
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Transparent Spatial Sharing of Multiple and
Heterogeneous Accelerators

by

Emmanouil Pavlidakis

B.Sc., School of Engineering, Department of Information and Communication
Systems Engineering, University of Aegean, Greece, 2012

M.Sc., Computer Science, Vrije Universiteit Amsterdam, Netherlands, 2016

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, January 2024

© Copyright 2024 by Emmanouil Pavlidakis

argyros
Signature

Dedicated to my wife Elina, and my son Ioannis.

Acknowledgments

During this fantastic trip called PhD, I was fortunate to collaborate with amazing people.

First of all, I am grateful to my supervisor Prof. Angelos Bilas. He gave me the space, the

time, the resources, and most importantly the guidance to sharpen my technical skills

as well as develop my research taste. He was constantly there to discuss my ideas and

concerns, providing directions and invaluable advice on my research. His mentorship and

his interdisciplinary approach were a source of inspiration during my PhD studies.

I am grateful to my thesis committee members Manolis G.H. Katevenis, Polyvios Pratikakis,

Vassilis D. Papaefstathiou, Giorgos Vasiliadis, Leonidas Kosmidis, and Vasileios Karakostas

for their feedback during my defense and for their comments that helped me prepare the

final version of this thesis.

I want to thank every single co-author I had all these years: Stelios Mavridis, Antony

Chazapis, Giorgos Vasiliadis, and Nikos Chrysos. We worked together, we got rejected to-

gether, and we resubmitted together. I really enjoyed working with all of you.

After spending more than seven years in the Computer Architecture and VLSI Sys-

tems (CARV) lab of the Institute of Computer Science (ICS) in Foundation for Research

and Technology-Hellas (FORTH), I feel like I have found a second family there. I met and

worked alongside great people in this lab, and I want to express my deepest gratitude to

Iacovos G. Kolokasis, Yannis Sfakianakis, Nikos Papakonstantinou, Anastasios Papagian-

nis, Giwrgos Saloustros, Giorgos Xanthakis, Eleni Kanellou, Theocharis Vavouris, Christos

Kozanitis, and all other past and present members of CARV for preserving the balance be-

tween work and real life, making the lab a fun place to be.

I sincerely thank Manos Pigounakis, Giannis Silignakis, Giannis Marinos, and all other

friends for their support, love, tolerance, and all the great moments we have shared.

I am grateful to my wife Elina Kiaoulia, for her patience, continuous support, and en-

ix

couragement during the period of my doctoral thesis research. Additionally, I would like

to express my gratitude to my newborn son Ioannis who joined us when I was writing my

dissertation, for giving me unlimited happiness and pleasure.

Last but not least, I would like to express my deepest and most sincere gratitude to

my parents, Ioannis and Maria, and my brother Vasilis for their love and support through-

out all these years. Without your support I would have never been able to complete the

dissertation.

I would also like to thank the Institute of Computer Science (ICS) in Foundation for Re-

search and Technology-Hellas (FORTH), which supported me with graduate scholarships

throughout my doctoral studies. Funding comes from several European projects that in-

clude: Vineyard (GA 687628), EVOLVE (GA 825061), EUPILOT (GA 101034126), DEEP-SEA

(GA 955606), and HiPEAC (GA 871174).

Abstract

Today, effectively utilizing multiple heterogeneous accelerators within applications and

high-level Machine Learning (ML) frameworks like TensorFlow, PyTorch, and Caffe presents

notable challenges across four key aspects: (a) sharing heterogeneous accelerators, (b) al-

locating available resources elastically during application execution, (c) providing the re-

quired performance for latency critical tasks, and (d) protecting application’s data under

spatial sharing.

In this dissertation, we introduce a novel runtime system designed to decouple ap-

plications from the intricacies of heterogeneous accelerators within a single server. Our

approach entails a client-side API that allows applications to be written once without con-

sidering any low-level details, such as the number or type of accelerators. By leveraging

our system, applications are liberated from the burdens of accelerator selection, memory

allocations, and memory management operations. A backend service seamlessly manages

these intricate tasks—referred to as the server—which is shared among all applications

and boasts four primary features.

First, the server defers the assignment of a task to an accelerator until the latest feasible

moment, setting it apart from current methods that allocate an application to an acceler-

ator during its initialization phase. Subsequent to the task assignment decision but just

prior to task execution, the server promptly transfers the necessary data to the designated

accelerator. This dynamic task assignment and the lazy data placement enable adaptation

to application load changes.

Second, to ensure that latency-critical GPU applications will have the desired perfor-

mance under time-sharing, the server revokes the execution of long-running kernels. Our

revocation mechanism stops a task by prematurely terminating the ongoing GPU kernel

without preserving any state and replays it later. The server uses a runtime scheduler that

xi

prioritizes latency-critical tasks over batch and instructs the revocation mechanism when

to kill a running kernel.

Third, to facilitate spatial accelerator sharing across applications, the server estab-

lishes multiple streams for GPUs and command queues for FPGAs. Regarding FPGAs, the

server loads multi-kernel bitstreams and can (re)program the FPGA with the appropriate

bitstream required from each application task. While spatial accelerator sharing enhances

accelerator utilization and application response time compared to time-sharing, it does

come at the expense of data isolation.

Finally, GPU spatial sharing lacks protection due to the single accelerator address space,

leaving application data susceptible to exposure to other applications. Consequently, the

feasibility of sharing in broad multi-user settings becomes compromised. To resolve this

issue, we design and implement a software-based sandboxing approach that applies bit-

wise instructions in the virtual assembly code of kernels. Our approach does not require

extra or specific hardware units and supports ML frameworks that use closed-source domain-

specific libraries.

To minimize the porting effort of existing CUDA applications, we examine the inter-

ception of CUDA API calls at various levels, i.e., driver, runtime, and high-level library

functions. We show that intercepting only the CUDA runtime and driver library is ade-

quate to run complex ML frameworks, such as Caffe and PyTorch. Additionally, this level

of interception is more robust than the ones used from previous approaches because it

requires handling fewer and much simpler functions.

We use Caffe, TensorFlow, PyTorch, and Rodinia to demonstrate and evaluate the pro-

posed runtime system in an accelerator-rich server environment using GPUs, FPGAs, and

CPUs. Our results show that applications that use our system can safely share accelerators

without any modifications at low overhead and with latency guarantees.

Keywords: Runtime System, Accelerators, Heterogeneity, Spatial Sharing, GPU Memory

Protection, Preemption, Scheduling

Supervisor: Angelos Bilas

Professor

Computer Science Department

University of Crete

Περίληψη

Σήμερα, η αποτελεσματική χρήση πολλαπλών ετερογενών επιταχυντών σε εφαρμογές αλλά και

σε δομές μηχανικής μάθησης (Machine Learning Frameworks) όπως το TensorFlow, το Py-

Torch και το Caffe παρουσιάζει τέσσερις βασικές προκλήσεις: (α) Την κοινή χρήση ετερογενών

επιταχυντών, (β) την ελαστική κατανομή των διαθέσιμων πόρων κατά την διάρκεια εκτέλεσης

των εφαρμογών, (γ) την εξασφάλιση της απαιτούμενης απόδοσης σε εφαρμογές που η χρονι-

κή καθυστέρηση είναι σημαντική και (δ) την προστασία των δεδομένων των εφαρμογών που

διαμοιράζονται ένα επιταχυντή.

Σε αυτή τη διατριβή, εισάγουμε ένα νέο σύστημα χρόνου εκτέλεσης που έχει σχεδιαστεί

για να αποσυνδέει τις εφαρμογές από τις περιπλοκές διαδικασίες που απαιτούνται για την χρήση

ετερογενών επιταχυντών. Η προσέγγισή μας περιλαμβάνει μια διεπαφή προγραμματισμού εφαρ-

μογών (application programming interface) που χρησιμοποιείται από τις εφαρμογές και έτσι

τους επιτρέπει να γράφονται μία φορά χωρίς να λαμβάνονται υπόψη λεπτομέρειες όπως ο αριθμός

ή ο τύπος των επιταχυντών. Με τη χρήση του συστήματός μας, οι εφαρμογές απελευθερώνονται

από την επιβάρυνση της επιλογής επιταχυντή, της δέσμευσης μνήμης και της διαχείρισης μνήμης.

΄Ολες αυτές οι περίπλοκες διεργασίες διεκπεραιώνονται από μια υπηρεσία υποστήριξης – που ανα-

φέρεται ως διακομιστής (server)– η οποία είναι κοινή και την διαμοιράζονται όλες οι εφαρμογές

που εκτελούνται σε ένα κόμβο. Ο διακομιστής έχει τέσσερα βασικά χαρακτηριστικά.

Πρώτον, η ανάθεση μιας διεργασίας σε ένα επιταχυντή πραγματοποιείται την τελευταία στιγ-

μή και όχι κατά την αρχικοποίηση της εφαρμογής όπως συμβαίνει με τις υπάρχουσες μεθόδους.

Μετά την απόφαση ανάθεσης της διεργασίας και ακριβώς πριν από την εκτέλεση αυτής, ο διακομι-

στής μεταφέρει τα απαραίτητα δεδομένα στον επιλεγμένο επιταχυντή. Αυτή η δυναμική ανάθεση

εργασιών και η καθυστερημένη τοποθέτηση δεδομένων επιτρέπουν την προσαρμογή στις αλλαγές

φόρτου εφαρμογής.

Δεύτερον, για να διασφαλιστεί ο χρόνος απόκρισης σε συγκριμένες εφαρμογές όταν αυτές

xv

διαμοιράζονται χρονικά μια κάρτα γραφικών, με άλλες που έχουν πυρήνες (kernels) που ο χρόνος

εκτέλεσης τους είναι πολύ μεγάλος, ο διακομιστής μπορεί να σταματήσει την εκτέλεση αυτών

των μεγάλων πυρήνων χρησιμοποιώντας ένα μηχανισμό ανάκλησης (revocation). Ο μηχανισμός

ανάκλησής σταματά μια διεργασία τερματίζοντας πρόωρα τον πυρήνα που βρίσκεται σε εξέλιξη

χωρίς να αποθηκεύει τα δεδομένα που χρησιμοποιεί και τον ξανά ξεκινάει αργότερα. Ο διακομι-

στής χρησιμοποιεί έναν προγραμματιστή χρόνου εκτέλεσης (scheduler) που δίνει προτεραιότητα

σε κρίσιμες εφαρμογές έναντι άλλων χωρίς αυστηρές χρονικές απαιτήσεις και καθοδηγεί τον

μηχανισμό ανάκλησης πότε πρέπει να σταματήσει ένα πυρήνα που εκτελείται.

Τρίτον, για να υποστηρίξει την χωρική διαμοίραση επιταχυντών μεταξύ εφαρμογών, ο δια-

κομιστής δημιουργεί πολλαπλές ουρές εντολών σε κάθε επιταχυντή. ΄Οσον αφορά τις FPGA,

ο διακομιστής φορτώνει κυκλώματα (bit-streams) πολλαπλών πυρήνων και μπορεί να (επα-

να)προγραμματίσει την FPGA με το κατάλληλο bit-stream που απαιτείται για κάθε διεργασία. Ο

χωρικός διαμοιρασμός επιταχυντών αυξάνει τη χρήση των πόρων του επιταχυντή και βελτιώνει

τον χρόνο απόκρισης των εφαρμογών σε σχέση με τον χρονικό διαμοιρασμό, όμως εις βάρος της

προστασίας των δεδομένων.

Η δυνατότητα που έχει μια εφαρμογή να διαβάσει και να γράψει τα δεδομένα μιας άλλης όταν

χρησιμοποιούν ταυτόχρονα την ίδια κάρτα γραφικών κάνει τον χωρικό διαμοιρασμό αυτου του

τύπου τον επιταχυντών σε περιβάλλοντα σύννεφου (cloud environments) που υπάρχουν πολλοί

χρήστες να είναι απαγορευτική. Για να επιλύσουμε αυτό το ζήτημα, σχεδιάσαμε και εφαρμόσαμε

μια τεχνική που εφαρμόζεται σε εικονική γλώσσα μηχανής (virtual assembly), δεν χρειάζεται

παραπάνω ή ειδικές μονάδες υλικού (hardware units) και τέλος υποστηρίζει ML frameworks

που χρησιμοποιούν κλειστές βιβλιοθήκες.

Για να ελαχιστοποιήσουμε την προσπάθεια μεταφοράς των υπαρχουσών CUDA εφαρμογών

στην δικιά μας διεπαφή προγραμματισμού (API), εξετάζουμε την υποκλοπή κλήσεων του CUDA

API σε διάφορα επίπεδα, δηλαδή το CUDA runtime, το CUDA driver, και κλήσεις σε υψηλού

επιπέδου βιβλιοθήκες. Σε αυτήν την διατριβή δείξαμε ότι αν υποκλέψουμε μόνο τις CUDA run-

time και CUDA driver βιβλιοθήκες είναι αρκετό για να τρέξουμε περίπλοκλαMachine Learning

Frameworks. Επιπλέον αυτού του είδους η προσέγγισή είναι πιο αποδοτική σε σχέση με προη-

γούμενες διότι απαιτεί την διαχείριση λιγότερων κλήσεων.

Για να αξιολογήσουμε το σύστημα μας χρησιμοποιούμε πραγματικές εφαρμογές όπως τα

Caffe, TensorFlow, PyTorch και Rodinia. Επιπλέον χρησιμοποιήσαμε πολλαπλούς και διαφορε-

τικούς τύπου επιταχυντές όπως GPUs, FPGAs, και CPUs. Τα αποτελέσματά μας δείχνουν ότι οι

εφαρμογές που χρησιμοποιούν το σύστημά μας μπορούν με ασφάλεια να μοιράζονται πολλούς και

διαφορετικού τύπου επιταχυντές χωρίς καμία τροποποίηση, με χαμηλό κόστος και με εγγυήσεις

καθυστέρησης.

Λέξεις κλειδιά: Σύστημα Χρόνου Εκτέλεσης, Επιταχυντές, Ετερογένεια, Χωρικός διαμοιρασμός,

Προστασία Μνήμης Επιταχυντών, Ανάκληση Εργασιών, Χρόνο-προγραμματισμός Διεργασιών

Επόπτης: ΄Αγγελος Μπίλας

Καθηγητής

Τμήμα Επιστήμης Υπολογιστών

Πανεπιστήμιο Κρήτης

Bibliographic Notes

The publications related to this dissertation (ordered by date) are:

(i) Stelios Mavridis, Manos Pavlidakis, Ioannis Stamoulias, Christos Kozanitis, Nikos

Chrysos, Christoforos Kachris, Dimitrios Soudris, and Angelos Bilas. 2017. VineTalk:

Simplifying software access and sharing of FPGAs in datacenters. In Proceedings of

the 27th International Conference on Field Programmable Logic and Applications

(FPL ’17).

(ii) Manos Pavlidakis, Stelios Mavridis, Nikos Chrysos, and Angelos Bilas. 2020. TReM: A

Task Revocation Mechanism for GPUs. In Proceedings of the 22th IEEE International

Conference on High Performance Computing and Communications (HPCC ’20).

(iii) Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and Ange-

los Bilas. Arax: A Runtime Framework for Decoupling Applications from Heteroge-

neous Accelerators. In Proceedings of the 13th ACM Symposium on Cloud Comput-

ing (SoCC ’22).

(iv) Manos Pavlidakis, Giorgos Vasiliadis, Stelios Mavridis, Antony Chazapis, and Ange-

los Bilas. Guardian: Data Isolation for Multi-Tenant GPU Sharing. (Under submis-

sion).

More specifically, Chapter 2 based on (iii). Chapter 3 is based on (i). Chapter 4 based on

(ii), and Chapter 5 on (iv).

xix

Contents

Acknowledgments . ix

Abstract . xi

Abstract in Greek . xv

Bibliographic Notes . xix

Table of Contents . xxi

List of Figures . xxv

List of Tables . xxix

1 Introduction . 1

2 Decouple Applications and Accelerators . 7

2.1 Design . 9

2.1.1 Client . 10

2.1.2 Server . 11

2.1.3 Transport Layer . 16

2.1.4 Autotalk: stub-generator . 16

2.1.5 Implementation issues . 17

2.1.6 Implementing new applications using Arax 18

2.2 Experimental Methodology . 21

2.3 Experimental Evaluation . 23

2.3.1 Overhead of accelerator decoupling 24

2.3.2 Effectiveness of accelerator sharing . 28

2.3.3 Performance gains of elasticity . 30

2.3.4 Overhead of application migration . 33

2.3.5 Overhead for Caffe and TensorFlow . 35

2.4 Summary . 37

xxi

3 Simplify FPGA Accessing & Sharing . 39

3.1 VineTalk Design . 40

3.1.1 Software Facing API . 40

3.1.2 Communication Layer . 41

3.1.3 Software Controller . 42

3.1.4 Hardware Facing API . 43

3.2 Integration with SDAccel . 43

3.3 Performance Evaluation . 45

3.3.1 Experimental Setup . 45

3.3.2 VineTalk overhead . 46

3.3.3 Accelerator time-sharing . 47

3.4 Summary . 48

4 GPU Kernel Revocation . 49

4.1 TReM revocation mechanism . 51

4.1.1 Revoking a kernel with TReM . 52

4.2 Reducing SLA violations of user-facing tasks 55

4.2.1 Elastic policy . 55

4.2.2 Using TReM with Priority and Elastic 56

4.3 Experimental Methodology . 57

4.3.1 Multi-GPU server configuration and memory affinity 57

4.3.2 Workloads . 57

4.4 Experimental evaluation . 60

4.4.1 Overhead of TReM revocation . 60

4.4.2 Effectiveness of TReM with long-running batch tasks 62

4.4.3 Scalability of TReM . 65

4.5 Discussion . 67

4.6 Summary . 68

5 Secure GPU Spatial Sharing . 69

5.1 Introduction . 69

5.2 Background . 71

5.2.1 GPU Programming Interfaces and Context 72

5.2.2 GPU Compilation Workflow . 72

5.2.3 GPU Memory Sharing Scope . 74

5.2.4 Addressing Modes . 76

5.3 Threat Model . 76

5.4 Guardian Design . 77

5.4.1 Dynamically Loadable Library . 78

5.4.2 GPU manager . 80

5.4.3 Offline Kernel Sandboxing . 82

5.4.4 Bounds Checking Tradeoffs . 85

5.5 Experimental Methodology . 87

5.6 Experimental Evaluation . 91

5.6.1 Impact of Guardian at GPU Sharing 91

5.6.2 Guardian Overheads Compared to Other Approaches Without Sharing 92

5.6.3 Impact of Address Fencing on Register Usage 94

5.6.4 Performance of Address Fencing at High Cache Hit Ratio 95

5.6.5 Performance of Guardian on Different GPUs and Access Patterns . . 96

5.6.6 Cost of CUDA calls Interception . 97

5.7 Summary . 98

6 Related Work . 99

6.1 Decoupling applications from accelerators 99

6.2 FPGA Software Access and Sharing . 101

6.3 GPU kernel revocation and scheduling . 102

6.3.1 SLA-based scheduling . 103

6.3.2 State-saving preemption mechanisms 103

6.4 GPU memory protection . 106

6.4.1 Protect GPU Memory under GPU sharing 106

6.4.2 Detect Buffer Overflows for a Single Application 107

6.4.3 Ensure Privacy and Data Confidentiality 108

6.4.4 API Remoting . 108

7 Future Work . 109

7.1 Apply zero-copy in shared memory . 109

7.2 Use remote heterogeneous accelerators . 110

7.3 Batch dependent tasks . 110

7.4 Compile PTX kernels to other GPUs . 110

7.5 Extend accelerator memory . 111

7.6 Integrate Arax to a cluster-level scheduler . 112

8 Conclusions . 113

Bibliography . 115

List of Figures

2.1 Arax high-level overview. The main components of Arax are: Clients, Server,

Transport layer, and Autotalk. 9

2.2 The steps required for an application migration. The task queue is marked

orphan (1) and reassigned to a new thread (2). The relevant data are then

transferred to the new accelerator via the server memory (3,4). 12

2.3 Arax dynamic task assignment. Application issues tasks to a task queue. Ini-

tially, the task queue is assigned to an accelerator (1), then the accelerator

thread gets a task (2). It allocates accelerator memory for that data (3) and

copies the data from the application (4). 15

2.4 Client and Server stub generation (offline phase) and loading (online phase).

The three steps of the offline phase are performed by the parser, the gener-

ator, and the extractor. 16

2.5 Overhead of Arax compared to native (NAT) using Rodinia benchmarks over

heterogeneous accelerators. 25

2.6 Breakdown of overhead for launching an empty kernel with Arax (CPU cycles). 26

2.7 Execution time normalized to native for Arax and AvA. 27

2.8 Effectiveness of sharing with NVIDIA GPUs for Arax, native (without MPS),

and MPS. 28

2.9 Effectiveness of sharing with Intel FPGAs and AMD GPUs for Arax and Na-

tive. For FPGAs we compare Arax with a multi-kernel & a single-kernel bit-

stream. 29

2.10 Performance improvement of applications when increasing the number of

homogeneous accelerators or GPU streams. 31

xxv

2.11 Performance improvement of applications when increasing the number of

heterogeneous accelerators or GPU streams. 32

2.12 Effectiveness of migration when decreasing the accelerators provided to a

low-priority application upon the arrival of a high-priority one. We compare

elasticity with the standalone execution in which applications are statically

assigned to accelerators. We use datasets from 134 MB up to 2 GB. 33

2.13 The overheads of Arax using manual-porting and Autotalk (automatic stub

generation) compared to native CUDA for Caffe using ML training. 35

2.14 The overheads of Arax using manual-porting and Autotalk (automatic stub

generation) compared to native CUDA for Caffe using ML inference. 36

3.1 Design overview of VineTalk. VA represent VineAccelerator (described in

Section 3.1.2) . 40

3.2 Buffer transfers necessary for an inout argument over VineTalk, SDAccel/CUDA,

sockets protocols/APIs. 42

3.3 VineTalk integration with SDAccel. 44

3.4 Performance comparison between VineTalk-applications, and their stan-

dalone execution over SDAccel. The x-axis is the stock batch size, the y-axis

is the normalized job execution time in msec. 45

4.1 TReM overview. The scheduler is part of the Arax server. 51

4.2 The timing of TReM compared to native execution. Batch execution time is

in the range of seconds. 54

4.3 TReM + Elastic in multi-GPU setups. 54

4.4 TReM overhead breakdown. 60

4.5 Normalized response time of user-facing tasks over their stand-alone exe-

cution in the presence of batch tasks with different duration (Bd). 62

4.6 Percentage of tasks that meet their SLA (y-axis) at increasing GPU load (x-

axis), for workloads W1 (left) and W2 (right). 63

4.7 Revocations overhead: (a) Number of task revocations; (b) Wasted compute

time due to revocations. 64

4.8 Time to completion for batch jobs under different scheduling policies, for

load 2.0. 65

4.9 Dynamic GPU allocation in Elastic and impact on SLA violations. 66

4.10 SLA violations for W1 and W2 under load 1.0; (a) varying the number of

GPUs (revocation latency 22ms); (b) varying the revocation latency (4 GPUs). 67

5.1 Compilation flow of CUDA applications. 73

5.2 NVIDIA GPU memory hierarchy and sharing scope. 74

5.3 Multi-tenant spatial GPU sharing, without Guardian. The common GPU

context required for spatial sharing allows applications to access each oth-

ers memory. 77

5.4 Guardian online and offline (dashed annotated) mechanisms to allow pro-

tected spatial GPU sharing. Guardian intercepts the CUDA runtime inter-

face used from applications and perform the necessary checks at memory

allocations, transfers, and kernel executions. This allows kernels from dif-

ferent applications to execute concurrently on different memory partitions,

eliminating illegal accesses. 78

5.5 Guardian CUDA library interception level versus previous approaches [24,

23, 28, 98]. Guardian intercepts only the CUDA runtime and driver APIs and

not the high-level calls to CUDA accelerated libraries as in previous works. 80

5.6 Bitwise instructions mask addresses that fall outside a partition. 84

5.7 Bit-masking latency (8-cycles) compared to latency of different memories. . 86

5.8 GPU sharing using native CUDA time sharing (protected), MPS spatial shar-

ing (unprotected), Guardian spatial sharing without protection, and Guardian

spatial sharing with address fencing under workloads with the same appli-

cations. 91

5.9 GPU sharing using native CUDA time sharing (protected), MPS spatial shar-

ing (unprotected), Guardian spatial sharing without protection, and Guardian

spatial sharing with address fencing under workloads with the different ap-

plications. 91

5.10 Comparison of address fencing (bitwise) with other approaches, using Caffe

with mnist and cifar dataset. 92

5.11 Comparison of address fencing (bitwise) with other approaches, using Caffe

and PyTorch with the imagenet dataset. 93

5.12 Guardian’s per thread register usage vs native. 94

5.13 Performance overhead of sandboxed kernels against native execution. . . . 95

5.14 Guardian overhead with PyTorch and Caffe on GeForce GPU, compared to

native execution. 96

5.15 Guardian overhead (%) for 37 kernels from CUDA-accelerated libraries com-

pared to native execution of each kernel on the GeForce GPU. 97

6.1 Evaluating NVIDIA compute preemption by collocating two tasks in the same

GPU using high- and low-priority streams. The user-facing task is assigned

to the high-priority stream and a batch to the low-priority one. The high-

priority stream preempts the low-priority one. As we increase the batch du-

ration (x-axis), the duration of the user-facing task is affected and increases

linearly. 104

List of Tables

2.1 Methods of Arax API. 11

2.2 Servers configurations. 22

2.3 Applications and their memory footprint. 22

2.4 Workloads for spatial sharing. 24

2.5 The execution time (seconds) of Caffe when the execution is migrated from

the NVIDIA GPU to another accelerator. CPU only and NVIDIA only repre-

sent the native execution without migrations. 35

2.6 The execution time (seconds) of TensorFlow and Keras for Autotalk and na-

tive CUDA. 37

3.1 Main methods of the Software-facing API and comparison with Arax client-

side API. 41

3.2 Overall application execution time (seconds) and Overhead (%) with 2000

options and batch sizes 1 and 512. 47

3.3 Comparison of the job execution time of 1 and 2 concurrent VineTalk appli-

cation(s) with applications running directly on the FPGA (i.e. Native). 47

4.1 Latency of different methods to revoke/preempt a kernel running on a GPU. 51

4.2 Average task execution time (ms). 58

4.3 Workload configurations. 59

5.1 cuBIN and PTX kernel code included in CUDA-accelerated libraries for dif-

ferent CUDA versions and GPUs. 74

5.2 GPU specifications we use for the evaluation. 87

xxix

5.3 Load and store instructions in CUDA-accelerated libraries and frameworks

we use. 88

5.4 Mixes of workloads used for assessing the performance of Guardian under

GPU sharing. 89

5.5 Guardian average cost in CPU cycles for the main operations performed

when a kernel launch is intercepted and replaced with a sandboxed kernel. . 98

6.1 Capabilities of Arax vs. state-of-the-art approaches. 100

6.2 TReM and prior state-of-the-art approaches. 105

6.3 Comparing Guardian with state-of-the-art memory protection approaches

for GPU sharing. 107

Chapter 1

Introduction

The increasing need for high performance at low energy consumption has resulted in the

proliferation of heterogeneous accelerators, such as GPUs, FPGAs, and TPUs [29, 26, 5, 96,

99, 85]. Recent estimates [85, 5, 11, 100, 113] indicate that servers will include a plethora

of processing units and specialized accelerators [15, 19, 58, 92]. This trend poses signifi-

cant challenges in how applications and higher-level frameworks, such as TensorFlow [1],

PyTorch [78], and Caffe [41], can fully utilize the capacity of heterogeneous accelerators.

Today, a large percentage of applications or frameworks is statically bound to specific

accelerators throughout their execution. In particular, many applications are directly writ-

ten for one accelerator type, e.g., NVIDIA GPUs, to allow for device-specific optimizations.

Over the last years, unified programming models, e.g., SYCL [84] and oneAPI [3], aim to

offer portability to different accelerator types. However, applications are still required to

explicitly select the desired accelerators during initialization and prior to starting their

execution. As a result, each application execution is statically bound to a specific set of

accelerators or types that cannot change at runtime. This results in poor resource and

application efficiency in two ways: (a) reduced sharing of resources and (b) lack of adap-

tation over time.

Existing resource assignment techniques fully allocate accelerators to a single applica-

tion. Although practical, this exclusive assignment creates significant load imbalance in

heterogeneous setups with multiple accelerators and results in resource under-utilization.

Time-sharing approaches [108, 109, 113, 35, 63] cannot address this issue effectively be-

1

2 Chapter 1. Introduction

cause accelerators become “beefier” and individual applications and, even more so, in-

dividual kernels often fail to fully utilize all the available accelerator resources [113, 20,

69, 54, 8, 74, 115]. To address these limitations, several research approaches propose

spatial sharing mechanisms [110, 20, 115, 31, 104, 112, 103, 57]. However, existing ap-

proaches are limited to specific accelerator types and require applications to perform

manual task assignment and data placement. Regarding GPUs, NVIDIA offers Multiple

Process Service (MPS), which allows different CUDA applications to execute concurrently

in the same GPU. MPS offers a single GPU context, i.e., a common accelerator address

space, that is a requirement for NVIDIA GPUs to allow kernels from different applica-

tions (and users) to execute concurrently. AMD GPUs offer by default this shared con-

text, avoiding the need for such a service. However, this single/shared context introduces

a significant concern: GPU kernels execute in the same GPU address space, hence they

can modify (either inadvertently or deliberately) memory locations that belong to other

applications [21, 76, 81, 65, 53, 51, 8] leading to confidentiality and integrity violations.

This lack of memory protection makes spatial sharing impractical for generic multi-user

environments.

Applications often exhibit dynamic behavior and fluctuating load requirements [35,

108]. Current approaches assign resources to each application that remain fixed through-

out its execution. Assigning resources statically to applications is challenging due to the

difficulty in accurately estimating their resource demands prior to execution. The lack

of dynamic task assignment and data-migration results in application under- or over-

provisioning and eventually to poor resource utilization. Existing approaches [35, 108] can

dynamically assign whole applications to NVIDIA GPUs –not individual tasks– while their

migration mechanisms rely either on domain-specific application features (TensorFlow

checkpoints) or vendor-specific accelerator mechanisms (unified memory). Apart from

application load, GPU workloads also have a dynamic behavior. Consequently, a GPU

preemption mechanism is required to provide low latency in high-priority tasks in the

presence of long-running batch tasks. A preemption mechanism consists of three parts;

(1) stop the currently executing task, (2) save its state, and (3) replay the task later. Pre-

vious works [106, 68, 116] do not provide a bounded latency due to their “task stop” and

3

state-saving mechanisms. Therefore, high-priority tasks still incur high tail latencies.

