
University of Crete
Computer Science Department

Antisocial Networks: Turning a Social

Network into an Attack Platform

Andreas Makridakis

Master’s Thesis

November 2009
Heraklion, Greece

Abstract

World Wide Web has evolved from a collection of static HTML pages to an

assortment of “Web 2.0” applications. Examples of “Web 2.0” applications

include wikis, blogs, video sharing web sites, social networking web sites, etc.

Since the establishment of the first online social network SixDegrees.com, in

1997, these sites are becoming more popular by the day. Millions of people

daily use social networking web sites, such as facebook.com, myspace.com,

orkut.com, and linkedin.com. As a side-effect of this fast growth, possible

exploits can turn them into platforms for antisocial and illegal activities, like

DDoS attacks, privacy violations, disk compromising, malware propagation,

etc.

In this thesis we show that social networking web sites have properties

to become attack platforms. We introduce a new term, Antisocial Networks.

Antisocial Networks are distributed systems based on social networking web

sites that can be exploited by attackers, and directed to carry out network

attacks. Malicious users are able to take control of the visitors of social web

sites by remotely manipulating their browsers through legitimate web control

functionality such as image-loading HTML tags, JavaScript instructions, etc.

We start by identifying all the properties of Facebook, a real-world on-

line social network, and then study how we can utilize these properties and

transform it into an attack platform against any host connected to the Inter-

net. Towards this end, we develop a real-world Facebook application that

i

ii

could perform malicious actions covertly. We experimentally measure its

impact by studying how innocent Facebook users can be manipulated into

carrying out a Denial-of-Service attack. Finally, we explore other possible

misuses of Facebook and how they can be applied to other online social

networks.

Supervisor: Professor Evangelos P. Markatos

Per�lhyh

OPagkìsmio Istì èqei exeliqje�, apì mia sullog statik¸n HTML sel�dwn,

se mia sullog efarmog¸n tÔpou “Web 2.0”. Parade�gmata efarmog¸n tÔpou

“Web 2.0” e�nai ta wikis, ta blogs, oi sel�de diamoirasmoÔ b�nteo, oi sel�de

koinwnik diktÔwsh, k.t.l. Apì thn sÔstash tou pr¸tou diadiktuakoÔ koin-

wnikoÔ diktÔou, pou onomazìtan SixDegrees.com, to 1997, oi sel�de koin-

wnik diktÔwsh mèra me th mèra g�nontai ìlo kai pio dhmofile�. Kajh-

merin� ekatommÔria �njrwpoi qrhsimopoioÔn sel�de koinwnik diktÔwsh,

ìpw ti sel�de facebook.com, myspace.com, orkut.com kai linkedin.com.

Mia parenèrgeia th taqe�a an�ptuxh twn sel�dwn koinwnik diktÔwsh,

e�nai h pijan metatrop tou se platfìrme diexagwg antikoinwnik¸n kai

par�nomwn drasthriot twn, ìpw katanemhmène epijèsei �rnhsh uphresi¸n,

parab�ash proswpik¸n dedomènwn, èkjesh sklhr¸n d�skwn se k�nduno, di�dosh

kakìboulou logismikoÔ, k.t.l.

Se aut thn ergas�a apodeiknÔoume ìti oi sel�de koinwnik diktÔwsh

èqoun idiìthte ¸ste na metatrapoÔn se platfìrme diexagwg diadiktuak¸n

epijèsewn. Eis�goume ènan nèo ìro, en' onìmati Antikoinwnik� D�ktua. Ta

Antikoinwnik� D�ktua e�nai katanemhmèna sust mata pou bas�zontai se sel�de

koinwnik diktÔwsh kai e�nai dunatìn na ekmetalleutoÔn apì epitijèmenou,

prokeimènou na diexaqjoÔn diadiktuakè epijèsei. Kakìbouloi qr ste èqoun

thn dunatìthta na elègqoun tou episkèpte se sel�de koinwnik diktÔwsh,

mèso th apomakrusmènh qeirag¸ghsh twn programm�twn pou qrhsimopoioÔn

iii

iv

gia thn peri ghsh tou sto Diad�ktuo, qrhsimopoi¸nta nìmime leitourg�e

gia ton dhmiourg�a sel�dwn, ìpw HTML etikète gia thn eisagwg eikìnwn,

entolè th gl¸ssa JavaScript, k.t.l.

Arqik�, prosdior�zoume ìle ti idiìthte tou Facebook, enì pragmatikoÔ

diadiktuakoÔ koinwnikoÔ diktÔou, kai sthn sunèqeia melet�me tou trìpou me

tou opo�ou mporoÔme na axiopoi soume autè ti idiìthte, prokeimènou na to

metatrèyoume se mia platfìrma diexagwg epijèsewn enant�on opoioud pote

mhqan mato e�nai sundedemèno sto Diad�ktuo. Pro to skopì autì, anaptÔxame

mia efarmog sto Facebook, h opo�a, sugkalummèna, e�nai ikan na prag-

matopoie� kakìboule enèrgeie. Qrhsimopoi¸nta mia peiramatik diadikas�a,

exakrib¸same ti epipt¸sei pou èqei h efarmog , melet¸nta ton trìpo me

ton opo�o anupoy�astoi qr ste tou Facebook, mporoÔn na qeiragwghjoÔn

me skopì thn diexagwg mia ep�jesh �rnhsh uphresi¸n. En' tèlei, diere-

unoÔme �lle kakìboule qr sei tou Facebook kai tou trìpou me tou

opo�ou mporoÔn na efarmostoÔn kai se �lla diadiktuak� koinwnik� d�ktua.

Epìpth: Kajhght , Eu�ggelo Mark�to

Acknowledgments

I would like to thank my supervisor, Professor Evangelos P. Markatos, for

his valuable guidelines in my academic steps in the field of Computer Sci-

ence. I, also, feel grateful to Dr. Sotiris Ioannidis, for his invaluable help

and cooperation over the last two years, and for a real commitment to my

technical and professional growth. I am deeply grateful to Elias Athana-

sopoulos, who gave me the opportunity to work on this subject and whose

contribution was a fundamental key for writing this thesis. My best regards

to Spyros Antonatos, Demetres Antoniades and Kostas G. Anagnostakis for

their joint work on FaceBot.

My best thanks to all former and current members of the Distributed

Computing Systems Laboratory, division at ICS/FORTH, Antonis Papado-

giannakis, Nikos Nikiforakis, Christos Papachristos, Michalis Polychron-

akis, Elias Athanasopoulos, Demetres Antoniades, Spyros Antonatos, Gior-

gos Vasiliades, Iason Polakis, Alexandros Kapravelos, Antonis Krithinakis,

Michalis Foukarakis, Manos Athanatos, Eleni Gessiou, Vasilis Pappas, Gian-

nis Velegrakis, Giorgos Kondaxis, Spyros Ligouras, Lazaros Koromilas, Gior-

gos Chinis, Zaxarias Tzermias, Thanasis Petsas, Apostolis Zarras, Harris Pa-

padakis, Nikos Hatzibodozis, Manolis Stamatogiannakis, Kallia Marakomi-

helaki, Meltini Christodoulaki and Anna Doxastaki, that contributed for a

pleasant and productive environment over the last three years in the lab.

v

vi

My special thanks to my best friends, Giorgos Stratakis, Kostas Tsikrikas

and Diamantis Antoniou, for their support and for sharing with me over the

last seven years of my life. They were always by my side, in the joys and

sorrows. I feel that they are my brothers.

I want to thank the Computer Science Department’s graduate programme

secretary, Mrs Rena Kalaitzaki, for her invaluable help all these years. Many

thanks to Giorgos Koutras for his help during the last months. I would, also,

like to thank Professor Christos Nikolaou, for his presence in the examining

committee of this thesis.

I would like to express my deepest gratitude to my parents, Elias and

Eleni, and my lovable little sister, Stella, for their support, patience, encour-

agement and wise advice during my whole life. Truly, I never would have

made it through, without their love and understanding.

Finally, I would like to thank all those who believed in me, from the time

of my birth until now.

vii

This thesis is based on the paper: “Antisocial Networks: Turn-

ing a Social Network into a Botnet”, authored by Elias Athana-

sopoulos, Andreas Makridakis, Spyros Antonatos, Demetres Antoni-

ades, Sotiris Ioannidis, Kostas G. Anagnostakis, and Evangelos P.

Markatos. The paper was accepted for the proceedings of the 11th

Information Security Conference (ISC) in September 2008 (Taipei, Tai-

wan).

Oi epanast�te prosdokoÔn se èna kalÔtero aÔrio.

'Oqi mìno gi’ autoÔ, all� gia thn koinwn�a genikìtera.

Tou qarakthr�zei h aisiodox�a kai ìqi h httop�jeia.

'Eqoun m�jei na polemoÔn kai na prospajoÔn, upì ant�xoe sunj ke.

Prosp�jeia, mia lèxh magik , poludi�stath, polÔqrwmh.

Odhgì kai sunodoipìro mia olìklhrh zw .

Ofe�lw toÔth thn ergas�a se ènan alhjinì epanast�th, o opo�o

me èmaje na prospaj¸, giat� ìpw mou èlege p�nta:

“H prosp�jeia kataxi¸nei th zw sou”.

