathematics. 

2.3 Examples 

Selecting appropriate examples to illustrate a concept plays a very important role in the 

development of the concept image. The concept image is formed through the experience 

students have with the concept, examples, problems and prototypes (Vinner, 1992) both 

inside and outside of the classroom. Although it is impossible for a teacher to control the 

entire process of concept formation he or she can have some power over content presented 

in the classroom. Vinner (1983) argues: 

“… one has to provide the students with examples that form the desired concept 

image not only in the beginning of a chapter but throughout the whole period of 

learning” 

However, the examples do not always depict the full picture; they are bound to particular 

circumstances and also contain irrelevant information which may become for students “key 

elements” of the concept (EMS, 2014). For instance, the vectors v= (1,2,2) , u = (1,1,1) and 

z= (0,1,1) are linearly dependent ( v – u – z= 0 ). In this particular example, every vector is a 

linear combination of the remaining two. This aspect does not hold for every collection of 

linearly dependent vectors, but it may become part of the concept image of students if they 
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encounter several examples containing the same information. In fact, this is a problem we 

discuss in more detail in chapter 3. 

What is an example and when can an example be considered exemplary? One may imagine 

examples as the illustrations of a concept or a process which typically follow a definition or a 

theorem in a textbook or a lecture. Although these examples have a big part in teaching and 

learning, students also draw information about a concept or a theorem through tasks they 

may view as paradigms, models which justify a certain way of thinking. Mason & Watson 

(2008) use the term example to describe “anything from which a learner might generalize” 

(p.3) including illustrations of concepts and principles, placeholders used instead of general 

definitions and theorems, worked examples (questions worked out by a textbook or by the 

teacher for demonstration), exercises, representative of classes which are used to illustrate 

patterns and specific contextual situations. To us, the most important result of this 

categorization is that it illustrates the different ways in which an example can be integrated 

into the teaching of a concept. However, examples are not always exemplary. The term 

exemplary refers to specific situations which “represent a general class to which learners 

attention is to be drawn” (Liz, 2006: 127). In other words, examples can be exemplary only if 

they offer the opportunity to students to draw information that can be used to “appreciate 

a technical term, theorem proof, or structure” (Mason &Watson, 2008: 4). 

For the purpose of this thesis, we are particularly interested in two types of examples: 

exercises and learner generated examples. To avoid confusion, we make explicit the 

distinction between these two terms with exercises referring to the questions that focus on 

the use and fluency with techniques (Mason & Watson, 2008) whereas learner generated 

examples are questions which prompt a learner to construct a specific example. Although 

exercises which focus on fluency might fail to trigger generalisations (Mason & Watson, 

2008), they are important for the development of the concept image. Exercises provide an 

individual the opportunity to practice on a technique and create links between this 

procedure and the concept. For instance, exercises which focus on Gaussian elimination 

help the students to connect this process with different notions such as linear combination, 

column space etc. 
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Contributing to existing research about mathematical knowledge, Hiebert & Lefevre (1986) 

identified two distinct but closely related kinds of knowledge, conceptual and procedural 

knowledge. Conceptual knowledge is the kind of knowledge which is characterized by rich 

relations between “individual fact and propositions so that all pieces of information are 

linked to some network” (Hiebert & Lefevre, 1986: 4). On the other hand, procedural 

knowledge is the knowledge of language, symbols, rules and algorithms for completing 

mathematical tasks (Hiebert & Lefevre, 1986). Related to that, Skemp, 1976 talked about to 

different types of understanding, relational and instrumental understanding. The later type 

of understanding is the ability to apply a set of rules to produce a correct answer without 

understanding how and why these rules work. Relational understanding on the contrary is 

"knowing both what to do and why" (p. 20). In the case of learner generated examples the 

focus is moved away from techniques and students become more involved in the process of 

creating the material to support their learning. Research has shown that learner generated 

examples can help in conceptual understanding (Housman, 1997, as cited in Liz et al, 2006). 

A closely related notion, which can complement the notion of concept image (Liz et al, 

2006) is that of example space. Mason & Watson (2008) describe the example space 

metaphorically as a “larder” where the individual can search for an item needed for some 

purpose. When students are searching for an example based on some given principles, they 

do so by accessing a class of examples they think appropriate for the construction. The word 

“space” indicates that the set of examples the learner attends to is not just a list of available 

items; it is structured and it is “related to knowledge, experience and predisposition” 

(Mason & Watson, 2008: 57). Mason & Watson (2008) identify four principles concerning 

the construction of an example: 

 Exemplification is individual and situational 

 Perceptions of generality are individual 

 Examples can be perceived or experienced as members of structured spaces 

 Example spaces can be explored and extended by the learner, with or without 

external prompts. (p. 57) 

In this study, we attempt to create a task that triggers potentially conflicting aspects of the 

notion of span by asking students to create their own examples with the hope of creating a 
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more coherent concept image. We make use of these principles as a reminder of how 

students may work on and perceive a generated example. 

Concluding, Liz et al (2006) remark that during task design one has to take into 

consideration the characteristics of each example, such as different representations and 

whether they trigger certain types of reasoning or cognitive conflict. For the purpose of this 

study, the characteristics of the examples have a crucial role. Since we wish to design tasks 

which may be used to enrich the concept images of students about the notion of linear 

span, the choice of examples is going to affect the learning outcome in certain ways, such as 

the choice of an algebraic or a more geometric approach and the connection of related 

concepts, processes and ideas. 

2.4 Teaching and learning Linear Algebra: A literature review 

A recent trend in research in mathematics education is teaching and learning at University 

level. For more than three decades, researchers have focused on students’ difficulties, 

behaviours and teaching strategies in what is commonly called Advanced Mathematical 

Thinking (Tall, 1988b). Advanced Mathematical Thinking is typically used to refer to research 

concerning higher levels of education such as high school or University. Tall (1988b) 

described Advanced Mathematical Thinking as: 

“…any part of the complete process of mathematical problem-solving, from the 

creative processes involving deductive and associative resonances between previously 

unrelated, or even undefined, concepts, through to the final “precising” process of 

mathematical proof” 

Through this line of inquiry, a growing interest in mathematics education at University Level 

emerged. Although, early research focused more on teaching and learning Calculus (e.g. Tall 

& Vinner, 1981; Artigue, 1992), the teaching of Linear Algebra attracted the attention of 

researchers and was recognized as a difficult subject to be taught. Even though to 

mathematicians the concepts of Linear Algebra might seem elementary, students face 

significant difficulties understanding “what the fuss is all about”. For instance, Chandler 
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&Taylor (2008) mentioned that it felt like their students were viewing the topics disjointly 

and were trying to solve problems by manipulating symbols and following steps rather than 

trying to understand the concepts. Situations like this, makes Linear Algebra uncomfortable 

both to students and lecturers (Robert  & Robinet, 1989 as cited in Dorier et al 2000). 

The early literature emphasized the identification of students’ difficulties in understanding 

Linear Algebra. One of the most recognized causes of difficulty is the abstract nature of the 

subject. Dorier et al (2000) called this “the obstacle of formalism”, referring to the 

difficulties university students had with the use of formalism in the teaching of Linear 

Algebra in France at the time. The obstacle of formalism refers to difficulties that occur by 

the use of formal language in the theory of vector spaces in relation with the more intuitive 

context of geometry and systems of linear equations (Dorier et al, 2000). Their studies 

confirm that this obstacle is recognized, not only by students, but also by the teachers, as 

one of the most common causes of difficulties along with difficulties that are caused by 

students’ inexperience with proofs, logic and set theory. Artigue (2001) notes that 

difficulties related to the obstacle of formalism are partially removed in countries where the 

first course of Linear Algebra is limited to the study of ℝn with emphasis on matrix calculus 

and applications. On the other hand, she also noted other difficulties related to this 

approach supported by prior research. 

There is no doubt that truly understanding Linear Algebra and appreciating its highly 

theoretical nature depends heavily on understanding the central ideas of subspace, span, 

linear combination and linear dependence/independence. Carlson (1993) points out some 

of the reasons why students struggle to understand these concepts. Firstly, Carlson (1993) 

believes that first year students are less sophisticated and therefore it is difficult for them to 

understand such concepts. He also notes that it is difficult to teach a concept to first year 

students, whose experience is almost entirely computational at this point. Moreover, 

working with these ideas requires different processes in different settings, for example 

finding a basis in Rn and finding a basis of a subspace in the vector space of functions. 

Finally, Carlson (1993) points out the lack of a variety of examples and applications of these 

concepts and the absence of substantial connection with students’ prior knowledge. 
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Related to Carlson’s remarks is, perhaps, the fact that understanding Linear Algebra 

demands a proper level of “cognitive flexibility” (Artigue et al, 2000; Dorier & Sierpinska, 

2001) in manipulating the various languages, representations and settings of the concepts. 

Cognitive flexibility refers to the ability of students to distinguish these different 

representations, translate them from one type to another without confusion. Much like how 

Linear Algebra was born, from geometrical vectors to n-tuples, polynomials and functions, 

understanding its concepts requires a shift of perspective. Dorier & Sierpinska (2001) 

distinguish two stages in the construction of a concept: 

 recognition of similarities between objects, tools and methods brings the unifying 

and generalizing concept into being;  

 making the unifying and generalizing concept explicit as an object induces a 

reorganization of old competencies and elements of knowledge. (p. 257) 

These stages are not in line with the prior experience of first year students who encounter a 

course of Linear Algebra in parallel to or immediately after a Calculus course which is 

typically computational, with little focus on formal proofs and abstract structures. 

Hillel (2000) studies the sources of conceptual difficulties in learning Linear Algebra 

concerning the existence of several languages or modes of descriptions, the problem of 

representation and the applicability of the general theory. These sources are interconnected 

and linked with the lack of cognitive flexibility. He distinguished three co-existing “modes of 

description” of the basic objects and operations in linear algebra:  

1. The abstract mode - using the language and concepts of the general formalized 

theory, including: vector spaces, subspaces, linear span, dimension, operators, 

kernels. 

2. The algebraic mode - using the language and concepts of the more specific theory of 

Rn, including: n-tuples, matrices, rank, solutions of systems of equations, row space. 

3. The geometric mode - using the language and concepts of 2- and 3-space, including: 

directed line segments, points, lines, planes, geometric transformations (p. 192) 

According to Hillel (2000) these modes are interchangeable but not equivalent. For example, 

to determine if a geometrical vector (geometric mode) is in a given plane, one can examine 

if it is possible to write it as a linear combination of two vectors spanning the plane 

(algebraic mode). At this point, the mode of description usually changes to coordinates, and 
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the focus is placed on solving a system of linear equations. Although the procedure is 

algebraic the final result should be recognized as a geometric vector belonging (or not) to 

the given plane. Similarly, one is allowed to change the mode of description depending on 

the setting and procedures, but the different modes have always a different role in the 

process. Moreover it is possible to use different representations of vectors in the same 

mode, for instance geometric vectors may be described as directed line segments but it is 

also useful to think of a collection of vectors as points on a line, a plane or space. 

This categorization makes explicit that cognitive flexibility is essential to cope with Linear 

Algebra. Hillel (2000) also attributes students’ difficulties to understand the multiplicity of 

these representations to teachers and textbooks that constantly shift the mode of 

description without alerting the students or giving them time to think and discuss what 

remains invariant. Contributing to this indication, Stewart & Thomas (2010) used the terms 

of APOS theory and Tall’s three worlds of mathematics (embodied, symbolic and formal) 

which is comparable to Hillel’s modes of description. They observed that the students 

participating in their research often do not have the time and the opportunity to develop 

links between the three worlds.  

In parallel to Hillel’s work, Sierpinska distinguishes two different ways of thinking and 

identifies three modes of thinking that are essential to understanding Linear Algebra. In her 

work, Sierpinska (2000) describes two ways of thinking, inspired by a Vygotskian 

interpretation of scientific concepts, Theoretical Thinking and Practical Thinking. According 

to Sierpinska (2000) Theoretical Thinking is characterized by conscious reflection and the 

ability to express the reasoning behind an action. In Theoretical Thinking reasoning is based 

on systems of concepts by making logical and semiotic connections between the concepts of 

a system. Furthermore, a theoretical way of thinking means that the individual attends to 

the language and pays attention to contradictory thoughts. On the other hand Practical 

Thinking is “an auxiliary activity which accompanies and guides other activities” (Sierpinska, 

2000: 212) rather than a specialized mental activity. It is expressed through “goal-oriented 

actions” (Sierpinska, 2000: 212) implementing reasoning on the basis of a concept’s most 

typical examples. Sierpinska (2000) attributes students’ difficulties in Linear Algebra to their 

practical way of thinking.  
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Aiming to identify the characteristics of students’ ways of thinking in Linear Algebra, 

Sierpinska (2000) also identified three modes of thinking that coexist in the context of Linear 

Algebra: synthetic-geometric, analytic-arithmetic and analytic-structural. The difference 

between synthetic and analytic mode is that they give a different meaning to the notion in 

question. Synthetic mode describes ways of practical, geometric thinking. For example, 

determining if two vectors are linearly independent or dependent in ℝ2 or ℝ3 can be 

achieved without the use or understanding of the algebraic definition of linear 

independence. On the contrary, in analytic thinking the student uses numbers or algebraic 

representations and tries to understand the objects through their definitions and properties 

(Sierpinska, 2000). There are two distinct modes of analytic thinking, arithmetic and 

structural. Sierpinska (2000) explains that analytic-arithmetic thinking aims at simplifying 

calculations whereas analytic-structural thinking focuses on extending the knowledge about 

the concept or concepts in question.  

