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Building Efficient Network Traffic Monitoring
Systems Under Heavy Load

Antonis Papadogiannakis

Abstract

Network traffic monitoring is the basis for a multitude of systems, such as intru-
sion detection, network forensics, and traffic classification systems, which support
the robust, efficient, and secure operation of modern computer networks. How-
ever, building efficient network monitoring systems has become a challengingtask.
Emerging network monitoring applications become more demanding in terms of
memory and CPU resources, due to the increasingly complex analysis operations
they need to perform on the monitored traffic. Moreover, many network monitor-
ing applications need to analyze the captured traffic at higher protocol layers. This
need for reconstructing high-level entities results in increased applicationcomplex-
ity and reduced performance. At the same time, the volume of traffic that should be
analyzed in today’s network links increases significantly. This leads to a growing
demand for more resources to monitor the network traffic at line speeds, while it
is very likely that the deployed monitoring systems will become overloaded. Even
worse, attackers are able to intentionally overload a network monitoring system
to impede its correct operation and pass malicious activities over the network un-
detected, as the existing systems do not provide protection against such attacks.
Therefore, there is an increasing need for building efficient and robust network
monitoring systems that will provide intelligent overload control mechanisms, will
be able to defend against sophisticated attacks, and will utilize recent advances in
the available commodity hardware.

In this dissertation we address the above issues, and we propose new tech-
niques and frameworks to improve the performance, accuracy, and robustness of
network monitoring systems when processing high volumes of traffic using com-
modity hardware. Our thesis is that we need to enrich the lower layers of a net-
work monitoring system with intelligence based on flow-level information from the
transport layer, in order to build efficient network monitoring systems under heavy
load. First, we show that rearranging the captured packet stream based on source
and destination port numbers can lead to significant performance benefitsdue to
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improved memory access locality. We implement this technique, which we call
aslocality buffering, within a popular packet capture library, and we show its per-
formance improvements in common network monitoring applications. To improve
the accuracy of an overloaded Network-level Intrusion Detection System (NIDS),
we suggest to focus on the first few bytes of each connection, a technique we call
asselective packet discarding. Our evaluation shows that this approach can signif-
icantly improve the effectiveness of a NIDS under extreme load. To defend against
overload attacks, we proposeselective packet paging: a technique based on a two-
layer memory management system to prevent packet loss, and on a randomized
detection approach to find and isolate packets attacking the network monitoring
system. To fill the semantic gap we identified between monitoring applications,
which need to analyze network traffic at higher protocol layers, and monitoring
libraries, which deliver just raw IP packets, we present the design, implementation,
and evaluation of theStream capture library (Scap): a new multicore-aware frame-
work for stream-oriented network traffic monitoring. Scap captures and delivers to
user-level programs reassembled transport-layer streams, allowing fora wide va-
riety of performance optimizations, such as hardware-assisted stream truncation,
prioritized packet loss, and flexible stream reassembly. Finally, we show that
our ideas can be applied in other problems of network monitoring systems as well,
such as long-term network traffic recording and reducing the detection latency of
an energy-efficient NIDS. To build more efficient and secure networkmonitoring
systems, all these techniques we propose rely on the fact that monitoring applica-
tions are actually interested in a stream-oriented analysis.

Thesis Advisor: Professor Evangelos Markatos



Σχεδιασμός Αποδοτικών Συστημάτων για την
Εποπτεία Δικτύων Υψηλού Φόρτου

Αντώνης Παπαδογιαννάκης

Περίληψη

Η εποπτεία της κίνησης ενός δικτύου αποτελεί την βάση για μια πληθώρα
συστημάτων, όπως συστήματα ανίχνευσης επιθέσεων, μελέτης ηλεκτρονικών
εγκλημάτων, και συστήματα κατηγοριοποίησης της κίνησης του δικτύου. Αυτά
τα συστήματα συμβάλλουν σημαντικά στην αξιόπιστη, αποδοτική, και ασφαλή
λειτουργία των σύγχρονων δικτύων. ΄Ομως η δημιουργία αποδοτικών συστη-
μάτων για εποπτεία δικτύων έχει γίνει ένα αρκετά δύσκολο έργο. Οι σύγχρονες
εφαρμογές για εποπτεία δικτύων γίνονται πιο απαιτητικές σε πόρους συστη-
μάτων όπως μνήμη και κύκλοι του επεξεργαστή, εξαιτίας της ολοένα και πιο
περίπλοκης ανάλυσης που πρέπει να εφαρμόσουν στην κίνηση του δικτύου που
παρακολουθούν. Επιπλέον, πολλές από αυτές τις εφαρμογές πρέπει να αναλύ-
σουν την κίνηση του δικτύου σε πρωτόκολλα υψηλότερων επιπέδων. Αυτή η
ανάγκη για την ανασύνθεση μηνυμάτων και οντοτήτων σε υψηλότερα επίπεδα
κάνει τις εφαρμογές αυτές πολύ πιο περίπλοκες και μειώνει την απόδοσή τους.
Την ίδια στιγμή, ο όγκος της κίνησης που θα πρέπει να αναλυθεί από αυτές
τις εφαρμογές αυξάνει σημαντικά στα σημερινά δίκτυα. Αυτό οδηγεί σε μια
αυξανόμενη ζήτηση για περισσότερους πόρους για την ανάλυση της κίνησης
ενός πολύ γρήγορου δικτύου, ενώ είναι πολύ πιθανό ότι ένα τέτοιο σύστημα
εποπτείας θα υπερφορτωθεί. Επιπλέον, ένας κακόβουλος χρήστης μπορεί να
υπερφορτώσει σκόπιμα ένα σύστημα εποπτείας ενός δικτύου έτσι ώστε να εμ-
ποδίσει την σωστή λειτουργία του και να περάσει απαρατήρητες κακόβουλες
δραστηριότητες μέσω αυτού του δικτύου, καθώς τα υπάρχοντα συστήματα δεν
παρέχουν προστασία εναντίον τέτοιων επιθέσεων. Επομένως, υπάρχει μια αυξ-
ανόμενη ανάγκη για την σχεδίαση και υλοποίηση αποδοτικών και εύρωστων
συστημάτων εποπτείας δικτύων τα οποία θα μπορούν να παρέχουν έξυπνους
μηχανισμούς για περιπτώσεις υπερφόρτωσης, θα είναι σε θέση να αμυνθούν
απέναντι σε εξελιγμένες επιθέσεις, και θα μπορούν να αξιοποιούν αποδοτικά τις
δυνατότητες που προσφέρει το hardware.
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Σε αυτή τη διατριβή αντιμετωπίζουμε τα παραπάνω προβλήματα, και προ-
τείνουμε νέες τεχνικές και συστήματα για την βελτίωση της απόδοσης, της
ακρίβειας και της αξιοπιστίας συστημάτων εποπτείας δικτύων όταν αυτά επεξ-
εργάζονται μεγάλο όγκο κυκλοφορίας χρησιμοποιώντας εξοπλισμό χαμηλού
κόστους και ευρείας χρήσης. Η θέση μας είναι ότι για να φτιάξουμε αποδοτικά
συστήματα εποπτείας δικτύων που έχουν πολύ μεγάλο φόρτο πρέπει να εμ-
πλουτίσουμε τα χαμηλότερα επίπεδα του συστήματος με ευφυΐα που βασίζεται σε
πληροφορίες από το επίπεδο μεταφοράς (transport layer).Αρχικά, δείχνουμε ότι
η αναδιάταξη της ροής των πακέτων με βάση τους αριθμούς θύρας (port numbers)
μπορεί να βελτιώσει σημαντικά την απόδοση λόγω της βελτιωμένης τοπικότη-
τας στις προσπελάσεις μνήμης. Υλοποιήσαμε αυτήν την τεχνική, την οποία
ονομάσαμε locality buffering, μέσα σε μια δημοφιλή βιβλιοθήκη για εποπτεία ενός
δικτύου, και δείχνουμε την βελτίωση της απόδοσης που προσφέρει σε τυπικές
εφαρμογές εποπτείας δικτύων. Για να βελτιώσουμε την ακρίβεια ενός συστή-
ματος ανίχνευσης δικτυακών επιθέσεων που είναι υπερφορτωμένο, προτείνουμε
να εστιάσουμε στα πρώτα bytesτης κάθε σύνδεσης όταν το σύστημα έχει πολύ
μεγάλο φόρτο, μια τεχνική που αποκαλούμε ως επιλεκτική απόρριψη πακέτων.
Τα αποτελέσματά μας δείχνουν ότι αυτή η προσέγγιση μπορεί να βελτιώσει
σημαντικά την αποτελεσματικότητα ενός συστήματος ανίχνευσης δικτυακών
επιθέσεων σε περιπτώσεις πολύ μεγάλου όγκου δεδομένων. Για να αμυνθούμε
ενάντια σε επιθέσεις που υπερφορτώνουν σκόπιμα το σύστημα, προτείνουμε μια
νέα τεχνική που ονομάσαμε επιλεκτική σελιδοποίηση πακέτων. Αυτή η τεχνική
βασίζεται σε ένα σύστημα διαχείρισης μνήμης δύο επιπέδων για να αποτρέψει
την απώλεια πακέτων, και σε μια μέθοδο ανίχνευσης αυτών των επιθέσεων που
χρησιμοποιεί τυχαιότητα ώστε να εντοπίσει και να απομονώσει τα πακέτα που
επιτίθενται στο σύστημα. Επίσης, εντοπίσαμε ένα κενό μεταξύ του τι χρειάζον-
ται οι εφαρμογές εποπτείας ενός δικτύου και του τι προσφέρουν τα συστήματα
που υπάρχουν σήμερα: ενώ οι εφαρμογές πρέπει να αναλύσουν την κίνηση του
δικτύου σε υψηλότερα πρωτόκολλα, οι υπάρχουσες βιβλιοθήκες παρέχουν απλά
IP πακέτα. Για να καλύψουμε αυτό το κενό, παρουσιάζουμε τον σχεδιασμό, την
υλοποίηση και την αξιολόγηση της βιβλιοθήκης Scap (Stream capture library). Η
Scapπαρέχει ένα καινούργιο frameworkμε εγγενή υποστήριξη για συστήματα
με πολλούς πυρήνες φτιαγμένο για την ανάλυση της κίνησης ενός δικτύου σε
υψηλότερα πρωτόκολλα και βασισμένο στην προγραμματιστική αφαίρεση της
ροής (stream).΄Ετσι, η Scapδίνει στις εφαρμογές την κίνηση ενός δικτύου σε
ανακατασκευασμένα μηνύματα στο επίπεδο μεταφοράς (transport layer),αντί σε
απλά IP πακέτα, επιτρέποντας έτσι πολλές βελτιώσεις στην απόδοση. Επίσης
προσφέρει καινούργιες δυνατότητες, όπως περικοπή του μεγέθους μιας ροής με
την βοήθεια της κάρτας δικτύου, ορισμός προτεραιοτήτων στις ροές και ευέ-
λικτη ανασύνθεση των πακέτων σε μηνύματα υψηλότερων επιπέδων. Τέλος,
δείχνουμε ότι οι ιδέες μας μπορούν να εφαρμοστούν και σε άλλα προβλήματα
σχετικά με την εποπτεία δικτύων, όπως είναι η μακροχρόνια καταγραφή της
κίνησης και η μείωση του χρόνου ανίχνευσης δικτυακών επιθέσεων σε ένα
σύστημα με χαμηλή κατανάλωση ενέργειας. Οπότε, για να φτιάξουμε πιο
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αποδοτικά και πιο ασφαλή συστήματα εποπτείας, όλες οι παραπάνω τεχνικές
που προτείνουμε βασίζονται στο γεγονός ότι οι εφαρμογές ενδιαφέρονται τελικά
να αναλύσουν την κίνηση του δικτύου με βάση τις συνδέσεις που υπάρχουν σε
υψηλότερα πρωτόκολλα.

Επόπτης: Καθηγητής Ευάγγελος Μαρκατος
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1
Introduction

Ensuring the correct and secure operation of Internet applications continues to be a
significant challenge. Along with the phenomenal growth of the Internet, thevol-
ume and complexity of Internet traffic is constantly increasing. Emerging highly
distributed applications, such as media streaming, cloud computing, and peer-to-
peer file sharing systems, demand for increased bandwidth and improved perfor-
mance. Moreover, the number of mobile devices that are connected to the Internet
increases tremendously every day. At the same time, the number of attacks against
Internet-connected systems continues to grow at alarming rates. Besides the ever-
increasing number and severity of security incidents, we have also been witnessing
a constant increase in attack sophistication.

As networks grow larger and more complicated, with more applications de-
ployed over the Internet, and as security incidents increase and become more so-
phisticated, effective network monitoring is becoming an essential operationfor
understanding, managing, and improving the performance and security ofmod-
ern computer networks. For example, Network-level Intrusion Detection Systems
(NIDS) inspect network traffic (both packet headers and payloads)to detect known
attacks [113, 124], pinpoint compromised computers [61], and even identify pre-
viously unknown (i.e., zero-day) threats [116, 133]. Similarly, traffic classifica-
tion tools inspect network packets (both headers and payloads) to identifydifferent
communication patterns and spot potentially undesirable traffic such as file shar-
ing, unsolicited packets, and background radiation [1, 12, 79]. Traffic recording
systems are used to store network packets for long-term periods to allow for net-
work forensics analysis, data loss detection, and other types of retrospective analy-
sis [62,83,89,108]. Network monitoring applications are also being used to iden-
tify attack sources, to trace packet trajectories, to collect data that facilitatetraffic
engineering, and to find network operation parameters.

1
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Therefore, network traffic monitoring is getting increasingly important for a
large set of Internet users and service providers, such as ISPs, NRNs, computer
and telecommunication scientists, security administrators, and managers of high-
performance computing infrastructures. Installing monitoring and security systems
at the network level has certain advantages compared to host-based installations:
it is much easier to deploy, manage, and update a single monitoring or security
middlebox for the whole network, instead of host-based monitoring or security
systems at each client in a large network. Thus, there is a large market today
focused on network monitoring, network surveillance, and network security. At
the same time, there is a growing interest by researchers for this area, to improve
the performance and accuracy of such systems, given the very dynamicnature of
the network traffic, network applications, and cyber attacks.

Network monitoring is the capture and analysis of the network traffic of an
organization. Typically, network monitoring systems are deployed close to the
access links that connect an organization to Internet, so that they have awide view
of the organization’s network traffic. The base of a network monitoring system is
a packet capturesubsystem, which is responsible to capture the traffic that passes
through the monitored links and deliver it to the monitoring applications for traffic
analysis. Such systems typically operate in two different modes: (i) inpassive
mode, where a separate copy of each packet is captured and analyzedin parallel
with actual network’s operation, or (ii) ininline mode, where traffic is analyzed
while passing through the network. In the inline mode, the monitoring systems
are able to interfere in network’s operation and packet forwarding. For example,
NIDS [113,116,124], traffic classification systems [1,12,79], and NetFlow export
probes [3,73] are passive monitoring systems, while Intrusion Prevention Systems
(IPS) [30,114,139] and firewalls [100] operate inline.

In this dissertation, we study the field of network traffic monitoring: we identify
the limitations of existing approaches, we show the necessity for building efficient
network monitoring systems, we discuss the main challenges towards this goal, and
we propose techniques to improve the state-of-the-art works in this area.We design
and implement our proposed approaches within existing monitoring frameworks
and tools that are widely used by many applications today. We also implement new
frameworks for network traffic monitoring aiming to improve runtime performance
and application development, in order to explore and evaluate the benefits ofour
approaches and make them available to the network monitoring community.

1.1 The Need for Efficient Network Traffic Monitoring

While network traffic monitoring was traditionally used for relatively simple net-
work measurement and analysis applications, or just for gathering packet traces
that are analyzed off-line, in recent years it has become vital for a wideclass of
more CPU and memory intensive applications, such as intrusion detection sys-
tems [113,116,124], accurate traffic categorization [1,12,79], and NetFlow export
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probes [3,73]. Many of these applications need to inspect both the headers and the
whole payloads of the captured packets, a process widely known asdeep packet
inspection(DPI) [60]. For instance, measuring the distribution of traffic among
different applications has become a difficult task. Many applications todayuse
dynamically allocated ports, or operate above popular protocols like HTTP.There-
fore, they cannot be simply identified based on a well known port number.Instead,
protocol parsing and several other heuristics, such as searching for an application-
specific string in the packets payload [1, 12, 79], are commonly used. Similarly,
intrusion detection systems, such as Snort [124] and Bro [113], need to be able to
inspect the payload of network packets in order to detect at real time malware and
intrusion attempts. Threats are identified using attack “signatures” that are evalu-
ated by advanced pattern matching algorithms, regular expression matching,and
other types of complex analysis on the captured packets.

To make meaningful decisions, these monitoring applications usually need to
analyze network traffic at the transport layer and above [110]. For instance, NIDSs
reconstruct the transport-layer data streams to detect attack vectors spanning multi-
ple packets, and perform traffic normalization to avoid evasion attacks [41,66,119].
Similarly, several traffic classification applications are also based on the processing
of each transport-layer stream. However, the existing frameworks for building net-
work monitoring applications provide just raw IP packets. Thisgapbetween what
applications need and what current frameworks provide leads to increased code
complexity, to increased development time, and, most importantly, to increased
packet processing time due to the further operations needed to reassembleIP pack-
ets into higher level entities.

The complex analysis operations of such demanding applications incur an in-
creased number of CPU cycles spent on the processing of every captured packet.
Consequently, this reduces the overall processing throughput that theapplication
can sustain without dropping incoming packets. At the same time, as the speed of
modern network links and their traffic volume increase, there is a growing demand
for more efficient packet processing using commodity hardware that will be able
to keep up with higher traffic loads. Also, the increased processing time of each
packet may lead to increased queuing delays and to an overall increase inthe la-
tency of the monitoring applications. To allow for almost real-time network traffic
monitoring, and for timely automatic responses against malicious activities that are
detected in the monitored network, a low latency should be also guaranteed bythe
monitoring systems.

