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Chapter 1

Introduction

1.1 History of Skyrmions

Skyrmions are named after the British nuclear physicist Tony Skyrme who first proposed their
existence in 1961 [1]. His idea was to model subatomic entities like protons and neutrons using
convoluted twists in the quantum field that describe the particles. While the concept was useful
in many ways, such as accurately predicting some of the properties of fundamental particles like
quarks and gluons, it struggled with other aspects of nuclear behavior.

Figure 1.1: Graphic representation of a skyrmion.

The Skyrme model is a non-linear field theory for pions in 3+1 dimensions with soliton solutions
called Skyrmions . Suitably quantised Skyrmions aremodels for physical baryons. Skyrme’s theory
is non-integrable and therefore progress in understanding Skyrmion dynamics has depended on
numerical simulations, approximation schemes or a combination of both. This approach has been
quite successful in the study of static soliton solutions in Skyrme’s theory .

7



8 CHAPTER 1. INTRODUCTION

1.2 Magnetic Skyrmions

Chiral magnetic skyrmions are topological magnetic configurations that are stabilised in materials
with the Dzyaloshinskii-Moriya interaction. They have been observed in a number of experiments
and the detailed features of individual skyrmions have been resolved experimentally to an impressive
degree for isolated skyrmions and in a skyrmion lattice . The experimental works have mapped
the profile of the skyrmion, i.e., the magnetization as a function of the distance from its center.
The skyrmion profile is the foundation for the study of the statics and of dynamical behaviors of
skyrmions and the subsequent derivation of quantitative results.

Figure 1.2: Zoo of (topological) spin textures with different winding numbers. (a) Hedgehog, (b)
Néel-type skyrmion, (c) Bloch-type skyrmion, (d) antiskyrmion, (e) skyrmionium, (f ) biskyrmion,
(g) example of an in-plane skyrmion, (h) skyrmion in helical background, (i) chiral bobber, ( j)
combed anti-hedgehog formed around the Bloch point in pane. [Source [2].]

Although skyrmions were predicted a long time ago,experimentally these chiral spin-structures
have been only observed less than ten years ago in bulk, thin films,and monolayers.Since then, a
variety of novel (topological) magnetic textures have been observed, see Fig. 1.2 shows a couple
of examples. Some of these will be discussed in detail later in this Thesis.

Concerning what constitutes a skyrmion, in the community, there are different definitions used.
The term itself was introduced in relation to Skyrme’s original work in nuclear physics where
he investigated topologically non-trivial localized field solutions of a non-linear sigma model to
describe elementary particles. Since there is no obvious distinction for what should be called a
skyrmion in condensed matter physics, within this article, we define a skyrmion as being any spin
structure in which the center magnetization is in the opposite direction to its boundary and which
can be mapped once to the sphere Fig. 1.3.

A classification of spin structures can be based on their topology, which often has direct con-
sequences for the physical properties of magnetic textures and measurable quantities like Hall
resistances. Effective two dimensional textures described by a local magnetization direction m can
be classified by the skyrmion number [Appendix B]

Q =
1

4π

∫
m · (∂xm× ∂ym) dxdy (1.2.1)
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Figure 1.3: The stereographic projection , where it becomes a skyrmion. The left-hand version
is a Néel skyrmion , the right-hand version, where the spins have been combed over, is a Bloch
skyrmion.[Source [3].]

We note that topology is a mathematical concept for continuous systems that defines two structures
to be equivalent if a continuous mapping from one to the other exists. In contrast, real physical
systems are usually discrete, for example, due to the underlying atomic lattice. Naturally, this
implies that topologically non-conserving transformations are allowed but have a finite, non-zero
energy penalty that must be overcome. In general, the understanding of convoluted spin textures is
based on the idea of the interplay of different interactions and their relative strengths.
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1.3 Applications

1.3.1 Skyrmionic logic devices

The fact that a skyrmion can be regarded as an independent ‘particle’ has also given rise to the
proposal of several conceptual devices of skyrmion-based spin logic devices. Most of them rely on
the results demonstrated through micromagnetic simulations performed in nanoscale wires having
different widths, that a single skyrmion can be transformed into a domain-wall pair and vice versa.
This conversion mechanism allows in principle to duplicate or to merge skyrmions at will through
the design of specific nanostructures and thus to perform basic logic operations. Based on these
additional functionalities have recently conceptualized skyrmion logic gates AND and OR, and
thus realized the first step toward a complete logical architecture with the objectives to overtake the
existing spin logic devices, particularly in their level of integration.

1.3.2 Skyrmion magnonic crystal

The ability to control spatially the nucleation of skyrmions, for example through either a local
application of a magnetic or electric field or the injection of spin polarized current give also the
opportunity to prepare an artificial periodic arrangement of skyrmions in a 1D or 2D nanostructure.

Such skyrmion lattices can then be used as periodic modulation of the magnetization to tailor the
propagation of spin waves inside this novel type of “metamaterial”. Indeed has recently shown
through numerical simulations that a strong advantage of such skyrmion-based magnonic crystal
compared to more standard ones (based on periodic modulation of the magnetic properties induced
usually by lithography process) is that it can be dynamically reconfigured simply by changing the
diameter of the skyrmions (by applying a magnetic field) or by changing the periodicity of the
lattice or even erase it (Fig. 1.4).

Note also that skyrmion crystals at the scale of the nanometer can be envisaged, what is unreachable
for conventional magnonic crystal fabricated with the existing lithography techniques. Leveraging
of such functionality should thus allow a dynamical switching between full rejection and full
transmission of spin waves in a waveguide. Besides the benefit for magnonic devices, it has been
recently shown that the spin waves themselves might be in a topological phase when propagating
in a 2D atomic scale skyrmion lattice which should allow the realization of the spin-wave analogue
of the anomalous quantum Hall effect for electrons.

Figure 1.4: A skyrmion lattice could form an ideal magnonic crystal with extremely small
dimensions, unreachable with conventional lithography.[Source [4].]
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1.3.3 Skyrmion-based rf devices

A class of components for which the topological nature of skyrmions could have practical ap-
plications is in nanoscale radio frequency devices.. For example, a dynamical mode of a single
skyrmion in a dot that is typical of its topological nature is the low frequency. It has been proposed
that the skyrmion breathing mode induced by spin torques can be used to generate a rf signal if
the dot with a skyrmion is part of a magnetoresistive device such as a spin valve or a magnetic
tunnel junction (see Fig. 1.5) . One of the advantages of the resulting skyrmion-based spin torque
oscillator, compared for example to a vortex based spin torque oscillator, can be that the skyrmion,
being a localized soliton, will be less sensitive to external perturbation and thus display a more
coherent dynamic.

Another function numerically investigated is the concept of skyrmion-based microwave detector,
which relies on the resonant excitation of the breathing mode when the frequency of the external rf
signal equals the frequency of the breathing mode (that can be largely changed by the application
of an external perpendicular field for example) and the conversion of this resonant dynamics into a
dc mixed voltage.

Finally, a novel type of skyrmion-based spin torque oscillator is based on the self-sustained gyration
arising from the competition between the confinement from the boundary edges and the spin forces
due to an inhomogeneous spin polarizer. The associated gyrotropic frequency is lower by about
one order of magnitude compared to conventional vortex based spin torque oscillators but their
main advantage is that there is no threshold current for the onset of the skyrmion dynamics.

Figure 1.5: Different excitation modes of the skyrmions could be used to fabricate radiofrequency
filters.[Source [4].]
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Chapter 2

Exchange interaction

2.1 Magnetic Moments of Atoms

In classical electromagnetism we may consider a current in a closed loop . The magnetic moment
is defined as an integral over the loop

µ =

∮
C

r× ds, (2.1.1)

where I is the current units (A/m2). A useful form of the magnetic moment in Eq. (2.1.1) is

µ = I

∫
A

dα = IAn̂. (2.1.2)

where A denotes both the surface enclosed by the loop C and the area of this domain, and n̂ is the
directed normal to the surface A. Eq. (2.1.1) shows that the magnetic moment µ associated with
an orbiting electron is proportional to the angular momentum L of the electron motion. Thus we
write

µ = γL, (2.1.3)

where γ = ge|e|/2me is the gyromagnetic ratio. The charge and mass of the electron are e, me

, while ge is the Landé factor which may take values different than unity depending on whether
the magnetic moment is due to pure orbital motion or to the electron spin angular momentum.The
energy E of a magnetic moment in a magnetic field B is

E = −µB. (2.1.4)

This shows that the energy is minimized when the magnetic moment is aligned with the magnetic
field. As the magnitude of the magnetic moment is constant (and we assume a constant in time
magnetic field), we may write E = −µB cosψ , where ψ is the angle between µ and B. We define
a torque with magnitude

τ = −∂E

∂ψ
= −µB sinψ, (2.1.5)

13
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and note that this is equal to−|µ×B|. The direction of the torque should be perpendicular to both
µ (as it’s magnitude should remain constant) and to B as the energy, and thus the angle ψ , should
be conserved. We can finally write

τ = µ×B. (2.1.6)

(The sign of the above relation is chosen so that the force derived from the energy beF = −∇E.) We
can now write an equation for the time derivative of the angular momentum or, more conveniently,
of the magnetic moment

dµ

dt
= γµ×B. (2.1.7)

Let us now assume a constant magnetic field B,and let us suppose a coordinate system where we
set the axis z in the direction of the field B = Bẑ . We write µ = (µx, µy, µz) and then (2.1.7)
reads


µ̇x = γBµy

µ̇y = −γBµx
µ̇z = 0

(2.1.8)

The solution to the latter system of equations is


µx = sin θ cos(ωLt)

µy = sin θ sin(ωLt)

µz = µ cos θ

where θ is the angle between µ and B , and ωL = µB is called the Larmor precession frequency.
We thus see that µz remains constant while the component of the magnetic moment perpendicular
to the external field is precessing around the vector B .
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2.2 A chain of spins

A ferromagnetic material is characterized by the property that neighbouring magnetic moments
tend to be alignedwith each other. Themagnetic moments are primarily due to the spin of electrons.
For a chain of magnetic spins (moments) Si an interaction which favours alignment of spins is
typically expressed by the exchange interaction of the form [5]

Eex = −J
∑

Si · Si+1 = −J
2

∑
Si · (Si+1 + Si−1), (2.2.1)

where J is the exchange constant. If the two electrons are on the same atom the exchange integral
is usually positive. This stabilizes the triplet state, and ensures an antisymmetric spatial state
which minimizes the Coulomb repulsion between the two electrons by keeping them apart. This
is consistent with Hund’s first rule. When the electrons are on neighbouring atoms, the situation
is very different. Any joint state will be a combination of a state centred on one atom and a state
centred on the other atom. It is worth remembering that the energy of a particle in a one dimensional
box of length L is proportional to L−2. This is a kinetic energy and hence demonstrates that there
is a large kinetic energy associated with being squized into a small box. The electrons therefore
can save kinetic energy by forming bonds because this allows them to wander around both atoms
rather than just one. The correct states to consider now are not atomic orbitals but molecular
orbitals. These can be bonding or spatially symmetric, or andibonding-spatially antisymmetric,
with the andibonding orbitals more energetically costly. This is because the antibomding orbital
has a greater curvature and hence a larger kinetic energy. This favours singlet (antisymmetric)
states and the exchange integral, therefore, is expected to be negative .

Figure 2.1: The figure represent an chain of fully aligned spins.