This dissertation proposes a runtime system that decouples applications from hetero-

geneous accelerators within a single server. Our approach is based on RPC, a mechanism

that is proven to be very successful in decoupling complex software stacks, using clear

and conceptually simple boundaries. We offer a client-side API that allows applications to

be written once without considering any low-level details, such as the number or type of

accelerators. Applications that use our system do not need to perform accelerator selec-

tion, memory allocations, or memory management operations. All these operations are

handled transparently by a backend service, the server. The server is common and shared

from all applications and offers four main features.

(1) Our server assigns a task to an accelerator (NVIDIA GPU, AMD GPU, FPGA) or a

CPU as late as possible, differently from existing approaches that assign an application to

an accelerator during its initialization (Arax § 2). After the task assignment and just before

the task execution, the server transfers the required data to the selected accelerator. This

dynamic task assignment and the lazy data placement enable adaptation to application

load changes.

(2) To ensure that latency-critical applications will have the desired performance when

they time-share a GPU, the server revokes the execution of long-running kernels. Our

revocation mechanism stops a GPU task by aborting its currently executing GPU kernel

without saving any state and replays it later (TReM § 4). The server uses a runtime sched-

uler that prioritizes latency-critical tasks over batch and instructs the revocation mecha-

nism when to kill a running kernel.

(3) To enable spatial accelerator sharing across applications, the server creates mul-

tiple streams for GPUs and command queues for FPGAs (Arax § 2). Regarding FPGAs,

it loads multi-kernel bitstreams and can (re)program the FPGA with the appropriate bit-

stream required from each application task (VineTalk § 3). Spatial accelerator sharing im-

proves accelerator utilization and application turnaround time.

(4) Spatial sharing offered by our system and also from previous works [110, 20, 115, 31,

104, 112] does not offer protection for applications that share a GPU. Consequently, ap-

plication data are exposed to other applications, making sharing impractical for generic

4 Chapter 1. Introduction

multi-user environments. To resolve this issue, we design and implement a PTX-based

sandboxing approach to isolate data for applications that spatially share a GPU (Guardian § 5).

(5) Application porting to our agnostic client-side API requires manual effort, which

is prohibitive in complex frameworks. To reduce the porting effort, we design and im-

plement an automatic stub generator in Arax (§ 2) that ports a CUDA application to our

client API. We focus on CUDA since NVIDIA GPUs dominate the accelerator market, and

thus, complex frameworks such as Caffe, PyTorch, and TensorFlow can run to heteroge-

neous accelerators. The only requirement that our tool has is the existence of the ker-

nels for the different accelerator types. Our approach intercepts the CUDA runtime (e.g.,

cudaMalloc(), cudaLaunchKernel()), the CUDA driver (e.g., cuMemAlloc(), cuMemCpy()),

and high-level calls to CUDA accelerated libraries (e.g., cublasIsamax(), cudnnActivation-

Forward()). Due to the complexity of this approach due to the interception of more than

1600 high-level calls that are complex and change rapidly in Guardian (§ 5) we move

our interception one level deeper and intercept only the CUDA runtime and driver li-

braries. Although challenging because we need to handle an undocumented call (i.e.,

cudaGetExportTable()), it is proved to be more robust.

Thesis statement: Provide transparent and efficient sharing of heterogeneous accel-

erators for real-world applications in a server.

Contributions
The specific contributions of this dissertation are:

1. We remove static application to accelerator assignment that affects utilization using

a generic client-side API and a backend service. The client-side API abstracts accel-

erator type and number, whereas the service manages multiple and heterogeneous

accelerators in a server.

2. To reduce the programming effort required to port existing applications to our client-

side API, we investigate the interception of CUDA API calls at various levels, i.e.,

driver, runtime, and high-level library functions calls. We concluded that the ap-

5

propriate level of interception is the CUDA runtime API.

3. Our backend service improves accelerator utilization and adapts to the fluctuating

load requirements using six main mechanisms that can be applied to different accel-

erator types (i.e., NVIDIA GPUs, AMD GPUs, and FPGAs): spatial sharing, elasticity,

dynamic task assignment, lazy data placement, live-migration, and task revocation.

4. Spatial GPU sharing imposes confidentiality and integrity violations. As a result, we

examine the memory protection of kernels running concurrently on NVIDIA GPUs

and provide a transparent memory protection mechanism. Our mechanism applies

address fencing instructions before every load and store in the PTX-level of CUDA

kernels.

Organization
The rest of this dissertation is organized as follows. Chapter 2 presents Arax the run-

time used to decouple ML applications from heterogeneous accelerators. Chapter 3 ex-

plains in detail VineTalk, which includes the mechanisms that simplify the use of FPGAs

and FPGA sharing. Chapter 4 shows the kernel revocation mechanism and the scheduling

policies required to ensure the Service Level Agreement (SLA) for latency-critical applica-

tions when they time-share a GPU, named TReM. Chapter 5 presents Guardian a mech-

anism that enables protected GPU spatial sharing. Chapter 6 reviews related work and

compares our approach with existing systems. Chapter 7 outlines prospective directions

for future work, and chapter 8 concludes this thesis.

6

Chapter 2

Decouple Applications and Accelerators

This chapter shows how to avoid static application to accelerator assignment that leads

to underutilization. To achieve that, we propose an RPC-based approach that decouples

applications from heterogeneous accelerators within a single server, named Arax. The

client-side stubs of Arax allow applications to be written once using a simple API without

considering any low-level details, such as the number or type of accelerators. Additionally,

Arax applications do not need to perform accelerator selection, memory allocation, or task

assignment operations; all are handled transparently by a backend service, the Arax server.

Our server assigns applications tasks dynamically (not at application initialization) and

performs memory allocations-transfers lazily and only after a task is assigned to a specific

accelerator. To improve accelerator utilization while ensuring application performance

Arax provides three capabilities:

(a) Spatial sharing that manages existing mechanisms in heterogeneous accelerators,

transparently, and across all applications in a server. We use asynchronous host-threads to

issue tasks to GPU streams and FPGA command queues. Regarding FPGAs, Arax loads bit-

streams with multiple kernels that need to be collocated in the same FPGA. The advantage

of our approach is that it moves all the related management from individual applications

to the shared Arax runtime and can make decisions across all applications.

(b) Elasticity and dynamic resource assignment to applications at runtime. To achieve

this, Arax requires fine-grain access to application tasks and their data. Arax uses asyn-

chronous operations to issue independent tasks across different accelerators, while en-

7

8 Chapter 2. Decouple Applications and Accelerators

suring that tasks with dependencies execute in-order.

(c) Live-migration that moves application tasks across heterogeneous accelerators.

Unlike existing approaches, our migration mechanism does not require application mod-

ifications or specialized accelerator support. Arax uses task arguments to keep track of the

data used by each task and transfers only relevant data upon task migration. Although ar-

bitrary pointers may result in moving large amounts of memory, our approach is adequate

to support real applications, such as TensorFlow and Caffe.

Finally, Arax includes Autotalk, a generator that creates stubs for a given accelerator

API based on a description of the target API provided by the user once. Applications are

then linked dynamically with the stub library that internally calls the Arax API. Currently,

Autotalk generates stubs for a subset of CUDA that can support Caffe and TensorFlow.

We evaluate Arax using Caffe, TensorFlow, and Rodinia. Our results show that Arax ap-

plications can run without any modifications at low overhead—up to 12% compared to

native—when other approaches, i.e., AvA [113], result in up to 30% overhead for the same

applications running on a GPU. In addition, Arax provides elasticity, decreasing total ap-

plication turnaround time by 2× compared to native execution without elasticity support.

Our migration mechanism adds 7% overhead compared to standalone execution. Finally,

our sharing mechanism provides up to 20% improvement in total execution time com-

pared to NVIDIA MPS.

The specific contributions of this chapter are:

1. We propose an RPC-based approach to decouple applications from heterogeneous

accelerators within servers.

2. We present a mechanism for spatial sharing of heterogeneous accelerators and dy-

namic and transparent assignment of tasks to accelerators.

3. We present an application live-migration mechanism that reduces data movement

based on data ownership by tasks.

4. We present a stub generator that allows existing applications to use Arax with mini-

mal effort and demonstrate our approach with Caffe and TensorFlow.

2.1. Design 9

Client1

Arax Na�ve Apps

Exis�ng Apps (Caffe/TensorFlow)

Client Stub

Server

CUDA
NVIDIA GPU

OpenCL
Intel FPGA

ROCm
AMD GPU

Client2

K

K
Streams

K

K

K

K

K

K

Command
queues

K

K
Streams

K

K

Accelerator Selector

Server

Stub

Arax Library Arax Library

T

T

T

T

T

T

T

T

Task Queues Shared Address Space

T Tasks K Kernels B BuffersAccelerator Threads

B B

B B

Buffers Client 1
B B

B B

Buffers Client 2

Arax

Client 1 Client 2
Transport

 Layer

Generated by Autotalk

Figure 2.1: Arax high-level overview. The main components of Arax are: Clients, Server,
Transport layer, and Autotalk.

5. We demonstrate and evaluate Arax in an accelerator-rich server environment, using

GPUs, FPGAs, and CPUs, with Caffe, TensorFlow, and Rodinia.

2.1 Design

Figure 2.1 shows a high-level overview of Arax. Applications use the Arax API to access

available accelerators, regardless of their types. Applications create task queues and is-

sue tasks, providing their data in the form of Arax buffers. Tasks and buffers are being

transported to the Arax server via a transport layer over shared memory, mapped to both

the application and server address spaces. The Arax server assigns dynamically and asyn-

chronously application tasks to accelerators, managing accelerator streams and command

10 Chapter 2. Decouple Applications and Accelerators

queues, maintaining task ordering, and handling data dependencies. Finally, Arax’s stub

generator, Autotalk, allows generating the stub library automatically for a particular accel-

erator API, given a description file of the API calls. Next, we discuss each component of

Arax in more detail.

2.1.1 Client

Arax provides three basic abstractions to hide accelerator types and number from appli-

cations: (a) tasks, (b) task buffers, and (c) task queues. Table 2.1 shows an overview of the

main Arax API calls.

Tasks: A task can be either a compute or a transfer task and is used to hide accelerator-

specific information. A compute task is an accelerator kernel, while a transfer task is a

data transfer between the host and the accelerator and vice versa. Both tasks are executed

without interruption and are asynchronous. Arax provides synchronization primitives to

allow applications to wait for their completion. A compute task takes the kernel name and

its corresponding arguments as parameters, i.e., inputs, outputs, and arguments required

from a kernel. The kernel name is associated with the actual kernel at the server (§2.1.2).

Unlike existing accelerator APIs, task arguments do not include accelerator-specific infor-

mation, such as thread number or thread size. The parameters for a transfer task include

the task buffers provided by Arax and any data from the application address space.

Task buffers: A buffer is an opaque identifier that represents the input and output

data of a task and is used to hide accelerator memory. Multiple tasks or applications can

operate on the same buffer concurrently. It is important to note that Arax decouples the

accelerator memory management from applications using a lazy memory allocation strat-

egy. When an application requests memory, Arax stores the requested allocation size but

does not allocate this memory on the accelerator (§2.1.2). The actual allocation will be

performed only after the task is successfully assigned to an accelerator. In the meantime,

applications can continue issuing tasks since buffers are implemented as opaque types in

the shared memory. For all allocations in the shared memory, we use the Doug Lea allo-

cator. This abstraction hides accelerator memory, and applications are unaware of which

2.1. Design 11

Abstraction API call Description

Tasks
a issue() Issue a task
a wait() Wait for a task

Buffers
a allocate() Allocate Buffer

a free() Free Buffer
a sync to(), a sync from() Transfer Data

Task Queues
a acquire() Acquire a virtual accelerator
a release() Release a virtual accelerator

Table 2.1: Methods of Arax API.

accelerator hosts their data.

Task queues: Applications issue tasks to task queues, similar to existing programming

models, e.g., CUDA/ROCm streams and OpenCL command queues. The main difference

of Arax is that these queues are not assigned directly to an accelerator. Instead, Arax is

responsible for assigning them to one or more accelerators at runtime (§2.1.2), while en-

suring that asynchronous tasks will be executed in-order. Each task queue holds tasks with

dependencies. To denote independent sets of work, applications need to acquire differ-

ent task queues. This approach works well for the ML frameworks we examine due to the

inherent serialization of NN layers.

2.1.2 Server

The Arax server is responsible for maintaining task issue order and managing data depen-

dencies while performing dynamic task assignment and data placement to accelerators.

These mechanisms allow Arax to provide efficient spatial sharing and elastic allocation of

resources.

Spatial Sharing: The spatial sharing mechanism of Arax is based on streams/com-

mand queues and host-threads (Arax accelerator threads). In particular, to execute ker-

nels in parallel, the server spawns multiple threads per physical accelerator. Each accel-

erator thread internally creates different streams (CUDA and ROCm) or command queues

(OpenCL). The design of spatial sharing in Arax can support advanced task assignment

policies that do not rely on low-level accelerator-specific APIs. To enable spatial sharing

for NVIDIA GPUs, we require a single context; thus, the Arax server is implemented as

12 Chapter 2. Decouple Applications and Accelerators

GPU

Compute Memory

FPGA

Compute Memory
D

Server

T

T
Task QueueC0

1

Old
Thread

2 Re-AssignTaskQueue

Address Space

3

4 Alloc & Transfer

Mark Orphan

Transfer & Free

New
Thread

T Tasks Accelerator Threads Data

Transport

 Layer

Accelerator Selector

D

D

D

Figure 2.2: The steps required for an application migration. The task queue is marked
orphan (1) and reassigned to a new thread (2). The relevant data are then transferred to
the new accelerator via the server memory (3,4).

a single process for all accelerators. Regarding FPGAs, the Arax server loads a bitstream

that contains multiple kernels, similar to Vinetalk [63]. The server can select and load the

appropriate bitstream to serve each task.

Application migration: Even when accelerators are shared, there can be load imbal-

ances. Arax offers an application migration mechanism to correct load imbalances. This

migration mechanism can move application tasks and their data across heterogeneous

accelerators. The migration mechanism cannot stop a task during execution. Instead, it

waits for the task to finish and moves any pending tasks and their data to another acceler-

ator. There are three challenges that our migration mechanism needs to tackle:

(i) Migrate an application without interrupting its execution. Arax offers task queues

to applications to issue their tasks. The Arax server stops and resumes the execution of a

task queue, and thus it does not affect the execution of the application. In particular, Arax

performs the following steps: (a) The server marks this task queue as an orphan (Figure 2.2;

step 1). At this point, accelerator threads cannot launch tasks from this task queue. (b)

2.1. Design 13

Since then, there could have been tasks issued for execution; the server waits for them to

finish before re-assigning this task queue to a different accelerator thread (Figure 2.2; step

2). (c) From here on, any remaining task from this particular task queue will be invoked to

the new accelerator. We note that, during the migration, the application continues issuing

tasks to its task queues.

(ii) Move only the data of the migrated task. The server should move only the data

required from the migrated task and not all the application state. Existing checkpoint ap-

proaches [108, 16] migrate all the application state, which involves transfers in the range

of gigabytes. The Arax server maintains metadata for each task and is aware of the data re-

quired. After assigning the task queue to a new accelerator thread, the server instructs the

previous accelerator thread to copy the task data from its accelerator memory to the server

memory and free the corresponding allocations (Figure 2.2; step 3). The server then no-

tifies the new accelerator thread to allocate and copy that data from the server’s memory

(Figure 2.2; step 4) using the native accelerator API. We note that the server memory is

an intermediate buffer to transfer data across different accelerators. As part of our future

work, we plan to eliminate this extra copy using accelerator-to-accelerator transfers, at

least for the cases supported [86].

(iii) Migrate the most recent version of the data. Before a data migration, we must en-

sure that the data required from the migrated task(s) are up-to-date. To achieve that, the

server allows only one valid copy of the data (at any given time) to the distinct accelerator

memories in multi-accelerator setups.

Dynamic task assignment: The server assigns the incoming task queues to the under-

lying accelerators. Individual tasks from the same task queue can be assigned to different

accelerators. This assignment involves task and data migrations for tasks with dependen-

cies. When the server detects an unassigned, non-empty task queue, it assigns it to an

accelerator using a round-robin policy (default). Advanced assignment policies can be

implemented with relatively low effort. This is facilitated by the fact that Arax already col-

lects information regarding the memory footprint of each task, the number of tasks per

accelerator, and the data ownership.

As a proof of concept that our accelerator selector can host advanced assignment poli-

14 Chapter 2. Decouple Applications and Accelerators

cies, we also implement an elastic assignment policy. This policy is essential to handle

load fluctuations or data bursts by performing dynamic task assignments. The server

keeps track of the assigned task queues per accelerator and knows the owner of each task

queue. Consequently, the accelerator selector can increase/decrease the accelerators as-

signed to an application based on the load.

For instance, lets assume that we have a low-priority application with two task queues,

i.e., task queue1 and task queue2. Initially, both task queues are assigned to the same ac-

celerator. When the accelerator selector detects idle accelerators, it expands the resources

used by the low-priority application by assigning task queue2 to the idle accelerator. Re-

versely, when another high-priority application arrives, the server shrinks the accelerators

used from the low-priority application by moving task queue2 to the accelerator where

task queue1 executes. This re-assignment requires moving the application state between

accelerators, i.e., application migration. Consequently, the high-priority application can

make exclusive use of the idle accelerator.

To perform memory management, the server maintains internally a mapping of the

allocated buffers per task queue and their corresponding sizes. We note that the actual

memory allocation is performed only after its corresponding task queue has been assigned

to a physical accelerator (Figure 2.3; step 1). After the selection of the physical accelera-

tor, the thread of that accelerator gets a task from the task queue (Figure 2.3; step 2) and

checks if any memory has already been allocated in that particular accelerator memory.

If not, it performs the actual allocation (Figure 2.3; step 3) and keeps a reference to that

memory segment so that it can be used for deallocation purposes. After that, the accelera-

tor thread can issue the task to the accelerator. If the task is a data transfer, the accelerator

thread copies the data from the client address space to the accelerator memory (Figure 2.3;

step 4).

To support different accelerator types, the server spawns separate accelerator threads.

Each thread uses the accelerator’s native API to communicate with that particular ac-

celerator. Currently, Arax supports NVIDIA GPUs using CUDA, Intel Altera FPGAs using

OpenCL, and AMD GPUs using ROCm. When receiving a compute task, the accelerator

thread uses the kernel name—passed as a task parameter—to find the appropriate kernel

2.1. Design 15

Client
Applica�on

Server

Accelerator

T

T
Task QueueC0

Compute Memory

1
2

GetTask

Address Space

AssignTaskQueue

Transfer
4

3
Allocate

Accelerator Thread

IssueTasks

Transport

 Layer

Accelerator Selector

T Tasks DataAccelerator Threads D

DD

D

Figure 2.3: Arax dynamic task assignment. Application issues tasks to a task queue. Ini-
tially, the task queue is assigned to an accelerator (1), then the accelerator thread gets a
task (2). It allocates accelerator memory for that data (3) and copies the data from the ap-
plication (4).

program and loads it to the physical accelerator for execution. For this reason, the server

maintains a dispatch table that associates kernel names with the actual kernel programs

in the server stub.

We assume that kernels are implemented by third-party experts using the native accel-

erator’s API. Accelerators offer libraries such as RAND (Random Number Generation) and

BLAS (Basic Linear Algebra Subroutine). The function calls in these libraries can involve

multiple kernel invocations internally, which cannot be extracted in case the library is

closed-source (e.g., NVIDIA cuBLAS and cuRAND). To overcome this limitation, we incorpo-

rate these libraries into Arax, as-is, forming different server stubs, one for each accelerator.

The server stubs are compiled using the accelerator-specific compilers. For NVIDIA GPUs

we use NVCC, for Intel FPGAs we use AOCL, and for AMD GPUs we use HIPCC.

16 Chapter 2. Decouple Applications and Accelerators

Extractor

Client

Server

CUDA

Applica�on
PTX

API
header

Client
stub

Server
stub

Parser

Offline Online

preload
Client

load
Server

Generator

API Specifica�ons

User Annota�ons

load

Figure 2.4: Client and Server stub generation (offline phase) and loading (online phase).
The three steps of the offline phase are performed by the parser, the generator, and the
extractor.

2.1.3 Transport Layer

Arax applications and the Arax server are separate processes. Consequently, Arax requires

an IPC mechanism for the applications and the server to exchange tasks and data. We

use a shared memory approach to avoid system calls in the common path. Our initial

implementation of the shared memory transport layer uses an extra copy of the data. In

particular, application data are copied in the shared memory segment. Then, the server

copies the data to the accelerator memory. We evaluate the impact of this copy in Sec-

tion 2.3.1. We believe that future versions of Arax should consider zero-copy mechanisms

by using shared pointers between the application and server address spaces.

2.1.4 Autotalk: stub-generator

Existing frameworks are complex and require considerable manual effort to port them to

different accelerator APIs. Arax reduces this effort by providing Autotalk, a generator im-

plemented as a python script that creates client and server stubs for each accelerator API

offline (Figure 2.4; Offline). The generated stubs are linked with the applications and the

Arax server during their initialization (Figure 2.4; Online). The offline phase is performed

once and consists of three main steps: parse, generate, and extract.

Step 1: Parse. The Autotalk parser gets as input an accelerator API header and produces

2.1. Design 17

an API specification file (Figure 2.4; API specifications). The specification file contains

for each API call, the number of arguments, their order, and the return value. The cur-

rent version of Autotalk targets the CUDA API (v10.1) and can automatically create the

API specification file for 85% of the existing functions (1800 in total) without requiring any

user intervention.

Step 2: Generate. The Autotalk generator takes as input the API specification file that has

been produced from the parser and an annotation file provided by the user (Figure 2.4;

User Annotations). This user-provided annotation file contains information about the

function calls that cannot be auto-produced from the Autotalk parser and require man-

ual effort. The parser fails for some API calls because they take pointers as parameters,

the bounds of which cannot be generated automatically in C/C++, and the address space

they belong to (host or device), cannot be found automatically. The user annotation file

provides this information with size expressions that calculate the bounds of each pointer.

It also specifies the address space of the pointer parameter based on each API’s documen-

tation. The user annotation file is created once and consists of 2-3 lines of code for each

function that cannot be generated automatically. Currently, these functions are about 270

(out of the 1800 in CUDA API v10.1). The generator produces the client and server stubs

using the API specification and the user annotation files. The client stub contains an im-

plementation of the accelerator API used by applications over the Arax API. The server

stub contains the function calls to accelerator libraries (e.g., BLAS, RAND).

Step 3: Extract. Autotalk uses cuobjdump [65, 95] to extract kernels from the native CUDA

applications that are not included in accelerator libraries (Figure 2.4; Extractor); these ker-

nels are in PTX format [71] and are dynamically linked with the server executable so they

can be invoked at runtime.

2.1.5 Implementation issues

The current version of Arax supports the execution of kernels on CPU and three accel-

erator types: NVIDIA GPUs, AMD GPUs, and Intel Altera FPGAs. To add a new accel-

erator, one should implement an new accelerator thread that will contain the following

18 Chapter 2. Decouple Applications and Accelerators

functions: accelAlloc() and accelFree() that are responsible for memory allocations

and de-allocations respectively; accelSyncTo() and accelSyncFrom() that transfer data

to and from the accelerator; accelMemset() that sets device memory to a particular value

and accelDevcpy() that performs a transfer within an accelerator. These functions are

implemented once for each accelerator type using the native accelerator API.

Accelerator APIs offer function calls that query specific device information, such as

cudaGetDeviceProperties(), and cudaGetDeviceCount(). The design of Arax hides the

number and type of the underlying accelerators, so it cannot provide such information.

Instead, the Arax server returns some “synthesized” information, ensuring that calls de-

pending on such information will run correctly. This information is based on the spec-

ifications of the accelerator with minimal resources; by doing so, we ensure that an ap-

plication will execute to at least one accelerator. We note that this approach is acceptable

for the applications used in our experimental evaluation; however, other applications may

require advanced policies, which is left as future work.

Existing applications can use library handles or generators, such as cuBLAS handles or

cuRAND generators. Typically, library handles and generators are opaque structures that

store the context required from a library. However, these handles do not have the same

semantics in all accelerator libraries. For instance, CBLAS (the BLAS library for CPUs) does

not have the notion of handles. Such cases are managed by Arax before issuing a task to

an accelerator: The accelerator threads that are implemented using the native accelerator

API prepare handles and generators according to the semantics of each accelerator and

use them during the kernel invocation.

2.1.6 Implementing new applications using Arax

In this section, we describe how we port a gaussian from Rodinia benchmark suite to

Arax API as an example to write new applications to Arax. To port gaussian to Arax we

use the CUDA version (Listing 2.1) and replace all CUDA calls (i.e. allocations, trans-

fers, and kernel calls) with the relevant Arax API calls, as shown in Listing 2.2. In partic-

ular a cudaMalloc() is replaced with a allocate(), cudaMemcpy(HostToDevice), cudaMem-

2.1. Design 19

cpyAsync(HostToDevice), and cudaMemcpy(DeviceToHost) with a sync to() and a sync from()

respectively. Regarding calls that set or copy data to the device, such as cudaMemset and

cudaMemcpy(DeviceToDevice) we issue a task to the server that will call the appropriate

function. Moreover, we replace cudaLaunchKernel() with a issue(). When the kernel call is

synchronous we use a task wait().

void ForwardSub() {

int t;

float *m_cuda, *a_cuda, *b_cuda;

// allocate memory on GPU

cudaMalloc((void **)&m_cuda, Size * Size * sizeof(float));

cudaMalloc((void **)&a_cuda, Size * Size * sizeof(float));

cudaMalloc((void **)&b_cuda, Size * sizeof(float));

// copy memory to GPU

cudaMemcpy(m_cuda, m, Size * Size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(a_cuda, a, Size * Size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(b_cuda, b, Size * sizeof(float), cudaMemcpyHostToDevice);

int block_size , grid_size;

block_size = MAXBLOCKSIZE;

grid_size = (Size / block_size) + (!(Size % block_size) ? 0 : 1);

dim3 dimBlock(block_size);

dim3 dimGrid(grid_size);

int blockSize2d , gridSize2d;

blockSize2d = BLOCK_SIZE_XY;

gridSize2d = (Size / blockSize2d) + (!(Size % blockSize2d ? 0 : 1));

dim3 dimBlockXY(blockSize2d , blockSize2d);

dim3 dimGridXY(gridSize2d , gridSize2d);

for (t = 0; t < (Size - 1); t++) {

Fan1<<<dimGrid, dimBlock >>>(m_cuda, a_cuda, Size, t);

Fan2<<<dimGridXY , dimBlockXY >>>(m_cuda, a_cuda, b_cuda, Size, Size - t, t);

}

// copy memory back to CPU

cudaMemcpy(m, m_cuda, Size * Size * sizeof(float), cudaMemcpyDeviceToHost);

cudaMemcpy(a, a_cuda, Size * Size * sizeof(float), cudaMemcpyDeviceToHost);

cudaMemcpy(b, b_cuda, Size * sizeof(float), cudaMemcpyDeviceToHost);

20 Chapter 2. Decouple Applications and Accelerators

cudaFree(m_cuda);

cudaFree(a_cuda);

cudaFree(b_cuda);

}

Listing 2.1: guassian implementation with CUDA API.

void ForwardSub() {

a_accel *accel;

gaussianArgs gArgs;

a_task *t_fan1, *t_fan2;

std::vector<a_task *> free_v;

free_v.reserve(128);

a_buffer_s a_fan1; // input

a_buffer_s m_fan1; // output

a_buffer_s inputs_fan2[2]; // inputs fan2

a_buffer_s b_fan2; // input and output for fan2

// Set the accelerator type.

a_accel_type_e accelType = ANY;

// Create a task for each kernel.

a_proc *fan1 = a_proc_get("fan1");

a_proc *fan2 = a_proc_get("fan2");

accel = a_accel_acquire_type(accelType);

// Allocate memory

m_fan1 = (a_buffer_s *)a_allocate(

vpipe, Size * Size * sizeof(float), 64); // output fan1

a_fan1 = (a_buffer_s *)a_allocate(

vpipe, Size * Size * sizeof(float), 64); // input fan1

b_fan2 =

(a_buffer_s *)a_allocate(vpipe, Size * sizeof(float), 64);

// Transfer data

a_sync_to(m_fan1, accel, m);

a_sync_to(a_fan1, accel, a);

a_sync_to(b_fan2, accel, b);

inputs_fan2[0] = m_fan1;

inputs_fan2[1] = a_fan1; // in to fan2

2.2. Experimental Methodology 21

gArgs.size = Size;

// Issue task to accelerator (block, grid size are calculated in the server).

for (int t = 0; t < (Size - 1); t++) {

gArgs.t = t;

t_fan1 = a_issue(accel, fan1, &gArgs, sizeof(gaussianArgs), 1,

&a_fan1, 1, &m_fan1);

free_v.push_back(t_fan1);

t_fan2 = a_issue(accel, fan2, &gArgs, sizeof(gaussianArgs), 2,

inputs_fan2 , 1, &b_fan2);

free_v.push_back(t_fan2);

}

a_sync_from(a_fan1, a);

a_sync_from(m_fan1, m);

a_sync_from(b_fan2, b);

for (auto &i : free_v) {

a_task_free(i);

}

a_free(m_fan1);

a_free(a_fan1);

a_free(b_fan2);

a_accel_release(&accel);

}

Listing 2.2: guassian implementation with Arax API.

2.2 Experimental Methodology

For our evaluation, we use two servers with different accelerator types, as shown in Ta-

ble 2.2. The first server (S1) is equipped with one FPGA and two different GPUs, while the

second (S2) with two identical NVIDIA GPUs. The NVIDIA RTX 4000 is equipped with 8 GB

of GDDR6, has 2304 CUDA cores, and is connected over PCIe v3 x16. The NVIDIA RTX 2080

Ti has 11 GB GDDR6, consists of 4352 CUDA cores, and uses a PCIe v3 x8 port in our server.