In line with Hillel’s modes of descriptions, Sierpinska’s modes of thinking co-exist and are 

interchangeable. It is important to note that none of the previously mentioned modes of 

description and thinking is the cause of failure in Linear Algebra. All modes are equally 

important and necessary. In fact, Bagley & Rabin (2016), following a similar framework, 

called the different types of thinking computational, abstract and geometric. In their study 

they found that despite its pitfalls computational thinking has also some very interesting 

affordances, including providing a general orientation to an unfamiliar problem and 

evaluating the applicability of known algorithms. Overall, developing these modes of 

thinking and taking advantage of the different modes of description is essential for students 

to face their failing understanding and overcome their difficulties. 

Apart from classifying students’ difficulties researchers of Mathematics Education have 

focused on the teaching of Linear Algebra. One of the first, and maybe the most studied and 

controversial teaching perspective is the use of geometry as an introduction to Linear 

Algebra. In Dorier et al (1999) the use of analytical geometry was proposed as a means to 

avoid formalism. Inspired by an epistemological analysis of Linear Algebra they suggested 

experimentation with “linear situations” such as geometry, linear systems and magic 

squares. The use of analytical geometry can potentially provide mental images for the basic 
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concept of Linear Algebra (Dorier et al, 2000) and assist students to accept formalism as the 

final step toward the abstract theory (Dorier et al, 1999). Although the contribution of 

geometry in the development of the theory of vector spaces is indisputable, some 

researchers’ findings suggest this approach has some downfalls or limitations (e.g. Harel, 

2000; Gueudet-Chartier,2004). Despite the criticism, contemporary design research in Linear 

Algebra proposes interesting, meaningful and alternative ways to involve geometry in the 

introduction of Linear Algebra (Watson et al, 2003; Stewart & Thomas, 2009; Warwo et al, 

2013).  

Developing a curriculum in Linear Algebra at University level that would correspond to the 

pedagogical needs of students was a major concern early on. Harel (2000) pinpoints the fact 

that (American) high school education is not “geared towards the need of linear algebra” (p. 

179). Although topics such as linear systems of equations, analytical geometry and Euclidian 

space are taught, they are treated in a superficial way that does not reflect the basic ideas 

of Linear Algebra (Harel, 2000). On the other hand, Harel (2000) observed that the authors 

of textbooks on elementary Linear Algebra assume that beginners are comfortable with 

abstract structures, basic ideas and ways of thinking unique to Linear Algebra. Driven by this 

observation and inspired by Piaget’s philosophical theory of concept development, Harel 

(2000) formulated the three principles of teaching and learning Linear Algebra: 

Concreteness, Necessity and Generalisability. The Concreteness Principle states that in order 

for students to abstract mathematical structure from a particular model, such as 

geometrical vectors or ℝn- spaces, the context must be concrete to them. In other words, 

the abstract ideas of Linear Algebra should be built on a context familiar to the students 

which will allow them to make connections, develop a coherent concept image and lead to 

further abstractions (Harel, 2000). 

The second principle, the Necessity Principle, as Harel (2000) calls it, states that in order to 

learn students have to be able to see an intellectual need for what they are taught. He also 

remarks: 

“the idea behind this principle is that instructional environments must include 

appropriate constraints by which students can reflectively abstract mathematical 

conceptions and, at the same time, keep the situation at hand realistic. The 
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instructional activities must offer problematic situations that are realistic to and 

appreciated by the students. Through their activities, students must feel that what 

they do results in a solution of a problem (their own problem!) or in a resolution of a 

conflict (their own conflict!), and, if an idea (e.g., a definition of an operation, or a 

symbolization form of a concept) is initiated by their teacher, they must not feel that 

it was evoked arbitrarily.” (p. 186) 

Related to this principle, Warwo et al (2013) constructed a sequence of tasks using realistic 

situations to help students visualize basic concepts of Linear Algebra. Although to a 

mathematician a realistic situation might occur through established mathematical problems, 

these situations are rarely applicable to teaching first year students. Dorier et al (1999) 

denoted the difficulty of motivating students because the use of the theory will not be 

explicit until they are able to apply it to a wide range of situations. Moreover, Dorier 

&Sierpinska (2001) reported that the axiomatic approach in teaching linear algebra often 

seems unjustifiable to students because “all the linear problems that are within reach of 

first year students can be solved without using the theory of vectors spaces”. Finally, the 

Generalisability Principle is addressed to the activities that students engage with by working 

on a ‘concrete’ model. These activities should enable students to “abstract concepts they 

learn in a specific model” (p. 187). These three principles describe the basic characteristics 

any educated and organized attempt to teaching Linear Algebra should have to fill the gap 

between high school and university mathematics. 

Besides the well-documented difficulties in the basic concepts of Linear Algebra in general, 

contemporary research has revealed some intriguing findings about the teaching and 

learning of the concept of linear span and the ideas that are linked to it. In her thesis, 

Stewart (2008), developed a research-based framework, combining APOS theory and Tall’s 

three worlds of mathematics which can be used both as an analytical tool, to interpret 

students understanding in Linear Algebra, and as a teaching approach. As part of her study, 

Stewart compared two groups of students; the first group was introduced to Linear Algebra 

through a course with emphasis on geometry, embodiment and linking of concepts whereas 

the second group attended a course with emphasis on symbolic algebra, matrices and 

concept definitions (Stewart and Thomas, 2010). Her analysis showed that students in the 

second group faced significant difficulties in understanding the concept of span compared 
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to the group that was taught with focus on embodiment. Stewart and Thomas (2010) also 

observed that in the second group: 

“a small minority managed partially to connect their thoughts to the ideas of subspace 

and basis, no one mentioned that span is the set of all linear combinations of vectors 

(a process view), or referred in their descriptions to the strong embodied aspects of 

span, for example as a plane or other subspace in ℝ3 (an object view)” (p. 182) 

Similar results were observed concerning the concepts of basis and linear independence 

which strongly suggest that an embodied world approach contributes to the understanding 

of the concepts that are the essence of Linear Algebra by helping students making 

connections between different representations and related concepts. 

A drastically different approach, but with equally positive results, is that of Warwo et al 

(2012). Based on the framework of Realistic Mathematics Education, Warwo et al (2012) 

created a sequence of tasks with algebraic and geometric approach on a realistic setting. 

They argue that introducing Linear Algebra through vectors in ℝ2 and ℝ3, making 

connections between their geometric and algebraic representations and studying their 

properties provided students “with rich geometric and algebraic imagery for linear 

independence/dependence, imagery that is strongly connected to the formal definitions”  

(p. 589). Concerning the notion of span, Warwo et al (2012) found that it was non-trivial for 

students to explore and develop a concept image of linear span as the set of all possible 

linear combinations. However, this approach showed positive results in motivating and 

developing the notions of span and linear independence and dependence as opposed to an 

introduction with systems of linear equations (Warwo et al, 2012; Warwo et al, 2013). 

Finally, we would like to mention an important observation of Warwo et al (2011) related to 

this study. Using Tall and Vinner’s structure of concept image and concept definition Warwo 

et al (2011) analyzed the concept images and the importance of concept definition of 

subspace. Among their findings was the observation of the recurring cognitive conflict they 

referred to as “nested subspaces”. Students in their study expressed a conception of the 

vector space ℝk as being a subspace of ℝn, where k<n. Warwo et al (2011) hypothesized 

based on their evidence that this confusion has roots in students thinking “some subspaces 

as “the same”” (p. 15). This “sameness” is essentially based on the concept of isomorphism, 
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with which students are unfamiliar at the early stages of learning Linear Algebra. Warwo et 

al (2011) remark that lecturers often make shifts between k-dimensional subspaces of ℝn 

and ℝk without substantial explanations, linking this observation to Hillel’s modes of 

description. This can be confusing to students and perhaps falsely attribute this “sameness” 

to the geometric properties of ℝ2 or ℝ3 spaces due to inexperience with different modes of 

descriptions. However, Warwo et al (2011) proposed that these situations might offer the 

ground to motivate isomorphism as a tool and help better students understand this 

“sameness”.  

In conclusion, research on the teaching and learning Linear Algebra so far has brought to 

light some insights about the fundamental difficulties students face with the subject. The 

nature of Linear Algebra requires the development of different ways of thinking and of a 

reflexive attitude that often delays the understanding of essential concepts such as 

subspace, span, linear independence or basis. However, this situation is not out of hand. 

Experimental teaching and attention to students’ needs has offered positive results so far. 

Although mathematics education cannot give a universal solution to the problem, 

continuing research contributes in making the teaching of this abstract subject richer and 

more appealing to students. 
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CHAPTER 3  

 
Preliminary Study 

This chapter is dedicated to the preliminary study conducted in order to support our task 

design. Firstly, we present some details about the mandatory courses in Linear Algebra 

offered in the Department, focusing on the teaching of linear span. In the second section, 

we present the purpose and the research question of the study. Next, we discuss the main 

features of the method used. To analyze and present our data we employed the grounded 

theory approach. This method is chosen in order to achieve a better understanding of 

students’ needs regarding the teaching of linear span.  Finally, we present the analysis of the 

data and formulate a hypothesis that will help us design the tasks. 

3.1 The setting 

In the context of this study, we analyze and present our findings regarding students’ 

difficulties and/or misconceptions about the notion of span. These findings are linked to 

what students are expected to understand by the end of an introductory course in Linear 

Algebra and perhaps to the way the course is being taught. To give a full picture of what we 

are looking for in this study, we begin with a short description of the mandatory courses in 

Linear Algebra offered in the Department. This description is based on the curriculum of the 

Department and the lecture notes (Kourouniotis, 2014; Kourouniotis, 2016) provided to 

students each year. 

The Department of Mathematics and Applied Mathematics of the University of Crete offers 

two mandatory courses in Linear Algebra. “Geometry and Linear Algebra” and “Linear 

Algebra I”1are designed to be taught2 to students in the 1st and 2nd semester of their studies 

respectively. Both courses are typically taught through 4 hours of lectures and a two-hour 

problem workshop per week. 

                                                      
1
The semester in question, the researcher was part of the group of tutors guiding the students through the 

2
Although designed for first year students, a number of people may be older students retaking the course. 



40 
 

The introductory course “Geometry and Linear Algebra” aims to acquaint students with 

different forms of mathematical representation of geometrical objects (vectors, lines, 

planes etc.) through problem solving, the study of ℝn, the use of matrices and the use of 

Gaussian elimination to solve systems of linear equations or study subspaces in ℝn. This 

approach is imposed in part by the fact that secondary education in Greece includes the 

teaching of notions such as vector on a plane and procedures like solving a simple system of 

linear equations but without highlighting key ideas of Linear Algebra. As a result, the goals 

of this introductory course are divided between introducing students to the basic concepts 

of Linear Algebra through the “model” spaces ℝn and familiarization to problem solving 

methods using matrices. 

Focusing on linear span, the notion is connected to those of subspace, linear combination 

and basis. It is one of the most central concepts in Linear Algebra. The concept is introduced 

in the course “Geometry and Linear Algebra”. As an intuitive introduction to the concept, 

students experiment with the idea in the Euclidian plane and 3-space. The notion is formally 

defined in the middle of the semester right after the definition of linear combination. We 

note that the notion of span in the context of this course is mostly referred to descriptively 

as “the subspace generated3 by v1, v2, …,vk”. In relation to the general goals of this course, 

students are expected to familiarize with the concept of linear span in subspaces of ℝn, be 

able to identify its geometrical representation in the case of ℝ2 and ℝ3 and be able to 

determine if a vector is in the span of a fixed set of vectors. 

During the course “Linear Algebra I” students revisit concepts of Linear Algebra this time in 

an axiomatic manner. The course includes an introduction to the axiomatic study of vector 

spaces and the presentation of examples of more general vector spaces such as polynomial 

and function spaces. The study of more complicated problems is connected to the 

computational processes developed in the introductory course. In addition, it seeks to 

highlight the usefulness of the theoretical approach. Finally, in “Linear Algebra I” the 

concept of span is defined again in a similar manner for arbitrary vector spaces and more 

                                                      
3
There is a difference between the translation of span as a verb and as a noun. In Greek the verb span is 

synonymous to the verb generate (in general) whereas the meaning of linear span is restricted in the context 
of mathematics. 
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examples are given to the students. In this course the students are expected to have some 

prior knowledge about the notion in order to explore some of its properties and use it 

properly in problem solving.  

3.2 Methodology 

3.2.1 The development of the research question 

In addition to what is proposed in the literature, we attempted to identify specific 

difficulties and/or misconceptions regarding the notion of linear span that students in our 

Department struggle with. Bingolbali and Monaghan (2008) made a connection between an 

individual’s concept image and teaching practices within different university departments. 

On this basis, we decided to investigate how students in the Department of Mathematics 

and Applied Mathematics of the University of Crete make use of the concept of linear span.  

The main purpose of this preliminary study is to acknowledge key aspects of the notion that 

students may not fully comprehend. To this purpose, we have formulated the general 

research question: 

 What key aspects of linear span students might overlook while solving a problem? 

3.2.2 The method 

To accomplish our purpose, it was decided to use a grounded theory approach to analyze 

the data we collected from the final exam of the course “Geometry and Linear Algebra”. 