For the exchange energy, we obtain a minimum if all spins are aligned, Si = S0 where S0 =
±(0, 0, s) is a constant vector. Indeed,if we assume that Si || Si+1 then, from the definition of the
dot product we get

Si · Si+1 = |Si| · |Si+1| cos θ, (2.2.2)

where θ is the angle between Si and Si+1, and we have that θ = 0. Therefore, we have that
Si · Si+1 = |Si| · |Si+1| also assume that the length of the spins is constant, |S1| = · · · = |Sn| = s.
and if we take the sum, for all i, we have the total energy has a minimum

Eex = −J(N − 1)s2 ≈ −JNs2 for N � 1 (2.2.3)

The equations of motion for the spins have the following form

Ṡk(t) = Sk ×
∂Eex
∂Sk

, k = 1, . . . , N − 1. (2.2.4)
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For the energy in Eq. (2.2.1), we calculate

∂E

∂Sk
= −J ∂

∂Sk

N∑
i

Si · Si+1 = −J(Sk+1 + Sk−1). (2.2.5)

Finally, we substitute Eq. (2.2.4) and Eq. (2.2.5) and we obtain

Ṡk(t) = −JSk × (Sk+1 + Sk−1). (2.2.6)
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2.3 The magnetization vector

We suppose that all atoms in a specific material have a magnetic moment with the same magnitude,
or that we can attribute to each lattice site in a solid material a magnetic moment with a certain
constant magnitude. The magnetization properties of the material are defined by the atomic
magnetic moments. In a ferromagnetic material the vector for the magnetic moment varies only
slowly in space and it is then useful to treat the underlying material as a ferromagnetic continuum.
That is, we may define the total magnetic moment in the unit volume of the material, or the density
of magnetic moment M. We define the magnetization as the density of magnetic moments

M =
∆µ

∆V
. (2.3.1)

Where ∆µ is the total magnetic moment in a volume element ∆V . The magnetization M has
units (Ampere/meter) in SI.

Figure 2.2: Magnetic domains.

The magnetic moment density M is called the magnetization vector. As it gives the local density
of the magnetic moments it is a function of position and time, M = M(r, t). As the magnetic
moments of atoms are constant in magnitude the magnetization vector M is also considered to have
a length which is constant . This is expressed as

M2 = M2
s . (2.3.2)

Where Ms is called the saturation magnetization. The saturation magnetization can easily be
measured when a magnetic sample is fully magnetized (saturated) along a certain direction (e.g.,
by use of a strong magnetic field) .

Figure 2.3: Magnetization configurations.[Source [Tonomura et al.]]
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2.4 Continuum approximation

The form Eq. (2.2.1) of the exchange interaction for a discrete system of magnetic spins, these
notes will only be concerned with a description of the continuum. In order to derive a model for
the continuum Consider a small parameter ε (ε can be defined in different ways, for example, it may
be the spacing between atoms or spins). Define

• A space variable x = iε

• A continuous field S(x) such that S(x) = Si at the position of each spin i

The continuous field S(x) is interpolating between the discrete spins (atoms) of the material.The
advantage of defining a continuous spin field is that we can invoke a Taylor approximation. When
ε is small, we may use the approximation

Si±1 ≈ S± ε∂xS +
ε2

2
∂2xS, Si → S. (2.4.1)

This assumes there is a continuous field S(x) and The spin changes little over neighbouring sites.
Use the approximation (2.4.1) to obtain

Si−1 + Si+1 ≈
(

S− ε∂xS +
ε2

2
∂2xS

)
+

(
S + ε∂xS +

ε2

2
∂2xS

)
= 2S + ε2∂2xS. (2.4.2)

Substitute in the exchange energy

Eex = −J
2

∑
i

Si · (Si+1 + Si−1) = −J
∑(

S2 +
ε2

2
S · ∂2xS

)
. (2.4.3)

We may omit the constant −Js2 (where |Si| = s) to have

Eex → −
J

2
ε2
∑

S · ∂2xS. (2.4.4)

In the continuum approximation,using Eq. (2.4.4) the sum becomes an integral, if ε→ dx

Eex = −J
2
ε

∫
S · ∂2xS dx.

We now change to the magnetisation M ∼ S and write Eex ∼ −
∫

M · ∂2xM dx and this gives by
a partial integration

Eex =
A

M2
s

∫
∂xM · ∂xM dx. (2.4.5)
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We have introduced the exchange constant A which has units of [Joule/meter], and the integration
is extended over the volume of the magnetic material. The second form of the exchange energy is
obtained from the first by a partial integration (divergence theorem).

The main property of a ferromagnet which is implied by the exchange energy (2.4.5) is that the
magnetization should tend to be uniform, or, ∂xM = 0. On the other hand, the direction of the
uniform magnetization is arbitrary, that is, the exchange energy term (2.4.5) is isotropic.

It will be very convenient for further calculations to rationalize the expression for the energy .
First, it is natural to normalize M, as well as all quantities with the same units, to the saturation
magnetizationMs. We define the rationalized fields

m =
M

Ms

. (2.4.6)

We further notice that the exchange term in the energy contains space derivatives, and therefore the
ratio of the constant multiplying the exchange integral to would produce a natural length scale for
the system. This motivates the definition of the exchange length

`ex =

√
2A

M2
s

. (2.4.7)

Substituting the definitions (2.4.6) in the energy (2.4.5) and measuring length in units of exchange
length (i.e., substitute x→ `exx ) , we obtain

Eex = (M2
s `

3
ex)

1

2

∫
∂xm · ∂xm dx. (2.4.8)

Wewill assume in the following that the energy is measured in units of (M2
s `

3
ex) so that the energy of

the system is simply given by the term in the square brackets.Let us summarize here the rationalized
form of the energy terms discussed in this section. The total energy of the exchange energy is

Eex =
1

2

∫
∂xm · ∂xm dx. (2.4.9)

Example 2.1. We have for Permalloy A = 1.3× 10−11 J/m, Ms = 0.69× 106 A/m.We calculate
`ex = 6.59 nm. �

We will consider (2.4.9) for the exchange energy. We have the Lagrangian density [AppendixA]

L =
1

2
∂xm · ∂xm.

We have to consider the constraint m2 = 1. The constraint is imposed via a Lagrange multiplier
λ(x) . We have to extremize the functional
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L[m] =

∫
dx

[
1

2
∂xm · ∂xm +

λ(x)

2
(1−m2)

]
︸ ︷︷ ︸

L

. (2.4.10)

The functional L is minimized for m(x) that satisfies the Euler-Lagrange equation

− δL

δm
= 0⇒ d

dx

(
∂L
∂xm

)
− ∂L
∂m

= 0. (2.4.11)

We calculate and we remark

∂2xm + λm = 0. (2.4.12)

In 3D, this is generalized as

λm +∇2m = 0. (2.4.13)

We multiply the above by m in order to obtain the Lagrange multiplier

m · ∇2m + λm ·m = 0⇒ λ = −m · ∇2m. (2.4.14)

We use this to eliminate λ in the field Eq. (2.4.13)

∇2m− (m · ∇2m)m = 0⇒m× (m×∇2m) = 0. (2.4.15)

The latter is equivalent to

m×∇2m = 0. (2.4.16)

For the exchange energy, we have obtained the equation

m× f = 0, f = −δEex
δm

= ∇2m. (2.4.17)

This is generalized for any energy functional E(m) and gives the Landau-Lifshitz equation

m× f = 0, f = − δE
δm

. (2.4.18)

In that case (2.4.18) called the time-independent (or static) Landau-Lifshitz equation .



Chapter 3

Domain Walls

3.1 Domain Walls

A magnetic domain wall is an interface separating two magnetic domains. It is a transition layer
between different magnetic moments and usually undergoes a rotation of 90° or 180°. A domain
wall is a gradual reorientation of individual moments across a finite distance. The domain wall
thickness depends on the anisotropy of the material, but on average spans across around 100–150
atoms.

The energy of a domain wall is simply the difference between the magnetic moments before and
after the domain wall was created. This value is usually expressed as energy per unit wall area.

Figure 3.1: Domains in a ferromagnetic film. The magnetization points "up" in dark-coloured
regions and "down" in light-coloured regions.

The width of the domain wall varies due to the two opposing energies that create it: the magne-
tocrystalline anisotropy energy and the exchange energy Jex), both of which tend to be as low as
possible so as to be in a more favorable energetic state. The anisotropy energy is lowest when
the individual magnetic moments are aligned with the crystal lattice axes thus reducing the width
of the domain wall. Conversely, the exchange energy is reduced when the magnetic moments are
aligned parallel to each other and thus makes the wall thicker, due to the repulsion between them
(where anti-parallel alignment would bring them closer, working to reduce the wall thickness). In
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the end an equilibrium is reached between the two and the domain wall width is set as such.

An ideal domain wall would be fully independent of position , but the structures are not ideal
and so get stuck on inclusion sites within the medium, also known as crystallographic defects.
These include missing or different (foreign) atoms, oxides, insulators and even stresses within the
crystal. This prevents the formation of domain walls and also inhibits their propagation through
the medium. Thus a greater applied magnetic field is required to overcome these sites.

We have two types of walls bloch and neel

Case 1 : (BlochWall) A Bloch wall is a narrow transition region at the boundary between magnetic
domains, over which the magnetization changes from its value in one domain to that in the next ,
named after the physicist Felix Bloch. In a Bloch domain wall, the magnetization rotates about the
normal of the domain wall (in other words, the magnetization always points along the domain wall
plane in a 3D system)

Bloch domain walls appear in bulk materials, i.e. when sizes of magnetic material are considerably
larger than domain wall width (according to the width definition of Lilley ). In this case energy of
the demagnetization field does not impact the micromagnetic structure of wall. The mixed cases
are possible as well when demagnetization field changes the magnetic domains (magnetization
direction in domains) but not the domain walls.

Figure 3.2: The magnetic configuration between domains turns from down to up gradually. [Source
[6].]

Case 2 : (Neel Wall) A Néel wall is a narrow transition region between magnetic domains, named
after the French physicist Louis Néel. In the Néel wall, the magnetization smoothly rotates from
the direction of magnetization within the first domain to the direction of magnetization within the
second. In contrast to Bloch walls, the magnetization rotates about a line that is orthogonal to the
normal of the domain wall (in other words, it rotates such that it points out of the domain wall plane
in a 3D system). It consists of a core with fast varying rotation (where the magnetization points
nearly orthogonal to the two domains) and two tails where the rotation logarithmically decays .
Néel walls are the commonmagnetic domain wall type in very thin films where the exchange length
is very large compared to the thickness. Néel walls would spread across the whole volume if not
for magnetic anisotropy .
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3.2 Energy and equation of motion for a model with anisotropy

3.2.1 Easy-plane anisotropy

It is commonly seen that there are preferred directions in space for the orientation of magnetic
moments, which depend on the crystal lattice of the material. We call this property the mag-
netocrystaline anisotropy or simply magnetic anisotropy. The simplest case is uniaxial magnetic
anisotropy and it can be expressed by an energy term of the form

Ean = −g
N∑
i

S2
i,3. (3.2.1)

where g is the anisotropy constant . The continuum approximation,we change to the magnetisation
M ∼ S and this gives

Ean =
K

M2
s

∫
(M3)

2 dx. (Easy-plane anisotropy) (3.2.2)

where K is the anisotropy constant (Joule/meter3) . If we assumeK > 0 , the energy term (3.2.2)
disfavours the third componentM3 of the magnetization over the other two components (M1,M2)
. Such an energy term gives rise to easy-plane anisotropy, that is, the magnetization vector prefers
to lie in the xy-plane .

Substituting the definitions (2.4.5) , (2.4.6) , (2.4.7) and (3.2.2) and measuring length in units of
exchange length (i.e., substitute x→ `exx ) , we obtain

E = (M2
s `

3
ex)

[
1

2

∫
∂xm∂xm dx+

k2

2

∫
(m3)

2 dx

]
. (3.2.3)

The only constant remaining in the definition of the energy is multiplying the anisotropy term, it is
called the quality factor

k =

√
2K

M2
s

,

and measures the strength of the anisotropy relative to the magnetostatic term . Let us summarize
here the rationalized form of the energy terms discussed in this section. The total energy is the sum
of the exchange + anisotropy energy

E = Eex + Ean =
1

2

∫
∂xm · ∂xm dx+

k2

2

∫
m2

3 dx. (3.2.4)

We have the Lagrangian density Eq. (3.2.4) ,the variational derivative is (ε is the energy density,
i.e., the integrand)

f = − δE
δm

=
d

dx

(
∂ε

∂(∂xm)

)
− ∂ε

∂m
= ∂2xm− k2m3êz.

The Landau-Lifshitz equation for exchange and easy-axis anisotropy is

m×
(
∇2m− k2m3êz

)︸ ︷︷ ︸
f

= 0. (3.2.5)
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3.2.2 Easy-axis anisotropy

We consinder the case K < 0 theM3 component is favoured and we would thus call the above an
easy-axis anisotropy term

Ean = g
N∑
i

[1− S2
i,3]. (3.2.6)

where g is the anisotropy constant . The continuum approximation,we change to the magnetisation
M ∼ S and this gives

Ean =
K

M2
s

∫
(M2

s −M2
3 ) dx. (Easy-axis anisotropy) (3.2.7)

favours the states where M is fully aligned along the third axis, i.e., M3 = ±Ms or M =
(0, 0,±Ms).The minimum energy magnetisation configurations are M(x) = (0, 0,±Ms).

