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ABSTRACT

In this thesis, Desorption Sonic-Spray lonization Mass Spectrometry (DeSSI-MS) was
developed and applied for the rapid analysis of C. reinhardti CC-1690 and
Synechocystis sp. PCC 6803 cells under different growth conditions. The sample
preparation of the cells was minimal and only involved the washing of cells with water
to remove media components. No extraction protocols were used prior to mass
spectrometric analysis of these cells. Under these conditions, mass spectra in positive
and negative ion mode were obtained and membrane lipids such as
monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG),
phosphatidylglycerol (PG), sulfoquinovosyldiacylglycerol (SQDG), phosphatidylinositol
(Pl) and 1,2-diacylglyceryl-3-O-4’-(N,N,N- trimethyl)-homoserine (DGTS) were
detected.

The effect of toxic metals (Cd(ll), Pb(ll)) and metalloids (As(lll), As(V)) under various
concentration on membrane lipids of C. reinhardtii cells was studied and the obtained
results indicate possible membrane lipid reorganization and reduction induced by
these metals.

Also, the effect of nitrogen deprivation on Synechocystis sp. PCC 6803 cells was
investigated and it was found that physiological conversion of membrane lipids from
more unsaturated to less unsaturated was disrupted, however, upon resuspension in
N-containing medium the cells culture was able to return to its normal state.

To the best of our knowledge this is the first time that DeSSI-MS was applied for

membrane lipid analysis of cells grown under different stress conditions.

Keywords: desorption sonic-spray ionization; mass spectrometry; membrane lipids;

green algae; cyanobacteria;

10



NEPIAHWYH

2TNV TTaPOUCa £pyacia n TEXVIKN TNG QACUATOMETPIAG JALAG ME IOVTIONO KpOPNONG
UTTEPNXNTIKNG eKvEQPWONG (Desorption Sonic-Spray lonization Mass Spectrometry,
DeSSI-MS) avamtuxOnke Kal EQAPUOCTNKE VIO TTPWTN QOPA PJE OKOTTO TNV Yypryopn
avaAuon kuttdpwv C. reinhardtii CC-1690 ka1 Synechocystis sp PCC 6803 ta otroia
gixav avatrtuyxBei uttd dIdQopeg ouvlnkeg oTpeG. H TTpoeToInacia Twv dEYUATWY ATaV
eAAXIOTN Kal TTEpIEAAPBavE TV TTAUON TWV KUTTAPWY HE QTTIOVIOUEVO VEPO E OKOTTO
TNV ATTONAKEUVON TWV CUCTATIKWY TWV BPETTTIKWY OIOAUPATWY. Agv €QapuooTnKav
TTPWTOKOAAG €KXUAIONG YIa ThV €¢aywyr Popiwv atrd Ta KUTTapa TTPIV TNV avAaAuor)
TOUG UE PaouaTOMETpia padag. Kard tnv avaAuon Twv KUTTAPpWY UE QACHOTONETPIA
MACaG UE IOVTIOPO EKPOPNONG UTTEPNXNTIKNG EKVEQWONG, ANYBnKkav acuaTa pNadog
1600 OTOV BeTIKO 00 KOl OTOV APVNTIKG IOVTIOPO T OTToia TTAPEiXaV TTANPOPOPIES
OXETIKA PE Ta pEUPPavVIKA AMTidIa Twv KUTTApwV. Ta peuBpavikd Aimidia Ta oTtroia
avixveuTnkav ATav: PovoyaAakTo{UAO-OIaKUAOYAUKEPOAN (MGDG), diyaAakToluAo-
OIaKUAOYAUKEPOAN (DGDG), ¢wo@aTiduAo-yYAUKEPOAN (PG), OOUAQOKIVOBOCUAO-
OIaKUAOYAUKEPOAN (SQDG), pwoeatidulo-ivooitoAn (PI) kai 1,2-81akuAoyAuKepUAO-3-
O-4’-(N,N,N-1pipeBulo)-opooepivn (DGTS).

H emidpaon Twv T0¢IKWV PeTAAwWV (Cd(1), Pb(ll)) kai petaAocidwyv (As(l), As(V)),
uTtd dIAPOPEG CUYKEVTPWOEIG, OTA PEMPPavVIKA ATidia Twv Kuttdpwy C. reinhardtii
MEAETABNKE Kal Ta atroTeEAéTPATA UTTOOEIKVUOUV TTIBaVA avadiopydavwaon Twy AImidiwyv
TWV MEMBPAVWV Kal MEIWON TNG AKOPEOTOTNTAG TOUG N OTToia ETTAYETAI ATTO TNV

TTAPOUCIA AQUTWY TWV PMETAAAWY KAl JETAANOEIDWV.

Emiong, peAeTABnke n emidpaon TG otépnong alwTou atmd 1o BPeTTIKO UAIKO Twv
KUTTApwV Synechocystis sp PCC 6803 kal BpéBnke 0TI auTr) n aAAayr €TTnEeadel Tnv
QUOIOAOYIKI METATPOTT OUYKEKPIMEVWY MENBPAVIKWY AImdiwy, amd TTePIcOOTEPO
aKOpPEOTa 0€ AlyOTEPO OKOPEDTA. Ta KUTTOPA TA OTTOid AvaTITUXONKAv UTTO OTEPNON
alwTou oTav eTavaiwpndnkav oe QUOIOAOYIKO BPETTTIKO UAIKG pe dlwTo, KaTApepav
va emavéABouv OTnV apPXIKR TOUG KATAOTOON KOl N METATPOTIN OUYKEKPIMEVWV
MEMBPavIKwV AImdiwv atrd TTePICCOTEPO AKOPEDTTA O€ AlyOTEPO AKOPEDTA ATAV {avd

opartn.

NECeIG-KAEIBIA: €KPOPNON ME 1OVTIOUO UTTEPNXNTIKAG EKVEQWONG, (PACHUOTOMETPIA

padag, hepBpavika Ammidia, TTpdaiva aAyn, KUavoBakTripia
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Figure 3.5.2-7. MS/MS spectrum of m/z 835.5 putatively identified as PI1(18:1/16:0).
Inset is shown the structure of PI(18:1/16:0) and fragmentations that yield the ion 597.

Figure 3.5.3-1. Positive ion mode spectra of C. reinhardetii cells obtained by A) DeSSI-
MS using ACN/DMF 1:1 as the spraying solvent, B) ESI-MS using 80 % acetone as
the extraction solvent and C) ESI-MS using ACN/DMF 1:1 as the extraction solvent.

Figure 3.5.3-2. Positive ion mode spectra obtained by A) ESI-MS using ACN/DMF 1:1
as the extraction solvent and 15 V of ion transfer capillary voltage, B) ESI-MS using
ACN/DMF 1:1 as the extraction solvent and 30 V of ion transfer capillary voltage, C)
DeSSI-MS with ACN/DMF 1:1 as the spraying solvent and 30 V of ion transfer capillary
voltage and D) DeSSI-MS with ACN/DMF 1:1 as the spraying solvent and 40 V of ion
transfer capillary VOItAgE. .......oooo i 52

Figure 3.6.1-1. Positive ion mode mass spectrum obtained by DeSSI-MS analysis of

Synechocystis Sp PCCB803 CellS. .....cooeeieiiieeeee 53
Figure 3.6.1-2. Negative ion mode mass spectrum obtained by DeSSI-MS analysis of
Synechocystis Sp PCC 6803 CelIS. ....oiiiiiiieieiecie e e e e eeaaaees 54
Figure 3.6.2-2. MS/MS spectra of m/z 893.5 (A) and 915.7 (B) identified as [M+H]+
and [M+Na]+ adducts, respectively, of Chlorophyll @............cccoovviiiiiiiiiiiii. 55
Figure 3.6.2-1. MS/MS spectrum of ion 775.7 identified as the Na+ adduct of
MGDG(18:3/16:0). Inset is shown the structure of MGDG(18:3/16:0). ........ccevveeeenns 55

Figure 3.6.2-3. MS/MS spectrum of m/z 937.7 which was identified as [M+Na]* adduct

of MGDG(34:3). Above the spectrum is shown the structure of one isomer of this lipid.

Figure 3.7.1-1. DeSSI-MS spectra obtained after the analysis of C. reinhardtii cells
spots that varied in the number of cells that were present on the spot. .................... 59
Figure 3.7.2.1-1. Positive ion DeSSI-MS spectra obtained after the analysis of control
and lead-incubated CUIUIES. ..., 60
Figure 3.7.2.1-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of
control and lead-incubated CUlUIES. ..., 61
Figure 3.7.2.2-1. Positive ion mode DeSSI-MS spectra obtained after the analysis of
control and cadmium-incubated cultures. ... 62
Figure 3.7.2.2-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of

control and cadmium-incubated CUITUIES. ... 62
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Figure 3.7.2.2-3. Univariate box-whisker plots of DGTS, PG and SQDG lipid species
intensity ratio for control and cadmium-incubated C. reinhardtii cell cultures. Arithmetic
mean values are represented as small box with £ 1 SD (standard deviation) as larger
box and + 1.96 SD as whiskers. With straight lines inside the larger boxes are
represented the median values and with X symbol the minimum and maximum data
OIS . ..t 63
Figure 3.7.2.3-1. Positive ion mode DeSSI-MS spectra obtained after the analysis of
control and arsenite-incubated CUITUIES. ..........oooiiiiiiii 64
Figure 3.7.2.3-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of
control and arsenite-incubated CUIUIES. ..........oooiiiiiiii i 65
Figure 3.7.2.3-3. Univariate box-whisker plots of DGTS, PG and SQDG lipid species
intensity ratio for control and arsenite-incubated C. reinhardtii cell cultures. Arithmetic
mean values are represented as small box with + 1 SD (standard deviation) as larger
box and + 1.96 SD as whiskers. With straight lines inside the larger boxes are
represented the median values and with X symbol the minimum and maximum data
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intensity ratio for control and arsenate-incubated C. reinhardtii cell cultures. Arithmetic
mean values are represented as small box with £ 1 SD (standard deviation) as larger
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Figure 3.7.3-4. Distributions of PG(C16/C18) lipids in Synechocystis cells grown in
control (A) and in nitrogen deprived (B) conditions for 7 days. Control and -N cells were
resuspended in fresh N-containing BG-11 medium and cultivated for 6 days (C, D).72
Figure 3.7.3-5. Distributions of SQDG(C16/C18) lipids in Synechocystis cells grown in
control (A) and in nitrogen deprived (B) conditions for 7 days. Control and -N cells were
resuspended in fresh N-containing BG-11 medium and cultivated for 6 days (C, D).73
Figure 3.7.3-6. Intensity ratio of MGDG(34:2)/IMGDG(34:3) (A),
SQDG(34:1)/SQDG(34:3) (B) and PG(34:2/34:3) (C) in Synechocystis 6803 cells that
were grown under normal (Control) and nitrogen deprived (-N) conditions for 7 days
and upon resuspension in fresh N-containing BG-11 medium for 6 days. ................ 74
Figure A.1-1. Full mass spectrum of Fucidin® cream obtained by DeSSI-MS analysis.
Inset is shown the structure of the active ingredient, fucidic acid. ..........ccccccvvvveeenee. 84
Figure A.1-2. Possible structures of ions with m/z 455.5, 471.5 and 473.5 observed in
the mass spectrum of FUCIIN Cream. ... 84
Figure A.1-3. Mass spectrum in the negative ion mode obtained by DeSSI-MS
analysis of Fubecot® cream. lon with m/z 635.4 was not identified. ......................... 85
Figure A.1-4. Expanded m/z region of the positive ion mass spectrum obtained by
DeSSI-MS analysis of Flenazole® cream showing the medium chain triglycerides. Inset
is shown the general structure of a triglyceride............oovvuiiiiiiiieeii e 86
Figure A.1-5. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis
of Flenazole® cream. Inset is shown the structure of miconazole nitrate. ................. 86
Figure A.1-6. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis
of Fungoral® cream. Inset is shown the structure of ketoconazole. .............cc.e........ 87
Figure A.1-7. Mass spectrum in positive ion mode obtained by DeSSI-MS analysis of
Ygiele® cream. Inset is shown the structure of clindamycin phosphate along with the
possible fragmentations that produce the ions with m/z 126.1 and 425.3................. 88
Figure A.2-1. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis

of Aerius®tablet. Inset is shown the structure of the active ingredient, desloratadine.

Figure A.2-2. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis

of Loxitan® tablet. Inset is shown the structure of the active ingredient, meloxicame.
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Objective of the thesis

Ambient mass spectrometry is an emerging field of mass spectrometry which aims to
increase the throughput of analytical methods by enabling the analysis of samples in
their native state with little or no sample preparation. It was introduced in 2004 and
finds a plethora of applications in many fields of mass spectrometry. Desorption sonic-
spray ionization mass spectrometry (DeSSI-MS) is such an ambient ionization mass
spectrometric technique that enables the analysis of samples with minimal sample
preparation in open-air environment. The objective of this thesis was to develop a
home-built DeSSI source and apply it for the rapid analysis of intact cells of
microorganisms. More specifically, this work was focused on the effect of stress
conditions such as nutrient deprivation and toxic metal incubation on the membrane
lipids of green algae and cyanobacteria. Studying the effect of various stress
parameters is of interest because it can provide insights into possible mechanisms of

toxicity.

1. INTRODUCTION

1.1 Mass Spectrometry

Mass spectrometry is a versatile analytical technique that can be used for the analysis
of a wide range of samples in the fields of chemistry, biochemistry, health and forensic
sciences, pharmaceutical and research industry, environmental science and space
research. It is a very sensitive analytical technique that requires minute amounts of
sample and can provide both qualitative and quantitative information. Advances in
ionization sources, ion optics efficiency and mass analyzers have established mass
spectrometry as the essential analytical technique for the investigation of samples in

which the analytes of interest are present in very low amounts.

