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I

Abstract

Gilthead seabream (Sparus aurata) is a teleost of considerable economic importance in
Southern European aquaculture. The aquaculture industry shows a growing interest
in the application of genetic methods that can locate phenotype-genotype associations
with high economic impact. Through selective breeding, the aquaculture industry can
exploit this information to maximize the financial yield. Here, we present a Genome
Wide Association Study (GWAS) of 112 samples belonging to seven different seabream
families collected from a Greek commercial aquaculture company. Through double
digest Random Amplified DNA (ddRAD) Sequencing, we generated a per-sample
genetic profile consisting of 2,258 high quality Single Nucleotide Polymorphisms (SNPs).
These profiles were tested for association with four phenotypes of major financial
importance: Fat, Weight, Tag Weight and the Length to Width ratio. We applied two
methods of association analysis. The first is the typical single-SNP to phenotype test, and
the second is a feature selection (FS) method that produces groups with multiple-SNPs
associated to a phenotype. In total, we identified nine single-SNPs and six groups of
SNPs associated with weight related phenotypes (Weight and Tag Weight), two groups
associated with Fat, and 16 groups associated with the Length to Width ratio. Six
identified loci were present in genes associated with growth in other teleosts or even
mammals, such as semaphorin-3A, and neurotrophin-3. These loci are strong candidates
for future studies that will help us unveil the genetic mechanisms underlying growth
and improve the seabream aquaculture productivity by providing genomic anchors for
selection programs.
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Abstract  
 

 

Η τσιπούρα Gilthead (Sparus aurata) είναι ένας τελεόστεος, μεγάλης οικονομικής αξίας στη 

νοτιοευρωπαϊκή υδατοκαλλιέργεια. Οι υδατοκαλλιέργειες δείχνουν ένα αυξανόμενο 

ενδιαφέρον για την εφαρμογή γενετικών μεθόδων που μπορούν να εντοπίσουν συσχετίσεις 

φαινοτύπου-γονότυπου με υψηλό οικονομικό αντίκτυπο. Μέσω της εκλεκτικής 

αναπαραγωγής, ο κλάδος της υδατοκαλλιέργειας μπορεί να εκμεταλλευτεί αυτές τις 

πληροφορίες για να μεγιστοποιήσει τη χρηματοοικονομική του απόδοση. Στην μελέτη αυτή, 

παρουσιάζουμε μια Genome Wide Association analysis (GWAS) με 112 δείγματα που ανήκουν 

σε επτά διαφορετικές οικογένειες, οι οποίες συλλέχθηκαν από μια ελληνική εμπορική εταιρεία 

υδατοκαλλιέργειας. Μέσω double digest Random Amplified DNA (ddRAD), δημιουργήσαμε 

ένα γενετικό προφίλ ανά δείγμα που αποτελείται από 2.258 υψηλού επιπέδου πολυμορφισμούς 

νουκλεοτιδίων (SNPs). Αυτά τα προφίλ δοκιμάστηκαν για συσχέτιση με τέσσερις φαινοτύπους 

μείζονος οικονομικής σημασίας: Λίπος, Βάρος κατα την σήμανση, Βάρος κατα την αλιεία και 

το λόγο Μήκος προς Πλάτος. Εφαρμόσαμε δύο μεθόδους ανάλυσης συσχετισμού. Η πρώτη 

είναι η τυπική συσχέτιση φαινοτύπου με ένα SNP και η δεύτερη μέθοδος επιλογής 

χαρακτηριστικών (FS) που παράγει ομάδες απο πολλαπλά SNP που σχετίζονται με ένα 

φαινότυπο. Συνολικά, εντοπίσαμε εννέα SNP και έξι ομάδες SNP που σχετίζονται με το βάρος, 

δύο ομάδες που σχετίζονται με το λίπος και 16 ομάδες που σχετίζονται με το λόγο μήκος προς 

πλάτος. Έξι απο τους τόπους που εντοπίσθηκαν υπήρχαν σε γονίδια που σχετίζονταν με την 

ανάπτυξη σε άλλους τελεόστεους ή ακόμα και θηλαστικά, όπως η semaphorin-3Α και η 

neurotrophin-3. Αυτοί οι τόποι είναι ισχυροί υποψήφιοι για μελλοντικές μελέτες που θα μας 

βοηθήσουν να αποκαλύψουμε τους γενετικούς μηχανισμούς που αποτελούν τη βάση για την 

ανάπτυξη και να βελτιώσουμε την παραγωγικότητα της υδατοκαλλιέργειας τσιπούρας, 

παρέχοντας γενομικούς δείκτες για προγράμματα επιλογής. 
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Introduction 2

1 Introduction

1.1 Genome Wide Association Studies

Genome Wide Association Studies (GWAS) has accelerated the field of human, plant, and
livestock genetics [1]. Using GWAS, plenty genetic risk factors for many common human
diseases have been identified, and many genetic regions regulating crucial economical
traits have been located in plants and livestock. GWAS could help us to understand the
relations between traits and the underlying genetic architecture in aquaculture [1]. While
genotyping technologies are evolving, GWAS could be widely used for the analysis of
aquaculture traits to improve the brood stocks of aquaculture species, with lower costs
in the long term [1].

1.2 Sparus aurata

The gilthead sea bream (Sparus aurata) is a fish species of great economic importance for
the Mediterranean aquaculture industry [2]. It ranks first among other aquacultured
species in South Mediterranean with total production of 160,563 tons for 2016 (FEAP
Production Report 2017). The main producers are Turkey and Greece, representing 42%
and 37% respectively of the total production.
The Marine aquaculture industry, especially in Mediterranean, shows a growing interest
in genetic improvement in order to maximize the efficiency of its production [3]. Ge-
nomic selection is a breeding methodology that aims to increase the rate of genetic gain,
leading to improved of certain phenotypes of various species. Selection design should
take into consideration both the minimization of inbreeding and the maximization of
the response to selection [3]. Multitrait selection is desired for two reasons (1) avoids
changes in traits, (2) maximizes productivity resulting from genetic improvement pro-
grammes [3]. In order to make the genomic selection, we developed a prediction model
for the trait of interest using a training population.

© University of Crete Dimitrios Kyriakis
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Country Sea bream production
(tons)

Turkey 67,612
Greece 59,000
Spain 13,740
Italy 7,600

Cyprus 5,136
Croatia 4,304
France 1,671

Portugal 1,500

Total 160,563

Table 1.1: Gilthead seabream production volume (FEAP Production Report 2017).

1.3 Double Digest Restriction Associated DNA (ddRAD)
Sequencing

The determination of genotypes is a grounding technology in genetics. It is mainly
used in research for genotype-phenotype association studies and in clinical diagnostics
for variant discovery. The number of individuals or samples has crucial role for the
reliability and statistical power of a comparative and population analyses. Several
methods have occurred to increase the number of individuals keeping the resource in-
vestment at the same level. The basic method is reducing the fraction of each individual
genome sequenced [4]. The main challenge of this method is to acquire an adequate and
representative coverage of the genome of the population given that short regions are
profiled for each individual. Double digest RAD-sequencing (ddRADseq), uses a two
enzyme double digest followed by precise size selection (Figure: 1.1) [5], [6]. Only a very
small fraction of the fragments are sequenced. These fragments are naturally selected
to be from the same genomic regions across individuals. Representation, is expected to
be inversely proportional to deviation from the size-selection target, thus read counts
across regions are expected to be correlated between individuals [4].

The libraries, produced by ddRADseq, consist of fragments generated by cuts with both
restriction enzymes which fall within the size-selection window. Some of the advantages
are:

• Reduces duplicate
Small fraction of restriction fragments will fall in the target size-selection regime,
the probability of sampling both directions from the same restriction site is low.

© University of Crete Dimitrios Kyriakis



Introduction 4

Figure 1.1: The outline of Double digest RAD sequencing (ddRADseq) technology.
ddRAD improves efficiency and robustness while minimizing cost. (A)
Single restriction enzyme (RE), (B) Double digest RAD-sequencing [4].

Effectively halves the number of reads that are required to reach high-confidence
sampling of a SNP associated with a given restriction enzyme (RE) cut site [4].

• Robust to under-sampling
Regions are “filled in” with reads in approximately the same order across all
individual samples. Samples with read recovery counts below saturation will still
share a significant number of well-covered regions [4].

The preparation of a ddRADseq library requires less time while is of low cost and, in
addition, needs finite amounts of genomic material [4]. Furthermore, by removing the
random shearing (and therefore random recovery), increases the coverage of regions
across individuals and augments robustness and variability of read counts [7].

© University of Crete Dimitrios Kyriakis
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1.4 Stacks

Stacks is a software pipeline for variant discovery from short-read sequences, such as
those generated on the Illumina platform. Stacks was developed to work with restriction
enzyme-based data, such as RAD-seq, for the purpose of building genetic maps and
conducting population genomics and phylogeography [8]. The stacks pipeline can be
summarized as:

Figure 1.2: The outline of stacks pipeline. 1) Process radtags: Raw sequence reads are
demultiplexed and apply filtering and quality control. 2) Pstacks extracts
stacks of reads, that have been aligned to a reference genome, per individual
and identifies single polymorphic nucleotide. 3) Cstacks: Loci are clus-
tered together across parents and a loci catalogue is generated. 4) Sstacks:
Loci from each individual are matched against the catalogue constructed by
parental alleles. 5) Populations function of Stacks, used to produce a vcf file
and several useful output files [8].