Substituting the definitions (2.4.5) , (2.4.6) , (2.4.7) and (3.2.7) and measuring length in units of
exchange length (i.e., substitute x→ `exx ) , we obtain

E = (M2
s `

3
ex)

[
1

2

∫
∂xm∂xm dx+

k2

2

∫
(1−m2

3) dx

]
. (3.2.8)

The only constant remaining in the definition of the energy is multiplying the anisotropy term, it is
called the quality factor

k =

√
2K

M2
s

,

and measures the strength of the anisotropy relative to the magnetostatic term . Let us summarize
here the rationalized form of the energy terms discussed in this section. The total energy is the sum
of the exchange + anisotropy energy

E = Eex + Ean =
1

2

∫
∂xm · ∂xm dx+

k2

2

∫
(1−m2

3) dx. (3.2.9)

We have the Lagrangian density Eq. (3.2.9) ,the variational derivative is (ε is the energy density,
i.e., the integrand)

f = − δE
δm

=
d

dx

(
∂ε

∂(∂xm)

)
− ∂ε

∂m
= ∂2xm + k2m3êz.

The Landau-Lifshitz equation for exchange and easy-axis anisotropy is

m×
(
∇2m + k2m3êz

)︸ ︷︷ ︸
f

= 0. (3.2.10)
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3.3 Domain wall solution

In order to make more realistic models , we may consider adding an easy-axis anisotropy

∂m

∂t
= −m× (∇2m + k2m3ê3). (3.3.1)

Where k is the parameter of anisotropy . The equation of motion in case of one-dimession has the
following form

∂m

∂t
= −m× (∂2xm + k2m3ê3). (3.3.2)

Using spherical parametrisation of the magnetisation with the angles Θ,Φ

m1 = sin Θ cos Φ, m2 = sin Θ sin Φ, m3 = cos Θ.

In a model with easy-axis anisotropy, we have two ground states, m = (0, 0,±1), or Θ = 0, π, that
is, the north and south pole of the sphere.We look for a topological soliton connecting the north and
the south pole. We confine ourselves to one space dimension m = m(x) and We try the simplest
possibility of a meridian on the Bloch sphere

Θ = Θ(x) , Φ = φ0 : const.

Example 3.1. For φ0 = π/2, we have

m1 = 0, m2(x) = sin Θ(x), m3(x) = cos Θ(x).

�

Consider exchange and easy-axis anisotropy (with parameter k2). The Landau-Lifshitz equation is

m×
(
m′′ + k2m3êz

)
= 0⇒


m2m

′′
3 −m3m

′′
2 + k2m2m3 = 0

m3m
′′
1 −m1m

′′
3 − k2m1m3 = 0

m1m
′′
2 −m2m

′′
1 = 0 .

Substitute the form for a Bloch wall m1 = 0, m2 = sin Θ, m3 = cos Θ, whence only the first
equation remains (the other two are trivially satisfied) . We calculate

m′′2 = − sin Θ Θ′2 + cos Θ Θ′′, m′′3 = − cos Θ Θ′2 − sin Θ Θ′′.

The first equation gives
Θ′′ − k2 sin Θ cos Θ = 0. (3.3.3)

Multiply by 2Θ′ [
(Θ′)2 − k2 sin2 Θ

]′
= 0⇒ (Θ′)2 − k2 sin2 Θ = C.
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There are many solutions for this one-dimensional equation . We are only interested in localised
solutions. We consider uniform domains for large |x|, therefore, we require Θ = 0, π and Θ′ = 0
at x = ±∞ .Applying the condition at x → ±∞, we get the value of the constant C = 0 and we
have

Θ′ = ±k sin Θ. (3.3.4)

The solution of the latter is

e±kx = ± tan

(
Θ

2

)
.

For the plus signs . For x → −∞ we have Θ = 0 (north pole) and for x → +∞ we have Θ = π
(south pole) . The calculations for the derivation of the domain wall solution hold also for φ0

nonzero,

m1 = sin Θ cosφ0, m2 = sin Θ sinφ0, m3 = cos Θ.

Using trigonometric identities (for the half angle), we have the magnetisation

m1 =
1

cosh(kx)
cosφ0, m2 =

1

cosh(kx)
sinφ0, m3 = tanh(kx). (3.3.5)

This result is valid for boundary conditions m(x = ±∞) = (0, 0,±1) . We get a different domain
wall solution for every 0 ≤ φ0 < 2π. Within the model with exchange and uniaxial anisotropy, the
energy is the same for all walls.

Example 3.2. Bloch wall (choose φ0 = ±π/2)

m1 = 0, m2 = ± 1

cosh(kx)
, m3 = tanh(kx).

�

Figure 3.3: A Domain Wall as a solution of model with anisotropy.
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Example 3.3. Neel wall (choose φ0 = 0)

m1 = ± 1

cosh(kx)
, m2 = 0, m3 = tanh(kx).

�

Figure 3.4: A Neel Wall as a solution of model with anisotropy.
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3.4 Energy bound for domain walls

We consider Eq. (3.2.4) and we want find an energy bound of topological textures .so we noticed
usining the spherical parametrization from previous chapter have the following computations

∂xm∂xm = (∂xm2)
2 + (∂xm3)

2 = cos2 Θ(∂xΘ)2 + sin2 Θ(∂xΘ)2 = (∂xΘ)2 = (Θ′)2,

and also

1−m2
3 = 1− cos2 Θ = sin2 Θ.

We consider the model with easy-axis anisotropy in one dimension. The energy Eq. (3.2.4) for a
configuration Θ = Θ(x) is

E =
1

2

∫
(Θ′)2 dx+

k2

2

∫
sin2 Θ dx. (3.4.1)

In order to derive a bound for the energy, we start with the following computations,

1

2
(Θ′ ± k sin Θ)2 ≥ 0⇒ 1

2
(Θ′)2 +

k2

2
sin2 Θ± kΘ′ sin Θ ≥ 0. (3.4.2)

We integrate on the plane and substitute in the energy (3.4.1) to obtain

E ≥ ±k
∫ ∞
−∞

sin Θ Θ′ dx.

We now consider a domain wall with Θ(x→ −∞) = 0, Θ(x→∞) = π and we have

E ≥ ±k
∫ π

0

sin Θ dΘ = ±k[− cos Θ]π0 = ±2k.

This implies the bound for the energy
E ≥ 2k. (3.4.3)

It would be good to stress that this bound is valid for topological configurations. The inequility is
saturated when

Θ′ ± k sin Θ = 0.

This equation coincides with Eq. (3.3.4) that has given the domain wall solutions (3.3.5).
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3.5 Total magnetization

The simple model is invariant with respect to rotations around the z axis. Also, the out-of-plane
magnetization is usually measured in experiments. These are the motivations for definingM.It is
reasonable that we study an integrated quantity, as is the total magnetization in the third direction

M =

∫
m3 dx. (3.5.1)

We consider the conservative model with exchange and uniaxial anisotropy define Eq. (3.3.2) and
calculate its time dependence

dM
dt

=

∫
ṁ3 dx = −

∫
[m× (m′′ + k2m3ê3)]3 dx. (3.5.2)

The second term has no z (third) component because m× ê3 ⊥ ê3, and∫
m×m′′dx =

∫
(m×m′)′dx = [m×m′]∞−∞ = 0. (3.5.3)

We notice the total magnetisation is equal

dM
dt

= 0⇒M : const. (3.5.4)

The total magnetisation is a conserved quantity for the above conservative model. Notice that the
exchange and uniaxial anisotropies are symmetric with respect to rotations of the magnetisation
around the third axis ê3. By Noether’s theorem, this gives conservation of the total magnetisation
M.
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Chapter 4

Chiral Domain Wall

4.1 Dzyaloshinskii-Moriya Interaction

Chirality is a form of asymmetry of the system. If the atomic structure of a magnet lacks inversion
symmetry we call them chiral magnets. The chirality expresses itself through the phase diagram
which shows additional chiral phases.

In 1960 Dzyaloshinskii constructed a model to describe weak ferromagnetism . Based on sym-
metries he introduced an asymmetrical term which later on was dubbed the DzyaloshinskiiMoriya
interaction. Moriya connected his name to this term when he found the mechanism behind this
interaction is partly based on spin-orbit coupling . Without going into details we conclude that the
Dzyaloshinskii-Moriya interaction is induced by a lack of inversion symmetry of the compound
and a strong spin-orbit coupling.

An example of a compound that lacks inversion symmetry isMnSi (manganese silicide), as depicted
schematically in Fig. 4.1. In the figure we see that inversion symmetry is broken in a unit cell.
Aside from a lack of inversion symmetry, MnSi has a strong spin- orbit coupling. This is due to
several microscopic processes, which we will not go into.

Figure 4.1: Schematic figure of the atomic structure of MnSi. The circles represent atoms and
the dashed lines depict the boundaries of a unit cell. We see that this structure lacks inversion
symmetry in a unit cell.[Source [7].]

Inversion symmetry can be broken in different directions leading to a different induced DM
interaction. In practice this means that the magnetization is different. We consider an example of
just two spins here, however in the coming sections of this thesis we consider a bigger system. The
DM interaction for two spins has the following form

HDM = −D12 · (S1 × S2) (4.1.1)

31
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In this expression S1 and S2 are the atomic spins . In Fig. 4.2 there is a DM interaction emerging
from the interplay of two atomic spins with a neighboring atom having a large spin-orbit coupling
in a thin film. The resulting DM interaction points outwards from the plane of the atoms. The same
mechanism is responsible for the interfacial DM interaction between a ferromagnetic thin layer and
a non-magnetic layer with a large spin-orbit coupling. Here, at the interface between the two layers,
the triangle mechanism produces a DM interaction for the interfacial spins S1 and S2. The DM
interaction vector, D12, is perpendicular to the triangle.Starting with a ferromagnetic state where
all spin are alligned: S1||S2, we then assume a strong spin-orbit coupling present that induces a
DM interaction. The resulting magnetic structure depends on the direction of the D-vector, which
in turn depends on the way which the symmetry in the compound is broken. Different helicities
are obtained for different DM interactions.

Figure 4.2: Schematic explanation of the interfacial DM interaction for two spins.[Source [7].]
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4.2 Energy and equation of motion

We will assume a ferromagnet with exchange, an easy-axis anisotropy, and a DMI. We will study
configurations where the magnetization is varying in only one space direction, that is, we assume
m = m(x, t) . The energy of such a system is

E(m) =
1

2

∫
[(∂xm)2 + k2(1−m2

3) + 2λ(m× ∂xm) · ê1] dx. (4.2.1)

where ê1 is the unit vector for the magnetization in the x direction. We measure distance in
units of exchange length `ex =

√
2A/µ0M2

s where A is the exchange constant. There are two
length scales in the model `w =

√
A/K , where K is the anisotropy constant, and D = 2A |D|,

where D is the DMI constant. The dimensionless parameters appearing in the energy (4.2.1) are
k2 = 2K (µ0M

2
s ) = (`ex/`w)2, and λ = `ex/`D. We will consider λ > 0 ; the case λ < 0

corresponds to the transformation x→ −x . The general form of the DM term is given in terms of
Lifshitz invariants

Lij = (m× ∂im)j. (4.2.2)

In the energy (4.2.1) we have only kept the Lifshitz invariantL11 in the ê1 direction corresponding to
cubic DMI given by m · (∇×m) . Replacing L11 by L12 (interfacial DMI) or a linear combination
of both yields a model that is mathematically equivalent modulo a rigid rotation around the ê3
axis.The effective field entering (4.2.4) is obtained by varying the energy,

f =
δE

δm
= ∂2xm + k2m3ê3 − 2λê1 × ∂xm. (4.2.3)

he uniform (ferromagnetic) statesm = (0, 0±1) are the simplest time-independent (static) solutions
of the LL equation

∂m

∂t
= −m× f = 0. (4.2.4)
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4.3 Energy bound for chiral domain walls

We consider the Eq. (4.2.1) of energy and we want find an energy bound of topological textures .
So we noticed that

∂xm∂xm = (∂xm2)
2 + (∂xm3)

2 = cos2 Θ(∂xΘ)2 + sin2 Θ(∂xΘ)2 = (∂xΘ)2 = (Θ′)2.

and also using the trigonometric identities

1−m2
3 = 1− cos2 Θ = sin2 Θ.