A typical mass spectrometric analysis workflow is relatively simple and involves the
ionization of the sample in the ionization source and the transmission of ions via a

series of ion optics inside the mass spectrometer which operates under vacuum
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conditions in order to avoid collisions of ions with air molecules. Subsequently, the gas-
phase ions are analyzed by the mass analyzer and separated based on their mass to
charge ratio (m/z). Finally, the separated ions are directed towards the detector which
converts the ions into electrons that generate electric current proportional to the
abundance of the ions and the recorded electric current (y-axis) for each m/z value (x-

axis) of detected ions is used for the recording of a mass spectrum.

1.2 Ambient mass spectrometry

In 1989 the mass spectrometry community experienced a revolution with the
introduction of electrospray ionization (ESI).[! This new ionization source allowed the
production of ions outside the mass spectrometer, without the need for vacuum
conditions, from molecules that pre-existed as ions in the solution. For this work, John
B. Fehn was awarded part of the 2002 Nobel prize in Chemistry as he contributed
significantly to the broadening of mass spectrometry applications. Fifteen years later,
in 2004, a second revolution occurred with the introduction of desorption electrospray
ionization (DESI)!? and direct analysis in real time (DART)E! that established the field
of ambient mass spectrometry. These ionization techniques enabled the analysis of
samples in their native state with little or no sample preparation and without the need
for pre-separation techniques, thus, increasing the high-throughput of the analytical
methods. The ions are created outside of the mass spectrometer, under ambient
conditions, by using high-energy charged particles and laser beams that desorb and
ionize the analyte molecules from the sample surface. Since then, the field of ambient
mass spectrometry has experienced a tremendous growth*" and many new
ionization sources have been introduced. It is said that more than 80 ambient ionization
techniques have been reported® indicating the strong interest on the further
development and application of ambient mass spectrometry. Some of these ambient
ionization techniques include desorption sonic-spray ionization (DeSSl), paper spray
ionization (PSI), matrix-assisted laser desorption electrospray ionization (MALDESI),
atmospheric solids analysis probe (ASAP) and rapid evaporative ionization mass

spectrometry (REIMS).
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The applications of ambient mass spectrometry are spread over a wide range of fields
including biological applications [, cancer research 19, forensics [*1], food analysis 2,

metabolomics [ to name just a few.

1.3 lonization methods — Sonic spray ionization

There are several ionization methods used in mass spectrometry depending on the
physical state of the sample (solid, gas or liquid). The most widely used ionization
methods include electron ionization (EI4, electrospray ionization (ESI)X,
atmospheric pressure chemical ionization (APCI)14l, matrix assisted laser desorption
ionization (MALDI)1®], desorption electrospray ionization (DESI)®? and desorption sonic
spray ionization (DeSSI)[¢l. For the most recent advances in ionization methods in
mass spectrometry the reader is encouraged to consult the review article by Peacock
et al.l In the following paragraph, the theoretical background regarding the ionization
method of sonic-spray ionization (SSI) will be established. Sonic-spray ionization is the

basis of desorption sonic-spray ionization technique, which is used in this thesis.

Sonic-spray ionization was mentioned in the literature for the very first time in 1994 by
Atsumu Hirabayashi as an interface for atmospheric pressure ionization mass
spectrometry.'8 Interestingly, this phenomenon was discovered by chance. In this
ionization technique it is not necessary to apply an external electric field as it is the
case in ESI for the production of gas-phase ions from a solution. Similar to ESI, SSI
operates under atmospheric pressure and creates gas-phase ions from pre-existing
ions in solution. The sample solution that flows through a capillary is sprayed by the
co-axial flow of nebulizing gas, which is usually nitrogen. For the production of a fine
aerosol, high flow rates of nebulizing gas are required and the technique was named
“sonic-spray ionization” because the maximum ion intensity obtained was at nebulizing
gas velocities near sonic velocity. The first setup for SSI is shown in Figure 1.3-1 and
includes a fused silica capillary for the sample solution delivery, a stainless-steel

capillary that holds the fused silica capillary in place. The sample solution is sprayed
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under atmospheric pressure with gas flow co-axial to the fused silica capillary and then

the produced ions and droplets are inserted into the mass spectrometer.

Gas

Fused Silica Ormlce
Capillary

4
2
Solution /

/
2

Figure 1.3-1. Schematic representation of sonic-spray ionization
source developed by A. Hirabayashi (ref. 18).

> +

Stainless Steel
Capillary

The mechanism governing the production of charged droplets and subsequently ions,
is not yet fully understood and it is believed that it follows the charge residue model!*9l,
According to this model, during the droplet formation the majority of them will be neutral
since the charge distribution is even. However, in some droplets small variations in
charge distribution can lead to statistically imbalanced charged droplets giving rise to
droplets with net charge. The mechanism underlying the process of the conversion of
a large droplet into smaller ones was investigated by Zilch et al.’% and the model of
bag-annulus was proposed. The authors found that in SSI, initial droplets with 10-100
Mm radii were downsized to 2-3 um radii and at that point no further breakup occurs.
Using the proposed bag-annulus model for aerodynamic breakup of droplets and the
electrical bilayer at the surface of water, the charge separation could be explained. In
Figure 1.3-2, a cartoon representation of the bag-annulus mechanisms is shown for
the aerodynamic breakup of a droplet. As the gas flow velocity is faster than the droplet
velocity, an aerodynamic force on the droplet is causing it to accelerate and then break.
Initially, the droplet flattens (Figure 1.3-2a), a cavity is formed due to the high velocity
of the nebulizing gas (Figure 1.3-2b) and as the formed bag which is supported by the
annulus is blown out from the droplet, it finally breaks into smaller droplets (Figure
1.3-2d-f). The abovementioned model was used to explain the aerodynamic breakup

of droplets.
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Figure 1.3-2. Cartoon representation of bag-annulus model proposed by
Zilch et al. for the aerodynamic breakup of a droplet (ref. 20).

The same model was also taken into account to explain the charge separation
occurring in droplets produced by a sonic-spray source. More specifically, in Figure
1.3-3, a cartoon representation of how the charge separation could occur according to

the bag-annulus mechanism.

Figure 1.3-3. Cartoon representation of charge
separation in droplets during aerodynamic breakup by
the bag-annulus mechanism (ref. 20).

Sonic-spray has been characterized as a soft ionization technique, causing little to no

fragmentation on the analyte molecules?’ and some of its applications include the
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analysis of labile coordination complexes, redox active compounds and proteins 22,

metal-assembled cage structures 2% and environmental samples 24,

1.4 Desorption Sonic-Spray lonization Mass Spectrometry

Desorption sonic-spray ionization mass spectrometry (DeSSI-MS) is an ambient
ionization technique that was developed in 20061 and is the simpler version of
desorption electrospray ionization mass spectrometry (DESI-MS)?. In fact, the main
difference between these two techniques is the absence of external electric field
applied in the solvent. DESI-MS is based on the desorption of ions from the sample
surface by directing a stream of charged solvent droplet produced by electrospray
ionization while the basis of DeSSI-MS is the sonic-spray effect. Two years after the
introduction of DeSSI as an ambient ionization technique it was renamed to Easy
Ambient Sonic-Spray lonization (EASI) to emphasize its easiness. Since then, it has
been widely applied in many fields such as food safety, pharmaceuticals and drugs of
abuse analysis, explosives detection, metabolomics and proteomics, molecular
imaging of biological tissues and monitoring of reactions?®. The first report on EASI
employed a nebulizer design which was similar to the one that Takats et al.?Yl used for

SSI and it can be seen schematically in Figure 1.4-1.

The solvent (typically used solvent include mixture of water and methanol) is delivered
through the inner fused silica capillary and at the tip of this capillary the high velocity
of nitrogen gas results in the solvent nebulization and formation of minute droplets that

are directed towards the sample.
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Figure 1.4-1. Schematic view (cross section) of the nebulizer used for SSI (ref. 21) and later employed
for DeSSl (ref. 16).
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From a mechanistic point of view, DeSSI uses high flow rates of nitrogen gas that
mechanically disrupt the solvent droplets that were created upon nebulization and
create a statistical imbalance on the droplet charge, just like in SSI. Due to the nature
of SSI, DeSSlI delivers a bipolar (positively and negatively charged) stream of droplets
on the sample surface and then “droplet pick-up” occurs® in which the analyte
molecules are extracted into the departing droplets. After the extraction, proton (H*) or
cation (usually Na* and K*) transfer reactions are taking place yielding analyte ions
that subsequently are transferred. To be more precise, on the sample surface a
localized solvent layer is created and upon arrival of more spraying solvent droplets on
the droplet, this layer builds up and contributes to the efficient extraction of analyte
molecules from the sample into the liquid. Subsequently, progeny droplets are created
from the sample surface solvent layer due to the arrival of new spraying solvent
droplets and these progeny droplets, that carry the analyte molecules, are transmitted
into the inlet capillary of the mass spectrometer due to hydrodynamic forces such as
the nebulizing gas and the reduced pressure caused by the inlet of the mass
spectrometer?’l. Finally, gas-phase ions are emitted from the progeny droplets and
detected by the mass spectrometer. Since, DeSSI does not use heating, high voltages,
corona discharges, laser beams and ultraviolet (UV) light it is the simplest and softest

ambient ionization technique that produces intact analyte molecule ions!?°l.

1.5 Mass analyzers — Quadrupole ion traps

Following the ionization of the sample and the transfer of the analyte molecules into
the gas-phase, the ions are transmitted inside the mass spectrometer towards the
mass analyzer by the assistance of ion optics. The mass analyzer separates the ions
based on their mass to charge ratio, m/z, using electric or magnetic fields to efficiently
separate the ions and direct them towards the detector. There are many different mass
analyzers such as quadrupoles, ion traps, time of flight, ion cyclotron resonance giving
rise to mass spectrometers that use either one type of mass analyzer or combine two
mass analyzers (hybrid instruments)?8l, In this thesis we will focus on the ion trap mass
analyzers that include, linear ion traps, electrostatic ion traps (Orbitrap®) and

quadrupole ion traps. More specifically, the basic principles of a quadrupole ion trap
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will be introduced as this was the mass analyzer used in the instrument that was

employed for work described herein.

A quadrupole ion trap, also known as Paul ion trap or 3D ion trap, is one the most
common mass analyzers employed in mass spectrometry. Their small and compact
size render them quite affordable in the majority of mass spectrometers. A quadrupole
ion trap consists of two hyperbolic electrode plates that face each other and a

hyperbolic ring electrode placed in between them!?8, as it can be seenin Figure 1.5-1.
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Figure 1.5-1. Schematic cross-section view of a quadrupole ion trap (ref 28.)

The ions are inserted into the trap from the passage of the endcap electrode by
applying a proper DC offset voltage to the mass analyzer electrodes. Then, they are
trapped by using an oscillating radio frequency (RF) and a superimposed direct current
(DC) electromagnetic field. Subsequently, the ions are ejected from the trap by varying

the RF potential and directed towards the detector.

Helium gas inside the mass analyzer cavity is used as damping gas and collision
activation partner, at a partial pressure of 102 Torr 2% (p. 2-28). The presence of
damping gas is necessary so that the high kinetic energy ions entering the ion trap
collide with helium molecules, thus, slowing down and being focused to the center of
the cavity. This results in enhanced sensitivity and improved mass spectral resolution.
Helium gas also serves as collision activation partner inside the ion trap. This is useful
in selected reaction monitoring (SRM) or MS/MS experiments in which a particular ion
is isolated in the mass analyzer and fragmented. Subsequently, we can detect either
one single fragment of the parent ion (SRM experiment) or monitor all the product ions
that were produced due to the fragmentation (full scan MS/MS experiment). In
guadrupole ion traps a resonance excitation RF voltage is applied to the endcap

electrodes that causes the isolated ions to gain kinetic energy and collide with helium
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molecules present in the mass analyzer cavity to produce fragment ions that are

ejected from the ion trap and detected.

Quadrupole ion traps have the advantage of providing enhanced sensitivity due to the
fact that they accumulate ions over timel?®l. Also, they are capable of performing MS"
experiments in which a fragment of the parent ion can be isolated and further
fragmented by collision induced dissociation with helium inside the mass analyzer
cavity. These experiments are very useful when the structure of an ion is to be

determined.

1.6 lon detection system

Once the ions are ejected from the ion trap, they are directed towards the ion detection
system which is located behind the mass analyzer and consists of 15-kV conversion
dynode and a channel electron multiplier. The conversion dynode is a concave metal
surface positioned at an angle of 90° to the ion beam. As an ion strikes the conversion
dynode surface, one or more secondary particles are produced. More specifically,
when a positive ion strikes a negatively charged conversion dynode then negative ions
and electrons are produced. Positive secondary ions are produced when a negative
ion strikes a positively charged conversion dynode. Subsequently, the secondary
particles produced are focused by the curved surface of the conversion dynode and
accelerated towards the electron multiplier. The electron multiplier includes a cathode
and an anode (Figure 1.6-1). The secondary particles generated by the ions striking
the conversion dynode, impact the inner walls of the electron multiplier cathode and
produce electrons which are accelerated further into the cathode. The ejected
electrons strike again the inner walls of the cathode producing more electrons and
finally a cascade of electrons is created resulting in measurable current in the anode

of the electron multiplier.
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Figure 1.6-1. Schematic cross-sectional view of the ion detection system (ref.
29, p.2-32)

2. MATERIALS AND METHODS

2.1 Desorption Sonic-Spray lonization Source

DeSSI nebulizer was constructed using common laboratory parts such as T-unions
and fused silica capillaries, according to the design of Takats et al.?Yl More specifically,
the DeSSI nebulizer consisted of a plastic T-union, PEEK nuts to secure the fused
silica capillaries, PEEK tubing (I.D. 0.762 mm, O.D. 1.58 mm)) to hold the outer fused
silica capillary (I.D. 540 ym, O.D. 690 um). The inner fused silica capillary had I.D. of
50 um and O.D. of 360 ym.
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The dimensions of the fused silica capillaries used are an important parameter of the
DeSSI source. In our initial experiments we were using an outer fused silica capillary
with 1.D. of 321 ym and O.D. of 434 uym and inner fused silica capillary with I.D. of 100
pm and O.D. of 200 um. However, during the experiments of optimizing the DeSSI
source we found that the combination of outer fused silica capillary with 1.D. of 540 ym
and O.D. of 690 um and inner fused silica capillary with I.D. of 50 ym and O.D. of 360
um yielded higher signal intensities in the tested application. Based on this
observation, we decided to continue our optimization efforts using the latter
combination of fused silica capillaries.