Also, a web based front end, backed by a MySQL database, is available to visualize the
data [8].

© University of Crete Dimitrios Kyriakis
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1.5 Genotype Imputation

RAD sequencing typically has a large proportion of missing data. Through genotype
imputation we can produce estimates of these missing values based on proximal SNPs
with known genotypes. Imputing missing values can maximize the power of an analysis
and reduce genotyping cost [9]. Imputation methods, model the correlation between
SNPs that occur due to LD and use these models for missing value inference [10].
Imputation can be also used to augment the number of SNPs that have been typed by a
genotyping platform, but this requires the availability of a densed genotyped reference
panel [11]. Some of the most known tools for this task rely on a reference genome in
order to construct probabilistic haplotypes which in turn are used for genotype inference
[10].
Marker imputation algorithms were developed for species with a reference genome,
were the markers are ordered [12]. Based on previous research [13], two parameters
have been found to affect the accuracy of imputation of unordered markers. The first
is linkage disequilibrium and the second is relatedness [13]. There are many general
imputation methods that do not require any prior information about the variables to be
imputed, but they have not been tested for imputation accuracy of genome-wide marker
data. Some of those imputation strategies are K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Random Forest Imputation (RF).
Given that an imputation reference panel is not available for gilthead seabream we used
imputation solely for the purpose of inferring missing values. In our case, the available
reference genome of gilthead is in a drafting stage and contains numerous markers in
unmapped sequencing scaffolds. For this reason, we apply general imputation methods
that do not require any previous knowledge regarding the underlying LD structure of the
studied genome [13]. Simulation of these imputation methods in genetic selection (GS)
studies, resulted in predicted genotypes that increased the efficiency of GS regardless
the rate of missing values [13].

1.5.1 Model Selection

Cross-validation, is a model validation technique for assessing the results of a classifier.
It is commonly used, when we want to estimate how precisely a predictive model will
perform in previously unknown data samples. The standard method of a prediction
problem, where a dataset of known data is given, is to split data samples in folds and
every time we use the n-1 folds as training dataset and the one fold that is left, as test
dataset ("unknown data"). The goal of cross validation is to estimate the expected level
of fit of a model to a data set that is independent of the data that were used to train the
model. This approach limits problems like over-fitting, and give an insight on how the
model will generalize to an independent dataset. Common types of cross-validation are:

• Leave-p-out cross-validation (LpO CV) : Leave-p-out cross-validation involves
using p observations as the validation set and the remaining observations as the

© University of Crete Dimitrios Kyriakis
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training set. This is repeated until all data have been participated in the test and in
the train dataset.

• Leave-one-out cross-validation (LOOCV): Leave-one-out cross-validation is a
particular case of leave-p-out cross-validation with p = 1.

A better way of using the holdout method for model selection is to separate the data
into three parts: a training set, a validation set, and a test set. The training set is used
to the different models, and the performance on the validation set is then used for the
model selection. The advantage of having a test set that the model hasn’t seen before
during the training and model selection steps is that we can obtain a less biased estimate
of its ability to generalize to new data. Figure 1.3 illustrates the concept of holdout
cross-validation where we use a validation set to repeatedly evaluate the performance
of the model after training with different parameter values. Once we are satisfied with
the tuning of parameter values, we estimate the models’ generalization error on the test
dataset [14]. This method is called nested cross-validation. In figure 1.4 we have an outer
k-fold cross-validation loop to split the data into training and test folds, and an inner
loop is used to select the model using k-fold cross-validation on the training fold [14].

Figure 1.3: Nested cross-validation with five outer and two inner folds, which can be
useful for large data sets where computational performance is important;
this particular type of nested cross-validation is also known as 5x2 cross-
validation [14]

According to some research [15], there is evidence in the machine learning, regarding
whether N-fold cross-validation has better performance than LOOCV and vice-versa for
binary classification .

© University of Crete Dimitrios Kyriakis
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Figure 1.4: Nested cross validation method. First hide a test set. Then split the remain
data to train and validation data in order to tune the hyperparameters and
to choose the best model for our data [14]. In machine learning, a hyper-
parameter is a parameter whose value is set before the learning process
begins.

1.5.2 Stratification

A better approach over the standard k-fold cross-validation is stratified k-fold cross-
validation, which can yield better bias and variance estimates, especially in cases of
unequal class proportions [14]. One common issue in data is the limited (inadequate)
size of the data set. When this is the case, testing the model becomes an issue. Usually,
2/3 of the data are used for training and validation and 1/3 for final testing. Folding the
dataset by chance, could lead to no representative subsamples of the initial (or complete)
data set. For example in a data set of 100 samples and 5 classes, it is likely that one of
these 5 classes may not be presented in the validation or test set. To avoid this problem,
we should take care of the fact that each class should be correctly represented in both
the training and testing sets. This process is called stratification. This process guarantee
a correct class distribution among the training and validation sets. So we can select the
data in every fold based on the probability of a class.

1.5.3 Classification

Support Vector Machines (SVM) is used in order to infer the missing data of a feature.
SVMs map the data to a higher dimensional space via a kernel function and then
identify the maximum-margin hyperplane in order to separate training instances [16].
The margin is defined as the distance between the separating hyperplane (decision
boundary) and the training samples that are closest to this hyperplane, which are the
so-called support vectors [17]. In SVMs, our optimization objective is to maximize the
margin. More specific, the hyperplane is based on a set of boundary training instances,
called support vectors. New samples are classified based on the side of the hyperplane
they fall into. The optimization problem is most often formulated in a way that allows
for non-separable data by penalizing misclassification [16]. Also, SVMs seems to be

© University of Crete Dimitrios Kyriakis
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insensitive in dimensionality and handle very large- scale classification in both sample
and variables. SVMs in the beginning could only be applied to binary classification
problems, but in the years, SVM were created that allowed classification of binary and
multi-category data. We used one vs rest mode in order to handle multi-class and simple
SVM for binary classification.

Figure 1.5: A binary SVM selects a hyperplane (bold line) that maximizes the width
of the ‘gap’ (margin) between the two classes. The hyperplane is specified
by ‘boundary’ training instances, called support vectors shown with circles.
New cases are classified according to the side of the hyperplane they fall into
[16].

© University of Crete Dimitrios Kyriakis
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1.6 Linear Mixed Models

In general, a mixed model is a statistical model containing both fixed effects and random
effects. These models are proper in a wide variety of disciplines in the biological and
physical sciences. They are appropriate in settings where measurements are made on
clusters (Family) of related statistical units, or where repeated measurements are made
on the same statistical units (longitudinal study) [18].
We used the R package lme4 [18]. We used the command lmer to fit the mixed model
for every phenotype. Random effects were fitted for every family to control for the
correlation within the families. In mathematical notation the linear mixed model is
written as

yi = a + τi +
p

∑
j=1

β jXj + ei

where i=1,. . . ,K, with K denoting the number of families, yi is the vector of measurements
of the i-th family containing ni measuments with ∑K

(i=1) ni = n, the overall sample size.
The term a, is the overall constant term.The τi is the random effect of the i-th family, the
deviation of the i-th family from the overall constant a. The term β j is the fixed regression
coefficient of the variable Xj and ei is the vector of residuals of the i-th family. The model
has two sources of variation, one stemming from the residuals and one stemming from
the repeated measurements, eij N(0,σ2

e ) and τi N(0,σ2
τ) respectively.

Examining residuals is a major part of all statistical modeling. Residuals can give us a
hint whether our assumptions are reasonable and our choice of model is appropriate.
Residuals represent elements of variation unexplained by the fitted model. Since this is
a form of error, the same general assumptions apply to the group of residuals that we
typically use for errors in general: one expects them to be normal and approximately
independently distributed with a mean of 0 with some constant variance.
The Bayesian information criterion (BIC), was used in order to compare two linear mixed
models. BIC is a criterion for model selection among a finite set of models; the model
with the lowest BIC is preferred. It is based, on the log-likelihood function, and takes
into account the number of estimated parameters. When fitting models, it is possible to
increase the likelihood by adding parameters, but doing so may result in over-fitting.
Both BIC and Akaike information criterion (AIC) attempt to resolve this problem by
introducing a penalty term for the number of parameters in the model; the penalty term
is larger in BIC than in AIC.

1.7 Feature Selection

The typical GWAS pipeline reveals individual SNPs that are associated with a specific
phenotype. One limitation of this pipeline is that it cannot produce signatures that
contain combinations of variants. This problem is commonly referred as SNP to SNP

© University of Crete Dimitrios Kyriakis
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interaction induction [19]. The large number of tested genotypes in a typical GWAS
experiment makes prohibitive the efficient computation of variant combinations. Also,
the burden of multiple testing increases linearly to the number of combined variants.
This means that a SNP-SNP interaction should be of extreme significance in order to
be detected by a method that tests all possible combinations of variants. To tackle this
problem, we employed a different approach. We considered SNPs as variables that
describe a certain phenotype. We then applied methods that seek the optimum subset
of variables with which we can construct a predictive model for a trait of interest (e.g
Weight). This approach is called Variable selection, or Feature Selection (FS). Solving
the FS problem has numerous advantages [20]. Features in biology (e.g. SNPs, gene
expressions) are commonly found to be expensive to measure, store and process [21].
By reducing the number of measurable markers-loci via FS, one can reduce this cost. A
high quality FS algorithm improves the predictive performance of the resulting model
by removing the noise propagated by redundant features. For our study, we used two
different FS algorithms: The first is the statistically equivalent signature (SES) algorithm
and the second is the Orthogonal Matching Pursuit (OMP) algorithm.