Moreover, all these network monitoring applications have always been de-
pended on an efficient and reliable underlying packet capture mechanism. How-
ever, such network traffic monitoring systems are now called to operate in anunpre-
dictable and sometimes hostile environment where transient traffic and malicious
attackers may easily overload them up to the point where they cease to function
correctly [109,135]. For instance, attackers may send crafted packets that exploit
algorithmic complexity attacks to intentionally overload a NIDS [135]. Unfor-
tunately, traditional packet capturing systems, have not been designed for such
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hostile environments and do not gracefully handle overhead conditions. For ex-
ample, when faced with overload conditions and full packet queues, mostpacket
capturing systems start to discard all incoming packets for as long as the overload
persists and until it resolves itself. Thus, malicious packets may pass through the
overloaded network monitoring system undetected with high probability, equal to
the percentage of packet loss.

To keep up with higher traffic loads, more complex analysis, overload periods,
and overload attacks, network operators can buy and use more hardware resources
for network monitoring purposes. However, this will significantly increasethe cost
and the energy consumption of these monitoring systems. Contrary, we wouldlike
to build efficient network traffic monitoring systems that will be able to utilize the
recent advances in today’s commodity hardware, such as modern features of Net-
work Interface Cards (NICs) and multicore processor architectures.At the same
time, we need to achieve high performance and robustness for these systems: no
packet loss due to extreme processing or traffic load, low processing latency, grace-
ful response to overload conditions, and resilience against attacks targeting these
network monitoring systems.

1.2 Challenges and Problem Statement

There are many research works proposing techniques, algorithms, andsystem de-
signs to improve network monitoring and network-level intrusion detection sys-
tems. Moreover, there are several open source and commercial solutions for net-
work monitoring and network security. We review related works in Chapter3.
However, we see several shortcomings of the existing network monitoring libraries
and tools, and we show the need for improvements along these directions. Insum-
mary, we consider the following main challenges for building efficient network
traffic monitoring systems:

• Challenge 1: Traffic monitoring systems should be able to handlemore
resource-intensive monitoring applicationsthat spend significantly more pro-
cessing time on each captured packet, due to the more complex operations
they need to perform.

• Challenge 2: Traffic monitoring systems should be able to handlehigher
traffic throughput, as the speed and volume of network links tend to increase
rapidly.

• Challenge 3: Traffic monitoring systems should be able to operate even
when the system is overloadedwith a best effort approach. That is, when
there are no available CPU cycles to process all the captured traffic at thede-
sirable level, the monitoring system should have an overload control to focus
on the most important tasks or traffic subsets, and minimize the impact of the
overload on the overall application’s performance and accuracy. We believe
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that it is very difficult to ensure that such overload situations will never occur,
even with very careful provisioning. Thus, as the traffic load increases and
monitoring applications becoming more resource demanding, the core of a
network monitoring system should have mechanisms for graceful responses
to such overload conditions.

• Challenge 4: Traffic monitoring systems should be able to tolerateevasion
attempts, such as algorithmic complexity or denial of service attacks try-
ing to intentionally overload the system [33, 34, 109, 119, 135], or evasion
attempts based on TCP segmentation [27, 41, 66, 150]. Thus, we need to
develop mechanisms to detect and mitigate attacks against the monitoring
systems, so that they will be able to operate correctly under the presence
of adversaries and evasion attempts, even in case of unknown attacks and
vulnerabilities that have not yet been discovered.

• Challenge 5:Traffic monitoring systems should have alow latencyto allow
for timely automatic reactions when malicious activities are detected. As
monitoring applications operate at real time, a low latency is necessary to
guarantee a responsive system for successful network managementor attack
prevention.

• Challenge 6: Many applications need to monitor network traffic athigher
protocol layers, such as transport-layer streams or application-specific proto-
cols. On the other hand, existing libraries for the development of monitoring
applications provide just raw IP packets. This leads to increased complexity
and runtime overhead for reassembling packets into higher-level entities.

• Challenge 7: Traffic recording systems need tostore a high traffic volume
for a long period using limited storagefor retrospective analysis. Thus, they
need to increase the retention period by reducing the storage needed, e.g.,
using effective compression techniques or by selectively storing the most
useful traffic.

• Challenge 8: Traffic monitoring systems should use moderncommodity
hardwarein order to be cost-effective and easy to deploy. Thus, they should
utilize in the best possible way the recent advances in commodity hardware,
such a features of modern NICs and multicore processor architectures.

• Challenge 9: Frameworks and systems that provide support for network
monitoring applications should offerperformance optimizations that are trans-
parentfrom the programmers and network operators.

In this dissertation we propose and we study approaches that try to address all
the above challenges. Given the necessity for efficient network trafficmonitoring,
we aim to design and build new systems and frameworks, or improve the existing
ones, to facilitate the development of efficient network monitoring applications, by
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improving their runtime performance and their security in a transparent way from
the programmer. The proposed frameworks will run over commodity hardware,
utilizing recent advances and features offered by the hardware vendors, and over
general purpose operating systems that are typically used today for deploying such
applications. Moreover, we want to design monitoring systems that will be able
to operate under heavy processing and traffic load. They should be able to handle
even the cases when the CPU cycles needed by a monitoring application to ana-
lyze the incoming traffic are more than the available cycles in the hardware used.
This means that we need to add domain-specific intelligence within the monitoring
libraries and systems to focus on the most interesting traffic, or perform themost
critical processing, when the available CPU cycles are not enough to process all
traffic at the same level.

1.3 Proposed Approaches

To address the above challenges, we aim to apply new techniques within the sys-
tems and frameworks that can be used by application developers for network traffic
monitoring, and explore their efficiency and performance benefits. The techniques
we propose rely on domain-specific knowledge of network monitoring applica-
tions. We believe that in order to make the lower layers of the monitoring systems
more efficient under heavy load, we need to understand the needs of theapplica-
tions at the higher layers. Thus, we add the proper functionality in the underlying
libraries based on these observations to provide performance improvements and
other features and optimizations.

In summary, in this dissertation we propose the following approaches:

• Locality Buffering : First, we explore how we can improve the memory ac-
cess locality in network monitoring applications. To achieve that, we need
to identify common memory access patterns in different monitoring appli-
cations and then generalize these patterns so that the underlying system can
exploit them to improve data and code locality. We found that reordering
the captured packet stream by clustering packets with the same port number
before they are delivered to the application leads to improved code and data
locality in a wide class of monitoring applications. This is because these
applications keep state per each transport-layer stream or per each L7 appli-
cation, while sorting packets based on port numbers tends to group together
packets of the same stream and same L7 application. Improving the memory
access locality results in significantly less cache misses, and thus to an over-
all performance improvement. We implemented this packet reordering tech-
nique, which we call aslocality buffering, within the libpcap packet capture
library [92]. This way, existing monitoring applications can transparently
benefit from the reordered packet stream without code modifications.
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• Selective Packet Discarding: Next, we explore ways to improve the behav-
ior of a network monitoring system that is overloaded for a long time period.
We use NIDS as a case study of a popular network monitoring application.
To improve the accuracy of an overloaded NIDS, we propose to focus on
the most important packets, i.e., the packets that are more important for at-
tack detection. We designed, implemented, and evaluatedselective packet
discarding (SPD): a technique based on the above idea. In our research we
found that the first few packets of each connection, i.e., of each transport-
layer stream, are more likely to contain an attack pattern. Also, these packets
are more useful for the correct operation of the NIDS. Therefore, incases of
extreme load, the NIDS can benefit by proactively discard the less important
packets, i.e., the packets towards the end of large streams in our case. This
way, we can avoid random and uncontrolled packet loss by the underlying
packet capture subsystem, part of which typically relies within the operating
system’s kernel.

• Selective Packet Paging: To tolerate attacks trying to overload a network
monitoring application, like algorithmic complexity or other denial of ser-
vice attacks, we proposeselective packet paging (SPP). Selective packet
paging proposes (i) to add a second layer into memory management, so that
excess packets will be stored to disk and will not be dropped when memory
buffers are full, and (ii) to detect the packets that take too long to be pro-
cessed, thus delaying the monitoring system, using a randomization-based
detection approach, and push only these attack packets to secondary storage,
while processing them with lower priority. We implemented this technique
within libpcap, and we showed that it is able to make a network monitoring
system resistant to any overload attack or any other overload situation.

• Stream-oriented traffic capture and analysis:We also identify a gap be-
tween existing monitoring libraries and applications’ needs: although there
is a need to monitor network traffic at the transport layer and beyond, exist-
ing libraries deliver only raw packets. To address this issue and fill this gap,
we propose theStream capture library (Scap): the first network monitoring
framework built from the ground up for stream-oriented traffic processing.
Based on a kernel module that directly handles flow tracking and TCP stream
reassembly, Scap delivers to user-level applications flow-level statisticsand
reassembled streams by minimizing data movement operations and discard-
ing uninteresting traffic at early stages, while it inherently supports paral-
lel processing on multicore architectures, and uses advanced capabilitiesof
modern network cards.

• Other Applications: Finally, we show that we can use the same principles
to develop techniques for improving two other problems in network mon-
itoring systems as well. First, we focus on reducing the detection latency
of an energy-efficient NIDS. This is necessary, as we found that thestate-
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of-the-art approaches for low-power design, such as frequencyscaling and
core deactivation, leads to a disproportionate increase in packet processing
and queuing times, which has a negative impact on the detection latency and
impedes a timely reaction of a NIDS to the incoming attacks. To address
this issue, we present LEoNIDS: a NIDS architecture that providesboth low
power consumptionand low detection latency at the same time, by iden-
tifying the packets that are more likely to carry an attack and giving them
higher priority so as to achieve low attack detection latency. Then, we ex-
plore ways to store raw network traffic for long-term periods using constant
storage, which is extremely beneficial for a multitude of monitoring and se-
curity applications. Towards this goal, we proposeRRDtrace: a technique
for storing full-payload packets for arbitrary long periods using fixed-size
storage. RRDtrace divides time into intervals and retains a larger number
of packets for most recent intervals. As traffic ages, an aging daemon is
responsible for dynamically reducing its storage space by keeping smaller
representative groups of packets using the proper sampling strategy.

1.4 Thesis and Contributions

Thesis statement:Building network traffic monitoring systems based on the transport-
layer stream abstraction, instead of the IP packet abstraction, can make them resis-
tant to overloads and improve their performance.

We intent to show that the above statement applies to modern network moni-
toring applications. Towards this goal, in this dissertation we make the following
five main contributions:

• Contribution 1: We presentlocality buffering: a technique that can signif-
icantly improve the memory access locality in network monitoring applica-
tions by transparently reordering the captured packet stream based onport
numbers. The improved code and data locality leads to less processing time
per packet, and thus to increased processing throughput, due to the reduced
number of CPU cache misses.

• Contribution 2: We show that the accuracy of an overloaded NIDS can be
significantly improved by focusing on the most important packets for attack
detection, which are the first few packets of each connection. Our approach,
calledselective packet discarding, monitors the system load and proactively
discards packets towards the end of long flows based on a per-flow cutoff
when the system becomes overloaded. This way, random and uncontrolled
packet loss is avoided and the NIDS is able to detect almost all the attacks
even under extreme load conditions.

• Contribution 3: To tolerate against overload attacks we proposeselective
packet paging: a technique based on (i) a two-layer memory management
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system, which stores packet to secondary disk storage to ensure that no
packet will be lost under overload, and (ii) a randomization-based detec-
tion approach, which finds and isolate any crafted packets that slowdownthe
monitoring system. We show that selective packet paging is able to tolerate
any overload attack in a generic and effective way.

• Contribution 4: We identify a gap between monitoring applications and li-
braries: while applications are interested to analyze network traffic at trans-
port layer and beyond, packet capture libraries provide just raw IP pack-
ets. This gap leads to increased application complexity and reduced per-
formance. To address this issue, we introduce theStream capture library
(Scap): the first network monitoring API build from stream-oriented traffic
capture and analysis. Scap provides the user-level application with reassem-
bled transport-layer streams, with inherent multicore support and a varietyof
features, such as subzero copy for stream truncation, prioritized packet loss
for overload control, and flexible stream reassembly.

• Contribution 5: We show that our ideas can be applied to other problems
of network monitoring systems, such as reducing the detection latency of
an energy-efficient NIDS and store network traffic traces for long-term pe-
riods using fixed-size storage. To reduce the detection latency of a power-
proportional NIDS, we identify the packets with higher probability to contain
an attack and assign them higher priority to achieve fast detection. For long-
term network traffic recording we choose to sample less traffic as traffic gets
older. This way, we focus on most recent traffic while still keeping samples
of past traffic. To select representative samples of older traffic, we explore
different sampling strategies that fit to each monitoring application, such as
packet sampling, flow sampling, or sampling the number of bytes we keep
from the beginning of each flow.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter2 provides some back-
ground information about network traffic monitoring systems and applications, and
Chapter3 presents related work in the broader area of network monitoring systems.

In Chapter4 we demonstrate how the memory access locality of a network traf-
fic monitoring application can be significantly improved by properly rearranging
the packet stream, based on the source and destination port numbers. Wepresent
the design, implementation and evaluation oflocality buffering: a technique that
exploits this property to increase code and data memory access locality and signif-
icantly reduce L2 cache misses, resulting in an overall performance improvement
in network monitoring systems.

In Chapter5 we show that under extreme overload conditions, when packets
will be unavoidably dropped by the system, a NIDS can improve its accuracyby
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carefully selecting the packets that will be pro-actively dropped. To this end, we
introduceselective packet discarding: an adaptive technique that pro-actively drops
the less important packets for attack detection when an overload is identified by
continuously monitoring the system’s performance.

Chapter6 introducesselective packet paging: an approach for tolerating over-
load attacks, such as algorithmic complexity attacks, against network monitoring
systems. Selective packet paging combines a two-layer memory management sys-
tem and a detection technique for packets aiming to slowdown the system. We
present the design, implementation, and evaluation of selective packet paging un-
der overload attacks.

In Chapter7 we explain the need for efficient traffic capture and processing
at the transport layer. To accommodate this need we propose theStream capture
library (Scap): a stream-oriented framework for high-performance capturing and
processing network traffic at the transport layer. We show that buildinga traffic pro-
cessing framework using abstractions from transport layer allows for improved per-
formance, reduced application development complexity, and many features, such
as prioritized packet loss and subzero copy.

In Chapter8 we explore how we can apply similar approaches in two other
problems of network monitoring systems. First, we identify an energy-latency
tradeoff for network-level intrusion detection systems. To resolve this tradeoff we
propose to process the packets that are more likely to carry an attack with higher
priority. We present the design, implementation and evaluation ofLEoNIDS: a
low-energy and low-latency NIDS, based on the above idea. Then, we study the
problem of long-term network traffic recording with fixed-size storage.To allow
the archiving of network traffic for long time periods we proposetraffic aging, a
mechanism that keeps more traffic for the most recent periods, and we implement
this approach in a tool calledRRDtrace. Also, we study how the traffic should
be sampled as it gets older to match the requirements of retrospective network
processing applications.

Finally, in Chapter9 we summarize the contributions and results of this disser-
tation, and we outline research directions that can be explored in future work.
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2
Background

In this chapter we give background information about network traffic monitoring
systems and applications.

2.1 Network Traffic Monitoring Systems

Network monitoring applications analyze the network traffic by capturing andex-
amining individual packets passing through the monitored link, which are thenana-
lyzed using various techniques, from simple flow-level accounting, to fine-grained
operations like deep packet inspection. Network traffic monitoring systems are
usually deployed close to the access link with which the monitored network is con-
nected to the Internet. This way, the monitoring applications have a broad view
of the network traffic. Depending on whether the monitoring systems operateon
separate copies of each packet, or whether they operate within the path ofthe net-
work, where packets are routed from source to destination, the networkmonitoring
systems are divided intopassiveandinline.

Network monitoring applications run either in specialized hardware, or in gen-
eral purpose commodity hardware. In this work we mostly consider the second
case, although the same techniques we propose can be applied to monitoring sys-
tems running in specialized hardware as well, to address the same problems. Also,
monitoring applications typical run over general purpose operating systems: they
rely on apacket capturesubsystem, part of which is usually implemented within
the operating system kernel. As these operating systems are not optimized for
network monitoring, their performance for packet capture is usually not optimum.
This is because several data copies are required to transfer each captured packet
from kernel to user space, along with an increased number of context switches

13
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between kernel and user level processes, and increased processing time spent in
kernel and interrupt handling. Therefore, several approaches have been proposed
to reduce this overhead, which is unnecessary overhead for systems used specifi-
cally for network monitoring [58].

Applications are often interested in monitoring just a subset of the total pack-
ets passing through the network. Thus,packet filteringoperation is performed to
efficiently discard the uninteresting packets, usually within the operating system
kernel, to avoid unnecessary packet copies to user level. Also, in several cases
monitoring systems cannot capture and process all the packets of a network link.
In this cases, packet sampling techniques are commonly used. However, such tech-
niques are not adequate for all network monitoring and security applications. An-
other way to process a high traffic load is to distribute the packets among multiple
CPU cores or multiple servers. In the rest of this section we give more information
about packet capture systems, packet filtering, packet sampling, and distributed
packet processing approaches.

2.1.1 Packet Capture Systems

The packet capture process is the journey of each packet from the wire until it is de-
livered to the passive monitoring application. First we briefly describe the regular
packet capture process in Linux, and then we describe state-of-the-art techniques
for improving the performance of packet capture.