Moreover we have the following computations for chiral term

êx · (m× ∂xm) = m2∂xm3 −m3∂xm2 =

sin Θ(x)(− sin Θ(x))∂xΘ(x)− cos Θ(cos Θ)∂xΘ(x) = −∂xΘ(x) = Θ′.

We write again energy form and noticed

E = Eex + Ean + EDM =

1

2

∫
∂xm∂xm dx+

k2

2

∫
(1−m2

3) dx−λ
∫
êx · (m× ∂xm) =

1

2

∫
(Θ′)2 dx+

k2

2

∫
sin2 Θ dx+ λ

∫
Θ′ dx.

Make the following computations

1

2
(Θ′ ± q sin Θ)2 ≥ 0⇒ 1

2
(Θ′)2+

k2

2
sin2 Θ± kΘ′ sin Θ ≥ 0⇒

1

2
(Θ′)2 +

k2

2
sin2 Θ + λΘ′ ≥ ±kΘ′ sin Θ + λΘ′,

We integrate over the plane and get

E ≥ ±
∫
kΘ′ sin Θ dx+ λ

∫
Θ′ dx⇒ E ≥ ±k

∫
d(cos Θ) + λ

∫ 0

π

dΘ⇒

E ≥ 2k − λπ. (4.3.1)

Finally define Eq. (4.3.1) we have

E ≥ 0⇒ λ ≤ 2k

π
and E < 0⇒ λ >

2k

π
. (4.3.2)

Usually we choose anisotropy parameter k = 1 , so in that case the lowest energy (ground) state is
the spiral for λ > 2/π and the ferromagnetic state for λ < 2/π.
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4.4 Traveling domain walls

Many interesting phenomena in magnetic materials refer to switching of the magnetization of
domains. One way to achieve this is to shift the domain wall between two domains of opposite
magnetization. Thisway one of the domains expands at the expense of the other. This brings forward
the problem of a propagating domain wall. Suppose two domains of opposite magnetization
separated e.g., m = (0, 0, 1) and m = (0, 0,−1) respectively. Expanding the one domain is
tantamount to moving the domain wall to the direction of the other domain.

Figure 4.3: ail-to-tail domain wall displacement under the applied magnetic field. The color scale
bar indicates the longitudinal magnetizationmz. [Source [8].]

then we may expect that expansion of the domain along the direction of the field may proceed
through motion of the domain wall . We will be looking for a propagating wall of the special form

m = m(x− ut), (4.4.1)

whereu is a constant velocity for the domainwall.We consider amodel including theDzyaloshinskii-
Moriya interaction define by Eq. (4.2.4), (4.2.3) . Let us recall that a Bloch wall is a static solution
of the model (this is because m× (êx×m′) = −m1m

′ and thus the DM term vanishes for a Bloch
wall).The time dependence of the total magnetisation is

dM
dt

=

∫
ṁ3 dx = −

∫
[m× (m′′ + k2m3ê3 − 2λ ê1 ×m′)]3 dx. (4.4.2)

The first two terms give zero and the third term gives

dM
dt

= −2λ

∫ ∞
−∞

m1m
′
3 dx. (4.4.3)

More generally,

• M is conserved when λ = 0 because exchange and anisotropy are invariant with respect to
rotations around êz.

• The DM interaction breaks this symmetry, the associated conservation law is not valid, thus
allowing for the possibility of propagating domain walls.

• A propagating wall should develop a nonzerom1 component (tilting).
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Let λ/k be sufficiently small. Then, there is a neighbourhood N of π
2
, such that for ϕ0 ∈ N there

is a strictly increasing domain wall solution of the equations. The domain wall velocity is u 6= 0 if
ϕ0 6= π/2.Numerically found traveling domain walls have velocities in the range [9]

0 < u < 0.78.

Figure 4.4: The three components of the magnetization for a chiral domain wall with velocity
u = 0.40 traveling to the right,for parameter values are k = 1, λ = 0.5.[Source[9].]



Chapter 5

Skyrmions in the exchange model

5.1 BP Skyrmions

We consider a fully isotropic ferromagnet in two space dimensions,m = m(x, y, t), thus we have
the model that contains only the exchange interaction

∂

∂t
m = −m× O2m. (5.1.1)

Our goal now is to find explicit solutions of the static Landau-Lifshitz equation in the case of
magnetic films . It is convenient to map the magnetization defined on the Bloch sphere, to a
complex function u = u(z), with z = x+ iy. The stereographic projection of a point on the sphere
m = (sin θ cosφ, sin θ sinφ, cos θ) to the complex plane is given by

u =
mx + imy

1 +mz

= tan
θ

2
eiφ. (5.1.2)

Eq. (5.1.2) is inverted to give

mx =
u+ u

1 + uu
, my =

1

i

u− u
1 + uu

, mz =
1− |u|2

1 + |u|2
.

where the over bar represents complex conjugation.

Figure 5.1: Stereographic Projection in a Complex Plane.

37
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The static Landau-Lifshitz equation in the new function u, becomes

0 = i∂tu = −∂∂u+ 2
2u

1 + |u|2
∂u∂u, (5.1.3)

where ∂ = ∂/∂z = (∂/∂x− i∂/∂y)/2 . One immediately observes that any harmonic function is a
stationary solution [10].

∂u(z) = 0 or ∂u(z) = 0. (5.1.4)
General every complex function u = u(z) where z = x+ iy and u(z) = u1(x, y)+ iu2(x, y) which
satisfied the cauchy - Riemann equation ∂1u1 = ±∂2u2, ∂2u1 = ∓∂1u2 is a solution of exchange
model. For example, a solutions of this form are

u = αz, αz2,
α

z
,
α

z
, αz, . . . α ∈ R+

where α is a constant. Any rational polynomial of z is a solution and also any rational polynomial
of z̄ is a solution.

Example 5.1. We consider
u = αz.

This gives the magnetization components

mx =
2αx

1 + α2(x2 + y2)
, my =

2αy

1 + α2(x2 + y2)
, mz =

1− α2(x2 + y2)

1 + α2(x2 + y2)
.

Fig. 5.2 shows the skyrmion configuration.

�

Figure 5.2: A BP skyrmion obtained for u = αz with the choice α = 1.33. The vectors shows
the projection of m on the plane, i.e., (m1,m2). The 3rd component of the magnetization m3 is
represented by the color code as shown on the right of the figure.
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Example 5.2. We consider

u =
α

z̄
.

This gives the magnetization components

mx =
2αx

1 + α2(x2 + y2)
,my =

2αy

1 + α2(x2 + y2)
,mz =

1− α2(x2 + y2)

1 + α2(x2 + y2)
.

Fig. 5.3 shows the skyrmion configuration. �

Figure 5.3: A BP Skyrmion obtained for u = α/z with the choice α = 1.33. The vectors and color
code are as in Fig. 5.2.

Example 5.3. We consider

u = αz2.

This gives the magnetization components

mx =
2α(x2 − y2)

1 + α2(x2 + y2)2
, my =

4αxy

1 + α2(x2 + y2)2
, mz =

1− α2(x2 + y2)2

1 + α2(x2 + y2)2

Fig. 5.4 shows the skyrmion configuration. �
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Figure 5.4: A BP Skyrmion u = αz2 with the choice α = 0.33. The vectors and color code are as
in Fig. 5.2.

Example 5.4. We consider
u = αz.

This gives the magnetization components

mx =
2αx

1 + α2(x2 + y2)
, my =

−2αy

1 + α2(x2 + y2)
, mz =

−1 + α2(x2 + y2)

1 + α2(x2 + y2)
.

Fig. 5.5 shows the skyrmion configuration. �

Figure 5.5: A BP skyrmion with u = αz with the choice α = 1.33. The vectors and color code are
as in Fig. 5.2.
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Example 5.5. Amore complicated form could be (Noticed this form satisfied the Cauchy-Riemann
equations)

u =
αi

z + d/2
− αi

z − d/2
.

�

Figure 5.6: A BP Skyrmion which called Biskyrmion.

The exchange model possesses the following simple symmetries.

• The energy is invariant under scale transformations. Thus, the BP solutions have the same
energy under the transformation z → az. For example, the BP solution in Fig. 5.3 has the
same energy for any value of the constant a.

• The energy is invariant under global rotations of the magnetization vector. For example the
BP skyrmion Fig. 5.3 has the same energy if we set a→ aiφ for any angle φ.

• More generally, the model possesses conformal invariance. We could rotate all vectors by any
angle and obtain a further skyrmion (solution of the equations). More general transformations
can be applied and obtain more skyrmion solutions (due to the conformal invariance of the
model).

Example 5.6. We consinder
u = αz.

But this time we choose α = i and notice �
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Figure 5.7: A BP skyrmion with a = i. All vectors are rotated by π/2.
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5.2 Skyrmion Number for Axially Symmetry Configuration

From (1.2.1) we known the formula of Skyrmion number , so we rewrite in the following form

Q =
1

4π

∫
qd2x , q =

1

2
εµνm(∂νm× ∂µm). (5.2.1)

The indexes µ, ν takes values µ, ν = 1, 2, 3 and we employ the Einstein summation convention
(the repeated indexes µ, ν are summed over its three values) . We now focus on axially symmetric
skyrmion configurations. These are conveniently described in terms of the standard spherical
parametrisation for the magnetization given by

m1 = sin Θ cos Φ , m2 = sin Θ sin Φ , m3 = cos Θ. (5.2.2)

using the ansatz
Θ = θ(ρ) , Φ = φ+ π/2, (5.2.3)

where (ρ, φ) are polar coordinates. we could write the magnetization vector m = (m1,m2,m3) ,
with the following general expression

m1 + im2 = [mρ(ρ) + imφ(ρ)]ei(φ+π/2) , m3 = mz(ρ) (5.2.4)

wheremρ is the radial,mφ is the azimuthal andmz is the longitudinal coordinate of magnetization
, with the following relation formρ,mφ,mz

m2
ρ +m2

φ +m2
z = 1. (5.2.5)

It is very important to find a general formula for the Skyrme number characterized by the above
structure. So we should express the topological density q as

q = (∂2m× ∂1m) ·m =
1

ρ
(∂φm× ∂ρm) ·m. (5.2.6)

For an axially symmetric configuration defined from Eq (5.2.1) we take the following formula

q =
1

ρ
[(m1∂φm2 −m2∂φm1)∂ρm3 + (∂φm1∂ρm2 − ∂φm2∂ρm2)m3]. (5.2.7)

Using (5.2.4) and (5.2.7) we have the following computations

m1∂φm2 −m2∂φm1 = (mρ sinφ+mφ cosφ)2 + (mφ sinφ−mρ cosφ)2 = m2
ρ +m2

φ (5.2.8)

∂φm1∂ρm2 − ∂φm2∂ρm2 = −(mρ∂ρmρ +mφ∂φmφ) = mz∂φmz. (5.2.9)

Finally the topological destiny reduces to

q =
1

ρ
((m2

ρ +m2
φ)∂ρmz +m2

z∂φmz) =
1

ρ
∂ρmz(ρ). (5.2.10)
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The topological number is

Q =
1

4π

∫
q (2π ρdρ) =

1

2

∫ ∞
0

∂ρmz dρ =
1

2
[mz(ρ→∞)−mz(ρ = 0)], (5.2.11)

where mz = cos θ = mz(ρ) is the third component of magnetization. Thus, if Eq. (5.2.11) is
solved with boundary conditions Θ(ρ = 0) = π and Θ(ρ→∞) = 0 , it leads to a static skyrmion
with Q = 1.

Example 5.7. Let us consider Example 5.2 This is written using polar coordinates as

z = ρeiφ , z̄ = ρe−iφ,

u =
m1 + im2

1 +m3

=
a

ρ
eiφ.

�

If we assume α ∈ R, we have the magnetisation components

mρ =
u+ ū

1 + uū
=

2aρ

ρ2 + a2
cosφ,

mφ =
1

i

u− ū
1 + uū

=
2aρ

ρ2 + a2
sinφ,

mz =
1− uū
1 + uū

=
ρ2 − a2

ρ2 + a2
.