The nebulizing gas used was nitrogen from a compressed cylinder (99.99 % purity) at
a backpressure of 8 bar. Again, during our optimization experiments we found that
higher backpressure of nitrogen gas resulted in higher signal intensities, so we used
the highest nitrogen backpressure provided by the pressure regulator used. This was
in accordance with other works that employed EASI-MS and used nebulizing
backpressure up to 10 barf30-32,

The nebulizer was mounted on a custom-made base that allowed adjustment of its
angle and also movement in x-y-z directions with a manual stage (increment 0.5 mm).
At this point it should be stated that there are several geometrical parameters of the
DeSSI source that need to be considered so that the analyte desorption and transfer
into the mass spectrometer is efficient. Important geometrical parameters of the DeSSI

source include:

a: incident angle

B: collection angle

a: nebulizer to MS distance

b: nebulizer to sample spot distance
c: sample spot to MS distance

d: sample surface to MS distance
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All the above parameters are shown in Figure 2.1-1. After optimization experiments

that tested various different values of the aforementioned parameters, the optimal

conditions and those that were further used, are shown in Table 2.1-1.

Table 2.1-1. Optimized geometrical parameters of the DeSSI source.

Parameter Value

a 40°

B 9.5° — 11.3° (calculated)
a ~7.5—-6.5mm

b 2 mm

c 5-6 mm

d 1 mm

The DeSSlI source was placed in front of the mass spectrometer inlet and a custom-

made plexiglass cover with a fume hood attached was used to enclose the whole set

up so that the operator does not directly come in contact with solvent aerosols.
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Figure 2.1-1. Schematic view of the nebulizer in front of the mass
spectrometer.

The sample surface was either a glass slide or a Teflon-coated glass slide and it was

mounted on a x-y stage that allowed for manual positioning of the sample surface with

respect to the MS and the nebulizer.
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The solvents used for DeSSI-MS experiments included acetonitrile, ACN
(CHROMASOLV® grade, >99.9 %, Sigma Aldrich) and N,N-dimethylformamide, DMF
(ACS reagent, 299.8 %, Honeywell) in a mixture of 1:1 v/v. Several other solvents and
solvents mixtures were tested like ACN, DMF, H>O, Ethanol, Acetone, Methanol,
Chloroform, Tetrahydrofuran (THF), DMF:Ethanol 1:1 v/v, DMF:Methanol 1:1 vlv,
DMF:CHCIs 1:1 v/v, DMF:H20 1:1 v/v, Methanol:CHCI3; 1:1 v/v, DMF:THF 1:1 vlv,
ACN:Ethanol 1:1 v/v, ACN:CHCI3 1:1 v/v, THF:H20 1.1 v/v, ACN:DMF:H20 1:1:1 viv/v.
The fused silica capillary of the nebulizer was connected via a union with a PEEK
tubing (1.D. 0.254 mm, O.D. 1.58 mm) for the solvent introduction using a syringe pump

(Cole Parmer) operated at flow rate of 5 yl min-.

2.2 Mass Spectrometry

In this work, a quadrupole ion trap mass spectrometer (LCQ Advantage, Thermo
Finnigan) was used for the DeSSI-MS experiments. Initially, the electrospray interface
was removed and the custom-made DeSSl source platform was mounted in front of
the mass spectrometer inlet. When necessary, the instrument was mass calibrated
using the ESI source by infusing a solution of sodium trifluoroacetate that is used as a
tuning and calibrating solution in mass spectrometry!33l, Because it is not practical and
easy to tune the mass spectrometer for each analyte investigated using the DeSSI-MS
approach, we were tuning the instrument using the sodium trifluoroacetate m/z ions
that were the closest to the m/z of the analyte. The parameters that were tuned were
capillary voltage and tube lens offset and their values were -34 V and -20 V,
respectively, for negative ion mode and 20 V for both capillary voltage and tube lens
offset for positive ion mode. The ion transfer capillary temperature was set to 300 °C

to efficiently desolvate the droplets that enter the capillary.

The mass spectrometer was operated in positive and negative ion modes, in full scan
mode (500-1000 m/z) and MS" (n=2-3) experiments were also done to confirm the

identity of the analytes.
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The ESI source parameters used were spray voltage: 4.5 kV, sheath gas flow rate: 45
arbitrary units, aux. gas flow rate: 5 arbitrary units. Tube lens offset and capillary
voltage were the same as in the DeSSI-MS experiments.

For the MS" experiments both DeSSI and ESI sources, the desired ion was isolated in
the trap with an isolation width of 1.5 m/z, activation time of 30 ms, activation Q of 0.2-
0.25 and normalized collision energy of up to 50 %. Normalized collision energy is a
measure of the amplitude of the resonance excitation RF voltage applied to the endcap
electrodes. The activation Q parameters indicates the RF frequency used for
fragmentation. Using lower activation Q values, lower energy is deposited on the ions
and lower m/z fragment ions are observed. A higher activation Q results in higher
energy deposition, in the favor of “losing” lower m/z fragment ions as they are not stable
in the trap and thus are ejected without being detected. Activation time is the time in
milliseconds that the RF used for fragmentation is applied. In general, shorter
activation times result in less fragmentation and longer activation time in more

fragmentation.

The mass spectra were recorded and processed using the software Xcalibur 2.0.7

(Thermo Fisher Scientific).

2.3 Pharmaceutical samples

In our initial efforts to test and optimize the developed DeSSl source, a series of

pharmaceutical samples including ointments, tablets and solutions were analyzed.

A full list of all samples that were analyzed is given in the Appendix along with the
corresponding mass spectra obtained and experimental parameters such as spraying

solvent used, flow rate and nebulizing gas backpressure.

A thin film of the ointment sample was placed on Teflon-coated glass slide using a
cotton swab and left to dry under ambient conditions. Subsequently, the sample was
analyzed by DeSSI-MS using acetonitrile as the spraying solvent at a flow rate of 30

ul mint and nitrogen backpressure of 6 bar.
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For the analysis of pharmaceutical tablets, the sample was fixed with double sided
adhesive tape on the sample holder in front of the mass spectrometer and sprayed
with methanol at a flow rate of 20 pl min* at nitrogen backpressure of 6 bar.

Also, a pharmaceutical solution was analyzed by DeSSI-MS. One pl of the sample was
placed on Teflon-coated glass slide, left to dry under ambient conditions and analyzed
by DeSSI-MS using acetonitrile at a flow rate of 30 yl min as the spraying solvent and

6 bar nitrogen backpressure.

2.4 Cell cultures

The cells that were used for DeSSI-MS analysis were the green algae C. reinhardtii
CC-1690 (wild type) and the cyanobacteria Synechocystis sp PCC 6803 (wild type).
The cyanobacteria samples were provided by Prof. Demetrios F. Ghanotakis research
group (Biochemistry division, Dept. of Chemistry, University of Crete) and the green
algae samples were provided by Prof. Nikolaos Lydakis-Simantiris (Laboratory of
Environmental Chemistry and of Biochemical Processes, Dept. of Environmental and

Natural Resources Engineering, Technological Education Institute of Crete).

C. reinhardtii CC-1690 cell colonies were transferred from agar plates in 3 liters of
cultivation medium (tris-acetate-phosphate, TAP, supplied by acetic acid as organic
carbon source, pH 7-7.2) under continuous illumination at 25 °C and stirring. The cells
were grown in that medium for 5 days and subsequently the cells were centrifuged and
transferred in a new liquid culture in which the TAP medium was spiked with
appropriate amounts of cadmium, lead and arsenic compounds. The added salts
included Pb(NO3)2, Cd(NO3)2, AsHNa>O4-7H>0 and NaAsO:». The final concentrations
of metals in the cultures were 0.63, 6.26 and 12.5 mg L (ppm) for Pb(ll), 0.36, 3.6 and
7.29 mg Lt for Cd(ll), 7.5, 15, 22.5 and 30 ppm for As(lll) and 15, 22.5 and 30 ppm for
As(V). For the control experiments, the cells were transferred in fresh TAP medium in
which no toxic metal was added. The cells were harvested at the end of log phase, that
was after 5 days of cultivation, washed with a washing buffer (150 Mm NaCl, 4 mM
MgCl.-6H-0, 20 Mm Trizma base, pH 7.0) and kept in a high density sucrose solution
(0.8 M sucrose, 50 mM Trizma base, pH 7.0) at -80 °C until use.
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Liquid cultures of Synechocystis sp. PCC 6803 (wild type strain) were grown in 25 mM
phosphate buffered BG-11 medium (pH 7.5) at 28 °C, under constant aeration and
continuous light at 50 pmol photons m= s%. Nitrogen starved cultures were obtained
after centrifugation of the cells from the late exponential growth phase at 4500 rpm for
10 min and resuspended into nitrogen deprived BG-11 medium, previously being
washed twice with this medium. These cultures remained in that medium for 7 days in
the abovementioned experimental conditions and then cells were transferred into fresh
nitrogen-containing BG-11 medium for 6 days. One ml of culture sample was collected
and stored at -20 °C until use.

2.5 Sample preparation

A small aliquot of cell culture (150 pl for C. reinhardtii and 1 ml for Synechocystis) was
washed three times by centrifugation at 6000 rpm for 2 min with 1 ml of nanopure water
to remove cultivation media components and the high density sucrose solution that the
C. reinhardtii cells were stored. This step was necessary in order to avoid ionization
suppression caused by the salts in the cultivation media. After the washing steps, the
cell pellets were resuspended in 10-20 yL of nanopure water and 1 pL of that
suspension was placed on glass slide and left to dry at ambient conditions. No further
sample preparation procedures were undertaken. Following sample drying the glass

slide was placed in front of the mass spectrometer for DeSSI-MS analysis.

Also, to verify that the ions detected using the DeSSI source were indeed membrane
lipids extracted from the cells, a quick extraction of a small aliquot of cells with 80 %
acetone and also ACN:DMF 1:1 v/v was performed. The choice of these extraction
solvents was based on previous knowledge of the extraction ability of 80 % acetone
and also, ACN:DMF 1:1 v/v was the spraying solvent used in DeSSI-MS, thus, it was
necessary to check its extraction ability. More specifically, 150 pl of C. reinhardtii cell
suspension grown under normal conditions was washed twice with 1 ml of nanopore
water by centrifuging at 6000 rpm for 2 min. Then the cell pellets were resuspended in
40 pl of nanopore water and 10 ul of this resuspension was mixed with 1 ml of the

aforementioned extraction solvent, vortexed and centrifuged at 8000 rpm for 4 min.
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The supernatant, which was colored green indicating the extraction of chlorophylls,
was removed, centrifuged again at 8000 rpm for 4 min and subjected to ESI-MS
analysis with direct infusion at a flow rate of 10 pl min.

3. RESULTS AND DISCUSSION

3.1 Spraying solvent optimization

The choice of the spraying solvent is a very important parameter for the detection of
membrane lipids directly from intact cells. Generally, organic solvents are preferred
since they are able to extract lipids from cells, thus, a series of organic solvents and
their mixtures were selected as candidates for DeSSI-MS analysis of intact cells.
These solvents have been tested before with respect to the effect on the tissue
morphology on DESI-MS imaging experiments!4 and it was found that when DMF was
present in the solvent, high signal intensity and tissue preservation was achieved. To
evaluate the efficiency of each solvent, a cell culture sample grown under normal
conditions was used. The cells were prepared as described in Section 2.5 and 1 pl of
cell suspension was placed on glass slide for DeSSI-MS analysis. After testing each
solvent, the syringe used for solvent introduction and the PEEK tubing connecting the
syringe with the fused silica capillary of the nebulizer, were rinsed thoroughly with the
appropriate solvent. After the new solvent had rinsed all the parts of the DeSSI source,

it was ready to be tested.

In Appendix section A.4 the mass spectra in positive and negative ion mode obtained
from all solvents tested are shown. The following solvents were not able to extract
membrane lipids from cells: ACN, THF, acetone, ethanol, CHCI3, methanol,
ACN:Ethanol 1:1 v/v, Methanol:CHCIz 1:1 v/v and ACN:CHCIs 1:1 v/v. DMF solvent
and all of its mixtures with other solvents allowed for the detection of membrane lipids
from intact cells. More specifically, the combination of ACN:DMF 1:1 v/v was found to
provide the highest signal intensity in both positive and negative ion mode, with the
exception of DMF:THF for which a slightly higher signal intensity was achieved in the

negative ion mode but lower signal intensity in the positive ion mode. Thus, ACN:DMF
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1:1 v/v was chosen as the best spraying solvent for DeSSI-MS experiments of intact
cells, as was also the case in the work of Liu et al.% where EASI-MS was applied for
the analysis of intact cyanobacteria. Whereas methanol:water 1:1 v/v was used as the
spraying solvent for DESI-MS analysis of bacteria®>271 and 10 % water — 90 %
methanol was used for nanoDESI-MS, a variant of DESI-MS8l,

3.2 Spraying solvent flow rate

Different flow rates of spraying solvent ACN:DMF 1:1 v/v were tested in the range 3 —
25 pl mint. This was done in order to find the best compromise between signal intensity
and signal stability. Low spraying solvent flow rate results in lower signal intensity due
to less solvent deposition on the sample and less extraction taking place but the signal
is more stable. Higher spraying solvent flow rate deposits more solvent on the sample,
thus, more extraction taking place and the signal intensity is higher. However, the

signal has less duration as the cells are washed away from the surface faster.