Packet Capture in Linux

Most passive monitoring applications are built on top of libraries for generic packet
capturing. The most widely used library for packet capturing islibpcap [92]. In
Linux, libpcap is based on PFPACKET socket for packet capture. Figure2.1de-
picts the whole process of packet reception in Linux. Packets travel from the Net-
work Interface Card (NIC) through the kernel to reach the user levelapplication.
In Linux, this is achieved by issuing an interrupt for each packet or an interrupt
for a batch of packets [98,125]. Then, the kernel hands the packets over to every
socket that matches the specified BPF filter [91]. In case that a socket buffer be-
comes full, the next incoming packets will be dropped from this socket. Thus, the
size of the socket buffer affects the tolerance of a passive monitoring application in
short-term traffic or processing bursts. Finally, each packet is copiedto a memory
mapped buffer that is accessible by the user-level application.

The packet capture mechanism consists of three tasks: (i) the InterruptService
Routine (ISR) and (ii) the Soft Interrupt handler (Softirq) in kernel, and (iii) a user
level task that calls a system call to access the next packet from kernelthrough a
memory mapped buffer. There is a run time memory allocation from the interrupt
handler for the received packet and a further copy to a memory mapped buffer,
shared between kernel and user level. First, for each incoming packetthe NIC
issues an interrupt. The interrupt handler disables hardware interrupts, copies the
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FIGURE 2.1: Packet capture architecture in Linux

packet from NIC to newly allocated memory, enqueues it to an incoming queue,
issues a software interrupt, and then enables again interrupts. When the incoming
queue becomes full (i.e., reaches the high congestion level) new incoming packets
are being discarded from it, and thus from all the open sockets. Packetscan also
be dropped in NIC’s buffer when interrupts are disabled.

When the control of the system is passed to kernel, the software interrupthan-
dler runs. For PFPACKET sockets, a software interrupt handler function is called
for each packet and each open PFPACKET socket. The software interrupt handler
dequeues each packet from the incoming queue and calls a function for packet fil-
tering for each open PFPACKET socket. Packet filtering in Linux is very similar
to BPF filtering [91]: if a filter has been assigned to an open PFPACKET socket,
each packet will be checked against it. If the packet does not match the filter, it will
be discarded from this socket and will not be enqueued in the socket buffer queue.
Else, if the packet matches the BPF filter, it is enqueued in the socket’s receive
queue. As the actual packet data does not change by any socket inside the kernel,
they are not copied in each socket’s buffer. Only the packet’s metadata are copied
in each buffer and a pointer is used to indicate the actual packet, which is shared
by all PFPACKET sockets that enqueue this packet. Before adding each packetto
a socket’s receive buffer, the software interrupt handler checks whether this queue
if full. In case it is full, the packet is dropped from this socket’s queue. The size
of a socket’s queue can be set by the applications. The finall step of the capture
process is fromlibpcap. It reads each packet from linux kernel through an open
PF PACKET socket and a memory mapped buffer, shared between kernel and user
level.

In summary, the main problems that limit the performance of packet capture
in Linux are the following: (i) high interrupt service overhead per each packet,
(ii) kernel-to-user-space context switching, (iii) data copy and memory allocation
costs, and (iv) redundant protocol processing in kernel per eachpacket. Several
techniques have been proposed to deal with one or more of the above issues, in
order to improve the packet capturing process. We briefly mention some of them
in the remaining of this section.
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In order to avoid the kernel-to-user-space context switching and packet copies
from kernel to user space for each captured packet, a memory-mappedring buffer
is used to store packets. The general principle of memory-mapping is to allow
access from both kernel and user space to the same memory segment. The user
lever applications are then able to read the packets directly from the ring buffer,
thus avoiding a context switch to the kernel.

The ring buffer plays the same role as the socket buffer that we described ear-
lier. The kernel is capable of inserting packets captured by the network interface
into the ring buffer, while the user is able to read them directly from there. Inorder
to prevent race conditions between the two different processes, an extra header is
placed in front of each packet to ensure atomicity while reading and writing pack-
ets into the buffer. Whenever the processing of a packet is over, it is marked as
read using this header, and the position in which the packet is stored is considered
by the kernel as empty. The kernel uses anendpointer that points to the first avail-
able position to store the next arrived packet, while the user-level application uses
a start pointer that points to the first non-read packet. These two pointers guaran-
tee the proper operation of the circular buffer: The kernel simply iteratesthrough
the circular buffer, storing newly arrived packets on empty positions andblocks
whenever the end pointer reaches the last empty position, while the user applica-
tion processes every packet in sequence as long as there are availablepackets in
the buffer.

However, in Linux packet capture, packets are still copied from DMA allocated
memory to the memory mapped ring buffer by the software interrupt handler.Zero
copyapproaches can reduce data copy operations by sharing memory between dif-
ferent network stack layers within kernel and between kernel and user space.

To reduce interrupt load, some NICs issue a single interrupt for a groupof
packets instead for every packet received. To avoid interrupt overheads, polling
based operation instead of interrupts has been proposed. Polling savesCPU time
but increases the average receive latency. Moreover, periodically polling the device
for incoming packets instead of interrupts is dangerous for loosing packets in a
sudden burst or in high rates. Thus, the time period for polling is important in order
to ensure that packets will not be lost in the NIC’s queue. Furthermore, incase
of low rates, polling very often the NIC without having any packers arrived may
perform worse than interrupts. One solution is to try to guess the rate of incoming
packets, based on previous measurements, and adapt the polling time periodto
this rate. Also, a common technique is to switch from interrupts to polling and
backwards according to the incoming packet’s rate. For low rates, interrupts are
preferable while in high rates polling will lead to better performance. The NAPI
polling driver [125] is available in Linux kernel. At high packet rates, the DMA
buffer is polled to process the packets, thus interrupt service overhead and livelock
phenomena are avoided.
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Enhancing Packet Capture Performance

To improve the performance of packet capturing, several systems havebeen pro-
posed to replace PFPACKET: PFRING [37, 55], netmap [123], PFQ [18], and
PacketShader [65]. The common techniques used to overcome limitations of gen-
eral purpose operating systems on packet capture are: (i) memory pre-allocation
and re-use, (ii) parallel direct paths, (iii) memory mapping, (iv) zero-copy, (v)
batch processing, (vi) CPU, interrupt, and memory affinity, and (vii) aggressive
prefetching. These modifications are implemented in many different layers: NIC
drivers, operating system kernel, and user-level libraries.

One of the state-of-the-art system that was designed to replace PFPACKET in
order to improve packet capture performance is PFRING [37]. PF RING focuses
on bypassing packet copies and redundant protocol processing in Linux kernel for
passive monitoring interfaces, reducing the packet’s journey from the NIC to the
user application. To achieve this, it uses a ring buffer that is memory mmaped in
user space for storing the packets. Packets are copied by the NIC driver directly
from the device to the ring buffer, which is accessible from user level processes.
In case that a PFRING socket is bounded to a network device, no further protocol
processing will be done by the kernel, resulting in fewer CPU cycles spent per
packet. This approach assumes that NIC is used only for passive capturing, and its
packets cannot be used by any other socket expect PFRING sockets.

Utilizing Multicore Processors

To utilize multicore processors, packet capture libraries rely on NICs to split the
packets into multiple hardware queues. Many modern Ethernet cards support the
partitioning of the incoming receive packet queue (RX-queue) into several RX-
queues, one per each core. This modern hardware feature is calledReceive Side
Scaling (RSS)[75]. RSS uses a hash function on packet headers like IP addresses,
port numbers, and protocol number to assign each packet into one of thedifferent
hardware queues. This way, the NIC achieves a good enough load balancing based
on the hash function. Moreover, the traffic is balanced per-flow across the hardware
queues: packets belonging to the same connection will be directed to the same
queue, allowing for statefull inspection by accessing only a single RX-queue. To
exploit parallelism offered by multicore architectures, the system typically uses a
number of hardware queues equal to the number of the available CPU cores, and
assigns one packet queue at each core.

To match this level of parallelism and speed-up the packet capture process in a
multicore processor, the packet capture module in the operating system kernel need
to spawn one thread per each core that polls a respective RX-queue [55]. For exam-
ple, PFRING kernel module exposes a different queue to user-level applications,
to allow for multithreaded packet processing at user level.
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Using Specialized Hardware

Another possible solution to accelerate packet capturing is to use specialized hard-
ware optimized for high-speed packet capture. For instance, DAG monitoring
cards [2] are capable of full packet capture at high speeds. Contrary to commod-
ity network adapters, a DAG card is capable of retrieving and mapping network
packets to user space through azero-copyinterface, which avoids costly interrupt
processing. It can also stamp each packet with a high precision timestamp. A large
static circular buffer, which is memory-mapped to user-space, is used to hold arriv-
ing packets and avoid costly packet copies. User applications can directlyaccess
this buffer without the invocation of the operating system kernel.

When using DAG cards, many performance problems occurred in Linux packet
capturing can be eliminated, but at a price that is prohibitively high for many orga-
nizations. On the other hand, commodity hardware is always preferable and much
easier to find and deploy for network monitoring. In addition, specialized hardware
alone may not be enough for advanced monitoring tasks at high network speeds,
e.g., intrusion detection.

2.1.2 Packet Filtering

Packet filtering is a commonly used technique for data reduction, that is necessary
in monitoring systems due to limited processing and storage resources. Filteringis
the deterministic selection of packets based on their content. Each packet captured
by the monitoring network interface is matched against a set of rules in orderto
determine whether it is interesting for a particular application. Since the amountof
traffic traveling on a network segment, especially in the network core, can be huge,
filtering out irrelevant traffic is an essential step to reduce the demand in terms of
storage and processing power on the monitoring and analysis tools.

Filtering usually implies extracting relevant fields from each packet and using
their value to evaluate the rules. For example, packets from a given host or HTTP
packets can be selected using filtering. Packet filtering is a special case of packet
classification [64] that is used by various networking functions to group packets
with common properties and separate packets that need to be processed differently.

Many approaches have been proposed and implemented for in-kernel packet
filtering. High performance packet filtering is a very important issue in network
monitoring, since it is usually the first task performed by a monitoring application
in order to select the subset of the traffic it is interested in, and it has to be fast.
Therefore, implementing packet filtering as early as possible is necessaryfor dis-
carding the uninteresting packets at the first steps, avoiding further unnecessary
processing of these packet by the kernel layers. Thus, implementations inside the
OS kernel provides efficient packet filtering in this extent. Moreover, apacket
filtering technique has to perform fast and efficient rule matching in the network
packets, while it also has to be flexible and expressive enough to cover the applica-
tions needs in selecting the desirable portion of the traffic.
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A popular in-kernel packet filter is BPF [91]. BPF defines an assembly-like
language to perform comparisons between packet header fields and given values,
and complex combinations using such comparisons that compose a tree-based ex-
pression evaluation. In Linux, one BPF filter can be assigned to each PFPACKET
socket. This is usually perform during the initialization process of a monitoring
application. BPF filter evaluation in Linux is performed inside the kernel. Before
the software interrupt routine enqueues each packet to a socket buffer, the packet
is checked with the socket’s filter – if a filter has been assigned to this socket.In
order to evaluate the BPF filter, the kernel employs an optimized interpreter for the
assembly-like BPF filter language. Thus, packets not matching the filter are im-
mediately discarded before enqueued to the socket buffer and copied touser space.
Packets that matched the filter are copied to user space for further processing by the
applications. This makes the BPF filtering implementation efficient for improving
the packet capturing performance, so applications should utilize filtering whenever
it is possible to significantly improve their performance.

The packet filtering computation in case of BPF is fast due to the optimized
interpreter for the assembly-like BPF language which describe the filter. BPF fil-
tering language is expressive enough to support rules based on packet header fields
for the basic network protocols. Thus, it can support filters based on IP addresses,
port numbers, etc. However, BPF supports only stateless filtering (to keep its per-
formance high). Also, filtering based on payload inspection is not possible. Gen-
erally, there is a tradeoff between flexibility and performance in packet filtering, so
the proposed techniques either choose to focus in one of these two choices or try
to keep a good balance between them.

Dynamic Packet Filtering

Dynamic packet filteringrefer to on-line packet selection, where filtering criteria
may frequently change over time. When a monitoring application cannot fully
specify its criteria a priori, but the unknown part can only be determined atrun-
time, the filtering criteria have to be updated. For instance, filters that match the
traffic of peer-to-peer applications, FTP transfers at dynamically generated port
numbers, RTSP and other multimedia protocols, VoIP (SIP protocol), need tobe
updated with the dynamically negotiated port numbers. Also, NIDS may decide to
perform more expensive and deep packet analysis on suspicious flows, thus upon
the detection of a suspicious flow (at run time) a new or updated filter should be
defined for this task.

With BPF and other techniques used for simple packet filtering operations, up-
dating the filter is an expensive and slow operation, which may lead to a periodthat
packets will de lost. This is because these filtering techniques were not designed
for dynamic filtering. Proposed solutions for this problem either attempt to modify
the simple packet filtering techniques, by reducing the cost of filter updating, or
propose new dynamic filtering techniques [147,152].
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Hardware Filtering Capabilities at the NIC

Modern NICs offer advanced packet filtering capabilities in hardware.This way,
packets can be filtered at the NIC layer, which is very efficient, as packets that
do not match the specified filter will be discarded directly at the NIC. They, they
will not be copied into the memory of the monitoring system, and no CPU cy-
cle will be spent for uninteresting packets. Therefore, monitoring systemsshould
utilize NIC’s filtering capabilities and should push their filters into the hardware
to significantly improve their performance. Dynamic packet filtering can be also
implemented with hardware filters [38].

Moving Packet Processing to Kernel Packet Filter

Packet filtering techniques usually perform only packet discarding or packet copy
operations in kernel, based on stateless rule matching. More complex packet pro-
cessing is left for user level applications. Other approaches, such asxPF [76] and
FFPF [19], move more packet processing capabilities from userspace into kernel,
reducing context switches and improving the overall performance. For thispurpose
these techniques provide a richer programming framework for packet processing at
the packet filter level. Also, they use in-kernel persistent memory to provide state
in packet filtering.

2.1.3 Packet Sampling

Packet sampling is an other commonly used technique for data reduction, when
the network traffic is too much to process or store. Sampling is the selection of
a representative subset of packets. This subset is used to infer knowledge about
the whole set of observed packets without processing them all. The selection may
depend on packet’s position, packet’s content, or random decisions. While packet
filtering is a deterministic selection of packets based on their content, which means
that packets with the same properties will be always selected, packet sampling
is a non-deterministic selection of packets, as it cannot be determined only from
packet’s content. The selection may be random or not: although it may also depend
on some packet properties, it not necessary that all the packets matchingthese
properties will be selected – only a percentage of them may be sampled.

Several different sampling strategies have been proposed [46]. They are cur-
rently being standardized by the Packet Sampling (PSAMP) Working Groupof the
Internet Engineering Task Forces (IETF) [71]. The strategy that each system se-
lects for sampling is important for the accuracy of the monitoring application that
will use the sampled data, since the set of sampled packets should be representa-
tive enough for the purpose needed. The deployment of a sampling strategy aims
at the provisioning of specific characteristics of the parent population ata lower
cost than a full census would demand. Therefore, in order to plan a suitable sam-
pling strategy it is crucial to determine the needed type of metric that should be
estimated and the desired degree of accuracy in advance. The metric of interest
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can range from simple packet counts up to the estimation of whole distributions of
flow characteristics.

Regarding the implementation of sampling techniques in a network monitoring
architecture, similar with filtering it will be more effective when implemented as
early as possible, e.g., within the OS kernel, in order to discard early the unsampled
packets. PFRING [37] implements sampling before storing the packets in the ring
buffer, at the device driver level, while other techniques [59] implements packet
sampling by extending the BPF implemenation.

Sampling is very often implemented in high-end routers today, for recording
aggregated sampled traffic statistics like sampled NetFlows [51]. Packet sampling
is an attractive techniques for routers because it is computationally efficient, as it
requires minimal state and counters, and less storage. As routers’ main operation
is not traffic monitoring, they cannot offer much of their resources, such as CPU
and memory, for this purpose. Moreover, the high bandwidth usage in the network
to transport the collected data records from routers to a NetFlow collector machine
can be significantly reduced using sampling. Adaptive filtering, based on the traffic
load, has been also proposed.

Common Sampling Strategies

The sampling techniques can be classified into two main categories:packet sam-
pling andflow sampling. Packet sampling is simple to implement with low CPU
power and memory requirements. However, it is inaccurate for the inference of
flow statistics such as the original flow size distribution. For instance, it is easy
to miss the short flows. Flow sampling has been proposed as an alternative to
overcome the limitations of packet sampling, e.g., to improve the accuracy in flow
statistics inference. However, it imposes increased memory and CPU powerre-
quirements, which may be prohibitive for implementing in routers. To partially
address this issue, especially to reduce memory and bandwidth requirements, tech-
niques like smart sampling [48] and sample-and-hold [52] have been proposed as
two variants of flow sampling with a focus on accurate estimation of heavy-hitters.

Systematic packet samplinginvolves the selection of packets according to a de-
terministic function. There are two ways to trigger the selection: count-basedwith
the periodic selection every K packets or time-based, where a packet is selected
every constant time interval. The first approach gives more accurate results in es-
timation of traffic parameters. Systematic sampling is easy to implement, but it is
vulnerable to bias errors in metrics with related intervals and can be predictedby
attackers when the data are used for security applications. Inrandom packet sam-
pling, a packet is selected with a probability basd on a random process. Contrary,
Random flow samplingfirst classifies packets into flows based on flow construc-
tion rules. It then samples each flow with some probability. Usingrandom additive
sampling, the potential problems of systematic sampling are avoided. In this tech-
nique, the intervals between successive packet selections are independent random
variables with a common distribution. In this way, synchronization and predictabil-
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ity problems are avoided. Inn-out-of-N sampling, n packets are randomly selected
out of the total N packets. For this sampling scheme each packet has an equal
chance of being drawn, and sample size is fixes. One way to achieve this ran-
dom selection is to generate n different random numbers in the range of 1 toN. In
probabilistic sampling, the decision whether a packet will be selected is made in
accordance to a predefined selection probability. The sample size can vary for dif-
ferent trials. Inuniform probabilistic sampling, each packet has the same selection
probability, while innon-uniform probabilistic samplingthe selection probability
can vary for different packets. In the latter, the probability depends onthe packet’s
content, e.g., to give higher probability to rare and important packets. Moreover,
usingnon-uniform probabilistic samplingandflow state, packets can be selected
based on the state of the flow they belong to or by the state of the other flows
currently being monitored.