We note that
mz(ρ = 0) = −1, mz(ρ→∞) = 1,

and the skyrmion number is

Q =
1

2
[mz(ρ→∞)−mz(ρ = 0)] = 1 ← BP Skyrmion (Q = 1) .

Example 5.8. Let us consider Example 5.4 This is written using polar coordinates as

z = ρeiφ , z̄ = ρe−iφ,

u =
m1 + im2

1 +m3

= αρe−iφ,

�

Inverting this we have the magnetisation components (assume α ∈ R)

mρ =
2αx

1 + α2(x2 + y2)
,

mφ =
−2αy

1 + α2(x2 + y2)
,

mz =
−1 + α2(x2 + y2)

1 + α2(x2 + y2)
.
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So we note that

mz(ρ = 0) = 1, mz(ρ→∞) = −1.

Q =
1

2
[m3(ρ→∞)−m3(ρ = 0)] = −1 ← BP Anti-Skyrmion (Q = -1) .

Example 5.9. Let us consider Example 5.5 This is written using polar coordinates as

z = ρeiφ , z̄ = ρe−iφ (In polar coordinates),

u =
ai

z + d/2
− ai

z − d/2
⇒ u =

−iad
z2 − (d/2)2

.

�

We assume we are in a centrosymmetric material , so in that case we have

u = −2adi
1

z2
⇒ u =

m1 + im2

1 +m3

= −2adiei2φ.

Inverting this we have the magnetisation components (assume α ∈ R)

mz = 2
1− uū
1 + uū

= 2
ρ4 + a2d2

ρ4 − a2d2
,

we note that

m3(ρ = 0) = −2, m3(ρ→∞) = 2.

In that case the skyrmion number gives

Q =
1

2
[mz(ρ→∞)−mz(ρ = 0)] = 2 Biskyrmion (Q = 2).
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5.3 Energy bound for skyrmions

An energy bound for topological textures can be obtained if we start from the identity

(∂xm±m× ∂ym)2 + (∂ym±m× ∂xm)2 ≥ 0. (5.3.1)

Using a triple product identity, we have

(∂xm±m× ∂ym)2 = (∂xm)2 + (∂ym)2 ± 2m · (∂xm× ∂ym). (5.3.2)

Similarly, we obtain

(∂ym±m× ∂xm)2 = (∂xm)2 + (∂ym)2 ± 2m · (∂xm× ∂ym). (5.3.3)

We add the formulas (5.3.2) and (5.3.3) and we obtain

(∂xm±m× ∂ym)2 + (∂ym±m× ∂xm)2 = 2[(∂xm)2 + (∂ym)2] + 4q,

where q is called the topological density. We integrate over the plane and use Eq. (5.3.1) to obtain

2

∫
[(∂xm)2 + (∂ym)2]dxdy ± 4

∫
qdxdy ≥ 0⇒ 4E ± 16πQ ≥ 0⇒ E ≥ 4π|Q|. (5.3.4)

The skyrmion number Q is integer-valued (Q = 0,±1,±2, . . . ) for all magnetic configurations
such that m = (0, 0,±1) at spatial infinity.

Example 5.10. For a skyrmion with Q = 1 (5.3.4) gives �

E = Eex ≥ 4π. (5.3.5)

So for a skyrmion with Q = 1 energy can’t be lower that Eex = 4π.
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5.4 A virial relation

Consider the model with exchange and easy-axis anisotropy energy in three space dimensions (3D)

E = Eex + Ean = −J
N−1∑
i=1

Si · Si+1 + g

N∑
i=1

[1− S2
i,3]. (5.4.1)

The continuum approximation using Eq. (2.4.5) and Eq. (3.2.7) gives

E =
A

M2
s

∫
∂µM · ∂µM d3x+

K

M2
s

∫
(M2

s −M2
3 ) d3x. (5.4.2)

Where µ = 1, 2, 3 and ∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂z. The variable M can be normalised to have unit
length

m =
M

Ms

, m2 = 1.

The energy is
E = A

∫
∂µm · ∂µm d3x+K

∫
(1−m2

3) d
3x. (5.4.3)

Consider the dimensions of the parameters [A], [K].

• From the first term [E] = [A][L] ([E], [L] indicate dimensions of energy and length respec-
tively.)

• From the second term [E] = [K][L]3 =[M2
s ][L]3.

Comparing, we have [A][L] = [K][L]3 → [A]/[K] = [L]2. We have that

`ex =

√
2A

M2
s

.

Is a natural unit of length in this model.Define new space variables ξ = x/`ex, . . . (similar for y, z)
and obtain the energy expression

E = A`dw

∫
∂µm · ∂µm d3ξ +K`3ex

∫
(1−m2

3) d
3ξ. (5.4.4)

Since K`2ex = A, we obtain (set again ξ → x for simplicity)

E = 2A`dw

[
1

2

∫
∂µm · ∂µm d3x+

1

2

∫
(1−m2

3) d
3x

]
. (5.4.5)

The natural energy scale is 2A`dw.Let us summarize here the rationalized form of the energy terms
discussed in this section. The total energy is the sum of the exchange + anisotropy energy

E =
1

2

∫
∂µm · ∂µm d3x+

k2

2

∫
(1−m2

3) d
3x. (5.4.6)
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where

k2 =
2K

M2
s

.

Let m = m(x) correspond to a minimum of the energy.We apply a scaling in space x→ λx by a
constant λ. Our magnetization configuration is now expanded.Then, for the magnetization m(λx)
we have the energy

E(λ) =
1

2

∫
∂µm(λx) · ∂µm(λx) dDx+

k2

2

∫ (
1−m2

3(λx)
)
dDx µ = 1, 2, 3. (5.4.7)

SinceE is an extremum, it should also be an extremum with respect to scale transformations, when
varying λ, at λ = 1

d

dλ
E(λ)

∣∣
λ=1

=
d

dλ

(
λ2−DEex + λ−DEan

)
λ=1

= 0. (5.4.8)

This gives [
(2−D)λ1−DEex −Dλ−D−1Ean

]
λ=1

= 0. (5.4.9)

From the Derrick scaling argument, we finally obtain the virial relation

(2−D)Eex = DEan. (5.4.10)

Since Eex, Ean are positive definite, we conclude . For D = 2, only such energy minima exist for
which Ean = 0, i.e., the only possible solutions are m = (0, 0,±1) .

Derrick’s argument gives Ean = 0 and thus excludes all nontrivial (nonuniform) solutions. We
can’t find skyrmions in this model.



Chapter 6

Chiral skyrmionic Textures

6.1 Energy and equation of motion

We assume a ferromagnetic material as a two-dimensional system lying on the xy-plane. The
micromagnetic structure is described via the magnetization vector m = m(x, y) with a fixed
magnitude normalized to unity, m2 = 1. We will assume a ferromagnet with exchange interaction,
a Dzyaloshinskii-Moriya (DM) interaction, and an anisotropy of the easy-axis type perpendicular
to the film, governed by the normalized energy

E =
1

2

∫
∂µm · ∂µm dx+

1

2

∫
(1−m2

3) dx+ λ

∫
EDM dx. (6.1.1)

A summation over repeated indices µ = 1, 2 is assumed. The last term in the parenthesis in
Eq. (6.1.1) models the DM interaction Prototypical cases are the bulk DM interaction form EDM =
êµ · (∂µm ×m) and the interfacial DM interaction EDM = εµν êµ · (∂νm ×m) form where εµν
is the totally antisymmetric two-dimensional tensor. Here ê1, ê2, ê3 are the unit vectors for the
magnetization in the respective directions. Static magnetization fields are local minimizers of E
satisfying the normalized Landau-Lifshitz equation

m× f = 0, (6.1.2)

where the effective field

f = ∂µ∂µm +m3ê3 − 2λfDM ,

where the last term is the DM field with fDM = êµ · (∂µm ×m) in case of bulk interaction or
fDM = εµν êµ · (∂νm×m) in case of interfacial DM .

is minus the variational gradient of E = E(m) . We measure lengths in units of the domain
wall width `w =

√
A/K where A is the exchange and K the anisotropy parameter. The equation

contains a single parameter

λ =
`S
`w

=
D

2
√
AK

, (6.1.3)

defined via an additional length scale of this model `S = D/(2K) , where D is the DM parameter
( a parameter which differs from λ only by a constant factor has been introduced).

49
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6.2 Axially symmetric skyrmionic textures

Let us consider the angles (Θ,Φ) for the spherical parametrization of the magnetization vector,
and the polar coordinates (ρ, φ) for the film plane. We assume an axially symmetric skyrmion with
Φ = φ + φ0 and Θ = Θ(ρ) . For a bulk DM term the energy from Eq. (6.1.1) is minimized for
φ0 = π/2 (Bloch skyrmion) and for interfacial DM interaction we choose φ0 = 0 (Neel skyrmion).
A value 0 < φ0 < π/2 should be chosen if the DM term is a combination of the bulk and interfacial
terms . The skyrmion profile arises as a local minimizer of the energy

E = 2π

∫ +∞

0

[
1

2
(
dΘ

dρ
)2 +

1

2
(1 +

1

ρ2
sin2 Θ) + λ

(
dΘ

dρ
+

1

2ρ
sin 2Θ

)]
ρdρ, (6.2.1)

of

m(ρ, φ) = (sin Θ, cos(φ+ φ0), sin Θ sin(φ+ φ0), cos Θ),

whereby Θ = Θ(ρ) satisfies the equation

Θ′′ +
Θ′

ρ
− sin(2Θ)

2ρ2
+ 2λ

sin2 Θ

ρ
− sin(2Θ)

2
= 0, (6.2.2)

with boundary conditions Θ(0) = π and limρ→∞Θ(ρ) = 0. The same equation applies to all types
of skyrmions, e.g., Bloch and Neel skyrmions for the respective DM terms.
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6.2.1 Skyrmion

We can find the skyrmion numerically , within a model with exchange , anisotropy and DM
interaction, a skyrmionic texture with Q = 1 , for the parameter value range 0 < λ < 2

π
. We

Choose lattice spacings δx = δy = 0.1, 0.15, 0.2 , in most cases we use lattice space δx = δy = 0.2
, then for values in between 0.15 ≤ λ ≤ 0.25 we use lattice space δx = δy = 0.15 then as we get
closer to λ ≈ 0 we use δx = δy = 0.1 and also for the numerical meshes was fixed to 200× 200 ,
300× 300 sites

Figure 6.1: Two Skyrmions which find it numerically for lattice space δx = δy = 0.2 and lattice
size 30 × 30 for value of DM parameter λ = 0.5 , left configuration represent a condition with
interfacial interaction and right represent a condition with bulk interaction . The static axially
symmetric (Q = 1) skyrmion represented through the projection (m1,m2) of the magnetization
vector on the plane for anisotropy k = 1 .

Another interesting result is the dependence of the skyrmion radius on the parameter of the DM
term. A formula for the skyrmion radius for small values of λ both EDM and Ean are small while
Eex > 4π (due to the topological energy bound). This leads to a skyrmion radius can be determined
from the above results [11]

R = − λ

lnλ
. (6.2.3)

Also a formula for the skyrmions of large radius [12]

R =

(
0.3057
2
π
− λ

)1/2

. (6.2.4)

Numerical results show that the skyrmion radius increases with increasing λ and it diverges to
infinity for λ→ 2/π , in agreement with theoretical results.

we compare the theoretical values with the numerical approximations and we plot the results in
Fig. 6.2.4
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Figure 6.2: The figure represent the radius of skyrmion by the parameter λ of DM term.The blue
line is the numerical approximations and gold line represent Eq. (6.2.3) and Eq. (6.2.4).
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6.2.2 Skyrmionium

In magnetic systems, excitations can be found that are characterized by the orientation of the local
magnetic moments of atomic cores. A magnetic skyrmionium is a ring-shaped topological spin
texture and is closely related to the magnetic skyrmion. A magnetic skyrmionium is a topological
quasi particle that is composed of a superposition of twomagnetic skyrmions of opposite topological
charge (A skyrmion withQ = 1 and an skyrmion withQ = −1) adding up to zero total topological
charge Q = 0 .

We are looking for axially-symmetric solutions of a model with exchange , anisotropy and DM
term with skyrmion number Q = 0 . An ansatz for a Q = 0 configuration is conveniently given in
terms of the stereographic variable as

u = z − α

z̄
or u = i(z − α

z̄
), (6.2.5)

where α is an arbitrary constant. The magnetization configuration produced by the form (6.2.5) is
shown in Fig. 6.3 .