In these experiments, several spots of C. reinhardtii cells were prepared and deposited
for testing optimum flow rates. The nebulizer started from a spot where no cells were
present (blank) and then it was moved over the cell sample spots. The spectrum was
recorded until there was substantial decrease in the signal intensity. Each flow rate
was evaluated in terms of 1) average signal intensity and number of data points for
which the signal was stable and 2) seconds until the signal dropped to approximately
50 % of the maximum intensity. In Figure 3.2-1 a recorded spectrum for 5 yl min? can
be seen. In the top panel there is the extracted ion chromatogram (XIC) in the m/z
range 730-740 (positive ion mode) where the most abundant lipids are present and in
the lower panel there is the mass spectrum. On the XIC, the time period where the
signal is the most stable can be seen and also the time required for the signal to drop

to half maximum. On the mass spectrum the average signal intensity (NL) is denoted.
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Table 3.2-1. Effect of spraying solvent flow rate on spectrum quality.

Flow rate Signal Data Stable signal Time until signal
(M min'l)  intensity points time (s) reached half
maximum (S)

3 2.06E4 15 17 30

5 4.95E4 16 16 23

10 1.09E5 14 10 30

15 1.71E5 10 6 24

20 2.15E5 7 4 12

25 2.15E5 9 S 17

5 pl min- Most stable signal

100 5 068 R0l om XIC m/z 730-740

07 062 C?’s"’/\\ —/ \'\;“J’ ~/ "‘«, oX

: ”,5—77—7-?'4\4\_0’4_37_72,‘%: ?;s .,_,,:’/ \\.;"‘ N/ *.\‘ww\uﬁh\
: 3 ‘ ’ Signaldropto 50 % '@ ',

[ Blank spot | MR ) .

Wi womas —»—"—“«\.,_,F_,z.z»_,,./r'ﬂ\"‘ -

100 5 345 NL:4.95E4
: j:: 7104 ?[J 7512 7663 ™2 g HSL.j 32 )

103 mi.: N , Imﬁl‘a R;Ln m‘.ﬂ.? I 7033 msJ "u'w.&'wmw 7823 W 8501 814 .' 22 M4 o 2t

o

AT ¥ T Tt
520 540 560 580 600 620 640 660 680 950 980 1000

Figure 3.2-1. Spectrum recorded from DeSSI-MS anaIyS|s (positive ion mode) of C. reinhardtii cells at
spraying solvent flow rate of 5 yl mint. The mass spectrum is the average of all the spectra acquired in
during the “most stable signal” region shown in the XIC trace.

In Table 3.2-1 the effect of spraying solvent flow rate on spectrum quality parameters
such as signal intensity, data points, time period where the signal was stable and time
until the signal was halved are shown. As the flow rate increases, the signal intensity
increases until it reaches a plateau, however, the stable signal intensity duration and
number of data points decreases which gives spectra of lower quality. Also, the time
until the signal intensity is halved also decreases with increasing flow rate, thus,
resulting in signals with high variance. Based on this a flow rate of 5 pyl min't was a

good compromise between signal intensity and spectrum quality.
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3.3 Nebulizing gas backpressure

To find the optimum nebulizing gas backpressure that yielded the highest signal
intensity, spots of Synechocystis sp PCC 6803 cells grown under control conditions
were analyzed using ACN:DMF 1:1 v/v as the spraying solvent at a flow rate of 5 pl
mint. In Figure 3.3-1 the spectra in the negative ion mode obtained at different N>
backpressures are shown. In every case the detected ions are the same, however, it
is evident that at higher nebulizing gas backpressure the signal intensity (NL) is higher.
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Figure 3.3-1. Lipid profiles (negative ion mode) of Synechocystis sp PCC 6803 cells obtained by
DeSSI-MS using different nebulizing gas backpressure.

At 5 bar of nitrogen backpressure the signal intensity for the most abundant peak is
4.19E4 while at 8 bar the corresponding signal intensity is 1.49E5. Thus, 8 bar of
nebulizing gas backpressure was found to be the optimum for maximum signal

intensity.
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3.4 Cell integrity

It is known that when changing the medium of the cells from a buffer that contains salts
to water, the latter can enter the cell in large amounts causing osmotic shock that might
result in cell swelling. The cell subsequently can either burst or undergo apoptosis.
Having this in mind, the integrity of the cells after the washing steps was investigated.
We observed the C. reinhardtii cells under a microscope and cells that were intact
could clearly been observed. Thus, the washing step does not cause cells to burst.

Also, we were interested to find out about the integrity of the cells that were placed on
the glass slide and left to dry. To investigate that, a typical sample preparation
procedure was repeated with C. reinhardtii cells, including the washing step. After the
cells had completely dried on the glass slide, a small aliquot of water was placed on
the dried spot and an attempt to resuspend the dried cells was made. Subsequently,
the resuspension from the dried cells was observed under an electron microscope
(Electron Microscopy Unit “Vasilis Galanopoulos”, Dept. of Biology, University of
Crete). In Figure 3.4-1, electron microscopy (left) and fluorescence microscopy (right)
images of the resuspended cells that had been dried on glass slide are shown. It is
evident that the cells are intact and no cell breakage has occurred during the whole
sample preparation procedure. Thus, the spraying solvent that impacts the intact cells
should cause cell lysis and extraction of membrane lipids that were detected with the
DeSSI-MS.

Figure 3.4-1. Electron microscopy (left) and
fluorescence microscopy (right) image of C.
reinhardtii cells that were dried on a glass slide and
resuspended in water.

Another interesting question that needed to be addressed was about the intactness of
cells that were analyzed by DeSSI-MS. A cell sample spot grown under control

conditions, was placed on a glass slide following the sample preparation procedure
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described in Section 2.5 and sprayed with ACN:DMF 1:1 v/v at a flow rate of 5 pl min°
1 and nitrogen backpressure of 8 bar. The aerosol that was created after the impact of
solvent plume on the sample was collected on a second glass slide and then a small
amount of water was added to resuspend the cells that had impacted on the second
the glass slide. This resulting suspension was observed under an electron microscope
and in Figure 3.4-2 an optical (left) and fluorescence (right) image of a cell that
probably has been lysed can be seen. Thus, the initially intact cells upon spraying with
the DeSSl source were probably lysed and membrane lipids were extracted from them.

Figure 3.4-2. Optical (left) and fluorescence
(right) microscopy images of C. reinhardtii CC-
1690 cells that were sprayed. The aerosol was
collected and resuspended in water.

3.5 DeSSI-MS lipid profiles of C. reinhardtii cells

Mass spectra that are very rich in chemical information can be obtained immediately
after the DeSSI sprayer is directed towards the cell sample spot. Spectra were

recorded in the m/z range 500-1000 in both positive and negative ion mode.

3.5.1 Lipid profiles
In Figure 3.5.1-2 and Figure 3.5.1-1 the mass spectra obtained in positive and
negative ion mode, respectively, by DeSSI-MS analysis of C. reinhardtii cells grown
under normal conditions can be seen. In positive ion mode intense peaks were
observed in the m/z range 700-950. Following their identification (see following section
for details) the main species present were found to be 1,2-diacylglyceryl-3-O-4'-

(N,N,N- trimethyl)-homoserine (DGTYS) lipids, digalactosyldiacylglycerol (DGDG) lipids
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and chlorophylls a and b. In negative ion mode, a very intense peak with m/z 793.6
was observed along with other peaks at m/z range 700 — 900. These ions were
identified as phosphatidylglycerol (PG), sulfoquinovosyldiacylglycerol (SQDG) and
phosphatidylinositol (Pl). DGDG, PG, SQDG and Pl are constituents of thylakoid
membranes where photosynthesis takes place 249, DGTS lipids in C. reinhardtii are

substituting for phosphatidylcholine in extraplastidial membranes#!.
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Figure 3.5.1-2. Positive ion mode mass spectrum obtained by DeSSI-MS analysis of C. reinhardtii cells
grown under normal conditions.
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Figure 3.5.1-1. Negative ion mode mass spectrum obtained by DeSSI-MS analysis of C. reinhardtii cells
grown under control conditions.
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3.5.2 Lipids identification
Identification of the detected ions was based on literature results%4%-42 and manual
interpretation of the MS/MS spectra acquired. Also, the NIST MS Search 2.0 with mass
spectra libraries*3 was used to compare the experimental MS/MS spectra with spectra

from these libraries.

For instance, the ion with m/z 734.5 in positive ion mode was putatively identified as
the [M+H]* adduct of zwitterionic lipid DGTS (16:0/18:3)*1. The MS/MS spectrum of
this ion is shown in Figure 3.5.2-1.

i 496
/\/\/\/\/\/\/\)Lo/\f\o/\Im/

o P |

/MW\H/ o
100 5 4745 -
90%

70

=}
=3

-C18:3 acyl chain

o
s}
L

456.,5

N
=}

478.3
496.4

’HZ

Relative Abundance

w
=}

-C16 acyl chain

n
o
L

o
1

236.1 -C16 & C18:3 acyl chains ‘ J { 734.6
“ S
} l

0 e AN 1AM IS Uk s T T T T I R e e e T T T etk T ™
200 250 300 350 400 450 500 550 600 650 700 750 800
miz

Figure 3.5.2-1. MS/MS of m/z 734.5 putatively identified as DGTS(16:0/18:3). Inset is shown the
structure of this lipid and fragmentations that yield the ions 474 and 496.

The major product ions detected in the MS/MS spectrum of m/z 734.5 are 496.4, 478.3,
474.5, 456.5 and 236.1. Neutral loss of C16 acyl chain from the intact precursor ion
could yield the ion with m/z 496.4 which upon neutral loss of water could yield the ion
with m/z 478.3. Neutral loss of C18:3 acyl chain could yield the ion 474.5 which upon
neutral loss of water could yields the ion with m/z 456.5. The ion with m/z 236.1 was
identified as the product of both acyl chain losses and was found to be present in all
MS/MS spectra of DGTS lipids. Thus, the detection of this ion indicated the presence
of DGTS lipid.

In another example, the ion with m/z 732.5 was putatively identified as the [M+H]*
adduct of DGTS(16:0/18:4). Mass difference of 2 amu is a possible indication of the
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presence or absence of an additional double bond. For the ion with m/z 732.5, based
on the putative identification, a similar fragmentation pattern would be expected as in
the case of ion 734.5, however, the difference would be in the neutral loss of C16 acyl
chain that would yield the ion with m/z 494.4 due to the presence of an extra double
bond.

In Figure 3.5.2-2, the MS/MS spectrum of m/z 732.5 can be seen and it is evident that

the fragmentation pattern is similar to that of m/z 734.5.
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Figure 3.5.2-2. MS/MS of m/z 732.5 putatively identified as DGTS(16:0/18:4). Inset is shown the
structure of this lipid and fragmentations that yield the ions 474 and 494.

In the positive ion mode mass spectrum, a peak with m/z 893.3 was also detected
(Figure 3.5.1-2) which was putatively identified as the [M+H]* adduct of Chlorophyll a.
The MS/MS spectrum of m/z 893.3 gave rise to the ion with m/z 615.2 which was the
major fragment. In Figure 3.5.2-3, the MS/MS spectrum of m/z 893.3 is shown which
confirms the identification of Chlorophyll a based on the fragmentation pattern. The
major fragment could possibly be produced as shown in Figure 3.5.2-3 while the
fragments 583.3 and 555.1 could be produced by further neutral loss of CH3sOH and
C2H402, respectively.

Chlorophyll b was also identified in a similar fragmentation pattern as Chlorophyll a.
Chlorophyll b was detected as [M+H]* adduct with m/z 907.5 in the positive ion mode

and upon fragmentation yielded the ion with m/z 629.2.
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The ion with m/z 941.5 in the positive ion mode mass spectrum was putatively identified
as the [M+Na]" adduct of DGDG(18:1/16:0) and in Figure 3.5.2-4 the MS/MS spectrum
confirmed the presence of this lipid since the major fragments detected corresponded

to losses of the fatty acids chains.
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Figure 3.5.2-4. MS/MS spectrum of m/z 893.5 putatively identified as Chlorophyll a. Inset is shown the
structure of Chlorophyll a and the fragmentation that could produce the major fragment ion 615.2.
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Figure 3.5.2-3. MS/MS spectrum of m/z 941.5 putatively identified as DGDG(18:1/16:0). Inset is shown
the structure of DGDG(18:1/16:0). This ion was detected as Na* adduct.
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In the negative ion mode mass spectrum the ion with m/z 793.5 is the most intense
and it was putatively identified as the [M-H] adduct of SQDG(16:0/16:0) lipid. In Figure
3.5.2-5, the MS/MS spectrum of m/z 793.5 is shown and it can be seen that the main
fragment corresponds to the loss of C16 fatty acid that yields the ion with m/z 537.4
and the loss of the sugar unit that yields the ion with m/z 225.3. This latter ion is also

characteristic of SQDG lipids, thus, its detection indicates the presence of SQDG lipids.
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Figure 3.5.2-5. MS/MS spectrum of m/z 793.5 putatively identified as SQDG(16:0/16:0). Inset is shown
the structure of this lipid and fragmentations that yield the ions 537 and 225.

The ion with m/z 745.5 in the negative ion mode was putatively identified as
PG(18:2/16:0). The MS/MS spectrum of this ion can be seen in Figure 3.5.2-6. The
neutral loss of C18:2 acyl chain yielded the ion with m/z 483.5 and upon dehydration,
the ion with m/z 465.3 was produced. Also, the neutral loss of C16 acyl chain yielded
the ion with m/z 507.3 and subsequent dehydration yielded the ion 489.1. Finally, the
ion with m/z 279.0 was detected which corresponds to the C18:2 fatty acid. The C16
fatty acid fragment was not detected as ion with m/z 255 since the trapping of ions

started from m/z 250, thus this ion was not trapped efficiently inside the ion trap.
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Figure 3.5.2-6. MS/MS spectrum of m/z 745.5 putatively identified as PG(18:2/16:0). Inset is shown the
structure of PG(18:2/16:0) and fragmentations that yield the ions 483 and 507.
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Another class of lipids that were identified in the negative ion mode was the
phosphatidylinositols (PI). The ion with m/z 835.5 in the negative ion mode was
putatively identified as PI(18:1/16:0). The MS/MS spectrum of this ion is shown in
Figure 3.5.2-7. The neutral loss of C16 acyl chain yields the ion with m/z 597.5 and
upon loss of H2O the fragment with m/z 579 is produced. The fragment ion with m/z
553 could have been produced by the loss of water and the C18:1 acyl chain. The ion
with m/z 435.1 could have been produced from the fragment 597.5 upon cleavage of
O-sugar bond. The ion with m/z 416.7 could have been the product of C16 fatty acid
loss and subsequent cleavage of O-sugar bond. Neutral loss of C18:1 fatty acid chain
and subsequent cleavage of O-sugar bond are possibly the fragmentation reactions

that took place to produce the ion with m/z 390.7.