Grounded Theory is an experimental method where the researcher uses induction to 

generate a theory based on qualitative data.  In contrast with other approaches, in 

grounded theory there is not a pre-existing hypothesis to put to test. Therefore, in grounded 

theory data are not “forced” to fit within a predetermined theory (Glaser and Strauss, 1967, 

as cited in Cohen et al, 2011). In this study, the approach was used to help us generate a 

hypothesis about students’ difficulties and/or misconceptions about the concept of span. 

We later use this hypothesis to create tasks that could be used in the context of an 
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introductory course in Linear Algebra. Since we had limited amount of time and data at the 

time, we proceed with an abbreviated version of grounded theory (Willig, 2001, p. 73). 

We gathered written answers on a task given to students in the final exam of the course 

“Geometry and Linear Algebra” during the winter semester of 2016-17. The task given to 

the students was the following: 

“Εξετάςτε αν το διάνυςμα z=(1, –1, 1) ανικει ςτο χϊρο V που παράγεται από τα 

διανφςματα u=(2, 1, –1) και w=(3, 2, –2).” 

Translation: “Determine if the vector z=(1, –1, 1) belongs to the space V spanned by 

the vectors u=(2, 1, –1) and w=(3, 2, –2).” 

The task was chosen by one of the lecturers and was given only to his students (about half 

of the students that took the exam). It was part of a two-question task and served as a 

scaffold to answer the second one. This question examines the ability of students to decide 

whether a vector lies in the span of some other given vectors. It also checks the ability of 

students to follow a standardized procedure. There is more than one correct approach that 

one could use to answer this question. The goal is for one to conclude that z can be written 

as a linear combination of u and w. We note that the vectors u and v are linearly 

independent so they form a basis for V. This fact was unintentional but eventually it was 

proven very fruitful in our study.   

The sample consisted of the 129 students who attempted the task. These students were in 

various years of their studies in the Department. To be more precise, the following table 

lists the number of students that answered the question by year and stream of study. 

 

 1st year 2nd year 3rd  year 4th year >  4th year 

      
Mathematics 21 17 9 4 11 
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Applied Mathematics 21 16 14 14 2 

The decision to collect data from an official exam was made mainly to ensure that the 

answers represent more accurately the students’ thoughts about the notion. Even though, 

the responses were not anonymous we tried to warrant confidentiality in the context of the 

Code of Ethics of the University of Crete (2002).  

To analyze the data we used coding and constant comparison. Coding processes in general 

require moving back and forth in the data so that the researcher can identify similarities and 

differences between categories. Constant comparative analysis “ensures that the coding 

process maintains its momentum” (Willig, 2001, p. 71) throughout the coding process. By 

the end of this process a core category was identified in order to answer our research 

question. 

3.3 Analysis of the data 

This section is concerned with the analysis and the interpretation of the answers provided 

by 129 students on the question discussed earlier. At first, we present the success rates as 

based on the lecturer’s grades. Then, we give a detailed analysis of our findings in regard of 

the difficulties and misconceptions that students might have about the notion of span. It is 

worth noticing that our focus was on students’ reasoning throughout the process. Therefore 

we did not take into account arithmetic mistakes as long as the reasoning was not shifted 

afterwards. 

The following figure shows the success rates based on the lecturer’s grades on the question. 

The data are divided into four categories, namely A, B, C and D. Each of the categories 

represents a class of grades from 0 to 8, where 8 was the maximum grade for this question. 

The category “A” stands for grades 8 and 7, “B” for grades 6 and 5, “C” for 4 and 3, finally 

“D” stands for grades less than 3. 
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Figure 3.1 

Focusing on the category “D”, 71 of the students failed to fulfill the requirements of the task 

which was essentially to determine if z can be written as a linear combination of u and w. 

This category includes answers that had incorrect reasoning paired with insufficient 

procedures and answers that were either completely unrelated to the question or just yes 

or no statements without proper justification. On the other hand only 26 out of 129 

students managed to give a satisfactory answer. The rest of the students, 19 in the category 

B and 13 in the category C, were found to have conceptual or computational difficulties. 

Over all it is reasonable to assume, at this point, that most of the students eitherstruggle 

with some aspects of the notion of span or have difficulties in the procedure. To investigate 

further this trend, we tried to analyze as best as possible the answers by looking for gaps in 

the line of reasoning and searching for connections between students’ attempts. 

After careful coding and constant comparison we determined that students use different 

notions and/or procedures to achieve their goal. The figure below depicts our results 

regarding the use of the different concepts. The code that represents each of them is an 

abbreviation of the main goal. The code “LinC”, standing for linear combination, was used in 

the cases where students either stated that in order for z to be in the span of u and w, z 

must be written as a linear combination of u and w, or whenever the results were consistent 

with this approach. Similarly, the codes “LinD” and “LinIn” were chosen for cases where the 

dominant idea was that z lies in the span of u and w if these three vectors are linearly 

A B C D

Accomplishment

0

10

20

30

40

50

60

70

80

26

19

13

71



45 
 

dependent or linearly independent respectively. Finally, there were 6 cases where the goal 

was vague denoted as “notC” (not clear) and 26 where students used unrelated procedures 

or just gave a yes or no answer, referred to as “Other”.  

 

Figure 3.2 

Only one of the concepts mentioned above is appropriate for solving the problem.  Linear 

span of a set of vectors is defined to be the vector space of all the linear combinations 

produced by the set. On this basis, z belongs to the span of u and w if and only if z can be 

expressed as a linear combination of u and w. In other words if and only if there are real 

numbers a, b such as z=au+bw. Since z actually belongs to the span of the given vectors, the 

right way for someone to answer this question is to reach to the conclusion that z can be 

written as a linear combination of those two. Therefore, 55 of the students (LinC) seem to 

have set the right goal to solve the problem.  

On the contrary, the goal LinD is not enough to answer the question fully. If a vector z is in 

the span of some other vectors v1, v2, …,vk then the set {z,v1,v2,…, vk} is linearly dependent. 

However, the opposite is not always true. For example the set {(1,0), (0,1), (0,2)} is linearly 

dependent but (1,0) is not in <(0,1), (0,2)>. In our case, u and w are linearly independent 

therefore the fact that the set {z, u, w} is linearly dependent implies that z can be written as 

a linear combination of u and w. Either way, the fact that z, u and w are linearly dependent 
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is not enough. There must be a statement about the status of u and w. In our case, none of 

the 25 students who used the concept of linear dependency made such a statement, 

therefore their answers cannot be considered sufficient. There were, also, 17 answers based 

on the belief that “z is in the span of u and w if z, u and w are linearly independent”. This 

could partially be interpreted as confusion between the concept of span and the basis.  

In order to have an overall view for each of the main categories LinC, LinD and LinIn, we 

further defined three subcategories based on how clearly was the goal stated each time. To 

do so, we used three new codes. “Clear” which applies to the cases where the goal was 

explicitly stated or supported by the conclusion. “Hazy” refers to answers where the 

explanation given shares aspects with more than one concepts. For example an answer is 

coded as Hazy LinC if the student refers to the concept of linear combination but later uses a 

procedure that is typically used in determining linear dependence (e.g. solving Ax=0). Finally 

the subcategory “Instrumental” refers to the answers where the student follows a known 

procedure without reasoning for his/her actions. We note that, although this is essentially a 

procedural task, the code “Instrumental” refers only to the way some students seem to 

follow that procedure without questioning their practices. 

Out of the 55 answers making a reference to the notion of linear combination, 14 are 

classified as “Clear”, 21 as “Hazy” and 20 as “Instrumental”. In contrast with the other two 

main categories, most of the answers coded as LinC are either purely procedural or show 

signs of confusion. Also interesting is the fact that in category LinD 13 out of 25 students 

clearly stated that the vectors have to be linearly dependent. This supports the 

interpretation that the concept of linear combination in relation to that of linear 

dependence is confusing to many of our students. 



47 
 

 

Figure 3.3 

 

3.4 Conclusion & the hypothesis 

By thorough examination of the available data, we observed that most of the students have 

difficulties determining when a vector lies in the span of some set. Those difficulties vary 

from total misuse of the concept of span to misconceptions on some aspects of it. In either 

case, a need for more attention on the teaching of the concept is apparent.  

Among the goals of the course “Geometry and Linear Algebra” regarding the concept of 

span is familiarizing with the notion and being able to examine if a vector belongs to a linear 

span. Our analysis shows many instances where these goals are not achieved. Less than half 

of the students used the right approach in trying to answer this question, but most of the 

time they also showed signs of confusion or instrumental understanding.  

Perhaps the most interesting finding is that there are some students who attempted to give 

an answer by examining if the three vectors are linearly dependent. As we discussed earlier, 

this approach is not the most appropriate to solve this problem. Although in this particular 

case being linearly dependent implies that z is in the span of v and w, a full answer requires 

the students to notice that the set of generators is linearly independent. In our data we 
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observed that the students did not make an explicit or an implicit reference to this fact. 

Therefore we are led to believe that some students may ignore or have difficulties in 

understanding the difference between linear dependence and the existence of a particular 

linear combination. The notions of linear combination and linear dependence may be quite 

alike to the eyes of a student. Apart from the similarities in the algebraic representations of 

the two concepts, a deeper root for this problem may be the false assumption that the two 

notions are equivalent. Typically, in “Geometry and Linear Algebra” students are introduced 

to the concept of linear dependence through the existence of a linear combination between 

some of the vectors in a given set. At this stage, because of their inexperience with logic or 

lack of evidence and limited example space, it is possible that some students may assume 

that every vector in a linearly dependent collection can be expressed as a linear 

combination of the others. In the context of linear span the notion of linear combination is a 

very important aspect and serves a very different purpose than the notion of linear 

dependence. Even though this difficulty is not explicitly related to the notion of span it is 

important to confront it. Examining the notion of linear span may offer the opportunity to 

confront such difficulties in a meaningful way. Therefore we believe that it is important to 

take this observation into account when designing and evaluating the tasks. 

Summarizing, in this mini study we focused on difficulties and/or misconceptions about the 

notion of span that students of the Department might have. The greater purpose of this 

inquiry is to create a set of tasks in the context of an introductory course in Linear Algebra 

that could help future students in better understanding the notion. 
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CHAPTER 4  

 

Task Design 

In this chapter we present in detail a sequence of text-based tasks designed to enrich 

students’ understanding of the concept of linear span. The tasks are designed to project key 

ideas about the concept of linear span. First we provide some information about the 

purpose of the design. Then we make some brief notes about the most important aspects of 

the concept of linear span. Finally, we discuss in detail the theoretical framework, design 

principles and the development of the tasks. 

4.1.1 The purpose 

Our aim is to create a sequence of tasks that could be used in the context of an introductory 

course in Linear Algebra to assist students create coherent images about the concept of 

linear span. The need for these tasks arose from the participation in the problem workshops 

of the course where we witnessed firsthand the benefits of this process and also the efforts 

and the struggles of students to comprehend aspects of Linear Algebra.  

Typically the majority of the tasks in the problem workshop of the course “Geometry and 

Linear Algebra” is computational and aims to develop mathematical procedures. We would 

like to create tasks that can be integrated in a problem workshop about linear span, 

complementing these standard computational exercises in a way that would promote 

conceptual understanding and theoretical thinking. This intention corresponds to the way 

problem workshops operate in the Department. Nevertheless, the set of tasks is designed so 

that it could easily fit in similar circumstances with little or no alterations.  

4.1.2 The concept of linear span 

A subspace can be described either as the set of solutions of a homogenous linear equation 

(equivalently, as the kernel of a linear transformation) or as the linear span of a set called 
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the set of generators. The second approach is, ultimately, more fundamental since the set of 

solutions can be expressed as the linear span of a set of special solutions.  

In a given vector space U over a field K the linear span of a set of vectors S is defined4 to be 

the subspace of all the linear combinations of elements of S. In the course “Geometry and 

Linear Algebra” students are given a slightly modified version of this definition limited to the 

spaces Rn. In Kourouniotis (2014) the definition is given as such: 

“Θεωροφμε τον γραμμικό υπόχωρο V του Rn. Τα διανφςματα w1, w2, … ,wk του Rn 

παράγουν τον υπόχωρο V⊆Rnεάν: 

a) wj∊Rn για κάκε j=1,2,…,k και 

b) κάκε διάνυςμα του V εκφράηεται ςαν γραμμικόσ ςυνδυαςμόσ των w1, w2, … ,wk, 

δθλαδι για κάκε v∊V υπάρχουν αρικμοί c1, c2, …, ck τζτοιοι ϊςτε v=c1w1+c2w2+ … 

+ckwk.” 

Translation: Let V be a subspace of Rn. The vectors w1, w2, … ,wk of Rn span the 
sunspace V⊆Rn if: 

a) wj∊Rn for every  j=1,2,…,k and 

b) every vector in V can be expressed as a linear combination of w1, w2, … ,wk, that is 

for every  v∊V there are real numbers c1, c2, …, ck such that v=c1w1+c2w2+ … +ckwk. 

In both cases, namely the general and the limited definition, the most important aspects of 

the concept are comprised. The first is the aspect of closure under the operations of a vector 

space. The linear span of a set S is a subspace of U (or Rn). Every element of S and every 

linear combination of them is an element in the subspace spanned by S. The second 

important aspect is that every element in this subspace is a linear combination of some 

vectors in S. This is stated very clearly in the definition. The final aspect is also very 

important and typically overlooked. There is no limitation in a choice of the set of 

generators S. In contrast to the concept of basis where the vectors have to be linearly 

independent, the set S may contain linearly dependent vectors. The findings in our 

                                                      
4
There is an equivalent definition of linear span as the intersection of all the subspaces in U containing S. 
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preliminary research support the claim that this aspect is confusing for some students 

perhaps due to misleading examples or lack of attention. 