Andrèa H. Makrid�kh

Ston patèra mou

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Thesis Outline . 6

2 Motivation 7

2.1 Distributed Denial of Service Attacks 7

2.2 Puppetnets . 9

3 Facebook Applications 13

3.1 Platform Overview - Core Components 14

3.1.1 Facebook Markup Language 16

3.1.2 Facebook Query Language 17

3.1.3 Facebook JavaScript 17

3.1.4 Facebook API . 17

3.2 How an FBML Canvas Page Works 18

4 A Proof of Concept Application 19

4.1 Photo of the Day: From Facebook to FaceBot 19

4.2 FaceBot Design . 20

4.2.1 Malicious Attributes of “Photo of the Day” 21

4.2.2 Why Hidden Frames ? 22

4.3 FaceBot Hosting Issues . 24

xiii

xiv CONTENTS

4.4 FaceBot Impact . 24

5 Experimental Evaluation 27

5.1 FaceBot Experimental Setup 28

5.2 Attack Magnitude . 28

5.2.1 Bursty Traffic Pattern 30

5.3 Request Distribution . 33

5.4 Tracking Popularity . 34

5.5 Attack Firepower . 35

6 Countermeasures 39

6.1 Defending Against a FaceBot 40

6.2 Preventing a FaceBot . 43

7 Future Work 45

8 Related Work 49

9 Conclusion 53

Bibliography 54

List of Figures

1.1 Facebook.com and MySpace.com daily reach during the last

6 months. 3

2.1 Sample source code for a Puppetnet DDoS attack. 10

3.1 How an FBML Canvas page is rendered. 18

4.1 The architecture of a FaceBot. Users access a malicious appli-

cation in the social site (facebook.com) and subsequently a

series of HTTP requests are created, which target the victim

host. 20

4.2 Sample code of a hidden frame, inside a Facebook application,

which causes an image, namely image1.jpg, to be fetched

from victim-host. 23

5.1 The HTTP requests as were recorded by the victim web server. 28

5.2 Bandwidth use at the victim web server during the attack on

29/01/2008. 29

5.3 The distribution of user inter-arrival times at the victim site

on 29/01/2008, with over 480 users recorded as active. 30

xv

xvi LIST OF FIGURES

5.4 The distribution of user inter-arrival periods at facebook.com

for one day. Our two sensors recorded 100 and 75 unique users

respectively. 31

5.5 Session times of Facebook users as were recorded by our two

sensors. The first sensor recorded 495 user sessions and the

other one recorded 275 user sessions. 32

5.6 Location of FaceBot hosts. Countries colored in black hosted

at least one FaceBot participant. 34

5.7 The popularity of the Photo of the Day application, as it is

tracked by Adonomics.com. 35

6.1 Two HTTP GET requests, as recorded by our web server

(victim host). The latter one has an empty referer field, due

to the trick employed by the attacker in order to hide his

identity. 42

List of Tables

5.1 The Top-5 countries in terms of the number of HTTP requests

generated by each country. 33

5.2 The Top-5 of Facebook applications as of the beginning of

February 2008, in terms of daily active users. 37

5.3 The Top-5 of Facebook applications as of the end of October

2009, in terms of daily active users. 37

xvii

xviii LIST OF TABLES

1
Introduction

In the last years, the static and non-interactive web sites have moved towards

rich Web applications, like online collaborative encyclopedias, personal and

corporate blogs, mashup services, social networking web sites, etc. We of-

ter refer to these as the “Web 2.0” [67]. In recent years, the popularity

of online social networks (OSNs) [51] is increasing rapidly every day. The

online communities created by OSNs compose a fast growing phenomenon

on the Web, by introducing new modes of social interaction among people

from all around the world. Social networking web sites have attracted mil-

lions of users, many of whom have integrated the browsing of these sites

into their daily activities. OSNs are useful for keeping in touch with friends,

making new contacts, research collaboration, information sharing, political

1

2 CHAPTER 1. INTRODUCTION

campaigns [61, 69], etc. Some OSNs are used for professional contacts, e.g.

LinkedIn [19] and XING [33], where a user can discover business connec-

tions when he is looking for a new job, while others, such as Facebook [3],

MySpace [20] and Orkut [24], are friendship-focused and are primarily used

for communication, photo sharing, video sharing and entertainment.

The structure of an OSN is quite simple. Users register to the site

and create their virtual persona in the form of an online profile. They de-

scribe their interests, activities, favorite music, etc. Also, they can provide

personal information, like political and religious views, their current rela-

tionship status and details about their education and work. Finally, they

can add friends/contacts to their profile. Adding a friend involves a confir-

mation step from the other party. Through this possibility, a user can find

old classmates and long-lost friends, his coworkers and relatives, strangers

with the same interests, his circle of acquaintances, etc and share photos &

videos, exchange private messages, chat online, play games, and so on. Per-

haps, the above capabilities would be impossible in the absence of OSNs.

The view of a user’s profile is usually limited to the friends of that user,

unless the user wants the profile to be public. In that case, all users who

have joined the same network with that user, can view it. Users can join

one or more networks, each based around a workplace, region, high school

or college. Social networking web sites also support the creation of groups

by anybody, where users can find content related to their favorite musicians,

movies, tv-shows, etc. As of the most popular social networking web sites

are Facebook and MySpace. Alexa.com [1] ranks them among the top ten

visited web sites on the Internet. Figure 1.1 presents the percent of global

Internet users who daily visited www.facebook.com and www.myspace.com

during the last 6 months, as computed by Alexa.

MySpace [20] was launched in January 2004. As reported in [21], it

has nearly 125 million monthly active users around the globe and nearly

3

Figure 1.1: Facebook.com and MySpace.com daily reach during the last 6

months.

65 million total unique users in the United States. One of the reasons that

MySpace has a massive response, is the ability for users to customize their

profile page. Users can determine the fonts and colors of their profile and

provide their favorite song, via MySpace Music, that starts playing when

a user visits their online profile. MySpace helps the music industry, by

allowing artists to upload their entire discographies, consisting of MP3 songs.

Through this service many singers have gained fame through MySpace, as

their songs can be accessed from millions of people.

Facebook [3] started in February 2004, as a project of a student in Har-

vard University to keep track of schoolmates. The web site’s membership

was initially limited to Harvard students, but was expanded to other colleges

in the Boston area, the Ivy League, and Stanford University. Facebook has

now grown up to serve more than 300 million people from around the world,

as well as more than 8 billion minutes are spent worldwide on browsing the

site each day [15]. Also, more than 65 million users are currently accessing

Facebook through their mobile devices, via Facebook Mobile. It forms a

large online database of photos, as more than 2 billion photos are uploaded

4 CHAPTER 1. INTRODUCTION

to the site each month. Additionally, more than 14 million videos are up-

loaded each month and more than 2 billion pieces of content (e.g. web links,

news stories, blog posts, notes, photos, etc.) are shared each week. More-

over, there are more than 70 translations available on the site. Concerning

its technology, it is the second most-visited PHP site in the world, and one of

the largest MySQL installations anywhere, running thousands of databases.

Facebook has a very interesting and powerful feature, the Facebook appli-

cations. Facebook builders have implemented a platform on top of which

developers can build complete applications. In the Facebook Platform any

developer with a good idea and basic programming skills can create one from

scratch. Over one million developers and entrepreneurs from more than 180

countries have done so, as reported by Facebook Press Room [15]. Users

can add these applications to their profile and invite their friends1 to add

them too. Typical applications involve solving a quiz, filling questionnaires,

playing games and many more. Up to date, the number of Facebook ap-

plications has surpassed 350,000. Additionally, more than 250 applications

have more than one million monthly active users. In a nutshell, Facebook

applications can be considered as XHTML snippets that inherit all prop-

erties of web applications. For more details, about Facebook applications

architecture, please refer to Chapter 3.

The massive adoption of online social networks by Internet users, as

described above, provides us with a unique opportunity to study possible

exploits that will turn them into platforms for antisocial and illegal activi-

ties, like DDoS attacks, malware propagation, spamming, privacy violations,

disk compromising, etc. Online social networks have by nature some intrinsic

properties that make them ideal to be exploited by an adversary. The most

important of these properties are: (i) a very large and highly distributed

user-base, (ii) clusters of users sharing the same social interests, developing

1An average user has 130 friends on the site [15].

1.1. CONTRIBUTIONS 5

trust with each other, and seeking access to the same resources, and (iii)

platform openness for deploying fraud resources and applications that lure

users to install them. All these characteristics give adversaries the oppor-

tunity to manipulate massive crowds of Internet users and enable them to

commit antisocial acts against the rest of the Internet, without their knowl-

edge. Apart from controlling social network users and drive them to launch

attacks against third parties, an adversary can harm the social networks’

users themselves. For example, a malicious user may seek to harvest the

personal information that a social user enters in his online profile page.

In this thesis we explore the above properties, develop a proof of concept

exploit, and analyze its impact. By experimentally measure its firepower, we

can coin a new term, Antisocial Networks. We define Antisocial Networks

as a social network, deviously manipulated for launching activities connected

with fraud and cyber-crime.

1.1 Contributions

The work done in this thesis has unleashed in public the skeleton of a proof of

concept application, which is able to transform a social utility with open ar-

chitecture, i.e. facebook.com, to an attack platform. In this way, we believe

that we assist crucially in the creation of safer social network platforms.

More specifically, the main contribution of this thesis is a first investi-

gation into the potential misuse of an online social network for launching

DDoS attacks on third parties. We have built an actual Facebook applica-

tion, that may turn its users into a FaceBot. We used our application to

carry out a complete evaluation of our proof of concept attack via real-world

experiments. Extrapolating from these measurements along with popularity

metrics of current Facebook applications, we show that owners of popular

Facebook applications have a highly distributed platform with significant

attack firepower under their control.

6 CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents the rea-

sons that motivated us to examine if facebook.com can be used as an attack

platform, e.g. to launch DDoS attacks against third parties. In Chapter 3 we

describe the construction details of Facebook applications and list all tools

provided by Facebook Platform for easy deployment of these applications.

Chapter 4 describes in detail our proof of concept Facebook application,

called Photo of the Day, that is instrumented to launch a DDoS attack

against a victim web server. Chapter 5 outlines the experimental evalua-

tion of our FaceBot. Chapter 6 explores countermeasures for defending and

preventing a FaceBot based attack and presents pieces of advice on how to

create safer social network platforms. In Chapter 7 we list other possible

misuses of online social networks. Finally, Chapter 8 presents a brief survey

of related work, and Chapter 9 concludes the thesis.