Sample-and-hold[52] performs a flow table lookup for each incoming packet
to see if a flow entry for the packet’s flow exists. If exists, the packet is selected
and the flow entry is updated. Otherwise, if there is no flow entry for the packet,
it is randomly selected and a new flow entry is created. The selection probabil-
ity increases with the size of the packet. Unlike random packet sampling, all the
subsequent packets of a flow are selected once the flow entry is created. Smart
sampling[48] is a size dependent flow record selection algorithm that applies to
complete flow records.

The sampling rate, i.e., the probability of packet selection in random sampling,
directly affects the accuracy of the estimated metric. The more packets are se-
lected, the better accuracy will succeed. On the other hand, high sampling rates
lead to more resources consumption. Adaptive packet sampling techniquesad-
just the sampling rate to traffic load to further reduce memory consumption or to
improve accuracy. Adaptive NetFLow [51] is based on this approach. In order
to adjust properly the sampling rate, traffic rate prediction approaches are used.
Rate constrained sampling approaches select a specified number of objects during
a measurement interval, thus limiting the sampling rate. Reservoir sampling is a
typical example. A special buffer (reservoir) holds a predefined number of sam-
ples. As more samples are being processed the contents of the reservoir may be
replaced. Therefore, the contents of the reservoir each time represent a true random
sample. Other approaches [49] work under strict resource constraints by sampling
into a buffer of fixed size.

Applications of Packet Sampling

Packet and flow sampling has been used extensively to solve traffic engineering
and pricing problems, such as heavy hitter identification [48,52,99,120] and flow
size estimation [122, 144]. For these applications, flow sampling provides better
accuracy. To improve the estimation of TCP flow statistics using packet sampling,
the use of TCP sequence numbers have been proposed [122]. The basic idea is
that the presence of unsampled packets can be inferred by noting the increasing
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byte counter given by the sequence number field of the TCP sampled packets. It is
shown that this technique helps to fill the holes left by packet sampling in retaining
information about the original flow sizes. However, it is still not as accurate as
flow sampling. Other sampling approaches try to provide statistical performance
similar to flow sampling with computational cost similar to packet sampling cost
for TCP packets [144]. Such approaches also utilize TCP headers, such as sequence
numbers and SYN/ACK/FIN flags.

While active measurements exchange probe packets between host pairs tomea-
sure network latency and packet loss rate, passive measurements exploit observa-
tions of traffic at two measurement points to infer the same metrics about network
performance. For example, trajectory sampling [50] has been proposed as a method
to correlate sampling of traffic at different locations. Routers sample packets only
if a hash calculated over packet fields falls in a given set.

The use of sampled packet data has been also proposed for security analysis
and anomaly detection. However, the impact of packet sampling on the accuracy
of these applications depends on the sampling strategy and sampling rate [20,88].

2.1.4 Load Shedding

Load shedding techniques reduce the load of a passive monitoring systemwhen it
is under severe stress, due to large traffic volumes or sudden traffic bursts. Such
techniques should continuously monitor the system’s performance for overloads,
and upon the detection of an overload situation a subset of the incoming traffic will
de discarding from processing. Their goal is to avoid uncontrolled packet loss, by
selecting the traffic that will be lost, thus gracefully degrading their performance
under excessive traffic load.

A load shedding approach [16] is proposed for the CoMo passive network
monitoring infrastructure [70]. The CoMo monitoring system handles multiple
arbitrary and continuous traffic queries. Passive monitoring applicationsare im-
plemented with such traffic queries in CoMo, i.e., they define the subset of the
traffic that their interested in, perform the desirable processing, and produce re-
sults. CoMo load shedding mechanism operates without explicit knowledge of the
traffic queries. Instead, it extracts a set of features from the traffic streams to build
an on-line prediction model of the query resource requirements. A feature is a
counter that describes a specific property of a sequence of packets (e.g., number
of unique source IP addresses). The features that best model the resource usage
of each query are automatically identified and used to predict the overall load of
the system. At the same time, measurements of the system resources are continu-
ously performed, focused on CPU usage. By correlating the past counters of the
selected features with their corresponding CPU usage measurements, the system
can predict the CPU usage for the current counters of the same features. When an
overload is predicted, the system applies load shedding techniques using uniform
packet sampling and flow sampling. At the same time, it attempts to maintain the
accuracy of the applications within acceptable levels.
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Load shedding is also proposed as a defence to overload attacks in the Bro
NIDS [113]. No specific packet discarding strategy is proposed, so the NIDS oper-
ator will be responsible to define one. This idea is based on the assumption that a
NIDS operator can choose a packet discarding strategy that can be kept secret from
attackers (security through obscurity).

2.1.5 Distributing the Load

An other way to deal with a highly loaded passive monitoring application, is to
distribute its load in multiple CPUs. Multiple CPUs can be found by utilizing mul-
tiprocessing or multicore systems, as especially the latter have become commodity
hadrware today. Libraries and techniques for efficient programming in multicore
systems have been developed, and can be utilized by passive monitoring to exploit
the offered parallelism. An other possible solution is to sustain a cluster of PCsto
offload the workload from a single computer. In this case, a traffic splitter machine
is usually responsible to capture and then split the packets to the cluster PCs,trying
to equally balancing their load.

In both techniques the thoughtful selection of how the traffic will be split into
the different CPUs, by the load balancer, is of significant importance. Traffic mon-
itoring and analysis initially seems as a non-parallel task, because packets travel
sequentially through the network links and they are captured in sequence by a
single NIC. However, the large number of parallel transport-layer streams in the
network, as we ll as the many different classes of packets and the different opera-
tions the applications perform on each class, offer several straightforward schemes
for traffic splitting. For instance, flow-based traffic splitting strategy seemsa good
choice for most of the monitoring applications.

The packet capture process can be improved in multicore processors byex-
ploiting the multiple RX queues in recent NICs and parallelize the packet captur-
ing using all the available cores. Moreover, packets can be delivered efficiently
to different ring buffers for utilizing multiple threads, so that the user-level packet
processing can be parallelized using multiple threads or multiple processes.

However, today’s commodity hardware and software is able to capture andpro-
cess traffic up to few Gbit/sec rates, mainly due to limitations with the current PC
buses bandwidth, CPU load and disk bandwidth, in case of writing packet traces to
disk. To overcome this limitation, monitoring architectures for higher speeds have
been proposed by distributing the traffic across a set of machines that are able to
process lower speeds. To split the traffic in multiple machines, custom hardware
has been designed. Also, to avoid the use of custom hardware modern features of
Ethernet switches have been used to bundle lower speed interfaces into asingle
higher speed interface. Also, it is important to use the appropriate load balanc-
ing method for distributing equivalently the load to each link. Common switches
support load balancing based on MAC addresses, IP addresses, port numbers and
combinations. Load balancing based on flow identifiers (IP addresses and port
numbers) is a good choice, in order to keep the corresponding data together.
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Applications Analysis

Traffic Recording Full Packets, Storage
NetFlow Export Packet Headers, Storage

Accounting and Billing Packet Headers, Counters
QoS Monitoring Packet Headers, Counters

Accurate Traffic Classification Full Packets, Deep Packet Inspection
Intrusion Detection Full Packets, Deep Packet Inspection
Anomaly Detection Packet Headers, Machine Learning

TABLE 2.1: List with popular network traffic monitoring applications

2.2 Network Monitoring Applications

There is a multitude of network traffic monitoring applications, from security,
forensics and network surveillance to network performance monitoring, account-
ing, and traffic classification. Table2.1 lists some of the popular network monitor-
ing applications today, along with the analysis each one require to perform onthe
captured traffic.

Packet capture and dump [142] is a very basic monitoring application, which
simply captures packets from the wire and may save them to disk for retrospective
offline analysis. It may be required to save full packets, i.e., both protocol headers
and payload. In high traffic volumes, packet capture applications may focus on the
elimination of packets that are of no interest, using packet filtering, to reduce CPU
and memory usage, as well as disk requirements for the storage of large packet
traces that can become very large in size in high traffic volumes.

Besides simple packet capture and dump, there are more advance networktraf-
fic recording systems that aim to store full packets for a relatively low period of
time (retention) for retrospective analysis [83, 89, 108]. These systems are focus
to increase the throughput that packets can be stored in modern storage systems,
utilize the available store in the best possible way, e.g., by using compression,in-
crease the retention period, and perform packet indexing operations tospeed up
retrospective queries on large volumes of captured traffic [56]. There are several
potential applications of such systems: network forensics analysis, detection of
compromised machines, matching of new signatures in past traffic, evaluationof
new systems with real capture traffic, and any other types of retrospective analysis.

NetFlow [29] is one of the most commonly used protocol for monitoring net-
work usage and collecting aggregated information about network traffic,such as
NetFlow records. Collecting flow records is typically performed by routers, which
gather and export such records to some collector. However, as the network speed
increases, most routers are not able to do full flow analysis and have to use packet
sampling to keep up [51]. Flow collection and export applications have been also
moved to passive monitoring sensors running in commodity PCs, which can be
used at high speeds when routers can not deliver flow records without using a very
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low sampling rate. For efficient processing of high traffic volumes, flow export
applications capture and process only the first few bytes of each packet, without
loosing any valuable information, in order to capture just the protocol headers and
to discard packet payloads. Such flow records can be used to show various infor-
mation about the monitored network traffic.

Internet and application service providers use accounting applications tobill
their customers based on their actual traffic or network usage. Thus, accounting
applications are interested in accurately measuring various characteristicsof net-
work traffic like bandwidth usage, flow statistics and top bandwidth consuming
hosts. These measurements require only header information per packet, while the
use ofsamplingtechniques has been proposed from several research works to deal
with high network volumes with the minimum possible impact to the applications
accuracy.

QoS and performance monitoring applications focus in estimating useful net-
work metrics based on passive measurements, such as network Round-Trip Time [77],
application-level Round-Trip Time [54] and throughput, packet retransmissions [50],
packet reordering [95], one-way delay and jitter, and packet loss ratio [106]. Header
only capturing is enough for all these applications, while some of them are based
on flow record statistics [106]. For better resistance to high traffic speeds,sampled
data are often used.

The accurate classification of network traffic among the layer-7 applications
that generate the respective packets has become a difficult task, and requires more
complex analysis. Instead of the traditional port-based classification, the use of dy-
namically allocated port numbers by many recent applications, and the use ofpop-
ular protocols, like HTTP, to implement several different applications above it im-
poses more complex analysis in each packet, usually called asdeep packet inspec-
tion). Therefore, protocol parsing, matching application-specific signatures within
the packets’ payload, and several other heuristics are commonly used [1, 12, 79].
This kind of processing is much more CPU intensive, which leads to lower pro-
cessing throughput and higher packet drop rate. To improve the performance under
high network load and reduce the CPU usage, traffic classification applications may
select a subset of the total packets for inspection. For instance, only thefirst packet
of each flow may be inspected for categorizing the flow [24], and only packets that
does not belong to an already classified flow.

Network-level intrusion detection systems play an important role in the security
of modern network architectures. A NIDS constantly monitors the network traffic
in order to detect attacks or suspicious activity by matching packet data against
known patterns [113, 124]. Such patterns, or rules, identify attacks by matching
both header fields and payloads of the captured packets. While signaturematching
is a computationally intensive process [23], NIDS also need to perform operations
like packet decoding, filtering, and IP/TCP stream reconstruction [66] to form a
fully functional system. All these necessary operations make NIDS a CPU inten-
sive application, significantly limiting its processing throughput [127]. Thus, under
high network volumes a significant number of packets will be dropped, resulting
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in undetected attacks. A resourceful attacker may intentionally overload a NIDS
with a flood of crafted packets to passs real attack packets without inspection, as
they may be dropped before inspected by the NIDS [119,135].

Finally, anomaly detection approaches are based on profiling the network us-
age under normal behavior, raising alarms when abnormal conditions aredetected.
Packet headers or aggregated traffic statistics can be used for effective anomaly
detection and behavior analysis using machine learning techniques, while theuse
of sampled data in anomaly detection metrics is still an open research question [20,
88].

2.2.1 Network-level Intrusion Detection Systems

Network-level Intrusion Detection Systems, such as Snort [124] and Bro [113],
match the network packets against a set of rules, using multiple pattern match-
ing techniques [9], regular expression matching [67], and other complex analysis.
Moreover, they perform several other operations like protocol decoding, stream
reassembly, and protocol normalization. These requirements for more complex
per-packet inspection and the constant increase in network speeds have motivated
numerous works for improving the performance of NIDSs. A lot of research works
have been done to improve the algorithms used by a NIDS, e.g., the performance
of pattern matching algorithms and regular expressions evaluation, to increase the
overall throughput of NIDS. Other works propose the use of specialized hardware
or splitting the load into multiple processing units. Such solutions indeed improve
NIDS performance, but with an additional cost of a specialized hardware or multi-
ple processors instead of a commodity PC.

The Snort NIDS

Snort [124] is a popular open source intrusion detection system based onrules,
or signatures, which describe attacks and other suspicious activities. Using these
rules it inspects the network traffic and whenever all options of one rule match
against a network packet, it generates a respective alert at real time. Snort’s rules
are divided into two logical parts: the rule header and the rule options. Therule’s
header determines the rule action that will be triggered in a case of a match and
also defines the protocol, the source and destination IP addresses, andthe source
and destination ports for the packets that will be checked against this rule.Thus,
only a subset of the packet, specified in rule’s header, will be matched against the
rule’s patterns and regular expressions. The rule’s options contains ashort attack
description, the packet fields to be inspected, and the patterns or regularexpressions
that may lead to a full match. Snort parses all the given rules and represents them
with automata and a two-dimension list.

The Snort receives packets through libpcap packet capture library.First, the
packet is decoded up to the transport layer. Then, Snort can be configured with
several preprocessors: each packet will pass from each of the enabled preproces-
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sors before the inspection engine. Such preprocessors are responsible for defrag-
mentation, protocol normalization, stream reassembly, while a user is also ableto
implement and enable custom preprocessors as well. Then, packets passthrough
the core detection engine, which is responsible for pattern matching operations and
attack detection. Moreover, the user can add custom or existing detection plugins.
Finally, there output plugins for alert generation and logging.

Using Specialized Hardware

To speed-up the inspection process, few NIDSs implementations are basedon spe-
cialized hardware. Content addressable memory [156,157] is suitable to perform
parallel comparisons in packets payload against the NIDS rules, and significantly
accelerate a NIDS. Many FPGA-based NIDS architectures have been implemented
to accelerate pattern matching [13, 14], while network processors have been also
used to speed-up NIDS operations [30, 35] Moreover, modern graphics process-
ing units (GPUs) have been used to speed up pattern matching [149] for intrusion
detection.

Distributing NIDS Load

To cope with high traffic volumes, NIDS architectures have been proposed to ex-
ploit multicore processors for parallel inspection [114], or to distribute the load
across to multiple NIDS sensors [84,128,146]. A slicing mechanism divides the
traffic into subsets, which are assigned to sensors in a way that each subset contains
all the necessary evidence to detect a specific attack without any need for commu-
nication between the sensors. Moreover, the load balancer may use dynamic feed-
back from the sensors about their current load in order to adapt the traffic splitting
accordingly and improve load balancing decisions.

NIDS Tuning and Performance Adaptation

Provisioning and tuning a NIDS is a significant process for its correct and effective
operation. Besides a static NIDS configuration, some research approaches pro-
pose to dynamically reconfigure the NIDS based on the run-time conditions. By
periodically measuring the NIDS’s performance, the system may deactivatesome
less critical tasks and analysis [85], or may process a different subset of traffic that
requires less processing from the NIDS [43]. Other research approaches try to pre-
dict the resource consumption of a NIDS based on a traffic sample, and use these
predictions to automatically derive a suitable NIDS configuration [44].
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2.2.2 Traffic Classification Systems

Peer-to-peer and multimedia applications are often violating corporate policiesand
when detected they are often blocked or rate limited. Consequently, such network
applications have started to masquerade and obfuscate their traffic in order to avoid
detection. They are not based on common ports any more and their protocolsare
becoming more complex, like the Skype’s protocol for example, using payload en-
cryption and other obfuscation techniques. Moreover, HTTP is becomingmore and
more popular for an increasing set of web-based applications. Thus, classifying the
HTTP traffic into the actual applications that generate it requires more intelligent
traffic analysis.

Accurate per-application traffic classification and identification techniquesde-
pend ondeep packet inspection: both header and packet payload need to be in-
spected. They are usually based on application protocol specific patterns and sig-
natures, common behaviors, and several other heuristics. This inspection requires
more complex analysis and reduces the packet processing throughput. One way
to improve the performance of traffic classification systems is to improve the sig-
natures’ accuracy and flow-based classification. Improving the accuracy of the
signatures that will be matched against the network’s traffic not only improve the
classification accuracy, but it can also increase the throughput of such systems.
This is because an accurate signature will limit the string search only to specific
bytes within a packet or within a flow. Thus, the packet capture length may belim-
ited to the first few bytes in many cases with carefully designed signatures. Such
optimizations lead to significant performance improvements, as much less data is
processed.

We refer toflow-based classification techniquesas the techniques that try to
classify transport-layer flows, according to the application that generates them. The
flow-based classification techniques have a significant performance benefit when
only the first few packets (or bytes) of a flow are inspected. Indeed, after inspecting
the first few packets of a flow with no success, i.e., the flow cannot be classified,
it is probably useless to continue searching for applications signatures. It is very
likely that there is no signature for this type of traffic, and further processing will be
only overhead to the system. Thus, it is preferable to mark this flow as “unknown”.
Similarly, when a packet matches an application signature, its flow is classified
accordingly. Thus, the next packets of this flow will not be inspected, but will be
only used for accounting the application’s bandwidth usage. Therefore, flow-based
traffic classification can significantly reduce the packet processing cost.