1.7.1 The statistically equivalent signature (SES) algorithm

Commonly FS algorithms aim to find a single group of features, which has the highest
predictive power. On the contrary, SES algorithm introduced in [22], attempts to identify
multiple signatures (feature subsets) whose performances are statistically equivalent.
SES produces several signatures of the same size and predictive power regardless of the
limited sample size or high collinearity of the data [23]. It performs multiple hypothesis
tests for each feature, conditioning on subsets of the selected features. For each feature,
the maximum p-value of these tests is retained and the feature with the minimum
p-value is selected. This heuristic has been proved to control the False Discovery Rate
[24]. Here, we used an adaptation of the SES algorithm that accommodates repeated
measurements [25].

Figure 1.6: In a Bayesian network, the Markov blanket of node A includes its parents,
children and the other parents of all of its children.
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Pr(A | ∂A, B) = Pr(A | ∂A) (1.1)

SES algorithm is influenced by the principles of constraint-based learning of Bayesian
networks [26]. Bayesian networks are directed acyclic graphs that represent the de-
pendency relationships between variables in a dataset. An edge A→ B in a bayesian
graph, represents the conditional dependence of variable B from variable A. There is
a theoretical connection between FS and the Bayesian (causal) network that describes
best the data at hand [20]. Following the Bayesian networks terminology, the Markov
Blanket (MB) of a variable or node A in a Bayesian network is the set of nodes ∂A
composed of A’s parents (direct causes), its children (direct effects), and its children’s
other parents (other direct causes of the A’s direct effects). Every set of nodes in the
network is conditionally independent of A when conditioned on the Markov blanket
of the node A (∂A as described in formula 1.1). Thus, the Markov blanket of a node
contains the only knowledge needed to predict the behavior of that node.

1.7.2 Orthogonal Matching Pursuit (OMP) algorithm

Orthogonal Matching Pursuit is an iterative algorithm. At each iteration, it selects
the column-marker of the SNP data matrix, that have the greatest correlation with the
current residuals [27]. OMP updates the residuals by projecting the observation onto
the linear subspace spanned by the columns that have already been selected, and then
proceeds to the next iteration. No column is selected twice because the residuals are
orthogonal to all the selected columns. The algorithm stops when a criterion is satisfied.
We have used its generalized form, gOMP whose stopping criterion is based upon the
difference of the BIC score between two successive models. If the difference is lower than
a predefined threshold, the algorithm stops. The major advantage of OMP compared
with other alternative methods, is its simplicity and fast implementation [27].

The goal of this thesis was to signature of genetic markers that set the ground for
understanding growth and other traits of interest in Gilthead seabream, in order to
maximize the aquaculture efficiency, by improving phenotypic traits.
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2 Methodology

2.1 Sample collection

The fish used in this study was a subset of a larger experiment with progeny from 66
male and 35 female brooders constituting 73 different full sib families from the breed-
ing program of a commercial aquaculture company (Nireus Aquaculture S.A.). From
those 73 full sib families, fourteen families originating from thirteen males and eleven
females were selected (selective genotyping), based on their within family variation of
bodyweight at harvest, for genotyping with microsatellite markers in order to perform
a QTL confirmation experiment (Chatziplis et al. 2018, in preparation). Seven male
and six female brooders with 105 progeny in total, constituting six full sib families and
one maternal half sib family were used for ddRAD library preparation and sequencing.
These seven families were those exhibiting the greatest family variation of bodyweight
at harvest out of 14 total families included in the QTL verification experiment (Chatziplis
et al. 2018, in preparation). All progeny were reared in commercial conditions and after
PIT tagging they were transferred to sea cages at 220 Days Post Hatching (DPH) for the
growth period. For all progeny the weight at tagging (g) (205 DPH), weight at harvest
(g) (750 DPH), percentage (%) of fat at harvest (as measured in terms of body electrical
conductivity, 692 Distell), the total length at harvest (cm) (750 DPH) and the width at
harvest (cm) (750 DPH) were measured.

2.2 Library preparation & Sequencing

Individual DNA samples were extracted using a modified salt-based extraction protocol
based on [28] and treated with RNase to remove residual RNA. Genomic DNA was
eluted in 5 mmol/L Tris, pH 8.5 and stored in 4oC. Each sample was quantified by
spectrophotometry (Nanodrop 1000 - Thermo Fisher Scientific) and quality assessed
by 0.7% agarose gel electrophoresis. To build the ddRAD library we used the protocol
described in [29], with some minor modifications. Briefly, each of 144 DNA samples (13
parents in triplicates and 105 offspring; 21 ng DNA per sample) was separately but simul-
taneously digested by two high fidelity restriction enzymes (RE): SbfI (CCTGCA|GG
recognition site), and SphI (GCATG|C recognition site), both sourced from New England
Biolabs, (NEB) UK. Digestions were incubated at 37oC for 90 min, using 10 U of each
enzyme per microgram DNA in 1· CutSmart Buffer (NEB), in a 6 µl total reaction volume.
The reactions were slowly cooled to room temperature, 3 µl of a premade adapter mix
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was added to the digested DNA, and incubated at room temperature for 10 min. This
adapter mix contained individual-specific combinations of P1 (SbfI-compatible) and P2
(SphI-compatible) adapters at 6 nM and 72 nM concentrations respectively, in 1· reaction
buffer 2 (NEB). The ratio of P1 to P2 adapter (1:12) was selected to reflect the relative
abundance of SbfI and SphI cut sites present. P1 and P2 adapter included an inline five-
or seven-base barcode for sample identification. Ligations were implemented over 3 hrs
at 22oC by addition of a further 3 µlof a ligation mix comprising 4 mM rATP (Promega,
UK), and 2000 cohesive-end units of T4 ligase (NEB) in 1· CutSmart buffer (NEB). The
ligated samples were pooled together, and the single pool was column-purified (MinE-
lute PCR Purification Kit, Qiagen, UK), and eluted in 70 µl EB buffer (Qiagen, UK). The
size-selection, was performed by agarose gel separation, keeping the fragments between
400bp to 700bp. Following gel purification (MinElute Gel Extraction Kit, Qiagen, UK),
the eluted size-selected template DNA (68 µl in EB buffer) was PCR amplified (15 cycles
PCR; 32 separate 12.5-ml reactions, each with 1 µl template DNA) using a high fidelity
Taq polymerase (Q5 Hot Start High-Fidelity DNA Polymerase, NEB). The PCR reactions
were combined (400 µl total), and column-purified (MinElute PCR Purification Kit). The
57 µl eluate, in EB buffer, was then subjected to a further size-selection clean- up using
an equal volume of AMPure magnetic beads (Perkin-Elmer, UK), to maximize removal
of small fragments. The final library was eluted in 24 µl EB buffer. Lastly, the ddRAD
library was sequenced at the Norwegian Sequencing Centre in one HiSeq 2500 lane
(2x125 bp reads).

2.3 Raw read quality control and demultiplexing

We have used FastQC software to do the quality control check on the raw sequence data
retrieved from Illumina sequencing [30]. Demultiplexing the raw data was the next step
in order to recover the reads belonging to each individual. Process radtags program
from STACKS v.1.46 software [8] was used for this process. In this step -c parameter
was used to remove reads with an uncalled base, -q parameter was used to discard
sequencing reads of low quality (below 20) using the Phred scores provided from the
FASTQ files [8], and -t parameter set to 100 to truncate final reads length to 100 bp. In
particular, this step is depicted below:

Listing 2.1: Process RadTags
1
2 # Code

3 stacks process_radtags -P \

4 -1 $DATADIR/Sample_Saurata-ddRAD-GR/*_R1_001.fastq.gz \

5 -2 $DATADIR/Sample_Saurata-ddRAD-GR/*_R2_001.fastq.gz \

6 -b $DATADIR/barcodes \

7 -o $OUTDIR/ \

8 -c -q -r \

9 --inline_inline \
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10 --renz_1 sbfI \

11 --renz_2 sphI \

12 -i gzfastq -t 100 \

13 -D

14 # -r Rescue barcodes and RAD-Tags.

15 # -c Clean data, remove any read with an uncalled base.

16 # -q Discard reads with low quality scores.

17 # -t Truncate final read length to this value.

18 # -D Capture discarded reads to a file.

2.4 Data alignment against seabream reference genome

The annotated reference genome of gilthead seabream has been provided by Hellenic
Centre for Marine Research (H.C.M.R.) (Pauletto et al. in press). To align our samples
to the reference genome, we used Bowtie2 v.2.3.0 [31] with the following parameters:
-end-to-end -sensitive -no-unal. Then, we removed multi-aligned reads, reads
with > 3 mismatches and reads with map quality lower than 20 with Samtools [32].

Listing 2.2: Align ddRAD
1 # -------------------------------------- #

2 # ============ BOWTIE2 ================ #

3 # -------------------------------------- #

4 bowtie-build /genome.fasta sparus_aurata

5 bowtie2 -p 20 --end-to-end --sensitive --no-unal

6 -x sparus_aurata_bowtie \

7 -1 /data/seabream/RAL357_1.fastq \

8 -2 /data/seabream/RAL357_2.fastq \

9 -U remain.1.fq.gz,remain.2.fq.gz,

10 -S result_bowtie.sam \

11
12 # --no-unal Suppress SAM records for reads that failed to align.