For the NVIDIA GPUs, we use CUDA v10.1. The Intel Arria 10 FPGA (de5a net ddr4) has

4 GB of DDR4 and uses PCIe v3 x8. We use OpenCL 1.2 and Quartus 20.1 to implement

and compile the bitstreams and the server accelerator threads. AMD RX550X GPU has 512

compute cores, has 4 GB of GDDR5 VRAM, and uses PCIe v3 x16. For the AMD GPU, we

22 Chapter 2. Decouple Applications and Accelerators

ID CPU
RAM
(GB)

PCIe
Gen

Accelerators

1
AMD EPYC 7551P 64-Core
@ 3.0GHz

128 3.0
(i) NVIDIA RTX 4000,

(ii) Intel Altera Arria 10 FPGA
(iii) AMD RX550X GPU

2
Intel Xeon CPU E5-2620 16-Core
@ 2.10GHz

256 3.0
2x NVIDIA Geforce

RTX 2080

Table 2.2: Servers configurations.

Suite
/ Framework

Application
Input Data

(MB)
Output Data

(MB)
Kernel

code

Rodinia

BFS 40 4

CUDA
ROCm

OpenCL

Gaussian (2k) 32 32
Gaussian (1k) 8 8

Hotspot 8 4
Hotspot3D 16 8

LavaMD 60 25
NN 16 8
NW 512 256

Particle 1.5 0.25
Pathfinder 1024 0.6

Caffe

Mnist 284 279

CUDA
ROCm

Siamese 566 556
Cifar 1052 1050

Googlenet 3416 3400
Alexnet 5472 5470
Caffenet 4274 4274

TF Mnist 5460 5460 CUDA

Keras+
TF

Computer Vision (CV) 3316 3216

CUDA
Generative Deep Learning (GDL) 3974 3871

Graph NN (GNN) 2784 2780
Recommendation Systems (RS) 5310 5310

Table 2.3: Applications and their memory footprint.

use ROCm v4.1.0.

In our evaluation, we use a set of micro-benchmarks and real-world applications. We

use micro-benchmarks to evaluate the overhead Arax introduces compared to native ker-

nel execution and data transfers. For kernel execution, we use an empty kernel, without

computation and data. Regarding data transfers, we copy varying amounts of data from

the application to the accelerator via the Arax primitives.

2.3. Experimental Evaluation 23

Table 2.3 shows the real-world applications and their inputs/outputs used for our eval-

uation. Similar to AvA [113], we use applications from Rodinia [17] as well as model train-

ing and inference from Caffe [41] and TensorFlow [1] version 2.3.2. The last column of

Table 2.3 indicates the accelerator environment for which each kernel is available. We use

CUDA for NVIDIA, ROCm for AMD, and OpenCL for FPGA. Using optimized accelerator

kernels is orthogonal to our work.

For Caffe Mnist, Siamese, and Cifar, we use the datasets downloaded by the scripts

provided in the Caffe repository. For Caffe Googlenet, Alexnet, and Caffenet, we use the

ImageNet dataset [87]. For TensorFlow Mnist [50] we use the dataset in LeCun et. all [49].

For Keras, we use Computer Vision (CV), Generative Deep Learning (GDL), Graph Neu-

ral Networks (GNN), and Recommendation System (RS) applications, with the code and

datasets provided in the Keras repository [34]. Regarding Rodinia datasets, we increase

their size by 10× and the kernel execution time by 8×, compared to previous works [113]

because the default values are small for executing on a real system (as opposed to simula-

tion).

In all native application runs used as baselines, we add a warm-up phase that initiates

the accelerator and moves its power state from idle to maximum. With this warm-up, we

avoid the latency implied to the first accelerator call. The FPGA warm-up phase includes

the creation of the context, the command queue, the program, and kernel creation, while

it excludes the bitstream loading time. In runs with Arax, this warm-up phase is performed

by our server. We exclude this warm-up time from all our comparisons.

Finally, to evaluate accelerator sharing, we create a set of workloads with concurrently

running applications. These workloads are listed in Table 5.4 and contain a mix of compute-

and data-intensive applications. Workloads A-H use multiple instances of the same appli-

cation, while I-P include different applications.

2.3 Experimental Evaluation

Our evaluation tries to answer the following questions:

• What is the overhead of Arax for decoupling applications from accelerators (§2.3.1)?

24 Chapter 2. Decouple Applications and Accelerators

Workload id Description
Iterations per

instance (k)
Epochs per

instance
A 2xMnist 10 500
B 4xMnist 10 500
C 2xCifar 9 100
D 4xCifar 9 100
E 2xGaussian - -
F 4xGaussian - -
G 2xLavaMD - -
H 4xLavaMD - -
I Mnist-Siamese 100-50 5000-50
J Siamese-Cifar 12-9 30-100
K 2xMnist-Siamese-2xCifar 100-12-9 5000-30-100
L 3xMnist-Siamese-2xCifar 100-12-9 5000-30-100
M Hotspot-Guassian - -
N Gaussian-LavaMD - -
O Particle-Hotspot - -
P Gaussian-Hotspot-LavaMD-Particle - -

Table 2.4: Workloads for spatial sharing.

• How effective is accelerator sharing in Arax (§2.3.2)?

• What is the performance improvement of elasticity (§2.3.3)?

• What is the overhead of application migration (§2.3.4)?

• What is the overhead introduced by Arax in real-life ML frameworks (§2.3.5)?

2.3.1 Overhead of accelerator decoupling

In this section, we evaluate the performance of Arax with heterogeneous accelerators. We

use Rodinia [17], which offers OpenCL, ROCm, and CUDA kernels. To execute Rodinia

in Arax, we port the host code of its CUDA version. Figure 2.5 shows a breakdown of the

total execution time achieved for Arax and native execution. The breakdown consists of:

(i) the initialization phase, i.e., generation of application inputs, (ii) the accelerator calls,

i.e., memory allocations, memory transfers, and the actual kernel execution, and (iii) the

accelerator warm-up, i.e., an accelerator call that changes the accelerator power state. We

note that the warm-up time is not considered in our comparisons.

2.3. Experimental Evaluation 25

Ar
ax

BF
S

NA
T

Ar
ax

Ga
us

sia
n

NA
T

Ar
ax

Ho
tS

po
t

NA
T

Ar
ax

Ho
tS

po
t3

D
NA

T
Ar

ax
La

va
M

D
NA

T
Ar

ax
NN

NA
T

Ar
ax

NW
NA

T
Ar

ax
Pa

rti
cle

NA
T

Ar
ax

Pa
th

fin
de

r
NA

T0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(a) CUDA-NVIDIA GPU

Ar
ax

BF
S

NA
T

Ar
ax

Ga
us

sia
n

NA
T

Ar
ax

Ho

tS
po

t
NA

T
Ar

ax
La

va
M

D
NA

T
Ar

ax
NN

NA
T

Ar
ax

NW
NA

T
Ar

ax
Pa

rti
cle

NA
T

Ar
ax

Pa
th

fin
de

r
NA

T0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(b) ROCm-AMD GPU

Ar
ax

BF
S

NA
T

Ar
ax

Ga
us

sia
n

NA
T

Ar
ax

Ho
tS

po
t

NA
T

Ar
ax

Ho
tS

po
t3

D
NA

T
Ar

ax
La

va
M

D
NA

T
Ar

ax
NN

NA
T

Ar
ax

NW
NA

T
Ar

ax
Pa

rti
cle

NA
T

Ar
ax

Pa
th

fin
de

r
NA

T0

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(c) OpenCL-FPGA

Figure 2.5: Overhead of Arax compared to native (NAT) using Rodinia benchmarks over
heterogeneous accelerators.

Figure 2.5(a) shows the execution time of Rodinia when running on an NVIDIA GPU.

The relative performance of Arax is between 1% and 5% for all benchmarks, except NW

(78%) and Pathfinder (62%). The reason for that is the low computation-to-communication

ratio NW and Pathfinder exhibit. In particular, the computation-to-communication ra-

tio for NW is 0.3: 0.9 ms for computation over 3 ms for transferring data. Pathfinder is

0.12: 21 ms for computation over 179 ms for transferring data. The other Rodinia ap-

plications have more significant computation-to-communication ratios than Pathfinder.

For instance, Gaussian’s computation-to-communication ratio is 30: 330 ms for compu-

tation over 11 ms for transferring data. We run some Rodinia applications with varying

computation-to-communication ratios to validate our findings. For instance, Hotspot3D

transfers input data to the accelerator and performs a configurable number of passes upon

this data. The relative performance of Arax compared to native CUDA for ten iterations is

1.13×. As we increase the number of iterations to 100 and 1000, the relative performance

compared to native is 1.03× and 1.01×, respectively. The overall overhead of Arax is 5.5%

(geometric mean) for Rodinia applications, ranging from 1% up to 78%.

Figure 2.5(b) and Figure 2.5(c) show the total execution time of Rodinia when running

on an Intel FPGA and an AMD GPU accordingly. We observe that the relative performance

of Arax compared to AMD GPUs is 2% across all applications, except NW and Pathfinder

(8% and 55% respectively). Similarly, the performance for FPGA is up to 3% for all appli-

26 Chapter 2. Decouple Applications and Accelerators

cations, except NW and Pathfinder (9% and 14% accordingly).

The difference in relative performance between the NVIDIA GPU and the other two,

i.e., FPGA and AMD GPU, is because the kernel execution takes much less time in the

NVIDIA GPU. As a result, the computation-to-communication ratio is proportionally smaller

in NVIDIA GPUs than in the AMD GPU or the FPGA.

Cost analysis for kernel launch and data transfer To measure the overhead of a kernel

launch, we time the execution of an empty kernel. Since kernel launch is asynchronous,

we also place a barrier to ensure that the kernel has finished its execution. Figure 2.6 shows

the corresponding operations for the case of CUDA and Arax. As we can see, a simple

launch kernel in CUDA costs approximately 9000 CPU cycles, mainly because it involves

a system call. The device barrier operation, which is required to wait for the kernel to fin-

ish, costs about 2300 CPU cycles. On top of that, Arax introduces a constant overhead

of approximately 1500 CPU cycles that are always applied before the launch kernel. This

overhead is small compared to the duration of the actual launch kernel call and becomes

proportionally negligible as the kernel duration increases. This effect favors kernels run-

ning on AMD GPUs and Intel FPGAs since they exhibit a slower execution than NVIDIA

GPUs. For example, the NVIDIA GPU can execute Pathfinder 11× faster than the FPGA

and 2× faster on the AMD GPU. Thus, the overheads of Arax are less pronounced when it

is compared to native OpenCL (FPGA) and ROCm (AMD).

Launch
Kernel

Kernel
exec.

Device
Barrier

230009000

Issue
Task
1500

Arax Na�ve CUDA

Launch

Kernel

Kernel

exec.

Device

Barrier

Issue

Kernel

Figure 2.6: Breakdown of overhead for launching an empty kernel with Arax (CPU cycles).

To measure the overhead implied to a data transfer, we create a micro-benchmark that

transfers variable size data. On average, Arax is 1.7× slower than native CUDA, due to the

extra copy performed to the shared memory segment. In particular, to transfer 1 GB data

from an application to the accelerator, Arax requires 180 ms for the CUDA copy and an-

2.3. Experimental Evaluation 27

BFS

Gau
ssi

an

Hots
po

t

Lav
aM

D NN NW
Par

tic
le

Pat
hfi

nd
er

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Pe
rfo

m
an

ce
 (x

)

Arax AvA

Figure 2.7: Execution time normalized to native for Arax and AvA.

other 135 ms for the copy from the application to the shared memory. The extra copy in

the shared memory achieves 8.2 GB/ s throughput (measured by the STREAM [64] bench-

mark, using a single CPU-core). We note that this overhead affects primarily the applica-

tions that exhibit a low computation-to-communication ratio. As part of our future work,

we plan to use zero-copy between the applications and server address spaces to minimize

this overhead.

Arax vs AvA We use Rodinia to compare Arax and AvA [113], which is a state-of-the-art

framework for heterogeneous accelerators. Figure 2.7 shows the normalized execution

time to native for both Arax and AvA. Arax performs between 10%–32% better than AvA

for Gaussian, Hotspot, LavaMD, and Particle. This is because the overhead of task issue

in Arax is less than AvA. In AvA, every accelerator call goes through the hypervisor, which

is not the case for Arax. For NW and Pathfinder, Arax results in 78% and 62% more exe-

cution time than native. For these benchmarks, AvA introduces 40% and 3% overhead,

respectively, compared to native. These two applications have a low computation-to-

communication ratio, and the data copy in Arax across the application and server address

spaces becomes more pronounced. This indicates that zero-copy data transfers from the

client to server address space are necessary for applications with a low computation-to-

communication ratio.

28 Chapter 2. Decouple Applications and Accelerators

A B C D E F G H I J K L M N O P
0

500

1000

1500

2000
Ex

ec
ut

io
n

tim
e

(s
) Native

MPS
Arax

Figure 2.8: Effectiveness of sharing with NVIDIA GPUs for Arax, native (without MPS), and
MPS.

2.3.2 Effectiveness of accelerator sharing

We now compare Arax sharing with NVIDIA MPS [20], AMD, and FPGA sharing mecha-

nisms. Even though AMD GPUs do not provide any documentation regarding sharing, our

experimentation reveals that they offer spatial sharing by default. Intel Altera FPGAs do

not natively support spatial sharing; as a matter of fact, when an application starts, it binds

the FPGA, and all subsequent applications fail to start. Instead, with Arax, applications do

not have direct access to the FPGA; hence they do not acquire the FPGA exclusively, and

they can share its resources.

Figure 2.8 compares sharing mechanisms upon NVIDIA GPUs. We compare Arax (spa-

tial sharing) with MPS (spatial sharing) and native CUDA (time-slice sharing) using the

workloads listed in Table 5.4. The x-axis shows the different workloads, while the y-axis

shows the total execution time achieved. Overall, the execution time of Arax is compa-

rable to MPS. However, with four concurrent instances, workloads B, D, F, H, K, P, Arax

has between 4% and 20% less execution time. Even though we could not investigate the

reason behind this, due to the closed-source nature of NVIDIA MPS, we run further micro-

benchmarks with different GPU models, i.e., RTX 2080, V100, and TITAN V, with a varying

number of in-flight kernels and concurrent instances. This evaluation shows the same

performance improvement of Arax over MPS. To verify these findings, we disclosed them

to NVIDIA, which has confirmed them as two separate issues1.

1ID 3559606, ID 3350973

2.3. Experimental Evaluation 29

E F G H M N O P
0

20000

40000

60000

80000

100000

Ex
ec

ut
io

n
tim

e
(s

)

Native Single-KernelBS
Native Multi-KernelBS
Arax Multi-KernelBS

(a) Intel FPGA

E F G H M N O P
0

2000

4000

6000

8000

10000

Ex
ec

ut
io

n
tim

e
(s

)

Native
Arax

(b) AMD GPU

Figure 2.9: Effectiveness of sharing with Intel FPGAs and AMD GPUs for Arax and Native.
For FPGAs we compare Arax with a multi-kernel & a single-kernel bitstream.

Comparing Arax with native CUDA (time-slice sharing), we observe that Arax provides

31% (geometric mean) less execution time for all workloads. With four concurrent in-

stances, the performance improvement is more pronounced. In particular, Arax has be-

tween 1.32× and 2× less execution time compared to native.

Figure 2.9(a) shows the execution time when multiple applications use the same FPGA

for native (time-slice sharing) and Arax (spatial sharing). We examine two versions of na-

tive FPGA sharing: (a) The Single-KernelBS case in which the bitstream loaded to the FPGA

contains one kernel, and (b) the Multi-KernelBS case in which the bitstream contains mul-

tiple kernels. The drawback of the former is that the FPGA requires reconfiguration to

execute a kernel that is not in the current bitstream—an operation that costs about 15 s.

In the latter case, i.e., Multi-KernelBS, the execution time of an individual kernel, run-

ning standalone, increases due to conflicting requirements upon the bitstream compila-

tion. For instance, Gaussian execution takes about 9200 s when a single kernel bitstream

(Single-KernelBS) is used. For the multi-kernel case (Multi-KernelBS), the execution time

increases by 17% for the two kernel bitstream and by 52% for the four kernel bitstream.

The spatial sharing capability provided by Arax (Figure 2.9(a); Arax Multi-KernelBS) de-

creases execution time from 3% up to 85% compared to the single kernel bitstream (Fig-

ure 2.9(a); Native Single-KernelBS) and between 9% and 75% compared to the multi-kernel

bitstream (Figure 2.9(a); Native Multi-KernelBS). This improvement is because Arax allows

30 Chapter 2. Decouple Applications and Accelerators

applications to execute in parallel in the FPGA, while in the native case, the FPGA is time-

shared.

Comparing the native single kernel bitstream with the multi-kernel one, we observe

that the Single-KernelBS is between 6% - 50% faster than Multi-KernelBS for workloads E-

N. This happens because the reconfiguration time is less than the performance degrada-

tion implied by the conflicting requirements of Multi-KernelBS. For workload O (Particle-

Hotspot), Multi-KernelBS has 81% less execution time compared to Single-KernelBS. These

two kernels do not have conflicting requirements, so their performance degradation is

minimal compared to the FPGA reconfiguration time. As the number of reconfigurations

increases, as in workload P (Gaussian-Hotspot-Lava-Particle), it is worth packing kernels

in the same bitstream to avoid the reconfiguration overhead. In workload P, the execution

time of Multi-KernelBS is 40% less than Single-KernelBS.

Figure 2.9(b) compares Arax with AMD spatial sharing. Arax provides comparable per-

formance to the AMD native execution. In some workloads, such as M and N, Arax pro-

vides 45% and 66% performance improvement. Due to the limited information provided

by AMD, we extrapolate that there might be performance issues similar to NVIDIA MPS.

2.3.3 Performance gains of elasticity

Arax can opportunistically grow and shrink the number of homogeneous or heteroge-

neous accelerators provided to an application.

Elasticity with homogeneous accelerators To evaluate the performance of elasticity, we

modify a representative set of the Arax Rodinia applications to use multiple task queues

and, consequently, multiple accelerators. Figure 2.10 depicts the execution time of one

application, when increasing the amount of NVIDIA GPUs and the corresponding streams,

from one (1xgpu-1xstr) to two (2xgpu-2xstr). For this experiment, we use the S2 server

from Table 2.2, and each application creates eight task queues. The first GPU uses a PCIe

v3×8, while the second one uses a PCIe v3×16. Due to this heterogeneity aspect, we could

not see a linear performance improvement when using two GPUs.

2.3. Experimental Evaluation 31

LavaMD Gaussian Particle NW
0

500
1000
1500
2000
2500
3000
3500

Ex
ec

ut
io

n
tim

e
(m

s)

1xgpu-1xstr
1xgpu-2xstr
1xgpu-4xstr
2xgpu-1xstr
2xgpu-2xstr

Figure 2.10: Performance improvement of applications when increasing the number of
homogeneous accelerators or GPU streams.

Gaussian (1k) and LavaMD do not scale as the number of streams in a GPU increases

(1xgpu-1xstr, 1xgpu-2xstr, 1xgpu-4xstr). This happens because their kernels occupy al-

most all the GPU threads, so two or more kernels cannot execute in parallel in a GPU. On

the contrary, when we provide two GPUs (2xgpu-1xstr, 2xgpu-2xstr) to Gaussian, its execu-

tion time decreases by 1.35× compared to four streams in a GPU (1xgpu-4xstr). LavaMD

execution time decreases by 1.7× compared to four streams.

Particle execution time decreases as we increase the number of streams per GPU. In

particular, the execution time of two streams (1xgpu-2xstr) and four streams (1xgpu-4xstr)

compared to one stream (1xgpu-1xstr) decreases by 1.6× and 2.6×, respectively. This hap-

pens because four Particle kernels do not contend for resources in the GPU, and there is

not much serialization due to data transfers. The execution time in the two GPU setups

(2xgpu-1xstr) is comparable to the one GPU configuration with two streams (1xgpu-2str),

whereas it is 1.4× worst compared to the one GPU with four streams setup (1xgpu-4xstr).

Finally, NW execution time decreases by up to 16% when increasing the number of GPUs

and streams. NW scaling is limited because the computation-to-communication ratio is

small.

Elasticity with heterogeneous accelerators We now evaluate the elasticity over hetero-

geneous accelerators using the same applications as in homogeneous elasticity. We note

that these applications do not need any modifications due to Arax’s accelerator agnos-

tic API. Figure 2.11 shows the execution times of four representative applications using

32 Chapter 2. Decouple Applications and Accelerators

LavaMD Gaussian Particle NW
0

500
1000
1500
2000
2500
3000
3500

Ex
ec

ut
io

n
tim

e
(m

s)
FPGA
FPGA+NVIDIA
FPGA+2xstrNVIDIA+AMD
FPGA+NVIDIA+2xstrAMD

Figure 2.11: Performance improvement of applications when increasing the number of
heterogeneous accelerators or GPU streams.

multiple heterogeneous accelerators. Each application is running with the following con-

figurations selected by the Arax server: (a) 1xFPGA, (b) 1xFPGA and 1xNVIDIA, (c) 1xF-

PGA, 1xNVIDIA with two streams and 1xAMD, (d) 1xFPGA, 1xNVIDIA, and 1xAMD with

two streams, We use the S1 server and four task queues for each application. In this setup,

the Arax server at its startup initializes all the accelerators that exist in the server, and then

it assigns one or more accelerators in a round-robin fashion to each application according

to its parallelism.

As shown in Figure 2.11, the execution time of LavaMD, Gaussian, and NW decreases

by 2×when an NVIDIA GPU is used along with an FPGA, shown with the FPGA and FPGA+NVIDIA

bars. As we add more accelerators along with the FPGA, shown with the FPGA+2strNVIDIA+AMD

and FPGA+NVIDIA+2strAMD bars, the execution time of LavaMD, Gaussian, and NW de-

creases by 1.95×, 1.8×, and 1.3× compared to FPGA+NVIDIA, respectively.

Finally, we notice that the performance improvement of Particle between the FPGA

only setup and the setup with the FPGA and an NVIDIA GPU is only 2%. This is because the

execution in RTX 4000 is slower than in the FPGA. When we add more accelerators, shown

as FPGA+2strNVIDIA+AMD and FPGA+NVIDIA+2strAMD, the performance increases by

1.5× compared to the FPGA+NVIDIA setup.

2.3. Experimental Evaluation 33

2.3.4 Overhead of application migration

Arax’s application migration moves application tasks and their data across heterogeneous

accelerators. In this section, we evaluate migration overheads using Rodinia and Caffe

running over homogeneous and heterogeneous accelerators.

LowPriority HighPriority

sta
ndalo

ne
ela

stic
0

2

4

6

Ex
ec

ut
io

n
tim

e
(s

)

(a) 134 MB

sta
ndalo

ne
ela

stic
0

20

40

60

Ex
ec

ut
io

n
tim

e
(s

)

(b) 514 MB

sta
ndalo

ne
ela

stic
0

200

400

600

Ex
ec

ut
io

n
tim

e
(s

)
(c) 2 GB

Figure 2.12: Effectiveness of migration when decreasing the accelerators provided to a low-
priority application upon the arrival of a high-priority one. We compare elasticity with the
standalone execution in which applications are statically assigned to accelerators. We use
datasets from 134 MB up to 2 GB.

Application migration with homogeneous accelerators We use the Gaussian applica-

tion and the S2 server to evaluate our migration mechanism. To increase/decrease the

accelerators assigned to an application, we require an assignment policy. We use the elas-

tic assignment policy described in §2.1.2. We run two applications, one with low-priority

and one with high-priority. The low-priority application starts first, and the high-priority

arrives after a while. In the standalone setup, the low-priority application is statically as-

signed to an accelerator (A1) while the second accelerator is idle (A2). When the high-

priority arrives, it is assigned to A2. With elasticity enabled, the low-priority application

initially uses both A1 and A2 since the load is low. Upon the arrival of the high-priority ap-

plication, the accelerator selector shrinks the resources provided to the low-priority one.

The accelerator selector uses the Arax application migration mechanism to move the low-

priority application state to A1. Now the low-priority application uses A1, while the A2 is

34 Chapter 2. Decouple Applications and Accelerators

freed for the high-priority one.

Figures 2.12(a), 2.12(b), and 2.12(c) show the execution time for applications with datasets

from 134 MB up to 2 GB. We compare elasticity with the standalone execution time. Fig-

ure 2.12 shows that the execution time of the high-priority application increases by only

7% compared to standalone execution. The execution time of the low-priority application

decreases slightly since it uses more resources at the beginning of its execution. By break-

ing down the overhead of our migration mechanism, we observed that 80% of the total

time is spent in the first data transfer from the accelerator to the server memory. This data

transfer must wait for all the issued kernels (approximately 600 in-flight kernels) in the ac-

celerator hardware queue to finish, and then it can start transferring data. The Gaussian

kernel execution time increases as we increase the data size from 134 MB to 2 GB. The av-

erage kernel duration is 550 μs with 134 MB and 12 ms with 2 GB. As a result, the waiting

time of the transfer call increases; for the 134 MB, the transfer has to wait for 0.33 s, i.e.,

600 kernels × 550 μs, whereas for the 2 GB, it waits for 9 s, i.e., 600 kernels × 15 ms. We can

use kernel preemption [80] to reduce the waiting time of our migration mechanism, but

this is beyond the purpose of this chapter.

Application migration for tasks with dependencies and heterogeneous accelerators Now

we evaluate the effectiveness and overheads of our migration mechanism for applications

containing tasks with dependencies. Frameworks, such as Caffe, may not have kernels for

all accelerator types. In particular, Caffe cannot run on AMD GPUs or FPGAs since BLAS

is not supported for these two accelerators.

To emulate this scenario, we run Mnist, Siamese, and Cifar (with ten epochs) using

the NVIDIA GPU as the primary accelerator and executing some kernels in the CPU, AMD

GPU, and Intel FPGA, as a “helper accelerator”. We execute im2col and col2im kernels

to the helper accelerator in all setups. Regarding the FPGA, we implement the im2col

and col2im using OpenCL. In all setups, a migration is triggered every time an im2col or

a col2im task is popped by the main accelerator. The Arax server checks for every task

if the current accelerator thread has the kernel required from that task. If the required

kernel is not in the server stub of an accelerator thread, the accelerator selector sets the

2.3. Experimental Evaluation 35

Execution units Mnist Siamese Cifar
NVIDIA-CPU 202 401 520
NVIDIA-AMD 100 213 213
NVIDIA-FPGA 248 N.A. N.A.
CPU only (single-core) 190 378 490
NVIDIA only 7 13 19

Table 2.5: The execution time (seconds) of Caffe when the execution is migrated from
the NVIDIA GPU to another accelerator. CPU only and NVIDIA only represent the native
execution without migrations.

task queue to another accelerator that supports this kernel. The task queue re-assignment

triggers data migrations. Consequently, we perform 380k migrations for Mnist (380k times

an im2col and a col2im were not supported), 760k for Siamese, and 890k for Cifar.

Table 2.5 shows the execution time of Caffe running over heterogeneous accelerators.

By comparing the NVIDIA-CPU execution with the native execution using only the CPU,

we observe 6% performance degradation due to migrations. On the other hand, by com-

paring the NVIDIA-CPU, NVIDIA-AMD, and NVIDIA-FPGA with the setup that uses only

the NVIDIA GPU (without migrations), the performance is much worse, mainly due to the

performance of the kernels to other accelerators. FPGA kernels (im2col, col2im) run 10×

worst than the NVIDIA GPU since they are un-optimized.

2.3.5 Overhead for Caffe and TensorFlow

Native Manual-porting Autotalk

Mnist Siamese Cifar
0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) Train: 10 Epochs

Mnist Siamese Cifar
0

150

300

450

600

750

Ex
ec

ut
io

n
Ti

m
e

(s
)

(b) Train: 100 Epochs

Googlenet Alexnet Caffenet
0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(h
ou

rs
)

(c) Train: Caffe Models

Figure 2.13: The overheads of Arax using manual-porting and Autotalk (automatic stub
generation) compared to native CUDA for Caffe using ML training.

36 Chapter 2. Decouple Applications and Accelerators

Native Manual-porting Autotalk

Mnist Siamese Cifar
0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) Inference: 1000 Iterations

Mnist Siamese Cifar
0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(s
)

(b) Inference: 10000 Iterations

Figure 2.14: The overheads of Arax using manual-porting and Autotalk (automatic stub
generation) compared to native CUDA for Caffe using ML inference.

In this section, we examine the applicability of our API to complex, real-life ML frame-

works and the performance achieved. Arax provides a complete API that can be used di-

rectly from new applications (manual-porting) and Autotalk that can be used to auto-port

complex frameworks, such as Caffe and TensorFlow. Figures 2.13 and 2.14 show manual-

porting, Autotalk, and native CUDA execution time when executing the Caffe framework.

We show the training phase with ten epochs of three networks Mnist, Siamese, and Cifar

(Figure 2.13(a)). The relative performance of manual-porting compared to native CUDA

is between 3% and 17%. With more than ten epochs, as Figure 2.13(b) shows, the execu-

tion time increases between 9% and 28%. This slight increase (less than 9%) is because the

number of data transfers increases with more epochs. To find the maximum performance

degradation regarding training, we run Googlenet, Alexnet, and Caffenet, which perform

thousands of epochs and use gigabytes of data. Figure 2.13(c) shows manual-porting and

the native CUDA execution time (in hours) for Googlenet, Alexnet, and Caffenet. The per-

formance degradation of manual-porting is between 13% and 28%. The geometric mean

of the overhead implied to all Caffe applications is 12.5%.

Figures 2.14(a) and 2.14(b) present the inference phase for manual-porting, Autotalk,

and native CUDA. We run inference for Mnist, Siamese, and Cifar with 1k and 10k itera-

tions. The maximum performance degradation for 1k iteration of manual-porting com-

pared to native is 30% with Cifar. For 10k iterations, the degradation is between 24% and

2.4. Summary 37

Mnist CV GDL GNN RS
Native CUDA 49 190 27 51 235
Autotalk 80 240 28 54 250

Table 2.6: The execution time (seconds) of TensorFlow and Keras for Autotalk and native
CUDA.

42%. As explained, the increase in the execution time of manual-porting compared to na-

tive CUDA is due to the data transfers. Autotalk adds a minimal overhead compared to

manual-porting up to 16%. This happens because with manual-porting we can use fewer

barriers and decrease the times that the application blocks. The geometric mean of the

overhead implied to all TensorFlow applications is 12.9%.