2
Motivation

In this Chapter we briefly describe the motivations that led us to study

if and how online social networks can turn them into attack platforms.

More specifically, Distributed Denial of Service (DDoS) attacks and Pup-

petnets [62] gave us the rise to analyze how Facebook applications can be

used by an adversary in order to carry out network attacks. We discuss the

details of each incentive and how they are related to this thesis.

2.1 Distributed Denial of Service Attacks

A Distributed Denial of Service attack is an attempt to make a computer

resource unavailable to serve its well-intentioned users. This type of attack

generally consists of the efforts of a network of zombies computers that si-

7

8 CHAPTER 2. MOTIVATION

multaneously are orchestrated to prevent a network service from functioning

as it is designed for. These zombies are under the control of a master ma-

chine. A strength is the fact that the zombie computers are often being

infected, without their knowledge. Also, Internet Service Providers (ISPs)

are rarely able to determine the master computer behind a DDoS attack.

Thus, attackers are able to hide their footprints. A DDoS attack may have

different aims, such as maximize the amount of ingress traffic towards the

victim, the amount of egress traffic from the victim, etc. A standardized

method for conducting DDoS attacks involves filling up the target computer

with HTTP requests for data, such that it cannot respond to legitimate

traffic, or responds so slowly as to be rendered effectively unavailable. The

inability of responding to legitimate browsing requests, is usually due to the

consumption of resources, like bandwidth or disk space. This type of attacks

do not compromise user data. Most of the times, victims of these attacks

are web sites servers that attract a massive crowd of users daily. If popular

web sites, like search engines, mailing services, social networks, etc are down

for hours, they will suffer a significant loss of e-commerce and advertising

revenue. Sometimes, depending on the amount of time a site is out of order,

the loss can be amounted to million of dollars.

Traditional Denial of Service attacks have been known and analyzed

by researchers for decades. However, DDoS attacks are more recent. The

authors of [50] describe the first well-documented DDoS attack, occurred

in August 1999. The attackers deployed a DDoS tool, called Trinoo [30],

in at least 227 computer systems, managing to perform a distributed SYN

DoS attack. Their aim was to flood a computer located in the University

of Minnesota. Effectively, this computer was inaccessible for more than

two days. On August 6, 2009, Twitter [32], a well-known online social

network, where more than 40 million people announce what they are doing

at any given moment, was the target of a DDoS attack [40]. The outage

2.2. PUPPETNETS 9

lasted about three hours. Barrett Lyon in [42] put out a possible reason

that transformed Twitter into an obvious DDoS attack target. According

to him, Twitter’s computer resources and servers appear to have only one

network provider, which was rather insane those days.

2.2 Puppetnets

Puppetnets [62] exploit the design principles (e.g. the programming lan-

guages, protocols, and security policies) of World Wide Web. Web pages

can include links to elements located at different domains, other than the

one they are hosted at. For example, plenty of web pages contain references

to images, hosted at different pages, by using the common HTML

tag. A malicious user can craft special web pages that contain thousands of

links pointing at a victim site. When an unsuspecting user visits that pages,

his browser unknowingly starts downloading elements, e.g. images, from the

victim site and thus consuming its bandwidth. As is easily understood, Pup-

petnets can instrument Web browsers to participate in a Distributed Denial

of Service attack. The firepower of this attack increases with the popularity

of the malicious page, similar to the slashdot effect [58]. A huge set of indi-

rectly misused browsers can create an impromptu botnet-like infrastructure

that can cause significant damage to the victim site. The indirectly misuse

of Web browsers, transmutes the attack to be less likely noticed by users who

unwittingly participate on it, thus the attack maximizes its effectiveness.

Puppetnets use a number of techniques to make the attacks more effec-

tive. The use of JavaScript permits more flexible and powerful attacks as

unsuspecting users can repeatedly download elements from victim sites or

perform other kinds of attacks, such as port scanning and computational

attacks. The firepower of Puppetnets depends on three main factors. First,

the popularity of the malicious page. Second, the duration of visits to the

malicious page. The more the unsuspecting user stays on the malicious page,

10 CHAPTER 2. MOTIVATION

the longer the attack takes place in the background. Third, the bandwidth

of unsuspecting users and their latency to the victim site. These factors

determine the number of downloads per second an attacker can achieve.

The HTML and JavaScript source code listed in Figure 2.1 demonstrates

a Puppetnet DDoS attack.

<script type = ‘text/javascript’>

img = new Image(30, 30);

function ddos(){

var now = new Date();

img.src = ‘http://victim-site/image_1.png?’ + now.getTime();

setTimeout(‘ddos()’, 30);

return;

}

</script>

<iframe name = ‘my_frame’ style = ‘width:0px; height:0px;

border: 0px’ src = ‘original_page.html’ onLoad = ‘ddos()’>

</iframe>

Figure 2.1: Sample source code for a Puppetnet DDoS attack.

The attacker uses a hidden frame to launch the attack-bearing page, so

that the unsuspected user that browses the page that contains the above

code can not observe frame’s contents. Iframe’s onload event causes the

execution of a JavaScript function. This function instructs the browser to

fetch an image from the victim site every 30 milliseconds, by using timeouts.

2.2. PUPPETNETS 11

Through this process, the attacker has the ability to create a large number

of requests towards the victim site. In order to prevent client-side caching,

because all HTTP requests target the same image, the attacker appends

an invariant modifier string (the number of milliseconds since midnight of

January 1, 1970) to the attack URL. According to the URL specification1,

this modifier is ignored by web servers but not by clients, as it indicates

whether the corresponding image is cached or not. When a large number of

Internet users, around the world, simultaneously visit the above malicious

web page, an effective DDoS attack is conducted against the victim site’s

web server. The programming skills and lines of source code needed for the

attack are minimal enough.

Puppetnets gave us the rise to study and identify if Facebook applica-

tions can act like them and used by malicious developers to launch DDoS

attacks against third parties.

In the next Chapter, we will examine how Facebook applications work and

analyze all the essentials provided to the developers for easy deployment of

applications that live inside the social network itself.

1RFC 1738 - Uniform Resource Locators (URLs):

http://www.ietf.org/rfc/rfc1738.txt

12 CHAPTER 2. MOTIVATION

3
Facebook Applications

In this Chapter we present the construction details of Facebook applications.

On May 24, 2007, Facebook builders launched the Facebook Platform, pro-

viding a framework for software developers to create lightweight applica-

tions, by leveraging the underlying social graph. This innovation attracted

more and more users to create an account on Facebook. We summarize

the core components and libraries provided to the developers, in order to

build social experiences that give users the power to access applications that

amplify their ability to interact with each other in new and interesting ways.

13

14 CHAPTER 3. FACEBOOK APPLICATIONS

3.1 Platform Overview - Core Components

Facebook Platform provides all the essentials needed for easy deployment of

applications that live inside the social network itself. A user who wants to

build a Facebook application must simply add the Developer Application [9]

to his account. One major requirement is the presence of a web server for

hosting the new application. In order for an application to work correctly

with Facebook, the user needs to take the following steps to prepare his web

server:

1. He should verify that the server can provide an HTML file. That is,

he can view a file in a browser installed on a different computer than

his server.

2. He should upload the appropriate Facebook client library to his server.

The server side part of the application can be developed in whichever

development environment the user prefers. Facebook and other third

party application developers have created client libraries for these envi-

ronments. Facebook officially supports PHP, JavaScript, Connect for

iPhone and Flash/ActionScript client libraries. Additionally, Face-

book does not provide official support for the following client libraries:

Android, ASP.NET, ASP (VBScript, JScript), Cocoa, ColdFusion,

C++, C#, D, Emacs Lisp, Erlang, Google Web Toolkit, Java, Lisp,

Perl, Python, Ruby on Rails, Smalltalk, Tcl, VB.NET and Windows

Mobile.

3. If the application needs to store1 user or application information in a

database, he should install a relational database management system,

such as MySQL, on the server.

1Storable Data:

http://wiki.developers.facebook.com/index.php/Storable_Information

3.1. PLATFORM OVERVIEW - CORE COMPONENTS 15

A major advantage, in case the user does not occupy a web server, is

the usage of a hosting service, specifically designed for Facebook applica-

tions. Facebook has partnered with some companies to supply developers

everything they will need to create applications on Facebook Platform [12].

For example Joyent2, a free hosting service, comes with the Facebook PHP

client library installed, along with MySQL and PostgreSQL support.

After configuring the web server or the hosting service, the developer,

using the Developer Application, fills out a form and submits the applica-

tion. The form has many fields, such as the application’s name, the ap-

plication’s description, the IP address of the hosting web server, etc. Two

of the most important fields are: (i) the Canvas page URL, and (ii) the

Canvas callback URL. A Canvas page is the main page of an application

on Facebook. When users access the application they are redirected to

this URL. Its format is ‘http://apps.facebook.com/canvas_page_name’,

where ‘canvas page name’ is usually the name of the application. The Can-

vas callback URL is the address of the web server or hosting service where

the application lives on. Typically, a few days after submitting the appli-

cation the Facebook Platform Team notifies the developer either that the

application was successfully accepted or that it was rejected. If the applica-

tion is accepted, it will be added to the Application Directory3. This allows

users to sight the application when searching or browsing the Application

Directory and install it to their profile.

Facebook Platform comprises a number of core entities for easy creation

of Web applications that live inside Facebook and which are freely available

to every Facebook user. Through the following components, the developer

has access to the social graph.

2Free Facebook Applications Developer Program:

http://www.joyent.com/products/joyent-developer-programs/

free-facebook-dev-program
3Facebook Application Directory: http://www.facebook.com/apps/directory.php

16 CHAPTER 3. FACEBOOK APPLICATIONS

3.1.1 Facebook Markup Language

The Facebook Markup Language (FBML) [11] is a subset of HTML along

with some additional tags specific to Facebook. Specific tags have a common

form: <fb:tagName/>. FBML lets applications to interact with their users

and users’ friends. There are plenty of FBML tags, which can be organized

into the following categories: social data tags, sanitization tags, design tags,

component tags and control tags.