Figure 6.3: The static axially symmetric skyrmionium (Q = 0) in interfacial condition (left) and
bulk condition (right).

Skyrmionium isn’t a static solution for Eq. (5.1.1) (like BP skyrmion) and form Eq. (6.2.5) don’t
satisfies the cauchy - Riemann equation , but we can find it numerically for the parameter value
range 0.5 < λ < 2

π
and for initial condition with radius ρ > 2.0 . We Choose latice spaces

δx = δy = 0.1, 0.15, 0.2 and for the numerical meshes was fixed to 200× 200 , 300× 300 sites .



54 CHAPTER 6. CHIRAL SKYRMIONIC TEXTURES

Figure 6.4: A skyrmionium which find it numerically for lattice space δx = δy = 0.2 and lattice
size 30×30 for value of DM parameter λ = 0.55, configuration represent a condition with bulk DM
interaction.The static axially symmetric skyrmionium (Q = 0) represented through the projection
(m1,m2) of the magnetization vector on the plane for anisotropy k = 1.

Another interesting result is the dependence of the skyrmionium inner and outer radius on the
parameter of the DM term.Numerical results show that the skyrmionium radius inner and outer
increases with increasing λ and it diverges to infinity for λ → 2/π (See Fig. 6.5),also we noticed
the inner radius reduced to zero when λ→ 0.5 .

Figure 6.5: The figure represent the radius of skyrmionium inner (red) and outer (black) by the
parameter λ of DM term .
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6.3 Non-Axially Symmetric Skyrmionic textures

6.3.1 Droplet

Wewill studyQ = 0 solitons that can be constructed as skyrmion-antiskyrmion pairs. Observations
of topologically trivial objects in the form of skyrmionantiskyrmion pairs in a DM material are
reported , Q = 0 textures are found numerically within a model with frustrated isotropic exchange
and DM interaction and they are called “chiral skyrmions” due to the coexistence of skyrmion
and antiskyrmion parts. We find numerically, within a model with DM interaction, a skyrmionic
texture with Q = 0 that has the features of a skyrmion-antiskyrmion pair. This is an asymmetric
configuration and its shape resembles that of a liquid droplet.

We are looking for solutions of a model with anisotropy and DM term with skyrmion number
Q = 0 . An ansatz for a Q = 0 configuration is conveniently given in terms of the stereographic
variable as

u =
α

x+ i|y|
or u =

α

|y| − ix
, (6.3.1)

where α is an arbitrary constant. The magnetization configuration produced by the form Eq. (6.3.1)
is shown in Fig. 6.6

Figure 6.6: The static non-axially symmetric droplet (Q = 0) in interfacial condition (left) and
bulk condition (right).

Themagnetization configuration Fig. 6.6 produced by the formEq. (6.3.1) representing a skyrmion-
antiskyrmion pair. The lower half of this configuration has the features of a skyrmion and the upper
half has the features of an antiskyrmion.This is used as an initial condition in the energy relaxation
algorithm for finding a static solution of the equation.
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In most of the numerical simulations presented in the following figures, we use the set of parameter
values shown in the following Table

Parameter V alue
Ms 8.38× 105A/m
A 1.1× 10−11J/m
K 1.193(7.518)× 106J/m3

D 3.5× 10−3J/m2

Values for material parameters presented in the figures : Ms is the saturation magnetization, A
the exchange parameter, K the easy-axis anisotropy parameter , and D the DM parameter. The
above methodology converges to a static skyrmion-antiskyrmion configuration for a narrow range
of values of the dimensionless parameters λ, κ . We find numerically the droplet for range of the
values of the dimensionless parameters

0.6125 ≤ λ <
2

π
, k = 1.0

Figure 6.7: The figure represent a droplet which find it numerically with parameter of λ = 0.62
and latice space δx = 0.2 with lattice size 30× 30 and bulk DM interaction.
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Another interesting result is the dependence of the droplet energy on the parameter of the DM
term.Numerical results show that the droplet energy discreases with increasing λ . We plot the
results in Fig. 6.8 and remark we cannot find solutions of droplet for values of DM parameter
smaller than λ < 0.6 .

Figure 6.8: The energy of the droplet as a function of the DM parameter λ. Dots represent the
numerical results and they are connected by a continuous line.
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6.3.2 Bimeron

We will consider a model with exchange interaction, a Dzyaloshinskii-Moriya (DM) interaction,
and an anisotropy of the easy-plane type perpendicular to the film , governed by the normalized
energy

E =
1

2

∫
∂µm · ∂µm d2x+

k2

2

∫
m2

3 d
2x+ λ

∫
EDM d2x. (6.3.2)

Static magnetization fields are local minimizers of E satisfying the normalized Landau-Lifshitz
equation

m× f = 0 , f = ∂µ∂µm− k2m3ê3 − 2λfDM , (6.3.3)

We are looking for a non-axially symmetric solutions of this model with skyrmion number Q+ =
1/2 andQ− = 1/2 .An interesting object can be created if we assume that we have in a film a meron
and an antimeron in proximity to each other.An ansatz for this skyrmion number configuration is
conveniently given in terms of the stereographic variable

u =
z − α
z + α

, (6.3.4)

where α is an arbitrary constant. The magnetization configuration produced by the form Eq. (6.3.4)
is shown in following Figure

Figure 6.9: The static non-axially symmetric easy-plane skyrmion Q+ = 1/2 and Q− = 1/2 in
bulk DM interaction.Vectors give the in-plane component of the magnetization vector (m1,m2).

The magnetization configuration Fig. 6.9 produced by the form Eq. (6.3.4) representing a meron-
antimeron pair. The left part of configuration has the features of half-skyrmion with skyrmion
number Q− = 1/2 and the right part is the other half-skyrmion with skyrmion number Q+ = 1/2
adding up to total topological charge Q = 1 .Its most important feature is that the magnetization is
approaching a constant value at spatial infinity, e.g., m(ρ → ∞) → (1, 0, 0). This is because the
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in-plane phases of the meron and the antimeron configurations cancel. Therefore we expect that,
unlike a single meron or antimeron, a easy-plane skyrmion(Bimeron) has finite energy.

Easy-plane skyrmion We can find it numerically for easy-plane valye parameter k = 1.0 and
the parameter of DMI value range 0.25 < λ < 2/π . We Choose lattice spacing δx = δy =
0.05, 0.075, 0.1, 0.15, 0.2, 0.5 and for the numerical mesh was fixed to 200× 200 , 300× 300 sites.

Figure 6.10: An easy-plane skyrmion (bimeron) found numerically as a static solution of the LL
equation (6.3.3) including bulk DM interaction. We have used the DM parameter λ = 0.35 and
easy-plane anisotropy k = 1.0. We have used lattice spacing δx = δy = 0.2 and a numerical mesh
300× 300.

Another interesting result is the dependence of the bimeron energy on the parameter of the DM
term.Numerical results show that the bimeron energy discreases with increasing λ ,we plot the
results Fig. 6.11 and noticed the energy is almost equal with 4π when λ → 0.25 , in this case the
energy of bimeron is E ∼ Eex and using the Eq. (5.3.4) we conclude that we cannot find solutions
of bimeron for values of DM parameter smaller than λ < 0.25 .

One more observation is the following , bimeron hase transitions occur at the two critical values of
the parameter

bloch non flat spiral spiral−−−−−−−−−−−−−−−−→
λ1=0.535 λ2=2/π λ

In this case when the paramater of DMI goes to first critical parameter λ1 then the total energy of
Bimeron goes to zero .
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Figure 6.11: The energy of the bimeron as a function of the DM parameter λ. Dots represent the
numerical results and they are connected by a continuous line.



Chapter 7

Applications in neuromorphic computing

7.1 Deep Neural Networks

The most proficiently used machine learning technique geared towards heavy data processing and
pattern recognition is the DNN (Deep Neural Networks). This consists of simulated weighted
graph networks where vertex values ascribed to each node (i.e. neuron) are sequentially updated
via a normalized weighted sum of the node values feeding into it. These nodes can in turn be
used to emulate any arbitrary vector function of some input subject to the edge weights being
chosen accordingly. This process, known as training, effectively reduces to finding the minimizer
of a complex cost function . DNN’s have enjoyed wide acclaim for their ability at outperforming
humans in tasks previously considered unattainable by machines.

Figure 7.1: General schematic of reservoir computing for a recurrent neural network [Source[13]].

The most general class of DNNs, known as recurrent neural networks (RNNs) Fig. 7.1, considers
coupled neurons whose graph representation consists of cycles forcing information to feedback
(or echo) throughout the network and fade over time. This basic property allows RNNs to exhibit
complex temporal dynamic behavior in response to the interplay of the instantaneous driving inputs
and the RNN’s implicit internal memory’s echoing of past input information. Whereas the universal
approximation theorem for feed-forward DNNs guarantees the faithful representation of any functio
, the RNN’s capacity to harness temporal correlations through their echo-state memories allows
them to emulate universal Turing machines. This has far-reaching consequences as RNNs can be
considered universal approximators of dynamical systems as a whole.
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7.2 Reservoir Computing

however noticed that Hebbian training of RNNs mostly modifies just the output weights linking
the bulk of the network to the read-out layer. These were the first to explicitly suggest the principle
of employing a - mostly - randomly weighted RNN. The claim is that a sufficiently large RNN can
be initialized with static random weights. Its training is then solely performed on a smaller set of
weights associated with feed-forward connections between the bulk of the network and the output
layer . Since such output weights consist of only a single layer connecting to the static RNN bulk
(known as the reservoir ), the training reduces to a linear regression performed on the reservoir
state to satisfy a small training set of data. The advantage of this method, known as Reservoir
Computing (RC), is not earned for free as the reservoir network has to typically be topologically
more complex than an equivalent RNN fully trained to perform an identical task.

Figure 7.2: Schematic of the reservoir computing operational principle. (a) Unstructured data
from an input space is (b) non-linearly projected by the reservoir’s transient dynamics onto its
higher dimensional state space. Due to the similar evolution of the reservoir when driven similarly
correlated input data samples (represented by similar colors), (c) a single linear regression step
can be used to define hyper-planes in the reservoir’s state space such that different input data
categories become separated. The task of the reservoir is to project different spatial-temporal
events onto a sparsely populated high dimensional space where they become easier to recognize
and categorize[Source[13].]

Generally speaking, a performant reservoir has the following properties:

• The dimension of the reservoir’s phase space must be much larger than the size of the input
category set.

• To guarantee reproducibility of its dynamical responses to identical inputs, the reservoir has
to relax or be resettable to the same initial state once all inputs are removed.

• To ensure that memory of features fully affects the reservoir’s evolution, any temporal feature
correlations present in the input data must be of the same order as the natural transient
dynamical timescale of the reservoir.
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• The dynamics of the reservoir must be nonlinear but not ergodic to the point of strongly
mixing trajectories throughout reservoir evolution.

• To properly identify all desired feature categories, a sufficiently large enough subspace of the
reservoir state should be measurable.

The last requirement is particularly important in light of the dynamical systems interpretation
used to justify reservoir computing. The feasibility of exploiting a physical system as a reservoir
intimately depends on the technical ability to reliably inject input data and sample a sufficiently
high dimensional subspace of the reservoir’s state. To capture the reservoir’s separation of N phase
tubes corresponding to the number of input data categories, the output layer should be capable of
generating a sufficient number hyper-planes to distinguish each phase tube pair

7.3 Magnetic systems as Reservoirs

There is no dearth of physical systems in nature which satisfy the general properties just discussed.
Assessing, however, which systems may be industrially viable is an entirely different challenge.
This work argues for the employment of magnetic textures due to their nanometer sizes, intricate
dynamical properties and, most importantly, lowpower and CMOS-compatible all-electrical oper-
ability. In particular, we propose using random topological magnetic textures – skyrmion fabrics –
to generate complex, high-dimensional representations of input voltage signals (Fig. 7.3).

Figure 7.3: Example of a skyrmion fabric reservoir with locations of input (output) contacts identi-
fied by green (red) dots. The in-plane orientation of the magnetization is color coded[Source[13]].