We use Autotalk to convert TensorFlow and Keras to Arax API. To evaluate the correctness-

completeness of Autotalk, we run the unit-tests of TensorFlow, achieving 90% coverage.

We also run Mnist and a representative set of Keras applications for the vanilla case, and

Arax: some preliminary results are presented in Table 2.6. Our findings suggest that Arax

and Autotalk can transparently handle complex, real-life frameworks without significant

effort.

2.4 Summary

This chapter, Arax, a runtime that decouples applications from low-level accelerator op-

erations, such as accelerator selection, memory allocation, and task assignment. Arax

provides three main capabilities: (a) It assigns application tasks dynamically to different

accelerators at runtime and performs all required accelerator memory management in-

ternally. (b) It offers fine-grain spatial sharing that improves the utilization of multiple

heterogeneous accelerators. (c) It can perform live application migration across heteroge-

neous accelerators without application modifications or specialized accelerator support.

To reduce porting effort, it provides Autotalk, a stub generator that allows linking existing

applications, such as TensorFlow and Caffe, to the Arax runtime library with minimal user

intervention.

Our evaluation using real-world applications shows that Arax introduces 12% overhead

38 Chapter 2. Decouple Applications and Accelerators

(geometric mean) compared to native execution. Regarding accelerator sharing, Arax im-

proves the execution time up to 20% compared to NVIDIA MPS. Also, its elastic resource

assignment reduces total application turn-around time by up to 2× compared to the exe-

cution without elasticity support.

Spatial accelerator sharing requires a single accelerator context (common address space)

provided by Arax server. However, this common address space exposes application data

to other applications that share the same accelerator, leading to security issues. Time-

sharing due to context switching resolves this issue at the cost of under-utilization and

application latency increase.

Chapter 3

Simplify FPGA Accessing & Sharing

This chapter presents a software layer between FPGAs and applications that reduces com-

munication complexity between application software and accelerator hardware and al-

lows sharing of FPGA across applications. Our approach, named VineTalk –ancestor of

Arax, allows applications to access accelerators (i.e., GPUs and FPGAs) transparently, whether

they run natively on a server, within virtual machines, or in containers. In this work, we

focus on FPGA sharing among different applications that use the same FPGA configura-

tion, and we leave the complete virtualization of FPGAs with dynamic reconfiguration on

top of our device-sharing infrastructure as future work. Our system consists of two major

components: a Communication Layer (transport layer in Arax) that implements the vir-

tual accelerators (task queues in Arax) and a Software Controller (the Server in Arax) that

runs as a user-level process and controls/schedules all accesses to the accelerator. Appli-

cations communicate with the virtual accelerators using Software-facing API (client-side

API in Arax), while the Software Controller with accelerators, by the Hardware-facing API

(used by accelerator threads in Arax), is integrated with the Xilinx SDAccel development

environment.

In summary, our work makes the following specific contributions:

1. A Software-facing API, which exposes FPGA accelerators as task queues to applica-

tions.

2. A Hardware-facing API, simplifies the porting of kernels for hardware developers.

39

40 Chapter 3. Simplify FPGA Accessing & Sharing

ApplicationsApp 1

V
in

e
Ta

lk

Software
API

Communication
Layer

VA1

Software
ControllerThread Thread

VA2

Hardware
API

FPGA

SDAccel

GPU

CUDA

Communication
Layer

VA1

Software
ControllerThread Thread

VA2

Hardware
API

FPGA

SDAccel

GPU

CUDA

App 2

Figure 3.1: Design overview of VineTalk. VA represent VineAccelerator (described in Sec-
tion 3.1.2)

3. A software controller that facilitates sharing of acceleration resources.

4. Integration with the SDAccel framework of Xilinx.

We implement VineTalk for Linux servers using 4700 lines of C code. We demonstrate

VineTalk’s FPGA abstraction capabilities with a financial application running on a Xilinx

ADM-PCIE-KU3 FPGA device. The simplicity of the VineTalk API reduces applications’

code by 30% in terms of lines of code. Our results show that applications, that use VineTalk

to access the SDAccel framework have a performance overhead from 0.9% up to 4% com-

pared to their native execution. Moreover, for applications that share the same accelerator,

the overhead is 0.02 %.

3.1 VineTalk Design

Our design consists of a Software-facing API (§ 3.1.1), Hardware-facing API (§ 3.1.4), a

Communication Layer (§ 3.1.2) based on shared memory and a Software Controller (§ 3.1.3).

Figure 3.1 presents the design of VineTalk.

3.1.1 Software Facing API

Our Software-facing API replaces the multitude of all platform-specific acceleration APIs,

all of which provide functions that handle memory management and data and task trans-

3.1. VineTalk Design 41

VineTalk
Software-facing API

Description
Arax client-side
API equivalent

vine kernel get() (Re)Configures an FPGA by loading a kernel from the local repository N.A.
vine va get() Allocates a VineAccelerator that is capable of executing a specific kernel a acquire()

vine buffer init()
Creates a VineBuffer which describes the input and output data for
the kernel in the app’s address space

a allocate()

vine task issue() Invokes a kernel to a VineAccelerator using one or more VineBuffer a issue()

vine task wait()
Waits for a task to complete. After completion, VineBuffers are
updated with computation results

a wait()

Table 3.1: Main methods of the Software-facing API and comparison with Arax client-side
API.

fers between applications and hardware accelerators. The implementation of the API is

completely decoupled from accelerator details. VineTalk achieves this by using three main

abstractions: VineAccelerators, VineTasks, and VineBuffers.

A VineAccelerator is a virtual accelerator that can execute kernels to one or more phys-

ical accelerators. When a VineAccelerator is created by an application, the application

specifies the kernel that it needs to execute, which we assume that is preloaded in a repos-

itory in VineTalk local node. There is no limit on the number of VineAccelerators that an

application can invoke. Although VineTalk can remove unused kernels from the FPGA and

instantiate new kernels as requested by applications, we do not explore this further. After

a VineAccelerator has been allocated, an application can issue VineTasks. Different from

Arax that tasks and data are separate to support ML frameworks, a VineTask represents a

kernel with its input/output data. VineTasks are not statically mapped to a physical accel-

erator; the controller assigns them dynamically. Consequently, a single physical accelera-

tor can achieve higher utilization by executing VineTasks from multiple VineAccelerators.

VineBuffers are used to handle the data transfer between an application address space to

the physical accelerator transparently. The Software-facing API enables applications to

access these abstractions through a set of methods, presented in Table 3.1.1.

3.1.2 Communication Layer

VineTalk’s Communication Layer implements and manages VineAccelerators and VineB-

uffers. Applications run as separate processes (or VMs) from the Software Controller in

a single node. Therefore, VineBuffers and VineTasks must be transported across address

42 Chapter 3. Simplify FPGA Accessing & Sharing

spaces. To achieve this, we use a shared memory-based transport. VineTalk uses shared

memory to store all VineTasks and VineBuffers. The advantage of shared memory within a

server is that after the setup phase, there is no need to use system calls. This transport ap-

proach relies on shared segments that can be mapped across native processes, containers,

and VMs. Our shared memory approach currently introduces two additional copies to the

shared memory segment when sending/receiving data to/from the accelerator memory,

as shown in Figure 3.2.

Figure 3.2: Buffer transfers necessary for an inout argument over VineTalk, SDAc-
cel/CUDA, sockets protocols/APIs.

3.1.3 Software Controller

The Software Controller is a process that controls all accesses to the underlying hardware.

It monitors VineAccelerators for issued VineTasks and utilizes VineBuffers to retrieve the

inputs and store the outputs. Moreover, it enables accelerator sharing since it offloads

multiple VineAccelerators to the same accelerator. The Software Controller assigns a UNIX

thread (i.e., accelerator thread) to each physical accelerator in the system. This accelerator

thread first selects the VineAccelerator that will serve, based on a scheduling policy (cur-

rently round-robin). Second, it pops the first VineTask from the selected VineAccelerator ,

and executes it to its physical accelerator. Then, it copies the result to the shared memory

segment and serves the next VineAccelerator .

3.2. Integration with SDAccel 43

3.1.4 Hardware Facing API

VineTalk allows hardware designers to incorporate new kernels by using mainly two func-

tions: VT2Accel() and Accel2VT(). VineTalk currently provides a number of different im-

plementations of this simple API to cover kernels for different accelerators, including FP-

GAs and GPUs. For FPGA devices, VineTalk implements this API in OpenCL and SDAccel,

whereas for GPU devices, VineTalk implements this API in OpenCL and CUDA. Porting ap-

plications to VineTalk consists of two steps; The first is to create a VineTalk library for each

kernel and for each VineTalk library to create a function that contains the kernel invoca-

tion. The second is modifying the application to replace all accelerator-related functions

with the corresponding methods from the Software-facing API. VT2Accel() prepares the in-

put data for an accelerator kernel. A hardware designer is expected to provide this method

for each new kernel. The function allocates input VineBuffers on the accelerator memory

and copies the contents of VineBuffers of the communication layer. The method will then

be used prior to kernel execution by the host controller. Similarly, Accel2VT() is called once

after the kernel execution finishes. Its goal is to send the output back to VineBuffers and

to release the reserved acceleration memory.

3.2 Integration with SDAccel

Xilinx has released the SDAccel framework, a development environment for OpenCL ap-

plications that targets Xilinx FPGA-based accelerator cards. It provides an interface be-

tween software applications and FPGA devices. The application consists of a host program

written in C/C++ and one or more accelerated kernels written in C, C++, or the OpenCL

language that run on the underlying FPGA board.

VineTalk intervenes between the application software side and the hardware side of

SDAccel and simplifies the development of applications that use FPGA accelerators and

incorporate new FPGA kernels into applications. The SDAccel-specific implementation of

the Hardware-facing API (§ 3.1.4) allows any SDAccel kernel to be used with applications

using VineTalk, with no hardware dependencies. To evaluate the coding effort benefits

44 Chapter 3. Simplify FPGA Accessing & Sharing

VineTalk User Code
(sAPI)

SDAccel VineTalk Hardware Code
(hAPI)

vine_talk_init();
vine_tq tq = vine_tq_get(FPGA);
vine_kernel krnl = vine_kernel_get(“Kernel”);

vine_buffer_s vine_input = VINE_BUFFER(&input,
input_size_bytes);
vine_buffer_s vine_output = VINE_BUFFER(&output,
output_size_bytes);

VT2Accel(task);

vine_task task = vine_task_issue(tq,krnl,input,output); xcl_run_kernel3d(world, krnl, 1, 1, 1);

vine_task_wait(task);

Accel2VT(task);

vine_talk_exit(); // Undo Accelerator initialization

clReleaseKernel(*krnl);

xcl_release_world(*world);

// User buffers
�oat *input = (�oat *) malloc(input_size_bytes);
�oat *output = (�oat *) malloc(output_size_bytes);

// Accelerator specific initialization
const char *target_vendor = "Xilinx";
const char *target_device_name = "xilinx:adm-pcie-ku3:1ddr:3.0";
const char *target_kernel = "Kernel";
const char* xclbinFilename = "Kernel.xclbin";
*world = xcl_world_single(CL_DEVICE_TYPE_ACCELERATOR,
 target_vendor,target_device_name);
*krnl = xcl_import_binary(*world, xclbinFilename, target_kernel);

// Accelerator buffer allocation
cl_mem sda_input = xcl_malloc(*world, CL_MEM_READ_ONLY,
input_size_bytes);
cl_mem sda_output = xcl_malloc(*world, CL_MEM_WRITE_ONLY,
output_size_bytes);

// Input buffer copy
xcl_memcpy_to_device(world,sda_input,input,input_size_bytes);
clSetKernelArg(krnl, 0, sizeof(cl_mem), &sda_input);

// kernel execution
xcl_run_kernel3d(world, krnl, 1, 1, 1);

// Copy of results - will block until execution completes
xcl_memcpy_from_device(world, output, sda_output, output_size_bytes);

// Free user buffers
free(input);
free(output);

// Free Accelerator memory
clReleaseMemObject(bufs->spot);
clReleaseMemObject(bufs->strike);

Figure 3.3: VineTalk integration with SDAccel.

of VineTalk, we port three financial applications, Black&Scholes, Black-76, and Binomial

(described in Section 3.3). We use SDAccel to build three hardware-accelerated variations

of the algorithms above. We also wrote and evaluated a simple application, which inter-

faces with those kernels, submits tasks and data, and reports the results. To port an SDAc-

cel application, we create a VineTalk library for each kernel. We use the Hardware-facing

API for each library to simplify the kernel invocation. Moreover, on the application side,

we replace all SDAccel-specific functions with the corresponding methods from VineTalk’s

Software-facing API. The resulting application consists of 30% fewer lines of code and uses

semantically much simpler routines. 3.3 shows a snapshot of the two versions of the soft-

ware side of the Black&Scholes application, before and after the use of VineTalk, indicating

that the use of VineTalk simplifies application software.

3.3. Performance Evaluation 45

3.3 Performance Evaluation

3.3.1 Experimental Setup

For our experiments, we use one Intel(R) Core(TM) i5-4590 machine running at 3.3GHz,

with 16 GBytes of DRAM, and one ADM-PCIE-KU3 FPGA Alpha Data board, with 16 GB

DDR3, connected to PCI Express® Gen3 x8. The system runs CentOS 7 with SDAccel ver-

sion 2016.4.

 0.99
 1

 1.01
 1.02
 1.03
 1.04
 1.05

1 2 4 8 16 32 64 128 256 512N
or

m
al

iz
ed

 jo
b

ex
ec

ut
io

n
tim

e

Batch size

Native
Black Scholes

Black-76
Binomial

Figure 3.4: Performance comparison between VineTalk-applications, and their standalone
execution over SDAccel. The x-axis is the stock batch size, the y-axis is the normalized job
execution time in msec.

In our evaluation, we use three financial kernels: Black&Scholes, Black-76, and Bi-

nomial. Black&Scholes gives a theoretical estimate of the price of European-style op-

tions and can also be used for American-style call options. Black-76 is a variant of the

Black&Scholes model. Binomial option pricing quantizes the time and price of an under-

lying asset and maps both to a binary tree. We perform each experiment with 2000 options

and varying batch sizes between 1 and 512. The batch size represents the number of con-

secutive options transferred from the application space to the FPGA’s memory in a single

transfer. We exclude from our results the FPGA reconfiguration overhead, which amounts

to 6.15 sec.

Black&Scholes and Black-76 have four inputs and one output per stock, and with a

batch size of one, the input size of a batch is 16 bytes (4 x 4 bytes), and the output size is

46 Chapter 3. Simplify FPGA Accessing & Sharing

4 bytes. On the contrary, Binomial uses five inputs and one output, and for batch size of

one, the input size of each batch is 20 bytes (5 x 4 bytes), and the output size is 4 bytes.

3.3.2 VineTalk overhead

We compare the execution of the applications above with VineTalk versus the standalone

SDAccel execution (Native) to identify VineTalk’s overhead. Figure 3.4 presents the nor-

malized job execution time in milliseconds. Job execution times are averages over 20 runs

after removing the minimum and maximum values. VineTalk adds negligible overheads

for small batch sizes while it adds a slight penalty for larger ones, as shown in Section 3.4.

For Black&Scholes and Black-76, the overhead added from VineTalk is between 0.5% and

4% when the batch size is 512, while for batch sizes between 1 and 32, the overhead is neg-

ligible. Binomial has an overhead between 0.45% and 0.9% for all batch sizes. In all cases,

the main source of the overhead is the two additional data copies (inputs and outputs)

required by VineTalk in the shared memory segment. However, although the overhead of

those transfers is constant for most experiments, as they transfer similar amounts of data

in aggregate, the impact on the execution of each experiment varies.

Runs with larger batch sizes take significantly (by up to two orders of magnitude) less

time to execute, and thus, they become more sensitive to the overhead of memory trans-

fers. Table 3.2 demonstrates this difference in the execution time for various batch sizes.

The table summarizes the overall application execution time for two batch sizes, 1 and

512, for Native and VineTalk. As the batch size increases, both systems’ application per-

formance increases significantly. VineTalk incurs the lowest overhead with the Binomial

application because it has longer task execution times (and thus a lower communication-

to-computation ratio) when compared to the other kernels. Black&Scholes and Black-76

are less compute intensive than the Binomial kernel. Which results to greater transfer

to compute a ratio of Black&Scholes and Black-76 than the Binomial. Consequently, the

extra copies have a stronger effect on the execution time of VineTalk.

3.3. Performance Evaluation 47

Benchmark
VineTalk (s) Native (s) Overhead (%)

Batch 1 Batch 512 Batch 1 Batch 512 Batch 1 Batch 512
Black Scholes 0.39 0.0012 0.38 0.0012 2.56 2.43
Black-76 0.808 0.0018 0.08 0.0014 0.618 4.27
Binomial 256 0.514 254 0.509 0.5 0.97

Table 3.2: Overall application execution time (seconds) and Overhead (%) with 2000 op-
tions and batch sizes 1 and 512.

jobs
Black Scholes Black-76 Binomial

Native
(ms)

VineTalk
(ms)

Ratio
Native
(ms)

VineTalk
(ms)

Ratio
Native
(ms)

VineTalk
(ms)

Ratio

1 9.912 9.88 0.99 18.849 18.47 0.98 5128 5176 1.009
2 9.952 9.68 0.97 18.935 18.39 0.97 5113 5218 1.02

Table 3.3: Comparison of the job execution time of 1 and 2 concurrent VineTalk applica-
tion(s) with applications running directly on the FPGA (i.e. Native).

3.3.3 Accelerator time-sharing

To evaluate the impact of accelerator sharing, we run up to two instances (jobs) of each

application concurrently. Limitations of the current testbed, specifically the number of

cores, do not allow us to run more concurrent instances. Concurrent job execution is pos-

sible only with VineTalk, which can interleave tasks belonging to different applications.

For Native, we execute the two applications sequentially, one after the other. In each ex-

periment, all application instances invoke the same kernel. Each run (i.e., the sum of one

or two applications) consists of 2000 options, and the batch size is 50. In the first run (with

one job), the job consists of 2000 options, whereas in the second run, the two concur-

rent jobs, consists of 1000 options. Table 3.3 compares the total serialized execution time

(i.e., Native) with VineTalk-powered total execution time. We also present the Native to

VineTalk total execution time ratio.

For all applications, the execution time ratio is very close to one. Consequently, the

overhead added from VineTalk is negligible. For Black & Scholes and Black-76, the VineTalk

to Native job execution time ratio for two concurrent jobs is 0.97, and 1.02 for the Binomial

application. Thus multiplexing applications with VineTalk do not introduce overheads.

48 Chapter 3. Simplify FPGA Accessing & Sharing

3.4 Summary

This chapter demonstrates how FPGAs can be used transparently in datacenter servers.

In particular, we present how multiple applications can share FPGAs. We design and im-

plement VineTalk, a system that provides a hardware-agnostic abstraction and is designed

to be used with different accelerators, including FPGAs and GPUs. VineTalk uses an RPC-

like API and a communication channel based on shared memory to allow low-overhead,

shared access from applications to accelerators. Our approach is orthogonal to FPGA par-

titioning and can allow multiple applications to share each partition in an FPGA. Our re-

sults show that VineTalk reduces both programmer effort at the application level by re-

ducing lines of code related to kernel invocation by about 30% with significantly simpler

semantics and introduces overhead between 0.9% and 4% compared to native application

execution over the FPGA. Finally, VineTalk provides the ability of accelerator sharing from

consolidated applications, with less than 2% overhead.

Chapter 4

GPU Kernel Revocation

Our goal in this chapter is to guarantee that user-facing tasks with execution time in mil-

liseconds will meet their SLA target in the presence of long-running batch tasks with exe-

cution time in the range of seconds. Previous work on GPU preemption [106, 68, 116, 88]

does not provide bounded latency and requires the kernel’s source code. To tackle this is-

sue, we design and implement TReM as a part of Arax (server). TReM is a revocation mech-

anism that overcomes the problems of existing preemption approaches. TReM stops a task

by aborting its currently executing kernel without saving any state and replays it later.

The first challenge is to stop the executing kernel at any point of its execution, pro-

viding bounded latency. To achieve this, TReM stops the kernel from inside the GPU. In

particular, we start the actual kernel from a wrapper kernel using CUDA dynamic paral-

lelism [43]. After issuing the actual kernel, the wrapper kernel polls a revocation flag on

CUDA unified memory and calls asm(trap) to abort the execution of the actual kernel

when the host sets the revocation flag.

The second challenge is eliminating the variable latency of moving task state from GPU

to host. TReM avoids saving any state of the currently running task to host memory to

reduce overhead and latency. Instead, TReM replays revoked tasks. To reduce the replayed

work in task granularity, TReM selects to revoke tasks with the latest start time.

We design and implement a runtime scheduler in the VineTalk software controller

(i.e., server) that prioritizes user-facing over batch tasks, instructs TReM when to revoke

batch tasks, and can manage multiple GPUs in a single node. We design and develop

49

50 Chapter 4. GPU Kernel Revocation

two scheduling policies, Priority and Elastic. Priority tries to allocate a GPU for every

user-facing task. As a result, Priority+TReM may revoke as many batch tasks as the num-

ber of newly arrived user-facing tasks. Elastic dynamically computes a minimum num-

ber of accelerators needed to sustain the SLA and devotes the remaining accelerators to

batch tasks. Effectively, Elastic+TReM results in fewer revocations, i.e., less work to be

re-executed. If there is a need to limit the wasted work for long-running applications,

e.g., executing for days, TReM can also be coupled with existing checkpointing mecha-

nisms [52, 16], as discussed in Section 4.5.

Our evaluation shows that TReM revokes an executing kernel in 5ms, while the next

kernel requires another 17ms to start (22ms in total). As Section 4.4.1 explains, the 22ms

depend on the CUDA runtime. TReM adds negligible overhead to non-revoked tasks and

consumes minimal resources in modern GPUs, as discussed in Section 4.4.1. Our experi-

mental results from a real testbed and realistic workloads show that using TReM allows us

to meet the SLA for 98% of user-facing tasks in the presence of long-running batch tasks

under 89% GPU utilization. Wasted work due to revocations is only 3% of the total user-

facing and batch execution time.

The specific contributions of this chapter are:

1. We design TReM, a task revocation mechanism (§ 4.1) that i) exhibits constant and

low overhead, independent of task size and memory footprint, ii) avoids kernel re-

compilation, iii) incurs zero overhead to non-revoked tasks, and iv) can be deployed

to all NVIDIA state-of-the-art GPU architectures.

2. We evaluate TReM using two scheduling policies (§ 4.2), Elastic and Priority, in a real

system with four (4) GPUs and show the benefits of revoking batch tasks.

3. We use simulation to examine how our approach scales with an increasing number

of GPUs and how it behaves under different revocation latencies.

4. We develop a workload generator (§ 4.3) that generates workloads with different

characteristics, such as execution times, ratio of batch to user-facing tasks, memory

usage, and task inter-arrival time.

4.1. TReM revocation mechanism 51

CUDA cores Scheduler threadC

GPU

TReM

wrapper
kernel

actual kernel

5.issue

GPU memory

Scheduler p1

 p2

4.launch

Unified Memory

revoke flag
context

p1

Host memory

Process
pool

Host

1.push 3.send

Task
queues

6.pollC C C C

C C C C

2.pop

context
p2

A
p
p
lic

a
ti

o
n
s

(a) Start a CUDA kernel

GPU

TReM

wrapper
kernel

actual kernel

3.asm(trap)

Scheduler p1

 p2
7.la

unch

Unified Memory

revoke flag
context

p1

Host memory

Process
pool

Host

push

new task
6.send6.send

Task
queues

A
p
p
lic

a
ti

o
n
s

C C C C

C C C C

pop 4a.kill

4b.u
nusa

ble
GPU memory

context
p2

context
p2

1.set

new w
ra

pper

5.detect kernel stop

2.detect

(b) Stop a CUDA kernel

Figure 4.1: TReM overview. The scheduler is part of the Arax server.

4.1 TReM revocation mechanism

TReM revokes the currently executing task by killing its kernel and replays it later using the

information maintained at the host. In this work, as in VineTalk, a task consists of kernels

with their input and output data.

Table 4.1: Latency of different methods to revoke/preempt a kernel running on a GPU.

Kernel dimensions Total threads
Latency (ms)

Process kill asm(exit) TReM
kernel<16,16> 256 3000 130 22
kernel<32,32> 1024 3000 195 22
kernel<64,64> 4096 3000 600 22
kernel<128,128> 16384 3000 1430 22

There are three ways to stop the execution of a running kernel; (1) Kill the issuing

process on the host, (2) use asm(exit), and (3) use asm(trap). Each host process that

performs a CUDA call is associated with a CUDA context. When killing the host process,

option (1), the NVIDIA driver clears the killed kernel context and prepares the CUDA envi-

ronment to be functional. We evaluate this approach while designing TReM, and we find

that killing a process introduces a delay of up to 3s to the next kernel (Table 4.1).

Option (2) is to use asm(exit), which is normally called when a kernel uses return, ter-

minating the execution of the current thread. We measure the performance of asm(exit)

for various kernel dimensions, i.e., threads and blocks. Table 4.1 shows that when the

number of threads increases, the latency of asm(exit) increases significantly. This is be-

cause the GPU must wait for all kernel threads to exit. Typical kernels launch thousands

52 Chapter 4. GPU Kernel Revocation

of thread blocks with hundreds of threads each [106], which can incur a delay of several

seconds. For instance, Table 4.1 shows that for a kernel dimension of <128, 128>, the

latency of this mechanism is almost 1.5s. Consequently, asm(exit) cannot provide low

revocation latency. For Table 4.1, we run each experiment 20 times with the same setup as

in Section 4.3.1. To measure the revocation/preemption latency, we start a timer when a

kernel is issued and stop it when the next kernel (the kernel after the revoked/preempted

kernel) starts its execution in the GPU.

TReM uses asm(trap), option (3), to abort the kernel execution. Commonly, asm(trap)

is called when a kernel-code assertion fails, and the CUDA context of the issuing process

is unusable; thus it cannot be used for subsequent CUDA calls. Calling asm(trap) results

in immediate termination of the kernel, with constant latency, as we discuss next.

4.1.1 Revoking a kernel with TReM

Figure 4.1 shows an overview of TReM. Applications use task queues to issue tasks to the

scheduler. This scheduler runs in a different process context from the applications and

manages a GPU using a scheduler thread. If multiple GPUs exist in a node, the scheduler

spawns multiple scheduler threads, as Section 4.2 explains. A scheduler thread is respon-

sible for dequeuing tasks from a selected queue and issues task kernel to its GPU based on

a policy. Moreover, the scheduler thread checks the status of tasks (killed or finished) and

reissues them if needed. A GPU is time-shared among applications, serving tasks from

multiple task queues. Next, we describe TReM, our revocation mechanism, in detail.

1 void wrapper_kernel(,){

2 cudaLaunchKernel(actual_kernel);

3 while(1){

4 if (revoke_kernel == true)

5 asm(trap);

6 }

7 }

Listing 4.1: Poll mechanism in the kernel wrapper.

As shown in Figure 4.1(a), TReM encapsulates each CUDA kernel in a CUDA wrap-

4.1. TReM revocation mechanism 53

per kernel. The wrapper uses one thread and one thread block, i.e., wrapper <1,1>. The

wrapper then issues the actual kernel, using CUDA dynamic parallelism [43]. With CUDA

dynamic parallelism, a parent grid (in our case, the wrapper) launches kernels called child

grids (in our case, the actual kernel). Thus, TReM does not require kernel source code.

The kernel thread-block dimensions are passed to the wrapper kernel as global variables,

and thus they are also available to the actual kernel. Subsequently, the wrapper polls a re-

voke flag, which is set when the host runtime scheduler decides to kill a kernel running on

the GPU. This revoke flag is allocated in unified memory since it has to be accessible from

both the host and GPU. Using cudaMemcpy or cudaMemcpyAsync cannot fulfill our pur-

pose because all CUDA calls in the same context are executed in issue order. Algorithm 4.1

presents the code of the wrapper kernel.

Figure 4.1(b) shows the procedure of stopping a kernel. When the revoke flag is set, the

wrapper kernel executes asm(trap) to stop the running (i.e., actual) kernel. The NVIDIA

driver detects that the asm(trap) command is called and marks the context of the issuing

host process as unusable. As a result, this process can not execute any other CUDA calls.

Launching a new kernel requires a new process with a new context (p2 in Fig. 4.1(b)). The

process with the unusable context will be removed later from the process pool. To detect

that kernel execution has stopped, we check the return value of a CUDA call. If this value

is false, the wrapper kernel has called the asm(trap) and has stopped its execution.

Figure 4.2 shows the timing of TReM (see Section 4.4.1). To revoke a running kernel,

the scheduler sets the revoke flag, and the wrapper executes asm(trap)), which requires

5ms. However, the next task will start its execution with an additional delay of 17ms (in

total 22ms) because of the first CUDA call. As mentioned in [13], when a kernel is exe-

cuted after a GPU memory pool is modified, it experiences additional overhead. Due to

asm(trap), the CUDA context of the issuing host process becomes unusable, clearing the

CUDA context introduces a delay of 60ms. In the case of user-facing tasks, it is important

to avoid this extra delay. For this purpose, we defer clearing the unusable GPU context, as

discussed below.

Initiating the CUDA runtime, which includes allocating memory and executing a ker-

nel, from a process takes approximately 15ms. We use a pool of processes with pre-initialized

54 Chapter 4. GPU Kernel Revocation

time

batch user-facing

Native

TReM

Revoke
batch

Start
user-facing

22ms 60ms

Clear
context

Replenish
process

15ms

time

Native

TReM
22ms 60ms 15ms

retry batch

Restart
batch

Figure 4.2: The timing of TReM compared to native execution. Batch execution time is in
the range of seconds.

user-facing batch Scheduler thread

Scheduler

A
p
p
lic
a
ti
o
n
s

Host

send

Task
queues

send

sendpop

pop

pop
TReM

GPU p1

TReM

TReM

GPU p1

GPU p1

(a) Resource estimation is U=2.

TReM

GPU p1

TReM

TReM

GPU p1

GPU p2

Scheduler

Host

Task
queues

pop

pop

pop

send

send

sendA
p
p
lic
a
ti
o
n
s

(b) Load increases and new estimation for U=3. Sched-
uler instructs TReM to revoke a batch task and provide
this GPU to user-facing tasks.

Figure 4.3: TReM + Elastic in multi-GPU setups.