All the species that are reported as identified in this work, have been confirmed by
literature results, manual interpretation of MS/MS spectra and searches in mass

spectra libraries.

In Table 3.5.2-1 all the species that were identified in C. reinhardtii cells are presented
along with their characteristic fragment ions. The majority of the identified species
consist of membrane lipids, however, chlorophylls and their breakdown products were

also identified.
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Figure 3.5.2-7. MS/MS spectrum of m/z 835.5 putatively identified as P1(18:1/16:0). Inset is shown the
structure of P1(18:1/16:0) and fragmentations that yield the ion 597.

Table 3.5.2-1. Annotations of species identified in C. reinhardtii cells

Experimental Theoretical Adduct Identified Species

m/z m/z

613.3 613.23 [M-H] Chlorophyllide a

627.3 627.21 [M-HJ Chlorophyllide b and/or
Primary fluorescent
chlorophyll catabolite

629.3 629.23 [M-H] 7-hydroxychlorophyllide a

643.3 643.20 [M-H] OH-Chlorophyll b

741.5 741.47 [M-HJ PG(18:3/16:1)

743.5 743.49 [M-H] PG(18:3/16:0)

745.5 745.50 [M-HJ PG(18:2/16:0)

747.5 747.52 [M-H] PG(18:1/16:0)

761.5 761.45 [M-HJ SQDG(14:2/16:0)

791.5 791.50 [M-H] SQDG(16:0/16:1)

793.5 793.51 [M-HJ SQDG(16:0/16:0)

815.5 815.50 [M-H] SQDG(18:3/16:0)

817.5 817.51 [M-HJ SQDG(18:2/16:0)

819.5 819.53 [M-H] SQDG(18:1/16:0)

821.5 821.55 [M-H] SQDG(18:0/16:0)

831.5 831.53 [M-H] SQDG(19:2/16:0)

835.5 835.53 [M-H] P1(18:1/16:0)

847.4 847.56 [M-H] SQDG(20:1/16:0)

849.4 849.58 [M-H] SQDG(20:0/16:0)

474.5 474.38 [M+H]* LysoDGTS(16:0)

496.4 496.36 [M+H]* LysoDGTS(18:3)

593.3 593.28 [M+H]* Pheophorbide a
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704.5 704.55 [M+H]* DGTS(32:4)2

706.5 706.56 [M+H]* DGTS(32:3)2
708.5 708.58 [M+H]* DGTS(32:2)2
710.5 710.59 [M+H]* DGTS(16:0/16:1)
732.5 732.58 [M+H]* DGTS(16:0/18:4)
734.5 734.59 [M+H]* DGTS(16:0/18:3)
736.5 736.61 [M+H]* DGTS(16:0/18:2)
738.5 738.62 [M+H]* DGTS(16:0/18:1)
748.5 748.61 [M+H]* DGTS(16:0/19:3)
750.5 750.62 [M+H]* DGTS(16:0/19:2)
754.5 754.56 [M+H]* DGTS(18:3/18:4)
756.5 756.58 [M+H]* DGTS(36:6)2
758.5 758.59 [M+H]* DGTS(36:5)2
760.6 760.61 [M+H]* DGTS(36:4)2
762.5 762.62 [M+H]* DGTS(36:3)2
764.5 764.60 [M+H20]* DGTS(16:0/19:4)
766.5 766.62 [M+H20]* DGTS(16:0/19:3)
768.5 768.63 [M+H20]* DGTS(16:0/19:2)
871.3 871.57 [M+H]* Pheophytin a
893.3 893.54 [M+H]* Chlorophyll a
907.2 907.51 [M+H]* Chlorophyll b
915.5 915.53 [M+Na]* Chlorophyll a
941.5 941.62 [M+Na]* DGDG(18:1/16:0)

aMixture of isomers

3.5.3 ESI-MS analysis of C. reinhardtii cells
To verify the identity of lipids detected by DeSSI-MS, an ESI-MS analysis was also
undertaken. The procedure of extracting the lipids from cells grown under control
conditions was described in Section 2.5. In Figure 3.5.3-1 the positive ion mode
spectra obtained by DeSSI-MS (A), ESI-MS with 80 % acetone as the extraction
solvent (B) and ESI-MS with ACN/DMF 1:1 as the extraction solvent (C) can be seen.
In all cases it is clear that the lipid profiles obtained are the same. The same lipid
profiles were also obtained in the negative ion mode (Figure A.5-1). Also, the MS/MS
spectra obtained by DeSSI-MS were the same as those obtained by ESI-MS. Thus,
the chemical information acquired by these two techniques was the same, however,

DeSSI-MS allowed a more rapid lipid profile characterization.

In Figure 3.5.3-1 the presence of ions with m/z 809 obtained using DeSSI-MS and
ESI-MS with ACN/DMF 1:1 as the extraction solvent are observed. These ions
correspond to adducts of the detected lipids with mass difference of 75 amu. The exact

origin of these adducts has not been elucidated, however, it seems to be solvent-
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dependent since when 80 % acetone was used as the extraction solvent then these

clusters did not appear. Interestingly, these clusters were not observed in positive ion
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Figure 3.5.3-1. Positive ion mode spectra of C. reinhardtii cells obtained by A) DeSSI-MS using
ACN/DMF 1:1 as the spraying solvent, B) ESI-MS using 80 % acetone as the extraction solvent and
C) ESI-MS using ACN/DMF 1:1 as the extraction solvent.

mode spectra obtained by DeSSI-MS of Synechocystis cells whereas the detected

lipids corresponded to Na* adducts of neutral MGDG and DGDG lipids.
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Figure 3.5.3-2. Positive ion mode spectra obtained by A) ESI-MS using ACN/DMF 1:1 as the
extraction solvent and 15 V of ion transfer capillary voltage, B) ESI-MS using ACN/DMF 1:1 as the
extraction solvent and 30 V of ion transfer capillary voltage, C) DeSSI-MS with ACN/DMF 1:1 as
the spraying solvent and 30 V of ion transfer capillary voltage and D) DeSSI-MS with ACN/DMF 1:1
as the spraying solvent and 40 V of ion transfer capillary voltage.
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Also, by increasing the ion transfer capillary voltage, these clusters in the m/z region

800-850 were diminished as it can be seen in Figure 3.5.3-2.

3.6 DeSSI-MS lipid profiles of Synechocystis sp PCC6803 cells

3.6.1 Lipid profiles
In Figure 3.6.1-1 and Figure 3.6.1-2 the mass spectra obtained in positive and
negative ion mode, respectively, by DeSSI-MS analysis of Synechocystis cells are
shown. In the positive ion mode mass spectra, intense peaks can be observed in the
m/z ranges 700-800 and 850-950. The lipids that were identified to be presentincluded
MGDG and DGDG lipids along with Chlrophyll a. Chlorophyll b related peaks were not
observed since it is known that cyanobaceteria only contain Chlorophyll a

(http:/mww.ucmp.berkeley.edu/glossary/gloss3/pigments.html).

In the negative ion mode mass spectra, the same classes of lipids as in the case of C.
reinhardtii cells were identified, which included PG and SQDG.
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Figure 3.6.1-1. Positive ion mode mass spectrum obtained by DeSSI-MS analysis of Synechocystis sp
PCC6803 cells.
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Figure 3.6.1-2. Negative ion mode mass spectrum obtained by DeSSI-MS analysis of Synechocystis
sp PCC 6803 cells.

3.6.2 Lipids identification
Identification of lipids was also based on literature results [0-38:40-4244 ' mass spectral

library searches and manual interpretation of the MS/MS spectra acquired.

In Figure 3.6.2- the MS/MS spectrum of ion with m/z 775.7 is shown. This ion was
putatively identified as the Na* adduct of MGDG(18:3/16:0) or MGDG(18:2/16:1)
MGDG(18:1/16:2) or MGDG(18:0/16:3). The MS/MS spectrum cannot provide
information on the position of the double bonds and the position where each fatty acid
is esterified (sn-1 or sn-2)“Y, however, the aforementioned isomers can be
distinguished based on the fragments. In Figure 3.6.2- the MS/MS spectrum of ion
775.7 gave the fragments 497.4 and 519.4 which correspond to the neutral losses of
C18:3 fatty acid and C16:0 fatty acid, respectively. Thus, this lipid was identified as
MGDG(18:3/16:0).

The ion with m/z 893.5 in the positive ion mode spectrum of Synechocystis cells was
identified as the [M+H]* adduct of Chlorophyll a and its MS/MS spectrum yielded the
same fragment ions as the ones obtained from C. reinhardtii cells. However, in the
positive ion mode spectrum of Synechocystis a very intense peak with m/z 915.5 was
observed which was putatively identified as the [M+Na]* of Chlorophyll a. In Figure
3.6.2- the MS/MS spectrum of ions with m/z 893.5 and 915.5 are shown.
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Figure 3.6.2-1. MS/MS spectrum of ion 775.7 identified as the Na* adduct of MGDG(18:3/16:0). Inset
is shown the structure of MGDG(18:3/16:0).
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Figure 3.6.2-2. MS/MS spectra of m/z 893.5 (A) and 915.7 (B) identified as [M+H]* and [M+Na]* adducts,
respectively, of Chlorophyll a.

o

The main fragment of m/z 893.5 (Chlorophyll a, [M+H]* adduct) is 615.2 which
corresponds to the neutral loss of the phytyl group. The main fragment of m/z 915.7,
which is 22 amu higher than m/z 893.5, is 637.3, which is 22 amu higher than the
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615.2, thus, the fragment 637.2 corresponds to the neutral loss of phytyl group from
the Na* adduct of Chlorophyll a.
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Figure 3.6.2-1. MS/MS spectrum of m/z 937.7 which was identified as [M+Na]* adduct of MGDG(34:3).
Above the spectrum is shown the structure of one isomer of this lipid.

The MS/MS spectrum of ion with m/z 937.7 (Figure 3.6.2-1) gave the fragments 775.8,
683.5, 681.6, 659.5, 657.2 and 497.3. The ion 937.7 was putatively identified as the
Na* adduct of DGDG(18:3/16:0) or DGDG(18:2/16:1) or DGDG(18:1/16:2) or
DGDG(18:0/16:3). The fragments 681.6 and 659.5 indicate the neutral loss of C16 and
C18:3 fatty acids, respectively. The fragments 683.5 and 657.2 were produced upon
neutral loss of C16:1 and C18:2 fatty acids, respectively. The fragment 497.3
corresponds to the neutral loss of C18:3 fatty acid from the ion 775.8 which was
produced upon loss of CsH100s from the parent ion. Thus, the ion 937.7 was identified
as a mixture of [M+Na]* adducts of DGDG(18:2/16:1) and DGDG(18:3/16:0).

Lipids in the negative ion mode were the same as those identified in C. reinhardtii cells.

The MS/MS spectra obtained were the same with those from the aforementioned cells.
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In Table 3.6.2-1 the ions that were identified are summarized.

Table 3.6.2-1. Annotation of species identified in Synechocystis sp PCC 6803 cells.

Experimental Theoretical Adduct Identified Species
m/z m/z

719.4 719.48 [M-H] PG(16:1/16:0)
7435 743.49 [M-H] PG(18:3/16:0)
745.5 745.50 [M-HJ PG(18:2/16:0)
747.5 747.52 [M-H]- PG(18:1/16:0)
791.5 791.50 [M-HJ SQDG(16:0/16:1)
793.5 793.51 [M-HJ SQDG(16:0/16:0)
803.5 803.50 [M-HJ SQDG(17:2/16:0)
805.5 805.51 [M-HJ SQDG(17:1/16:0)
807.5 807.53 [M-HJ SQDG(17:0/16:0)
815.5 815.50 [M-HJ SQDG(18:3/16:0)
817.5 817.51 [M-HJ SQDG(18:2/16:0)
819.5 819.53 [M-HJ SQDG(18:1/16:0)
751.5 751.53 [M+Na]* MGDG(16:0/16:1)
773.5 773.52 [M+Na]* MGDG(18:3/16:1)
775.5 775.53 [M+Na]* MGDG(18:3/16:0)
777.5 777.55 [M+Na]* MGDG(18:2/16:0)
779.5 779.56 [M+Na]* MGDG(18:1/16:0)
871.3 871.57 [M+H]* Pheophytin a
893.3 893.54 [M+H]* Chlorophyll a
915.5 915.53 [M+Na]* Chlorophyll a
937.6 937.59 [M+Na]* DGDG(34:3)
939.6 939.60 [M+Na]* DGDG(18:2/16:0)

aMixture of isomers
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3.7 Effect of stress conditions on membrane lipids of

microorganism cells

Glycerolipids are the major components of photosynthetic membranes that have been
conserved in cyanobacteria and green algae during evolution. In Sections 3.5 and 3.6
the main glycerolipids that consitute the photosynthetic and extraplastidial membranes
of C. reinhardtii and Synechocystis cells were introduced. The chloroplasts of these
cells contain low amounts of PG and PI lipids and high amounts of MGDG, DGDG and
SQDG lipids. MGDG and DGDG lipids fall in the category of neutral
galactoglycerolipids and they are the most abundant lipids in photosynthetic
membranes. These lipids possess vital roles in the stabilization of the membrane lipid
bilayer.?? The overall photosynthetic membranes integrity is based on an appropriate
proportion of galactoglycerolipids and on a smaller proportion of charged polar lipids
such as SQDG and PG.B9 Apart from stabilizing the membrane lipid bilayers, these
lipids possess vital roles in biological activities of the cells such as secretion,
transportation, signal transduction, photosynthetic light harvesting and electron
transfer.2% The DGTS lipids detected in C. reinhardtii cells are components of
extraplastidial membranes and substitute for phosphatidylcholine that is normally

present in these membranes.“!