These three aspects make the concept of linear span remarkable both for mathematical and 

didactical reasons. For mathematicians abstracting and generalizing ideas is the key to 

develop new theory. The notion of linear span can be used in the context of Linear Algebra 

in abstract cases where it is difficult to determine a basis, for instance in the vector space of 

real functions. The essence of these three aspects is that they depict the notion of span 

based only on the axioms of a vector space as an algebraic structure in contrast with the 

notion of the basis. As a result, the concept of the set of generators, which is closely linked 

to that of linear span, can be generalized to other algebraic structures. In contrast with the 

concept of span, the concept of basis can be generalized only in special cases (e.g. modules 

over rings). From a didactical standpoint, we argue that if someone’s image of linear span 

includes these aspects they would set good foundations for understanding key ideas in 

Algebra generally. 

4.1.3 The setting 

Problem workshops are an important part in the teaching of the mandatory courses in the 

Department. Apart from lectures, students are encouraged to attend weekly problem 

workshops in each mandatory course. Typically, students are expected to work in groups on 

selected problems of the subject taught that week with the guidance of the lecturer and a 

number of postgraduate or senior undergraduate students.  Problem workshops are 

designed to assist students in their learning process, promote discussion and create a 

learning culture.  

4.1.4 The framework 

The design is based on the theoretical construct of concept image and concept definition 

(Tall & Vinner, 1981). We adopt a more recent approach to this theory proposed by 

Bingolbali & Monaghan (2008). This approach takes into account the relations between the 

development of one’s concept image, the teaching and the departmental affiliations. By the 

use of this theoretical structure we attempt to design tasks that could help students to 
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develop concept images about linear span consistent with the key aspects of the concept (as 

presented in the previous section). These aspects are related to the goals of the 

introductory course in Linear Algebra as taught in the Department of Mathematics and 

Applied Mathematics of the University of Crete.  

As a starting point for the design, we use of Mason’s (2002) concept image framework. 

During this process we took the time to reflect upon different aspects of the concept of 

linear span that are of importance. The following diagram shows our interpretation of the 

three dimensions of the concept image corresponding to aspects of the psyche (Mason, 

2002) in regard to the notion of span. 

 

This diagram depicts briefly all the points we need to take into account while designing the 

tasks. The first dimension, which corresponds to cognition, contains the desired images that 

students should acquire for the notion of span along with known potential conflict factors. 

In correlation with the goals of the course these images should include connections 

between algebraic and geometric representation of the notion of span and the related 

notions of vectors, subspace and linear combination. Moreover, we have to take into 

account the difficulties proposed by the literature as well as the misconception we 

identified in the preliminary study regarding the notions of linear combination and linear 

dependence/independence. 
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The second dimension corresponds to the skills and language that students should use and 

develop in the frame of linear span. Since our focus is more on conceptual understanding 

and the creation of a coherent concept image about the notion of span we are interested in 

skills that require a level of cognitive flexibility and not just computational skills. Therefore, 

the students should be able to “read through” the results of the process of the Gaussian 

Elimination, be aware of the different contexts in which they can use this process and make 

connections between algebraic and geometric representations of vectors. We are aware 

that these are skills that typically students have difficulties with, thus we have to take into 

account potential conflict factors that might emerge. 

Finally, the third dimension depicts the different contexts in which the notion appears and 

can act as motivation to the students. The notion of linear span arose from the need to 

solve linear problems. It gives a way to describe the solutions of a system of linear equations 

and ultimately represent a linear subspace. In this frame, the notion of linear span is 

essential to the theory of Linear Algebra. In “Geometry and Linear Algebra” the students 

encounter problems that can be modeled by ℝn therefore the most appropriate context 

might be Analytic Geometry.  

The choice of this framework was made because of our belief that it is simple to understand 

and make good use of it. Since this work aims to be used by mathematicians teaching at the 

university we do not want to use a more complicated construct which might be dismissed by 

some. Our choice is supported by Nardi (2006) where she gives several examples of 

mathematicians’ perspectives about the matter. Moreover, the theory of concept image 

and concept definition is considered a “solid” tool in mathematics education (EMS, 2014).  

In addition, we take into account Sierpinska’s (2000) remarks about theoretical thinking and 

Harel’s (2000) principles of teaching and learning Linear Algebra. To be more specific, the 

task should have characteristics that correspond to theoretical thinking, such as 

opportunities for conscious reflection, connections between related concepts or different 

representations and attention to contradictory thoughts. Moreover, the tasks should 

include familiar concepts (concreteness principle), justifying the need of linear span 

(necessity principle) and allow generalization of the key ideas (generalizability principle). 
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4.1.5 The design principles 

We identify the following principles based on the theoretical framework, the concept of 

span as thought in the course “Geometry and Linear Algebra” as well as the needs of our 

students. 

Include key aspects of linear span  Closure under the operations of a vector 

space 

 Every vector is a linear combination of the 

set of generators 

 No limitation in the choice of the set of 

generators 

Tackle potential conflict factors   Modes of representation (Hillel, 2000) 

 The difference between linear 

combination and linear dependence 

Promote theoretical thinking (Sierpinska, 2000)  Reflection 

 Connections between different 

representations  

 Attention to contradictory thoughts 

Concreteness principle (Harel, 2000)  Include familiar concepts 

 Connection with prior knowledge and 

language 

Necessity principle (Harel, 2000)  Justifying the need of linear span 

 Root problems 

Generalizability principle (Harel, 2000)  

Promote discussion  
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4.2 The tasks 

This work proposes a sequence of tasks that could be included in the problem workshops of 

an introductory university course on Linear Algebra, such as the course “Geometry and 

Linear Algebra”. The sequence is inquiry-based and attempts to enrich the concept image of 

students regarding the concept of span. In this section, we present the tasks giving details 

about the structure and their purpose. Each task is carefully created and/or selected so as to 

foster the ground for potential conflict factors to arise and be confronted. 

4.2.1 Task 1 

The first task is based on an exercise from the book “Linear Algebra: Concepts and 

Methods” by Antony and Harvey (2012). The syntax and notation was slightly altered to fit 

that of the course notes (Kourouniotis, 2014).We also included some extra details for 

guidance or reflection. This task can be classified as an apprentice task (Burkhardt & Swan, 

2013), it aims to provide connections with prior knowledge, known processes and language 

under the new context and introduce to students basic ideas linked with the concept. The 

context of this task is considered appropriate for students to make connections between 

algebraic and geometric representations of the notion of span. At the same time, it contains 

prompting for reflection that is expected to promote discussion. Through this task, students 

can examine the effect that different choices of vectors have on the outcome. The task is 

presented below together with more details about each sub-question. 

Δίνονται τα διανφςματα: 

𝑣1 =  
−1
0
1

 , 𝑣2 =  
1
2
3
 , 𝑤1 =  

−1
2
5

 , 𝑤2 =  
1
2
5
  

i. Δείξτε ότι το w1μπορεί να εκφραςτεί ςαν γραμμικόσ ςυνδυαςμόσ των v1και v2, αλλά 

τοw2δεν μπορεί να εκφραςτεί ςαν γραμμικόσ ςυνδυαςμόσ των v1και v2. 

ii. Εξθγιςτε ποιοσ είναι ο υπόχωροσ του ℝ3που παράγεται από τα v1, v2 και w1. 

Εξθγιςτε ποιοσ είναι ο υπόχωροσ του ℝ3που παράγεται από τα v1, v2 και w2. 

Τι παρατθρείτε; 
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iii. Δείξτε ότι τα διανφςματα v1, v2, w1 και w2 παράγουν τον ℝ3, δηλαδή ότι για κάθε 

u=(x,y,z) υπάρχουν a, b, c, d τέτοια ώςτε: 

𝑢 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑤1 + 𝑑𝑤2 

Ακόμα δείξτε ότι κάκε διάνυςμα u∊ℝ3 μπορεί να εκφραςτεί ωσ γραμμικόσ ςυνδυαςμόσ 

των v1, v2, w1 και w2 με άπειρουσ τρόπουσ. 

Translation: Consider the vectors: 

𝑣1 =  
−1
0
1

 , 𝑣2 =  
1
2
3
 , 𝑤1 =  

−1
2
5

 , 𝑤2 =  
1
2
5
  

i. Show that w1 can be expressed as a linear combination of v1 and v2, but w2 

cannot be expressed as a linear combination of v1 and v2. 

ii. Explain what subspace of ℝ3 is spanned by v1, v2 and w1. 

Explain what subspace of ℝ3 is spanned by v1, v2 and w2. 

What do you observe? 

iii. Show that the vectors v1, v2, w1 and w2 span ℝ3, that is for every u=(x, y, z) 

there are a, b, c, d such that: 

𝑢 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑤1 + 𝑑𝑤2 

Show also that every vector u ∊ℝ3 can be expressed as a linear combination of v1, 

v2, w1 and w2 in infinitely many ways. 

The task is divided into three interconnected subtasks as a scaffolding strategy to support 

students. The first subtask is referring to the notion of linear combination. At this point, 

students are expected to have some knowledge on how to determine if a vector is a linear 

combination of some other given vectors. It is an introductory task aiming to guide students 

to the right direction in subtask (ii). This subdivision may also help to concentrate on 

theoretical thinking in the following subtask by limiting its focus on calculations. 

Subtask (ii) is chosen in an attempt to enrich students’ image of linear span and make 

connections between the algebraic and geometrical representations of the concept in 
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ℝ3.The task is designed to promote the “no limitation” aspect in the notion of span by 

paying attention to contradictory thoughts. Here students are anticipated to discuss the 

effects of linear dependence and independence of the set of generators on the notion of 

span.  By the way the course is structured students have already seen at that point that the 

subspaces of ℝ3 are the entire space, planes and lines that pass through the origin, and the 

zero subspace. Therefore, students are expected to be led to assume that the linear span of 

the given vector is one of those subspaces (in the first case a plane and in the second the 

whole space). The proposition “what do you observe?” is added as an encouragement for 

reflection and generalization of the idea for arbitrary vectors in ℝ3. Possible outcomes of 

that are to make connections between linear span and linear dependence and to enrich the 

images about different representations of geometrical objects. This subtask could also help 

students create links between linear span and the concept of dimension that follows. 

Moreover, this subtask may motivate students to seek a deeper connection between 

Analytic Geometry and Linear Algebra. 

The third subtask is the most instructional among them because it gives specific outlines for 

the appropriate procedure. Its goal is to give an example on how to determine if a set of 

vectors spans a given vector space using Gaussian elimination. Moreover, it aims to create a 

link between the relation of the given vectors and the number of ways arbitrary vectors can 

be expressed as linear combination of the elements in the set. Originally, it was not 

intended to include the part “that is for every u=(x, y, z) there are a, b, c, d such that: 

u = av1 + bv2 + cw1 + dw2” in the text. We decided to add that partin an attempt to help 

students pick a suitable approach for two main reasons. The first reason is that it is possible 

for someone to answer the first part of subtask (iii) by stating that since v1, v2 and w1 span 

ℝ3 and w2∊ℝ
3 all four of them also span ℝ3. This approach will not allow students to give an 

explanation of why any vector in ℝ3 can be expressed as a linear combination of those four 

vectors in infinitely many ways. Even if the students determine that the vectors are linearly 

dependent through Gaussian Elimination, they are not very keen on “reading through” the 

process, which may be an obstacle. For a trained eye the process of Gaussian Elimination 

may reveal much more information about the set of vectors, such as the existence of 

particular linear combinations. At this stage students are not aware of this possibility unless 

the matrix is arranged in a certain way associated with finding a linear combination. The 
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second reason is that we had previously witnessed students struggle with similar problems 

that require the use of arbitrary vectors. 

4.2.2 Task 2 

In the previous chapter we concluded that potential conflict factors in the image of linear 

span may be the relationship between linear combination and linear dependence in the 

context of linear span. The second task was created as an attempt to urge these potential 

conflict factors to stand out through the generation of an example. The idea for this task 

was based on our goal to promote theoretical thinking and discussion.   

Before deciding on this task, we considered adding a procedural task that would include 

examples where the idea of linear dependence is not sufficient to give a successful answer, 

but for that to be achieved effectively it would be necessary to use examples not only in 

ℝ3but also in higher dimensions. We believe that this idea might seem obvious in ℝ3 and 

therefore it might be ignored by the students. In addition, by working in higher dimensions 

students do not have the opportunity to use different representations. Therefore, this 

approach was abandoned because we thought it wouldn’t meet the principles of our design. 

We acknowledge that such tasks are also important in the process of learning and we 

encourage anyone who would like to use this sequence in his/her course to include an 

exercise that deals with this idea in a rote way as a ground for the task we are about to 

present. 

After consideration, we finally created the following task: 

Ζςτω v1, v2 και w γραμμικά εξαρτθμζνα διανφςματα ςτον ℝ3. Το w είναι δυνατόν να μθν 

ανικει ςτον χϊρο που παράγεται από τα v1και v2 παρόλο που τα v1, v2 και w είναι γραμμικά 

εξαρτθμζνα. Δϊςτε ζνα παράδειγμα. Γιατί πιςτεφετε ότι ςυμβαίνει αυτό; 

Translation: Let v1, v2 and w be linearly dependent vectors in ℝ3. It is possible for w  not to be 

in the space spanned by v1 and v2 although v1, v2 and w are linearly dependent. Give an 

example. Why do you think this can happen? 
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The task is presented as a challenge. The conflict is given to the student as a statement and 

the goal is to find an example to support the given proposition. It is expected that students 

will first use a trial and error approach by reaching for appropriate vectors in their example 

space (Mason & Watson, 2008). This approach will probably fail if students are not able to 

identify what are the key relations between v1, v2 and w in the prοposition. Moreover this 

task promotes all three key aspects of the concept. Closure is reflected in the fact that the 

linear span of v1 and v2 must be one of the known subspaces ofℝ3. Because w is not in the 

span of v1 and v2, it cannot be expressed as a linear combination of them, finally the “no 

limitation” aspect is the most important. If one’s concept image includes conflicting ideas 

about the status of vectors in a set of generators, it might be difficult to find anexample 

without careful prompting and discussion. 