CUDA environments to avoid this latency. We use only the pool’s head process to is-

sue task kernel (p1 in Figure 4.1(a)). When the active process becomes unusable after

an asm(trap), it is removed from the pool, and the next process becomes the pool head

(p2 in Figure 4.1(b)), which can be used to execute kernels immediately.

After an asm(trap), we have an additional unusable GPU context and one process less

in the pool. We need to always have at least two processes in the pool to fulfill the case that

a batch is executed and we decide to kill it and immediately serve user-facing tasks. For

this purpose, we clear the unusable GPU contexts and replenish the process pool when we

spawn a batch task. In this manner, the latency of these operations, 60ms + 15ms in our

experiments, affects only a subsequent batch task.

TReM can handle tasks that utilize all the GPU DRAM since it does not store any state

of the task that will be killed, either in the Host or GPU memory. The GPU context of the

4.2. Reducing SLA violations of user-facing tasks 55

killed kernel contains useless data and will be removed when we clear the GPU context. If

the available GPU DRAM is insufficient to hold the data of a new task, we immediately pay

the penalty of 60ms to free all GPU DRAM.

4.2 Reducing SLA violations of user-facing tasks

In multi-GPU setups, our scheduler spawns multiple threads, one for each GPU in the sys-

tem, as Figure 4.3 shows. Multiple GPUs can simultaneously serve independent tasks from

the same queue (application). The mapping of task queues to GPUs is controlled by the

scheduler that prioritizes user-facing tasks to reduce SLA violations. TReM runs in each

GPU, and the scheduler thread mapped to that particular GPU is responsible for sending

tasks to the active process and setting the revoke flag when a task has to be revoked.

Our scheduler prioritizes queues with user-facing tasks over queues with batch tasks.

We implement two policies, Priority and Elastic, which differ in multi-GPU setups. In par-

ticular, Priority maps all GPUs to all task queues. For instance, when a burst of new user-

facing tasks arrives, Priority will spread them to all available GPUs. On the other hand,

Elastic exploits the capability to meet the SLA for user-facing tasks using a subset of the

GPUs, as described in Section 4.2.1.

4.2.1 Elastic policy

Elastic prioritizes user-facing tasks over batch tasks, similar to Priority. However, it dynam-

ically adjusts the number of GPUs allocated for user-facing tasks such that all outstanding

user-facing tasks meet their SLA target. The remaining GPUs are used to serve batch tasks.

We recalculate the number of GPUs for user-facing tasks every 100ms or when a task fin-

ishes.

We use the following procedure to estimate the number of GPUs needed to satisfy the

current user-facing load. At time t, we first compute the maximum latency among all out-

standing tasks in the system using Equation 4.1.

56 Chapter 4. GPU Kernel Revocation

Lmax(t) = le(t) · q(t) (4.1)

where le(t) is our current estimate of the average execution time for user-facing tasks

and q(t) denote the number of outstanding user-facing tasks. To compute le(t), we monitor

previously executed user-facing tasks’ execution time. Our algorithm then estimates the

number of GPUs (U) needed to serve the currently outstanding user-facing tasks without

violating their SLA according to the Equation 4.2.

U(t) =
⌈Lmax(t)

SLA

⌉
(4.2)

In Figure 4.3(a), Elastic assigns two GPUs to user-facing tasks. According to its resource

estimation, two GPUs (U=2) are sufficient to execute all outstanding user-facing tasks un-

der the SLA. On the other hand, Priority will use all the GPUs to serve the three outstanding

tasks and postpone the execution of the batch tasks.

4.2.2 Using TReM with Priority and Elastic

In Figure 4.3(b) the load increases, hence Elastic estimates that user-facing tasks require

more resources (U=3) to meet their SLA. However, the third GPU executes a batch task.

Without TReM, newly arriving user-facing tasks will wait for this batch task to finish its

execution and miss their SLA. To overcome this priority inversion problem, we integrate

Priority and Elastic with TReM to revoke the batch task executing in the third GPU and

assign this GPU to user-facing tasks.

After the arrival of a burst of user-facing tasks, Priority will try to spread the new tasks

on multiple GPUs. Being aware of the SLAs, Elastic time-multiplexes user-facing tasks on

a reduced number of GPUs, as described in Section 4.2.1. Consequently, Elastic minimizes

the number of revocations and, thus, the loss of useful work.

When we need to include more GPUs to serve user-facing tasks, both Priority and Elas-

tic choose to revoke the batch task that has started most recently. Additionally, Elastic

checks if the remaining time (predicted by the task execution time minus the task elapsed

4.3. Experimental Methodology 57

time) of the task that will be revoked is less than the task revocation latency. As a result,

Elastic minimizes further the loss of useful work, compared to Priority. We use a revoca-

tion counter/threshold to avoid starvation, as explained in the Discussion section.

4.3 Experimental Methodology

In this section, we describe the platform and the workloads that we use to evaluate TReM.

4.3.1 Multi-GPU server configuration and memory affinity

The server in our testbed consists of an Intel(R) Xeon(R) CPU E5-2630 v3 running at 2.40GHz

(CentOS 7). The server has four (4) NVIDIA Quadro P1000 GPU cards (Pascal architecture),

with 4GB of GDDR5 and 640 CUDA cores each. We use CUDA 9.0 to implement TReM and

NVSMI to measure GPU utilization. NVSMI utilization represents the time the GPU is busy

and not the amount of GPU resources used.

Every P1000 GPU requires a PCIe gen3 x16 port. Our four GPU setup needs a total of 64

PCIe lanes. Our dual-socket motherboard provides 32 lanes for each socket, therefore we

attach two GPUs in each socket.

In a multi-GPU configuration, there are significant memory affinity issues: the through-

put of memory transfers depends on whether the path connecting the memory with the

target GPU pass-through the QPI bus between the two sockets. Using microbenchmarks,

we find that the throughput of transfers to different GPUs can interfere with each other,

degrading performance from 2x up to 4x. We enforce each host thread (Fig. 4.3) to run in

the same socket with its corresponding GPU to eliminate this issue.

4.3.2 Workloads

We evaluate our system using batch and user-facing tasks with execution times reported

in Table 4.2. The tasks used in our evaluation originate from the Rodinia3.2 benchmark

suite [17] and NVIDIA SDK of CUDA toolkit 9. The execution time is the interval between

when a task is issued and the issuer receives the result. Thus it includes the transfers to

58 Chapter 4. GPU Kernel Revocation

and from the accelerator and the execution time of its kernel(s) on the GPU. The execution

time of batch tasks ranges from tens of seconds up to two minutes, whereas the execution

time of user-facing tasks ranges from 1 up to 170ms. We consider the SLA for user-facing

tasks 200ms, as in Baymax [18]. The response time contains queuing delay implied from

other outstanding tasks in the system.

Tasks
Average task

execution time (ms)
Memory footprint

(MB)
Task type

Euclid 10 24 user-facing
Particle Filter 23 12 user-facing
NW 38 44 user-facing
BFS 50 48 user-facing
Black&Scholes 60 112 user-facing
Pathfinder 68 74 user-facing
Hot Spot 3D 81 32 user-facing
Monte Carlo 150 68 user-facing
Darkgray 170 200 user-facing
Lava MD 46000 1069 batch
Hot Spot 130696 423 batch
Gaussian 311000 1120 batch

Table 4.2: Average task execution time (ms).

Each user-facing task can have multiple CUDA kernels, as in machine learning infer-

ence stages, with the corresponding input and output data. On the other hand, every

batch task consists of a single large kernel because this stresses the scheduler more.

In our evaluation we use the following workloads:

• Micro-benchmarks, with a few tasks, to measure the responsiveness and the over-

heads of our mechanisms.

• A datacenter-inspired synthetic workload, with thousands of tasks, mixing user-facing

with batch jobs.

To generate the datacenter-inspired workload mix, we implement a workload gener-

ator that mimics traces from Google [83] and Alibaba [59]. Our workload generator takes

three parameters; (a) the job duration, (b) the job inter-arrival time, and (c) the user-facing

to batch job ratio.

4.3. Experimental Methodology 59

After analyzing Google and Alibaba traces, we found that job duration follows a Pareto

distribution. Consequently, we first choose the mean value of the job duration to generate

a job. Mean values for batch and user-facing jobs are presented in Table 4.3. The mean

values for user-facing and batch job duration is again extracted from the traces above. Af-

ter selecting the job duration, we choose the task type and number. Each application/job

consists of identical tasks, taken randomly from Table 4.2.

Job inter-arrival time follows an exponential distribution, with a base mean value se-

lected to utilize all four GPUs fully. We use a scaling factor on the base inter-arrival mean

value ranging from 0.25 to 2.0 to emulate different loads. Effectively, the scaling factor

modifies the density of job arrivals affecting the workload’s load and burstiness. As a re-

sult, we can generate from low load, with job inter-arrival 2 (named load 0.25), to over-

subscription, with job inter-arrival 0.25 (named load 2).

For the ratio between user-facing and batch jobs, we use again values extracted from

Alibaba and Google traces. We use 80:20 (according to Google), which means that 80% of

jobs are user-facing and the other 20% are batch. Also, we use 50:50 ratio (according to

Alibaba), which implies that the user-facing jobs percentage equals batch.

Workloads
Workload specification W1 W2

User-facing to batch ratio 80-20 50-50
Total Num of Jobs 30 30

Mean user-facing job duration (s) 5 5
Mean batch job duration (s) 600 600

AVG number of task/configuration 1560 1420
AVG experiment duration/configuration (h) 1.1 1.5

Configurations 5 5

Table 4.3: Workload configurations.

We limit the number of outstanding tasks from the same job to eight tasks [18]. We

have selected this value empirically to ensure that most tasks in a user-facing job will meet

their SLA if run alone. Multiple user-facing jobs will be present concurrently at runtime,

increasing the system load, as described above. The response time we report and compare

with the SLA counts only for outstanding tasks. Table 4.3 summarizes the workloads used

for our evaluation. We repeat each experiment five times using different random seeds for

60 Chapter 4. GPU Kernel Revocation

each distribution.

4.4 Experimental evaluation

In this section, we first present the overheads of TReM and then evaluate the effectiveness

of TReM to improve the QoS of user-facing tasks in the presence of long-running batch

tasks.

4.4.1 Overhead of TReM revocation

Duration breakdown of TReM: As shown in Figure 4.2, there are multiple operations in-

volved when deciding to kill a task. Two of them are in the critical path, affecting the la-

tency of waiting for user-facing tasks: kill a task and start a new task using a process from

the process pool. Figure 4.4 shows that these two operations require 5ms (kill) and 17ms

(new task), for a total of 22ms. By breaking down the ”start new task” operation, we find

that 17ms are spent in the first CUDA call, even though we have pre-initialized the CUDA

runtime. Note that during normal conditions, i.e., not after a kill operation, this CUDA call

typically takes less than 2ms.

60ms

Clear GPU context
Fork new
process

Start new
task

Kill
task

15ms 17ms 5
ms

Book-keeping hidden in front
of next batch

Revocation
time

Figure 4.4: TReM overhead breakdown.

Killing the currently executing kernel requires 5ms. In particular, the revoke flag is

allocated in the unified memory and is set by the host process and read by the GPU. A

page fault occurs when either side accesses a page that is not resident to its memory. The

memory system holding the requested page will unmap it from its page table, and the

page will be migrated to the faulting process. In our measurements, the process above

has almost 1.2 millisecond latency. The remaining time (i.e., 3.8ms) is due to the CUDA

4.4. Experimental evaluation 61

call that we use to detect that the wrapper kernel has stopped (i.e., called asm(trap)) by

checking its return value. As a result, the 22ms revocation overhead is dominated by the

CUDA runtime.

TReM needs to clear the GPU context, which costs another 60ms, and replenish the

process pool, which requires 15ms. These 15ms are spent creating a new process and

executing a CUDA call to warm up the CUDA runtime, creating a context in the GPU for

the new process. However, as discussed already, TReM hides the latency of these last two

operations by invoking them before a new batch task starts.

TReM does not incur overhead for non-revoked tasks: TReM does not add any new

code to executing kernels; thus, it does not introduce overhead during task execution. To

verify this, we run each task in Table 4.2 one thousand times with and without TReM. The

results are virtually the same with less than 100μs discrepancies, which is at most 0.01% of

the execution time.

TReM consumes less than 1% of cores on state-of-the-art GPUs: The wrapper kernel

used by TReM to execute the actual kernel is spawned with one thread block using one

thread. The NVIDIA runtime starts the wrapper kernel in a warp (32 CUDA cores). In

our evaluation, Pascal P1000 has 640 CUDA cores; hence TReM requires 5% of NVIDIA

P1000’s CUDA cores. However, the percentage of resources consumed by TReM decreases

to 0.625% with more recent GPUs, such as Volta that provide thousands of CUDA cores i.e.,

V100 has 5120 CUDA cores.

Resolving priority inversion: Figure 4.5 depicts the normalized response time of dif-

ferent user-facing tasks over their standalone execution when they time-share a GPU with

long-running batch tasks. In this experiment, we first start a batch task, whose duration

varies along the x-axis, and we record the latency of a subsequent user-facing task.

Without TReM, the response time of user-facing tasks increases linearly with batch

task execution time (Figure 4.5(a)). In particular, it increases two orders of magnitude

higher than the task execution time. On the contrary, TReM results in constant response

time for all user-facing tasks, independent of the batch task duration (Figure 4.5(b)). Their

execution time is at most 3x the execution time of the standalone user-facing task in our

experiments.

62 Chapter 4. GPU Kernel Revocation

(a) Without TReM (b) With TReM

Figure 4.5: Normalized response time of user-facing tasks over their stand-alone execution
in the presence of batch tasks with different duration (Bd).

4.4.2 Effectiveness of TReM with long-running batch tasks

SLA violations: We use workloads W1 and W2 to examine how TReM reduces SLA vio-

lations. Figure 4.6 shows the percentage of user-facing tasks that meet their SLA (200ms)

with increasing load. As mentioned, W1 and W2 differ in the ratio of user-facing to batch

jobs.

The x-axis is the incoming load, from low (0.25) to high (1.0) and oversubscribed (2.0).

A load of 0.25 suffices to fully utilize one GPU (i.e., job inter-arrival 2). A load of 1.0 can

fully utilize all four GPUs (i.e., job inter-arrival 1). A load of 2.0 over-subscribes our system

by 2x (i.e. job inter-arrival 0.25). As we see, at low load, more than 99% of the tasks meet

their SLA, irrespectively of the policy (Priority, Elastic), and the workload (W1, W2).

At a higher load, we see that W1 (Figure7(a)), with 50:50 ratio of user-facing to batch

jobs, incurs more violations, and the efficiency of Priority and Elastic drops to 93% at load

1.0 and 92% at 2.0. On the other hand, using TReM, both policies can tolerate the load

increase with a much lower impact on efficiency, meeting the SLA for 99% of tasks at load

1.0 and 98% at load 2.0.

If we increase the number of user-facing tasks, using a ratio of 80:20 in W2 instead of

50:50 in W1, the advantages of TReM are more pronounced (Figure 7(b)). Without TReM,

4.4. Experimental evaluation 63

Figure 4.6: Percentage of tasks that meet their SLA (y-axis) at increasing GPU load (x-axis),
for workloads W1 (left) and W2 (right).

Priority and Elastic meet the SLA for 90% of the tasks at load 1.0, whereas, using TReM,

we achieve 98% at load 1.0 and 96% at load 2.0. Therefore, fast revocations is an effective

ingredient to maintain the SLA in the presence of long-running batch tasks.

At load 1.0, both Priority+TReM and Elastic+TReM achieve 89% GPU utilization. Prior-

ity and Elastic achieve 91% GPU utilization but with much more SLA violations.

Comparing Priority with Elastic, we can observe that Elastic leads to less than 0.6%

more SLA violations on average compared to Priority. This is expected because Priority

utilizes all GPUs to handle the user-facing load, resulting in significantly more revocations,

as discussed next. On the other hand, Elastic aims to decrease the number of revocations

without increasing SLA violations.

Lost work due to revocations: Figure 4.7(a) depicts the overhead of task revocations

using TReM. We see that Elastic+TReM performs fewer revocations compared to Prior-

ity+TReM. Elastic uses a minimum number of GPUs to satisfy the SLA, packing when pos-

sible multiple user-facing task on the same GPU. Effectively, it triggers considerably fewer

revocations. Under low load i.e., 0.25, Priority performs 33% more revocations than Elas-

tic, 27% at load 0.5, and 14% at load 2.0. As the load increases, Elastic requires the same

number of GPUs as Priority, thus the difference in revocations diminishes.

Figure 4.7(b) shows the percentage of lost work due to revocations. We measure total

64 Chapter 4. GPU Kernel Revocation

0.25 0.5 1.0 2
Load

0

10

20

30

40

50

Re
vo

ca
tio

ns
 (#

)

(a) Number of revocations

0.25 0.5 1.0 2
Load

0

1

2

3

W
as
te
d
tim

e
pe

rc
en

ta
ge

 (%
)

(b) Wasted compute time

Figure 4.7: Revocations overhead: (a) Number of task revocations; (b) Wasted compute
time due to revocations.

lost work as the elapsed time between the start and kill for each task. The percentage of lost

work is computed as the ratio of the total work discarded over the total useful computation

time in the workload. At low load (0.25), the wasted time percentage for both Elastic and

Priority is below 2%, while at load 2.0 it reaches 3%. Both policies minimize wasted work by

preferring to revoke the most recently started batch tasks. As discussed previously, Elastic

outperforms Priority because it packs user-facing tasks in the same GPU and also because

it will revoke a batch task only if its remaining time is less than the revocation overhead.

Priority does not have the notion of SLA; it just prioritizes user-facing over batch tasks,

hence it cannot measure the task remaining time.

Batch job duration percentiles: To examine in more detail the effect of our policies

on batch jobs, Figure 4.8 depicts time to completion for batch jobs. As expected, time to

completion of batch jobs increases with TReM because tasks are revoked and replayed.

We should note, however, that without TReM, these batch jobs would typically wait for

all user-facing tasks to complete or would need to execute on additional GPUs. Elastic

reduces the impact on completion time from 4% up to 50% compared to Priority. In par-

ticular, for 50% of the jobs, Priority+TReM has 1.6x higher time to completion than Priority,

whereas Elastic+TReM exhibits only 1.3x increase compared to Elastic. The effect of TReM

becomes more pronounced on higher percentiles of batch jobs, and reaches 3.2x for Pri-

4.4. Experimental evaluation 65

ority and 2.1x for Elastic.

Figure 4.8: Time to completion for batch jobs under different scheduling policies, for load
2.0.

Dynamic GPU partitioning with Elastic: Figure 4.9 shows how Elastic partitions the

number of GPUs between user-facing and batch tasks over time. The upper part of the

figure shows the number of GPUs allocated to user-facing tasks and the number of GPUs

used to run batch tasks. The lower part of the figure depicts the actual latency of user-

facing tasks over time. When user-facing tasks arrive (red crosses in the lower part), Elas-

tic allocates more GPUs to user-facing tasks to avoid SLA violations. We see that Elastic

accurately estimates the GPU requirements of user-facing tasks.

4.4.3 Scalability of TReM

We implement a simulator using the observed latencies to evaluate our system with more

than four GPUs and different revocation latencies. Our simulator models our policies (Pri-

ority, Elastic) and TReM without modeling the GPU internals. It takes as parameters (1)

the task execution time, reported in Table 4.2, (2) the workloads, described in Table 4.3,

and (3) the revocation latency. The simulator runs W1 and W2 with the timings provided

from Table 4.2.

66 Chapter 4. GPU Kernel Revocation

Figure 4.9: Dynamic GPU allocation in Elastic and impact on SLA violations.

Simulation results are a superset of our testbed results in terms of; (a) the number of

GPUs and (b) revocation latency. Moreover, the simulator and the testbed results are very

close. In particular, the violations of our simulator results for four GPUs and load 1.0 are

1% (Figure 4.10), while for the testbed, the violations are 1.3% (Figure 4.6). Consequently,

the difference between the simulator and the testbed results is 0.3%, when trends between

policies (in Figure 4.6 with and without TReM) are in the order of 10%.

In Figure 4.10, the simulator runs the datacenter workloads, W1 and W2, for load 1.0.

and reports their average results. Figure 4.10(a) shows task violations for Elastic and Elas-

tic+TReM with load 1.0 and a varying number of GPUs. The positive effects of TReM are

more pronounced with 2-8 GPUs. We see that using TReM, we achieve less than 1% vi-

olations with 4 GPUs, whereas without TReM we need 16 (4x) GPUs to achieve the same

target.

Figure 4.10(b) evaluates the percentage of violations with varying revocation latency,

between 10 and 1000ms. The percentage of violations increases proportionally with re-

vocation latency. Consequently, other mechanisms such as asm(exit) and process kill

(Section 4.1) that introduce more latency can meet SLA for only 94% of user-facing tasks.

To ensure SLA for more than 99% of user-facing tasks, we require a revocation mechanism

with 10ms latency.

4.5. Discussion 67

(a) Varying number of GPUs (b) Varying revocation latency

Figure 4.10: SLA violations for W1 and W2 under load 1.0; (a) varying the number of GPUs
(revocation latency 22ms); (b) varying the revocation latency (4 GPUs).

4.5 Discussion

Bounding the amount of wasted work: Figure 4.7(b) shows that TReM wastes only 3%

of the total work due to revocations. However, it is possible that TReM kills a batch job

(i.e., training in Machine Learning) after minutes or even hours of computation. In this

case, the percentage of lost work can increase significantly. By incorporating a checkpoint

mechanism, as GPU Snapshot [52] or Gandiva [16], to TReM, we can bound the wasted

work at a single checkpoint interval. Both checkpoint mechanisms do not require changes

in the kernel code; hence they can be integrated with TReM. Additionally, the checkpoint-

ing overhead for both approaches is less than 100ms; hence the increase in SLA violations

will be minimal.

Repeated revocations & starvation: TReM revokes the batch task that has performed

the least work so far. If, however, user-facing tasks arrive periodically (e.g., a user-facing

arrives every time a batch task has just started), TReM may starve a batch task by killing it

repeatedly. To avoid this, TReM can maintain a revocation counter and inform the clus-

ter scheduler to reassign the load across servers when the revocation counter exceeds a

certain value.

CUDA streams: TReM uses asm(trap) to revoke a kernel. Effectively, TReM destroys

the CUDA context of the issuing process. With CUDA streams, all concurrently running

68 Chapter 4. GPU Kernel Revocation

kernels belong to a single CUDA context. In case user-facing kernels run concurrently

with batch, user-facing kernels will be revoked as well. TReM+Elastic addresses this by

allowing only kernels of the same type, i.e., only batch or user-facing, to run concurrently

in a GPU.

4.6 Summary

This chapter presents TReM, a mechanism that revokes batch tasks running in a GPU and

starts the next task within 22ms. TReM, in contrast to previous approaches, can revoke

a task at any point of its execution using CUDA dynamic parallelism. TReM does not re-

quire kernel source code and is supported by almost all NVIDIA GPUs, except the out-

dated Fermi architecture that does not support dynamic parallelism. We implement two

scheduling policies, Priority and Elastic, that aim to meet SLA for user-facing tasks when

sharing a GPU with long-running batch tasks. We then use TReM to enhance both policies

and reduce SLA violations.

We evaluate TReM with two workloads derived from real datacenter traces. We show

that Priority+TReM and Elastic+TReM ensure SLAs for 98% of user-facing tasks when col-

located with long-running batch tasks at high load with 89% GPU utilization. On the con-

trary, scheduling policies Priority and Elastic (without TReM) ensure SLA for 88.8% of tasks

under high load. Additionally, Elastic+TReM and Priority+TReM bounds the percentage of

lost work to 2.5% and 3.5%, respectively. Finally, Elastic+TReM reduces the number of re-

vocations and the corresponding loss of useful work compared to Priority+TReM by 1%.

Chapter 5

Secure GPU Spatial Sharing

5.1 Introduction

Arax and other approaches [110, 20, 115, 79, 31, 104, 112, 103, 57] share a GPU spatially

to applications from different users to improve GPU utilization. However, all these spatial

sharing mechanisms introduce a significant concern: GPU kernels execute in the same

GPU address space, hence they can modify (either inadvertently or deliberately). This

chapter describes Guardian, a PTX-based bounds checking approach that provides trans-

parent memory protection for spatial GPU sharing. Guardian prohibits applications from

directly making GPU calls. Instead, their calls are dynamically intercepted and forwarded

to a trusted process that has exclusive access to the GPU and performs any necessary

checks. Guardian is completely transparent to ML frameworks [78, 41, 1] without requir-

ing any source code modifications, compilation, or extra hardware. Internally, Guardian

divides the GPU memory into partitions, which are assigned to different applications. At

runtime, the instrumented GPU kernels at the PTX level check every load and store in-

structions using address fencing or address checking mechanisms. Guardian effectively

addresses three main challenges, as follows.

Intercept GPU calls from closed-source libraries. Guardian intercepts all GPU calls

transparently at the CUDA runtime and driver library level by dynamically preloading the

execution of the applications. Previous API remoting approaches intercept only the top of

the CUDA runtime, driver, and accelerated libraries stack [98, 24, 23, 28, 113, 79]. This is

69

70 Chapter 5. Secure GPU Spatial Sharing

not sufficient for Guardian, though, mainly because implicit CUDA calls performed from

high-level CUDA library functions (e.g., cublasIsamax()) will go unprotected. Guardian

forwards the intercepted GPU calls to the GPU manager, which runs as a separate process

and is the only entity with GPU access. This allows the GPU manager to securely manage

and execute the GPU calls of different applications on a shared GPU.

Fence illegal host and device accesses. Application host memory is inherently pro-

tected because Guardian applications run as different processes. This is not the case for

the device code, which run on the same GPU context. To isolate the GPU address spaces of

co-running applications, Guardian uses a custom allocator that divides the GPU memory

into logical partitions assigned to applications. The allocation calls of each application are

served from its assigned partition, and every host-initiated transfer is checked at run-time

to verify that it falls in a valid range. In addition, Guardian extracts and instruments the

virtual assembly version of GPU kernels (PTX), which are available even in closed-source

libraries. The instrumentation includes the insertion of run-time checks to ensure that

each pointer always falls in the valid range upon dereference.

Lightweight bounds checking. Address checking is a popular method for memory

bounds protection, but it is costly because of the metadata management and the run-time

checks. Reading the bounds from memory and inspecting if the pointer falls within these

bounds incurs significant overheads [47]. To overcome these costs, Guardian follows a

twofold approach. First, it uses contiguous partitions for each application, different from

previous works [115]. This eliminates the need to store metadata for each allocation; in-

stead, Guardian keeps only the start offset and the size of each partition, which can be

stored in registers to avoid excessive memory fetches. These registers can be reused with-

out adding significant register pressure to the execution of the GPU kernel. Second, it

aligns the partitions in power-of-two sizes. This allows Guardian to optimize math opera-

tions (i.e., modulo) using fast bitwise operations. In fact, Guardian adds only two bitwise

instructions per load and store, to isolate the memory partitions of different applications.

We implement Guardian for NVIDIA GPUs and evaluate it with several micro-benchmarks

and real-life ML applications, such as Caffe and PyTorch, that link with closed-source GPU

libraries. For Caffe and PyTorch, which invoke billions of GPU kernels, Guardian address

5.2. Background 71

fencing has on average 9% overhead compared to native unprotected execution, whereas

address checking is 1.7× worse than native. Guardian (protected) spatial sharing is 4.84%

slower than MPS (unprotected). At the same time, it improves the total execution time of

co-located applications by 37% compared to time-sharing, which is the alternative shar-

ing and protection mechanism used from other systems [108, 48, 113]. Finally, Guardian

imposes minimal increase in register usage, and thus register spilling occurs only in 0.9%

of PyTorch kernels.

The main contributions of this work are:

• We design, implement, and evaluate Guardian, a novel system that offers transparent

memory protection for applications executing concurrently on a GPU without rely-

ing on hardware support nor the existence of source code. We demonstrate its effec-

tiveness using a broad range of kernels and complex, real-life ML frameworks [41, 78]

that extensively use closed-source GPU libraries.

• We present a mechanism to intercept all GPU-related calls only at the CUDA runtime

and driver library level. This allows transparently tracing and monitoring any GPU

application or closed-source GPU library.

• We evaluate different bounds checking mechanisms implemented at the PTX-level

and conclude that address fencing with bitwise operations is highly efficient and

practical for protected GPU sharing. Compared to CPUs, GPU bounds checking has

lower overhead because kernels have simpler access patterns.

5.2 Background

In this section, we discuss three aspects of GPUs that are related to our work: (i) The pro-

gramming interfaces and context of GPUs, (ii) the compilation workflow, (iii) the GPU

memory-sharing scope, and (iv) the supported addressing modes. Although we discuss

these issues for NVIDIA GPUs, we believe that AMD and Intel GPUs have similar architec-

tural characteristics [51].

72 Chapter 5. Secure GPU Spatial Sharing

5.2.1 GPU Programming Interfaces and Context

CUDA includes two programming interfaces for accessing and managing GPUs: the driver

and the runtime, provided by two separate libraries the libcuda.so, libcudart.so. The

runtime library is built on top of the driver interface and is complementary to it. CUDA ap-

plications use both domain-specific GPU libraries (CUDA-accelerated libraries), such as

cuBLAS and cuDNN, and directly access the GPU via the runtime and driver libraries. Do-

main specific libraries, typically use the GPU via the CUDA runtime library. Applications

use the runtime interface since it offers similar abstractions to the driver interface but at a

somewhat higher level, requiring less effort from the programmer. In particular, the driver

interface requires explicit management of contexts, modules, and functions loaded in the

GPU, while these operations are performed implicitly by the runtime library.

All actions performed from the CUDA runtime and driver interfaces, including mem-

ory allocation, data transfers, and kernel invocation (launch), are encapsulated in a CUDA

context on the GPU itself. A GPU context is similar to a CPU process. As such, each

CUDA application creates its own context during the first CUDA runtime call. The con-

text contains all the information regarding the resources used by an application, such as

GPU memory, streams, cores, page table, and the GPU kernels to be used. An application

that executes in a context cannot access memory locations used by an application in a

different context. At any point in time, the GPU can execute multiple kernels on different

streams, however, all kernels must belong to a single context. The GPU allows different

contexts to time-share resources using a context switching mechanism. GPUs support

preemption, in which case the state of a GPU context is swapped to GPU DRAM so that

another context can be swapped in and run. However, context switching does not allow

different applications to spatially share the same GPU.