• Social data tags retrieve and format data to the user accessing the

application. These data can have many forms, such as user information

(first name, last name, etc), group4 or photos information. A widely

used social tag is the <fb:name/>, which displays the user’s name in

a variety of ways.

• FBML uses sanitization tags to enforce site standards both internally

and on developers’ applications created for Facebook. For example, the

<fb:swf/> tag controls how SWFs begin playing inside applications.

• By providing predefined design tags, Facebook Platform helps devel-

opers mingle their applications into the style and look & feel of the

host site (www.facebook.com).

• Component tags create widget-like components that allow user inter-

action with an application, such as the ability to provide comments

through a comment board inside the application.

• Control tags control how FBML renders information on a page. For

example, a developer has the ability to show content only to the owner

of an application profile box, through the <fb:visible-to-owner/> tag.

4According to Facebook statistics [15], more than 45 million active user groups exist

on the site.

3.1. PLATFORM OVERVIEW - CORE COMPONENTS 17

3.1.2 Facebook Query Language

The Facebook Query Language (FQL) [14] allows a developer to use an

SQL-style interface to easily query some Facebook social data, such as the

full name or profile picture of a user. If the developer knows how to use

SQL, it should be pretty straightforward to execute FQL queries. Face-

book Platform provides several tables5, as a reference for constructing FQL

queries.

3.1.3 Facebook JavaScript

Facebook JavaScript (FBJS) [10] permits developers to use JavaScript in

their applications. FBJS has the same syntax, as the traditional JavaScript.

FBJS source code gets parsed, and any identifiers (function and variable

names) get prepended with the application’s unique identifier, preventing

the sandboxing of the code, without using iframes. Also, FBJS supplies a

powerful AJAX object and an animation library for developers.

3.1.4 Facebook API

Concerning the server side part of an application and the available client

libraries, we should take into account the Facebook API [5]. Using this

API, a developer can add social context to his application by utilizing pro-

file, friend, fan page, group, photo, and event data. For example, through

specific methods, a developer can collect users’ hometown location, high

school information, favorite quotes, etc. The API uses a REST-based inter-

face. This means that the Facebook API method calls are made over the

Internet by sending HTTP GET or HTTP POST requests to the Facebook

API REST server. Thus, almost any programming language can be used to

communicate over HTTP protocol with the REST server to retrieve all the

social data needed.

5FQL Tables: http://wiki.developers.facebook.com/index.php/FQL_Tables

18 CHAPTER 3. FACEBOOK APPLICATIONS

3.2 How an FBML Canvas Page Works

When an user accesses a Canvas page, several steps occur in the Facebook

REST server and the hosting server in order to render application’s contents

to the user’s browser. These steps are listed in Figure 3.1. Initially, the user’s

browser requests the Canvas page URL. The Facebook server, that receives

the request, sends an HTTP POST to the Callback URL on the hosting

server, asking for the FBML of the Canvas page. If the developer makes

calls to the Facebook API to retrieve social data, then the hosting server

sends an HTTP POST or HTTP GET request to the Facebook REST server

in order to receive the needed data. After executing all API method calls,

the hosting server returns the resulted FBML to the Facebook REST server.

The Facebook server transforms that FBML into HTML and sends it back

to the user’s browser.

From the above, we can observe that the Facebook REST server acts as

a proxy between the user’s browser and the hosting server.

Figure 3.1: How an FBML Canvas page is rendered.

4
A Proof of Concept Application

In this Chapter we present our Facebook application, that can turn its users

into a FaceBot. We analyze the design of the Photo of the Day application,

and explain the properties that can transform it to an application that could

perform malicious actions covertly.

4.1 Photo of the Day: From Facebook to FaceBot

To take advantage of a social web site, like Facebook, for launching DoS

attacks, the adversary needs to create an application, which embeds URIs

to a victim web server. These URIs must point to documents hosted by

the victim, like images, text files, media files, etc. When a user interacts

with the application, the victim host will receive unsolicited HTTP GET

19

20 CHAPTER 4. A PROOF OF CONCEPT APPLICATION

requests. These requests are triggered through Facebook, since the applica-

tion lives inside the social network, but they are actually generated by the

Web browsers used by the users that access the application. We define as

FaceBot the collection of the users’ Web browsers that are forced to gener-

ate requests upon viewing a malicious Facebook application. Schematically,

a FaceBot is presented in Figure 4.1. The cloud groups a collection of Face-

book users who browse a malicious application in Facebook. This causes a

series of requests to be generated and directed towards the victim.

FaceBot

Facebook.com

Victim

Host

Facebook

User
Facebook

User

Facebook

User

HTTP

Requests

Figure 4.1: The architecture of a FaceBot. Users access a malicious appli-

cation in the social site (facebook.com) and subsequently a series of HTTP

requests are created, which target the victim host.

4.2 FaceBot Design

Our initial vision was to create a first proof of concept FaceBot for demon-

stration purposes, while at the same time not causing any harm to real

4.2. FACEBOT DESIGN 21

Facebook users. Thus, we created a real-world Facebook application, which

we call “Photo of the Day” [25], that presents a different photo from Na-

tional Geographic to Facebook users every day. Each time a user visits

the Photo of the Day application, an image from the respective service of

National Geographic1 appears [23]. When a Facebook user accesses the ap-

plication, he can see the photo of the day, along with a brief description

below it. Also, when the user clicks on the photo, a wallpaper version is

provided. Moreover, the name of the photographer who took the picture is

displayed. Finally, the user can invite his friends, who do not have Photo of

the Day, to add it to their profile.

During the deployment of the Photo of the Day application, we didn’t

employ any obligatory invitations during its installation in a user’s profile.

We mention this, because it is very common that Facebook applications

require a user to invite a subset of his friends, and thus advertise the ap-

plication to the Facebook community, prior the installation. This practice

helps in the further propagation of the application in Facebook. Typically,

a user must announce the application to about 20 of his friends in order to

proceed with the installation2.

Concerning the client libraries, as mentioned in Section 3.1, the Photo

of the Day application is implemented on top of the PHP3 library.

4.2.1 Malicious Attributes of “Photo of the Day”

In order to modify the Photo of the Day from an innocent-looking appli-

cation to an application that could perform malicious actions covertly, we

have placed special FBML tags in its source code, so that every time a user

1National Geographic has specific terms for content distribution, which are not violated

by this work [22].
2Currently, Facebook bans ‘forced’ invites [13].
3Official PHP Client Library:

http://wiki.developers.facebook.com/index.php/PHP

22 CHAPTER 4. A PROOF OF CONCEPT APPLICATION

visits the application’s Canvas page, HTTP requests are generated towards

a victim host. More precisely, the application embeds four hidden frames

with inline images hosted at the victim. Each time the user interacts with

the application, the inline images are fetched from the victim, causing the

victim to serve a request of 600 KBytes, but the user is not aware of that

fact, because the images are never displayed. We list a portion of our sam-

ple source code which is responsible for fetching an inline image from a

victim host and placing it to a hidden frame inside the Photo of the Day

application, in Figure 4.2.

Notice, that our proof of concept application was absorbing a fixed

amount of traffic from the victim host. An adversary could employ more so-

phisticated techniques and create a JavaScript snippet, as the one presented

in Section 2.2, which continuously requests documents from a victim host

over time. In this way the attack may be significantly amplified.

4.2.2 Why Hidden Frames ?

The hidden frames are included in the application’s HTML source code via

the <fb:iframe/>4 FBML tag. The traditional <iframe/> HTML tag has

been recreated by Facebook Platform and became <fb:iframe/> in FBML.

The code listed in Figure 4.2, is generated by a Facebook server, when the

latter transforms the following FBML code into HTML, as described in

Section 3.2.

<fb:iframe name="1" style="width:0px; height:0px; border: 0px"

src="http://victim-host/image1.jpg"></fb:iframe>

One may argue that we could use invisible images, by using the common

 HTML tag, instead of hidden frames. The answer for our decision

4FBML iframe: http://wiki.developers.facebook.com/index.php/Fb:iframe

4.2. FACEBOT DESIGN 23

<iframe name="1" style="border: 0px none #ffffff;

width: 0px; height: 0px;"

src="http://victim-host/image1.jpg?

fb_sig_in_iframe=1&

fb_sig_time=1202207816.5644&

fb_sig_added=1&

fb_sig_user=724370938&

fb_sig_profile_update_time=1199641675&

fb_sig_session_key=520dabc760f374248b&

fb_sig_expires=0&

fb_sig_api_key=488b6da516f28bab8a5ecc558b484cd1&

fb_sig=a45628e9ad73c1212aab31eed9db500a">

</iframe>

Figure 4.2: Sample code of a hidden frame, inside a Facebook appli-

cation, which causes an image, namely image1.jpg, to be fetched from

victim-host.

comes from the special manner that Facebook Platform handles img tags5.

When publishing an application, Facebook servers request any image URL

from the hosting server and then serve these images, by rewriting the src

attribute of all img tags using a *.facebook.com domain. Thus, Facebook

servers fetch, from the hosting server, all images used by the application,

and cache them for later on display. This technique protects the privacy of

Facebook users and not allow malicious applications to extract information

from image requests made directly from a user’s browser.

Shortly, our proof of concept FaceBot could be impossible if we did not

use hidden frames to load images from the victim host. To overcome the

5Facebook Platform handles img tags in a special manner:

http://wiki.developers.facebook.com/index.php/UsageNotes/Images

24 CHAPTER 4. A PROOF OF CONCEPT APPLICATION

facility in caching images, by Facebook servers, we used hidden frames,

which do not utilize the above caching properties.