Magnetic skyrmions are compact and metastable magnetic structures predicted over two decades
ago and very actively studied experimentally both in lattice and isolated form Fig. 7.4 . The
particlelike properties of skyrmions have been extensively summarized in several reviews . Their
mobility under ultra-low current driving and room-temperature stability have garnered them a
central position as information carriers in many device-relevant materials and applications
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Figure 7.4: The figure represent shown in detail with arrows for a sample Bloch skyrmion identified
by the red frame in Fig. 7.3 . The spatially extended nature of such a magnetic system allows for
tunability in the number of electrical contacts. This allows to control the dimensionality of the
reservoir snapshot[Source[13]].

Device oriented research has however mostly ignored intermediate skyrmion phases – known as
“skyrmion fabrics” – which interpolate between single skyrmions, skyrmion crystals and magnetic
domain walls . We claim that the random phase structure, complexity, nonlinear response, and
memory characteristics present in skyrmion fabrics justify their use as a reservoir for RC. Giga-
hertz voltage patterns exciting the texture via nanocontacts can implement the injection of input
information while the coupling of electron transport and magnetoresistivity can be used to sample
the magnetic state of the system.

Figure 7.5: Randomly generated DMI-grain inhomogeneities employed to pin skyrmions. Figure
shown corresponds to a 250× 500 nm geometry consisting of 10 nm grains exhibiting a 40% DMI
variance around a 0.003 J/m2 mean value[Source[13]].

7.4 Skyrmion fabric reservoir model

For the sake of simplicity, we consider a random magnetic skyrmion phase in a spatially extended
rectangular geometry with only two voltage contacts. To model a realistic setup, our sample is
subject to Dzyaloshinskii-Moriya interaction(DMI) via grain inhomogeneities and a static applied
magnetic field (Fig. 7.5) A random magnetic texture is generated by imposing an initial skyrmion
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lattice structure and allowing it to freely relax (Fig. 7.6) .The introduced magnetic inhomogeneities
have been extensively studied in the literature as a source of skyrmion pinning to explain the
discrete onset of the creep threshold in skyrmion mobility both theoretically and in experiments.
Initialization is considered complete when the magnetic texture has relaxed to a stable state and
does not change significantly when subject to thermal noise and a constant applied voltage across
the electrical contacts. The voltage magnitude is chosen such that the resulting magnetization
dynamics lie just below the skyrmion creep threshold where their deformations are maximal.

Figure 7.6: Initialization of magnetic texture and thermal stability test. (a) An artificial skyrmion
lattice is generated. (b) The lattice is relaxed under the effect of an applied external magnetic field
and DMI grain inhomogeneities. (c) Thermal noise is added and allowed to act for 20 ns before
being switched off. (d) The magnetic texture is relaxed again in the absence of thermal noise. (e)
A 20 ns constant voltage pulse is applied to verify that skyrmions are not displaced by current-
mediated transport effects. The relaxed magnetic configurations in (b) and (d) are compared to
verify that the majority of skyrmions appearing in the bulk of the geometry are not significantly
affected by thermal effects[Source[13]].

As aforementioned, the magnetic texture is excited via time-varying voltage patterns injected
through the nanocontacts . Due to the sub-creep setup described, such patterns will excite time
dependent deformations of the magnetic skyrmion texture due to a variety of magnetoresistive
effects. Since the natural electron relaxation timescale is orders of magnitude smaller than the
ferromagnetic resonance (FMR) timescale (∼ 10−14s vs. ∼ 10−9s), these effects will guarantee
that a given state of the magnetic texture will result in a unique corresponding current distribution
throughout the geometry. To simplify the modeling of such electron-transport mediated effects and
isolate their qualitative nature, we will focus solely on the anisotropic magnetoresistance (AMR)
effect.
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Figure 7.7: Sample skyrmion texture used for simulations. The locations of the electrical nanocon-
tacts are identified by the yellow disks (size has been enhanced for visibility)[Source[13]].

Current densities are calculated self-consistently through j[U,m] = −σ[m] ·E[U ] at each time step
of the magnetization’s Landau-Lifshitz-Gilbert (LLG) dynamics. The electric field through the
texture, induced by the applied voltage, is calculated by solving the Poisson equation E = −∇Φ
with boundary conditions Φ|c1 = −Φ|c2 = U at the two contacts, and the conductivity tensor

σ[m] =
1

ρ⊥
1 + (

1

ρ||
− 1

ρ⊥
)m⊗m. (7.4.1)

Is computed at each point throughout the geometry. We denote by ρ⊥(ρ||) the current resistivities
for flows perpendicular (parallel) to the magnetization direction. For definiteness the results in the
next section consider the typical case where ρ⊥ > ρ||. An example of an excited skyrmion fabric
is shown in Fig. 7.7 right above a density plot of the instantaneous current distribution traversing
it (Fig. 7.8).

Figure 7.8: Sample relaxed current distribution through the texture shown in Fig. 7.7 when a 110
mV potential difference is applied across the nanocontacts[Source[13]].



Chapter 8

Conclusions

In conclusion, we studied static solutions in 2-dimensions of micromagnetic phenomena in models
on the sphere (heisenberg models). We considered and studied a model with exchange,anisotropy
(easy-axis and easy-plane) and Dzyaloshinskii-Moriya (DM) interaction .

Especially the Dzyaloshinskii-Moriya (DM) term gived to us the possibility to found and studied
Skyrmionic textures solutions for realist models in micromagnetics .We noticed this solutions
depends by the range of value for this parameter (we refer to this to λ-parameter for this thesis) .

We started our computations for axially and non-axially symmetric configurations andwe compared
our numerical result with BP-Skyrmions which is statics solutions for only a model with exchange
interaction and it is very important result which found it at early 60’s . Furthermore we manage to
find solutions for chiral skyrmion which were found from scientists at last years with topological
skyrmion number Q = 0,±1 and energy boundaries for every single configuration .

More specific we found axially symmetric skyrmionic textures which called skyrmion (Q = ±1)
and skyrmionium (Q = 0) and we calculated the exact range value of λ-Parameter which could
find it .In addition we made the same work for non-axially symmetric skyrmionic textures which
called Droplet (Q = 0) and Bimeron (Q = 1), especially Bimeron is interesting solution because is
a skyrmionic textures solution with easy-plane anisotropy and they do not exist exact result about
this configuaration from bibliography .

Last but not least we studied and introduced some ideas about neuromorphic computing and how
to trained and built neural networks for magnetic systems .

Figure 8.1: The figure represent a skyrmion , a bimeron and skyrmionium [14].
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Appendix A

Calculus of Variations

A.1 Fuctionals

Variable quantities called functionals play an important role in many problems arising in analysis,
mechanics, geometry, etc. By a functional, we mean a correspondence which assigns a definite
(real) number to each function (or curve) belonging to some class. Thus, one might say that a
functional is a kind of function, where the independent variable is itself a function (or curve). The
following are examples of functionals:

• 1. Consider the set of all rectifiable plane curves. A definite number is associated with each
such curve, namely, its length. Thus, the length of a curve is a functional defined on the set
of rectifiable curves.

• 2. Suppose that each rectifiable plane curve is regarded as being made out of some homoge-
neous material. Then if we associate with each such curve the ordinate of its center of mass,
we again obtain a functional.

• 3. Consider all possible paths joining two given points A and B in the plane. Suppose that a
particle can move along any of these paths, and let the particle have a definite velocity v(x, y)
at the point (x, y) . Then we obtain a functional by associating with each path the time the
particle takes to traverse the path.

• 4. Let y(x) be an arbitrary continuously differentiable function, defined on the interval [a, b]2

Then the formula

J [y] =

∫ b

a

y′2 dx,

defines a functional on the set of all such functions y(x) .

• 5. As a more general example, let F (x, y, z) be a continuous function of three variables.
Then the expression

J [y] =

∫ b

a

F [x, y(x), y′(x)] dx,
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where y(x) ranges over the set of all continuously differentiable functions defined on the
interval [a, b] , defines a functional. By choosing different functions F (x, y, z) , we obtain
different functionals.

Particular instances of problems involving the concept of a functional were considered more than
three hundred years ago, and in fact, the first important results in this area are due to Euler (1707-
1783). Nevertheless, up to now, the " calculus of functionals" still does not have methods of
a generality comparable to the methods of classical analysis (Le. , the ordinary " calculus of
functions"). The most developed branch of the " calculus of functionals" is concerned with finding
the maxima and minima of functionals, and is called the " calculus of variations." Actually, it
would be more appropriate to call this subject the " calculus of variations in the narrow sense,"
since the significance of the concept of the variation of a functional is by no means confined to its
applications to the problem of determining the extrema of functionals.

A.2 Function Space

In the study of functions of n variables, it is convenient to use geometric language, by regarding a
set of n numbers (y1, . . . , yn) as a point in an n-dimensional space. In just the same way, geometric
language is useful when studying functionals. Thus, we shall regard each function y(x) belonging
to some class as a point in some space, and spaces whose elements are functions will be called
function spaces. In the study of functions of a finite number n of independent variables, it is
sufficient to consider a single space, i.e., n-dimensional Euclidean space E.

However, in the case of function spaces, there is no such " universal" space. In fact, the nature of
the problem under consideration determines the choice of the function space. For example, if we
are dealing with a functional of the form∫ b

a

F (x, y, y′) dx,

it is natural to regard the functional as defined on the set of all functions with a continuous first
derivative, while in the case of a functional of the form∫ b

a

F (x, y, y′, y′′) dx,

the appropriate function space is the set of all functions with two continuous derivatives. Therefore,
in studying functionals of various types, it is reasonable to use various function spaces.

The concept of continuity plays an important role for functionals, just as it does for the ordinary
functions considered in classical analysis. In order to formulate this concept for functionals, we
must somehow introduce a concept of " closeness" for elements in a function space. This is most
conveniently done by introducing the concept of the norm of a function, analogous to the concept
of the distance between a point in Euclidean space and the origin of coordinates. Although in what
follows we shall always be concerned with function spaces, it will be most convenient to introduce
the concept of a norm in a more general and abstract form, by introducing the concept of a normed
linear space.

By a linear space, we mean a set R of elements x, y, z, . . . of any kind, for which the operations of
addition and multiplication by (real) numbers α, β, . . . are defined and obey the following axioms:
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• 1. x+ y = y + x

• 2. x+ (y + z) = (x+ y) + z

• 3. x+ 0 = x

• 4. x+ (−x) = 0

• 5. 1 · x = x

• 6. α(βx) = (αβ)x

• 7. (α + β)x = αx+ βx

• 8. α(x+ y) = αx+ βy

A linear space R is said to be normed, if each element x ∈ R is assigned a nonnegative number
‖x‖ , called the norm of x , such that

• 1. ||x|| = 0 if and only if x = 0

• 2. ||ax|| = |a| ||x||

• 3. ||x+ y|| ≤ ||x||+ ||y||

In a normed linear space, we can talk about distances between elements, by defining the distance
between x and y to be the quantity ‖x− y‖ . The elements of a normed linear space can be objects
of any kind, e.g., numbers, vectors (directed line segments), matrices, functions, etc.