Other classification techniques perform less fine grained analysis, usingonly
traffic and flow statistics, such as packet and flow sizes, interarrival times, and
aggregated statistics, which are useful for traffic classification based on behavioral
analysis and machine learning techniques [72,78,80].
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2.2.3 Network Traffic Archiving Systems

To enable network forensics and other kinds of retrospective analysis, several traf-
fic recording systems have been developed to store full packets in modernstorage
systems. Many of the proposed techniques focus on reducing the amountof traffic
that should be stored for high-volume traffic links, either using efficient compres-
sion schemes [57,141] or clever packet selection approaches [83,89,108]. Other
systems focus on improving the throughput for writing network packets to storage
systems, in order to support line rate [11,40]. Finally, improving query responses
in such systems have been studied, and packet indexing techniques havebeen pro-
posed for this purpose [56].
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Related Work

In this chapter we discuss related work in the broader area of network monitoring
and network security systems.

3.1 Improving the Performance of Packet Capture

Braun et al. [21] and Schneider et al. [129] compare the performance of packet
capturing libraries on different operating systems using the same hardware plat-
forms and provide guidelines for system configuration to achieve optimal perfor-
mance. Several research efforts [17,19,37,102,123] have focused on improving the
performance of packet capturing through kernel and library modifications. These
approaches reduce the time spent in kernel and the number of memory copies re-
quired for delivering each packet to the application.

Our proposed techniques can be combined with such optimizations to achieve
even better performance. However, all these approaches operate atthe network
layer. Thus, monitoring applications that require transport-layer streams should
implement stream reassembly, or use a separate user-level library, resulting in re-
duced performance and increased application complexity. In contrast, wepropose
Scap that operates at the transport layer and directly assembles incoming packets
to streams in the kernel, offering the opportunity for a wide variety of performance
optimizations and many features. Moreover, we show that memory access locality
in passive network monitoring applications can be improved when reorderingthe
packet stream based on source and destination port numbers [105,111]. Thus, our
locality buffering approach aims to improve the packet processing performance
of the monitoring application itself, by exploiting the inherent locality of the in-
memory workload of the application. Scap also improves memory access locality
and cache usage in a similar manner when grouping packets into streams.

31
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3.2 Taking Advantage of Multicore Systems

Previous work has dealt with how to use multicore systems to improve the perfor-
mance of network monitoring systems. Fusco and Deri [55] utilize the receive-side
scaling (RSS) feature of modern NICs [75], which split the network traffic in mul-
tiple RX queues, usually equal to the number of CPU cores, to parallelize packet
capturing using all CPU cores. Moreover, packets are copied directly from each
hardware queue to a corresponding ring buffer, which is exposed in user-level as
a virtual network interface. Thus, applications can easily and efficiently split the
load to multiple threads or processes without contention.

Sommer et al. [139] take advantage of multicore processors to pararrelize event-
based network prevention systems, using multiple event queues that collectto-
gether semantically related events for in-order execution. Since the eventsare re-
lated, keeping them within a single queue localizes memory access to shared state
by the same thread. Pesterev et al. [115] improve TCP connection locality in mul-
ticore servers using the flow director filters to optimally balance the TCP packets
among the available cores.

3.3 Distributing The Traffic Load

Schneider et al. [130] show that commodity hardware and software is able to cap-
ture low traffic rates, mainly due to limitations with buses bandwidth and CPU
load. To cope with this limitation, the authors propose a monitoring architecture
for higher speed interfaces by splitting the traffic across a set of nodeswith lower
speed interfaces, using a feature of current Ethernet switches. Thedetailed config-
uration for load balancing is left for the application. Vallentin et al. [146] present
a NIDS cluster based on commodity PCs. Some front-end nodes are responsible
to distribute the traffic across the cluster’s back-end nodes. Several traffic distri-
bution schemes are discussed, focused on minimizing the communication between
the sensors and keeping them simple enough to be implemented effectively in the
front-end nodes. Hashing a flow identifier is proposed as the right choice.

3.4 Improving Memory Locality

The concept of locality buffering for improving passive network monitoring ap-
plications, and, in particular, intrusion detection and prevention systems, wasfirst
introduced by Xinidis et al. [153], as part of a load balancing traffic splitter for
multiple network intrusion detection sensors that operate in parallel. In this work,
the load balancer splits the traffic to multiple intrusion detection sensors, so that
similar packets (e.g., packets destined to the same port) are processed by thesame
sensor. In this approach, however, the splitter uses a limited number of locality
buffers and copies each packet to the appropriate buffer based on hashing on its
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destination port number. Our locality buffering approach differs in two major as-
pects. First, we have implemented locality buffering within a packet capturing
library, instead of a separate network element. To the best of our knowledge, our
prototype implementation within the libpcap library is the first attempt for provid-
ing memory locality enhancements for accelerating packet processing in a generic
and transparent way for existing passive monitoring applications. Second, the ma-
jor improvement of our locality buffering approach is that packets are notactually
copied into separate locality buffers. Instead, we maintain a separate indexwhich
allows for scaling the number of locality buffers up to 64K.

Locality enhancing techniques for improving server performance have been
widely studied. For instance, Markatos et al. [90] present techniques for improving
request locality on a Web cache, which results to significant improvements in the
file system performance.

3.5 Packet Filtering

Kernel-level packet filtering improve the processing throughput of a monitoring
application, as uninteresting packets are discarded in kernel and are never delivered
in user level. A BPF filter [91] can be used for simple filtering needs, e.g., for
choosing a subset of the traffic. Dynamic packet filtering reduces the cost of adding
and removing filters at runtime [38,147,152]. Deri et al. [39] propose to use the
NIC’s flow director filters for common filtering needs. Besides from copying or
discarding packets based on a stateless filter expression, other approaches, such as
FFPF [19], xPF [76], and FLAME [10], allow applications to move simple tasks
from user level to the kernel packet filter to improve performance. We suggests
a relatively different approach in Scap: applications empowered with a Stream
abstraction can communicate their stream-oriented filtering and processing needs
to the underlying kernel module at runtime through the Scap API, to achieve lower
complexity and better performance. For instance, Scap is able to filter packets
within the kernel or at the NIC layer based on a flow size cutoff limit, allowing
to set dynamically different cutoff values per-stream, while the existing packet
filtering systems are not able to support a similar functionality.

3.6 TCP Stream Reassembly

Libnids [5] is a user-level library on top of libpcap for TCP stream reassembly
based on the emulation of a Linux network stack. Similarly, the Stream5 [103]
preprocessor, part of Snort NIDS [124], performs TCP stream reassembly at user
level, emulating the network stacks of various operating systems. Scap shares sim-
ilar goals with Libnids and Stream5. However, previous works treat TCP stream
reassembly as a necessity [148], mostly for the avoidance of evasion attacks against
intrusion detection systems [41, 66, 150]. On the contrary, Scap views transport-
layer streams as the fundamental abstraction that is exported to network monitoring
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applications, and as the right vehicle for the monitoring system to implement ag-
gressive optimizations.

The main drawback of existing libraries for stream reassembly is their per-
formance overhead, as they operate at user level, above the packet capturing sub-
system. Scap provides the first OS subsystem for stream capturing that deliver
reassembled transport-layer streams directly to user-level applications.

Handley et al. [66], Dharmapurikar and Paxson [41], and Vutukuru et al. [150]
explain how an attacker can exploit protocol ambiguities to evade detection in a
NIDS, and present the proper mechanisms for robust stream reassembly and nor-
malization under the presence of adversaries. Scap performs follows these require-
ments in a strict stream reassembly mode, while it also supports a more relaxed
best-effortstream reassembly mode that provides resiliency to packet drops due to
system overloads.

3.7 Network-level Intrusion Detection Systems

The requirements for more complex per-packet inspection, the constant increase in
network speeds, and the limited resources of commodity hardware have motivated
numerous works for improving the performance of NIDSs. To speed-upthe in-
spection process, many NIDS implementations use specialized hardware like con-
tent addressable memory [156,157], FPGAs [13,14], network processors [30,35]
and graphics processing units [149]. To cope with high traffic volumes, other ap-
proaches propose to distribute the load across multiple machines instead of using
a single sensor [84, 128, 146], or to use multicore processors for parallel inspec-
tion [114]. These solutions offer almost linear processing throughput improve-
ment, but with the additional cost of buying specialized hardware or processors
with more cores. However, overloads are still possible in such systems in case of
traffic bursts that exceed the NIDS processing throughput, or if one ofthe indi-
vidual sensors of a NIDS cluster is overloaded. Furthermore, attackers may inten-
tionally overload a NIDS to degrade its performance and increase their chances to
evade detection [119,135].

Lee et al. [85] propose to dynamically reconfigure the NIDS to provide optimal
performance based on the current run-time conditions. By periodically measuring
the performance of the system, the NIDS deactivates some less critical tasksand
analysis, while an active firewall terminates offending connections. This approach
focuses on determining the best configuration according to the given conditions and
resource constraints. On the other hand, we propose to selectively discard packets
with minimum impact to the detection accuracy without changing the NIDS con-
figuration. We also propose selective packet paging to ensure that all packets will
be inspected.

Another related approach by Dreger et al. [43] deals with packet drops due to
overloads using load levels, which are precompiled sets of filters corresponding to
subsets of traffic which the NIDS enables and disables depending on the workload.



3.8. STREAM TRUNCATION 35

Upon detecting an overload based on CPU measurements, the system backsoff to
a filter set that requires less processing capacity. The main difference of that ap-
proach from our selective packet discarding technique is that it relies on the NIDS
operator to statically define an ordering of filters. On the other hand, selective
packet discarding does not use any filters and does not require any knowledge for
the network traffic or the processing times for specific types of traffic.

A more recent work from the same authors [44] presents a model for monitor-
ing the resource usage of a NIDS, and then predicting its resource consumption.
These predictions are used, based on a sample of the monitored traffic, to auto-
matically derive a suitable NIDS configuration. While this approach can help the
NIDS operator to find a suitable configuration automatically, we propose selective
packet discarding to allow a NIDS to adapt its performance under high loadeven
if no configuration can prevent overloads.

Gonźalez and Paxson [59] present a technique that extends the NIDS with a
secondary path for packet delivery in which the packets are randomly sampled, are
not decoded, and TCP reassembly is not performed. While the packets in the main
path are still processed as normal, the secondary path is tailored to different kind
of analysis such as large connection and heavy hitters detection, and canbe used
to improve the performance for such kinds of analysis that do not requirereceiving
all monitored packets.

3.8 Stream Truncation

The time Machine network traffic recording system [83] exploits the heavy-tailed
nature of Internet traffic to reduce the number of packets that are stored on disk for
retrospective analysis by applying a per-flow cutoff. Maier et al. [89] coupled Time
Machine with a NIDS for enabling postmortem forensics queries. Our work[107]
and Limmer and Dressler [86] use a per-flow cutoff under overload conditions, so
that a NIDS focuses on the beginning of each connection and discards packets that
are less likely to affect its detection accuracy. Canini, et al. [24] propose a similar
scheme for traffic classification, by sampling more packets from the beginning of
each flow. Lin et al. [87] present a system for storing and replaying network traffic,
using an(N,M,P ) scheme to reduce the traffic stored: they suggest to capture N
bytes per flow and then M bytes per packet for the next P packets of the flow.

Scap shares a similar approach with the above works, but implements it within
a general framework for fast and efficient network traffic monitoring,using the
Stream abstraction to enable the implementation of performance improvements
at the most appropriate level. For instance, Scap implements the per-flow cutoff
inside the kernel or at the NIC layer, while previous approaches have toimplement
it in user space. As a result, they first receiveall packets from kernel in user space,
and then discard those that are not needed.
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3.9 Load Shedding

Load shedding is proposed as a defence against overload attacks in theBro NIDS [113].
However, the discarding strategy is not discussed, so the NIDS operator is responsi-
ble to define one. We propose selective packet discarding as a different load shed-
ding technique, which suggests a new subset of traffic that should be discarded,
based on the position of the packet within its corresponding flow [107]. Barlet-Ros
et al. [16] also propose a load shedding technique in the CoMo passive monitoring
infrastructure [70]. Using an on-line prediction model for the query resource re-
quirements, the monitoring system sheds load under conditions of excessive traffic
using uniform packet and flow sampling.

3.10 Packet Sampling

Packet sampling has been successfully applied for network flow monitoringin
switches and routers to record aggregated sampled traffic statistics like sampled
NetFlow [51], as the processing, memory, and storage resources in these devices
are limited. Several sampling strategies have been proposed, which are currently
being standardized by the Packet Sampling Working Group of IETF [71]. The
choice of a suitable strategy depends on traffic characteristics or on statistics needed
to be inferred.

Rate adaptive sampling has been proposed for dealing with traffic load variabil-
ity. Adaptive NetFlow [51] uses traffic rate prediction techniques to adjust prop-
erly the sampling rate. Drobisz and Christensen [45] present an adaptive scheme
based on CPU utilization and packet interarrival times. Choi et al. [28] deter-
mine the sampling probability adaptively according to traffic dynamics to accurate
traffic load estimation. Hernandez et al. [68] use a predictive approach to antici-
pate load variations and adjust accordingly the sampling interval to meet sampling
volume constraints. Similarly, rate constrained sampling approaches select aspec-
ified number of packets during a measurement interval. The method proposed by
Duffield et al. [49] works under strict resource constraints by sampling into a buffer
of fixed size. All these approaches adapt the sampling rate based on traffic load,
while in RRDtrace we propose to adapt the sampling rate according to how old
the stored traffic is, in order to provide better accuracy when processing the most
recent traffic.

Brauckhoff et al. [20] examine the impact of packet sampling on anomaly de-
tection metrics for the Blaster worm outbreak. Blaster uses random scanning in
TCP port 135, so it can be detected using flow counters. However, flowcounters
are heavily affected from packet sampling. While packet and byte counters are not
affected from sampling, they cannot detect Blaster anomalies. The flow entropy
metric is shown to be more robust to packet sampling than flow counters. Mai et
al. [88] examine the performance of volume and port scan anomaly detection meth-
ods with sampled data using four different strategies. The results show that all the
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sampling strategies significantly degrade the performance of the detection algo-
rithms. Among the four sampling schemes, random flow sampling introduces the
least amount of distortion. Smart sampling [47] and sample-and-hold [52] are less
resource intensive than random flow sampling, but perform poorly in thecontext
of anomaly detection, since they miss small flows that are often related to attacks.

Overall, the impact of sampled data for anomaly detection metrics depends on
the sampling strategy, sampling rate, and the analysis that should be performed.
Applying packet sampling to signature-based NIDSs will result in missed attacks,
while it is not appropriate for NIDSs that need to perform TCP stream reassembly.
Contrary, we propose techniques like selective packet paging to ensure the inspec-
tion of all packets in cases where sampling or load shedding are not adequate.

3.11 Algorithmic Complexity Attacks

When deterministic finite automata (DFAs) are used for rule matching, each byte
of traffic is examined exactly once, thus backtracking does not occur. However,
DFAs experience exponential memory requirements and may not fit in memory in
case of large rulesets. Nondeterministic finite automata (NFAs) reduce the memory
requirements by allowing the matcher to be in multiple states concurrently. This
is usually achieved through backtracking, which can be exploited for denial of
service attacks. Several research works have proposed to improve the performance
of regular expression matching [15, 136, 137, 154] by combining the benefits of
both NFAs and DFAs. Kirrage et al. [82] present a static analysis technique to
detect regular expressions that are vulnerable to algorithmic complexity attacks.

Cheng et al. [27] categorize and discuss a variety of evasion techniques against
NIDSes. Smith et al. [135] introduce an algorithmic complexity evasion attack
against the Snort NIDS, which exploits the backtracking behavior of rulematching
in order to evaluate signatures at all possible string match offsets. They propose
memoization as an algorithmic solution to deal with attacks targeting backtracking-
based algorithms, by reducing the difference between the average and worst case
costs. The idea is based on a memoization table that is used to store intermediate
state that will not be recomputed.

Crosby and Wallach [34] present an algorithmic complexity attack that ex-
ploits deficiencies of common data structures, and propose new hashing techniques
which sacrifice average case performance for worst case performance. Khan and
Traore [81] propose a model to detect algorithmic complexity attacks based on
historical information of execution time and input characteristics, using regression
analysis. The authors propose to drop requests that do not conform with their
model. However, in a NIDS this policy would result in successful evasion attacks,
when an adversary sends an actual attack with a non conforming pattern.Afek
et al. [8] propose the use of dedicated CPU cores to defend against algorithmic
complexity attacks in NIDS.



38 CHAPTER 3. RELATED WORK

Although the above works can address algorithmic complexity attacks against
specific algorithms used in network monitoring systems, network monitoring and
security software is still written so that it may be vulnerable to all sorts of algo-
rithmic complexity attacks. Thus, monitoring and security applications still have
to defend against complexity attacks that have not yet been seen in the wild,to en-
sure a robust and secure processing of the network traffic. Towards this direction,
selective packet paging is a generic defense mechanism for any possible type of
algorithmic attack or other overload situation.

3.12 Traffic Archiving Systems

A simple approach to increase retention when storing network traffic is to keep
less data per packet. A common choice is to store only the first few bytes of
each packet, which typically correspond to protocol headers. Solely from protocol
headers, monitoring applications can infer useful information and networkmet-
rics, while this approach can reduce significantly the storage space [96] and thus
increase retention. However, several monitoring applications, such as accurate traf-
fic classification, as well as security applications commonly need to perform deep
packet inspection operations, which require both the protocol headersas well as
the payload of each packet [60]. Moreover, even with this significant reduction in
storage requirements, retention time is still limited.