5.2.2 GPU Compilation Workflow

CUDA applications consist of host-level (.cpp) and device-level source code (.cu) [76].

The host source code is compiled with clangor gcc, while the device code is with nvcc [107,

33]. As Figure 5.1 shows, the device source code is converted to the compiler Intermediate

5.2. Background 73

Representation (IR) format, which is then compiled, via cicc, to Parallel Thread eXecution

(PTX) [71] assembly.

PTX is a virtual assembly specification supported by the NVIDIA toolchain in all NVIDIA

GPU architectures, past and future [81]. If necessary, the CUDA driver compiles the PTX

code at runtime using just-in-time compilation and sends it to the new target device for

execution [101]. This allows the generation of forward-compatible optimized machine

code that runs on the target device. CUDA provides CUDA FORCE PTX JIT environment

variable, which enforces the PTX code to be JIT compiled. Thus, the driver ignores any

cuBIN files embedded in an application or CUDA library.

Nvcc always embeds the PTX representation of the device code in the target applica-

tions or libraries. Additionally, nvcc also generates machine code for specific GPU archi-

tectures (using the ptxas assembler) and embeds this binary code to the application exe-

cutable in the form of cuBIN files [101]. The developer can specify during compilation (sm

flag) the target architectures for which cuBIN files should be generated and included in the

target application. The generated PTX code and the cuBIN files are merged in a fatBIN file.

CUDA closed-source libraries contain all GPU kernels in PTX and cuBIN files. As shown

in Table 5.1, a CUDA library of a particular CUDA version contains the kernels in PTX

format for the most recent GPU architecture and for all previous architectures the kernel

code in cuBIN files. For instance, CUDA 11.7.1 is the most recent CUDA SDK version for

Ampere architecture, hence, CUDA libraries of this CUDA version contain the cuBIN files

for all previous architectures (Turing) and PTX to support Ampere and Hopper.

GPU source code LLVM-IR

host source code

source code target code

PTX cuBIN

fatBIN

executableobj code

Figure 5.1: Compilation flow of CUDA applications.

74 Chapter 5. Secure GPU Spatial Sharing

CUDA
version

NVIDIA GPU architecture
Turing (7.5) Ampere (8.0-8.7) Hopper (9.0)

10.0-10.2 PTX
11.0-11.7.1 cuBIN PTX
11.8-12.0 cuBIN cuBIN PTX

Table 5.1: cuBIN and PTX kernel code included in CUDA-accelerated libraries for different
CUDA versions and GPUs.

5.2.3 GPU Memory Sharing Scope

Figure 5.2 shows an overview of the GPU memory hierarchy and the sharing scope. GPU

memory is divided into on-chip and off-chip. The only memories that can be accessed

from co-running kernels are located off-chip [51, 115, 21].

On-chip memory consists of the register files and the scratchpad memory, called shared

memory. The registers are privately allocated for each thread and cannot be accessed from

other threads, even if located in the same Streaming Multiprocessor (SM). Shared memory

is accessible only from threads of the same SM.

Off-chip DRAM is divided in local, heap, global, constant, and texture memory for

NVIDIA GPUs. The local memory (stack) is located off-chip only if the variables used from

a kernel exceed the number of available registers (i.e., register spilling); compilers aim to

avoid register spilling since it degrades performance.

Private per Thread

L2-cache

registers local memory (off-chip)

Private per Streaming Mul�processor

shared L1-cache constant|texture-cache

...

Private per GPU

global constant (RO) texture (RO)

...

Figure 5.2: NVIDIA GPU memory hierarchy and sharing scope.

5.2. Background 75

Heap memory is allocated and deallocated by kernels using malloc and free and is

not accessible through host-side CUDA calls, e.g., cudaMemcpy. However, heap memory is

rarely used because in-kernel allocations imply large overheads, up to 63× [51] compared

to allocations in global memory using cudaMalloc.

Global memory can be accessed from any kernel of the same GPU context, either for

read or write operations. Global memory is managed dynamically from the host (e.g., us-

ing cudaMalloc and cudaFree functions), or statically from the device (using the .global

keyword). A CUDA kernel uses load and store instructions to access data in global mem-

ory.

Unified memory is introduced to reduce the programmer’s burden to transfer data

from/to the host memory explicitly. Instead, data is transferred automatically from the

host memory in page granularity by the page fault handler in the GPU driver [51] and the

IOMMU [8]. CUDA kernels access such data using the same load and store instructions as

if data were in global memory.

Constant memory is a predefined read-only part of the global memory space and uses

a separate cache inside each SM. Constant memory is allocated statically using constant .

Texture memory is also cached, read-only, off-chip memory. Texture memory is accessi-

ble via objects created and destroyed from the host, using cudaCreateTextureObject and

cudaDestroyTextureObject, respectively. However, we find that the use of these memo-

ries is extremely rare in ML applications, hence we can ignore it for protection purposes.

1 // Method A. Full virtual address

2 ld.global/shared/local %val, [base_addr];

3 st.global/shared/local [%base_addr], %val;

4

5 //Method B. Base address + offset

6 ld.global/shared/local %val, [base_addr+offset];

7 st.global/shared/local [%base_addr+offset], %val;

Listing 5.1: GPU memory addressing modes.

76 Chapter 5. Secure GPU Spatial Sharing

5.2.4 Addressing Modes

Modern GPUs provide two addressing modes for loading or storing data to memory [71],

as shown in Listing 5.1. In the first case, the base address is loaded into the destination

register, while in the second, an offset is first added to the base address, and the result is

loaded into the destination register. The same modes apply to stores and to all off-chip

memories. Similar to CUDA [71], AMD HIP [73] supports these two addressing modes.

Constant objects are statically defined outside the kernel code and are loaded to registers

using move instructions. Finally, texture objects are allocated from host-level code and are

accessed using the texref instruction.

5.3 Threat Model

Our work considers memory safety across kernels from different applications that share a

GPU spatially in the cloud or other shared environments. Guardian prohibits applications

from different users to read or modify each other’s data in the host or device memory.

Within the realm of GPU security concerns, our primary emphasis is on memory safety, as

it represents a prominent threat to spatial GPU sharing.

We consider all GPU kernels unsafe, provided by individual users or from GPU libraries.

As a result, any instruction that performs loads or stores from a base address fetched from

a destination register is considered unsafe and should be protected via bounds checking.

Regarding control flow, direct branch instructions are safe because they jump to labels

defined inside a PTX file. The assembler will report errors if the labels are absent from

the PTX file or are incorrect. On the contrary, indirect branch instructions (brx.idx) are

unsafe because they use a register to index a statically defined array of labels. The register

employed for indexing cannot be validated at compile time, potentially leading to out-of-

bounds accesses.

Our threat model assumes that the GPU driver and the GPU device are trustworthy

and reliable. Consequently, security issues related to exploiting GPU resource contention

or side-channels [111], denial-of-service [66], or physical access attacks [102] are outside

5.4. Guardian Design 77

CUDA
application A1

CUDA
application A2

CUDA
application AN

...

DRAM

kernels A1

Memory

data A1

Process

kernels A2 kernels AN

data A2 data AN

CUDA context

Figure 5.3: Multi-tenant spatial GPU sharing, without Guardian. The common GPU con-
text required for spatial sharing allows applications to access each others memory.

the scope of this work.

5.4 Guardian Design

The goal of Guardian is to prevent applications of different users from reading or modi-

fying each other’s data when executing concurrently on the same GPU. Spatial GPU shar-

ing requires a common CUDA context to execute kernels from different applications con-

currently. Previous work [70, 79, 115, 28] uses a separate process that creates that single

context. Applications issue all their GPU tasks to this process, which enqueues to different

streams, thus kernels can be executed concurrently. However, without proper protections,

this approach allows GPU kernels to modify memory locations belonging to other appli-

cations, as shown in Figure 5.3.

Guardian uses three mechanisms shown in Figure 5.4 and described in more detail be-

low. The dynamically loadable library (§5.4.1) intercepts CUDA calls and forwards them

to a trusted process, the gManager (§5.4.2) that executes GPU calls on behalf of the appli-

cations. The PTX-patcher (§5.4.3) applies bounds checking instructions (§5.4.4) to GPU

kernels.

78 Chapter 5. Secure GPU Spatial Sharing

 dynamically loaded library

launchcopymalloc

CUDA runtime library

CUDA driver library

GPU

CUDA application ANCUDA application A1

 dynamically loaded library

malloccopylaunch

...

 PTX patcher

sandboxed

 PTX

extract all PTX kernels

offline

. . .

...

sandboxed kernels A1

data A1

partition A1

sandboxed kernels AN

data AN

partition AN
. . .

find & call
sandboxed

kernels

check
bounds

allocate in
partition

Memory

check
bounds

allocate in
partition

...

find & call
sandboxed

kernels

Guardian components

GPU
manager

Figure 5.4: Guardian online and offline (dashed annotated) mechanisms to allow pro-
tected spatial GPU sharing. Guardian intercepts the CUDA runtime interface used from
applications and perform the necessary checks at memory allocations, transfers, and ker-
nel executions. This allows kernels from different applications to execute concurrently on
different memory partitions, eliminating illegal accesses.

5.4.1 Dynamically Loadable Library

Guardian uses a dynamically linked library (i.e., gLib) that is preloaded to the applica-

tions and transposes the default CUDA runtime and driver library, as shown in Figure 5.5.

These two libraries are the lowest public interfaces for providing CUDA calls to manage

5.4. Guardian Design 79

GPU resources, such as allocating memory and launching kernels. CUDA applications

and CUDA-accelerated libraries use the CUDA runtime interface and, to a lesser extent,

the CUDA driver interface [24, 23]. The latter is used by applications only for specific,

lower-level operations, such as explicit PTX (un)loading and context management.

The interception of CUDA calls is challenging mainly for two reasons. First, the func-

tions provided by CUDA-accelerated libraries invoke several implicit CUDA runtime calls,

including memory allocations, transfers, and kernel launches. For example, we have no-

ticed using NVIDIA Nsight profiling tool that a single cuBLAS function, such as cublas-

Isamax(), can invoke implicit several CUDA runtime calls, such as cudaMalloc(), cudaMemcpy(),

and kernel launches via cudaLaunchKernel(). Previous work [79, 23, 24, 28] treated such

library calls as a black box, which is inadequate for Guardian because implicit CUDA calls

can go unprotected. Intercepting implicit calls requires applications to link with the static

version of CUDA-accelerated libraries (e.g., libcudblas static.a) since only this version

uses the shared version of CUDA runtime library (i.e., libcuda rt.so). We also find that

CUDA libraries dynamically load the CUDA driver library using dlopen() instead of link-

ing with it. To prevent the original CUDA driver library from being loaded, we intercept

dlopen() and provide the glib.

Second, CUDA libraries use an un-documented API function, namely cudaGetExport-

Table(), which returns tables of function pointers. The use of these functions depends on

the application’s need. For instance, we have found that large frameworks, such as PyTorch

and Caffe, use about seven export tables containing more than 90 functions. By care-

fully rewriting these functions, Guardian can adequately intercept the CUDA runtime and

driver libraries and run successfully real-world ML applications. The intercepted CUDA

calls are forwarded to another process, the gManager (§5.4.2), which is the only entity

with GPU access. This enables Guardian to securely perform any runtime checks neces-

sary before executing the GPU operations on behalf of the applications.

80 Chapter 5. Secure GPU Spatial Sharing

CPU

CUDA-accelerated libraries (cuBLAS, cuDNN)

Framework (PyTorch, Caffe)

CUDA runtime library

CUDA driver library

Application

GPU

Guardian

Previous API

remoting
approaches

Figure 5.5: Guardian CUDA library interception level versus previous approaches [24, 23,
28, 98]. Guardian intercepts only the CUDA runtime and driver APIs and not the high-level
calls to CUDA accelerated libraries as in previous works.

5.4.2 GPU manager

The gManager allocates GPU a memory partition per application, fences memory trans-

fers, calls the sandboxed GPU kernels, and allows multi-tenant GPU sharing using the

mechanisms described below.

GPU Memory Partitioning

The virtual memory of GPUs is managed through the cudaMalloc()-family functions, which

return arbitrary addresses upon each call. To perform GPU memory isolation across dif-

ferent applications, Guardian uses a custom allocator that initially reserves all GPU mem-

ory and splits it into partitions. Each partition is a contiguous memory block assigned

exclusively to an application (or tenant). Contiguous memory partitions enable Guardian

to offer isolation by checking that all memory accesses are always within the partition

boundaries.

Guardian intercepts cudaMalloc() (malloc in Figure 5.4) and allocates memory in the

application’s partition. Similarly, our allocator marks the region in a partition as free by

intercepting the cudaFree() function. For each application, we store the application id,

5.4. Guardian Design 81

the base address, and the partition size in a partition bounds table used at runtime. Cur-

rently, Guardian partitions GPU memory statically; hence, each application must specify

its maximum memory requirements at initialization. Though this is sufficient for the ap-

plications and workloads we examine, it is interesting for future work to explore dynamic

partition resizing.

Data Transfers

Data transfers include operations that move data between the host and the GPU mem-

ory (e.g., cudaMemcpyH2D()) or within the GPU memory (e.g., cudaMemcpyD2D()). Even

though these calls are initiated from the host, they refer to the same GPU address space;

hence, applications can still perform memory operations to partitions of other applica-

tions. gLib intercepts the memory management CUDA calls (copy in Figure 5.4) and uses

the partition bounds table to verify that the memory ranges are within the correct parti-

tion. Guardian allows a transfer to complete if the destination start and end addresses are

within the allocated partition. For cudaMemcpyH2D(), we check the destination pointer; for

cudaMemcpyD2H(), we check the source pointer; and for cudaMemcpyD2D()we check both.

GPU Kernel Invocation

The gManager creates a new CUmodule for each PTX exported and patched during the

offline phase (§5.4.3). A CUmodule is a CUDA code (PTX or cuBIN) unit that can be dy-

namically loaded and executed on the GPU. The CUmodules are then loaded into the cur-

rent context using cuModuleLoadData(). A CUmodule can contain more than one kernel;

hence, we use cuModuleGetFunction() to create a CUfunction handle for each kernel. The

CUfunction handles are stored in a map, called pointerToSymbol, used to locate the ap-

propriate kernel for execution.

At runtime, Guardian intercepts each kernel invocation via cudaLaunchKernel() and

executes the corresponding sandboxed kernel instead, as shown in Figure 5.4. Every time

a kernel is invoked for execution (through cudaLaunchKernel()), Guardian performs a

lookup at the pointerToSymbol table to find the CUfunction handle of the correspond-

ing sandboxed kernel. Then, it adjusts the number of parameters accordingly; for address

82 Chapter 5. Secure GPU Spatial Sharing

1 __global__ void kernel(int *A, int j){
2 int tid = threadIdx.x;
3 A[i] = j;
4 }

Listing 5.2: Sample CUDA kernel source code.

fencing (bitwise operation), it passes the mask and the base partition address (§5.4.3),

whereas for address checking, the partition base and ending addresses. Each partition’s

information (base address, mask, or end address) is retrieved through the partition bounds

table. Finally, the gManager issues the sandboxed kernel using cuLaunchKernel(). When

the gManager detects that an application runs standalone, it issues a native kernel, avoid-

ing the overhead implied by the extra instructions.

Spatial Multiplexing

To enable spatial sharing, GPUs require a single context and CUDA streams provided by

the gManager, similar to previous works [115, 79, 70]. As a result, applications do not cre-

ate their own context; instead, they funnel their work to the GPU through the context of

the gManager. All CUDA kernels and data transfers originating from a single application

will be executed in-order from the gManager. In contrast, kernels and data transfers from

different applications will be executed concurrently using different streams. Applications

and the gManager run in different address spaces; thus, we use an IPC channel and a sep-

arate shared memory segment to exchange operations and data similar to other API re-

moting approaches [115, 67, 79, 28]. Although we implement our GPU manager, Guardian

can be integrated into others [115, 31] if their source code is available.

5.4.3 Offline Kernel Sandboxing

The PTX-patcher is a python script that uses cuobjdump [39] to extract any embedded PTX

kernel from the application executable and the CUDA libraries (offline in Figure 5.4). The

extracted PTX kernels are then sandboxed to ensure they do not access data outside the

correct partition boundaries. Listing 5.3 shows the sandboxed PTX code of the original

kernel shown in Listing 5.2. The original PTX (without sandboxing) consists of a kernel

5.4. Guardian Design 83

1 .visible .entry kernel(
2 .param .u64 kernel_param_0 ,
3 .param .u32 kernel_param_1 ,
4 // Base address
5 .param .u64 kernel_base ,
6 // Mask parameter
7 .param .u64 kernel_mask)
8 {
9 .reg .b32 %r<3>;

10 .reg .b64 %rd<5>;
11 ld.param.u64 %rd1, [kernel_param_0];
12 ld.param.u32 %r1, [kernel_param_1];
13
14 // Extra registers for base and mask
15 .reg .b64 %grdreg <3>;
16 // Load extra parameters to registers
17 ld.param.u64 %grdreg1, [kernel_base];
18 ld.param.u64 %grdreg2, [kernel_mask];
19
20 cvta.to.global.u64 %rd2, %rd1;
21 mov.u32 %r2, %tid.x;
22 mul.wide.s32 %rd3, %r1, 4;
23 add.s64 %rd4, %rd2, %rd3;
24
25 // Bit-wise And with mask
26 and.b64 %rd4, %rd4, %grdreg2;
27 // Bit-wise OR with base addr.
28 or.b64 %rd4, %rd4, %grdreg1;
29
30 st.global.u32 [%rd4], %r2;
31 ret;
32 }

Listing 5.3: Sample sandboxed PTX CUDA kernel. Guardian address fencing (bitwise
operations) implementation is explained with comments.

function definition that includes a list of parameters –lines 2 and 3. These parameters

are addressable, read-only variables declared in the .param state space. Parameters are

loaded to registers using ld.param instructions – lines 11 and 12. Each kernel allocates the

minimum number of registers used throughout the execution –lines 9 and 10. Then, the

kernel uses these registers to load and store the values generated in each execution step

–lines 20-23 and 30-31.

Our patcher (1) adds two extra parameters in each kernel –lines 5 and 7, (2) defines

two extra registers to load the mask and the base partition address parameter –line 15, (3)

loads the extra parameters in the registers –lines 17-18, and (4) appends two bitwise in-

structions –lines 26 and 28– before every load/store. The bitwise AND operation is per-

formed between the load/store address and the mask. The mask for each partition is

84 Chapter 5. Secure GPU Spatial Sharing

Arbitary address

0x7fa 2d0 000 000

partition 2

GPU memory

partition 1

partition 3

0x7fa 2d0 FFF FFF

0x7fa 2d0

0x7fa 1d0 000 000

Mask

0x7fa 2d0 xxx xxxaddress

masking

Figure 5.6: Bitwise instructions mask addresses that fall outside a partition.

calculated using the highest address and the partition size. For instance, if the partition

starting address is 0x7fa2d0000000 and the partition size is 16 MB: the ending address is

0x7fa2d0FFFFFF and the mask is 0x000000FFFFFF (partition 2 in Figure 5.6). In any case,

the number of zeros in the mask depends on the partition size. Then we use a bitwise OR

between the address and the base address of a partition. The bitwise AND with the mask

and the bitwise OR with the partition base address make an address outside the parti-

tion to start from the begging of the partition, i.e., wrap around, as shown in Figure 5.6.

The illegal address that points to partition 1 (assigned to another application) due to the

bitwise operations with the masking address, will finally point to partition 2. With this ap-

proach, only invalid or malicious kernels will wrap around and potentially corrupt their

data. If memory corruption results to other execution issues (e.g., no convergence in ML

applications) for invalid or malicious applications, the gManager can utilize existing tech-

niques [80] to detect and terminate the endless kernel. Alternatively, Guardian can use

address checking (§5.4.4) to detect invalid accesses and return from the kernel, but at a

higher cost (§5.6.2).

Intel, AMD, and NVIDIA GPUs have two addressing modes for loading or storing data

to memory [71, 51]. In the first case, the base address is loaded into the destination register

5.4. Guardian Design 85

(line 30 in Listing 5.3), while in the second, an offset is first added to the base address, and

the result is loaded into the destination register (i.e., ld.global %val, [%base addr + of f set]).

The same modes apply to stores and all off-chip memories. The PTX-patcher applies the

bit-masking instructions directly to the base address for the first mode. For the second

mode, the patcher calculates the new address by adding the offset to the base address and

stores this in a new temporary register. Then, it applies masking instructions to this new

address. Our patcher instruments .func in the same way as kernels (.entry). The .func

directive denotes a function callable from both host and kernel code.

Indirect branch instructions are unsafe, but we find that, they do not exist in PyTorch

kernels. However, Guardian can protect these as well by applying a mask to the index

relative to the array size, causing the index to wrap around.

5.4.4 Bounds Checking Tradeoffs

Guardian currently supports three bounds-checking methods: One address checking and

two address fencing approaches. Each approach has different requirements and can be

dynamically utilized at runtime by Guardian to serve different purposes. First, address

checking uses conditional checks to verify that the addresses used in load and store oper-

ations are in the correct partition. This approach detects out-of-bounds accesses and is

more suitable for debugging purposes. Unlike address fencing, address checking can be

used for partitions of arbitrary size but at a higher cost (80 cycles) because the Address

Divergence Unit executes conditional checks.

Address fencing does not provide out-of-bounds detection, but it is more efficient

and practical, making it sufficient for isolating concurrent applications. Address fencing

with modulo applies the following instructions before every load and store: f enced addr =

partition base+((arbitary addr−partition base)%partition size). CUDA ISA implements the 64-

bit modulo operation via a function call that requires 2×more cycles than the 32-bit mod-

ulo implemented inline by NVIDIA. We implement the 64-bit modulo inline with three

instructions and an extra parameter holding the 1
parttition size . The extra parameter avoids

the division’s high overhead since it is also implemented via a function call. This approach

86 Chapter 5. Secure GPU Spatial Sharing

load
28 cycles

L1
100 cycles

L2
250 cycles

global

store global
250 cycles

bit-masking
(8 cycles)

Figure 5.7: Bit-masking latency (8-cycles) compared to latency of different memories.

implies less overhead (28 cycles) than address checking and still does not require partition

alignment.

Finally, address fencing with bitwise operations is the most lightweight compared to

previous approaches because it requires almost 8 cycles –4 cycles per bitwise operation [2].

As shown in Figure 5.7, a load/store instruction requires 28 cycles if the data reside in L1-

cache, whereas if the data is in global memory, it requires 220-350 cycles [10, 42]. In the

rare case that all the data are in L1-cache (100% cache hit ratio), our approach implies 30%

overhead, whereas in the typical case (data in global memory), we add on average 3.5%

(§5.6.4). Our approach requires the memory size of the partitions to be in the power of two

to cut down the extra instructions required to check a partition’s upper and lower bounds.

The power-of-two block size allocators restrict the number of concurrent applications,

however PyTorch and TensorFlow use this type of allocator as default. Consequently, we

choose to optimize the common case and leave the allocation issue as future work.

Guardian passes the mask and the base partition address to every kernel using two

extra parameters. Using these parameters inside the kernel requires two extra registers.

This does not lead to register spilling, as we show in §5.6.3, because GPU kernels use the

minimum number [30, 81] of registers, and the nvcc compiler optimizes further register

usage [55]. We have also examined two other possible solutions: The first is a global map

stored in GPU memory, but updating the map is prohibitively expensive. The second is

to generate a different kernel binary for every partition with the mask hard-coded. This

approach does not scale when multiple applications use thousands of kernels. Using JIT

to avoid pre-compiling kernels induces considerable overhead. Therefore, the gManager

compiles at its initialization the sandboxed PTX with the extra parameters avoiding JIT.

5.5. Experimental Methodology 87

Specifications RTX A4000 RTX 3080 Ti
Compute Capability 8.6 8.6
#SMs 48 80
#CUDA cores 6144 10240
L1 (KB) 128 128
L2 (KB) 4096 6144
Global memory (GB) 16 12
#Registers / Thread 255 255
PCIe v4 x16 v4 x16
L1 hit latency (cycles) 28 [10, 42] 28 [10, 42]
L2 hit latency (cycles) 193 [10, 42] 193 [10, 42]
Global memory BW (GB/s) 448 912
Error Correction Code Yes No

Table 5.2: GPU specifications we use for the evaluation.

5.5 Experimental Methodology

Our evaluation tries to answer the following questions:

1. What is the impact of Guardian on GPU spatial sharing compared to unprotected

NVIDIA MPS (§5.6.1)?

2. What is the overhead of Guardian on real-life applications –running standalone–

compared to native execution and other protection approaches (§5.6.2)?

3. What is the impact of address fencing (bitwise operation) on GPU register usage

(§5.6.3)?

4. What is the performance of address fencing (bitwise operation) at high cache hit

ratios (§5.6.4) using different GPUs and access patterns (§5.6.5)?

5. What is the cost of CUDA runtime and driver API interception (§5.6.6)?

Server platforms: To evaluate Guardian we use two GPU models (Table 5.2), that are

installed on two different servers. The first server is equipped with a Quadro RTX A4000

GPU, four AMD EPYC 7551P NUMA CPUs with 8 physical cores each (running at 3.0 GHz,

hyper-threaded), and 128 GB of DRAM. To avoid passes over QPI/UPI, we pin applications

88 Chapter 5. Secure GPU Spatial Sharing

Libraries/
Frameworks

#kernels #functions #total loads #total stores

cuBlas (v11) 4115 0 341249 106399
cuFFT (v10) 5173 4 175256 371932
cuRAND (v10) 204 0 4949 3610
cuSPARSE (v11) 4335 0 334694 101792
cuDNN (v7) 11713 5 1032688 551610
Rodinia 23 7 544 285
Caffe 1294 4 87267 32946
PyTorch 27987 319 2083978 857987

Table 5.3: Load and store instructions in CUDA-accelerated libraries and frameworks we
use.

to the cores closer to the GPU. The second server contains a GeForce RTX 3080 Ti, an

Intel(R) Core i7-8700K CPU with 6 cores running at 3.70 GHz, and 32 GB of DRAM. Both

servers have NVIDIA CUDA v11.7 with NVIDIA driver v.515 installed. All the experiments,

except §5.6.5, are performed in the Quadro RTX A4000. Regarding GPU kernel scheduling,

we use the default NVIDIA policy, namely leftover [32, 74]).

Applications and datasets: To evaluate the overheads of Guardian under real-world sce-

narios, we use multiple neural networks from Caffe [41] and PyTorch [78] frameworks with

large data sets that invoke billions of kernels and execute for hours and applications from

the Rodinia benchmark suite [17]. Regarding ML applications, we run lenet, siamese, com-

puter vision, and rnn neural networks with the mnist dataset [50], while for cifar10, the

cifar dataset [46]. Both mnist and cifar datasets contain hundreds MBs of images. All the

above neural networks are executed with 100 up to 500 epochs and invoke up to 142 mil-

lion CUDA kernels. We also run experiments with imagenet dataset [87], which consists

of 256 GB of images, using googlenet, alexnet, caffenet, vgg11, mobilenetv2, and resnet50

as neural networks. These networks invoke billions of kernels, and we run them for ten

epochs leading to 99% accuracy. Table 5.3 shows the total number of kernels, functions,

and the load/store (ld/st) instructions contained in the libraries and frameworks that we

use in our evaluation. Regarding Rodinia, we increase the default dataset size by 10× and

kernel execution time by 8×, compared to previous work, because the default values are

small for executing on real systems.

5.5. Experimental Methodology 89

Workloads with same apps Workloads with different apps
ID Name Epochs per app ID Name Epochs per app

A 2xlenet 500 I lenet-siamese 500-50
B 4xlenet 500 J siamese-cifar10 30-100

C 2xcifar10 100 K
2xlenet-siamese-

2xcifar10
500-30-100

D 4xcifar10 100 L
3xlenet-siamese-

2xcifar10
500-30-100

E 2xgaussian - M hotspot-guassian -
F 4xgaussian - N gaussian-lavamd -
G 2xlavamd - O particle-hotspot -

H 4xlavamd - P
gaussian-hotspot-

lavamd-particle
-

Table 5.4: Mixes of workloads used for assessing the performance of Guardian under GPU
sharing.

Workloads: From Caffe, PyTorch, and Rodinia, we create a set of workloads shown in Ta-

ble 5.4, to evaluate Guardian under concurrently running applications. Each workload is

a mix of compute- and data-intensive applications and covers scenarios in which appli-

cations compete and stress the GPU resources. As in previous works [20, 54, 70, 94], we

create workloads with 2-6 concurrent clients. The workloads A-H use multiple instances of

the same application, while I-P includes different applications. To ensure that application

executions overlap, we appropriately modify the number of epochs of each application,

affecting the total execution time. We also vary the batch size to increase memory usage

in each application from 500 MB to 2 GBs. To assess the applicability and coverage of

Guardian, we use CUDA library samples that contain applications that use cuBLAS, cuFFT,

and cuSPARSE libraries. These examples include more than 30 library calls that are not in

the real-world frameworks we use.

Performance measurements: We use Nsight to profile GPU kernel execution and col-

lect metrics, such as cache hits, GPU calls latencies, and kernel invocations. We use the

Xptxas=-v compiler flag to measure register and constant memory use by the sandboxed

kernels in Guardian. For measuring the duration of host calls, we use the rdtsc instruction

and we set the CPU frequency to its maximum value.

90 Chapter 5. Secure GPU Spatial Sharing

Baseline and Guardian Deployments: Regarding GPU sharing we use four deployments.

Native uses the default CUDA runtime environment, which offers time sharing with pro-

tection and represents the baseline performance. The other three setups provide GPU

spatial sharing: NVIDIA Multi-Process Service (MPS) [70] allows concurrent execution of

multiple kernels but without strong protection guarantees. Guardian without protection

the spatial sharing of Arax, which is analogous to MPS. Guardian with address fencing

(bitwise operation) is our main approach for protection using bit-masking. Regarding

G-NET [115] that uses network functions for its evaluation, we extrapolate its protection

mechanism for ML applications using address checking. Mask [8] uses the Mosaic simula-

tor [7] for its evaluation, and we omit to compare directly with Guardian. Finally, MIG [69]

statically partitions high-end NVIDIA GPUs, leaving GPU resources underutilized, making

a comparison less relevant.