13
14 # ======================== FILTERING =========================== #

15 # Save header

16 os.system("samtools view -H {1}/{0}.sam > {1}/header.sam".format(name,SAMDIR))

17 # Remove multi aligned | Remove >mismatches| Create Bam file

18 os.system("samtools view -F 4 -q 20 {1}/{0}.sam | grep -v 'XS:'| grep 'XM:i:[0-3]' | cat {1}/header.sam - |samtools view -b -o {1}/{0}.bam".format(name,SAMDIR))

19 # Sort Bam file

20 os.system("samtools sort {1}/{0}.bam -o {1}/{0}.sortred.bam".format(name,SAMDIR))

21 # Delete header

22 os.system("rm {1}/header.sam {1}/{0}.bam {1}/{0}.sam ".format(name,SAMDIR))

23
24 # -q INT : Skip alignments with MAPQ smaller than INT [0].

25 # -------------------------------------------------------------------------------------------- #
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2.5 Stacks Pipeline

The pstacks program will extract stacks that have been aligned to a reference genome
by an aligner such as BWA or Bowtie2. Pstacks compares "stacks of reads" and forms
putative sets of loci. These sets are used in order to detect SNPs at each locus using a
maximum likelihood framework [8]

Listing 2.3: Detect SNPs
1 # =============================== PSTACKS ==================================== #

2
3 command = "stacks pstacks -p 12 -o {0}/3_Pstacks -m 3 ".format(WORKDIR)

4 lista = []

5 counter = 0

6 for file in os.listdir(SAMDIR):

7 if file.endswith("bam"):

8 file = file [:file.index(".",file.index(".")+1)]

9 if file not in lista:

10 counter+=1

11 lista.append(file)

12 command += " -f {0}/{1}.bam -i {2}".format(SAMDIR,file,counter)

13 os.system(command)

14 # =============================================================================== #

A SNP catalogue was built from the parents of the cross. Cstacks created a set of all
possible alleles expected in the progeny of the cross.

Listing 2.4: Catalog of SNPs
1 # =================================== CSTACKS ==================================== #

2
3 command = "stacks cstacks -b 1 -p 12 -o {0} --aligned ".format(CStaDIR)

4 lista = []

5 for file in os.listdir(RMAPDIR+"/Pstacks/Parents/"):

6 if file.startswith("Br"):

7 file = file [:file.index(".",file.index(".")+1)]

8 if file not in lista:

9 lista.append(file)

10 command += " -s {1}/{0} ".format(file,PStaDIR)

11 command += " &>> {0}/4_Cstack_Log ".format(WORKDIR)

12 os.system(command )

13 # =============================================================================== #

The sets of stacks that constructed by the pstacks program searched against the catalog
produced by cstacks. All samples in the population matched against the catalog with
sstacks.

Listing 2.5: Matching against Catalog
1 # =================================== SSTACKS =================================== #

2 sstacks_com = "stacks sstacks -g -p 12 -b 1 -c {0}/batch_1 -o {1}/".format(CStaDIR,SStaDIR)

3
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4 lista = []

5 for file in os.listdir(PStaDIR):

6 if file.endswith("gz") :

7 file = file [:file.index(".",file.index(".")+1)]

8 if file not in lista:

9 lista.append(file)

10 file_com = sstacks_com + " -s {1}/{0}".format(file,PStaDIR)

11 os.system(file_com)

12 # =============================================================================== #

The populations program uses the population map to determine which groupings to
use for calculating summary statistics, such as heterozygosity.

Listing 2.6: Produce VCF file
1 # =================================== Population =================================== #

2
3 Main = "stacks populations "

4 Files = " -P {0} -O {0}/Results -M {0}/popmap1 -b 1 -k ".format(POPStaDIR)

5 Params = " -f p_value -t 12 --structure --vcf --vcf_haplotypes --plink "

6
7 Command = Main+Files+Params

8 os.system(Command)

9 =============================================================================== #

2.6 Kinship

To check family relationship and indicate possible pedigree errors we used KING v.2.1
software [33]. Kinship coefficients have been estimated by KING, setting the -degree

parameter equal to 10. Kinship coefficient is a measurement of kinship between two
individuals; 1 means homozygous twins, 0 means unrelated [33]. Finally, to see the
genetic distances of studied individuals, we performed a Principal Components analysis
(PCA) and Hierarchical clustering, using Euclidean distance. Both PCA and Hierarchical
clustering were implemented in R using prcomp and hclust functions respectively.

Listing 2.7: Kinship
1 # ======================== PLINK ========================= #

2 # PLINK v1.90p 64-bit (14 Nov 2017) www.cog-genomics.org/plink/1.9/

3 # --allow-extra-chr : allow scaffolds

4
5 plink --vcf batch_1.vcf --allow-extra-chr --make-bed --out plink

6 plink --vcf batch_1.vcf --allow-extra-chr --recode oxford

7
8 # ======================== KING ========================== #

9 # (C) 2005-2017 Shaun Purcell, Christopher Chang GNU General Public License v3

10 #KING 2.1 - (c) 2010-2018 Wei-Min Chen

11
12 king -b plink.bed --cluster --degree 10
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13 king -b plink.bed --kinship --degree 10

14 =============================================================================== #

2.7 Imputation

There are different methods in order to impute missing data. Shapeit and Impute2 are
commonly used for genotype phasing and imputation respectively when a reference
genome is available. However, the presence of many scaffolds and the lack of a phased
reference panel discouraged us from using these software packages. For the imputation
of missing values in our study, we used a Support Vector Machines (SVM) classifier. We
also applied a method called stratified nested cross validation that initially produces
unbiased estimates of the optimum model parameters. Once the model has been tuned,
it then estimates the efficiency of the classifier. For efficiency measurement we used the
AUC (Area Under the Curve) of the ROC (Receiver Operating Characteristic) curve. We
measured the AUC of two different types of ROCs: The first, called micro-average ROC
curve, is constructed by measuring the sensitivity and specificity of each sample. The
second, called macro-average ROC curve, is constructed by averaging the sensitivity
and specificity in all samples for each class. Both metrics are required for an unbiased
estimate of the efficiency since micro-average is biased towards classes with relatively
greater number of samples whereas the second is biased towards samples with lower
number of samples. We applied a confidence threshold of 0.9 for both metrics. Namely,
we left as missing the genotypes that yielded an AUC metric lower than 0.9 in any of
the two metrics. We used the scikit-learn python library [34] to implement the above
and the complete scripts are available upon request.

Listing 2.8: Imputation
1 # ================ Model Selection ================= #

2 ## PIPELINE ##

3 from sklearn.pipeline import Pipeline

4 from sklearn.cross_validation import StratifiedKFold

5 from sklearn.grid_search import GridSearchCV

6 from sklearn.metrics import accuracy_score

7
8 #=== Stratified ===#

9 cv = StratifiedKFold(Known_Labels, n_folds=Min_Folds,random_state=1)

10 #=== CLASSIFIER ===#

11 clf = SVC()

12
13 param_grid = [{'clf__kernel': ['linear','poly'],

14 'clf__C': [0.01, 0.1, 10, 100],

15 'clf__probability':[True],

16 'clf__decision_function_shape':['ovr'],

17 'clf__degree' :[2,3]}]

18
19 ## Create Pipeline ##
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20 pipe = Pipeline([('clf', clf)])

21 gcv = GridSearchCV(estimator=pipe, param_grid=param_grid, scoring='roc_auc', cv=Min_Folds)

22 #==================================================== #

2.8 Linear mixed models

For the association analysis we have extracted only the variants that did not have missing
data. Then, we found the significant SNPs, using linear mixed models (lme4 package),
taking into account the Family id of each individual [18]. This resulted in a significance
value (p-value) for each SNP. We used the GWAStools package for visualization. This
packages produces qqplots which demonstrate p-value inflation and manhattan plots
which show p-value across the genome.

Listing 2.9: Statistics
1 # ==================== Mixed Models ====================== #

2 # y = target phenotype (Fat,Weight etc.)

3 # IDS = Family id

4 # All Features = Matrix with genotypes. Rows = samples, Columns = SNPs)

5
6 library(lme4)

7 m1 = lmer(Fat~All_Features[,i]+(1|IDS),REML=FALSE)

8 m0 <- update(m1, .~. - All_Features[,i])

9 pvals_Fat[i]=(anova(m1,m0)$`Pr(>Chisq)`[2])
10
11 library(GWASTools)

12 qqPlot(pvals_Fat)

13 manhattanPlot(pvals_Fat,chroms,signif=Threshold,ylim = c(0,4))

14 #========================================================= #

2.9 Feature Selection

Two algorithms were used for feature selection OMP and SES. In the Orthogonal Matching
Pursuit Algorithm (OMP) the stopping rule was set at two or four units difference in
BIC score between the old and the new linear mixed model. In SES we tested different
parameters. The maximum conditioning set was set to 2,3,4,5, the threshold equals to
0.01 or 0.05 and "testIndLMM" used as the conditional independence test.