A.3 The Variation of a Functional

We now introduce the concept of the variation (or differential) of a functional. Let J [y] be a
functional defined on some normed linear space, and let

dJ [h] = J [y + h]− J [y],

be its increment, corresponding to the increment h = hex) of the " independent variable " y = y(x)
. If y is fixed, ∆J [h] is a functional of h , in general a nonlinear functional. Suppose that

dJ [h] = φ[h] + ε||h||,

where φ[h] is a linear functional and ε → 0 as ‖h‖ → 0. Then the functional J [y] is said to be
differentiable, and the principal linear part of the increment ∆J [h], i.e., the linear functional φ[h]
which differs from ∆J [h] by an infinitesimal of order higher than 1 relative to ||h|| , is called the
variation (or differential) of J [y] and is denoted by ∆J [h] .
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A.4 The Simplest Variational Problem. Euler’s Equation

We begin our study of concrete variational problems by considering what might be called the
"simplest " variational problem, which can be formulated as follows: Let F (x, y, z) be a function
with continuous first and second (partial) derivatives with respect to all its arguments. Then, among
all functions y(x) which are continuously differentiable for a ≤ x ≤ b and satisfy the boundary
conditions

y(a) = A , y(b) = B,

find the function for which the functional

J [y] =

∫ b

a

F (x, y, y′) dx,

has a weak extremum. In other words, the simplest variational problem consists of finding a weak
extremum of a functional of the form , where the class of admissible curves consists of all smooth
curves joining two points. To apply the necessary condition for an extremum to the problem just
formulated, we have to be able to calculate the variation of a functional of the type . We now derive
the appropriate formula for this variation

Suppose we give y(x) an increment h(x) , where, in order for the function

y(x) + h(x),

to continue to satisfy the boundary conditions, we must have

h(a) = h(b) = 0,

Then, since the corresponding increment of the functional equals

∆J = J [y + h]− J [y] =

∫ b

a

[F (x, y + h, y′ + h′)− F (x, y, y′)] dx,

it follows by using Taylor’s theorem that

∆J =

∫ b

a

[Fy(x, y, y
′)h− Fy′(x, y, y′)h′] dx+ . . .

where the subscripts denote partial derivatives with respect to the corresponding arguments, and
the dots denote terms of order higher than 1 relative to h and h′ . The integral in the right-hand
side of represents the principal linear part of the increment ∆J , and hence the variation of J [y] is

δJ =

∫ b

a

[Fy(x, y, y
′)h− Fy′(x, y, y′)h′] dx,

a necessary condition for J [y] to have an extremum for y = y(x) is that

δJ =

∫ b

a

[Fy(x, y, y
′)h− Fy′(x, y, y′)h′] dx = 0,

for all admissible h . But implies that

Fy −
d

dx
Fy′ = 0,

a result known as Euler’s equation.
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Theorem 1. Let J [y] be a functional of the form

J [h] =

∫ b

a

F (x, y, y′) dx,

defined on the set of functions y(x) which have continuous first derivatives in [a, b] and satisfy
the boundary conditions y(a) = A , y(b) = B . Then a necessary condition for J [y] to have an
extremum for a given function y(x) is that y(x) satisfy Euler’s equation.

The integral curves of Euler’s equation are called extremals. Since Euler’s equation is a second-
order differential equation, its solution will in general depend on two arbitrary constants, which are
determined from the boundary conditions y(a) = A , y(b) = B . The problem usually considered in
the theory of differential equations is that of finding a solution which is defined in the neighborhood
of some point and satisfies given initial conditions (Cauchy’s problem). However, in solving Euler’s
equation, we are looking for a solution which is defined over all of some fixed region and satisfies
given boundary conditions. Therefore, the question of whether or not a certain variational problem
has a solution does not just reduce to the usual existence theorems for differential equations.

A.5 Hamilton Principle

Hamilton published two papers in 1834 and 1835, announcing a fundamental new dynamical
principle that underlies both Lagrangian and Hamiltonian mechanics. Hamilton was seeking
a theory of optics when he developed Hamilton’s Action Principle, plus the field of Hamiltonian
mechanics, both of which play a crucial role in classical mechanics andmodern physics. Hamilton’s
Action Principle states "dynamical systems follow paths that minimize the time integral of the
Lagrangian". That is, the action functional I

I =

∫ t2

t1

L(x, ẋ, t) dt,

has a minimum value for the correct path of motion. Hamilton’s Action Principle can be written in
terms of a virtual infinitessimal displacement δ, as

δI = δ

∫ t2

t1

L(x, ẋ, t) dt = 0.

Variational calculus therefore implies that a system of s independent generalized coordinates must
satisfy the basic Euler-Lagrange equations

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0.
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Appendix B

Magnetic Vortices

B.1 Ordinary vortices in fluids

We know from common experience that vortices are pervasive in nature and they play a significant
role in various physical systems. The most well known examples appear in fluids where fluid
vortices play a central role in the description and understanding of the motion of fluids, including
complicate dynamical phenomena such as turbulent flow.

Figure B.1: A series of vortices in a fluid. The fluid may rotate clockwise or anticlockwise around
the vortex center. The vortices may be bigger or smaller

The description of the motion of fluids is based on non-linear partial differential equations. It is
though possible to reduce these equations to much simpler forms if we want to describe, within
some approximation, the motion of a vortex which is located away from other vortices. In that case
we assume that the area of the vortex is small compared to the distance to other vortices. We then
approximate the vortex position by a single point and we call this the point vortex approximation.
A significant quantity for the description of vortices is the local vorticity (γ) defined at every point
of the fluid and it is the rotation of its velocity (∇ × u). The total vorticity is the integral of the
vorticity over the area of the fluid.

Γ =

∫
γ dxdy, (B.1.1)

and it is considered as the strength of the vortex. It is interesting that it can be shown that the
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following are conserved quantities in vortex motion:

Ix =

∫
xγ dxdy Iy =

∫
yγ dxdy, (B.1.2)

It is evident that these quantities can be considered to give the position of a vortex (if we normalize
by Γ). For example, in the case of point vortices, the above integrals just give the vortex position
multiplied by its strength (total vorticity)

B.2 Quantized vortices in superfluids

Some fluids exhibit unusual properties when they are in very low temperatures. Probably their
most impressive property is that they can flow without dissipation, that is without their motion be
decelerated. Such fluids are called superfluids. Superfluidity was first observed in liquid helium
in temperatures T < 2.7 Kelvin. More recently (1995) superfluid gases in the form of vapours
of alkali metals (Li, Na, K, Rb, Cs) have been obtained and experimentally studied. Vapours of
alkali metals are typically trapped by magnetic and optical (laser) fields and they are subsequently
cooled by a series of techniques to temperatures T ≈ 10− 100 nanoKelvin. Such atomic gases are
extremely dilute and a typical trap may contain 105− 106 atoms confined in spatial dimensions of
the order of 10 µm.

Figure B.2: Vortices in a BEC. The dark spots are the cores of the vortices .

An additional property of superfluids is that superfluid vortices have strength which may only be an
integer multiple of a basic quantity and we call these quantized vortices. This property of vortices
is related to their property of frictionless flow. Superfluids are studied using quantum mechanics.
In some cases one can approximate superfluid dynamics by non-linear partial differential equations
(Gross-Pitaevskii model). These equations differ significantly from those for ordinary fluids. One
important point is that the vorticity in superfluid is related to topological features of the field which
describes the superfluid (i.e., the complex wavefunction which describes the superfluid). One can
define a vorticity, where the total vorticity Eq. (B.1.1) takes only discrete values and it can be
interpreted as a topological number. Conserved quantities formally identical to Eq. (B.1.2) exist
also in the present case. Furthermore, the point vortex approximation can be employed in this
system, too, and obtain simple differential equations for the vortex motion.



B.3. MAGNETIC VORTICES 79

B.3 Magnetic vortices

Although we tend to link vortices with fluid motion, the case is that vortices appear in many
systems which may not present physical fluid motion, as mathematical structures of vector fields.
An interesting example are magnetic materials where we have magnetic vortices.

The microscopic structure in a magnetic material is described by the magnetization vector m(x, y).
As interesting question is the following: what are the structures formed by the magnetization vector
(which is actually a vector field) and what is their dynamics? The answers to such questions are
important, for example, when we would like to store and retrieve information from a magnetic
disc, since the information is stored as particular magnetization structures. We need to know the
dynamics of such structures if we want to be able to change them in a controlled way.

Although there is no physical fluid flow in magnetic materials, we can define a quantity n which has
properties corresponding to the fluid vorticity (γ). The magnetic vorticity n is related to topological
features of the magnetization and the total vorticity

N =

∫
n dxdy, (B.3.1)

is an integer multiple of a basic quantity. We finally mention that we have conserved quantities of
the motion

Ix =

∫
xn dxdy Iy =

∫
yn dxdy, (B.3.2)

which are formally similar to the conserved quantities for fluids in Eq. (B.1.2). It can also be shown
that, if we make a point vortex approximation, the dynamics of magnetic vortices is modeled by
equation similar to those for point fluid vortices.

B.4 Axially symmetric vortex

For any nontrivial (nonuniform) magnetic configuration we would require thatm(|r| → ∞)→m0

, that is, the magnetization tends to a ground state configuration at spatial infinity. This is because,
otherwise the magnetic configuration would have infinite energy and it would be unstable. On
the other hand, any nontrivial configuration for which the magnetization goes to a certain uniform
magnetization at spatial infinity is excluded by Derrick’s argument.

In order to construct a nontrivial magnetic configuration we will exploit the infinite degeneracy of
the ground state in-plane configurations. We impose the boundary condition at spatial infinity

m1 + im2 = ei(φ+φ0), m3 = 0, for ρ→∞. (B.4.1)

where (ρ, φ) are polar coordinates and φ0 is a constant angle. The magnetisation points in different
directions, at spatial infinity, if we look at different angles.
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Figure B.3: The magnetisation vector rotates as we make a rotation (in real space) around the
origin.

A configuration which is consistent with the boundary condition Eq. (B.4.1) is given by the
following axially symmetric ansatz, using the angle variables

m1 + im2 = sin Θ(ρ) ei(φ+φ0), m3 = cos Θ(ρ). (B.4.2)

We have assumed that Θ = Θ(ρ) (i.e., axial symmetry) while we implicitly set the angle variable
Φ = φ+ φ0. The energy is written as

E =
1

2

∫ ∞
0

[
(Θ′)2 +

sin2 Θ

ρ2
+ k2 cos2 Θ

]
(2πρdρ). (B.4.3)

B.5 Winding number

Themost important feature of the vortex solution is that themagnetization has a different orientation
in the xy-plane for different locations in space, even when we are away from the vortex center.
More specifically, we can choose a circle with its center at the vortex core and we go around the
circle registering the in-plane component of the magnetization (m1,m2) at each point. One should
note that the in-plane magnetization vector can be characterized by the single angle Φ, that is, every
vector orientation corresponds to a point on a circle. Therefore, as we go around a vortex rotating,
say, anticlockwise on a circle in physical space, we measure an angle φ for the magnetization. In
this way we can define a mapping from the physical space to the magnetization space, this being a
mapping from a circle to a circle.

In the case of the vortex presented in the previous subsection a full rotation (anticlockwise) around
the vortex center gives a corresponding full rotating (again anticlockwise) of the magnetization
vector on the xy-plane, or ∆Φ = 2π. We assign to the vortex a winding number N which
represents this particular vortex feature. We define N = ∆Φ/2π, so the single full rotation of the
magnetization vector is denoted by saying the N = 1 . The magnetization vector on the plane
(m1,m2) for a vortex is plotted in Fig. B.4 for φ0 = 0, and in Fig. B.5 for a vortex with φ0 = π/2.

It is evident that as we go around a full circle in physical space, physical quantities must be the same
when we return to the initial point, therefore for the difference of the angle Φ of the magnetization
we have ∆Φ = (2π)N with N = 0,±1,±2, . . . We assume the following more general vortex
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Figure B.4: A vortex configuration (N = 1) with φ0 = 0. (Right) An antivortex configuration
with (N = −1) φ0 = 0 . We plot the projection of the magnetization on the plane: (m1,m2).
The magnetization in the center of the figure is supposed to point either “up” or “down’, that is,
m = (0, 0, λ) where λ = ±1 is the vortex polarity.

ansatz
m1 + im2 = sin Θ(ρ) eiN (φ+φ0), m3 = cos Θ(ρ). (B.5.1)

The caseN = 1 corresponds to the vortex discussed above, while in the caseN = −1 we will call
the configuration an antivortex (Fig. B.4). The equation satisfied by the angle θ for the antivortex
is identical to that for the vortex and therefore the antivortex profile coincides with that of the vortex
. As a consequence, the antivortex energy Eq. (B.4.3) (when we take into account exchange and
anisotropy only) is identical to that of the vortex. The case N = ±2 gives an object which may
be called a double vortex or antivortex. We can apply the same methods as for the vortex in order
to find the profile of a double vortex and its energy. However, it turns out that this is typically an
unstable configuration which tends to split into two separate vortices. This is apparently due to the
exchange energy which is approximately proportional to S2 so that the energy of a double vortex
is higher that that of two single vortices.

The winding numberN is a topological invariant which can be defined as the degree of a mapping
from the circle to the circle . It is for this reason that it may only take integer values. The winding
number cannot change during the motion of the system because this would imply a discontinuous
change of the magnetization configuration. Furthermore, N is a conserved quantity, that is, it
remains constant under the dynamics prescribed by the model. It is not important to specify what
the particular dynamics is, it suffices that this be continuous.

Figure B.5: A vortex configuration (N = 1) with φ0 = π/2. We plot the projection of the
magnetization on the plane: (m1,m2).
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