4.3 FaceBot Hosting Issues

As stated in Section 3.1, if an adversary wants to develop a Facebook appli-

cation, he must also host it. In other words, the adversary has to be able to

cope with requests from users that are accessing the application. However,

this can be overcome using a free hosting service, specifically designed for

Facebook applications, as we discussed in Section 3.1. But even if such a

service were not available, the adversary has to cope with much less traffic

than the one that targets the victim.

The Photo of the Day application is hosted at a web server located in

our research laboratory.

4.4 FaceBot Impact

Our proof of concept FaceBot had a major impact in the security research

community. After the publication of our work, many security portals from

all around the world, distributed the main components of our study, re-

ferring to the related research paper [45]. The start was on August 30,

2008, where NewScientist.com published an article querying whether the

readers are members of an antisocial network. On September 4, 2008, we

have requested for an interview in Technology Review, the oldest technology

magazine in the world, published by the Massachusetts Institute of Tech-

nology (MIT). In the next few days, our work was published in a large set

of portals. We are listing some of them below:

✔ NewScientist.com: Facebook application turns users into attack-

ers [8].

4.4. FACEBOT IMPACT 25

✔ TechnologyReview.com: Turning Social Networks Against Users [31].

✔ SlashDot.org: Researchers Build Malicious Facebook App [26].

✔ TheRegister.co.uk: Facebook app shows botnet risk - You have one

zombie request [6].

✔ ZDNet.com: Demo Facebook app creates DoS botnet [2].

✔ Wired.com: Researchers Use Facebook App to Create Zombie Army [29].

✔ pcWorld.com: Researchers Build Malicious Facebook Application [28].

✔ TechCrunch.com: Researchers Build Malicious Facebook App [27].

26 CHAPTER 4. A PROOF OF CONCEPT APPLICATION

5
Experimental Evaluation

In this Chapter we experimentally evaluate the firepower of our FaceBot.

We have conducted several experiments, using a least effort approach. By

using the term of least effort we mean that during the whole study we did

the least we could do in terms of spending resources, adding complexity and

enhancing our developments with obscure and hackish features, which could

lead in overestimated results. For example, as we mentioned in Chapter 4,

during the deployment of the Photo of the Day application we did not add

special obligatory massive invitation features for boosting the application’s

propagation in the social network.

27

28 CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 FaceBot Experimental Setup

For our experiments, the victim web server which hosts the inline images

is located in our lab, isolated from any other network activity. The Photo

of the Day application is hosted at a different web server located, also, in

our research lab. Finally, we announced the application to members of our

research group and we encouraged them to propagate it to their colleagues.

In the following Sections we present the results associated with the traffic

experienced by our victim web server.

5.2 Attack Magnitude

In Figure 5.1 we present the number of HTTP requests per hour recorded by

our web server from the time the Photo of the Day application was uploaded

to facebook.com and for a period of a few days. Notice, that the request

rate reached a peak of more than 300 requests per hour after a few days

from the publication time.

 0

 50

 100

 150

 200

 250

 300

 350

23/Jan 25/Jan 27/Jan 29/Jan 31/Jan 02/Feb 04/Feb 06/Feb

H
T

T
P

R
eq

ue
st

s

Time

HTTP Requests Recorded per Hour

Figure 5.1: The HTTP requests as were recorded by the victim web server.

5.2. ATTACK MAGNITUDE 29

During the peak day of January 29th, our web server recorded an excess

of 6.7 Mbit per second of egress traffic, as shown in Figure 5.2. Remem-

ber that, each time a user visits the application, the victim host has to serve

a request of 600 KBytes. The request rate shown in Figure 5.1, as well as

the outgoing traffic shown in Figure 5.2, is purely Facebook related. We can

isolate the network packets originating from users accessing facebook.com

by inspecting the referer field. We further discuss the importance of the

referer field in Chapter 6.

 0

 1

 2

 3

 4

 5

 6

 7

17:00 18:00 19:00 20:00 21:00

M
bi

t/s
ec

Time

Outgoing Traffic recorded in the 29th of January

Figure 5.2: Bandwidth use at the victim web server during the attack on

29/01/2008.

It is important to note that the request rate per hour never fell below

a few tens of requests and during peak times it reached a few hundred of

requests. Notice, that depending on the nature and the hackish properties of

the malicious Facebook application, the request rate may differ substantially.

In our experiment, each user was generating only four requests towards our

web server, per application visit.

30 CHAPTER 5. EXPERIMENTAL EVALUATION

5.2.1 Bursty Traffic Pattern

From Figure 5.2, we can draw the inference that the traffic pattern is quite

bursty. This is related to the social nature of the attack platform. Users seem

to visit Facebook also in a bursty fashion (approximately at the same time).

This is more clearly presented in Figure 5.3, where we plot the distribution of

user inter-arrival times (the times at which users visit the Photo of the Day

application) for the 29th of January. We calculated this distribution using

the entry points to the Photo of the Day application as they were recorded

by our victim web server. The users’ inter-arrival distribution indicates that

a typical inter-arrival time has a period from a few tens of seconds to a few

minutes. Note, that during the 29th of January, according to Figure 5.7,

our proof of concept application recorded more than 480 daily active users.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200

N
um

be
r

of
 I

nt
er

-a
rr

iv
al

s

Inter-arrival Period (secs)

User Inter-arrival Distribution for the 29th of January

Figure 5.3: The distribution of user inter-arrival times at the victim site

on 29/01/2008, with over 480 users recorded as active.

5.2. ATTACK MAGNITUDE 31

To further verify our feelings about the bursty nature of the traffic we

were experiencing in the victim host, we installed two monitoring sensors and

captured traffic emitted by Facebook users. The first sensor was installed

in an academic institute and was able to monitor approximately 120,000 IP

addresses. We recorded 100 unique Facebook users in a monitoring period

of 1 day. The second sensor was installed in a /16 enterprise network. We

recorded 75 unique Facebook users in a monitoring period of 5 days. We

used the collected traces from these sensors in order to calculate the user

requests’ inter-arrival distribution at Facebook. We present the results in

Figure 5.4. It is evident that small inter-arrival periods characterize the

requests made by Facebook users. Note, that users arrive in bursts to their

home page in facebook.com, but this does not immediately imply that they

will use the Photo of the Day application.

 1

 10

 100

 1000

 10000

 100000

-10 0 10 20 30 40 50 60

N
um

be
r

of
 I

nt
er

-a
rr

iv
al

s

Inter-arrival Period (secs)

User Inter-arrival Distribution at Facebook.com

Sensor 1
Sensor 2

Figure 5.4: The distribution of user inter-arrival periods at facebook.com

for one day. Our two sensors recorded 100 and 75 unique users respectively.

32 CHAPTER 5. EXPERIMENTAL EVALUATION

In Figure 5.5 we plot typical session times of Facebook users, as were

recorded by our two sensors. The first sensor recorded 495 user sessions

and the other one recorded 275 user sessions. Observe that a typical user

session of a Facebook user ranges from a few to tens of minutes.

To summarize, based on the spontaneous peaks in Figures 5.1 and 5.2,

and considering the fact that Facebook users are arriving nearly at the

same time to our application (see Figure 5.3), we conclude that a malicious

Facebook application can absorb Facebook users and force them to generate

HTTP requests to a victim host in a burst mode fashion.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
s)

Session ID

Session Times of Facebook Users

Sensor 1
Sensor 2

Figure 5.5: Session times of Facebook users as were recorded by our

two sensors. The first sensor recorded 495 user sessions and the other one

recorded 275 user sessions.

5.3. REQUEST DISTRIBUTION 33

5.3 Request Distribution

Using the IP addresses recorded in the logs of our victim web server, we

tried to identify the geographical origin of each Facebook user, who visited

the Photo of the Day application. Our main interest was to investigate how

distributed can an attack based on a social web site, like facebook.com, be.

We used the geoip tool [18], in order to map our collected IPs to actual

countries. We ignored the fact that some Facebook users might be using

some sort of an anonymizing system like TOR [55], because our goal was

not to capture the origin of the users, but the origin of the requests, which

were recorded by our victim host.

In Figure 5.6 we are marking in black every country from which we

recorded at least one request. It is evident that the nature of a FaceBot,

even one that is a proof of concept, is highly distributed. In Table 5.1 we

are listing the Top-5 countries in terms of the number of HTTP requests

generated by each country, towards our victim web server.

Country Requests

United States 3,856

Canada 1,829

Greece 1,734

United Kingdom 1,043

Turkey 917

Table 5.1: The Top-5 countries in terms of the number of HTTP requests

generated by each country.

34 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.6: Location of FaceBot hosts. Countries colored in black hosted

at least one FaceBot participant.

5.4 Tracking Popularity

To our surprise, the Photo of the Day application was installed by a signif-

icant Facebook population, which was completely unaware to us. In Fig-

ure 5.7 we explore the popularity of our proof of concept application, as it is

measured by Adonomics1 [4]. As it is evident, our application was installed

by nearly 1,000 different users in the first few days, despite the fact that

we followed a least effort approach. This is rather impressive correlating

it with statistics related to commodity software downloads. For example,

it took months for eMule file sharing client, the most successful project in

SourceForge.com, to reach thousands of downloads2.

1A few months ago, Adonomics was sold to AdKnowledge.com, who let the service die.
2eMule Statistics: http://sourceforge.net/project/stats/?group_id=53489&ugn=

emule&type=&mode=alltime

5.5. ATTACK FIREPOWER 35

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

26/01 27/01 28/01 29/01 30/01 31/01 01/02 02/02 03/02 04/02

U
se

r
In

st
al

la
tio

ns

Date

Application Popularity

Installations
Daily Active Users

Figure 5.7: The popularity of the Photo of the Day application, as it is

tracked by Adonomics.com.

5.5 Attack Firepower

Based on the experimental results from the previous Sections we proceed to

estimate the firepower of a large FaceBot. For this we are going to assume

that an adversary has developed a highly popular Facebook application,

which employs the tricks we presented in Section 4.2.1.