2.9.1 Model selection through cross validation

The selection of the appropriate algorithm for each dataset is a challenging task. Com-
monly a k-fold cross-validation (CV) is used in order to end up with the algorithm with
the best fit in the examined dataset. Cross-validation, is a model validation technique
for assessing the results of a model. It is commonly used, for estimating how precisely
a predictive model performs in unknown data samples. The standard method of a
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prediction problem, where a dataset of known data is given, is to split data samples in
folds and every time use the n-1 folds as training dataset and the one fold that is left, as
test dataset ("unknown data"). The goal of cross validation is to estimate the expected
level of fit of a model to a data set that is independent of the data that were used to train
the model. This approach limits problems like over-fitting, and gives an insight on how
the model will generalize to an independent dataset [35]. To compare the algorithms
and select the best model (including algorithm and parameters) we performed cross
validation by using all but one sample as training set and the remaining sample as test
set iterating over all samples, the so-called Leave-One-Out cross validation method.
The different models were assessed based on the sum or errors when assuming that the
“unknown data” belong to each family (Equation: 2.1). The model with the lowest mean
sum of errors is selected as best model (Equation: 2.2).

ErrOB =
m

∑
i=1

E(yi(ni+1) − xT
i(ni+1) β̂− zT

i(ni+1)b̂i)
2/m, (2.1)

where yi(ni+1), xi(ni+1) and zi(ni+1) are respectively the outcome and predictors of the
new observation in cluster i, and β̂ and b̂i are respectively the estimates of β and bi based
on all the training data. This can be estimated by the leave-one-out cross validation,

LOOCV =
m

∑
i=1

ni

∑
j=1

(yij − xT
ij β̂

[i,j] − zT
ij b̂

[i,j]
i )2/N, (2.2)

where β̂[i,j] and b̂[i,j]i are respectively the estimates of β and bi based on the training data
without subject j in cluster i [36].

2.10 Selected SNPs annotation

To identify potential genes that might be affected by the retrieved SNPs, we searched the
reference genome and classified the SNPs to those falling within a genic region (located
within or in a window of 10Kb upstream or downstream of an annotated gene) and
those that do not. If these regions were described as conserved at the genome browser
of Gilthead seabream (http://biocluster.her.hcmr.gr/myGenomeBrowser?search=1&
portalname=Saurata_v1) in any of the following species: Stickleback, Asian sea bass,
Medaka, Asian swamp eel and Amazon molly, they were considered as conserved.
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In a nutshell, the pipeline that was followed is:

Quality Check

De-Multiplex

Alignment (Bowtie2)

Stacks Pipeline

Kinship Imputation

Data without imputation Imputed Data

Feature Selection

SES OMP

Filter out (samtools)

KING kinship

PCA

Hierarchical Clustering
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3 Results

3.1 Quality Check

The results of the quality control using FASTQC, are illustrated side by side with those
from the company, which provided us the data (Figure 3.1). As we can see the results
are the same, and the slight difference occurred due to the different number of bins that
used.

Figure 3.1: (A) Quality Check of our analysis. (B) Company’s quality check.

3.2 Genotyping RAD alleles

Illumina sequencing yielded 559,191,588 raw reads. Following quality control, we
filtered out ∼ 15.2% due to ambiguous barcodes, ∼ 2.9% due to low quality and 1%
due to the lack of restriction sites. The rest were successfully assigned to individuals
(Suppl. TABLE 1 with number of reads per individual). After the demultiplexing, the
high quality reads of each sample were aligned against the reference genome. In total,
93% of the reads were mapped. Downstream filtering resulted in further discarding of
multi-aligned reads (∼ 8%) and those with more than 3 mismatches (∼ 2.96%), keeping
finally 351,781,485 reads for analysis. The ddRAD catalogue built from all parental
samples consisted of 15,233 SNPs. Variants with allele frequency lower than 0.05 (n =
2,065) were filtered out. From the remaining 13,168, we filtered out the SNPs with call
rate lower than 90% (n = 7,882). From the remaining 5,286 SNPs, 3,028 had at least one
missing value and 2,258 had no missing values.
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Figure 3.2: (A) Number of SNPs distribution in our cohort. (B) Boxplot of number of
SNPs from our cohort.

Figure 3.3: (A) Number of Samples distribution in Stacks variants. (B) Boxplot of number
of Samples.

Figure 3.4: The trend of number of genotyped samples per number of SNPs
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3.3 Kinship

To verify the family identity of the studied individual, we used three different methods:
King kinship, Principal Component Analysis (PCA) and Hierarchical clustering (Figure:
3.5). All three resulted in similar results and they confirmed the tagging family id, except
for two samples, one placed in different family (sample 133 that was identified as a
member of Family 2 instead of Family 3) and one that was not placed in any family
(sample 882). These two samples were discarded and not included in downstream
analyses.
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Figure 3.5: (A) Principal component analysis of the 105 individual progeny according to
the polymorphisms of each individual, for different families.The explained
variation is 30% (11% PC1, 9% PC2, 8.9%PC3) (B) Cluster dendrogram of
the 105 individuals based on the Euclidean Distance of the genotypes. The
Sample-ids are colored based on the tagging family id.

Figure 3.6: KING kinship
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3.4 Imputation

Imputation of missing genotypes was implemented with classification algorithms as
we mentioned before. For each one of the 3,028 SNPs with at least one missing value,
we attempted to impute its missing genotypes. From these, 1,355 SNPs were imputed
with a confidence higher than 0.9 in both micro-ROC and macro-ROC AUC scores (see
Methods) and were kept for further analysis. Some of the results are illustrated in Figure:
3.7. The rest 1,673 SNPs were filtered out. We refer to the dataset that consists of 1,355
SNPs with imputed missing values and the 2,258 SNPs without any missing value as
the “dataset with imputed values”.

Figure 3.7: Receiver operating characteristic (ROC) curve showing the accuracy of the
multi-class or binary-class SVM in predicting specific Variant. The true
positive rate (sensitivity) is plotted in function of the false positive rate (100-
specificity). The area under the ROC curve is a measure of how well the model
distinguishes successful from unsuccessful Variant class. (A)ROC curve of
binary SVM model predicting specific variant in 5 Folds of cross-validation.
(B) ROC curve of multiclass SVM model predicting specific variant using one
vs rest method.]

© University of Crete Dimitrios Kyriakis



Results 26

3.5 Association Analysis

We proceeded in two different analyses. In the first we used the dataset that did not have
missing values (2,258 SNPs). In the second pipeline we used the dataset with imputed
values.

3.5.1 Dataset without imputed values

Association analysis through GWAS

The results from the GWAS test among all SNPs and the four phenotypes are shown
in Table:3.1. In total, we found five SNPs associated with Weight, four SNPs with Tag
Weight, and none for Fat and Length/Width. On Figure 3.8 we show the phenotype
distribution, Manhattan plot and QQ-plot for each phenotype. For illustration purposes,
the Manhattan plot depicted, was built with variants of known ordered positions on
the reference genome. The Manhattan plot for the variants in scaffolds that we do
not know the exact position in the genome, is given in the Supplementary figure: .1.
The QQ-plot of Weight revealed a systemic inflation of the observed p-values possibly
attributed to the fact that families were selected in such a way as to maximize the
weight variation within the cohort. Regarding the loci associated with weight and tag
weight we identified nine SNPs in total (Table: 3.1). Five SNPs associated with weight
at harvest, have been retrieved from the typical GWAS analysis. The first was found in
chromosome 1 (chr1:16636968) on ‘ethanolamine phosphate cytidylyltransferase-like’
gene, the second (chr6:12617755) in a conserved region upstream of ‘myosin-7-like’
gene. The third (chr16:2232897) was located on two overlapping genes acetylserotonin
O-methyltransferase-like and LBH-like isoform X1. Another two SNPs were found in
chromosome 1. The first ( chr1.6970078) located downstream of “lymphoid enhancer-
binding factor 1”, and the second (chr1:20827142) located upstream of “mucin-5AC-
like isoform X1” (Table: 1). Finally, four SNPs (in chromosomes 2, 13 and 22) were
associated with weight at tagging. Two were found at ‘RNA-binding 27 isoform X1’
gene (chr13:20975921,chr13:20975924), the third upstream from ‘Tetratricopeptide repeat
36’ gene (Chr2:2623351) and the fourth upstream from ‘tectonin beta-propeller repeat-
containing 2’ gene (chr22:18343985).
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Figure 3.8: (A) Distribution of each examined trait in our samples. (B) Manhattan plot
demonstrating the locations across the chromosomes of the seabream genome
(horizontal axis) versus the −log(p− values) of the association between the
genetic variants and phenotype (vertical axis). The higher the dots, the
stronger the genetic association. The significance threshold was set to 10−4, in
order to correct for multiple testing (dashed line). (C) Quantile-quantile (QQ)
plot of the data shown in the Manhattan plot. The grey area represents the
95% simultaneous confidence bands. Red line is the diagonal (Y = X) or else
how the observed data should be placed if they were normally distributed.
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Table 3.1: Selected SNPs from GWAs analysis using linear mixed models, with significance threshold equal to to 10−4.