One can give an answer using either a geometric or an algebraic approach to linear 

dependence and linear combination in the context. We presume that this task is going to 

give opportunities for theoretical thinking and discussion. Because of the nature of the 

problem, students would want to cross-examine their findings or get some guidance. In the 

end, students are again asked to reflect upon their findings and make generalizations. This 

question was added to ensure that students will give more attention to the purpose of the 

task. 

4.2.3 Task 3 

The final task is a set of true or false questions. In this task students are expected to reflect 

on what they have learnt about the concept through the previous tasks. It is designed to 

promote theoretical thinking and reflection upon the notion of linear span and especially on 

the aspects included in task 1 and task 2. The propositions are chosen in such a way as to 

draw the attention to important information about the concept included in the previous 

tasks. Namely, each proposition examines the outcome of different relations between the 

set of generators, these relations are implied in the previous tasks. This task could also give 

space for more potential conflict factors to arise and be discussed. The task is formed as 

follows: 
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Χαρακτθρίςτε τισ παρακάτω προτάςεισ με Σωςτό ι Λάκοσ: 

i. Εάν τα v1, v2, v3, v4 παράγουν τον ℝ3 τότε και τα v1, v2, v3 παράγουν τον ℝ3. 

ii. Εάν τα v και w είναι γραμμικά ανεξάρτθτα και το ςφνολο ,v, w, z- είναι γραμμικά 

εξαρτθμζνο, τότε το z ανικει ςτον χϊρο που παράγεται από τα v και w. 

iii. Εάν το ςφνολο των διανυςμάτων S = {v1, v2, …, vk- παράγει τoν V, και w∊ V, το 

ςφνολο T = {v1, v2, …, vk, w- επίςθσ παράγει τον V. 

Translation: Describe the following propositions as True or False: 

i. If v1, v2, v3, v4 spanℝ3then v1, v2, v3 spanℝ3. 

ii. If v and w are linearly independent and the set {v, w, z} is linearly dependent, z is in the 

space spanned by v and w. 

iii. If the set of vectors S = {v1, v2, …,vk} spans V, and w ∊ V, the set T = {v1, v2, …, vk, w} also 

spans V. 

The first proposition questions when three vectors spanℝ3. Students have already seen that 

any vector in ℝ3can be expressed as a linear combination of any three linearly independent 

vectors.  The most important aspect one can see here is that there is no limitation in the 

choice of vectors. Students are expected to make a connection between these facts and 

identify the difference. Namely that there is no information about the linear dependence of 

the vectors v1, v2 and v3 and thus the statement is false. One good example of that can be 

found in task 1. Supposing that the four initial vectors are the ones given in task 1, students 

will have already seen the different outcomes.  

The second proposition is closely connected to task 2. Here students are presented with a 

similar idea as that of task 2 but with a very different outcome. This is expected to provide a 

second chance for discussion and further clarification. Finally, the third proposition 

examines the understanding of all three key aspects of the definition. The basic idea that 

this proposition implies is that it is possible for a linear subspace to be spanned by different 

sets of vectors under the conditions. This idea links the notion of linear span with the 

concept of basis. Moreover, it will be useful especially in the course “Linear Algebra I” where 
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they will encounter that idea in more detail. The students may link this proposition with task 

1 where they engaged with two different sets of vectors that span ℝ3. Also, this observation 

may lead to further reflection upon the relation and the results of the different set. 

4.3 Conclusion 

In this chapter we presented three tasks designed to help in the development of students’ 

concept images about the notion of linear span. The tasks are designed so that they can give 

space for potential conflict factors to be confronted. In addition, the tasks are not meant as 

homework, we believe that these tasks work best in circumstances where students can 

discuss their progress and their difficulties with each other. Finally, we hope that these tasks 

will provide inspiration for lecturers and tutors to create their own tasks in a similar fashion 

for more concepts in Linear Algebra. 
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CHAPTER 5  

 
Task Evaluation 

In this chapter we present the results of a preliminary evaluation of the tasks in a group of 7 

students. The students were asked to review the tasks and give us their opinion on them. 

The first part includes information about the method of the evaluation, the participants and 

other important information about the process. The second part of this chapter is the 

analysis of the data collected in order to assess and improve the tasks. 

5.1 Methodology 

5.1.1 Purpose and Questions 

“Expecting specific tasks to have given learning outcomes is highly unrealistic, even if 

you include in the task specific stimuli for reflection…” 

(Mason, 2002: 130) 

Following the creation of the tasks, our greater concern was to receive feedback. The first 

phase of the design (creating the sequence) was completed half way through the spring 

semester and due to time constraints it was impossible to wait six months to put the tasks 

to test. Therefore, we decided to carry out a preliminary evaluation by giving the tasks to 

students for review. This way we could get an insight on how students might perceive them 

in a problem workshop and what can be improved about the design. Also, this could give 

opportunities to try different prompts that could be used or avoided in tutoring. 

Our general research questions are: 

 What students can tell us regarding the tasks? 

 Does studying the concept of linear span through this sequence of tasks improve 

students’ conceptual understanding? 
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More specifically: 

 What is the students’ reaction to the tasks? 

 Do students find the tasks interesting and/or useful? 

 Do the tasks promote discussion?  

 Is the language used in the tasks clear? 

 Are there potential difficulties with the tasks? 

 Do students find the reflection useful? 

 In what extent could the tasks help with conceptual understanding? 

We were particularly interested in students’ reactions at the time since the tasks are meant 

to be used in situations where they are encouraged to work and discuss their findings not 

only with tutors but mostly with each other. Therefore, it was important for the tasks to be 

appealing to students. 

5.1.2 The method 

To meet our purpose, interviews were carried out with students who had attended the 

course “Geometry and Linear Algebra” the previous semester. This choice was made in the 

hope that the students would reflect on their prior experience, feelings and behaviours 

during the course. Moreover, at the time of the interviews the majority of the selected 

students were attending the course “Linear Algebra I”; this fact might have helped students 

to make links between the tasks and aspects of the concept of linear span encountered 

later. 

For the selection of the participants we contacted students who had answered the test 

question analyzed in the preliminary research in Chapter 4. This approach was chosen in 

order to have some control over the selection by putting two constraints. The first one was 

to select at least one participant from each of the categories LinD, LinC, LinIn and Other, as 

indicated in the preliminary research. The reasoning behind this constraint was to ensure 

that our sample wasn’t biased. Apart from that, we don’t wish to make any cross 

comparisons to their test responses and the interviews. The second constraint was that the 
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participants should represent both degree orientations, namely Mathematics and Applied 

Mathematics, to ensure diversity among students’ opinions. The initial number of students 

that agreed to participate was eight. However, one of the students could not follow through 

with the interview for personal reasons. As it was not possible to replace the 8th student, 

due to time constraints, only seven interviews were carried out. 

The participants were first year or older students following the degree orientation in 

Mathematics or Applied Mathematics. Five of the participants are studying for the degree in 

Mathematics and two for the degree in Applied Mathematics. To be more precise, there 

were five female participants (three of them were first year students) and two male 

students (one in the first and the other in the second year of studies). The following table 

summarizes the information about the seven participants. 

 Mathematics Applied Mathematics 

 1st Year 2nd Year 3rd Year 1st Year 2nd Year 

Male 0 1 0 1 0 

Female 3 0 1 0 1 

 

All interviews were videotaped with the signed agreement of the participants. To ensure 

confidentiality each student was assigned and referred to with an alias (Ariadne, Minos, 

Artemis, Helen, Pasiphae, Hector and Andromeda) during data analysis and presentation of 

the results. The processes of interviewing and analysis of the data follow the restrictions of 

the Code of Ethics of the University of Crete (2002). 

The interviews were semi structured. This type of interview is based on a predetermined 

general plan that allows comparison between the data and at the same time leaves space 

for the interviewer to investigate any particular point that may come up during the process 

(Bogdan & Biklen 2006; Cohen et al, 2011).  The plan typically includes two or three ice-

breaking questions, up to eight key questions paired with transitive questions and finally an 

overview of the most important parts of the interview (Johnson & Rowland, 2012 as cited in 
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Mann 2016). This type of interview was selected so as to help us in the coding process and 

the quantification of the results. Prior to the interviews, each participant was given a 

folder5. The folder included the tasks, information about the study and instructions about 

the process. Also, each folder contained an excerpt of the course notes (Kourouniotis, 

2014). The students were given one week to attempt and review the tasks before the 

interviews.  

The students were informed that if they had any problem with solving the tasks they would 

be able to discuss it with the interviewer, similarly to what they would do in the context of a 

problem workshop. We note that in problem workshops students are encouraged to work in 

groups. In contrast, the students were interviewed individually. Although the process might 

differ from what one encounters in a problem workshop, our focus at this time was more 

towards students’ personal opinion about the tasks rather than observing how the tasks can 

work in peer groups.  

The data collected from the interviews (videos and students’ notes) were analyzed using the 

qualitative data analysis software ATLAS.ti. We tried to apply consistent codes to all seven 

interviews in order to compare and quantify the results where that was possible. Also we 

identified some unexpected situations that occurred during some of the interviews. Those 

situations will be discussed separately at the end of the following section.   

5.2 Data Analysis 

In this section we present our interpretation of the data as it emerged from the coding 

process. First we give an overview of students’ reaction to the tasks and then we discuss 

each task in detail. Finally, we attempt to analyze some extra information we obtained from 

some interviews. The results are quantified and presented in tables accompanied with 

quotations from the interviews. 

                                                      
5
The folder as given to the students (in Greek) can be found in the Appendix.  
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5.2.1 Overview 

To begin with first impressions, students seemed content with the tasks for a variety of 

reasons. Namely students referred to coherence between the tasks, inclusion of the basic 

aspects and a more theoretical approach. We briefly quote fragments from participants to 

indicate different reasons why they found them useful.  

Ariadne: *…+ τα ςυνδζεισ όλα ςτο μυαλό ςου, αυτό… που ςου ζλεγα είναι… υπάρχει μία 

αλλθλουχία. 

Minos: *…+ απ’ όλα είχε, τα βαςικά νομίηω… και παραπάνω από τα βαςικά. 

Artemis: *…+ Μου άρεςαν, να ςου πω γιατί. Ήταν κάπωσ πιο κεωρθτικζσ *…+ βοθκάει 

πιςτεφω γιατί όταν είναι πιο κεωρθτικι άςκθςθ ο άλλοσ ςκζφτεται πιο πολλά *…+ 

Translation: 

Ariadne: *…+ they link everything in your mind, that… I told you… there is aτα ςυνδζεισ όλα 

ςτο μυαλό ςου, αυτό… που ςου ζλεγα είναι… υπάρχει μία coherence. 

Minos: *…+ They include a bit of everything, the basics I think… and more than the basics. 

Artemis: *…+ I enjoyed them, let me tell you why. They were a little bit more theoretical *…+ 

this is helpful, I think, because in theoretical assessments one thinks more. 

All the students seemed satisfied with the tasks for one or more of these reasons. Most of 

them indicated that the tasks depict all the basic aspects of the notion. The following table 

quantifies this observation. 

Coherence Inclusion Approach 

   
1 5 2 

This interpretation, although pleasing, does not give particular information about the tasks. 

Next, we discuss in more detail results from each task separately. 
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5.2.2 Task 1 

The table below shows the number of students who completed each subtask of Task 1 

without additional help from the interviewer. Subtask (i) was completed without difficulty 

or errors from all the students participating in the inquiry. Five of the seven students 

completed subtask (ii) and only two of them subtask (iii). 

Task 1i Task 1ii Task 1iii 

   
7 5 2 

The students who did not complete (ii) appeared to have trouble with methodology. In both 

cases the problem was resolved through discussion in reasonable amount of time and the 

two students managed to complete the subtask without further problems.  Apart from that, 

six out of the seven students found the question “what do you observe?” useful. In 

particular, three of them indicated that they might not have given a second thought to their 

result if it wasn’t for this question. On the other hand one of the students, Pasiphae, found 

the question stressful. She had successfully answered the question but she seemed 

genuinely worried because she thought that her observation was not the right one. She 

said: 

Pasiphae: Εμζνα ςαν ερϊτθςθ με αγχϊνει… προςωπικά. Νομίηω ότι κζλει πάντα απάντθςθ 

και… αυτό, δεν το ϋχουν όλοι με το να αναλφ*ςουν+… να γράψουν αναλυτικά. Ασ 

ποφμε, εγϊ αυτό που ςκζφτθκα δεν ξζρω καν κατά πόςο βαςίηεται ςε… επίπεδο 

απόδειξθσ, δθλαδι… το είχα δει ςε αςκιςεισ παλαιότερα, αλλά δεν ξζρω κατά πόςο 

είναι απλά μια ςκζψθ ι μπορεί όντωσ να αποδειχκεί*…+ 

Translation: 

Pasiphae: Αs a question it makes me feel anxious ... personally. I think it always need an 

answer and ... this, it is not easy for everyone to analy[ze] ... write in detail. Let's say, 

I didn’t even know if what I thought was based on ... a level of proof, that is ... I had 

seen it in exercises in the past, but I do not know whether it is just a thought or it can 

actually be proved [...] 
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Although none of the other students felt the same, the thoughts of this student are 

significant to us. The student seems confused about the role of reflection. Perhaps she is 

used to more instrumental tasks from her prior experience. We have unofficially observed 

related thoughts from students in problem workshops in the past. Math anxiety is a factor 

that we need to take into account. Clute (1984) made the observation that college students’ 

achievements are related to mathematical anxiety. Moreover, her research showed that 

students with higher anxiety levels can benefit more from instrumental approaches whereas 

students with low anxiety from relational approaches. Lazarus (1974) believed that the 

source of mathematics anxiety is in secondary school education, where the problem is less 

obvious because many students are able to memorize formulas and rules for short periods 

of time, until they are tested on them. Relational questions are not frequent in secondary 

school education therefore it is reasonable to assume that some students would have 

difficulty (and in some cases anxiety) answering such questions.  