We denote with F (t) the distribution of outgoing traffic a victim web

server exports, due to Facebook requests, over time. This is essentially the

firepower of a FaceBot. In Section 5.2 we experimentally measured this

distribution for our proof of concept Facebook application and we presented

our results in Figure 5.2. Our aim, in this Section, is to find an analytical

expression for F (t).

We denote with aout the outgoing traffic a Facebook application can pull

from a victim host, once a social user is tricked into using the malicious

36 CHAPTER 5. EXPERIMENTAL EVALUATION

application. Even though sophisticated use of client side technologies (like

JavaScript) can make aout a function over time (e.g., a malicious JavaScript

snippet can generate requests towards a victim host in an infinite loop), for

simplicity we assume that aout is a fixed quantity.

We denote with U(t) the number of users accessing this application over

time. It follows that:

F (t) = aoutU(t) (1)

To estimate U(t), we need the following: (a) the number of active users

over a period P , and (b) an estimation of the users’ inter-arrival times. If

we denote the active users with u(t) and the inter-arrival distribution with

ur(t), then:

U(t) =

∫
P

0
u(t)dt

ur(t)
(2)

Assuming that there is a FaceBot based on a highly popular Facebook

application and that we want to estimate its firepower at time T , FT . We

can use the average of the inter-arrival distribution, and thus:

FT = aout

∫
P

0
u(t)dt

< ur >
(3)

For example, if we have a FaceBot with aout = 10Kbit/sec, which is

installed by 1,000 users, from whom 100 were active in a period of 10 seconds

and their average inter-arrival time was 2 seconds, then:

F(10) = 10Kbit/sec100
2 = 0.5Mbit/sec

5.5. ATTACK FIREPOWER 37

In Table 5.2 we list the Top-5 Facebook applications as of early Febru-

ary 2008, according to Adonomics.com [4]. These applications have from 1

million to more than 2 million of daily active users.

Application Installations Daily Active Users

FunWall 23,797,800 2,379,780

Top Friends 24,955,200 2,245,970

Super Wall 23,274,800 1,861,980

Movies 15,934,700 1,274,780

Bumper Sticker 7,989,700 1,118,560

Table 5.2: The Top-5 of Facebook applications as of the beginning of

February 2008, in terms of daily active users.

Accordingly, in Table 5.3 we present the Top-5 Facebook applications

as of the end of October 2009, according to AllFacebook.com [7]. These

applications have from 5 million to more than 20 million of daily active

users3.

Application Daily Active Users Monthly Active Users

FarmVille 22,694,854 61,444,541

Café World 7,794,029 24,611,112

Mafia Wars 6,473,504 25,431,622

Happy Aquarium 6,136,270 19,300,920

Farm Town 5,493,514 18,483,912

Table 5.3: The Top-5 of Facebook applications as of the end of October

2009, in terms of daily active users.

3AllFacebook.com does not report the number of installations for each application, as

Adonomics.com did.

38 CHAPTER 5. EXPERIMENTAL EVALUATION

The user-base of the applications listed in the previous tables is so large,

that we can assume that the user inter-arrival time follows a uniform dis-

tribution4. We further assume that an adversary has deployed one of these

applications, which has 2 million of daily active users. That is, assuming

uniform user inter-arrival time, approximately 23 users/sec are using the

application. If the adversary has deployed the malicious application with

aout = 1Mbit/sec 5, then the victim will have to cope with unsolicited traffic

of 23 Mbit/sec and during the period of one day will have to serve nearly

248 GB of unwanted data.

4Having a non-uniform inter-arrival time distribution would further amplify the attack,

because the victim host would have to cope with large flash crowd events [58] in very short

periods.
5The adversary needs to download a file of size of 125 KBytes from the victim, in order

to achieve such an aout value.

6
Countermeasures

Providers of online social networks should take the issues of security and

privacy very seriously, and be careful when designing their platforms and

APIs in order to have low interactions between the social utilities they op-

erate and the rest of the Internet. More precisely, social network providers

should be careful with the use of client side technologies, like JavaScript,

etc. A social network operator should provide developers with a strict API,

which is capable of giving access to resources only related to the system,

or a privacy preserving API [56], which supports user’s and social graph

data anonymization. Also, every application should run in an isolated en-

vironment imposing constraints to prevent the application from interacting

with other Internet hosts, which are not participants of the social network.

39

40 CHAPTER 6. COUNTERMEASURES

Finally, operators of social networks should invest dedicated resources in

verifying the applications they host. They have to check all submissions

and check them again if developers desire to change their functionality. Un-

fortunately, Mark Zuckerberg, the founder of Facebook, said that they will

not introduce stricter controls on third party applications [39].

In this Chapter we propose countermeasures for defending and prevent-

ing a FaceBot based attack.

6.1 Defending Against a FaceBot

To defend against a FaceBot, a victim host must filter out all incoming traffic

introduced by Facebook users who interact with a malicious application.

Using the referer1 field of the HTTP GET requests, the victim can determine

whether a request originates from facebook.com or not, and stop the attack

traffic (e.g. by using a NIDS or Firewall system)2. However, it is possible for

a malicious developer of a Facebook application to overcome this situation.

Typically, requests that include the meta element with a http-equiv attribute

whose value is refresh3, do not have a referer field. With respect to our proof-

of-concept application, which embeds hidden frames with inline images, the

strategy would be to create a separate page to load them from. For example,

the source attribute of the inline frame can be:

src="http://attack-host/dummy-page.php?ref=victim-host/image1.jpg"

In this example the attack host is the web server where the source code of

the Photo of the Day lives. The dummy-page PHP file contains the following

code:

1HTTP Referer Field: http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html#z14
2This technique can protect the victim host against wasting its egress bandwidth, but

does not grant it to determine any access policy over its incoming traffic.
3“refresh” Pragma Directive:

http://dev.w3.org/html5/markup/meta.http-equiv.refresh.html

6.1. DEFENDING AGAINST A FACEBOT 41

<?php

if($_GET["ref"]){

$ref=$_GET["ref"];

}

print("<meta http-equiv=‘refresh’ content=‘0; url=$ref’ />");

?>

By employing this technique to our FaceBot, HTTP requests received

by the victim host have an empty referer field, giving the attacker a way to

hide his identity. This is a typical usage of a reflector [65] by the adversary.

Notice however, that the adversary must tunnel the requests to the victim.

This means, that the adversary will also receive all the requests targeting

the victim, but he will not have to actually serve the requests. Practically,

the adversary will receive plain HTTP requests (a few bytes of size each),

will have to process them in order to trim the referer related data and then

pass it to the victim. On the other hand, the victim will have to serve the

requests, which, depending on the files the victim serves, might reach the

size of MBytes of information for each server request.

In Figure 6.1 we list two HTTP GET requests as recorded by the vic-

tim web server. The IP address of the machine whereby a Facebook user

visited the Photo of the Day application, and the timestamp of the re-

quests are obfuscated. The first request has a regular referer field (http:

//apps.facebook.com/photo_of_the_day/), while the second one has an

empty (-) referer field, as it is produced after the use of the attacker’s trick,

as described above. It is worth to note the absence of the various parameters

in the second request, which are appended after the name of the inline image

in the first request. These parameters, are also listed in Figure 4.2. Face-

book inserts these parameters for authorizing issues, letting the developer

verify that the request is indeed triggered through Facebook. For exam-

ple, if the fb sig added parameter is set to 1, then the user has authorized

42 CHAPTER 6. COUNTERMEASURES

the Photo of the Day application. The lack of these parameters, makes the

victim completely incapable to defend against a FaceBot, by inspecting the

requests logged by his web server.

----------------HTTP request with a referer field-------------------

XXX.XXX.XXX.XXX - - [DD/MM/YYYY:HH:MM:SS +0200] "GET /image1.jpg?

fb_sig_in_iframe=1&fb_sig_time=1202252166.5952&fb_sig_added=1&

fb_sig_user=643753825&fb_sig_profile_update_time=1201960425&

fb_sig_session_key=a234de800b8fe7a4045dd1f9-643753825&

fb_sig_expires=0&fb_sig_api_key=94f57b06e4b2db1f17ab0b838ae2a55f&

fb_sig=d60ccaea8fcdb3d1051db1dca72b8205

HTTP/1.1" 200 434027 "http://apps.facebook.com/photo_of_the_day/"

"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.6)

Gecko/20060808 Fedora/1.5.0.6-2.fc5 Firefox/1.5.0.6 pango-text"

----------------HTTP request without a referer field----------------

XXX.XXX.XXX.XXX - - [DD/MM/YYYY:HH:MM:SS +0200] "GET /image1.jpg

HTTP/1.1" 200 434027 "-"

"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.6)

Gecko/20060808 Fedora/1.5.0.6-2.fc5 Firefox/1.5.0.6 pango-text"

Figure 6.1: Two HTTP GET requests, as recorded by our web server

(victim host). The latter one has an empty referer field, due to the trick

employed by the attacker in order to hide his identity.

A regular referer field can also be used to trace back to the source of

the DDoS attack. Through this, the victim can follow the necessary steps

to shutdown the control web site. Concerning our FaceBot, the victim does

not have the capability to take down the web site whereby the attack traffic

originates from, as this is www.facebook.com. The only representative way

is to contact the Facebook operators and explain the incident, probably by

6.2. PREVENTING A FACEBOT 43

providing a sample of the requests logged by his web server. Then, Facebook

Platform Support can disable the malicious application, if and only if it

violates Facebook terms and policies4. However, this process can proceed

relatively slow as it comprises human coordination. Thus, the attacker may

already has attained his goals.

6.2 Preventing a FaceBot

In order to prevent a FaceBot based attack, the Facebook Platform can

cancel the use of <fb:iframe/> FBML tag, as this tag is used to load images

hosted at the victim host. Otherwise, this tag can be handled in a special

manner, exactly like the case of the img tag, as discussed in Section 4.2.2.