3.7.1 Lipid profile and cells concentration

Absolute quantitative measurements are not straightforward in our case since the
analytes detected are extracted during the impact of the solvent plume on the cells.
For quantitative measurements, extraction of lipids from a known number of cells and

subsequent quantification by using external or internal standards should be followed.

In these experiments we were investigating the relative changes of membrane lipids
of the same class that differed by the number of double bonds, e.g.
MGDG(34:2)/IMGDG(34:3). When analyzing samples with different cell concentrations,
the final number of cells that are present on the glass slide for DeSSI-MS analysis is

different, thus, the absolute intensity of lipids detected will differ. However, if these cells
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in the different samples have been grown under the same conditions, then the lipid
profile should stay the same since these cells have the same composition in membrane
lipids. Also, the ratio of two lipids should stay the same. This can be seen in Figure
3.7.1-1 where starting from a cell sample that had known number of cells and

performing
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Figure 3.7.1-1. DeSSI-MS spectra obtained after the analysis of C.
reinhardtii cells spots that varied in the number of cells that were present on
the spot.

serial dilutions, we get different number of cells on the spot. It can be clearly observed
that the relative ratio of lipids in Figure 3.7.1-1 is independent from the number of cells
that are on the spot that is analyzed. Of course, the absolute intensity of the lipids
differs, which is an expected outcome since more lipids will be desorbed from a higher
number of cells. Thus, cell counting in each sample analyzed, which is a time-

consuming process, was not necessary for monitoring relative changes of membrane

lipids.

3.7.2 Effect of toxic metals and metalloids on C. reinhardtii cells membrane
lipids
The effect of the toxic metals such as Pb and Cd and the metalloid As on the membrane

lipid profile of C. reinhardetii cells was investigated. These unicellular eukaryotic green
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algae cells are used extensively as model organisms for studying physiological
processes such as photosynthetic activity and respiration.[**! The cells consist of a
single nucleus, chloroplasts where photosynthesis is taking place, contractile vacuoles,
two flagella and a thin cell wall which is composed from carbohydrates and
glycoproteins#647,  The cells were grown in liquid cultures that contained non-lethal
concentrations of Pb(NO3)2, Cd(NOs3)2, AsHNa>O4-7H>0 and NaAsO.. The addition of
these salts resulted in various concentrations of Pb(ll), Cd(Il), As(V) and As(lll). Control
experiments were cultivated in three independent cultures (biological replicates) and
from each culture two small aliquots were taken. Each aliquot was analyzed in triplicate
(technical replicates) by DeSSI-MS, thus, resulting in a total number of 18 analyzed
control spots (3 biological replicates x 2 aliquots each x 3 technical replicates each).
For the metal and metalloid incubated cells experiments, one culture for each
concentration of contaminant was cultivated and two small aliquots from each culture
were taken. Subsequently, each aliquot was analyzed in triplicate (technical
replicates), thus, resulting in a total number of 6 analyzed spots for each concentration
of the contaminant. In the following sections the effect of each metal and metalloid

contaminant on the membrane lipids profile will be presented and discussed.

3.7.2.1 Effect of Pb(Ill) on membrane lipids of C. reinhardtii cells
In Figure 3.7.2.1-1 and Figure 3.7.2.1-2 the mass spectra in the positive and negative

ion mode, respectively, obtained by DeSSI-MS analysis of C. reinhardtii cells grown
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Figure 3.7.2.1-1. Positive ion DeSSI-MS spectra obtained after the analysis of control and lead-
incubated cultures.
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under normal conditions (Control A, B & C) and in the presence of various
concentrations of Pb(ll) are shown.

No significant differences were observed for the control and lead-incubated samples
in both positive and negative ion modes.
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Figure 3.7.2.1-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of control and
lead-incubated cultures.

Although lead has been reported to cause reduction of photosynthesis and alteration
of thylakoidal, mitochondrial and nuclear structures in concentrations of 1-20 yM 91, in
our experiments with Pb(ll) concentrations in the range of 3-60 uM the membrane lipid
profile did not seem to change. Also, Pb(ll) has been reported to cause production of
reactive oxygen species which ultimately lead to lipid peroxidation.*® However, no

peroxidized lipids were detected in our experiments.

3.7.2.2 Effect of Cd(ll) on membrane lipids of C. reinhardtii cells
Cadmium ions can be adsorbed on the cell wall while at higher concentrations some
ions can enter the cells and cause damage.*d! The toxicity of cadmium on
Chlamydomonas strains has been studied and it has been found that inhibition of
growth, ultrastructural cellular changes, starch accumulation and decrease of
photosynthetic activity.[**! Detoxification mechanisms include the complexation of

cadmium with phytochelatins.
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The effect of Cd(ll) on membrane lipids of C. reinhardtii cells was obvious from the

positive and negative ion mode DeSSI-MS mass spectra (Figure 3.7.2.2-2 and Figure

3.7.2.2-1). More specifically, in the positive ion mode where the DGTS lipids are

prevalent, a sharp increase in the relative intensity of DGTS(34:1) (m/z 738.5)

compared to DGTS(34:3) (m/z 734.5) is observed. Also,

increases of relative

intensities of DGTS(36:4) (m/z 760.5) compared to DGTS(36:6) (m/z 756.5) can be
observed. These differences are presented graphically in Figure 3.7.2.2-3.
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Figure 3.7.2.2-1. Positive ion mode DeSSI-MS spectra obtained after the analysis of control and

cadmium-incubated cultures.
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Figure 3.7.2.2-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of control and
cadmium-incubated cultures.
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In the negative ion mode spectra of control and cadmium-incubated cells, differences
in the relative intensities of PG(34:2) (m/z 745.5) compared to PG(34:3) (m/z 743.5)
and SQDG(34:1) (m/z 819.5) compared to SQDG(34:3) (m/z 815.5) are observed. In

Figure 3.7.2.2-3, these differences can be observed graphically.
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Figure 3.7.2.2-3. Univariate box-whisker plots of DGTS, PG and SQDG lipid species intensity ratio for
control and cadmium-incubated C. reinhardtii cell cultures. Arithmetic mean values are represented as
small box with £ 1 SD (standard deviation) as larger box and £ 1.96 SD as whiskers. With straight lines
inside the larger boxes are represented the median values and with X symbol the minimum and

maximum data points.

Noticeably, there is an increase in the intensity ratio of lipid species presented in
Figure 3.7.2.2-3 in cells that were incubated at 0.36 ppm of Cd(ll), i.e. the lipids with
higher number of double bonds (more unsaturated) were converted into lipids with
lower number of double bonds (less unsaturated). It has been reported that cadmium
can induce the production of intracellular reactive oxygen species resulting in oxidative
damage to cells and lipid peroxidation®51 however, lipid peroxidation was not

observed in our experiments. It seems that the incubation of cells in cadmium-
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containing medium was related to the conversion of more unsaturated membrane lipids
into less unsaturated. Interestingly, this phenomenon was not maintained at higher
concentrations of cadmium; instead, the intensity ratio returned to the same levels as
in the control cells at the highest concentration studied. While the reason to this has
not been elucidated, it could possibly indicate toxicity effects at higher concentrations

of the toxic metal.

3.7.2.3 Effect of As(lll) on membrane lipids of C. reinhardtii cells
Inorganic arsenite(iAs(lll), referred as As(lll) in this text) is a toxic form of arsenic.
Arsenite in the form of As(OH)s at pH < 8.0 can enter the cells through
aquaglyceroporins and interact with sulfhydryl groups of enzymes, thus, influencing
their function.? Besides interactions with proteins, arsenite can reduce photosynthetic
activity, respiration and productivity.>3l Also, it can be oxidized into the more toxic form
of arsenate (As(V)) intracellularly or on the cell surface.® The main mechanism of
detoxification includes excretion, methylation to less toxic forms or complexed with

phytochelatins and thiol compounds.4

In Figure 3.7.2.3-1, the positive ion mode DeSSI-MS spectrum of control and arsenite-
incubated cells is shown. For arsenite concentrations up to 15 ppm As no significant
differences can be observed in the membrane lipids relative intensities. However, at

22.5 ppm As as arsenite, significant differences can be observed.
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Figure 3.7.2.3-1. Positive ion mode DeSSI-MS spectra obtained after the analysis of control and
arsenite-incubated cultures.

64



The same lipid species as in the case of Cd(ll), i.e. DGTS(34:1) & DGTS(34:3) were
altered. However, at the highest concentration of arsenite studied, e.g. 30 ppm, the
mass spectrum is similar to that of the control samples. The observed differences of
relative intensities of specific membrane lipids can be observed graphically in Figure
3.7.2.3-3.

The negative ion mode mass spectrum obtained after the DeSSI-MS analysis of control

and arsenite-incubated cells is shown in Figure 3.7.2.3-2. Since in the positive ion
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Figure 3.7.2.3-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of control and
arsenite-incubated cultures.

mode only the 22.5 ppm As(lll) sample had significant differences in the relative
intensities of specific membrane lipids, it was expected that the same would occur in
the negative ion mode too. Indeed, the relative intensities of PG(34:2) (m/z 745.5)
compared to PG(34:3) (m/z 743.5) and SQDG(34:1) (m/z 819.5) compared to
SQDG(34:3) (m/z 815.5) in the 22.5 ppm As(lll) incubated cells sample were increased
(Figure 3.7.2.3-3).
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Figure 3.7.2.3-3. Univariate box-whisker plots of DGTS, PG and SQDG lipid species

intensity ratio for control and arsenite-incubated C. reinhardtii cell cultures. Arithmetic

mean values are represented as small box with + 1 SD (standard deviation) as larger

box and + 1.96 SD as whiskers. With straight lines inside the larger boxes are

represented the median values and with X symbol the minimum and maximum data

points.
As it can be seen graphically in Figure 3.7.2.3-3 the intensity ratio of
DGTS(34:1)/DGTS(34:3), PG(34:2)/PG(34:3) and SQDG(34:1)/SQDG(34:3) did not
show any increase when cells were incubated with 7.5 and 15 ppm of As(lll). One
possible explanation to this could be that these concentrations were not able to induce
any stress related changes in membrane lipids composition of the cells. However, at
22.5 ppm of As(lll), the intensity ratio of the aforementioned lipid species was
increased, possibly due to stress induced by the presence of arsenite indicating the
conversion of more unsaturated lipids into less unsaturated. Similarly with cadmium-
incubated cells, higher concentrations of arsenite, i.e. 30 ppm resulted in intensity ratio
that was the same as the control, again, probably due to arsenite-related toxic effects.
Arsenite was not found to produce reactive oxygen species according to the work of

Szivak et al.[*8 where much lower concentrations were studied.
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3.7.2.4  Effect of As(V) on membrane lipids of C. reinhardtii cells

Following As(lll), another form of arsenic, As(V), was investigated regarding its
potential effect on altering the membrane lipid composition of C. reinhardtii cells.
Arsenate, being structurally similar to phosphate, can enter the cells through the
phosphate transporters and the first step in the detoxification process is the reduction
to arsenite.®°61 Then, arsenite can be excreted, methylated to organic forms or
complexed with phytochelatins and thiol compounds, as was mentioned in Section
3.7.2.3. Toxic effects of arsenate include growth and photosynthesis inhibition."]

In Figure 3.7.2.4-1 the positive ion mass spectrum of control and arsenate-incubated

cells can be seen.
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Figure 3.7.2.4-1. Positive ion mode DeSSI-MS spectra obtained after the analysis of control and
arsenate-incubated cultures.

The main difference was observed in the m/z region 756-762 in which the lipids
DGTS(36:6 — 36:3) can be found (see Table 3.5.2-1 for lipid species identifications).
This difference can also be observed graphically in Figure 3.7.2.4-3. In Figure
3.7.2.4-2 the negative ion mode DeSSI-MS spectrum of control and arsenate-
incubated cells can be seen. The most intense differences were observed in the PG
region (m/z range 741-747) and in the SQDG region (m/z range 815-821). An intense
increase in the relative intensity of PG(34:3) (m/z 743.3) was also observed along with

an increase in the relative intensity of PG(34:1) (m/z 747.3) which was very low in the
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control samples. Also, in the SQDG(34:3 — 34:0) and SQDG(36:1 — 36:0) regions,
significant increases in the relative intensities of SQDG(34:0) (m/z 821.5) and
SQDG(36:0) (m/z 849.5) were observed accompanied by a decrease of SQDG(34:3)
(m/z 815.5). These differences can be observed graphically in Figure 3.7.2.4-3.
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Figure 3.7.2.4-2. Negative ion mode DeSSI-MS spectra obtained after the analysis of control and
arsenate-incubated cultures.
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In contrast with the other metals and metalloids studied, the effect of As(V) on the
membrane lipids was more consistent, e.g. with increasing concentration of the
metalloid the intensity ratio of the lipids shown in Figure 3.7.2.4-3 was increasing
providing evidence of conversion of the more unsaturated membrane lipids into less
unsaturated. These data suggest that the observed differences in membrane lipids

composition were related to the incubation with arsenate.

Overall, the data presented suggest that when cells are incubated with toxic
contaminants in sub-lethal concentrations, specific membrane lipids are converted into
more saturated ones, thus, altering the composition and fluidity of the membranes. To
the best of our knowledge, no previous work has investigated the effect of toxic metals
and metalloids on the membrane lipids of C. reinhardtii cells. Therefore, the validation
of the hypothesis generated here requires a more detailed lipidomic approach for
absolute quantification of lipid species and enzymatic studies.