Further observation of subtask (ii) revealed that the fact that the vectors v1 and v2 are 

linearly independent was overlooked during the interviews and possibly in the process of 

the design.  This fact might seem obvious to a trained eye; students should not be expected 

to make this observation by themselves. During the interviews, there was no significant 

discussion about that, in some cases there was just a brief reference to the fact but without 

further discussion we cannot be sure that the assumption that the vectors v1 and v2 are 

linearly independent was because students observed this from the data or they assume it is 

true because w1 is a linear combination of these two vectors. The latter is directly related to 

the conflict identified in Chapter 4 and if overlooked it might create further confusion to the 

students in a problem workshop environment.  

The final subtask of Task 1 was the one completed by the least number of students. They 

mostly struggled with the second part of the question. The first part of the question can be 

answered following the same reasoning used in subtask (ii), but this will not help answering 

the second part which requires from students to solve a system of linear equations. Four of 

the five students that didn’t complete (iii), tried to solve it using the same approach as in (ii). 

In each case the task was completed with the help of the interviewer but we find that 

subtask (iii) required more instruction from the part of the interviewer compared to subtask 
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(ii). The fifth student managed to solve the required linear system but she could not make a 

connection between the infinite number of solutions and the fact that the four vectors are 

more than enough to describe any vector in ℝ3. Instead she used a known proposition 

which justifies the statement that the four vectors span ℝ3 but does not explain why any 

vector in ℝ3 can be written as a linear combination of v1, v2, w1 and w2 in infinitely many 

ways. Her approach may imply that her understanding of the situation is for the most part 

procedural. 

Before the interviews we made some speculations why subtask (iii) might be difficult for 

students. We identified two possible reasons, the first one being the complex structure of 

the question and the second might be the difficulty of some students to identify the random 

vector u = (x, y, z) as a parameter of the problem and not as a variable. Three of the five 

students faced a difficulty making use of the proposition “for every u=(x, y, z) there are a, b, 

c, d such that 𝑢 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑤1 + 𝑑𝑤2”. In an attempt to resolve this problem, the 

interviewer suggested to one of these students to try and solve the problem with any 

particular vector u she chose. This approach helped the student, as indicated by her to 

answer the original question.  

Helen: Ναι νομίηω είναι πιο κατανοθτό *…+ όταν κα το ζχεισ τελειϊςει κα ζχεισ καταλάβει 

κάτι παραπάνω. 

Translation: 

Helen: Yes I think is more conceivable *…+ when it’s all over one will have understood 

something more. 

Another student who solved the system of linear equation by using an abstract vector 

u=(x,y,z) but had trouble connecting her solution to the required answer also indicated that 

a similar approach could help students who have difficulties: 

Interviewer: Εε, πιςτεφεισ ότι αν είχε ζνα ερϊτθμα το οποίο να ζλεγε ότι ζνα ςυγκεκριμζνο 

διάνυςμα u γράφεται ςαν γραμμικόσ ςυνδυαςμόσ των υπολοίπων… 

Pasiphae: Ναι… Ναι κα ιταν πιο εφκολο. 
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Interviewer: Και μετά ηθτοφςε να κάνεισ αυτό (δείχνει το ερϊτθμα (iii)) που ουςιαςτικά 

είναι μια γενίκευςθ… πιςτεφεισ ότι κα βοθκοφςε ι κα το ζκανε πιο κουραςτικό; 

Pasiphae: Όχι πιςτεφω κα βοθκοφςε, ακόμα και εγϊ που κεωρϊ τον εαυτό μου 

εξοικειωμζνο με τα… x, y, z… ότι αν πρϊτα είναι να αποδείξω κάτι ςυγκεκριμζνο και 

μετά κάτι πιο γενικό ςυνικωσ αυτό με βοθκάει ςτισ αςκιςεισ γενικότερα. 

Translation: 

Interviewer: Em, do you think that if there was a question saying that a particular vector u is 

written as a linear combination of the others... 

Pasiphae: Yes ... It would have been easier. 

Interviewer: And then asking you to do this (she points to subtask (iii)) which is essentially a 

generalization ... do you think it would help or make it more tiring? 

Pasiphae: No I believe it would help, even for me that I consider myself familiar with ... x, y, z 

... that if it is first to prove something specific and then something more general this 

usually helps me in the exercises in general. 

Her response may also imply that Pasiphae would have managed to give a full answer if she 

had encountered the same idea in a specific example prior to this question. Even though 

these opinions cannot be generalized they might indicate some improvements for the task 

and a potentially good approach for tutoring this task in the future. Moreover, three of the 

students when asked if they had any problem with u being a random vector said that they 

had none because they imagine it as a particular vector in the process. This is an approach 

that is expected to be acquired through the course “Geometry and Linear Algebra”. 

5.2.3 Task 2 

Task 2 is the central task of the sequence, designed as an attempt to provide an opportunity 

to create a more coherent concept image of the notion of span and resolve the cognitive 

conflict identified in the preliminary research. Only one student had found an example of 

three vectors fulfilling the requirements of the task before the interview. It was expected 

that some students might experience some difficulties with the task due to the nature of the 

task and the possibility their concept images were in conflict with what the task is 

proposing. Three of the students said that they felt a little nervous when they couldn’t find 
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an example but later concluded that if they had seen such a task in problem workshops 

where they would have had help from others they would not have had a problem.  

Perhaps the most important observation made by analyzing the discussions about task 2 

was that in four of the seven cases conflicting images emerged. This reinforces our 

preliminary hypothesis that students struggle with identifying the difference between the 

notions of linear combination and linear dependence. Furthermore, it might be an 

indication that Task 2 can help potential conflict factors to emerge and be resolved in a 

controlled environment. The following quotations capture these observations. 

Minos: Λοιπόν αυτό που ςκζφτθκα είναι ότι μπορϊ να ζχω δφο διανφςματα… τα οποία κα 

είναι γραμμικά ανεξάρτθτα που κα μου παράγουν ζνα επίπεδο ςτον ℝ3. Μπορϊ 

βζβαια… είμαι ςίγουροσ ότι μπορϊ να βρω άλλο ζνα τρίτο διάνυςμα που δεν κα 

ανικει ςε αυτό το επίπεδο αλλά να ιςχφει θ ςχζςθ…. Να είναι γραμμικά εξαρτθμζνα 

αυτά τα τρία διανφςματα. 

Translation: 

Minos: So, what I thought was that I can have two vectors ... which will be linearly 

independent that will span a plane in ℝ3. I can of course ... I am sure that I can find 

another third vector that will not belong in the plane but the relationship to be true 

.... these three vectors to be linearly dependent. 

Minos preferred to imagine the vector geometrically and was thinking of the subspace 

spanned from v1 and v2 as a plane, which requires the vectors to be linearly independent. 

Moreover, he appears certain that the vectors should be linearly independent. This might be 

an indication of an evoked concept image of a subspace spanned by two vectors as a plane.  

Interviewer: Εεμ.. όταν λζω ότι κάποια διανφςματα  παράγουν ζνα χϊρο ςθμαίνει ότι τα 

διανφςματα που ανικουν ςε αυτό το χϊρο γράφονται ςαν γραμμικόσ ςυνδυαςμόσ 

τουσ [των πρϊτων+. 

Pasiphae: Ναι … ναι… 



73 
 

Interviewer: Ωραία οπότε για να μθν ανικει το w ςτον χϊρο που παράγουν τα άλλα δφο δεν 

κα πρζπει να γράφεται ςαν γραμμικόσ ςυνδυαςμόσ τουσ… 

Pasiphae: Ναι… ναι… ωραία…  Μα όμωσ πωσ κα είναι γραμμικά εξαρτθμζνα; Είναι όλα 

μεταξφ τουσ γραμμικά εξαρτθμζνα… 

Translation: 

Interviewer: Em.. When I say that some vectors span a space it means that the vectors 

belonging to that space can be expressed as a linear combination of those vectors 

[spanning the space]. 

Pasiphae: Yes … Yes… 

Interviewer: Well, so for w not to belong in the span of the two other vectors it could not be 

written as a linear combination of them… 

Pasiphae: Yes… yes… well… But then how can they be linearly dependent? They are all 

together linearly dependent… 

In this fraction, the interviewer and Pasiphae are discussing about the basic ideas of Task 2. 

Pasiphae seems to struggle with the idea of three vectors being linearly dependent and at 

the same time one of them cannot be expressed as a linear combination of the others. She 

was probably thinking that the notions of linear combination and linear dependence are 

equivalent or that a set of generators is a linearly independent set. 

Interviewer: Το ότι το w δεν ανικει ςτο χϊρο που παράγουν τα v1 και v2 τι ςθμαίνει; 

Andromeda: Ότι κα είναι γραμμικά ανεξάρτθτα. [ςκζφτεται] Όχι…. 

Translation: 

Interviewer: The fact that w does not belong to the vector space spanned by v1 and v2, what 

this means? 

Andromeda: That they are linearly independent. [she thinks] No… 

Andromeda’s first thought of a vector not being in the span of the others was for them to be 

linearly independent. She then thinks about it and understands that there is something 

wrong with this assumption but she is not immediately aware of the conflict. We note that if 
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three, or more, vectors are linearly independent then any one of them is not in the linear 

span of the others. The converse is not true.  

Ariadne: Καταρχάσ εμζνα μου φάνθκε παράλογο τθν πρϊτθ φορά… γιατί τι μου λζει; Μου 

λζει ότι είναι γραμμικά εξαρτθμζνα οπότε αν λφςω ωσ προσ το w κα βρω ζναν 

γραμμικό ςυνδυαςμό οπότε με βάςθ τθ κεωρία ανικει ςτον υπόχωρο που 

παράγουν το v1 και το v2. 

Translation: 

Ariadne: To begin with, to me it seemed absurd at first ... because… what does it tell me? It 

tells me that they are linearly dependent, so if I solve for w, I will find a linear 

combination, so based on the theory it belongs to the subspace spanned by v1 and v2. 

Ariadne presents in detail her reasoning. Therefore, it is easy to observe the logical mistake. 

Later she also says that she thinks the notion of linear dependence and linear combination 

to be the same even though she successfully refers to the (personal) definitions for both 

concepts.  

Particularly in this task, all six students reported that the discussion was very useful and task 

2 is important for understanding the concept. Three of them said that this was the task that 

made them the biggest impression out of the three. Lastly four of the students, including 

the one who found the example without discussion suggested that it would be better if this 

task was presented to them in a problem workshop after a sequence of related more 

instrumental tasks. 

This final suggestion can be related to the attitude of some students toward this kind of 

tasks. To be more precise, three of the students indicated that they are not very keen on 

tasks which require them to find examples. One of them gave a very detailed account about 

the reason why she does not feel convinced about examples. 

Ariadne: Κοίτα ςίγουρα είναι πιο εφκολο να βρεισ παράδειγμα, αλλά κα ςου πει ο άλλοσ… 

μα είναι ζνα παράδειγμα… Οπότε, καλά άποψι μου βζβαια αυτό… δθλαδι εγϊ όταν 



75 
 

βρίςκω μια ειδικι περίπτωςθ… εε δεν αρκοφμαι, λζω και αν για άλλα νοφμερα ασ 

ποφμε βρω κάτι άλλο; Αυτό. Οπότε… καλά αυτό μου το ζχουν κολλιςει από το 

λφκειο να ςου πω τθν αλικεια… οπότε κα το χω καλφτερα να το πάω με γενικό 

τρόπο. 

Translation: 

Ariadne: Look, it's easier to find an example, but someone would tell you ... that it's only an 

example ... So, well that’s my opinion of course, when I find a special case ... I am not 

convinced, I think can I find something else? This. So ... well, I've got stuck with this 

kind of thinking in high school to tell you the truth ... so I'd better see  it in a general 

way. 

The student is not necessarily aware that an example cannot always be exemplary. Her 

attitude is mostly connected to her experience with high school mathematics where most of 

the time students encounter exercises that require proofs and the examples are mostly 

given by the teacher or a textbook. 

We are closing this section with some observations about the different approaches used in 

the interviews to discuss Task 2. These are based on the line of thinking of the students, but 

they are also influenced by the interviewer. Therefore, it is not certain that students would 

use the same approach in different circumstances. The following table shows the different 

approaches used in the six interviews where students discussed the task during the 

interview. In one case, task 2 was discussed and solved both algebraically and geometrically. 