Position Gene P-Value Beta
coefficient

Conserved Position

Weight

Chr1.6970078 lymphoid enhancer-binding
factor 1 isoform X1

3.265E-5 174.721 - Downstream

Chr1:16636968 ethanolamine-phosphate
cytidylyltransferase-like

5.059E-5 189.556 X 3’UTR

Chr1:20827142 mucin-5AC-like isoform X1 4.976E-5 -161.835 X Upstream
Chr16:2232897 acetylserotonin

O-methyltransferase-like,
LBH-like isoform X1

4.648E-5 -338.149 X 3’UTR

Chr6:12617755 transmembrane 199 3.838E-5 205.210 X Upstream
myosin-7 like Downstream

Tag Weight

Chr13:20975921 RNA-binding 27 isoform X1 3.168E-5 4.748 - Intron
Chr13:20975924 RNA-binding 27 isoform X1 3.168E-5 4.748 - intron
Chr2:2623351 Tetratricopeptide repeat 36 2.823E-5 6.183 - Upstream

Chr22:18343985 tectonin beta-propeller
repeat-containing 2

5.405E-5 -5.139 - Upstream
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Association analysis through FS

Feature selection methods generate groups of SNPs that are associated with a phenotype
en masse. Therefore, FS is a valuable family of methods for association analysis. We
performed FS with 10 models (8 variants of SES and 2 variants of OMP), and from each
model we extracted the median squared error as an evaluation metric [Figure: 3.9].
All OMP models were inferior to SES. The best models for Fat, and Weight have been
constructed by SES algorithm (significance threshold equal to 0.01; number of condition
set equal to three). The best model for Tag weight and Length/Width ratio prediction
was the model constructed by variables retrieved from SES with size of condition set
equal to two. The selected features of the best model, for each phenotype, are presented
in Tables: 3.2-3.5. SES produced different combination of SNPs (signatures) that have
the same predictive strength on each one of the examined traits. In Tables 3.2-3.5 we
illustrate one of these combinations, while the rest are illustrated in Supplementary
Tables .2-.5. Finally, the effects all selected SES SNPs from all traits are presented in
Figures: 3.10 - 3.13.
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Figure 3.9: Comparison of different algorithms predicting Tag Weight, based on median
squared error, after leave one out cross validation. SES algorithm tested
for different thresholds (significance threshold equal to 0.01 or 0.05) and for
different numbers of SNPs as condition set (k = 2,3,4,5). OMP algorithm
tested for different thresholds as stop criterion (Threshold = 2 or 4 units in
BIC score).

Listing 3.1: Error Calculation
1 # ====================== Error Calculation ============================== #

2 Error_fun <- function(fam_num,Train_y,Train_X,Train_id,

3 Test_y, Test_X, Test_id,ses_thres,ses_k){

4 sel <- SES.temporal(target = Train_y, dataset = Train_X,

5 group = Train_id, test= "testIndLMM",max_k = ses_k,

6 threshold = ses_thres)@selectedVars

7 mod1 <- lmer(Train_y ~ Train_X[ , sel ] + (1|Train_id), REML = FALSE )

8 b1 <- as.matrix( coef(mod1)$Train_id )

9 # Sum of Errors of Different Families

10 Error <- sum( ( Test_y - c(1, Test_X[sel]) %*% t(b1) )^2 ) / m

11 return(Error)}

12 # ------------------------------------------------------------------------------------------- #
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Selected SNPs for fat content (%)
The selected variables/SNPs associated with Fat content (%) at harvest, retrieved from
SES algorithm (threshold 0.01), recovered three SNPs, out of which two were located
within or proximal to an annotated gene (Table: 3.2). The first annotated SNP is located
within ‘telomeres 1 (POT1)’ gene (chromosome 8), a region found conserved in other
species as well (Medaka, Asian swamp, Asian sea bass). The second SNP was located
within the ‘Rho family GTP-binding’ gene (chr13:1098152). However, when lowering
the significance threshold to 0.05, the number of SNPs increased to six (Table: 3.2).

Figure 3.10: The effect of each of the selected SES SNPs associated with fat content.
(A-C) Boxplots of selected SNPs. A) chr8:1385781 , B) chr13:1098152 , C)
chr21:19924408.
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Table 3.2: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Fat

Variables Locus P-Value Threshold GWAS Conserved Position

Chr13:1098152 rho-related
GTP-binding-like

0.007 0.01 - - 3’ UTR

Chr21:19924408 - 0.006 0.01 - - -
Chr8: 1385781 Protection of telomeres 1 0.0024 0.01 - X Intron

Scaffol8147:18634 death-associated kinase
3-like

0.015 0.05 - X Intron

Chr7:2453106 solute carrier family 41
member 1-like isoform

X1-2

0.046 0.05 - - Intron

Chr4:23265532 NT-3 growth factor
receptor isoform X1

0.017 0.05 - - Upstream

©
U

niversity
ofC

rete
D

im
itrios

K
yriakis



Results 33

Selected SNPs for weight at harvest
Four selected variables associated with weight at harvest (800g average weight at har-
vest), have been retrieved from SES algorithm with number of condition set equal to
three. The first was found in chromosome 1 (chr1:16636968) on ‘ethanolamine phosphate
cytidylyltransferase-like’ gene, the second (chr6:12617755) in a conserved region up-
stream of ‘myosin-7-like’ gene, the third (chr8:11613979) was located in ‘semaphorin-3A’
gene (Conserved in Asian sea bass, Asian swamp eel) and upstream of ‘Piccolo’ gene.
Another one (chr16:2232897) and the fourth on two overlapping genes acetylserotonin
O-methyltransferase-like and LBH-like isoform X1. When lowering the significance
threshold to 0.05, four SNPs were added to the signatures, retrieving two more annotated
genes (Table: 3.3).

Figure 3.11: The effect of each of the selected SES SNPs associated with weight at harvest.
(A-D) Boxplots of selected SNPs. A) chr1:16636968 , B) chr6:12617755 , C)
chr8:11613979, D) chr16:2232897.
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Table 3.3: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Weight

Variables Locus P-Value Threshold GWAS Conserved Position

Chr1:16636968 ethanolamine-
phosphate

cytidylyltransferase-like

0.0006 0.01 X X 3’ UTR

Chr6:12617755 myosin-7-like isoform X1 0.0024 0.01 X X Upstream
Chr:8:11613979 semaphorin-3A 0.0114 0.01 - X Intron
Chr16:2232897 acetylserotonin O-

methyltransferase-like
0.0022 0.01 X - 3’ UTR

Scaffold29:195838 mitogen-activated
kinase-binding 1-like

0.0285 0.05 - - Intron

Chr24:8282385 STE20-related kinase
adapter beta

0.0022 0.05 - X Downstream

trafficking
kinesin-binding 2

isoform X1

Upstream
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Selected SNPs for weight at tagging
Five SNPs were associated with Tag Weight, as retrieved from SES algorithm (Table: 3.4).
The first was found at ‘RNA-binding 27 isoform X1’ gene (chr13:20975921), the second
upstream from ‘Tetratricopeptide repeat 36’ gene (Chr2:2623351), the third at ‘DNA
repair RAD50’ gene (chr13:20883924), the fourth upstream from ‘tectonin beta-propeller
repeat-containing 2’ gene (chr22:18343985) and the fifth (scaffold4139:36071) was not in
an annotated region. Lowering the significance threshold to 0.05, four annotated SNPs
were added to the discovered signatures (Table: 3.4).

Figure 3.12: The effect of each of the selected SES SNPs associated with tag weight.
(A-E) Boxplots of selected SNPs. A) chr2:2623351 , B) chr13:20883924 , C)
chr13:20975921, D) chr22:18343985, E) scaffold4139:36071.
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Table 3.4: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Tag Weight

Variables Locus P-Value Threshold GWAS Conserved Position

Chr2:2623351 Tetratricopeptide repeat
36

0.0019 0.01 X - Upstream

Chr13:20883924 DNA repair RAD50 0.0127 0.01 - X Intron
Chr13:20975921 RNA-binding 27 isoform

X1
0.0073 0.01 X - Intron

Chr22:18343985 zinc finger BED
domain-containing 4-like

0.0117 0.01 X - Upstream

midasin isoform X2 Downstream
Scaffold4139:36071 predicted

uncharacterized protein
LOC106518831

0.033 0.01 - X Upstream

Chr15:3260819 follistatin-related 1-like 0.0124 0.05 - - Downstream
Chr20:6671436 UBA-like

domain-containing 1
0.021 0.05 - X 2nd

Chr22:14483563 exostosin-1-like 0.0448 0.05 - - Intron
Scaffold14083:12192 - 0.042 0.05 - - -
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Selected SNPs for length/width phenotype
Finally, five SNPs were associated with Length/Width ratio (at 750 DPH) as retrieved
from SES algorithm (Table: 3.5). The first SNP (chr6:23799286,) was located on the ‘phos-
phatase 1 regulatory subunit 3D-like’. The second SNP (chr16:2232897) was located in
two genes ‘acetylserotonin O-methyltransferase-like’ and LBH-like isoform X1. The third
SNP (chr13:9665394) was located in ‘ATP-dependent RNA helicase DHX33’, the next
one in ‘A-kinase anchor 9 isoform X3’ and the last one (scaffold13177:8369) downstream
of phosphatase 1 regulatory subunit 3C.