3.7.3 Effect of nitrogen deprivation on membrane lipids of Synechocystis sp
PCC 6803 cells

In these experiments, the effect of nitrogen withdrawal from the culture medium on
membrane lipids of Synechocystis cells was studied. The cells (harvested from late
exponentional growth phase) were grown for 7 days in normal (control) and nitrogen-
deprived (-N) BG-11 medium. Then, the cells from both control and -N cultures were
resuspended in fresh N-containing BG-11 medium for 6 days. DeSSI-MS analyses of
each sample was carried out in triplicate (three technical replicates per sample).
Nitrogen is an essential nutrient for cells and thus, the deprivation of nitrogen from the
cultures inhibited cell growth, as can be seen from the growth curve shown in Figure
3.7.3-1. These data were kindly provided by Eleftheria Valsami, PhD candidate at the

Laboratory of Biochemistry (Prof. Demetrios Ghanotakis).

In Figure 3.7.3-2 and Figure 3.7.3-3 the positive and negative ion mode spectra
obtained after the DeSSI-MS analysis of Synechocystis 6803 cells at different time
points are shown. The most distinct difference lies in the relative intensity of m/z 777.5
which was identified as MGDG(34:2) which increased after the cells were grown for 7

days in
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Figure 3.7.3-1. Growth curve of Synechocystis 6803 cells
grown in normal BG-11 medium (Control) and in nitrogen
deprived BG-11 medium (-N).
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Figure 3.7.3-2. Positive ion mode DeSSI-MS spectra of Synechocystis 6803 cells grown in normal BG-
11 medium after 1 day (A), 7 days (B) and 1 day after the cells were resuspended in fresh BG-11
medium (C).

normal BG-11 medium (Figure 3.7.3-2B). However, when the cells were resuspended
in fresh medium, the relative intensity of MGDG(34:2) after 1 day of growth drops to
the initial levels (Figure 3.7.3-2C). Also, two new peaks at m/z 807.3 and 809.5

appeared in Figure 3.7.3-2B, however they were not identified.
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Figure 3.7.3-3. Negative ion mode DeSSI-MS spectra of Synechocystis 6803 cells grown in hormal
BG-11 medium after 1 day (A), 7 days (A) and 1 day after the cells were resuspended in fresh BG-11
medium (C).

In the negative ion mode spectra (Figure 3.7.3-3) the main differences observed were
the decrease in the relative intensities of ions with m/z 743.5 (PG(34:3)) and 815.5
(SQDG(34:3)).

In Figure 3.7.3-4 the distribution of C18/C16 PG lipids in cells that were grown under
control and under -N conditions can be seen. Also, these distributions are shown for
cells that were resuspended in fresh N-containing BG-11 medium. In the control cells
(Figure 3.7.3-4A) the relative intensity of PG(34:3) lipids decreased as the culture
grows older, while the relative intensity of PG(34:1) does not seem to change
significantly. Thus, PG(34:3) lipids were converted into the predominant PG(34:2)
species. When these cells are resuspended in fresh medium then this cycle starts
again (Figure 3.7.3-4C). However, in the -N cells this trend was not observed (Figure
3.7.3-4B) but when the cells were resuspended in fresh N-containing BG-11 medium,
the progeny cells could recover and start this cycle again, i.e. the relative intensity of
PG(34:3) has a descending order as the culture grows old. This trend can also be seen
in Figure 3.7.3-6C, where the intensity ratio of PG(34:2)/PG(34:3) is plotted against

the days of cultivation.
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Figure 3.7.3-4. Distributions of PG(C18/C16) lipids in Synechocystis cells grown in control (A) and in
nitrogen deprived (B) conditions for 7 days. Control and -N cells were resuspended in fresh N-containing
BG-11 medium and cultivated for 6 days (C, D).

In Figure 3.7.3-5 the distribution of C18/C16 SQDG lipids in cells that were grown
under normal (control) and nitrogen deprived (-N) conditions along with the distribution
upon resuspension of control and -N cells in normal N-containing BG-11 medium can
be seen. It is evident that in control cells as the culture grows old the relative intensity
of SQDG(34:3) decreases while the relative intensity of SQDG(34:1) increases (Figure
3.7.3-5A). This was also the case for control cells that were resuspended in fresh
medium (Figure 3.7.3-5C). However, the -N cells were not able to convert the
SQDG(34:3) lipids into SQDG(34:1) (Figure 3.7.3-5B) while after resuspension in
normal N-containing medium, the aforementioned conversion was observed again,

e.g. the progeny cells were able to recover. This conversion can also be seenin Figure



3.7.3-6B where the ratio of SQDG(34:1)/SQDG(34:3) is plotted against the age of

culture.
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Figure 3.7.3-5. Distributions of SQDG(C16/C18) lipids in Synechocystis cells grown in control (A) and
in nitrogen deprived (B) conditions for 7 days. Control and -N cells were resuspended in fresh N-
containing BG-11 medium and cultivated for 6 days (C, D).

Also, in Figure 3.7.3-6A the intensity ratio of MGDG(34:2)/MGDG(34:3), lipid species

detected in the positive ion mode, against the age of culture can be seen.

Overall, the data presented in Figure 3.7.3-6 suggest that as the culture grows old lipid
remodeling occurs in the membranes due to the conversion of more unsaturated lipids
into less unsaturated. The fluidity of the membranes is altered and as more saturated
acyl chains are present in the membrane lipids, the membranes become less fluid.
This phenomenon peaks at 5-7 days of culture age in which the cells have entered a

stationary phase as it can be seen from the growth curve of Figure 3.7.3-1. This is in
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accordance with literature results.% In their work, Liu et al. described the same trend
in distribution of PG and SQDG lipids during the life cycle of cyanobacteria, including
the species Synechocystis 6803. Additionally, our data also suggest that this
remodeling of membrane lipids occurs in MGDG lipids too. However, cells that were
grown under nitrogen starved conditions lack the ability of converting the more
unsaturated membrane lipids into less unsaturated, thus, nitrogen deprivation inhibits,
among others, the physiological process of membrane structure reorganization during

the life cycle of the cells.
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Figure 3.7.3-6. Intensity ratio of MGDG(34:2)/MGDG(34:3) (A), SQDG(34:1)/SQDG(34:3) (B) and
PG(34:2/34:3) (C) in Synechocystis 6803 cells that were grown under normal (Control) and nitrogen
deprived (-N) conditions for 7 days and upon resuspension in fresh N-containing BG-11 medium for 6

days.

After the control and -N cells were resuspended in fresh N-containing medium, the

physiological process of membrane lipids conversion was able to occur again.
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Cyanobacteria are able to adapt to nitrogen deprivation conditions by adjusting cellular
functions but it has been reported that they are able to recover upon addition of
nitrogen source in the medium.B85% Therefore, the observation of recovering of
membrane lipid membranes remodeling upon resuspension in N-containing medium is
in supported by evidence of growth recovery in literature. However, so far, the
investigation of membrane lipid changes upon nitrogen starvation has not been done
and studies that investigated changes in Synechocystis cells under nitrogen deprived
conditions were focused on changes in expression of genes that are associated with
photosynthetic and respiratory activity, carbon and nitrogen uptake and regulation of
proliferation.®5% One study investigated the lipidome of Synchocystis sp PCC 6803
under light-activated heterotrophic conditions and found that there was an increase in
the content of membrane lipids with higher degree of saturation of acyl chains®® under
these conditions, similarly to the results presented here. Since the data presented here
are novel, for a deeper understanding of the mechanisms that are responsible for this
membrane lipid conversion, detailed enzymatic and gene expression studies should

be done.
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CONCLUSIONS AND PRESPECTIVE

Desorption sonic-spray ionization mass spectrometry was employed for the rapid
analysis of membrane lipids from intact cells. The cells did not undergo any extraction
procedure prior to analysis; only washing with water to remove the media components
was necessary. Thus, the sample preparation procedure was kept to a minimum. By
using this approach, we were able to rapidly obtained profiles of membrane lipids. The
intactness of cells prior to DeSSI-MS was also investigated and it was found that no
cell lysis occurred during the washing and drying on the glass slide procedure. The
spraying solvent used was able to efficiently extract membrane lipids such as DGTS,
MGDG, DGDG, SQDG, Pl and PG along with pigments (Chlorophyll a and b) from the
cells. After optimization of certain parameters regarding the DeSSI source, we used
this technique for the analysis of the green algae Chlamydomonas reinhardtii and the
cyanobacteria Synechocystis sp PCC 6803 grown under different conditions.

For C. reinhardetii cells incubated with various sub-lethal concentrations of toxic metals
(Pb(I1), Cd(Il)) and metalloids (As(lll), As(V)) it was observed that the membrane lipids
of cells underwent conversion from more unsaturated to less unsaturated, therefore,
the fluidity of the photosynthetic and the extraplastidial membranes was altered. The
exact mechanisms that are responsible for this conversion are not yet known since this
work is the first so far report on the effect of toxic contaminants on membrane lipids of
the green algae C. reinhardtii. While several publications mention ROS production and
lipid peroxidation as the main response to the treatment with toxic contaminants,

peroxidised lipids were not detected.

In the cyanobacteria Synechocystis 6803, nitrogen deprivation was found to impact the
physiological process of membrane lipids conversion from more unsaturated to less
unsaturated. MGDG(C18/C16), SQDG(C18/C16) and PG(C18/C16) lipids of the
thylakoid membranes in Synechostis 6803 were physiologically converted from more
unsaturated into less unsaturated as the culture was growing old and the peak of this
conversion appeared at 5 days of cultivation, in which the cells were entering a
stationary phase. Nitrogen deprived cells were not able exhibit this physiological
conversion, however upon resuspension into fresh N-containing medium, the cells

were able to recover and membrane lipid remodeling occurred again. The observation
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of membrane lipids remodeling during the normal life cycle of Synechocystis 6803 was
in accordance with literature results, however, the effect of nitrogen deprivation on

membrane lipids was not explored.

This aim of this research was to apply an ambient ionization mass spectrometry
technique, namely desorption sonic-spray ionization mass spectrometry for the rapid
analysis of cells under different stress conditions.

The effect of toxic contaminants on membrane lipids of green algae cells has not been
investigated yet, thus, the hypothesis of lipid remodeling during stress conditions
generated here needs to be further validated by detailed enzymatic studies that will
shed light on the exact mechanisms that lead to the membrane remodeling. This will
provide deeper insights into the mechanisms by which the cells are dealing with stress

factors such as toxic metals and metalloids.

While the effect of nitrogen starvation on Synechocystis cells is a well-studied topic,
there is no single report of the effect on membrane lipids. It was known (and confirmed
here) that during the normal life cycle, the cyanobacteria remodel their lipid
membranes. Under nitrogen deprivation conditions we found that this remodeling was
disrupted. However, the mechanisms that lead to that disruption are not known and
could be subject of future studies. Further insights on the mechanisms that
physiologically lead to membrane remodeling along with how nitrogen deprivation

“blocks” these mechanisms could provide better understanding of this effect.

Finally, detailed lipidomic studies could be done and provide quantitative information

on the distribution of lipid species inside the cells.
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APPENDIX

Al Analysis of pharmaceutical ointments

These samples were kindly provided by fellow colleagues and a small aliquot of the
sample was kept in Eppendorf tube. Also, the full list of ingredients was recorded.

Fucidin®

Ingredients: fusidic acid (2 % w/w), butylhydroxyanisole (E320), cetyl alcohol, glycerol,
liquid paraffin, potassium sorbate, polysorbate 60, purified water, all-rac-a-tocopherol,

hydrochloric acid and white soft paraffin.
Fubecot®

Ingredients: fusidic acid (2 % w/w), betamethasone (0.1 % w/w), white soft paraffin,
cetostearyl alcohol, liquid paraffin, cetomacrogol 1000, sodium dihydrogen phosphate,

chlorocresol, sodium hydroxide, purified water.
Flenazole®

Ingredients: miconazole nitrate (2 % w/w), fluprednidene acetate (0.1 % w/w),
dimethicone, medium chain triglycerides, white soft paraffin, glyceryl monostearate 40-
50 %, glyceryl monostearate — macrogol stearate 5000 (1:1), stearyl alcohol, propylene

glycol, purified water.

Fungoral®

Ingredients: ketoconazole (2 % w/w), propylene glycol, stearyl alcohol, cetyl alcohol,
sorbitan stearate, polysorbate, isopropyl myristate, sodium sulphite anhydrous,

purified water.

Ygiele®

Ingredients: clindamycin phosphate (2 % w/w), liquid paraffin, propylene glycol,
polysorbate 60, cetostearyl alcohol, polysorbate 60, cetyl palmitate, stearic acid,

sorbitan monostearate, benzyl alcohol, purified water.
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In Figure A.1-1, the mass spectrum of Fucidin® cream obtained by DeSSI-MS in the
negative ion mode is shown and intense signals of the deprotonated fucidic acid ([M —
H]) with m/z 515.4 can be seen. Also, the ion with m/z 551.3 can be observed, which
corresponds to the chloride adduct of fusidic acid ([M + CI]’) that is present due to the

hydrochloric acid contained in the cream.

Additionally, the ions with m/z 471.5 (not shown in Figure A1), 473.5 and 455.5 can be
observed. These ions possibly correspond to either fragments created inside the mass
spectrometer due to ion transfer capillary temperature or degradation products of the
fusidic acid. The possible structures of these ions are shown in Figure A.1-2.
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Figure A.1-1. Full mass spectrum of Fucidin® cream obtained by DeSSI-MS analysis. Inset is shown
the structure of the active ingredient, fucidic acid.
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Figure A.1-2. Possible structures of ions with m/z 455.5, 471.5 and 473.5 observed in the
mass spectrum of Fucidin cream.
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Figure A.1-3. Mass spectrum in the negative ion mode obtained by DeSSI-MS analysis of Fubecot®
cream. lon with m/z 635.4 was not identified.

In Figure A.1-3 the mass spectrum in the negative ion mode obtained from the DeSSlI-
MS analysis of the Fubecot® cream can be seen. The active ingredients of this ointment
are fucidic acid, which can be seen as deprotonated ion with m/z 515.3 along with
other characteristic ions such as 455.3, and betamethasone, which was not detected
either in the positive or the negative ion mode. This could be attributed to the low
concentration (0.1 % w/w) in the cream and in the low ionization efficiency of steroidal

compounds.