Another approach for efficient traffic recording is applied in the Time Machine
system [83, 89], where only the first N bytes of each flow are recorded based on
a per-flow cutoff. This approach leverages the heavy tailed distribution of flow
sizes that is commonly found in Internet traffic, since most of the traffic in a high
volume network comes from just a few flows. Therefore, most of the flowswill
not be affected by the cutoff and will be fully recorded, while recordingonly the
beginning of a few large flows leads to significant savings in disk space. However,
this technique cannot accurately estimate network metrics like total traffic volume
and flow sizes. Furthermore, Time Machine stores approximately the same amount
of traffic per day, and thus inevitably it can store traffic for a few days only. Then,
it has to delete the past traffic.

Another solution that is commonly used to retain information about network
usage in high volume networks for long-term periods is to maintain higher-level
abstractions of the network traffic [25,93,121] or store aggregated data like Net-
Flow records [29]. Storing aggregated data instead of network packets can reduce
dramatically the required disk space, while other higher-level abstractionscan be
used with fixed-size storage. However, such data formats limit significantly their
usefulness. They can be adequate only for specific applications if the features of
interest are known a priori. Any packet-level information will be lost, so many
applications and deep packet inspection techniques do not work with aggregated
traffic summaries. On the other hand, full-payload packet traces offer arich source
of information and allow for fine-grained analysis.
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RRDtool [104] employs a Round Robin Database to store time-series data for
very long periods in fixed-size storage using data aggregation. This feature of
RRDtool has made it a popular choice for storing and visualising time-series data
like temperatures, CPU load, and network metrics like bandwidth, delays, packet
loss, and many other. RRDtool is based on an aging process using a consolidation
function (usually average) to consolidate multiple primary data points to form a
single consolidated data point. Therefore, older data will have less detail but will
be representative for the corresponding time periods.

Cooke et al. [31] present a multi-format data storage technique that works with
fixed storage and fixed time. First, packets are stored, and later on they are ag-
gregated and transformed into flows as they age. Flows are finally aggregated into
counters. Storage allocation algorithms divide the available storage betweenthese
different aggregation levels. The main shortcoming of this technique is that fine-
grained analysis cannot be performed in old data, e.g., find possible undetected at-
tacks or identify peer-to-peer and multimedia traffic using flow information. More-
over, having different data formats over time makes the analysis more difficult than
having always the same data format.

Instead of storing actual packets, payload attribution techniques [118] store
compressed digests of packet payloads. Based on an excerpt of a given packet
payload, these techniques indicate the presence of packets that contained this ex-
act payload and their source, destination and time of appearance on the network.
Though, the actual payloads of the stored packets cannot be inferred. Such tech-
niques are useful for forensics analysis and some security applications. Spring
and Wetherall [140] present an algorithm for traffic compression by identifying
and eliminating redundancy. Compression can effectively reduce the storage for
protocols and applications with high redundancy.

The Bunker network tracing system [97] first writes all traffic to disk, to ensure
that no packet is lost, and then performs offline the costly anonymization opera-
tions. This is similar to our proposed selective packet paging technique. However,
our technique combines both memory and disk buffering in a hybrid architecture,
so that packets are buffered in memory under normal situations to avoiding disk
overheads, and packets are buffered to disk only when the memory buffer becomes
full. While their system is oriented for anonymizing network traffic safely, our
technique aims to protect network monitoring and security applications from de-
nial of service attacks and other overloads.

Anderson et al. [11] present tools for recording packets at kernel-level to pro-
vide bulk storage at high rates. Hyperion [40] employs a write-optimized stream
file system for high-speed storage using bloom filters to index stream data.Our
work can utilize such techniques to improve performance for storing packets to
disk.

Gigascope [32] is a stream database which offers an SQL-like language for
queries on the packet stream, but does not focus on long-term archival. To speedup
the query response times in packet traces, pcapIndex [56] proposes packet indexing
techniques using compressed bitmaps.
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3.13 Gap Analysis

Despite the significant research work that has been performed in this area, we iden-
tify several open research problems that are still needed to be addressed. First, the
ever-increasing volume of network traffic and the increased complexity ofmonitor-
ing applications require for improved performance. Although many of the previous
works focus on performance, modern hardware offers new features and capabilities
that can be used to improve the performance of network monitoring systems. As
there are many network monitoring applications and tools developed, which com-
prise a large amount of code and lot of human effort, we would definitely prefer
to achieve significant performance improvements in a completely transparentway
from the applications, without any code modifications needed. Although someof
the previous works try to offer backwards compatibility with legacy applications
and libraries, we need more approaches that offer transparent optimizations and
performance improvements.

We also identify a gap on overload control in network monitoring systems. Due
to the high traffic load and application complexity, even after careful provisioning
of a monitoring system, there is always a high probability that the system will get
overloaded and start dropping packets from its memory buffers. Unfortunately,
previous works have not focus on this problem. Contrary, we aim to fill thisgap
by providing the proper overload control, using domain-specific knowledge of the
network monitoring applications.

Moreover, attackers are becoming more sophisticated and they try to pass ma-
licious activities through the network without being detected by the monitoring
systems. For example, attackers can intentionally overload a monitoring system
to impede its detection capabilities, without significant effort, e.g, by exploiting
algorithmic complexity vulnerabilities. Thus, we need to develop generic defenses
against such evasion attempts. More specifically, a generic defense against any
type of algorithmic complexity or overload attack is still missing.

Finally, we identify a gap between the current network monitoring frameworks
and network monitoring applications. Although monitoring applications are inter-
ested in analyzing the network traffic at higher protocol layers, e.g., TCPstreams,
web pages, email messages, or SQL queries, the current monitoring frameworks of-
fer just raw IP packets. These packets belong to multiple concurrent connections in
the monitored network, and they can be out of order, retransmitted, and fragmented
packets. Thus, applications need to reconstruct such packets into the higher-level
entities to allow for useful processing, and perform protocol normalization to avoid
evasion attempts based on TCP segmentation attacks. Unfortunately, however, this
reconstruction leads to increased code complexity, increased application develop-
ment time, and, most importantly, to reduced performance due to excessive data
copies. We believe that building new network monitoring frameworks using the
proper abstractions to fill this gap will facilitate the development of new monitor-
ing applications, and will provide significant performance improvements andmore
opportunities for performance optimizations and useful features.
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Enhancing Memory Access Locality

A common characteristic that is often found in network traffic monitoring applica-
tions is that they usually perform different operations on different types of packets.
For example, a NIDS applies a certain subset of attack signatures on packets with
destination port 80, i.e., it applies the web-attack signatures on packets destined
to web servers, while a different set of signatures is applied on packetdestined to
database servers, and so on. Furthermore, NetFlow probes, traffic categorization,
as well as TCP stream reassembly, which has become a mandatory function of
modern NIDS [66], all need to maintain a large data structure that holds the active
network flows found in the monitored traffic at any given time. Thus, for packets
belonging to the same network flow, the process accesses the same part ofthe data
structure that corresponds to the particular flow.

In all above cases, we can identify alocality of executed instructions and data
references for packets of the same type. In this chapter, we present anovel tech-
nique for improving packet processing performance by taking advantage of this
locality property which is commonly exhibited by many different passive monitor-
ing applications. In practice, the captured packet stream is a mix of interleaved
packets that correspond to hundreds or thousands of different packet types, de-
pending on the monitored link. Our approach, calledlocality buffering, is based
on reordering the packet stream that is delivered to the monitoring application in a
way that enhances the locality of the application’s code execution and data access,
improving the overall packet processing performance.

We have implemented locality buffering inlibpcap [92], the most widely
used packet capturing library, which allows for improving the performance of a
wide range of passive monitoring applications written on top oflibpcap in a
transparent way, without the need to modify them. Our implementation com-
bines locality buffering with memory mapping, which optimizes the performance
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of packet capturing by mapping the buffer in which packets are stored bythe kernel
into user level memory.

Our experimental evaluation using real-world applications and network traffic
shows that locality buffering can significantly improve packet processingthrough-
put and reduce the packet loss rate. For instance, the popular Snort IDS exhibits
a 21% increase in the packet processing throughput and is able to process 67%
higher traffic rates with no packet loss.

The rest of this chapter is organized as follows: In Section4.1we describe the
overall approach of locality buffering, while in Section4.2we present in detail our
implementation of locality buffering within thelibpcap packet capturing library.
Section4.3 presents the experimental evaluation of our prototype implementation
using three popular passive monitoring tools. Finally, Section4.4discusses limita-
tions of our approach and future directions, and Section4.5summaries this chapter.

4.1 Locality Buffering

The starting point of our work is the observation that several widely usedpassive
network monitoring applications, such as intrusion detection systems, perform al-
most identical operations for a certain class of packets. At the same time, different
packet classes result to the execution of different code paths, and to data accesses to
different memory locations. Such packet classes include the packets of aparticular
network flow, i.e., packets with the same protocol, source and destination IP ad-
dresses, and source and destination port numbers, or even wider classes such as all
packets of the same application-level protocol, e.g., all HTTP, FTP, or BitTorrent
packets.

Consider for example a NIDS like Snort [124]. Each arriving packet is first de-
coded according to its Layer 2–4 protocols, then it passes through several prepro-
cessors, which perform various types of processing according to the packet type,
and finally it is delivered to the main inspection engine, which checks the packet
protocol headers and payload against a set of attack signatures. According to the
packet type, different preprocessors may be triggered. For instance, IP packets go
through the IP defragmentation preprocessor, which merges fragmentedIP pack-
ets, TCP packets go through the TCP stream reassembly preprocessor,which re-
constructs the bi-directional application level network stream, while HTTP packets
go through the HTTP preprocessor, which decodes and normalizes HTTP protocol
fields. Similarly, the inspection engine will check each packet only against asubset
of the available attack signatures, according to its type. Thus, packets destined to a
Web server will be checked against the subset of signatures tailored to Web attacks,
FTP packets will be checked against FTP attack signatures, and so on.

When processing a newly arrived packet, the code of the corresponding prepro-
cessors, the subset of applied signatures, and all other accessed data structures will
be fetched into the CPU cache. Since packets of many different types will likely be
highly interleaved in the monitored traffic mix, different data structures and code
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FIGURE 4.1: The effect of locality buffering on the incoming packet stream.

will be constantly alternating in the cache, resulting to cache misses and reduced
performance. The same effect occurs in other monitoring applications, such as
NetFlow collectors or traffic classification applications, in which arriving packets
are classified according to the network flow in which they belong to, which results
to updates in a corresponding entry of a hash table. If many concurrentflows are
active in the monitored link, their packets will arrive interleaved, and thus different
portions of the hash table will be constantly being transferred in and out ofthe
cache, resulting to poor performance.

The above observations motivated us to explore whether changing the order in
which packets are delivered from the OS to the monitoring application improves
packet processing performance. Specifically, we speculated that rearranging the
captured traffic stream so that packets of the same class are delivered tothe ap-
plication in “batches” would improve the locality of code and data accesses, and
thus reduce the overall cache miss ratio. This rearrangement can be conceptually
achieved by buffering arriving packets into separate “buckets,” onefor each packet
class, and dispatching each bucket at once, either whenever it gets full, or after
some predefined timeout since the arrival of the first packet in the bucket. For
instance, if we assume that packets with the same destination port number cor-
respond to the same class, then interleaved packets destined to different network
services will be rearranged so that packets destined to the same network service are
delivered back-to-back to the monitoring application, as depicted in Figure4.1.

Choosing the destination port number as a class identifier strikes a good balance
between the number of required buckets and the achieved locality for commonly
used network monitoring applications. Indeed, choosing a more fine-grained clas-
sification scheme, such as a combination of the destination IP address and port
number, would require a tremendous amount of buckets, and would probably just
add overhead, since most of the applications of interest to this work perform (5-
tuple) flow-based classification. At the same time, packets destined to the same
port usually correspond to the same application-level protocol, so they willtrigger
the same Snort signatures and preprocessors, or will belong to the same or “neigh-
boring” entries in a network flow hash table.

However, sorting the packets by destination port only would completely sepa-
rate the two directions of each bi-directional flow, i.e., client requests fromserver
responses. This would increase significantly the distance between request and
response packets, and in case of TCP flows, the distance between SYN and a
SYN/ACK packets. For traffic processing operations that require to inspect both
directions of a connection, this would add a significant delay, and eventually de-
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crease memory locality, due to the separation of each bi-directional flow in two
parts. Moreover, TCP reassembly would suffer from extreme buffering until the
reception of pending ACK packets, or even discard the entire flow. For example,
this could happen in case that ACKs are not received within a timeout period, or
a packet is received before the SYN packet, i.e., before the TCP connection estab-
lishment. Furthermore, splitting the two directions of a flow would alter the order
in which the packets are delivered to the application. This could cause problems
to applications that expect the captured packets to be delivered with monotonically
increasing timestamps.

Based on the above, we need a sorting scheme that will be able to keep the
packets of both directions of a flow together, in the same order, and at the same time
maintain the benefits of packet sorting based on destination port: good localityand
lightweight implementation. Our choice is based on the observation that the server
port number, which commonly characterizes the class of the flow, is usually lower
than the client port number, which is usually a high port number randomly chosen
by the OS. Also, both directions of a flow have the same pair of port numbers,
in just reverse order. Packets in server-to-client direction have the server’s port as
source port number. Hence, in most cases, choosing the smaller port between the
source and destination port numbers of each packet will give us the server’s port
in both directions. In case of known services, low ports are almost always used.
In case of peer-to-peer traffic or other applications that may use high server-side
port numbers, connections between peers are established using high ports only.
However, sorting based on any of these two ports has the same effect to the locality
of the application’s memory accesses. Sorting always based on the smaller among
the two port numbers ensures that packets from both directions will be clustered
together, and their relative order will always be maintained. Thus, our choice is to
sort the packets according to the smaller between the source and destinationports.

4.1.1 Feasibility Estimation

To get an estimation of the feasibility and the magnitude of improvement that local-
ity buffering can offer, we performed a preliminary experiment wherebywe sorted
off-line the packets of a network trace based on the lowest between the source and
destination port numbers, and fed it to a passive monitoring application. Thiscor-
responds to applying locality buffering using buckets of infinite size. Detailsabout
the trace and the experimental environment are discussed in Section4.3. We ran
Snort v2.9 [124] using both the sorted and the original trace, and measured the
processing throughput (trace size divided by user time), L2 cache misses, and CPU
cycles of the application. Snort was configured with all the default preprocessors
enabled as specified in its default configuration file and used the latest official rule
set [7] containing 19,009 rules. The Aho-Corasick algorithm was used for pattern
matching [9]. The L2 cache misses and CPU clock cycles were measured using the
PAPI library [6], which utilizes the hardware performance counters.
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Performance metric Original trace Sorted trace Improvement

Throughput (Mbit/s) 473.97 596.15 25.78%
Cache misses (per packet) 11.06 1.33 87.98%
CPU cycles (per packet) 31,418.91 24,657.98 21.52%

TABLE 4.1: Snort’s performance using a sorted trace.

Table4.1 summarizes the results of this experiment (each measurement was
repeated 100 times, and we report the average values). We observe that sorting
results to a significant improvement of more than 25% in Snort’s packet processing
throughput, L2 cache misses are reduced by more than 8 times, and 21% lessCPU
cycles are consumed.

From the above experiment, we see that there is a significant potential of im-
provement in packet processing throughput using locality buffering. However, in
practice, rearranging the packets of a continuous packet stream can only be done
in short intervals, since we cannot indefinitely wait to gather an arbitrarily large
number of packets of the same class before delivering them to the monitoring
application—the captured packets have to be eventually delivered to the application
within a short time interval (in our implementation, in the orders of milliseconds).
Note that slightly relaxing the in-order delivery of the captured packets results to
a delay between capturing the packet, and actually delivering it to the monitoring
application. However, such a sub-second delay does not actually affect the correct
operation of the monitoring applications that we consider in this work (delivering
an alert or reporting a flow record a few milliseconds later is totally acceptable).
Furthermore, packet timestamps are computedbefore locality buffering, and are
not altered in any way, so any inter-packet time dependencies remain intact.

4.2 Implementation within libpcap

We have chosen to implement locality buffering withinlibpcap, the most widely
used packet capturing library, which is the basis for a multitude of passivemoni-
toring applications. Typically, applications read the captured packets through a call
such aspcap next or pcap loop, one at a time, in the same order as they ar-
rive to the network interface. By incorporating locality buffering withinlibpcap,
monitoring applications continue to operate as before, taking advantage of locality
buffering in a transparent way, without the need to alter their code or link them with
extra libraries. Indeed, the only difference is that consecutive calls topcap next
or similar functions will most of the time return packets with the same destina-
tion or source port number, depending on the availability and the time constraints,
instead of highly interleaved packets with different port numbers.
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4.2.1 Periodic Packet Stream Sorting

In libpcap, whenever the application attempts to read a new packet, e.g., through
a call topcap next, the library reads a packet from kernel and delivers it to the
application. Usingpcap loop, the application registers a callback function for
packet processing that is called once per each captured packet readfrom kernel by
libpcap. In case that memory mapping is not supported, the packet is copied
through arecv call from kernel space to user space in a small buffer equal to
the maximum packet size, and thenpcap next returns a pointer to the beginning
of the new packet or the callback function registered bypcap loop is called.
With memory mapping, the next packet stored by kernel in the shared ring buffer
is returned to application or processed by the callback function. If no packets are
stored,poll is called to wait for the next packet reception.

So far, we have conceptually described locality buffering as a set of buckets,
with packets having the same source or destination port ending up into the same
bucket. One straightforward implementation of this approach would be to actually
maintain a separate buffer for each bucket, and copy each arriving packet to its
corresponding buffer. However, this has the drawback that an extracopy is required
for storing each packet to the corresponding bucket, right after it hasbeen fetched
from the kernel.