Figure 3.13: The effect of each of the selected SES SNPs associated with length/width.
(A-E) Boxplots of selected SNPs. A) chr1:20827142, B) chr3:9671223, C)
chr6:23799286, D) chr13:9665394, E) scaffold5661:35982.
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Table 3.5: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Length / Width

Variables Locus P-Value Threshold GWAS Conserved Position

Chr6:23799286 phosphatase 1 regulatory
subunit 3D-like

0.0052 0.01 - X 3d

Chr1:20827142 Upstream:
mucin-5AC-like isoform

X1

0.049 0.01 - X Upstream

Chr13:9665394 ATP-dependent RNA
helicase DHX33

0.0211 0.01 - X 3d

Chr3:9671223 A-kinase anchor 9
isoform X3

0.0144 0.01 - X 2nd

Scaffold13177:8369 phosphatase 1
regulatory subunit 3C

0.015 0.01 - X Downstream

Chr8:11613979 semaphorin-3A 0.0193 0.05 - X Intron
Chr22:2545133 neurexin-3b isoform X3 0.049 0.05 - - Intron

Scaffold5661:35982 - 0.049 0.05 - X -
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3.5.2 Dataset with imputed values

Association analysis through GWAS

The results from the GWAS test among all SNPs and the four phenotypes are shown
in Table: 3.6. In total, we found nine SNPs associated with Weight, five SNPs with
Tag Weight, one with length/width. GWAS analysis in fat content did not reveal any
associated SNP.
Four more SNPs associated with weight at harvest, have been retrieved from the typical
GWAS analysis compare with the previous analysis without imputed data. The first
was found in chromosome 1 (chr8:6970078) on ‘bile acid receptor’ gene, the second
(chr8:20827142) in a conserved region upstream of ‘interleukin-34’ gene. The third
(chr8:2887261) in a conserved region upstream of ‘interferon regulatory factor 7’ gene.
The last (Scaffold15653:2041) located downstream of ’adipocyte plasma membrane-
associated’. One more SNP found to be associated with weight at tagging, in a conserved
region downstream of ‘Down syndrome cell adhension molecule isoform X2’. Finally,
one SNP found to be associated with Length/Width in a conserved region upstream of
‘interferon regulatory factor 7’.
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Figure 3.14: (A) Distribution of each examined trait in our samples. (B) Manhattan
plot demonstrating the locations across the chromosomes of the seabream
genome (horizontal axis) versus the −log(p − values) of the association
between the genetic variants and phenotype (vertical axis). The higher
the dots, the stronger the genetic association. The significance threshold
was set to 10−4, in order to correct for multiple testing (dashed line). (C)
Quantile-quantile (QQ) plot of the data shown in the Manhattan plot. The
grey area represents the 95% simultaneous confidence bands. Red line is the
diagonal (Y = X) or else how the observed data should be placed if they
were normally distributed.
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Table 3.6: Selected SNPs from GWAS analysis using linear mixed models, with significance threshold equal to to 10−4.

Position Gene P-Value Beta
coefficient

Conserved Position

Weight
chr1.6970078 lymphoid enhancer-binding factor 1 isoform X1 3.265e-05 174.7210 - Downstream

Chr1:16636968 ethanolamine-phosphate
cytidylyltransferase-like

5.059e-05 189.5556 X

Chr1:20827142 mucin-5AC-like isoform X1 4.976e-05 -161.8345 X Upstream
Chr16:2232897 acetylserotonin O-methyltransferase-like 4.648e-05 -338.1485 X
Chr6:12617755 myosin-7 like 3.838e-05 205.2103 X Downstream
Chr8:2887261 interferon regulatory factor 7 6.785e-06 -200.7313 X Upstream
Chr8:7819520 bile acid receptor isoform X1 4.105e-05 199.7217 -
Chr8:9391467 interleukin-34 8.286e-05 180.6165 X

Scaffold15653:2041 adipocyte plasma membrane-associated 5.236e-05 -264.4869 - Downstream
Tag Weight

Chr13:20975921 RNA-binding 27 isoform X1 3.168e-05 4.747498 -
Chr13:20975924 RNA-binding 27 isoform X1 3.168e-05 4.747498 -
Chr2:2623351 Tetratricopeptide repeat 36 2.823e-05 6.182521 - Upstream

Chr22:18343985 tectonin beta-propeller repeat-containing 2 5.405e-05 -5.139881 - Upstream
Chr2:8737137 Down syndrome cell adhesion molecule

isoform X2
9.843e-06 6.685408 X Upstream

Length/Width
Chr8:2887261 interferon regulatory factor 7 5.664e-05 0.09594116 X Upstream
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Association analysis through FS

In this part of the analysis, we could not perform the algorithm comparison due to the
computational time, so we run SES algorithm with condition set equal to 3 and threshold
equal to 0,01.
Selected SNPs for fat content (%)
The selected variables/SNPs associated with Fat content (%) at harvest, retrieved from
SES algorithm (threshold 0.01), recovered five SNPs, out of which four were located
within or proximal to an annotated gene (Table: 3.7). The first annotated SNP is located
within ‘telomeres 1 (POT1)’ gene (chromosome 8), a region found conserved in other
species as well (Medaka, Asian swamp, Asian sea bass). The second, is located upstream
of ‘interferon regulatory factor 7’ (chr8:2887261). The third one was located in intron of
‘serine threonine-kinase WNK1-like isoform X1’ (Table 3.7).
Selected SNPs for weight at harvest
SES selected four SNPs to be associated with Weight. A polymorphism found in chro-
mosome 1 on ‘ethanolamine phosphate cytidylyltransferase-like’ gene. Moreover, a SNP
(chr6:12617755) in a conserved region upstream of ‘myosin-7-like’ gene was found. Also,
a polymorphism found in chr8:2887261 located upstream of ‘interferon regulatory factor
7’. This polymorphism has been selected as significant also in length/width phenotype.
Another one (Scaffold15653:2041) was found downstream of the gene that transcribes
‘Adipocyte plasma membrane-associated protein’ (APMAP). (Table 3.8).
Selected SNPs for weight at tagging
Five SNPs associated with Tag Weight, were retrieved from SES, from which three was
annotated. The first was found at ‘RNA-binding 27 isoform X1’ gene (chr13:20975921),
the second at chromosome 22 upstream of ‘zinc finger BED domain-containing 4-like’
gene, the third upstream from ‘PREDICTED: uncharacterized protein LOC106518831’
gene (Scaffold4139:36071) (Table 3.9).
Selected SNPs for length/width phenotype
Finally, there were four SNPs associated with Length/Width ratio. The first SNP
(chr6:23799286) is located on the ‘phosphatase 1 regulatory subunit 3D-like’. The sec-
ond SNP (chr8:2887261) located upstream of ’interferon regulatory factor 7’. The third
(chr8:11613979) was located in ‘semaphorin-3A’ gene (Conserved in Asian sea bass,
Asian swamp eel) and upstream of ‘Piccolo’ gene. The last one (chr15:19409307) up-
stream of an uncharacterized protein (Table 3.10).
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Table 3.7: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Fat
Variables Locus P-Value Threshold GWAS Conserved Position

Chr21:19924408 - 0.007 0.01 - - -
Chr8: 1385781 Protection of telomeres 1 0.0013 0.01 - X Intron
Chr8:2887261 interferon regulatory factor 7 0.03 0.01 X X Upstream
Chr8:4544371 serine threonine- kinase WNK1-like isoform X1 0.05 0.01 - - Intron

Table 3.8: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Weight
Variables Locus P-Value Threshold GWAS Conserved Position

Chr1:16636968 ethanolamine-phosphate
cytidylyltransferase-like

0.005 0.01 X X 3’ UTR

Chr6:12617755 myosin-7-like isoform X1 0.001 0.01 X X Upstream
Chr8:2887261 interferon regulatory factor 7 0.0003 0.01 X X Upstream

Scaffold15653:2041 adipocyte plasma membrane-associated 0.001 0.01 X - Downstream
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Table 3.9: Selected SNPs from SES algorithm with significance tequal to 0.05 (best method based on median squared error score).

Tag Weight
Variables Locus P-Value Threshold GWAS Conserved Position

Chr13:20975921 RNA-binding 27 isoform X1 0.025 0.01 X - Upstream
Chr22:18343985 zinc finger BED domain-containing 4-like 0.0059 0.01 X - Upstream
Scaffold4139:36071 PREDICTED: uncharacterized protein

LOC106518831
0.0099 0.01 - X Downstream

Chr15:1186816 - 0.004 0.01 - - -
Chr2:8737137 - 2.10e-5 0.01 - X -

Table 3.10: Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Length / Width
Variables Locus P-Value Threshold GWAS Conserved Position

Chr6:23799286 phosphatase 1 regulatory subunit 3D-like 0.0022 0.01 - X Downstream
Chr8:11613979 semaphorin-3A 0.0138 0.01 - X Intron
Chr8:2887261 interferon regulatory factor 7 0.0004 0.01 X X Upstream

Chr15:19409307 PREDICTED: uncharacterized protein 0.0027 0.01 - X Upstream
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4 Discussion & Analysis