Algebraic approach Geometric approach Trial and error 

   
4 2 1 

In each interview the final example was found by the students by trying different numbers. 

The categorization above is made by the main approach of the notions during the 

discussion. 
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5.2.4 Task 3 

The main purpose of Task 3 was to make students reflect upon what they had encountered 

about the concept of linear span in the previous tasks. The analysis of the interviews 

showed that some students made connections between Task 1, Task 2 and Task 3 in 

answering the true – false questions.  

Task 3i Task 3ii Task 3iii 

   
7 5 6 

The table above illustrates the number of students that answered correctly to the true or 

false questions beforehand. Proposition (i) was successfully answered by everyone and only 

one student mentions having some difficulty with this proposition. The second proposition, 

related to Task 2, was the one answered successfully by the least number of students. The 

two students who gave the wrong answer easily corrected their answers by reflecting upon 

Task 2. Moreover, four of the seven students saw the relation between proposition (ii) and 

Task 2. Finally, only one student gave a wrong answer in proposition (iii) but he quickly 

corrected himself by making a connection with Task 1 after the indication of the interviewer 

that the initial answer was wrong. 

Because of the nature of this task it did not give much information about students thinking. 

Ideally, these true of false questions are supposed to work as a mechanism to check if the 

students are able to reflect upon what they have learned about the notion of span and 

make generalizations. In this case the students’ concept images were already rich with 

examples and experience from previous and current courses in Linear Algebra. Therefore it 

was not possible to determine if the propositions can produce reflection upon the specific 

tasks unless the students have stated otherwise. 

5.2.5 Additional findings 

Nested subspaces 

During Task1 ii an unexpected discussion emerged with two of the students. These students 

interestingly answered that the span of the vectors v1, v2 and w1is the vector space ℝ2. The 

correct answer to this question is that the span is a plane in ℝ3. The vector space ℝ2 might 
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be conceptualized as a 2-dimentional subspace of ℝ3. This conflict factor is called by Wawro 

et al (2011: p. 13) as “nested subspaces”. Warwo et al (2011) hypothesized based on their 

evidence that this confusion has roots in students thinking “some subspaces as “the same”” 

(p. 15) and suggested that lecturers must be aware of this as a potential conflict factor. 

Their hypothesis is confirmed in our case. We further hypothesize that this view of 

“sameness” might be linked with a mental image of 3-dimentional real space as three 

intersecting perpendicular planes. Ariadne tries to explain this image: 

Ariadne: Αν το ςκεφτείσ ωσ εικόνα και ξεχάςεισ λίγο τισ πράξεισ, ζχεισ ςτθν ουςία… ςαν να 

παίρνεισ ότι ο ζνασ τοίχοσ είναι ζνα επίπεδο, ο άλλοσ τοίχοσ είναι το άλλο επίπεδο 

και αυτόσ εδϊ (δείχνει το πάτωμα) είναι το άλλο επίπεδο. Οπότε ςκζφτεςαι ότι ο 

χϊροσ αποτελείται από τρία επίπεδα εντόσ ειςαγωγικϊν. Οπότε είναι λογικό ζνα 

επίπεδο να είναι υπόχωροσ του χϊρου. *…+ 

Translation: 

Ariadne: If you think of it as an image and forget about calculations for a moment, you really 

have ... as if you take this  wall is a plane, the other wall is the other plane and here 

(showing the floor) is the other plane. So you think that the space consists of three 

planes in a manner of speaking. So it is reasonable for a plane to be submerged in 

space. [...] 

She imagines 3-dimentional space as a “semi-open” room with the (x,y), (x,z), (y,z)- planes 

being the walls and the floor. This imagery is commonly used in high school to give a first 

more intuitive image of space but it possibly creates a conflicting image of space being the 

surface of these three planes as indicated by the student.  

The interviewer prompted the students to think about their conflicting images by adopting 

an algebraic approach of vectors in ℝ2 and ℝ3. We cannot claim that the conflicts where 

resolve by the discussion but the tactic of making comparisons between geometrical and 

algebraic vectors was successful in making this potential conflict factor arise. This 

observation is important because it gives information about potential conflict factors which 

we did not take into account initially but which might surface while solving these tasks. 
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Concept Image – Concept Definition 

At the end of the interview each of the participants was asked a question regarding the use 

of definition and the use of examples in completing these Tasks. Five out of the seven 

students said that having access to the formal definition of linear span is useful in solving 

the task. Four of them reported looking at the formal definition while answering Task 3. The 

fifth student indicated that although she used what she already knew in solving the tasks 

she thinks that having the formal definition alongside the tasks would be useful in a problem 

workshop. The other two indicated that they prefer to have seen the formal definition and 

some examples beforehand and then work on problems. The following quotes depict their 

thoughts about the matter: 

Ariadne: *…+ αν ζχεισ τον οριςμό μπροςτά ςου, βλζπεισ τον οριςμό τθν λφνεισ. Αυτό δεν 

ςθμαίνει όμωσ ότι τα χεισ καταλάβει. Αυτό. 

Translation: 

Ariadne: *…+ if you have the definition in front of you, you look at it and solve the problem. 

That does not mean that you have understood it. That. 

Ariadne feels that by accessing the definition one can solve an exercise without noticing 

particular elements of the exercise. Moreover when she was asked if she uses definitions in 

solving the tasks she immediately referred to her personal definition of the notion of linear 

dependence as an example, which reinforces the assumption that she prefers to work from 

her concept image.  

Minos: *…+ Δεν χρειάηεται ντε και καλά να κοιτάσ τον οριςμό. Αν τον ζχεισ ςτο μυαλό ςου 

[και+ ζχεισ δει και δφο αςκιςεισ… οκ! 

Translation: 

Minos: [...] There is no need to look at the definition. If you have it in your mind [and] you 

have seen two exercises ... ok! 
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In Minos case it is apparent that he does not see a necessity of using the formal definition. 

He also indicates that he cannot remember a formal definition therefore he only tries to 

remember the basics. In this case, Minos consciously distinguishes the formal definition 

from his personal definition in contrast to Ariadne. 

Also there were some students who talked about the importance of examples and tasks in 

understanding a concept and therefore the formation of the concept image. Four of the 

students reported that they understand a notion better through examples and tasks than 

just by studying the definition. The way that students’ concept image is formed through 

model examples and experience, is of course well known.  What is important here is the fact 

that the students are aware of this happening. Although they refer to it in their own words, 

based on their experience of studying, and not as a researcher of mathematics education 

might do, using some theoretical framework, it is clear that students are aware that they 

understand a notion from examples and exercises. In university, students are faced with an 

extreme number of new ideas in a short time compared to secondary school; this can force 

some of them to pay more attention to their learning processes and possibly to notice the 

ways in which they learn more effectively.  

This last observation is an indication why it is important to pay attention to the examples 

and tasks used in any course. There are students who are consciously depending on them 

and expect to understand the “mysterious” concepts that the lecturer is talking about 

through them. Therefore, the lecturer has the obligation to choose carefully the examples 

and the tasks, if he/she wants to help students form a coherent concept image. 

5.3 Results and Discussion 

The analysis of the interviews gave us very important information about how tasks can be 

improved and used in a problem workshop for the course “Geometry and Linear Algebra”. 

Although all students indicated that they find the tasks useful they gave us opportunities to 

reflect upon our design and experiment with different tactics which can be used by tutors in 

an attempt to make the most out of these tasks. 
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Beginning with the first task, students appeared to have particular difficulty in subtask (iii). 

One reason might be that (iii) requires a shift in thinking and cannot be fully answered by 

using the same approach as in subtask (ii). In an attempt to resolve this issue we are 

proposing a slightly different version of this part of the task that forces students to begin 

with the shifted approach as follows: 

Δείξτε ότι  για κάκε u=(x,y,z) υπάρχουν a, b, c, d τζτοια ϊςτε: 

𝑢 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑤1 + 𝑑𝑤2 

Ακόμα δείξτε ότι κάκε διάνυςμα u∊ℝ3 μπορεί να εκφραςτεί ωσ γραμμικόσ 

ςυνδυαςμόσ των v1, v2, w1 και w2 με άπειρουσ τρόπουσ. Συμπεράνετε ότι τα v1, v2, 

w1 και w2 παράγουν τον ℝ3. 

Translation: 

Show that for every u = (x, y, z) there exist a, b, c, d such that: 

u = av1 + bv2 + cw1 + dw2 

Conclude that v1, v2, w1 and w2 span ℝ3. Moreover, show that every vector u∊ ℝ3 can 

be expressed as a linear combination of v1, v2, w1 and w2 in infinitely many ways.  

It was also indicated by students that it might be easier to answer (iii) if they had first seen a 

similar task with a known vector u. We decided not to include an extra step in this task 

because we believe that it could make it appear difficult or boring. Also this task is designed 

to be included in a longer sequence of tasks that would include similar numerical problems. 

We encourage tutors to try prompting the students solving this task using the same tactic as 

in the interviews.  
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Tactic: Encourage students who struggle with subtask (iii) to choose a specific vector to 

prove the result first. This could help making apparent that the same is true for any vector 

they choose. 

One more observation we made by discussing task 1 with students was that of “nested 

subspaces”. This is another conflict factor we didn’t take into account at first and realized it 

only when interviewing the students. Our observation is in line with the hypothesis of 

Warwo et al (2011). Moreover, we propose that this misconception might be linked with a 

mental image of ℝ3 as three intersecting perpendicular planes. This potential conflict factor 

should be taken into account by the tutors. 

Task 2 was fruitful both in terms of meaningful discussion and reflection. Students found 

Task 2 important for understanding the concept of span and successfully reflected upon it 

when thinking about proposition (ii) in Task 3. We also observed manifestations of cognitive 

conflict which indicates that the task can be used as a means to resolve potential conflict 

factors. Different approaches can be used to discuss these conflicts with students 

(algebraically, geometrically or by trial and error). A useful tactic might be to discuss the 

conflicting factors using more than one representation of vectors with the same group of 

students. 

Tactic: Propose to students that there is more than one way to think about the problem and 

encourage them to discuss it from different standpoints. 

The third task did not give as much information as the others, partially because the 

participants were more experienced than a student who encounters the concept for the first 

time. Nonetheless, there were some occasions where students reflected upon the previous 

tasks to support their answer. Either way, students indicated that they used either reflection 

upon prior knowledge or reviewing the definition to answer Task 3. 

Finally, the indications about the need of examples and tasks in achieving conceptual 

understanding, was of great importance. This fact depicts the necessity of well thought 

examples and tasks in order to help students create a coherent concept image.  
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CHAPTER 6  

 
Conclusion 

This work focuses on enriching the understanding of the notion of linear span through a set 

of inquiry based tasks. The tasks are designed for first year Mathematics students. A starting 

point for the design was a study of the written answers given by students of the “Geometry 

and Linear Algebra” course, in response to a question in the final examination for the 

course. The question asked them to determine whether a vector belongs to the subspace 

spanned by two other vectors. In answering the question, students had to use their insight 

on how to apply the concept of linear span in problem solving. Analyzing their answers we 

studied differences and similarities in students evoked concept image triggered by this 

particular question. 

The findings of this study led us to believe that some students may have the misconception 

that in a linearly dependent set of vectors, every vector can be expressed as a linear 

combination of the others. This misconception was found to affect students’ understanding 

of linear span and to be a potential conflict factor. Examining the notion of linear span may 

offer the opportunity to confront such difficulties in a meaningful way. A vector belongs to a 

given linear span if and only if the vector can be expressed as a linear combination of the 

vectors in the spanning set. On the other hand, linear dependence of the spanning set 

together with an extra vector is not sufficient to conclude that this vector is in the span. 

Therefore we value this observation and include it in the design and initial evaluation the 

tasks. 

The designing process began by developing a design framework that would include chances 

to promote conceptual understanding and discussion. Concept image – concept definition 

(Tall & Vinner, 1981) is a well established (EMS, 2014) theoretical structure that was used to 

study students’ understanding of the concept and reflect upon different aspects of teaching 

the notion. The design principles adopted were an amalgam of the use of this theoretical 
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structure and findings regarding teaching and learning Linear Algebra (Sierpinska, 2000; 

Harel, 2000). Based on them we developed three tasks that we believe will aid in the 

understanding of the concept of linear span. 

The tasks were created and/or chosen to reflect the different aspects of linear span that are 

of value in an introductory course. The first task is structured in such way as to lead students 

to create links between the geometrical representation of the concept and a more algebraic 

approach. The second task was developed to confront the potential conflict factors that 

were identified in the preliminary study. Finally the third task was designed with the aim to 

aid students make generalizations based on the other two tasks. 

A preliminary evaluation of the tasks was based on interviews with seven students. The 

analysis of the answers of the students to the tasks and the comments about their attempts 

during the interviews, gave the opportunity to identify details we overlooked in the initial 

task design. Moreover, it suggested ways to improve the tasks before introducing them to 

students in a problem workshop. 

During this initial evaluation we made some further observations. Firstly, through the 

interviews we had the chance to analyze further the misconception identified in the 

preliminary study regarding the notions of linear combination and linear dependence. 

Students’ reaction to Task 2 is an indication that this particular misconception can be 

confronted and possibly resolved through this task. Secondly, we observed the 

misconception of “nested subspaces”, noted by Warwo et al. (2011). Finally, we propose a 

tactic that may be used in a problem workshop to assist students’ learning without giving 

them an answer. These tactics were a product of reflection on the discussions with students. 

More general tactics can be found in Mason (2002). 