In order to avoid additional packet copy operations, which incur significant
overhead, we have chosen an alternative approach. We distinguish between two
different phases: the packetgatheringphase, and the packetdeliveryphase. In the
case without memory mapping, we have modified the single-packet-sized buffer of
libpcap to hold a large number of packets instead of just one. During the packet
gathering phase, newly arrived packets are written sequentially into the buffer by
increasing the buffer offset in therecv call until the buffer is full or a certain
timeout has expired. Forlibpcap implementation with memory mapping sup-
port, the shared buffer is split into two parts. The first part of the buffer is used for
gathering packets in the gathering phase, and the second part for delivering packets
based on the imposed sorting. The gathering phase lasts either till the bufferused
for packet gathering gets full or till a timeout period expires.

Instead of arranging the packets into different buckets, which requires an extra
copy operation for each packet, we maintain an index structure that specifies the
order in which the packets in the buffer will be delivered to the application during
the delivering phase, as illustrated in Figure4.2. The index consists of a table
with 64K entries, one for each port number. Each entry in the table points to the
beginning of a linked list that holds references to all packets within the buffer with
the particular port number. In the packet delivery phase, the packets are delivered
to the application ordered according to their smaller port by traversing eachlist
sequentially, starting from the first non-empty port number entry. In this way we
achieve the desired packet sorting, while, at the same time, all packets remainin
place, at the initial memory location in which they were written, avoiding extra
costly copy operations. In the following, we discuss the two phases in more detail.
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FIGURE 4.2: Using an indexing table with a linked list for each port, the packets
are delivered to the application sorted by their smaller port number.

In the beginning of each packet gathering phase the indexing table is zeroed us-
ing memset(). For each arriving packet, we perform a simple protocol decoding
for determining whether it is a TCP or UDP packet, and consequently extract its
source and destination port numbers. Then, a new reference for the packet is added
to the corresponding linked list. For non-TCP or non-UDP packets, a reference is
added into a separate list. The information that we keep for every packet ineach
node of the linked lists includes the packet’s length, the precise timestamp of the
time when the packet was captured, and a pointer to the actual packet data inthe
buffer.

Instead of dynamically allocating memory for new nodes in the linked lists,
which would be an overkill, we pre-allocate a large enough number of spare nodes,
equal to the maximum number of packets that can be stored in the buffer. Whenever
a new reference has to be added in a linked list, a spare node is picked. Also, for
fast insertion of new nodes at the end of the list, we keep a table with 64K pointers
to the tail of each list.

The overhead of this indexing process is negligible. We measured it using a
simple analysis application, which just receives packets in user space andthen dis-
cards them, resulting to less than 6% overhead for any traffic rate. This is because
most of the CPU time in this application is spent for capturing packets and deliv-
ering them to user space. The overhead of finding the port numbers andadding a
node to our data structure for each packet is negligible compared to packet cap-
turing and other per-packet overheads. The overhead of making zero (through a
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memset() call) the indexing table is also negligible, since we make it once for
a large group of packets. In this measurement we used a simple analysis applica-
tion which does not benefit from improved cache memory locality. For real world
applications this overhead is even smaller, and as we observe in our experimental
evaluation (Section4.3) the benefits from memory locality enhancements outreach
by far this overhead.

The system continues to gather packets until the buffer becomes full or a certain
timeout has elapsed. The timeout ensures that if packets arrive with a low rate, the
application will not wait too long for receiving the next batch of packets. The
buffer size and the timeout are two significant parameters of our approach, since
they influence the number of sorted packets that can be delivered to the application
in each batch. Both timeout and buffer size can be defined by the application.
Depending on the per-packet processing complexity of each application,the buffer
size determines the benefit in its performance. In Section4.3we examine the effect
that the number of packets in each batch has on the overall performance using three
different passive monitoring applications. The timeout parameter is mostly related
to the network’s workload.

Upon the end of the packet gathering phase, packets can be deliveredto the ap-
plication following the order imposed by the indexing structure. For that purpose,
we keep a pointer to the list node of the most recently delivered packet. Starting
from the beginning of the index table, whenever the application requests a new
packet, e.g., throughpcap next, we return the packet pointed either by the next
node in the list, or, if we have reached the end of the list, by the first node ofthe next
non-empty list. The latter happens when all the packets of the same port havebeen
delivered (i.e., the bucket has been emptied), so conceptually the system continues
with the next non-empty group.

4.2.2 Using a Separate Thread for Packet Gathering

In case that memory mapping is not supported in the system, a single buffer will
be used for both packet gathering and delivery. A drawback of the above imple-
mentation is that during the packet gathering phase, the CPU remains idle most
of the time, since no packets are delivered to the application for processingin the
meanwhile. Reversely, during the processing of the packets that were captured in
the previous packet gathering period, no packets are stored in the buffer. In case
that the kernel’s socket buffer is small and the processing time for the current batch
of packets is increased, it is possible that a significant number of packetsmay get
lost by the application in case of high traffic load.

Although in practice this effect does not degrade performance when short time-
outs are used, we can improve further the performance of locality buffering in this
case by employing a separate thread for the packet gathering phase, combined with
the usage of two buffers instead of a single one. The separate packet gathering
thread receives the packets from the kernel and stores them to thewrite buffer, and
also updates its index. In parallel, the application receives packets for processing
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from the main thread oflibpcap, which returns the already sorted packets of the
secondread buffer. Each buffer has its own indexing table.

Upon the completion of both the packet gathering phase, i.e., after the timeout
expires or when the write buffer becomes full, and the parallel packet delivery
phase, the two buffers are swapped. The write buffer, which now is full of packets,
turns to a read buffer, while the now empty read buffer becomes a write buffer. The
whole swapping process is as simple as swapping two pointers, while semaphore
operations ensure the thread-safe exchange of the two buffers.

4.2.3 Combine Locality Buffering and Memory Mapping

A step beyond is to combine locality buffering with memory mapping to further
increase the performance of each individual technique. While memory mapping
improves the performance of packet capturing, locality buffering aims to improve
the performance of the user application that processes the captured packets.

The buffer where the network packets are stored inlibpcap with mem-
ory mapping support is accessible from both the kernel andlibpcap library.
The packets are stored sequentially into this buffer by the kernel as they arrive,
while thelibpcap library allows a monitoring application to process them by
returning a pointer to the next packet throughpcap next or calling the callback
function registered throughpcap loop for each packet that arrives. In case the
buffer is empty,libpcap blocks, callingpoll, waiting for new packets to arrive.
Packet processing is performed by a user-defined handler function that is registered
throughpcap loop or pcap dispatch and is called once for each packet that
arrives.

After finishing with the processing of each packet, through the callback func-
tion or when the nextpcap next is called,libpcap marks the packet as read
so that the kernel can later overwrite the packet with a new one. Otherwise, if a
packet is marked as unread, the kernel is not allowed to copy a new packet into this
position of the buffer. In this way, any possible data corruption that couldhappen
by the parallel execution of the two processes (kernel and monitoring application)
is avoided.

The implementation of locality buffering in the memory mapped version of
libpcap does not require to maintain a separate buffer for sorting the arriving
packets, since we have direct access to the shared memory mapped buffer in which
they are stored. To deliver the packets sorted based on the source or destination
port number to the application, we process a small portion of the shared buffer
each time as a batch: instead of executing the handler function every time a new
packet is pushed into the buffer, we wait until a certain amount of packetshas been
gathered or a certain amount of time has been elapsed. The batch of packets is then
ordered based on the smaller of source and destination port numbers.

The sorting of the packets is performed as described in Section4.2.1. The same
indexing structure, as depicted in Figure4.2, was built to support the sorting. The
structure contains pointers directly to the packets on the shared buffer. Then, the
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handler function is applied iteratively on each indexed packet based on the order
imposed by the indexing structure. After the completion of the handler function,
the packet is marked for deletion as before in order to avoid any race conditions
between the kernel process and the user-level library.

A possible weakness of not using an extra buffer, as described in Section 4.2.2,
is that if the batch of the packets is large in comparison to the shared buffer,a
significant number of packets may get lost during the sorting phase in caseof high
traffic load. However, as discussed in Section4.3, the fraction of the packets that
we need to sort is very small compared to the size of the shared buffer. Therefore,
it does not affect the insertion of new packets in the meanwhile.

In case of memory mapping, a separate thread for the packet gathering phase
is not required. New incoming packets are captured and stored into the shared
buffer by the kernel in parallel with the packet delivery and processing phase, since
kernel and user level application (including thelibpcap library) are two different
processes. Packets that have been previously stored in buffer by kernel are sorted
in batches during the gathering phase and then each sorted batch of packets are
delivered one-by-one to the application for further processing.

4.3 Experimental Evaluation

4.3.1 Experimental Environment

Our experimental environment consists of two PCs interconnected througha 10
Gbit switch. The first PC is used for traffic generation, which is achievedby re-
playing real network traffic traces at different rates usingtcpreplay [145]. The
traffic generation PC is equipped with two dual-core Intel Xeon 2.66 GHz CPU
with 4 MB L2 cache, 6 GB RAM, and a 10 Gbit network interface (SMC 10G
adapter with XFP). This setup allowed us to replay traffic traces with speedsup
to 2 Gbit/s. Achieving larger speeds was not possible using large network traces
because usually the trace could not be effectively cached in main memory.

By rewriting the source and destination MAC addresses in all packets, the gen-
erated traffic is sent to the second PC, the passive monitoring sensor, which cap-
tures the traffic and processes it using different monitoring applications.The pas-
sive monitoring sensor is equipped with two quad-core Intel Xeon 2.00 GHzCPUs
with 6 MB L2 cache, 6 GB RAM, and a 10 Gbit network interface (SMC 10G
adapter with XFP). The size of memory mapped buffer was set to 60,000 frames
in all cases, in order to minimize packet drops due to short packet bursts.Indeed,
we observe that when packets are dropped by kernel, in higher trafficrates, the
CPU utilization in the passive monitoring sensor is always 100%. Thus, in ourex-
periments, packets are lost due to the high CPU load. Both PCs run 64bit Ubuntu
Linux (kernel version 2.6.32).

For the evaluation we use an anonymized one-hour long trace captured atthe
access link that connects an educational network with thousands of hoststo the
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Internet. The trace contains 58,714,906 packets, corresponding to 1,493,032 dif-
ferent flows, totalling more than 40 GB in size. To achieve high speeds, up tp2
Gbit/s, we split the trace into a few smaller parts, which can be effectively cached
in the 6 GB main memory, and we replay each part of the trace for 10 times in each
experiment.

We measure the performance of the monitoring applications on top of the origi-
nal version oflibpcap-1.1.1 and our mofidied version with locality buffering.
The latter combines locality buffering with the memory mapping. For each setting,
we measure the L2 cache misses and the CPU clock cycles by reading the CPU
performance counters through the PAPI library [6]. Another important metric we
measure is the percentage of packets being dropped bylibpcap, which is oc-
curred when replaying traffic in high rates due to high CPU utilization.

Traffic generation begins after the application has been initiated. The applica-
tion is terminated immediately after capturing the last packet of the replayed trace.
All measurements were repeated 10 times and we report the average values. We
focus mostly on the discussion of our experiments using Snort IDS, which isthe
most resource-intensive among the tested applications. However, we alsobriefly
report on our experiences with Appmon and Fprobe monitoring applications.

4.3.2 Snort

As in the experiments of Section4.1.1, we ran Snort v2.9 using its default configu-
ration, in which all the default preprocessors were enabled, and we used the latest
official rule set [7] containing 19,009 rules. Initially, we examine the effect that
the size of the buffer in which the packets are sorted has on the overall applica-
tion performance. We vary the size of the buffer from 100 to 32,000 packets while
replaying the network trace at a constant rate of 250 Mbit/s. We send traffic at
several rates, but we first present results from constant 250 Mbit/s since no packets
were dropped at this rate, to examine the effect of buffer size on CPU cycles spent
and L2 cache misses when no packets are lost. We do not use any timeout in these
experiments for packet gathering. As long as we send traffic at constant rate, the
buffer size determines how long the packet gathering phase will last. Respectively,
a timeout value corresponds to a specific buffer size.

Figures4.3 and4.4 show the per-packet CPU cycles and L2 cache misses re-
spectively when Snort processes the replayed traffic using the original and modified
versions oflibpcap. Bothlibpcap versions use the memory mapping support,
with the same size for the shared packet buffer (60,000 frames) for fairness. Fig-
ure4.5presents the percentage of the packets that are being dropped by Snortwhen
replaying the traffic at 2 Gbit/s, for each different version oflibpcap.

We observe that increasing the size of the buffer results to fewer cachemisses,
fewer clock cycles, less dropped packets, and generally to an overallperformance
improvement for the locality buffering implementations. This is because using
a larger packet buffer offers better possibilities for effective packet sorting, and
thus to better memory locality. However, increasing the size from 8,000 to 32,000
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FIGURE 4.3: Snort’s CPU cycles as
a function of the buffer size for 250
Mbit/s traffic.
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FIGURE 4.4: Snort’s L2 cache misses
as a function of the buffer size for 250
Mbit/s traffic.
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FIGURE 4.5: Snort’s packet loss ratio
as a function of the buffer size for 2
Gbit/s traffic.

packets gives only a slight improvement. Based on this result, we consider 8,000
packets as an optimum buffer size in our experiments. When sending trafficin a
constant rate of 250 Mbit/s, with no timeout specified, 8,000 packets as buffer size
roughly correspond to an 128 millisecond period at average.

We can also notice that using locality buffering we achieve a significant re-
duction in L2 cache misses from 13.4 per packet to 4.1, when using a 8,000-
packet buffer, which is an improvement of 3.3 times against Snort with the original
libpcap library. Therefore, Snort’s user time and clock cycles are significantly
reduced using locality buffering, making it faster by more than 20%. Moreover,
when replaying the traffic at 2 Gbit/s, the packet loss ratio is reduced by 33%.
Thus, Snort with locality buffering and memory mappedlibpcap performs sig-
nificantly better than using the originallibpcap with memory mapping support.
When replaying the trace at low traffic rates, with no packet loss, Snort outputs the
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FIGURE 4.6: Packet loss ratio of the
passive monitoring sensor when run-
ning Snort, as a function of the traf-
fic speed for an 8,000-packet locality
buffer.
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FIGURE 4.7: CPU utilization in the
passive monitoring sensor when run-
ning Snort, as a function of the traf-
fic speed for an 8,000-packet locality
buffer.

same set of alerts with and without locality buffering, so the packet reordering does
not affect the correct operation of Snort’s detection process.

We repeated the experiment by replaying the trace in different rates ranging
from 100 to 2,000 Mbit/s and in every case we observed a similar behavior. In all
rates, 8,000 packets was found to be the optimum buffer size. Using this buffer
size, locality buffering results in all rates to a significant reduction in Snort’scache
misses and CPU cycles, similar to the improvement observed for 250 Mbit/s traffic
against the originallibpcap. The optimum buffer size depends mainly on the
nature of traffic in the monitored network and on the network monitoring applica-
tion’s processing.

An important metric for evaluating the performance of our implementations is
the percentage of the packets that are being dropped in high traffic ratesby the
kernel due to high CPU load, and the maximum processing throughput that Snort
can sustain without dropping packets. In Figure4.6we plot the average percentage
of packets that are being lost while replaying the trace with speeds rangingfrom
100 to 2,000 Mbit/s, with a step of 100 Mbit/s. The 2,000 Mbit/s limitation is due
to caching the trace file parts from disk to main memory in the traffic generator
machine, in order to generate real network traffic. We used a 8,000-packet locality
buffer, which was found to be the optimal size for Snort when replaying our trace
file at any rate.

Using the unmodifiedlibpcap with memory mapping, Snort cannot process
all packets in rates higher than 600 Mbit/s, so a significant percentage of packets
is being lost. On the other hand, using locality buffering the packet processing
time is accelerated and the system is able to process more packets in the same time
interval. As shown in Figure4.6, using locality buffering Snort becomes much
more resistant in packet loss, and starts to lose packets at 1 Gbit/s instead of600
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Mbit/s. Moreover, at 2 Gbit/s, our implementation drops 33% less packets than the
originallibpcap.

Figure4.7 shows Snort’s CPU utilization as a function of the traffic rate, for
rates varying from 100 Mbit/s to 2 Gbit/s, with a 100 Mbit/s step, and a locality
buffer size of 8,000 packets. We observe that for low speeds, locality buffering
reduces the number of CPU cycles spent for packet processing due tothe improved
memory locality. For instance, for 500 Mbit/s, Snort’s CPU utilization with locality
buffering is reduced by 20%. The CPU utilization when Snort does not use locality
buffering exceeds 90% for rates higher than 600 Mbit/s, and reaches up to 98.3%
for 1 Gbit/s. On the other hand, using locality buffering, Snort’s CPU utilization
exceeds 90% for rates higher than 1 Gbit/s, and reaches about 97% for1.5 Gbit/s
rate. We also observe that packet loss events occur due to high CPU utilization,
when it approaches 100%. Without locality buffering, 92.7% CPU utilization for
700 Mbit/s results to 1.4% packet loss rate, while 98% utilization for 1.1 Gbit/s
results to 47.2% packet loss.

In Figure4.8we plot the average percentage of dropped packets while replay-
ing traffic with normal timing behavior, instead of sending traffic with a constant
rate. We replay the traffic of our trace based on it’s normal traffic patterns when
the trace was captured, using the multiplier option of tcpreplay [145] tool. Thus,
we are able to replay the trace at the speed that it was recorded, which is 88 Mbit/s
on average, or at a multiple of this speed. In this experiment we examine the per-
formance of Snort using the original and our modifiedlibpcap in case of normal
traffic patterns with packet bursts, instead of constant traffic rates. Wesend the
trace using multiples from 1 up to 16, and we plot the percentage of droppedpack-
ets as a function of this multiplication factor. We use 8,000 packets as buffer size
and 100 ms timeout.