Here, we present a family-based approach for the discovery of genetic variants that
are significantly associated with a set of phenotypes with economic importance for the
farmed gilthead seabream. The application of these methods on seven families, each
measured on four phenotypes revealed several genetic signatures that may be used for
genomic selection. Various QTL affecting growth, morphology and stress related traits
have been detected using microsatellite markers in gilthead Sea bream [37]–[40]. Some
of those QTL have been verified in genetically unrelated populations [41]. However, no
association study using SNP markers was available for production traits in seabream
except this by Palaiokostas2016 on pasteurelosis. Our study fills this gap enabling for
the first time a genomic scan for SNPs that are linked to important traits. We applied two
intrinsically different methods. The first is a typical GWA study that examines variants
independently and the second is a family of methods (SES and OMP) that generates
signatures with multiple variants. In general, we noticed a concordance between the
SNPs discovered by GWAS and SES. Both methods include tests for SNP-phenotype
statistical association, whereas OMP conducts residual-based tests for SNP association.
SES algorithm attempts to identify specific sets of SNPs that model a specific phenotype,
whereas the typical GWAS pipeline reveals statistical associations. An interpretation
of the significance of the SNPs that were located from GWAS but not from SES, is
that these SNPs do not have a direct effect. Or else, the effect of these SNPs can be
eliminated by conditioning on the SNPs that SES revealed. For example, two SNPs
that were identified from the typical GWAS, to be associated with weight at tagging
(chr13:20975921, chr13:20975924), were marked by SES as equivalents. SES was built
upon MMPC algorithm [42]. The difference between these two algorithms is that MMPC
does not return multiple solutions. MMPC was shown to achieve excellent false positive
rates [43]. Seen from the biological perspective, multiple equivalent signatures may arise
from redundant mechanisms, for example, genes performing identical tasks within the
cell. For example, [44] demonstrated that multiple, equivalent prognostic signatures for
breast cancer can be extracted just by analyzing the same dataset with a different partition
in training and test set, showing the existence of several loci which are practically
interchangeable in terms of predictive power. SES was tested against LASSO [26] with
continuous, binary and survival target variables, resulting in SES outperforming the
LASSO algorithm [45] both in predictive performance and computational efficiency.
Overall, SES seems to be performing well in smaller datasets, while OMP is known to
perform better in larger datasets [46].
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Our findings highlight novel SNPs found within or close to coding genes that are signifi-
cantly associated with our focal traits of interest in seabream. However, multiple of those
genes have been linked with such traits in other species as well. Multiple interesting
genes were associated with fat content. For example, one SNP locus is linked with the
gene Rho-GTP binding, which is involved in adipogenesis in mice, [47]. This gene and its
regulator (p190-B RhoGAP), seem to have a key role in the outcome of the differentiation
of mesenchymal stem cells to either adipocytes or myocytes [47]. Another SNP associ-
ated with fat, was located on neurotrophin-3 (NT-3), a gene with well-recognized effects
on peripheral nerve and Schwann cells, promoting axonal regeneration and associated
myelination [48]. NT-3 increases muscle fiber diameter in the neurogenic muscle through
direct activation of mTOR pathway and that the fiber size increase is more prominent
for fast twitch glycolytic fibers. Thus, fat content seems to be influenced greatly by few
genes with well-known role in adipogenesis.
Regarding the loci associated with weight and tag weight, we identified fifteen genes in
total. Interestingly, although those two traits represent the same trait at different stages
we found no gene associated with both. The outcome of our analysis revealed SNPs close
to very important genes with a well-known role in weight gain-loss, such as Follistatin,
myosin-7 and semaphorin (SEMA3A) genes. Follistatin binds and inhibits the activity
of several TGF-family members in mice [49]. Strikingly, follistatin knockout mice have
reduced muscle mass at birth underlying the importance of this gene in muscle growth
[49]. Apart from Follistatin, the significance association with Myosin, an actin-based mo-
tor molecule with ATPase activity essential for muscle contraction, show the importance
of regulation of muscle growth related genes in weight. The third gene, semaphorin, is
significantly associated with both weight and length/width. SEMA3A gene is involved
in synapse development underling the importance genes regulating the nervous system
in length. Also, the same SNP, that located on SEMA3A, was direct upstream of Pic-
colo gene. Piccolo play roles in regulating the pool of neurotransmitter-filled synaptic
vesicles present at synapses. Mice lacking Piccolo are viable, nevertheless each mutant
displays abnormalities. Piccolo mutants reduced postnatal viability and body weight
[50]. Another associated gene, ethanolamine phosphate cytidylyltransferase, plays a
role in lipid metabolism and finally EXT1, a gene regulating important developmental
pathways such as hedgehog [51].
In the analysis regarding SES using data with imputation, we identified a SNP located on
interferon regulatory factor 7 (IRF7) which seems to be associated with the three out of
four phenotypes (Fat,Weight at harvest and Length/Width). IRF7 is a regulator of type I
interferon-dependent immune responses. From previous studies on mice, IRF7 seems to
play a key role in diet-induced alterations in energy metabolism and insulin sensitivity.
IRF7 knockout mice displayed significant decreased weight gain and adiposity on a high
fat diet [52].
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5 Conclusion

In this study, we employed two different approaches to identify variants associated
with growth-related phenotypic traits. Our chosen selected panel combined with the
vigorous bioinformatic analyses revealed the most significant SNP loci on the seabream
genome. The discovered candidates are located in the proximity of genes with known
involvement in processes related to growth. The combination of these novel loci may
lead to the selection of brooders based on specific genetic signatures and can have a great
effect of the efficiency of the aquaculture. Moreover, these results could be used to verify
or not putative QTL identified in previous studies and could also be used in order to fine
map QTL identified QTL in the same population using other types of genetic markers
(Chatziplis et al, 2018, in preparation). Following this step, the use of these variants
independently as individual SNP (or SNP haplotypes) and /or in combination with
other marker information in a MAS program could be a form of direct application in the
aquaculture breeding industry. When more dense SNP markers would be available (i.e.
SNPchip) for the species and more families from more populations are genotyped (i.e
increase LD) then the application of Genomic Selection will be more feasible and cost
effective in terms of any selection accuracy benefits. Nevertheless, our study presents, in
a small scale example, the feasibility of GS application as well as the availability of the
tools necessary before its application (i.e. GWAS using SNP markers) in an important
Mediterranean aquaculture species such as gilthead sea bream.
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Supplementary

.1 Figures

Figure .1: Manhattan plot demonstrating the locations across the chromosomes of the
seabream genome (horizontal axis) versus the −log(p− values) of the associa-
tion between the genetic variants and phenotype (vertical axis). The higher
the dots, the stronger the genetic association. The significance threshold was
set to 10−4, in order to correct for multiple testing (dashed line).
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.2 Tables

Table .1: Number of reads per individual
Individual ID Number of reads per individual
100 6546663
117 2193433
120 1005057
122 1345189
131 609747
133 7155026
134 1269108
137 929301
141 258389
15 781715
153 1355965
155 7195415
157 1886372
16 2372039
167 4138456
17 3981644
174 3579122
175 2620179
176 4682267
18 2819597
181 2189736
185 1583733
186 7738622
188 1702362
195 5168862
2 2605505
201 255634
202 10872537
211 3587667
213 3549243
219 1411377
221 1121468
225 1772750
232 2794623
238 1296888
246 2979025
251 1126376
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Table .1: Number of reads per individual
Individual ID Number of reads per individual
261 2538366
266 6096614
273 2467838
275 3823557
276 3326784
277 1100435
278 4455356
281 1395841
286 14708926
289 2700969
31 660023
310 1825366
32 799676
325 670714
332 2053479
340 1232620
344 352136
347 4701092
351 3718157
359 1564283
367 4430484
369 3645438
372 1139189
381 1148960
382 281554
392 1638974
393 3437959
397 10513523
40 3118405
400 1488846
404 8788200
407 2005444
419 1692536
429 2522008
431 2267029
443 1328410
448 172377
452 1124422
472 3674678
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Table .1: Number of reads per individual
Individual ID Number of reads per individual
474 961966
48 667114
485 603704
490 3694626
511 3500907
543 1469273
546 2399251
565 542305
593 659475
599 1191062
625 1956917
662 1837502
665 2843772
681 985762
690 358913
723 629737
748 1334033
786 1106786
809 6780868
829 2504467
831 2894008
84 2616821
860 1818399
870 5981632
877 1325468
878 1800465
882 1745418
92 1078240
93 3478466
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Table .2: Equivallent signatures retrieved by SES for fat content
Variables Signature 1 Signature 2
Chr13:1098152 X X
Chr21:19924408 X
Chr8: 1385781 X X
Chr20:19164407 X

Table .3: Equivallent signatures retrieved by SES for weight at harvest
Variables Signature 1 Signature 2 Signature 3 Signature 4
Chr1:16636968 X X
Chr6:12617755 X X X X
chr16:2232897 X X
Chr:8:11613979 X X X X
Chr1:6970078 X X
Chr1:20827142 X X

Table .4: Equivallent signatures retrieved by SES for weight at tagging
Variables Signature 1 Signature 2 Signature 3 Signature 4
Chr13:20883924 X X X
Chr2:2623351 X X X X
Chr22:18343985 X
chr13:20975921 X X X X
scaffold4139:36071 X X X
chr13:20975924 X X X
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Table .5: Equivallent signatures retrieved by SES for length to width ratio
Variables Signatures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
chr1:20827142 X X
chr13:9665394 X X X X X X X X X X X X X X X X
chr3:9671223 X X X X X X X X
chr6:23799286 X X X X X X X X X X X X X X X X
scaffold13177:8369 X X X X X X X X X X X X X X X X
Chr11:21805922 X X
Chr11:21807386 X X
Chr16:2232897 X X
Chr4:23265532 X X
Chr4:23265546 X X
Chr15:20045450 X X
Scaffold5661:35982 X X
Chr15:13630715 X X X X X X X X
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