We run standalone neural networks to isolate Guardian protection overheads. This is

essential for two reasons, leading to Guardian overheads amortization. First, the gMan-

ager and applications operate in separate address spaces, necessitating IPC mechanisms

to exchange data and tasks. This, in turn, increases the execution time of GPU calls. Sec-

ond, spatial sharing intensifies resource contention, which may increase the latency of

GPU loads and stores. Regarding this scenario, we use: (a) Native CUDA as a baseline.

(b) Guardian without protection that just intercepts GPU calls but does not perform any

checks nor instrumentation. This setup models the overhead of intercepting and forward-

ing CUDA calls to the gManager. (c) Guardian with address checking, to evaluate control

flow instructions. (d) Guardian with address fencing modulo operation to measure the

overhead of our inline modulo instruction. (f) Guardian with address fencing bitwise oper-

ation to appraise bitwise instructions.

5.6. Experimental Evaluation 91

A B C D E F G H
0

1000

2000

3000

4000

5000

E
xe

cu
ti

o
n
 t

im
e
 (

s)
Native MPS Guardian w/o protection Guardian address fencing

Figure 5.8: GPU sharing using native CUDA time sharing (protected), MPS spatial sharing
(unprotected), Guardian spatial sharing without protection, and Guardian spatial sharing
with address fencing under workloads with the same applications.

I J K L M N O P
0

1000

2000

3000

4000

5000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Native MPS Guardian w/o protection Guardian address fencing

Figure 5.9: GPU sharing using native CUDA time sharing (protected), MPS spatial sharing
(unprotected), Guardian spatial sharing without protection, and Guardian spatial sharing
with address fencing under workloads with the different applications.

5.6 Experimental Evaluation

5.6.1 Impact of Guardian at GPU Sharing

In this section, we compare Guardian address fencing with MPS and Guardian without

protection when multiple applications share the same GPU spatially. Figures 5.8, 5.9 shows

the execution times of Native, MPS, Guardian without protection and Guardian address

fencing for the workloads of Table 5.4. Comparing Guardian address fencing to MPS, our

approach is, on average, 4.84% slower due to the extra checks enforced to prevent out-of-

bound accesses. When we turn off these checks in Guardian (no protection), the execution

times achieved are 0.05% worst than MPS. In high resource contention, as in workloads I-P,

the overheads of Guardian address fencing are lower on average 3.2% since our overheads

92 Chapter 5. Secure GPU Spatial Sharing

Native
Guardian w/o protection
Guardian address fencing (bitwise op.)

Guardian address fencing (modulo op.)
Guardian address checking

lenet siamese cifar10
0

500

1000

1500

2000

Ex
ec

ut
io

n
tim

e
(s

)

(a) Training

lenet siamese cifar10
0

50

100

150

200

Ex
ec

ut
io

n
tim

e
(s

)
(b) Inference

Figure 5.10: Comparison of address fencing (bitwise) with other approaches, using Caffe
with mnist and cifar dataset.

are amortized. It is worth noticing that Guardian without protection performs better than

MPS in workload with thousands of pending kernels (D, P, K, H). This is because the MPS

server becomes a bottleneck according to previous works [79].

Finally, we compare spatial and temporal sharing, which is the default mechanism

used from many previous works [113, 108, 16, 48] because it ensures protection. Guardian

address fencing is, on average 23% faster than native, while in some cases, it is up to 2×

faster due to parallel kernel execution. We note that the performance improvements of

spatial sharing are primarily affected by the resources required by the concurrently exe-

cuting workloads. In cases where the resources needed are low, as in workloads B and D,

the benefits are more prominent, i.e., 2×, while the performance gap is reduced for more

resource-intensive workloads.

5.6.2 Guardian Overheads Compared to Other Approaches Without Sharing

Figures 5.10 and 5.11 plot the times of the individual execution for several ML frameworks

and CUDA-accelerated libraries (Table 5.3), using Native, Guardian without protection,

Guardian address fencing (bitwise and modulo), and Guardian address checking. We note

5.6. Experimental Evaluation 93

Native
Guardian w/o protection
Guardian address fencing (bitwise op.)

Guardian address fencing (modulo op.)
Guardian address checking

googlenet alexnet caffenet
0

15000

30000

45000

60000
Ex

ec
ut

io
n

tim
e

(s
)

(a) Caffe Training

vgg11 mobilenet resnet50
0

25000

50000

75000

100000

Ex
ec

ut
io

n
tim

e
(s

)

(b) PyTorch Training and Inference

Figure 5.11: Comparison of address fencing (bitwise) with other approaches, using Caffe
and PyTorch with the imagenet dataset.

that the training phase for lenet, siamese, cifar10 issues up to 142 million kernels, whereas

googlenet, alexenet, caffenet, vgg11, mobilenetv2, and resnet50 issue billions of kernels.

The inference phase issues up to 8 million kernels.

Figure 5.10(a) shows lenet, siamese, and cifar10 training, while Figure 5.10(b) shows

the inference phase of the same neural networks. Guardian has between 5.9% up to 12%

overhead compared to the unprotected native CUDA. The Guardian without protection

approach includes the interception of CUDA calls and the search in the pointerToSym-

bol table to find the appropriate sandboxed kernel. The kernel issued in the GPU does

not contain the bit-masking instructions, while transfer instructions do not contain the

out-of-bounds checks added from Guardian address fencing. The Guardian without pro-

tection approach has an overhead from 3.7% to 10% compared to native. By comparing

Guardian address fencing (bitwise operation) and Guardian without protection, the over-

head of Guardian address fencing is between 1.05% up to 4.3%. As a result, the overhead

added by bounds checking (in transfers and PTX kernels) is 2.9% on average.

Figure 5.11(a) shows googlenet, alexenet, and caffenet training. Guardian address fenc-

ing (bitwise operation) has between 4.5% up to 10% overhead compared to the unpro-

tected native CUDA. The Guardian without protection approach has an overhead from

94 Chapter 5. Secure GPU Spatial Sharing

5

3000

(a) No Optimizations (-G)

5

(b) Optimization level 3 (-O3)

Figure 5.12: Guardian’s per thread register usage vs native.

1.36% to 6% compared to native. By comparing Guardian address fencing (bitwise oper-

ation) and Guardian without protection, the overhead of Guardian is between 2.9% up to

4.3%. Figure 5.11(b) shows vgg11, mobilenet, and resnet50 training and inference using

PyTorch. The overhead of Guardian for call interception is, on average 5.5% (native vs.

Guardian without protection). The overhead of Guardian address fencing compared to

Guardian without protection is on average 7.6%.

Our optimized modulo –without function call– approach, namely address fencing mod-

ulo operation, increases the execution time by 29% on average compared to native, due to

the addition of seven extra instructions. Conditional checks increase execution time by

1.7× on average compared to native. This is because the branch instructions are more ex-

pensive compared to bitwise operations. In the addressing mode that uses address+offset

we add up to eight instructions (32cycles) to check the bounds of each memory partition.

5.6.3 Impact of Address Fencing on Register Usage

Figure 5.12 shows the number of registers that are eventually used for storing the address

mask and the base address in the address fencing bitwise approach. Figure 5.12(a) shows

the additional registers used from our approach when compiling the PTX without any op-

timization flag, whereas Figure 5.12(b) shows full optimizations. The lack of optimization

5.6. Experimental Evaluation 95

sg
em

m
_1

sg
em

m
_2

im
2c

ol
co

l2
im

ge
m

v2
T

ge
m

m
k1 sc
al

sg
em

m
_3

sc
al

_2
m

ax
po

ol
bw

_1
ax

py
m

ax
po

ol
fw

sg
du

pd
at

e
as

um
dg

em
m

_1 do
t

re
du

ce
_1

Bl
oc

k
ge

m
vn

sp
_1

so
ftm

ax
lo

ss
fw

ch
an

ne
l_s

um
ch

an
ne

l_m
ax

ch
an

ne
l_d

iv
ch

an
ne

l_s
ub

tra
ct

ge
m

vn
sp

_2
re

lu
fw ex
p

re
lu

bw
so

ftm
ax

lo
ss

bw
ke

rn
el

_v
al

ac
cu

ra
cy

fw

0

2

4

6

8

10

Ov
er

he
ad

 (%
)

Figure 5.13: Performance overhead of sandboxed kernels against native execution.

flag results in kernels (from cuBINs) using up to 4 additional registers in 62% of the total

kernels. However, when we use full optimizations in the compilation (O3), 71% of ker-

nels use no extra registers, 13% use up to one extra register, and 7% use up to two extra

registers. In some rare cases, the number of registers is smaller than the default because

the compiler spills some registers in the global memory. Regarding the constant memory

affected by the extra parameters Guardian adds in 99% of kernels 16 bytes.

5.6.4 Performance of Address Fencing at High Cache Hit Ratio

Figure 5.13 shows the overhead of Guardian address fencing (bitwise operation) normal-

ized to native for 890000 kernels used in lenet. The overhead of Guardian is, on average

3.2%. We have performed the same breakdown for computer vision and observed similar

results. The overheads of Guardian bit-masking instructions depend on the latency of the

load and store instructions. A load instruction that retrieves data from global memory is

220-350 cycles [10, 42], while if data are in L1-cache is 28 cycles. Our approach adds two

(bitwise AND, OR) up to four instructions (for cases that include address+offset) per load

and store instruction. Each of these instructions is executed in almost 4 cycles. As a result,

96 Chapter 5. Secure GPU Spatial Sharing

cv rnn lenet
0

500

1000

1500

2000

Ex
ec

ut
io

n
tim

e
(s

)

Native
Guardian w/o protection

Guardian address fencing
Guardian address checking

Figure 5.14: Guardian overhead with PyTorch and Caffe on GeForce GPU, compared to
native execution.

if all data are in the L1 cache –not common–, our overhead is from 28% up to 57%. If all

data are only in global memory, our overhead (with global memory latency 285 cycles) is

from 2% up to 5%. We have profiled all kernels of lenet and observed that the average L1

cache hit rate is 37%, while for L2 is 72%. L2 latency is 180 cycles, only 1.4× better than

global’s. Overall, address fencing (bitwise operation) in Guardian incurs small additional

overhead due to two main reasons: (1) As we show, ML kernels exhibit a low cache hit ra-

tio. (2) As shown from previous works [6], cache hits result in a lower load/store instruction

latency in the rare case that every thread in the warp hits in the cache.

5.6.5 Performance of Guardian on Different GPUs and Access Patterns

Figure 5.14 shows the results with three neural networks from PyTorch and Caffe executed

in the GeForce GPU. In computer vision (cv) and rnn Guardian address fencing (bitwise

operation) incurs 12% and 10% overhead compared to native, respectively. Lenet with

Guardian incurs 13% overhead compared to native. Conditional checks exhibit on average

1.8×worst execution time compared to native. Overall, we note that Guardian has similar

overhead across different GPU types.

Figure 5.15 shows the performance of Guardian over CUDA-accelerated library calls

5.6. Experimental Evaluation 97

hp
r2 hp
r

nr
m

2 ro
t

ro
tg

ro
tm

ro
tm

g
sb

m
v

sp
m

v
sp

r
sy

m
m

sy
m

v
sy

r2
sy

r2
k

sy
r

sy
rk

sy
rk

x
tb

m
v

tb
sv

tp
m

v
tp

sv
trm

m
trm

v
trs

m
B.

trs
m

trs
v

1d
c2

c
co

os
or

t
de

ns
e2

sp
ar

se
ga

th
er

gp
sv

In
te

r
ro

ts
p

sc
at

te
r

sp
m

m
co

oB
.

sp
m

m
cs

r
sp

m
m

cs
rB

.
sp

vv

0

2

4

6

8

10

12

Ov
er

he
ad

 (%
)

5

3

0

3

0

13

0

3

0 0
1

4

0

6

0

9

11

1

4

8

6

3

5

1

11

0

8

2
3

0 0

5

1

7 8 8

1

Figure 5.15: Guardian overhead (%) for 37 kernels from CUDA-accelerated libraries com-
pared to native execution of each kernel on the GeForce GPU.

that are not contained in the ML frameworks used previously. Guardian successfully in-

tercepts these calls and adds 4% overhead, on average, which is similar to the results ob-

served with the Quadro GPU.

5.6.6 Cost of CUDA calls Interception

The interception of kernel invocations in Guardian requires between 214 and 900 CPU cy-

cles (“Lookup GPU kernel” in Table 5.5) for the lookup operation to locate the sandboxed

kernel (stored in a c++ unordered map). Regarding the extra arguments passed in the ker-

nel, we require between 300 and 600 CPU cycles to allocate a new parameter array and

copy the new and old parameters in this array (“Augment kernel params” in Table 5.5).

Guardian adds on average 957 CPU cycles per cudaLaunchKernel. We perform each ex-

periment ten times, excluding the minimum and maximum values.

The cudaLaunchKernel NVIDIA system call is measured using the Nsight profiler. The

average execution time (for more than one thousand kernels) in CPU cycles is approxi-

mately 9000 CPU cycles (“Launch kernel to GPU” in Table 5.5). So our overhead without

the kernel execution is 10% on average. We have profiled lenet and cv applications (exe-

98 Chapter 5. Secure GPU Spatial Sharing

Lookup
GPU kernel

Augment
kernel params

Launch
kernel to GPU

Native 0 0 ∼9000
Guardian 557 400 ∼9000

Table 5.5: Guardian average cost in CPU cycles for the main operations performed when a
kernel launch is intercepted and replaced with a sandboxed kernel.

cuting millions of kernels) and found out that the kernel execution time without the cud-

aLaunchKernel is, on average 18000 CPU cycles. Consequently, the overhead of Guardian,

including the kernel execution time, is 3% per kernel, on average.

Memory allocation and data transfer We use a micro-benchmark that uses memory al-

locations and data transfers of different sizes to evaluate Guardian’s memory management

operations. The results suggest that (a) our allocator does not imply overhead compared

to native CUDA, and (b) the protection checks used on every data transfer over the PCIe

bus imply negligible overhead.

5.7 Summary

This chapter presents Guardian, a GPU memory sandboxing approach that allows real-

life applications from different users to share a GPU safely. Guardian makes it practical to

share GPUs spatially in multi-tenant environments. The benefits of Guardian are three-

fold: (1) It is transparent to applications, even when applications use closed-source GPU-

accelerated libraries that include host-level and GPU kernel code. (2) It fences all memory

accesses of GPU kernels, including closed-source kernels, by instrumenting kernels at the

PTX level. (3) It incurs low overhead using bit-masking to fence addresses without per-

forming address range checks. Our evaluation using real-world ML frameworks shows

that Guardian can support all required GPU-accelerated libraries transparently and intro-

duces on average 9% overhead compared to native unprotected execution. Additionally,

Guardian incurs up to 2.4× less overhead compared to other software-based approaches,

while it is comparable to hardware-based approaches.

Chapter 6

Related Work

The related work of this dissertation falls into four different research areas: (i) Decou-

pling application from accelerators, (ii) Simplifying FPGA access and providing sharing,

(iii) GPU kernel revocation with SLA guarantees, and (iv) GPU memory protection under

spatial sharing.

6.1 Decoupling applications from accelerators

We categorize related work in four areas: (a) static accelerator assignment, (b) dynamic

accelerator assignment, (c) accelerator virtualization, and (d) accelerator spatial sharing.

Table 6.1 compares Arax with previous state-of-the-art approaches.

Existing programming models, such as CUDA [40], SYCL [84], and oneAPI [3], enforce

applications to select the desired accelerator types either at compile time or at the begin-

ning of application execution, resulting in static binding of applications to accelerators.

StarPU [5] performs finer-grain assignment of a graph of tasks to multiple and heteroge-

neous processing units; however, still in a static manner. Arax assigns tasks dynamically

to the available accelerators. It also provides spatial sharing across heterogeneous accel-

erators and a stub generator to reduce application porting effort. We note that Arax and

StarPU offer a similar approach for defining independent sets of work. StarPU indicates a

set of dependent tasks with labels, whereas Arax uses task queues.

Arax shares similar goals with recent work in dynamically assigning GPUs to appli-

99

100 Chapter 6. Related Work

Approach Heterogeneity Spatial Sharing
Dynamic resource

assignment
Reducing

effort

MPS [20] - ✓ - -
StarPU [5] ✓ - - -
Gandiva [108] - - ✓ -
DCUDA [35] - - ✓ -
AvA [113] ✓ - - ✓
Arax [79] ✓ ✓ ✓ ✓

Table 6.1: Capabilities of Arax vs. state-of-the-art approaches.

cations. Gandiva [108] is a cluster-level scheduler for ML training applications that dy-

namically assigns GPUs to applications. DCUDA [35] is a runtime system that provides

dynamic assignment of applications to GPUs. The main limitation of these works is that

they are either based on domain-specific application features or vendor-specific acceler-

ator mechanisms. Gandiva migration uses TensorFlow checkpoints, which however, are

not provided by all applications and frameworks [16]. DCUDA provides support only for

NVIDIA GPUs. In contrast, Arax is accelerator-agnostic and does rely on application- or

accelerator- specific mechanisms.

Previous work has also explored the concept of accelerator virtualization [113, 93, 23].

API remoting [93, 23] is an I/O virtualization technique in which API calls are forwarded to

a user-level computing framework [93] or to a remote server [23]. The main disadvantage

of API remoting is the inability to support multiple APIs, which is not the case for Arax.

AvA [113] is a framework that virtualizes heterogeneous accelerators. However, with AvA,

all accelerator calls, including kernels with microsecond execution time, go through the

hypervisor, increasing response time. Additionally, AvA requires applications to select the

accelerators in advance, leading to static application to accelerator assignment. AvA cre-

ates a server for each application to execute tasks to accelerators. This design decision

does not allow GPU spatial sharing due to the lack of a single context. Arax is a user-space

approach resulting in less overhead, as our evaluation shows. Arax frees applications from

accelerator selection, allowing dynamic task assignment. By creating a single GPU con-

text, our server enables spatial sharing.

NVIDIA GPUs support by default time sharing, according to which only one applica-

6.2. FPGA Software Access and Sharing 101

tion uses the GPU at any time. The CUDA runtime executes the kernels from different

applications back-to-back [8], which, however, does not improve the GPU utilization for

applications that do not have enough parallelism to utilize all the resources of beefy GPUs.

Kernel preemption introduced in Pascal architecture allows the time-sharing scheduler to

share the GPU across applications fairly. However, due to the fine-grain context switching,

the execution time of applications increases.

Finally, GPUs support spatial sharing through NVIDIA MPS [20], while AMD GPUs sup-

port it by default. On the other hand, FPGAs require partial reconfiguration that divides

the FPGA into fixed areas; these areas can then accommodate different compute kernels.

Even though each of these mechanisms provides spatial sharing primitives for each accel-

erator type, they still require low-level knowledge of each accelerator API and its runtime

to implement task assignment policies. Moreover, it may require coordination across dif-

ferent applications, e.g., FPGAs, which is not always possible in modern servers. Finally,

existing sharing mechanisms rely on applications to select the accelerator they will use,

leading to inefficiencies. Arax’s advantage is that it can handle sharing heterogeneous ac-

celerators while abstracting the related complexity away from applications. For instance,

with FPGAs, the Arax server performs any required partial reconfiguration, loading the

appropriate bitstream to serve a task. Finally, Arax makes it easy to apply new task assign-

ment policies transparently to all applications facilitating further research in the area.

6.2 FPGA Software Access and Sharing

The use of heterogeneous systems comes at a significant cost: the increase in program-

ming complexity at different levels. To overcome issues related to programming the FPGA

itself, developers can employ high-level Languages, such as OpenCL or System C [105, 9,

90, 89]. However, little has been done to reduce the effort in incorporating FPGAs in appli-

cations and services. Dynamic reconfiguration [12] of FPGAs has traditionally been used

to improve flexibility and usability. More recently, research has examined various tech-

niques to partition FPGAs so multiple applications can use them. Our work is orthogonal

to these efforts since we aim to allow applications to share each partition simultaneously.

102 Chapter 6. Related Work

Next, we discuss recent progress in incorporating FPGAs in the data and cloud applica-

tions.

Fahmy et al. [27] presented a framework that integrates reconfigurable accelerators in

a standard server with virtualized resource management and communication. The pro-

posed framework integrates a PCIe-based FPGA board into a standard datacenter server.

The FPGA is partitioned into separate accelerator slots. Accelerator functions are either

stored in a library on the host machine as partial bitstreams or can be uploaded by the

user. In this framework, a hypervisor is implemented to configure and schedule the user

logic in the FPGA resources. Unlike this approach, VineTalk places the accelerator con-

troller in the host, avoiding dependencies with a hypervisor.

In [4], a runtime system has been proposed to simplify the FPGA application devel-

opment process by providing a high-level API and a simple execution model that sup-

ports software and hardware execution. The proposed framework allows the design and

dynamic mapping of accelerators onto FPGAs for cloud applications. The runtime sys-

tem utilizes a MicroBlaze soft core running FreeRTOS tasks responsible for low-level man-

agement of hardware resources (memory, PCIe, partial reconfiguration, and accelerators).

Host applications interact with the accelerator using a DyRact API. In contrast, VineTalk

uses a host core to schedule tasks/accelerators, leaving all FPGA/accelerator resources

available to applications. Additionally, VineTalk uses a higher-level, hardware-agnostic

API that decouples application developers from accelerator-specific knowledge, such as a

number of DMA channels.

6.3 GPU kernel revocation and scheduling

Sharing a GPU across applications introduces difficulties in providing latency guarantees

to user-facing tasks. We categorize previous approaches in scheduling and preemption.

6.3. GPU kernel revocation and scheduling 103

6.3.1 SLA-based scheduling

Timegraph [44], Baymax [18], gVirt [97], and VGRIS [114] implement sophisticated SLA-

aware task scheduling policies. These approaches consider only batch tasks with execu-

tion time comparable to the SLA, in the order of tens or a few hundred milliseconds. Thus,

they alleviate the priority inversion problem when a critical task waits for a batch task to

finish, only with short batch tasks.

With modern workloads, long-running batch tasks are becoming more common as the

complexity of the algorithms and the amount of data they use increases. Long-running

tasks can monopolize the GPU [68], requiring a GPU preemption or revocation mecha-

nism. TReM is a task revocation mechanism that can be coupled with suitable scheduling

policies. A scheduling policy will determine when a task has to be killed and instruct TReM

to kill it.

6.3.2 State-saving preemption mechanisms

Operating systems can preempt a running process and give the CPU to another process

within a few microseconds. Such low overhead preemption mechanisms are not available

in modern GPUs.

Chimera [75] is an effective preemption approach that provides block context switch-

ing, draining, and flushing. However, Chimera is only implemented in a simulation en-

vironment and is not supported by existing GPUs. PEP [56] and GPU snapshot [52] add

incremental checkpoints to decrease the overhead of saving the full context of a revoked

or failed kernel. These approaches are orthogonal to ours. TReM can be integrated with

Kyushick’s [52] approach to bind the wasted work to a single checkpoint interval at the

cost of additional memory usage at the GPU.

Sajjapongse et al. [88] rely on existing synchronization points to preempt kernels. Their

approach cannot provide low response time to user-facing tasks when synchronization

points are rare. Moreover, they transfer the state and data of the preempted kernel to host

memory, resulting in long preemption latency for tasks with a large memory footprint.

GPES [116] splits the kernel statically into multiple sub-kernels. Consequently, it avoids

104 Chapter 6. Related Work

the problems implied by synchronization points. However, GPES has to determine the

granularity of a slice. If the slices are too small, they introduce runtime overhead; if they

are too large, they can not provide low preemption latency. In contrast, TReM provides

low revocation latency because it can revoke a kernel at any arbitrary point of its execution

without saving any task state.

FLEP [106] uses asm(exit) to preempt kernels, as discussed in detail in Section 4.1.

To reduce the preemption latency, FLEP splits the initial kernel into multiple smaller ker-

nels using persistent threads [36]. Thus it limits the number of launched thread blocks

in each kernel to the maximum number of thread blocks that the GPU can simultane-

ously execute [36]. However, the preemption latency of FLEP depends on the execution

time of thread blocks. Additionally, FLEP does not discuss freeing the GPU DRAM from

preempted task data, thus potentially inducing memory monopolization. Finally, FLEP

requires kernel source code to make it preemptible. TReM is based on CUDA dynamic

parallelism [43], so it does not rely on kernel slicing and does not require kernel source

code. Furthermore, it can kill a kernel at any point of its execution, with constant delay.

TReM does not save the state of the killed kernel in GPU memory; hence, it does not pre-

vent other high-priority kernels from starting due to memory shortage.

Figure 6.1: Evaluating NVIDIA compute preemption by collocating two tasks in the same
GPU using high- and low-priority streams. The user-facing task is assigned to the high-
priority stream and a batch to the low-priority one. The high-priority stream preempts
the low-priority one. As we increase the batch duration (x-axis), the duration of the user-
facing task is affected and increases linearly.

6.3. GPU kernel revocation and scheduling 105

Approach
Preemption/
Revocation

Low &
Constant

preemption
latency

Tasks
with large
memory
footprint

No need
for krnl
src code

Supports
all

NVIDIA
GPUs

(C.C.*>3)

Provides
SLA aware

policies

FLEP [106] ✓ - - - ✓ -
GPES [116] ✓ - - - ✓ -
Pascal
Preemption [68]

✓ Not known ✓ - - -

Chimera [75] ✓ ✓ ✓ - ✓ -
Baymax [18] - - ✓ - ✓ ✓
TReM +
Elastic [80]

✓ ✓ ✓ ✓ ✓ ✓

Table 6.2: TReM and prior state-of-the-art approaches.
*Compute Capability

NVIDIA Pascal GPUs, similarly to FLEP, provide a compute preemption mechanism

that allows CUDA kernels to be interrupted at block-level granularity. According to CUDA

[60] the higher priority stream will preempt blocks already executing in the low priority

stream. We evaluate the compute preemption of Quadro P1000 (Pascal architecture), us-

ing streams with priorities [60]. In our experiment, we use a benchmark with two kernels,

one assigned to a low-priority stream (i.e., batch) and the other to a high-priority stream

(i.e., user-facing). The two kernels consist of 1024 thread blocks with 512 threads per block

to ensure that they will compete for stream multiprocessors (SMs). These two kernels are

identical, iteratively copying one array to another. We first start the low-priority kernel,

and we measure the latency of the high-priority kernel. Figure 6.1 shows that the exe-

cution time of the high-priority kernel increases linearly with the execution time of the

low-priority kernel, even though the high-priority kernel size stays fixed. Therefore, the

preemption latency depends on the low-priority kernel’s thread block execution time.

Table 6.2 compares TReM with previous state-of-the-art approaches. To the best of our

knowledge, Elastic+TReM is the only SLA-aware scheduling solution that deals with long-

running batch tasks, using a revocation mechanism that: (i) provides low and constant

latency; (ii) handles tasks with large memory footprint avoiding to store or transfer large

amounts of state and merely restarting the task; (iii) does not require GPU kernel source

code; and (iv) works with all NVIDIA GPUs (Compute Capability (C.C.) ≥ 3) that exist in

106 Chapter 6. Related Work

today’s and future datacenters.

6.4 GPU memory protection

Table 6.3 summarizes the main characteristics of state-of-the-art memory protection mech-

anisms and Guardian. Next, we discuss the main approaches for protection in shared

GPUs.

6.4.1 Protect GPU Memory under GPU sharing

Time-sharing offers memory protection since it allows only one context to be active in the

GPU at any time; thus, it is mainly used from previous works [108, 113, 48, 23, 109]. The

device driver is responsible for allocating and managing resources belonging to a context.

Upon a context switch, its resources are freed, and the translation lookaside buffer (TLB)

is invalidated. Consequently, application data are protected at the cost of GPU utilization

because context switching is expensive [8, 115, 111]. On the other hand, Guardian elimi-

nates the expensive context switching and improves GPU utilization by offering protected

spatial GPU sharing.

Mask [8] is a hardware-based approach that allows applications to share spatially and

securely a GPU. Mask extends the GPU TLB to hold information about warps and the

memory they can use, and as a result, it supports protected spatial sharing. Mask supports

closed-source GPU libraries but with limited applicability due to the special hardware

required. Guardian does not need extra or special hardware, protects closed-source li-

braries, and implies comparable overhead, making it more practical, powerful, and generic.

NVIDIA’s Multi-Instance GPU (MIG) [69] partitions statically high-end NVIDIA GPUs

(i.e., A100 and H100) in completely isolated parts. Besides the limited applicability (re-

quires special hardware), recent works [54, 8] showed that MIG static partitioning leads

to under-utilization and that changing from one partition scheme is not flexible. AMD

and Intel GPUs do not offer any protection and, by default, allow applications to share

a GPU [79] spatially. Guardian uses a more dynamic GPU sharing scheme, similar to

6.4. GPU memory protection 107

Approach
No src

code mod.
CUDA lib
support

No extra
/special HW

Spatial
sharing

Time-sharing [70] ✓ ✓ ✓ -
Mask [8] ✓ ✓ - ✓
MIG [69] ✓ ✓ - ✓
G-NET [115] - - ✓ ✓
Guardian ✓ ✓ ✓ ✓

Table 6.3: Comparing Guardian with state-of-the-art memory protection approaches for
GPU sharing.

MPS [70], with protection guarantees. Regarding compute resource isolation (i.e., CUDA

cores), Guardian can use existing approaches [74, 115] or MPS resource provisioning [20].

G-NET [115] is a software-based approach that overcomes the limited applicability of

hardware-based ones. G-NET deploys a custom type of pointer [91], namely isoPointer,

that checks if the accessed memory address belongs to the correct partition. However,

leveraging these pointers requires manual effort to port the kernel source code. The source

code requirement is a serious limitation leading to weaker protection because most CUDA-

accelerated applications rely heavily on closed-source GPU libraries, e.g., cuBLAS and

cuDNN. Guardian operates in the kernel code’s virtual assembly (PTX) available in closed-

source GPU libraries.

6.4.2 Detect Buffer Overflows for a Single Application

clArmor [25] and GMOD [22] protect against overflows by adding canary values around the

allocated buffers. However, such approaches have limited security coverage because they

cannot capture non-adjacent accesses that jump over canaries. Parravicini et al. [77] add

conditional checks inside the kernel LLVM-IR to preserve Java memory safety semantics

in NVIDIA GPUs. They use static analysis to minimize the significant overhead implied by

conditional checks, which require the application and kernel source code (or LLVM-IR),

limiting its applicability. GPUShield [51] overcomes the limitation of source code using

an extra hardware unit that performs the address checking. CUDA-MEMCHECK and cu-

Catch [95] are debugging tools that operate in the PTX [71] level and detect out-of-bounds

accesses without requiring extra/specific hardware. All these approaches focus on buffer

108 Chapter 6. Related Work

overflow detection of a single application and are considered orthogonal to Guardian.