Overall, the approach used for task design and evaluation of the task was partially based on 

and inspired by the writer’s involvement in problem workshops in the Department. 

Therefore, it combines aspects of the research in Mathematics Education and observations 

through her experience in the Department. If educators wish to use the design or the tasks, 
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they may need to adapt them depending on the different circumstances and curriculum of 

their Department.  

In conclusion, a big limitation factor was time. It lasted only six months, therefore the time 

of development and the evaluation of the tasks were affected. In the future the tasks should 

be tested further. Receiving feedback from lecturers would be beneficial for further 

development of the tasks. In addition, we suggest conducting interviews with a focus group 

of 5 to 6 students to study the effects of the task in groups where students may discuss their 

difficulties and findings. This would allow an in depth analysis of the results of the task in 

situations similar to those of a problem workshop. Moreover, the tasks must be tested in a 

problem workshop and be compared to other contiguous tasks. The analysis of the results 

would provide us with information regarding the proper use and inclusion of the task in the 

workshops. Even further, it would allow a more accurate quantification of students’ 

achievement in the tasks. Finally and most importantly, the effects of the tasks should be 

evaluated in the long run. Therefore, studying the understanding of students regarding the 

notion of linear span after the introduction of the tasks is crucial.  
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Appendix A 

Solutions to the Tasks 

  



92 
 

 

  



93 
 

Task 1 

Consider the vectors: 

𝑣1 =  
−1
0
1

 , 𝑣2 =  
1
2
3
 , 𝑤1 =  

−1
2
5

 , 𝑤2 =  
1
2
5
  

i. Show that w1 can be expressed as a linear combination of v1 and v2, but w2 

cannot be expressed as a linear combination of v1 and v2. 

ii. Explain what subspace of ℝ3 is spanned by v1, v2 and w1. 

Explain what subspace of ℝ3 is spanned by v1, v2 and w2. 

What do you observe? 

iii. Show that the vectors v1, v2, w1 and w2 span ℝ3, that is for every u=(x, y, z) 

there are a, b, c, d such that: 

𝑢 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑤1 + 𝑑𝑤2 

Show also that every vector u ∊ℝ3 can be expressed as a linear combination of v1, 

v2, w1 and w2 in infinitely many ways. 

Solution: 

i. There should be a solution to the system: 

 
−1 1
0 2
1 3

  
𝑎
𝑏
 =  

−1
2
5

  

 
−1 1 −1
0 2   2
1 3 5

 ~  
−1 1 −1
0 2 2
0 4 4

 ~  
−1 1 −1
0 2 2
0 0 0

  (1) 

The solution is 𝑎 = 2, 𝑏 = 1.  Therefore,  𝒘𝟏 = 𝟐𝒗𝟏 + 𝒗𝟐. 

 

There should not be a solution to the system: 

 
−1 1
0 2
1 3

  
𝑎
𝑏
 =  

1
2
5
  

Or equivalently, the vectors v1, v2, w2 should be linearly independent. 

 
−1 1 1
0 2   2
1 3 5

 ~  
−1 1 1
0 2 2
0 4 6

 ~  
−𝟏 1 −1
0 𝟐 2
0 0 𝟐
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The vectors v1, v2, w2 are linearly independent. Therefore w2 cannot be expressed as a 

linear combination of v1 and v2. 

ii. 𝑉1 =  𝑢 ∈ ℝ3 𝑢 = 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑤1, 𝑎1, 𝑎2, 𝑎3 ∈ ℝ3}. From (1) we know that v1 

and v2 are linearly independent and 𝑤1 = 2𝑣1 + 𝑣2. Therefore, 

𝑉1 =  𝑢 ∈ ℝ3 𝑢 = (𝑎1 − 2)𝑣1 + (𝑎2−1)𝑣2, 𝑎1, 𝑎2 ∈ ℝ3} 

=  𝑢 ∈ ℝ3 𝑢 = 𝑠𝑣1 + 𝑡𝑣2, 𝑠, 𝑡 ∈ ℝ3} 

The geometrical representation of V1 is a plane in ℝ3. 

 

𝑉2 =  𝑢 ∈ ℝ3 𝑢 = 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑤3}. We know that the vectors v1, v2, w2 are 

linearly independent.  Therefore, the geometrical representation of V2 is the space 

ℝ3 

We observe that a set of three vectors is possible to span vector spaces of different 

dimensions. 

iii. Let 𝑢 =  𝑥, 𝑦, 𝑧) a vector in ℝ3.  

 

𝑢 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑤1 + 𝑑𝑤2 

Equivalently, 

 
−1 1 −1 1
0 2 2 2
1 3 5 5

  

𝑎
𝑏
𝑐
𝑑

 =  
𝑥
𝑦
𝑧
  

 
−1 1 −1 1
0 2 2 2
1 3 5 5

 
𝑥
𝑦
𝑧
 ~  

−1 1 −1 1
0 2 2 2
0 4 4 6

 
𝑥
𝑦

𝑧 + 𝑥
 ~  

−𝟏 1 −1 1
0 𝟐 2 2
0 0 0 𝟐

 

𝑥
𝑦

𝑧 + 𝑥 − 2𝑦
  

There are infinitely many solutions to the system. There for every vector in ℝ3 can be 

expressed as a linear combination of v1, v2, w1 and w2 in infinitely many ways. The 

set {v1, v2, w1, w2} spans ℝ3. 
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Task 2 

Let v1, v2 and w be linearly dependent vectors in ℝ3. It is possible for w  not to be in the space 

spanned by v1 and v2 although v1, v2 and w are linearly dependent. Give an example. Why do 

you think this can happen? 

Solution: 

There should be vectors v1, v2, w such that v1, v2 and w are linearly dependent but w not to 

be expressed as a linear combination of v1 and v2. 

In order this to be true. The vectors v1 and v2 should be linearly dependent (they span a line 

in ℝ3. For example 𝒗𝟏 =  
𝟏
𝟏
𝟎
  and 𝒗𝟐 =  

𝟐
𝟐
𝟎
 .Then for any choice of w the set {v1, v2, w} is 

linearly dependent. For w not to be expressed as a linear combination of v1 and v2 one should 

choose a vector w that does not belong on the line spanned by v1 and v2 . For example 

𝒘 =  
𝟏
𝟐
𝟑
 . 
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Task 3 

Describe the following propositions as True or False: 
i. If v1, v2, v3, v4 spanℝ3then v1, v2, v3 span ℝ3. 

ii. If v and w are linearly independent and the set {v, w, z} is linearly dependent, z is in the 

space spanned by v and w. 

iii. If the set of vectors S = {v1, v2, …,vk} spans V, and w ∊ V, the set T = {v1, v2, …, vk, w} also 

spans V. 

Solution: 

i. False (For example in task 1 the set task 1 the set {v1, v2, w1, w2} spans ℝ3 but the set 

{v1, v2, w1} does not). 

ii. True (The only way for v and w to be linearly independent is for w to be a linear 

combination of them). 

iii. True ( 𝑤 ∊  𝑉  𝑣 = 𝑏1𝑣1 + 𝑏2𝑣2 + ⋯ + 𝑏𝑎𝑘𝑣𝑘  

< 𝑇 >=  𝑣 ∈ ℝ3 𝑣 = 𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑘𝑣𝑘 + 𝑑𝑤 =

 𝑣 ∈ ℝ3 𝑣 = (𝑎1 + 𝑑𝑏1)𝑣1 + (𝑎2 + 𝑑𝑏2)𝑣2 + ⋯ + (𝑎𝑘 + 𝑑𝑏𝑘)𝑣𝑘 =

 𝑣 ∈ ℝ3 𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘 =< 𝑆 > ) 

 

 

 

  



97 
 

Appendix B 

The folder 
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ΟΔΗΓΙΕΣ
Στο επόμενο φύλλο θα βρείτε τρεις δραστηριότητες που έχουν στόχο να βοη-

θήσουν στην καλύτερη κατανόηση της έννοιας της παραγωγής υποχώρου. Οι
δραστηριότητες δημιουργήθηκαν στα πλαίσια της μεταπτυχιακής μου εργασίας
με τίτλο ”Δημιουργία δραστηριοτήτων για την κατανόηση της έννοιας της Γραμ-
μικήςΘήκης” (επιβλέπωνΧρήστος Κουρουνιώτης) έτσιώστε ναμπορούν νααπο-
τελέσουν μέρος των ασκήσεων του εργαστηρίου στα πλαίσια του μαθήματος
”Γεωμετρία και Γραμμική Άλγεβρα”. Για το λόγο αυτό θα ήθελα την βοήθειά σας.
Είναι σημαντικό οι δραστηριότητες να ανταποκρίνονται στις ανάγκες σας και να
μπορούν να βοηθήσουν ουσιαστικά.

Οι έννοιες αυτές περιλαμβάνονται στις σημειώσεις του κ. Κουρουνιώτη για
το μάθημα ”Γεωμετρία και Γραμμική Άλγεβρα” στις σελίδες 127, 128. Για την
διευκόλυνση σας οι σελίδες αυτές δίνονται μαζί με τις δραστηριότητες. Αφιε-
ρώστε χρόνο να τις λύσετε ώστε να μπορέσετε να βοηθήσετε στην αξιολόγηση
τους. Για να μπορεί να γίνει καλύτερα η αξιολόγηση των δραστηριοτήτων σας
δίνονται οι εξής οδηγίες:

• Όλες οι ασκήσεις μπορούν να λυθούν χωρίς την αναφορά της έννοιας της
βάσης.Η έννοια της παραγωγής υποχώρου προηγείται της έννοιας της βά-
σης. Προσπαθήστε να μπείτε στην θέση κάποιου που βλέπει την έννοια για
πρώτη φορά. Για περισσότερες πληροφορίες μπορείτε να ανατρέξετε στις
σημειώσεις του μαθήματος, εκεί μπορείτε να δείτε ποιες έννοιες προη-
γούνται και ποιες ακολουθούν.

• Μην αγχωθείτε αν κάπου κολλήσετε! Στη συνέντευξη θα έχουμε χρόνο να
συζητήσουμε ότι σας δυσκόλεψε και να το λύσουμε μαζί όπως θα γινόταν
και στο εργαστήριο.Οι δραστηριότητες έχουνβοηθητικό και όχι εξεταστικό
χαρακτήρα.

• Τέλος, την ημέρα που θα γίνει η συνέντευξη θα πρέπει να κρατάτε μαζί
σας τις απαντήσεις που δώσατε. Αυτό θα βοηθήσει στην καλύτερη αξιο-
λόγηση των δραστηριοτήτων. Με αυτόν τον τρόπο θα μπορείτε ευκολό-
τερα να ανατρέξετε σε ότι σας δυσκόλεψε ή ότι σας άρεσε σχετικά με τις
δραστηριότητες.

Εάν χρειάζεστε επιπλέον πληροφορίες μπορείτε να επικοινωνήσετε μαζί μου
στο papadaki.evie@gmail.com

Ευχαριστώ πολύ για τον χρόνο και το ενδιαφέρον σας. Η βοήθειά σας είναι
πολύ σημαντική στην προσπάθεια δημιουργίας δραστηριοτήτων που να αντα-
ποκρίνονται στις ανάγκες των φοιτητών.

1



ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
1. Δίνονται τα διανύσματα:

v1 =

−1
0
1

 , v2 =

1
2
3

 , w1 =

−1
2
5

 , w2 =

1
2
5

 .

(αʹ) Δείξτε ότι τοw1 μπορεί να εκφραστεί σαν γραμμικός συνδυασμός των
v1 και v2, αλλά το w2 δεν μπορεί να εκφραστεί σαν γραμμικός συν-
δυασμός των v1 και v2.

(βʹ) Εξηγήστε ποιός είναι ο υπόχωρος τουR3 πουπαράγεται από τα v1, v2
και w1.
Εξηγήστε ποιός είναι ο υπόχωρος τουR3 πουπαράγεται από τα v1, v2
και w2.
Τι παρατηρείτε;

(γʹ) Δείξτε ότι τα διανύσματα v1, v2, w1 καιw2 παράγουν τονR3, δηλαδή
οτι για κάθε u = (x, y, z) υπάρχουν a, b, c, d τέτοια ώστε:

u = av1 + bv2 + cw1 + dw2 .

Ακόμα δείξτε ότι κάθε διάνυσμα u ∈ R3 μπορεί να εκφραστεί ως
γραμμικός συνδυασμός των v1, v2, w1 και w2 με άπειρους τρόπους.

2. Έστω v1, v2 και w γραμμικά εξαρτημένα διανύσματα στον R3. Το w είναι
δυνατό να μην ανήκει στον χώρο που παράγεται από τα v1 και v2 παρόλο
που τα v1, v2, w είναι γραμμικά εξαρτημένα. Δώστε ένα παράδειγμα.
Γιατί πιστεύετε ότι συμβαίνει αυτό.

3. Χαρακτηρίστε τις παρακάτω προτάσεις με Σωστό ή Λάθος.

(αʹ) Εάν τα v1, v2, v3, v4 παράγουν τονR3 τότε και τα v1, v2, v3 παράγουν
τον R3 .

(βʹ) Εάν v καιw είναι γραμμικά ανεξάρτητα και το σύνολο {v, w, z} είναι
γραμμικά εξαρτημένο, τότε το z ανήκει στο χώρο που παράγεται από
τα v και w.

(γʹ) Εάν το σύνολο διανυσμάτων S = {v1, v2, ..., vk} παράγει τον V , και
w ∈ V , το σύνολο T = {v1, v2, ..., vk, w} επίσης παράγει τον V .
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