Thus, if the src attribute of an iframe is an image file (e.g. .jpg, .png, etc.),

the Facebook Platform can handle these frames in a way similar to img tags.

Currently, Facebook Platform advises developers to use the fb force mode5

parameter, when they are in need of rendering a page in an iframe, instead

of the <fb:iframe/> tag for that.

4Facebook Statement of Rights and Responsibilities:

http://www.facebook.com/terms.php
5Fb force mode parameter:

http://wiki.developers.facebook.com/index.php/Fb_force_mode

44 CHAPTER 6. COUNTERMEASURES

7
Future Work

From our analysis in Section 5.5, we can observe that an adversary can take

full advantage of popular social utilities, to emit a high amount of traffic

from a victim host. However, apart from launching a DDoS attack to third

parties, there are other possible misuses in the fashion of Puppetnets [62]:

• Host Scanning: Using JavaScript, an attacker can develop an appli-

cation that identifies whether a host has arbitrary ports open. As

Web browsers impose only few restrictions on destination ports (some

browsers, like Apple’s Safari on Mac OSX, even allow connection to

sensitive ports, like port 25 for SMTP), an attacker can randomly se-

lect a host and a port, and request an object through normal HTTP

45

46 CHAPTER 7. FUTURE WORK

requests. Based on the response time, which can be measured through

JavaScript, the attacker can figure out if the port is alive or not.

• Malware Propagation: An unsuspecting user can participate in mal-

ware and attack propagation. If a server can be exploited by a URL-

embedded attack vector, then malicious Facebook applications can

contain this exploit. Every user that interacts with the application

will propagate the attack vector.

• Attacking Cookie-based Mechanisms: Similarly to XSS worms, a ma-

licious application can override authentication mechanisms that are

based on cookies. Badly-designed web sites that support automated

login using cookies suffer from such attacks.

Also, there are other possible misuses of facebook.com itself. Facebook

gives users the opportunity to have their profile locked and visible only by

their friends. However, an adversary can collect sensitive personal informa-

tion of Facebook users, without their permission. A Facebook application

has full access in the majority of user’s and user’s friends details, by calling

methods of Facebook API1. Although, users can set privacy settings for each

installed application, Felt et al. in [56], state that most users give all appli-

cations the right to have full access to their account details. An adversary

could deploy an application, which simply posts all available user details

to an external colluding web server. In this way, the adversary can gain

access to the personal information of users, who have installed the malicious

application.

Gaining access to the personal information of Facebook users has ma-

jor security and privacy implications. For example, modern phishing at-

tacks [54] are based on detailed personal information for targeted attacks.

1e.g. Users.getInfo:

http://wiki.developers.facebook.com/index.php/Users.getInfo

47

A study by David Bank [34], acquainted that an e-mail phishing attack with

targeted personal information can be very effective and achieve high success

rates. Thus, adversaries who are in need of carrying out a “spear phish-

ing” attack2, can harvest personal information from online social networks

in order to attain their goals.

Finally, Photo of the Day application can live inside the friendster.com

online social network [16]. Friendster has a Developer Platform, called

fbOpen Platform [17], that leverages the Facebook compatible Platform,

thus developers can bring over applications that have been developed for

Facebook and make them available to the Friendster user community. There-

fore, the attacker does not need to spend any additional resources to bring

his application to Friendster. The web server to host the application can

be the same as the one that hosts the similar Facebook application. Attack

firepower can be significantly increased, as Friendster has more than 110

million users worldwide3.

The above possible misuses reinforce our argument, that operators of on-

line social networks should invest more effective and dedicated resources in

verifying the applications they host.

2Targeted versions of phishing attacks have been termed “spear phishing”.
3About Friendster: http://www.friendster.com/info/index.php

48 CHAPTER 7. FUTURE WORK

8
Related Work

Several researchers have conducted significant work towards the structure

and evolution of online social networks [43, 46, 63], but little work has been

done on measuring real attacks on these sites. Apart from scattered blog

entries that report isolated attacks, such as malware hosting in MySpace [35,

36], there have been no large-scale attacks using social networking sites,

reported or studied so far. The most closely related work to our FaceBot was

done by Lam et al. in [62]. Our work here extends the idea of Puppetnets by

taking into account the characteristics of a special kind of Internet systems

which rely heavily on the social factor: social networking web sites. The

authors of [62] omit explaining how they will make their web site popular,

in order to carry out the attack. We, on the other hand, are taking advantage

49

50 CHAPTER 8. RELATED WORK

of already popular web sites like facebook.com. Such sites prove to be ideal

for carrying Puppetnet type attacks.

Authors in [68], exploited the friendship of an ordinary malicious user

with a popular user (e.g. a famous celebrity or musician) who has a large

friend circle, in order to cause a small-scale DDoS attack and create a botnet

command and control channel. Their attack method benefitted from the

ability to post HTML tags in comment boxes on users’ profile pages on

MySpace. Preparative to launch a DDoS attack they posted hot-links to

large media files hosted by a victim web server. Thereby, the unsolicited

HTTP GET requests coerced by hot-links, when someone visits the profile

page of a popular user, could create a flash crowd.

Jagatic et al. in [60], Hogben in [59] and Brown et al. in [52] study how

phishing attacks [54] can be made more powerful by extracting publicly avail-

able personal information from social networks. Identifying groups of people

leads to more successful phishing attacks than by simply massively sending

e-mails to random people unrelated to each other. In [57], the authors ex-

amined that a large amount of students, at Carnegie Mellon University, are

disclosing personal information in Facebook, not taking into account the

site’s privacy settings. Even if, users limit their privacy preferences to al-

low personal information dissemination only to their friends, malicious users

can use automated identity theft attacks, presented by Bilge et al. in [47], in

order to gain access to a large volume of personal user information. Their

attack method consists of cloning an existing user/victim profile and send-

ing friend requests to his contacts. Attackers’ perspective is that users who

receive a request will accept it, thus their personal information will be avail-

able to the owner of the cloned profile.

On May 1, 2008, the BBC’s technology programme, analyzed in [38],

how a special Facebook application they have created, could potentially

harvest sensitive personal information from users who installed it to their

51

profile. It took them less than three hours, to create “Miner”, an evil data

mining application. The malicious application was collecting users’ personal

details, and those of the users’ friends, and was e-mailing them to developers

inbox. When BBC’s team released their findings to Facebook Platform,

the latter informed them that facebook.com has an entire dedicated team

watching the site, and removing applications that violate its terms of use.

Also, Facebook said that its social users should use the same precautions

while downloading software from Facebook applications, that they use when

downloading software on their computer.

Bonneau et al. in [49], listed several ways in which adversaries can extract

users’ personal details and social graph information from facebook.com, on

a large scale. Their harvesting methods include: (i) extract users’ informa-

tion from search engines, where Facebook exposes a limited public view of

users’ profile [48], (ii) creation of false fictitious Facebook profiles, like the

ones presented in Chapter 7, (iii) profile compromising, e.g. Bryan Rutberg’s

identity theft [41], and phishing, as the Facebook log-in page is not authen-

ticated via TLS, (iv) malicious data mining applications and (v) exploiting

security flaws in FQL queries.

Felt in [37], exploited the early design principles of Facebook Platform,

accomplishing to add arbitrary JavaScript to users’ profiles. Especially,

there was a Cross Site Scripting (XSS) vulnerability while parsing some un-

sanitized attributes of the <fb:swf/> FBML tag. After a few days, Facebook

operators patched the security hole.

In the space of peer-to-peer systems, there have been a few attacks that

have appeared and have been analyzed by researchers. One may consider

a peer-to-peer system to be similar to a social network in the sense that

there are millions of users that connect to each other forming a network.

Gnutella, an unstructured peer-to-peer file sharing system, has been used in

the past as an attack platform [44]. In a similar fashion, the work in [64,66]

52 CHAPTER 8. RELATED WORK

presented how Overnet and KAD can be misused for launching Denial of

Service attacks to third parties. Finally, in [53], the authors have managed

to transform BitTorrent, one of the most popular P2P systems, to a platform

for similar attacks, by exploiting vulnerabilities in its design.

9
Conclusion

In this thesis we presented Antisocial Networks or how it is possible to turn a

well-known online social network into an attack platform that can be used to

carry out a number of network attacks. We analyzed the design principles of

our proof of concept Facebook application and how it can be used to commit

antisocial acts against the rest of the Internet.

We developed FaceBot, an application that can run on facebook.com,

and carry out a Distributed Denial of Service attack against any host on the

Internet. A FaceBot consists of the users’ Web browsers that are indirectly

forced to generate requests upon viewing a malicious Facebook application.

Our analysis involved building a real-world Facebook application, conduct-

53

54 CHAPTER 9. CONCLUSION

ing an actual attack on our lab web servers, and doing an estimation of the

firepower of a FaceBot.

We have shown that applications that live inside a social network can

easily and very quickly attract a large user-base, in the order of millions of

users. We experimentally determined the user-base to be highly distributed,

and of a world-wide scale. Through our experimental evaluation, we have

shown that the victim of a FaceBot, that relies in the misuse of a popular

Facebook application, may be subject to a DDoS attack that will cause it

to serve data of the magnitude of GigaBytes per day.

The presented vulnerabilities and our pieces of advice on how to patch

them, can assist vitally in the creation of safer social network platforms

which provide rich social experiences to their intended Internet users.

Bibliography

[1] Alexa top 500 global sites. http://www.alexa.com/topsites.

[2] Demo Facebook app creates DoS botnet.

http://blogs.zdnet.com/security/?p=1854.

[3] Facebook - Connect and share with the people in your life.

http://www.facebook.com.

[4] Facebook Analytics and Developer Services. http://adonomics.com.

[5] Facebook API.

http://wiki.developers.facebook.com/index.php/API.

[6] Facebook app shows botnet risk.

http://www.theregister.co.uk/2008/09/08/facebot.