6.4.3 Ensure Privacy and Data Confidentiality

Graviton [102] is a trusted execution environment (TEE) providing privacy and data confi-

dentiality guarantees. Graviton requires minimal hardware modifications only in the GPU

command processor. Honeycomb [61] relies on address checking to eliminate the neces-

sity for hardware modifications. Furthermore, it depends on source code for static analy-

sis to minimize its overhead. Although, TEEs tackle a significantly different problem [72],

Guardian can be combined with Honeycomb to provide a TEE for GPUs with low overhead

and support for closed-source GPU libraries.

6.4.4 API Remoting

Cricket [24], DGSF [28], rCUDA [23], Arax [79], and GPUless [98] treat high-level functions

to CUDA accelerated libraries as a black box. This is because CUDA libraries use an un-

documented function, the cudaGetExportTable(), which exports a set of function point-

ers that implement hidden functionalities. Guardian uses a minimal implementation of

these hidden CUDA calls, which is however adequate to run PyTorch and Caffe. We exper-

iment with both interception approaches and determine that the Guardian interception

approach is more robust. This is because we only need to intercept 200 relatively straight-

forward CUDA runtime-driver API calls, as opposed to dealing with 1200 high-level (far

more complex) calls to CUDA-accelerated libraries [79].

Chapter 7

Future Work

This dissertation provides solutions to the main issues that exist in the use of multiple and

heterogeneous accelerators within a server. Next, we describe some directions for future

work.

7.1 Apply zero-copy in shared memory

According to our preliminary evaluation, the main overhead of our runtime depends on

the kernel computation- to-communication ratio. For kernels with a high computation-

to-communication (C2C) ratio, our overhead is up to 5%. For a low C2C ratio, the overhead

is up to 70%. Our overheads are more pronounced for kernels with low C2C ratios because

we perform an extra copy in the shared memory. We create a micro-benchmark that trans-

fers variable-size data to measure the overhead implied by a data transfer. On average, the

overhead of our runtime is 1.7× slower than native CUDA due to the extra copy performed

to the shared memory segment. In particular, to transfer 1 GB of data from an applica-

tion to the accelerator, our runtime requires 180 ms for the CUDA copy and another 135

ms for the copy from the application to the shared memory. The extra copy in the shared

memory achieves 8.2 GB/s throughput (measured by the STREAM [64] benchmark, us-

ing a single CPU core). We note that this overhead primarily affects applications with a

low computation-to-communication ratio. As part of our future work, one can use zero-

copy or double-buffering techniques between the applications and server address spaces

109

110 Chapter 7. Future Work

to minimize this overhead.

7.2 Use remote heterogeneous accelerators

Access to local accelerators is not always feasible for some reasons: (1) the lack of physical

space in the computer to install the accelerators, (2) the lack of available hardware slots,

such as PCIe slots, (3) PCIe slots with a version older than the one needed by the accelera-

tors, (4) economic reasons, given that the cost of this kind of devices is not negligible. To

address these issues, we can extend Arax to forward calls to remote accelerators in other

servers. Existing works [23, 35] support only NVIDIA GPUs, whereas our approach will

support heterogeneous accelerators and spatial sharing.

7.3 Batch dependent tasks

The execution time of kernels used from ML frameworks is in the range of microseconds,

according to our profiling. As a result, forwarding, either in the same server or, even worst,

to a remote server, a single accelerator call, or a kernel implies high overhead. To amortize

the overheads of remote calls, we can create a batch of tasks, as we did in our initial ver-

sion –VineTalk–. The key difference is that the Arax server should not view a task as a black

box. Instead, it should access the individual kernels and accelerator-related calls to sup-

port mechanisms such as lazy data placement, dynamic task assignment, live migration,

sharing, and preemption.

7.4 Compile PTX kernels to other GPUs

Previous works [37, 38, 14, 45] convert CUDA source code to other accelerators. How-

ever, intercepting high-level calls of domain-specific libraries is not robust, as shown in

Guardian. Closed-source CUDA libraries contain only the PTX version of CUDA kernels.

Consequently, in order to facilitate heterogeneous accelerator support, two fundamen-

tal strategies emerge: the conversion of PTX code to accelerator-specific assembly or the

7.5. Extend accelerator memory 111

translation of PTX to LLVM Intermediate Representation (LLVM-IR). The first approach,

which involves direct PTX-to-assembly conversion, is hindered by performance limita-

tions. Furthermore, for each unique accelerator type, the same optimization and trans-

formation procedures must be repeated, resulting in redundancy and inefficiency. In con-

trast, the adoption of LLVM-IR presents a more promising solution. The LLVM-IR inher-

ently offers built-in support for code generation across a wide spectrum of accelerator

types, making it a compelling choice for achieving greater efficiency and versatility in this

context. As a result, Arax will be able to support multiple and heterogeneous accelerators

more effectively.

7.5 Extend accelerator memory

Datacenter workloads work with massive data structures up to terabytes. For instance,

graphs, data analytics, graph neural networks, and recommender systems access mas-

sive datasets organized into array data structures whose sizes range from tens of giga-

bytes to tens of terabytes and are expected to proliferate in the foreseeable future. Stor-

ing these datasets as in-memory objects enables applications to naturally and efficiently

process the data. However, even high-end GPUs’ memory capacity is insufficient to hold

all the datasets (A100 has 80 GB DRAM). The state-of-the-art approaches that extend the

GPU memory use: (i) Page-faults (DRAGON [62]), or (ii) direct access to storage devices

(BaM [82]). DRAGON extends NVIDIA’s unified memory page fault mechanism to serve

faults from the storage device. This approach is transparent at the cost of performance

due to page faults. BaM requires modifying the CUDA kernels to use BaM Arrays. As a

result, it sacrifices transparency for performance. However, kernel modification cannot

be done for CUDA closed-source domain-specific libraries (e.g., cuBLAS, cuRAND). Arax

server could be extended to use a key-value store. Key-value stores can offer fast random

accesses. Our approach can provide the required performance without modifying kernels.

112 Chapter 7. Future Work

7.6 Integrate Arax to a cluster-level scheduler

In real-world setups, the Arax server is deployed across all nodes within a data center. Ef-

fective coordination between resource managers, such as Kubernetes, and the Arax server

is of paramount importance to provide Quality of Service (QoS) and prevent resource over-

commitment. The resource manager’s scheduler plays a crucial role in workload distribu-

tion, responsibly assigning tasks across servers while considering the accelerator resource

utilization information furnished by the Arax server. This collaborative effort ensures opti-

mal resource utilization while maintaining QoS. Furthermore, within each node, Arax’s ac-

celerator selector is responsible for scheduling the tasks of the assigned applications to the

underlying accelerators. This multi-tier scheduling approach, involving both server-level

and accelerator-level allocation, contributes to the overall efficiency and performance of

the system.

Chapter 8

Conclusions

This dissertation proposes a runtime for managing multiple and heterogeneous acceler-

ators within a server. Our approach has four main contributions: (1) Arax removes static

application to accelerator assignment using a generic API and a shared runtime process

that manages accelerators. In particular, we provide three main abstraction primitives

to hide the accelerator type and number from applications. To optimize the accelerator

resource management across applications, we design and implement a shared runtime

process, the server, for all applications in a node. The server assigns application tasks to

accelerators as late as possible to be able to adapt to application load change. Additionally,

to allow flexibility in task placement, it moves each task’s data just before its execution.

(2) To streamline the process of adapting existing CUDA applications to our API, we

analyze the interception of various levels within the CUDA software stack. This analysis

encompassed the CUDA driver API, the CUDA runtime API, and high-level function calls

to CUDA libraries. Our findings led us to conclude that intercepting the CUDA runtime

and driver API is the most robust level of interception. This preference is primarily at-

tributed to the limited number and relative simplicity of calls that need to be managed at

this level.

(3) TReM is a revocation mechanism that can be integrated with scheduling policies to

ensure the performance of latency critical GPU kernels. Our revocation approach is engi-

neered to halt the execution of a GPU kernel at any given point in its operation, leveraging

the capabilities of CUDA dynamic parallelism, CUDA unified memory, and the use of the

113

114 Chapter 8. Conclusions

asm(trap) construct. This combination of technologies enables precise and controlled

intervention, allowing for the timely suspension of GPU kernel execution when needed.

(4) To improve accelerator utilization, Arax and previous works offer GPU spatial shar-

ing that allows applications from different users to run concurrently on the same GPU.

Spatial sharing is made possible by employing a single GPU context and utilizing streams.

However, the use of a single context gives rise to memory protection challenges, as it in-

volves a shared address space that is common to all users and applications. To facilitate

protected GPU sharing we introduce Guardian. Guardian implements an address fencing

technique inside the PTX kernel code that implies minimal overhead, making it a practical

and efficient solution for enabling protected GPU sharing.

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-

lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,

Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. Tensorflow: A system for large-scale machine learning. In OSDI’16, 2016.

[2] Yehia Arafa, Abdel-Hameed A Badawy, Gopinath Chennupati, Nandakishore San-

thi, and Stephan Eidenbenz. Low overhead instruction latency characterization for

nvidia gpgpus. In HPEC’19, 2019.

[3] Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond, Michael Kinsner,

John Pennycook, Roland Schulz, and Jason Sewall. Data parallel c++ enhancing sycl

through extensions for productivity and performance. In International Workshop

on OpenCL, 2020.

[4] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne. Virtualized execution

runtime for fpga accelerators in the cloud. In IEEE Access, 2017.

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.

Starpu: A unified platform for task scheduling on heterogeneous multicore archi-

tectures. In Euro-Par ’09, 2009.

[6] Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel H Loh, Chita R

Das, Mahmut T Kandemir, and Onur Mutlu. Exploiting inter-warp heterogeneity to

improve gpgpu performance. In PACT ’15, 2015.

115

116 Bibliography

[7] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose, Jayneel

Gandhi, Christopher J Rossbach, and Onur Mutlu. Mosaic: a gpu memory manager

with application-transparent support for multiple page sizes. In MICRO ’17, 2017.

[8] Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf, Saugata Ghose, Jayneel

Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu. Mask: Redesigning

the gpu memory hierarchy to support multi-application concurrency. In ASPLOS

’18, 2018.

[9] David F. Bacon, Rodric M. Rabbah, and Sunil Shukla. Fpga programming for the

masses. In Communications ACM, 2013.

[10] M Bari, L Stoltzfus, P Lin, C Liao, M Emani, and B Chapman. Is data placement

optimization still relevant on newer gpus? In U.S. Department of Energy Office of

Scientific and Technical Information, 2018.

[11] Gaurav Batra, Zach Jacobson, Siddarth Madhav, Andrea Queirolo, and Nick San-

thanam. Artificial-intelligence hardware: New opportunities for semiconductor

companies. In McKinsey & Company, New York, NY, USA, Tech. Rep, 2018.

[12] Jürgen Becker, Michael Hübner, and Michael Ullmann. Run-time fpga reconfigu-

ration for power-/cost-optimized real-time systems. In VLSI-SOC: From Systems to

Chips, 2006.

[13] Alejandro J. Calderón, Leonidas Kosmidis, Carlos F. Nicolás, Francisco J. Cazorla,

and Peio Onaindia. Understanding and exploiting the internals of gpu resource al-

location for critical systems. In ICCAD’19, 2019.

[14] Germán Castaño, Youssef Faqir-Rhazoui, Carlos Garcı́a, and Manuel Prieto-Mat́ıas.

Evaluation of intel’s dpc++ compatibility tool in heterogeneous computing. In PDC

’22, 2022.

[15] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi, Beat Muheim,

and Luca Benini. Origami: A convolutional network accelerator. In GLSVLSI ’15,

2015.

Bibliography 117

[16] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, N. Kwatra, and

S. Viswanatha. Balancing efficiency and fairness in heterogeneous gpu clusters for

deep learning. In EuroSys ’20, 2020.

[17] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha

Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.

In IISWC ’09, 2009.

[18] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. Baymax: Qos awareness

and increased utilization for non-preemptive accelerators in warehouse scale com-

puters. In ASPLOS ’16, 2016.

[19] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Diannao

family: Energy-efficient hardware accelerators for machine learning. In MICRO ’16,

2016.

[20] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. Gslice: Controlled spa-

tial sharing of gpus for a scalable inference platform. In SoCC ’20, 2020.

[21] Bang Di, Jianhua Sun, and Hao Chen. A study of overflow vulnerabilities on gpus. In

NPC’ 16, 2016.

[22] Bang Di, Jianhua Sun, Dong Li, Hao Chen, and Zhe Quan. Gmod: A dynamic gpu

memory overflow detector. In PACT ’18, 2018.

[23] Jose Duato, Antonio J. Pena, Federico Silla, Juan C. Fernandez, Rafael Mayo, and En-

rique S. Quintana-Orti. Enabling CUDA acceleration within virtual machines using

rCUDA. In HiPC ’11, 2011.

[24] Niklas Eiling, Jonas Baude, Stefan Lankes, and Antonello Monti. Cricket: A virtual-

ization layer for distributed execution of cuda applications with checkpoint/restart

support. In Concurrency and Computation: Practice and Experience, 2022.

[25] Christopher Erb, Mike Collins, and Joseph L. Greathouse. Dynamic buffer overflow

detection for gpgpus. In CGO ’17, 2017.

118 Bibliography

[26] Jouppi Norman et. al. In-datacenter performance analysis of a tensor processing

unit. In ISCA ’17, 2017.

[27] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized fpga acceler-

ators for efficient cloud computing. In CloudCom ’15, 2015.

[28] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and

Christopher J. Rossbach. DGSF: Disaggregated GPUs for Serverless Functions. In

IPDPS ’22, 2022.

[29] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming

Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,

Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka,

Steven K. Reinhardt, Adrian M. Caulfield, E. S. Chung, and D. Burger. A configurable

cloud-scale dnn processor for real-time ai. In ISCA ’18, 2018.

[30] Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky, and

William J. Dally. Unifying primary cache, scratch, and register file memories in a

throughput processor. In MICRO ’12, 2012.

[31] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmen-

dra Reddy Yatham, Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman

Ebrahimi, Nam Sung Kim, et al. Planaria: Dynamic architecture fission for spatial

multi-tenant acceleration of deep neural networks. In MICRO’20, 2020.

[32] Guin Gilman, Samuel S. Ogden, Tian Guo, and Robert J. Walls. Demystifying the

placement policies of the nvidia gpu thread block scheduler for concurrent kernels.

In SIGMETRICS ’21, 2021.

[33] Vinod Grover and Yuan Lin. Compiling cuda and other languages for gpus. In GTC

’12, 2012.

[34] Antonio Gulli and Sujit Pal. Deep learning with keras. Packt Publishing Ltd, 2017.

[35] Fan Guo, Yongkun Li, John C. S. Lui, and Yinlong Xu. DCUDA: Dynamic GPU

Scheduling with Live Migration Support. In SoCC ’19, 2019.

Bibliography 119

[36] K. Gupta, J. A. Stuart, and J. D. Owens. Gpu programming for gpgpu workloads. In

InPar ’12, 2012.

[37] Ruobing Han, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim. Cox: Exposing cuda

warplevel functions to cpus. In TACO ’22, 2022.

[38] Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim. Support-

ing CUDA for an extended RISC-V GPU architecture. In CoRR ’21, 2021.

[39] Ari B. Hayes, Fei Hua, Jin Huang, Yanhao Chen, and Eddy Z. Zhang. Decoding cuda

binary. In CGO ’19, 2019.

[40] Wen-Mei Hwu, Christopher Rodrigues, Shane Ryoo, and John Stratton. Compute

unified device architecture application suitability. In Computing in Science & Engi-

neering, 2009.

[41] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast

feature embedding. In ArXiv, 2014.

[42] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dissecting the

nvidia volta gpu architecture via microbenchmarking. In ArXiv, 2018.

[43] Stephen Jones. Introduction to dynamic parallelism. In GPU Technology Conference

Presentation, 2012.

[44] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka Ishikawa.

Timegraph: Gpu scheduling for real-time multi-tasking environments. In USENIX

ATC’11, 2011.

[45] Niklas Kerscher. Investigating the hip programming model with regards to portabil-

ity and performance portability. In ArXiv, 2022.

[46] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. Toronto, ON, Canada, 2009.

120 Bibliography

[47] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano Giuf-

frida. Delta pointers: Buffer overflow checks without the checks. In EuroSys ’18,

2018.

[48] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. Allox: Compute allo-

cation in hybrid clusters. In EuroSys ’20, 2020.

[49] Cortes Lecun. The mnist database of handwritten digits, 2022.

[50] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. In Proceedings of the IEEE, 1998.

[51] Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and Hyesoon Kim.

Securing gpu via region-based bounds checking. In ISCA ’22, 2022.

[52] Kyushick Lee, Michael B. Sullivan, Siva Kumar Sastry Hari, Timothy Tsai, Stephen W.

Keckler, and Mattan Erez. Gpu snapshot: Checkpoint offloading for gpu-dense sys-

tems. In ICS ’19, 2019.

[53] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing webpages ren-

dered on your browser by exploiting gpu vulnerabilities. In S&P ’14, 2014.

[54] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. Miso:

Exploiting multi-instance gpu capability on multi-tenant gpu clusters. In SoCC ’22,

2022.

[55] Chao Li, Yi Yang, Zhen Lin, and Huiyang Zhou. Automatic data placement into gpu

on-chip memory resources. In CGO ’15, 2015.

[56] Chen Li, Andrew Zigerelli, Jun Yang, and Yang Guo. Pep: proactive checkpointing

for efficient preemption on gpus. In DAC ’18, 2018.

[57] Teng Li, Vikram K Narayana, and Tarek El-Ghazawi. Symbiotic scheduling of con-

current gpu kernels for performance and energy optimizations. In CF ’14, 2014.

Bibliography 121

[58] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Teman,

Xiaobing Feng, X. Zhou, and Y. Chen. Pudiannao: A polyvalent machine learning

accelerator. In ASPLOS ’15, 2015.

[59] C. Lu, K. Ye, G. Xu, C. Z. Xu, and T. Bai. Imbalance in the cloud: An analysis on

alibaba cluster trace. In Big Data ’17, 2017.

[60] Justin Luitjens. Cuda streams: Best practices and common pitfalls. In GPU Techonol-

ogy Conference, 2015.

[61] HaoHui Mai, Jiacheng Zhao, Hongren Zheng, Yiyang Zhao, Zibin Liu, Mingyu Gao,

Cong Wang, Huimin Cui, Xiaobing Feng, and Christos Kozyrakis. Honeycomb: Se-

cure and efficient GPU executions via static validation. In OSDI 23, 2023.

[62] Pak Markthub, Mehmet Belviranli, Seyong Lee, Jeffrey Vetter, and Satoshi Matsuoka.

Dragon: Breaking gpu memory capacity limits with direct nvm access. In SC ’18,

2018.

[63] Stelios Mavridis, Manolis Pavlidakis, Ioannis Stamoulias, Christos Kozanitis, Niko-

laos Chrysos, Christoforos Kachris, Dimitrios Soudris, and Angelos Bilas. Vinetalk:

Simplifying software access and sharing of fpgas in datacenters. In FPL’ 17, 2017.

[64] John D. McCalpin. Memory bandwidth and machine balance in current high per-

formance computers. In TCCA ’95, 1995.

[65] Andrea Miele. Buffer overflow vulnerabilities in cuda: a preliminary analysis. In

Journal of Computer Virology and Hacking Techniques, 2015.

[66] Thomas Moscibroda and Onur Mutlu. Memory performance attacks: Denial of

memory service in Multi-Core systems. In USENIX Security ’07, 2007.

[67] Diana M. Naranjo, Sebastián Risco, Carlos de Alfonso, Alfonso Pérez, Ignacio Blan-

quer, and Germán Moltó. Accelerated serverless computing based on gpu virtual-

ization. In Parallel and Distributed Computing, 2020.

122 Bibliography

[68] NVIDIA. Whitepaper pascal compute preemption. https://images.nvidia.com/

content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

Online; accessed 25 July 2016.

[69] NVIDIA. Multi-instance gpu. 2022.

[70] NVIDIA. Multi-process service. 2022.

[71] NVIDIA. Parallel thread execution isa, 2022.

[72] Meni Orenbach and Mark Silberstein. Enclaves as accelerators: learning lessons

from gpu computing for designing efficient runtimes for enclaves.

[73] Nathan Otterness and James H. Anderson. AMD GPUs as an Alternative to NVIDIA

for Supporting Real-Time Workloads. In ECRTS 2020, 2020.

[74] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving gpgpu

concurrency with elastic kernels. In ASPLOS ’13, 2013.

[75] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collaborative pre-

emption for multitasking on a shared gpu. In ASPLOS ’15, 2015.

[76] Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and Hyunsoo Yoon. Mind

control attack: Undermining deep learning with gpu memory exploitation. In Com-

puters and Security, 2021.

[77] Alberto Parravicini, Davide B. Bartolini, Lukas Stadler, Arnaud Delamare, Marco

Arnaboldi, and Marco Domenico Santambrogio. Automated gpu out-of-bound ac-

cess detection and prevention in a managed environment. In ArXiv, 2015.

[78] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

Pytorch: An imperative style, high-performance deep learning library. In NIPs ’19,

2019.

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

Bibliography 123

[79] Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and Ange-

los Bilas. Arax: A runtime framework for decoupling applications from heteroge-

neous accelerators. In SoCC ’22, 2022.

[80] Manos Pavlidakis, Stelios Mavridis, Nikos Chrysos, and Angelos Bilas. Trem: A task

revocation mechanism for gpus. In HPCC ’20, 2020.

[81] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. Cuda leaks: A detailed hack

for cuda and a (partial) fix. In TECS ’16, 2016.

[82] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Ma-

sood, Jeongmin Park, Jinjun Xiong, C. J. Newburn, Dmitri Vainbrand, I-Hsin Chung,

Michael Garland, William Dally, and Wen-mei Hwu. Gpu-initiated on-demand

high-throughput storage access in the bam system architecture. In ASPLOS ’23,

2023.

[83] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A.

Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In

SoCC ’12, 2012.

[84] Ruyman Reyes and Victor Lomüller. Sycl: Single-source c++ accelerator program-

ming. In Parallel Computing: On the Road to Exascale, 2016.

[85] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. Transparent accel-

eration for heterogeneous platforms with compilation to opencl. In TACO ’19, 2019.

[86] Davide Rossetti and S Team. Gpudirect: Integrating the gpu with a network inter-

face. In GPU Technology Conference, 2015.

[87] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. In IJCV ’15,

2015.

124 Bibliography

[88] Kittisak Sajjapongse, Xiang Wang, and Michela Becchi. A preemption-based run-

time to efficiently schedule multi-process applications on heterogeneous clusters

with gpus. In HPDC ’13, 2013.

[89] O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright. High level programming

framework for fpgas in the data center. In FPL ’14, 2014.

[90] Oren Segal, Philip Colangelo, Nasibeh Nasiri, Zhuo Qian, and Martin Margala.

Sparkcl: A unified programming framework for accelerators on heterogeneous clus-

ters. In CoRR, 2015.

[91] Sagi Shahar, Shai Bergman, and Mark Silberstein. Activepointers: A case for software

address translation on gpus. In ISCA ’16, 2016.

[92] Yakun Sophia Shao, Jason Cemons, Rangharajan Venkatesan, Brian Zimmer,

Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,

Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,

C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. Simba: Scaling deep-

learning inference with chiplet-based architecture. In MICRO ’21, 2021.

[93] Lin Shi, Hao Chen, and Jianhua Sun. vCUDA: GPU accelerated high performance

computing in virtual machines. In IPDPS ’09, 2009.

[94] Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu.

Mise: Providing performance predictability and improving fairness in shared main

memory systems. In HPCA ’13, 2013.

[95] Mohamed Tarek Ibn Ziad, Sana Damani, Aamer Jaleel, Stephen W. Keckler, and Mark

Stephenson. Cucatch: A debugging tool for efficiently catching memory safety vio-

lations in cuda applications. In PLDI ’23, 2023.

[96] George Teodoro, Rafael Oliveira, Olcay Sertel, Metin Gurcan, Wagner Meira Jr, Umit

Catalyurek, and Renato Ferreira. Coordinating the use of gpu and cpu for improving

performance of compute intensive applications. In CLUSTER ’09, 2009.

Bibliography 125

[97] Kun Tian, Yaozu Dong, and David Cowperthwaite. A full gpu virtualization solution

with mediated pass-through. In USENIX ATC’14, 2014.

[98] Lukas Tobler. Gpuless–serverless gpu functions. In Master Thesis ETH, 2022.

[99] Kuen Hung Tsoi and Wayne Luk. Axel: A heterogeneous cluster with fpgas and gpus.

In ISFPGA ’19, 2010.

[100] Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John

Shalf, Katie Antypas, David Donofrio, Travis Humble, Catherine Schuman, Brian

Van Essen, Shinjae Yoo, Alex Aiken, David Bernholdt, Suren Byna, Kirk Cameron,

Frank Cappello, Barbara Chapman, Andrew Chien, Mary Hall, Rebecca Hartman-

Baker, Zhiling Lan, Michael Lang, John Leidel, Sherry Li, Robert Lucas, John Mellor-

Crummey, Paul Peltz Jr., Thomas Peterka, Michelle Strout, and Jeremiah Wilke. Ex-

treme heterogeneity 2018 - productive computational science in the era of extreme

heterogeneity. In ASCR Workshop on Extreme Heterogeneity, 2018.

[101] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keckler. Nvbit: A

dynamic binary instrumentation framework for nvidia gpus. In MICRO ’19, 2019.

[102] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution envi-

ronments on GPUs. In OSDI ’18, 2018.

[103] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi

Guo. Simultaneous multikernel gpu: Multi-tasking throughput processors via fine-

grained sharing. In HPCA ’16, 2016.

[104] Florian Wende, Thomas Steinke, and Frank Cordes. Multi-threaded kernel offload-

ing to gpgpu using hyper-q on kepler architecture. In ArXiv, 2014.

[105] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and W. A. Najjar.

High-level language tools for reconfigurable computing. In Proceedings of the IEEE,

2015.

[106] Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang. Flep: Enabling flexible and effi-

cient preemption on gpus. In ASPLOS ’17, 2017.

126 Bibliography

[107] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques

Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert Hundt. Gpucc - an

open-source gpgpu compiler. In CGO ’16, 2016.

[108] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun

Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,

F. Yang, and L. Zhou. Gandiva: Introspective cluster scheduling for deep learning.

In OSDI ’18, 2018.

[109] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng,

Wei Lin, and Yangqing Jia. AntMan: Dynamic scaling on GPU clusters for deep

learning. In OSDI ’20, 2020.

[110] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.

Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning

for GPU Multiprogramming. In ISCA ’16, 2016.

[111] Qiumin Xu, Hoda Naghibijouybari, Shibo Wang, Nael Abu-Ghazaleh, and Murali An-

navaram. Gpuguard: Mitigating contention based side and covert channel attacks

on gpus. In ICS’19, 2019.

[112] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and Timothy G

Rogers. Pagoda: Fine-grained gpu resource virtualization for narrow tasks. In PPoPP

’17, 2017.

[113] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J. Ross-

bach. Ava: Accelerated virtualization of accelerators. In ASPLOS ’20, 2020.

[114] Miao Yu, Chao Zhang, Zhengwei Qi, Jianguo Yao, Yin Wang, and Haibing Guan.

Vgris: virtualized gpu resource isolation and scheduling in cloud gaming. In HPDC

’13, 2013.

[115] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng, and Lishan

Yang. G-net: Effective gpu sharing in nfv systems. In NSDI’18, 2018.

Bibliography 127

[116] Husheng Zhou, Guangmo Tong, and Cong Liu. Gpes: A preemptive execution sys-

tem for gpgpu computing. In RTAS ’15, 2015.

	Acknowledgments
	Abstract
	Abstract in Greek
	Bibliographic Notes
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Decouple Applications and Accelerators
	Design
	Client
	Server
	Transport Layer
	Autotalk: stub-generator
	Implementation issues
	Implementing new applications using Arax

	Experimental Methodology
	Experimental Evaluation
	Overhead of accelerator decoupling
	Effectiveness of accelerator sharing
	Performance gains of elasticity
	Overhead of application migration
	Overhead for Caffe and TensorFlow

	Summary

	Simplify FPGA Accessing & Sharing
	VineTalk Design
	Software Facing API
	Communication Layer
	Software Controller
	Hardware Facing API

	Integration with SDAccel
	Performance Evaluation
	Experimental Setup
	VineTalk overhead
	Accelerator time-sharing

	Summary

	GPU Kernel Revocation
	TReM revocation mechanism
	Revoking a kernel with TReM

	Reducing SLA violations of user-facing tasks
	Elastic policy
	Using TReM with Priority and Elastic

	Experimental Methodology
	Multi-GPU server configuration and memory affinity
	Workloads

	Experimental evaluation
	Overhead of TReM revocation
	Effectiveness of TReM with long-running batch tasks
	Scalability of TReM

	Discussion
	Summary

	Secure GPU Spatial Sharing
	Introduction
	Background
	GPU Programming Interfaces and Context
	GPU Compilation Workflow
	GPU Memory Sharing Scope
	Addressing Modes

	Threat Model
	Guardian Design
	Dynamically Loadable Library
	GPU manager
	Offline Kernel Sandboxing
	Bounds Checking Tradeoffs

	Experimental Methodology
	Experimental Evaluation
	Impact of Guardian at GPU Sharing
	Guardian Overheads Compared to Other Approaches Without Sharing
	Impact of Address Fencing on Register Usage
	Performance of Address Fencing at High Cache Hit Ratio
	Performance of Guardian on Different GPUs and Access Patterns
	Cost of CUDA calls Interception

	Summary

	Related Work
	Decoupling applications from accelerators
	FPGA Software Access and Sharing
	GPU kernel revocation and scheduling
	SLA-based scheduling
	State-saving preemption mechanisms

	GPU memory protection
	Protect GPU Memory under GPU sharing
	Detect Buffer Overflows for a Single Application
	Ensure Privacy and Data Confidentiality
	API Remoting

	Future Work
	Apply zero-copy in shared memory
	Use remote heterogeneous accelerators
	Batch dependent tasks
	Compile PTX kernels to other GPUs
	Extend accelerator memory
	Integrate Arax to a cluster-level scheduler

	Conclusions
	Bibliography