For the improvement of the analytical performance for steroidal compounds it has been
proposed that using betaine aldehyde compounds in the spraying solvent can react
rapidly with the alcohol groups of the steroidal analyte and the product is charged due

to the presence of betaine group(®t,

Micogen® cream active ingredients include miconazole nitrate and fluprednidene
acetate. In Figure A.1-5 the mass spectrum in the positive ion mode obtained by
DeSSI-MS can be seen. The set of peaks with m/z 415.2-417.2-419.2-421.2
correspond to the miconazole ion and exhibit this isotopic pattern due to the presence
of 4 chlorine atoms. The peak with m/z 159.1 is an unidentified ion while the set of
peaks with m/z 488.3, 516.4 and 544.4 that were identified as medium chain
triglycerides. These medium chain triglycerides are presentin the ingredients list of the
product. In Figure A.1-4, an expanded region in the mass spectrum is shown so that
the peaks that correspond to medium chain triglycerides can be clearly seen. These

peaks were assigned to medium chain triglycerides based on their m/z and the MS/MS
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spectra. Medium chain triglycerides contain 6, 8, 10 or 12 carbon atoms in the aliphatic
chains. As it can be seen in Figure A.1-4, m/z 488.3 was identified as ammonium
adduct of TG(24:0), m/z 493.5 as sodium adduct of TG(24:0), m/z 509.3 as potassium
adduct of TG(24:0), m/z 516.4 as ammonium adduct of TG(26:0), m/z 521.5 as sodium
adduct of TG(26:0), m/z 537.3 as potassium adduct of TG(26:0), m/z 544.4 as
ammonium adduct of TG(28:0), m/z 549.2 as sodium adduct of TG(28:0), m/z 565.3
as potassium adduct of TG(28:0), m/z 572.3 as ammonium adduct of TG(30:0) and
m/z 577.5 as sodium adduct of TG(30:0). As in the case of Fubecot® cream, the other
active ingredient, fluprednidene acetate, was not detected due to its steroidal structure.
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Figure A.1-5. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis of Flenazole®
cream. Inset is shown the structure of miconazole nitrate.
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Figure A.1-4. Expanded m/z region of the positive ion mass spectrum obtained by DeSSI-MS analysis
of Flenazole® cream showing the medium chain triglycerides. Inset is shown the general structure of a

triglyceride.
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Fungoral® cream contains as active ingredient the compound ketoconazole. The
positive ion mass spectrum obtained by DeSSI-MS is shown in Figure A.1-6 and a
clear signal for the protonated analyte can be observed with m/z 531.4. The
characteristic isotopic pattern of two chlorine atoms in the compound was also

observed.
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Figure A.1-6. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis of Fungoral®
cream. Inset is shown the structure of ketoconazole.

Clindamycin phosphate is the active ingredient in Ygiele® cream and the mass
spectrum in the positive ion mode obtained by DeSSI-MS analysis of this
pharmaceutical ointment is shown in Figure A.1-7. Two main peaks with m/z 425.3
and 505.3 can be clearly seen and these correspond to clindamycin phosphate after
the possible loss of HPO3z and clindamycin phosphate, respectively. However, in the
MS/MS spectrum of m/z 505.3 the ion 425.3 is not the main fragment, indicating that
the origin of ion 425.3 in the full mass spectrum is due to either thermal fragmentation
inside ion transfer capillary of the mass spectrometer or degradation of the compound
in the sample. Also, the ion 126.1 in the full mass spectrum was identified as a fragment

that possible occurred as indicated in the inset of Figure A.1-7.

87



[M +H]*

1261 505.3 NL:2.67E5
100 -
] ! (0}
90 \/\EH ¢
80 ] N\ HN
] o 4253
70
HO S
860 o
3 \ 425.3
E 50 HO ,,,/C_)_____ P e
2 — 507.3
S0 OiP\—OH
['4
OH
30 ; 427.3
Chemical Formula: C,gH;,CIN,OgPS
E Exact Mass: 504.15
20 [M + Na]*
1 527.3
0 1264 428.3 J529_1
0 T B S T T e e ‘JIL*W
100 150 200 250 300 350 400 450 500 550 600

miz

Figure A.1-7. Mass spectrum in positive ion mode obtained by DeSSI-MS analysis of Ygiele® cream.
Inset is shown the structure of clindamycin phosphate along with the possible fragmentations that
produce the ions with m/z 126.1 and 425.3.

A.2. Analysis of pharmaceutical tablets

These samples were kindly provided by fellow colleagues and analyzed with no sample

preparation at all.
Aerius®

Ingredients: desloratadine (5 mg per tablet), calcium hydrogen phosphate dihydrate,
microcrystalline cellulose, corn starch, talc, lactose monohydrate, hypromellose,
titanium dioxide, polyethylene glycol 400, indigo carmine E312, carnauba wax, white

wax.
Loxitan®

Ingredients: meloxicam (15 mg per tablet), lactose mononhydrate, anhydrous colloidal
silica, sodium citrate, magnesium stearate, microcrystalline cellulose, povidone,

crospovidone.

Norgesic®

Ingredients: orphenadrine citrate (35 mg), paracetamol (450 mg), magnesium stearate,

colloidal anhydrous silica, microcrystalline cellulose, starch 1500.
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Panadol Cold & Flu®

Ingredients: paracetamol (500 mg), pseudoephedrine hydrochloride (30 mg), cellulose
microcrystalline, colloidal anhydrous silica, stearic acid, magnesium stearate, starch
pregelatinized, povidone, crospovidone, croscarmellose sodium, hypromellose,

macrogol, carnuba wax, indigo carmine E312.

In Figure A.2-1 the mass spectrum in the positive ion mode obtained by DeSSI-MS
analysis of Aerius® tablet is shown. The active ingredient of this tablet is desloratadine
and it can be detected as a protonated ion with m/z 311.3 and the characteristic
isotopic pattern due to the presence of chorine atom is also observed. In the mass
spectrum several other peaks are observed in the region 327 — 652 which correspond
to polyethylene glycol (PEG) that is contained in the tablet. PEG has the general
chemical formula C2nHan+20n+1 and being a polymeric compound, the observed ions
would have a constant m/z difference of 44 amu. The ion with m/z 283.3 was identified
as the protonated PEG polymer with n=6 and by looking at the mass spectrum it is
clear that there are several other peaks with difference of 44 amu from this peak, i.e.
m/z 327.3 which is the protonated PEG polymer with n=7, m/z 371.2 which
corresponds to n=8 and so on. In this spectrum peaks of protonated PEG molecules
are observed for n values ranging from 6 to 14. Additionally, mass differences of 17,
22 and 38 amu correspond to H* adduct exchange with NH4*, Na*™ and K*, respectively.
For example, the set of peaks with m/z 327.3, 344.2, 349.4 and 365.3 were identified
as H* adduct of PEG with n=7, NH4" adduct of PEG with n=7, Na* adduct of PEG with
n=7 and K* adduct of PEG with n=7, respectively. Finally, lactose monohydrate
contained in the tablet formulation could be observed as the Na* adduct of lactose with
m/z 365.3, however, due to isobaric interferences with PEG ions and the unit resolution
of the mass spectrometer, these two peaks cannot be separated. No ions were

detected for the indigo carmine dye contained in the tablet.
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Figure A.2-1. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis of Aerius®tablet.
Inset is shown the structure of the active ingredient, desloratadine.

In Figure A.2-2 the mass spectrum in the positive ion mode obtained by DeSSI-MS
analysis of Loxitan®tablet is shown and it clearly observed that the active ingredient,
meloxicam, is detected as a protonated ion with m/z 352.1 and as Na* adduct with m/z
374.0. The peak with m/z 365.3 corresponds to protonated lactose. Meloxicam was

also detected as deprotonated molecule in the negative ion mode (spectrum not

shown).
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Figure A.2-2. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis of Loxitan® tablet.
Inset is shown the structure of the active ingredient, meloxicame.
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Norgesic® tablets contain the active ingredients paracetamol and orphenadrine citrate
which can be easily detected in the positive ion mode mass spectrum by DeSSI-MS
analysis (Figure A.2-3). Both molecules are detected as protonated ions and also their
corresponding Na* adducts are detected. In the mass spectrum of Norgesic® tablet it
can be seen that there is a very intense peak with m/z 181.1 which was identified as a
fragment of orphenadrine. Since DeSSl is a very soft ionization source, this fragment
is possibly created either inside the ion transfer capillary of the mass spectrometer due
to the heating or from the degradation of the active compound in the tablet. Peaks with
m/z 246.5 and 286.1 were not identified.
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Figure A.2-3. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis of Norgesic®
tablet. Inset are shown the structures of the active ingredients, paracetamol and orphenadrine.

Panadol Cold & Flu®tablets contain as active ingredients the compounds paracetamol
and pseudoephedrine hydrochloride. Both of the active compounds were detected as
protonated ions in the positive ion mass spectrum obtained by DeSSI-MS (Figure
A.2-4). Paracetamol was detected as protonated and Na* adduct ion with m/z 152.1
and 173.9, respectively, while pseudoephedrine was detected as protonated ion with
m/z 166.0. The dehydration product (m/z 148.1) of pseudoephedrine was also
observed in the mass spectrum along with a protonated dimer with m/z 330.9. Peaks

with m/z 324.9 and 366.9 were not identified.
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Figure A.2-4. Mass spectrum in the positive ion mode obtained by DeSSI-MS analysis of Panadol Cold
& FIu® tablet. Inset are shown the structures of the active ingredients, paracetamol and
pseudoephedrine.

A.3. Analysis of pharmaceutical solution

The potential of DeSSI-MS to analyze pharmaceutical solutions with absolutely no
sample preparation or pre-separation was examined by analyzing a pharmaceutical
solution (Hairway®) containing minoxidil (50 mg mlY) as the active ingredient. Other
constituents include ethanol, propylene glycol and purified water. One ul of the sample
was placed on Teflon-coated glass slide, left to dry under ambient conditions and
subsequently analyzed by DeSSI-MS using acetonitrile as the spraying solvent at a

flow rate of 30 yl min** and nitrogen backpressure of 6 bar. In Figure A.3-1. Mass

spectrum obtained in the positive ion mode by DeSSI-MS analysis of Hairway® pharmaceutical solution.

Inset is shown the structure of the active ingredient, minoxidil.

, the positive ion mass spectrum obtained is shown. Clear signals for the protonated
minoxidil ion (m/z 210.1) and the protonated dimer (m/z 419.1) were observed. Also,
the Na* adducts of the dimer and trimer were also detected with m/z 441.0 and 649.8,

respectively.
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Figure A.3-1. Mass spectrum obtained in the positive ion mode by DeSSI-MS analysis of Hairway®
pharmaceutical solution. Inset is shown the structure of the active ingredient, minoxidil.

A.4. Mass spectra of C. reinhardtii cells using different

spraying solvents
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Figure A.4-1. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode obtained when
spraying C. reinhardtii cells with ACN:DMF 1:1 viv.
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Figure A.4-2. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF.
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Figure A.4-3. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with THF.
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Figure A.4-4. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with ACN.
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Figure A.4-5. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with H20.
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Figure A.4-6. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with Acetone.
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Figure A.4-7. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with Ethanol.
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Figure A.4-8. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with CHCls.
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Figure A.4-9. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with Methanol.
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Figure A.4-10. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode

obtained when spraying C. reinhardtii cells with ACN:Ethanol 1:1 viv.
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Figure A.4-11. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with Methanol:CHClIz 1:1 v/v.
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Figure A.4-12. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with ACN:CHClz 1:1 v/v.

THF:H,0 (1:1)

100 663.3
1A

7344

NL: 8.71E3

80

60

736.4
758.4 9342

7722 7845 8942 9201
8093 8505  889.0 [900.2

40

5151

529.0 943.4 960.1 9943

553.3 607.1

585.3

20 5

0 7835

100 1B NL: 9.89E3

Relative Abundance

80
60 -

794.5
40

629.1

T T I '

20

75009 566.4 586.8 600.0 8604 8930 8152 94209 9645 gg1.3

550 600 650 700 750 800 850 900 950 1000
miz

Figure A.4-13. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with THF:H20 1:1 v/v.
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Figure A.4-14. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF:CHClIsz 1:1 v/v.
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Figure A.4-15. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF:Methanol 1:1 viv.

DMF:THF (1:1)

100 - 7345
1A NL: 2.05E4
80 -
60 - 7325
1 7365
40
1 750.3
° b 7665 8093 933
E 20 - 7105 768.3 8111
8 1 536.0 833.2 9163 g374
§ ] 593.0 6150 629.1 gee3 7024 8712 969.1 gga 4
H] i : Ml y
2 l N A A ot ki b b 22
3 0
@ 100 - 7935 i
£ 1B NL: 1.48E5
K] ]
80
60 -
40 -
819.5
795.
20 rira 955 |oo0a
1 613.1 6271 7213 g 7614 N 8473
0~ N . b, A L,
e B e B L i e e B
550 600 650 700 750 800 850 900 950 1000

mfz

Figure A.4-16. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF:THF 1:1 v/v.
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Figure A.4-17. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF:ACN:H20 1:1:1 viv.
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Figure A.4-18. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF:H20 1:1 v/v.
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Figure A.4-19. DeSSI-MS spectrum in the positive (A) and negative (B) ion mode
obtained when spraying C. reinhardtii cells with DMF:Ethanol 1:1 viv.
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A.5. DeSSI-MS and ESI-MS comparison of spectra obtained

from C. reinhardtii cells
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Figure A.5-1. Negative ion mode spectra of C. reinhardtii cells obtained by A) DeSSI-MS using ACN/DMF
1:1 as the spraying solvent, B) ESI-MS using 80 % acetone as the extraction solvent and C) ESI-MS
using ACN/DMF 1:1 as the extraction solvent lons with m/z 613-630 were also present in the ESI-MS
spectrum with ACN/DMF 1:1 but in lower abundance, thus, they are not labeled in the figure.
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