[7] Facebook Application Statistics.

http://statistics.allfacebook.com/applications.

[8] Facebook application turns users into attackers.

http://www.newscientist.com/article/mg19926715.300.

[9] Facebook Developers. http://www.facebook.com/developers.

[10] Facebook JavaScript (FBJS).

http://wiki.developers.facebook.com/index.php/FBJS.

55

56 BIBLIOGRAPHY

[11] Facebook Markup Language (FBML).

http://wiki.developers.facebook.com/index.php/FBML.

[12] Facebook Partnerships.

http://developers.facebook.com/partnerships.php.

[13] Facebook Platform Policy.

http://developers.facebook.com/policy.

[14] Facebook Query Language (FQL).

http://wiki.developers.facebook.com/index.php/FQL.

[15] Facebook Statistics.

http://www.facebook.com/press/info.php?statistics.

[16] Friendster. http://www.friendster.com.

[17] Friendster Developers Platform.

http://www.friendster.com/developer/index.php?type=fbopen.

[18] Geo IP Tool. http://www.geoiptool.com.

[19] LinkedIn - Relationships Matter. http://www.linkedin.com.

[20] MySpace. http://www.myspace.com.

[21] MySpace Press Room.

http://www.myspace.com/pressroom?url=/fact+sheet.

[22] National Geographic Content Usage.

http://www.nationalgeographic.com/community/terms.html#

content.

[23] National Geographic: Photo of the Day Utility.

http://photography.nationalgeographic.com/photography/

photo-of-the-day.

BIBLIOGRAPHY 57

[24] Orkut. http://www.orkut.com.

[25] Photo of the Day.

http://www.facebook.com/apps/application.php?id=8752912084.

[26] Researchers Build Malicious Facebook App.

http://it.slashdot.org/article.pl?sid=08/09/05/2039250.

[27] Researchers Build Malicious Facebook App.

http://www.techcrunch.com/2008/09/05/

researchers-build-malicious-facebook-app.

[28] Researchers Build Malicious Facebook Application.

http://www.pcworld.com/businesscenter/article/150697/.

[29] Researchers Use Facebook App to Create Zombie Army.

http://www.wired.com/threatlevel/2008/09/researchers-use.

[30] Trinoo - Distributed Denial of Service attack tool.

http://staff.washington.edu/dittrich/misc/trinoo.analysis.

[31] Turning Social Networks Against Users.

http://www.technologyreview.com/Infotech/21371/.

[32] Twitter - Share and discover what’s happening right now, anywhere in

the world. http://www.twitter.com.

[33] XING - Social Network for Business Professionals.

http://www.xing.com.

[34] ‘Spear Phishing’ Tests Educate People About Online Scams, 2005.

http://archives.neohapsis.com/archives/isn/2005-q3/0185.

html.

[35] MySpace XSS QuickTime Worm, 2006.

http://securitylabs.websense.com/content/Alerts/1319.aspx.

58 BIBLIOGRAPHY

[36] PC World: Hackers Crash the Social Networking Party, 2006.

http://www.pcworld.com/article/127347.

[37] A. Felt. Defacing Facebook: A Security Case Study, 2007.

http://www.cs.virginia.edu/felt/fbook/facebook-xss.pdf.

[38] BBC News: Identity ‘at risk’ on Facebook, 2008.

http://news.bbc.co.uk/2/hi/programmes/click_online/

7375772.stm.

[39] BBC News: Facebook boss rejects app controls, 2009.

http://news.bbc.co.uk/newsbeat/hi/technology/newsid_

7918000/7918582.stm.

[40] DDoS Attacks Crush Twitter, Hobble Facebook, 2009.

http://www.techcrunch.com/2009/08/06/

ddos-attacks-crush-twitter-hobble-facebook.

[41] Facebook ID theft targets ‘friends’, 2009.

http://redtape.msnbc.com/2009/01/post-1.html.

[42] Twitter down due to DDoS attack, 2009.

http://www.blyon.com/blog/index.php/2009/08/06/

twitter-down-due-to-ddos.

[43] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of Topo-

logical Characteristics of Huge Online Social Networking Services. In

WWW ’07: Proceedings of the 16th international conference on World

Wide Web, pages 835–844, New York, NY, USA, 2007. ACM.

[44] E. Athanasopoulos, K. G. Anagnostakis, and E. P. Markatos. Misusing

Unstructured P2P Systems to Perform DoS Attacks: The Network That

Never Forgets. In J. Zhou, M. Yung, and F. Bao, editors, ACNS, volume

3989 of Lecture Notes in Computer Science, pages 130–145, 2006.

BIBLIOGRAPHY 59

[45] E. Athanasopoulos, A. Makridakis, S. Antonatos, D. Antoniades,

S. Ioannidis, K. G. Anagnostakis, and E. P. Markatos. Antisocial Net-

works: Turning a Social Network into a Botnet. In ISC ’08: Proceed-

ings of the 11th international conference on Information Security, pages

146–160, Berlin, Heidelberg, 2008. Springer-Verlag.

[46] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group For-

mation in Large Social Networks: Membership, Growth, and Evolution.

In KDD ’06: Proceedings of the 12th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 44–54, New

York, NY, USA, 2006. ACM.

[47] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All Your Contacts Are

Belong to Us: Automated Identity Theft Attacks on Social Networks. In

WWW ’09: Proceedings of the 18th international conference on World

Wide Web, pages 551–560, New York, NY, USA, 2009. ACM.

[48] J. Bonneau, J. Anderson, R. Anderson, and F. Stajano. Eight Friends

Are Enough: Social Graph Approximation via Public Listings. In SNS

’09: Proceedings of the Second ACM EuroSys Workshop on Social Net-

work Systems, pages 13–18, New York, NY, USA, 2009. ACM.

[49] J. Bonneau, J. Anderson, and G. Danezis. Prying Data out of a So-

cial Network. In Advances in Social Networks Analysis and Mining

(ASONAM), July 2009.

[50] S. Bosworth. Computer Security Handbook. John Wiley & Sons, Inc.,

New York, NY, USA, fourth edition, 2002.

[51] D. Boyd and N. B. Ellison. Social Network Sites: Definition, History,

and Scholarship. Journal of Computer-Mediated Communication, 13(1),

2007.

60 BIBLIOGRAPHY

[52] G. Brown, T. Howe, M. Ihbe, A. Prakash, and K. Borders. Social

Networks and Context-Aware Spam. In CSCW ’08: Proceedings of the

ACM 2008 conference on Computer supported cooperative work, pages

403–412, New York, NY, USA, 2008. ACM.

[53] K. E. Defrawy, M. Gjoka, and A. Markopoulou. BotTorrent: Misusing

BitTorrent to Launch DDoS Attacks. In SRUTI’07: Proceedings of the

3rd USENIX workshop on Steps to reducing unwanted traffic on the

Internet, pages 1–6, Berkeley, CA, USA, 2007. USENIX Association.

[54] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing Works. In

CHI ’06: Proceedings of the SIGCHI conference on Human Factors in

computing systems, pages 581–590, New York, NY, USA, 2006. ACM

Press.

[55] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-

Generation Onion Router. In 13th USENIX Security Symposium, pages

303–320, San Diego, CA, USA, August 2004.

[56] A. Felt and D. Evans. Privacy Protection for Social Networking Plat-

forms. Web 2.0 Security and Privacy, 2008.

[57] R. Gross, A. Acquisti, and H. J. Heinz, III. Information Revelation and

Privacy in Online Social Networks. In WPES ’05: Proceedings of the

2005 ACM workshop on Privacy in the electronic society, pages 71–80,

New York, NY, USA, 2005. ACM.

[58] Halavais, A. The Slashdot Effect: Analysis of a Large-Scale Public

Conversation on the World Wide Web. 2001.

[59] G. Hogben. Security Issues and Recommendations for Online Social

Networks. Technical report, ENISA, October 2007.

BIBLIOGRAPHY 61

[60] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer. Social

Phishing. Commun. ACM, 50(10):94–100, 2007.

[61] M. J. Kushin and K. Kitchener. Getting Political on Social Net-

work Sites: Exploring Online Political Discourse on Facebook. In An-

nual Convention of the Western States Communication Association,

Phoenix, AZ, 2009.

[62] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis. Puppet-

nets: Misusing Web Browsers as a Distributed Attack Infrastructure.

In CCS ’06: Proceedings of the 13th ACM conference on Computer and

communications security, pages 221–234, New York, NY, USA, 2006.

ACM.

[63] A. Mislove, M. Marcon, K. P. Gummadi, P. Drushcel, and B. Bhat-

tacharjee. Measurement and Analysis of Online Social Networks. In

IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on Inter-

net measurement, pages 29–42, New York, NY, USA, 2007. ACM.

[64] N. Naoumov and K. Ross. Exploiting P2P Systems for DDoS Attacks.

In InfoScale ’06: Proceedings of the 1st international conference on

Scalable information systems, page 47, New York, NY, USA, 2006.

ACM.

[65] V. Paxson. An Analysis of Using Reflectors for Distributed Denial-

of-Service Attacks. SIGCOMM Computer Communication Review,

31(3):38–47, 2001.

[66] M. Steiner, T. En-Najjary, and E. W. Biersack. Exploiting KAD: Pos-

sible Uses and Misuses. SIGCOMM Computer Communication Review,

37(5):65–70, 2007.

62 BIBLIOGRAPHY

[67] Y. Tim Oreill. What is Web 2.0: Design Patterns and Business Models

for the Next Generation of Software. Social Science Research Network

Working Paper Series, August 2003.

[68] B. E. Ur and V. Ganapathy. Evaluating Attack Amplification in Online

Social Networks. In W2SP ’09: 2009 Web 2.0 Security and Privacy

Workshop, Oakland, California, May 2009.

[69] S. Utz. The (Potential) Benefits of Campaigning via Social Network

Sites. Journal of Computer-Mediated Communication, 14(2):221–243,

2009.