We observe that locality buffering reduces the percentage of droppedpackets
in higher traffic rates, when using larger multiplication factors. Snort with locality
buffering starts dropping packets when sending traffic eight times fasterthan the ac-
tual speed of the trace, while Snort with the originallibpcap drops packets from
four times faster speed. When replaying traffic 16 times faster than the recorded
speed, which results to 1,408 Mbit/s on average, Snort with locality buffering drops
34% less packets.

Since both versions oflibpcap use a ring buffer for storing packets with
the same size, they are resistant to packet bursts at a similar factor. However,
libpcap with locality buffering is faster, due the improved memory locality, and
so it is more resistant to packet drops in cases of overloads and traffic bursts.

4.3.3 Appmon

Appmon [12] is a passive network monitoring application for accurate per-application
traffic identification and categorization. It uses deep-packet inspectionand packet
filtering for attributing flows to the applications that generate them. We ran App-
mon on top of our modified version oflibpcap to examine its performance using
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FIGURE 4.8: Packet loss ratio of the passive monitoring sensor when running
Snort, as a function of the actual trace’s speed multiple, with an 8,000-packet lo-
cality buffer and 100 ms timeout.
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FIGURE 4.9: Appmon’s CPU cycles
as a function of the buffer size for 500
Mbit/s traffic.

Locality Buffer size (# packets)
0 5000 10000 15000 20000 25000 30000

L2
 c

ac
he

 m
is

se
s 

(p
er

 p
ac

ke
t)

0

2

4

6

8

10

12

14

pcap
pcap+LB

FIGURE 4.10: Appmon’s L2 cache
misses as a function of the buffer size
for 500 Mbit/s traffic.

different buffer sizes that vary from 100 to 32,000 packets, and compare with the
originallibpcap. Figure4.9presents the Appmon’s CPU cycles and Figure4.10
the L2 cache misses measured while replaying the trace at a constant rate of500
Mbit/s. At this rate no packet loss was occurred.

The results show that Appmon’s performance can be improved using the local-
ity buffering implementation, reducing the CPU cycles by about 16% comparedto
Appmon using the originallibpcap. Cache misses are reduced by up to 31% for
32,000 packets buffer size and 28% for 16,000 packets. We notice that incase of
Appmon the optimum buffer size is around 16,000 packets, while in Snort 8,000
packets size is enough to optimize the performance. This happens becauseApp-
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FIGURE 4.11: Fprobe’s CPU cycles as
a function of the buffer size for 500
Mbit/s traffic.
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FIGURE 4.12: Fprobe’s L2 cache
misses as a function of the buffer size
for 500 Mbit/s traffic.

mon is not so CPU-intensive as Snort, so it requires a larger amount of packets to
be sorted in order to achieve a significant performance improvement.

We ran Appmon with traffic rates varying from 250 to 2,000 Mbit/s, observing
similar results. Since Appmon does less processing than snort, less packetsare
dropped in high rates. The output of Appmon remains identical in all cases,which
means that the periodic packet stream sorting does not affect the correct operation
of Appmon’s classification process.

4.3.4 Fprobe

Fprobe [3] is a passive monitoring application that collects traffic statistics for
each active flow and exports the corresponding NetFlow records. We ran Fprobe
with the original and our modified version oflibpcap and performed the same
measurements as with Appmon.

Figure4.11plots the CPU cycles and Figure4.12the L2 cache misses of the
Fprobe variants for buffer sizes from 100 up to 32,000 packets, while replaying the
trace at a rate of 500 Mbit/s.

We notice a speedup of about 11% in Fprobe when locality buffering is en-
abled, for 4,000 packets buffer size, while cache misses are reduced by 19%. The
buffer size that optimizes the overall performance of Fprobe in this setup isaround
4,000 packets. No packet loss occurred for Fprobe at all traffic rates. Fprobe is
even less CPU-intensive than Appmon and Snort since it performs only a few op-
erations per packet. The time spent in kernel for packet capturing is significantly
larger than the time spent in user space. Thus, Fprobe benefits less fromthe lo-
cality buffering enhancements. For passive monitoring applications in general, the
performance improvement due to locality buffering increases as the time spent in
user space increases, and also depends on memory access patterns. Similar results
were observed for all rates of the replayed traffic.
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4.4 Discussion

We consider two main limitations of our locality buffering approach. The first lim-
itation is that the packet reordering we impose results in non-monotonic increasing
timestamps among different flows (it guarantees monotonic increasing timestamps
only per eachbi-directional flow). Therefore, applications that require this prop-
erty, e.g., for connection timeout issues, may have problems when dealing with
non-monotonic increasing timestamps. Such applications should either be modi-
fied to handle this issue, otherwise they cannot use our approach.

The second limitation of our approach is that our generic implementation within
libpcap, which sorts packets based on source or destination port numbers, may
not be suitable for applications that require a custom packet sorting or schedul-
ing approach, e.g., based on application’s semantics. Monitoring applications may
perform similar processing for packets with specific port numbers, whichcannot
be known to the packet capturing library. Such applications should not use our
modifiedlibpcap version, but instead implement a custom scheduling scheme
for packet processing order. Our implementation’s goal, is to improvetranspar-
ently the performance of a large class of existing applications, where the packet
processing tasks depend mainly on the packets port numbers.

In particular, locality buffering technique is intended for applications which
perform similar processing and similar memory accesses for the same class of
packets, e.g., for packets of the same flow or packets belonging to the same higher
level protocol or application. For instance, signature-based intrusion detection sys-
tems can benefit from locality buffering, due to different set of signatures matched
against different classes of packets. Other types of monitoring applications may
not gain the same performance improvement from locality buffering.

Finally, recent trends impose the use of multiple CPU cores per processor,in-
stead of building and using faster processors. Thus, applications should utilize
all the available CPU cores to take full advantage of modern hardware andim-
prove their performance. Although L2 cache memory becomes larger in newest
processors, more processor cores tend to access the shared L2 cache, so locality
enhancements can still benefit the overall performance. Our approachcan be ex-
tended to exploit memory locality enhancements for improving the performance
of multithreaded applications running in multicore processors. Improving mem-
ory locality for each thread, which usually runs on a single core, is an important
factor that can significantly improve packet processing performance. Each thread
should process similar packets to improve its memory access locality, similarly to
our approach, which is intended for single-threaded applications.

Applications usually choose to split packets to multiple threads (one thread
per core) based on flow identifiers. A generic locality-aware approachfor efficient
packet splitting to multiple threads, in order to optimize cache usage in each CPU
core, should sort packets based on their port numbers and then dividethem to the
multiple threads. This will lead to improved code and data locality in each CPU
core, similarly to our locality buffering approach. However, in some applications
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the best splitting of packets to multiple threads can be done only by the application
itself, based on custom application’s semantics, e.g., custom sets of ports with
similar processing. In these cases, a generic library for improved memory locality
cannot be used.

4.5 Summary

In this chapter, we presented a technique for improving the packet processing per-
formance in a wide range of passive network monitoring applications by enhancing
the locality of code and data accesses. Our approach is based on reordering the
captured packets before delivering them to the monitoring application by grouping
together packets with the same source or destination port number. This results to
improved locality in application code and data accesses, and consequently toan
overall increase in the packet processing throughput and to a significant decrease
in the packet loss rate.

To maximize improvements in processing throughput, we combine locality
buffering with memory mapping, an existing technique inlibpcap that optimizes
the performance of packet capturing. By mapping a buffer into shared memory, this
technique reduces the time spent in context switching for delivering packets from
kernel to user space.

We describe in detail the design and implementation of locality buffering within
libpcap. Our experimental evaluation using three representative passive moni-
toring applications shows that all applications gain a significant performance im-
provement when using the locality buffering implementations, while the system
can keep up with higher traffic speeds without dropping packets. Specifically, lo-
cality buffering results to a 25% increase in the processing throughput ofthe Snort
IDS and allows it to process two times higher traffic rates without packet drops.

Using the originallibpcap implementation, the Snort sensor starts to drop
packets when the monitored traffic speed reaches 600 Mbit/s, while using local-
ity buffering, packet loss is exhibited beyond 1 Gbit/s. Fprobe, a NetFlow export
probe, and Appmon, an accurate traffic classification application, also exhibit sig-
nificant throughput improvements, up to 12% and 18% respectively, although they
do not perform as CPU-intensive processing as Snort.

Overall, we believe that implementing locality buffering withinlibpcap is
an attractive performance optimization, since it offers significant performance im-
provements to a wide range of passive monitoring applications, while at the same
time its operation is completely transparent, without the need to modify existing
applications. Our implementation of locality buffering in the memory mapped ver-
sion oflibpcap offers even better performance, since it combines optimizations
in both the packet capturing and packet processing phases.



5
Improving Accuracy Under Heavy Load

Over the past few years we have been witnessing an increasing number of security
breaches and malicious activities in the Internet [155]. Network Intrusion Detec-
tion Systems (NIDSs) are crucial for the detection of security violations andsuspi-
cious activity, enhancing the robustness and secure operation of modern networks.
However, the constant increase in link speeds and number of security threats poses
significant challenges to NIDSs, which need to cope with higher traffic volumes
and perform increasingly complex per-packet processing.

NIDSs operate insoft real time, meaning that under conditions of heavy traffic
load the system will operate with degraded performance. When the networktraffic
load becomes higher than the peak processing throughput the NIDS can sustain,
the CPU becomes saturated, and the Operating System inevitably starts dropping
packets before delivering them to the NIDS, impeding its detection ability. Since
these packets are not inspected, if they are part of an attack or other malicious
activity, then that event will be missed.

Several techniques have been proposed for improving the performance of NIDSs
by accelerating the packet processing throughput and thus processing higher traffic
loads [13,35,84,157]. Other techniques automatically tune the NIDS configuration
to balance detection accuracy and resource requirements [44,85]. However, given a
highly loaded network, intrusion detection systems based on non-specialized hard-
ware are usually not able to analyze all traffic to the desired degree [127]. Even
after carefully tuning the NIDS according to the monitored environment, it will
still have to cope with inevitable traffic bursts or processing spikes [135].

In this chapter, we presentselective packet discarding, a technique that allows
a NIDS to dynamically diagnose conditions of excessive traffic load and mini-
mize their impact on its detection accuracy by choosing which packets should be
dropped. Using selective packet discarding, the system selectively skips processing
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packets that are less likely to affect the correct operation of the detectionengine as
soon as possible, instead of letting the Operating System randomly dropping arriv-
ing packets. This allows the NIDS to inspect a larger number of “useful” packets
that are important to the detection process.

We observe that the first packets of a connection play a crucial role to the
correct detection of a large class of attacks. For instance, signatures for threats
like network service probes and reconnaissance attacks, brute forcelogin attempts,
protocol misbehaviour, and code-injection attacks, usually match packets that are
among the first few hundred packets of a network flow. Moreover, the first control
packets of a TCP connection are crucial to proper flow tracking and TCPstream
reassembly, which are mandatory features of modern NIDSs [66,119]. If any of the
packets in the TCP three-way handshake is lost, the corresponding flow willnot be
considered established, and potential attack vectors in this flow may evade detec-
tion. On the other hand, very large flows usually correspond to file transfers, P2P
traffic, or streaming media applications, which typically are not related to security
threats. Inspecting all packets from such “heavy-hitters,” which comprise a large
percentage of the total traffic, usually does not contribute much to the detection
accuracy of a NIDS.

We implemented selective packet discarding in the Snort intrusion detection
system [124] as a preprocessor that runs before the detection engine and all other
preprocessors. It maintains state for the active flows and limits the number ofpack-
ets that will be inspected per flow by discarding them from the rest preprocessors
and Snort’s core detection engine. It is also responsible to measure the delay and
CPU usage when Snort is processing a group of packets and respectively adjust the
number of packets that will forward for further inspection.

We experimentally evaluated our technique using production traffic, mixed
with real attacks that Snort can detect. We replay the traffic at high speedrates
using several traffic patterns, and we compare the detection accuracy of original
Snort when packets are dropped with our modified Snort, with the selectivepacket
discarding preprocessor enabled. Under overload conditions, the original Snort
implementation misses a significant number of packets, resulting to a considerably
lower number of alerts, with many of the labeled attacks in our trace passing unde-
tected. This is a result of the random packet dropped by the Operating System. In
contrast, selective packet discarding significantly improves the detection accuracy
of Snort under increased traffic conditions, allowing it to detect most of the attacks
that would have otherwise been missed.

The rest of this chapter is organized as follows: Section5.1introduces selective
packet discarding and Section5.2 provides the details of our implementation in
Snort. In Section5.3, we experimentally evaluate our technique under realistic
conditions by replaying real traffic traces with different speeds. Finally, Section5.4
summarizes this chapter.
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5.1 Selective Packet Discarding

Ideally, an intrusion detection system should be able to capture and inspectall
network traffic passing through the monitored link. In highly loaded networks,
this may not be possible due to the limited computational power of the monitoring
sensor. For traffic speeds higher than a few hundred Mbit/s, the systemcannot
process all monitored traffic, which unavoidably leads to packet drops [127].

One way to offload the detection engine is to select a subset of the monitored
traffic to be excluded from the NIDS processing using a capture filter during initial-
ization [91]. However, in a typical deployment, such a filter usually excludes only
a small subset of the traffic, while events of excessive traffic load or bursty traffic
can still occur. Given that under such conditions some packets will unavoidably
get lost, we argue that it is better to proactively discard those packets thatare less
likely to affect the detection effectiveness of the system, instead of letting theOS
drop packets at random.

In this section, we describe in detail the design and implementation of selec-
tive packet discarding, which dynamically controls which packets are going to get
dropped in case of overload conditions with the minimal impact to the detection
ability of the system. We first discusswhichpackets should be considered for dis-
carding, and we propose a selection based on the flow size and the positionof
packets in their flows. Then, we describe the performance measurements that the
NIDS should perform periodically to monitor the system’s load and decidewhen
selective packet discarding should be triggered. Finally, we present an algorithm
that dynamically estimateshow manypackets should be dropped according to the
system performance measurements.

5.1.1 Flow-based Packet Selection

The starting point of our work is the observation that in a typical NIDS, some
network packets play a more important role for the detection of a large class of
threats than the rest of the traffic, i.e., without processing these packets,there is
an increased probability to miss an attack. For example, inspecting the protocol
interactions of commonly targeted services like RPC and NETBIOS seems more
important than inspecting a large file transfer of a file-sharing application.

Probably the most widely used abstraction when referring to network traffic,
besides the network packets themselves, is thenetwork flow. A network flow com-
prises packets with the same protocol, source and destination IP addresses, and
source and destination port numbers (same 5-tuple) and represents a connection
between two hosts.

The first packets of a network connection are very important for the correct
detection of a large class of attacks. Many types of threats like port scanning,
service probes and OS fingerprinting, code-injection attacks, and bruteforce login
attempts, require a new connection for each attempt, and the attack vector is usually
present in the first few thousands KB of the flow. By contrast, very large streams
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usually correspond to file transfers, VoIP communication, or streaming mediaap-
plications, which typically are not related to security threats. Very long network
flows usually comprise a large portion of the total traffic in an organization’snet-
work, and inspecting the packets towards the end of such flows usually does not
contribute much to the detection accuracy of a NIDS.

Another reason for the increased importance of the first packets of a connection
is the flow tracking and TCP stream reassembly functionality of modern NIDSs.
The packets in the three-way TCP handshake, which are always the first packets
in a TCP flow, are crucial for updating the state of a new flow as it is established,
identifying the direction of each stream, and performing TCP stream reassembly. If
a control packet is lost during the connection initialization phase, the corresponding
flow will not be considered as established and possible attack vectors present in
subsequent packets of this flow may evade detection.

Analyzing the 9276 rules in the default rule set of Snort [7], we observe that
4627 of them contain the keywordflow:established, which defines that the
detection engine should process the rest of the rule only if the packet belongs to an
already established TCP connection. If under high load conditions a packet of the
three-way handshake does not reach Snort’s flow tracking preprocessor, then the
rules that rely on flow tracking will never match for that flow, and potential attacks
will not be detected.

Furthermore, attack vectors that span multiple packets in the beginning of the
stream, such as the shellcode of a code injection attack or the URI of a malicious
XSS HTTP request, are usually inspected after the original stream has been re-
assembled by the TCP stream reassembly preprocessor (Stream5 in Snort). If
packets are being dropped randomly by the OS, the stream reassembly preproces-
sor may not receive a packet containing part of an attack, leaving the reassembled
stream incomplete.

To verify our intuition based on the above observations, we analyzed traces of
real attacks and extracted the actual position of the attack vector within the flow.
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We ran Snort using real traffic captured at the access link of an educational insti-
tution network, which triggers 1976 alerts from 78 different rules. We further aug-
mented the trace with 120 traces containing real attacks captured in the wild [117],
which Snort detects using the default rule set. We interspersed these traces in ran-
dom offsets within the large trace, so that the resulting trace generates a total of
2252 alerts due to 92 different attack signatures. Further details about the trace and
the experimental environment are discussed in Section5.3.1.

We slightly modified Snort to categorize packets into flows, and report the
rank of the matching packet within its flow when it matches an attack signature.
Figure5.1shows the cumulative distribution of the matching packet position within
the flow for the 2252 alerts in the above trace. We observe that most of the alerts
are triggered by the first few packets of a flow. For instance, 90% of thealerts
were triggered within the first 30 packets of the flow, and only 3% of the alerts
are triggered from packets coming after the 100th packet. This happens because
there is a large class of malicious activities that most of the time takes place in the
beginning of the flow. Such malicious activity includes port scans, attacks on the
authorization and authentication mechanisms, usage of P2P applications (which
often violates the corporate policy), as well as some protocol violations.

Flows usually follow a heavy tailed distribution on the Internet, i.e., the great
majority of the flows have a quite small size, while only a very small subset has a
very large size and is responsible for most of the total traffic volume [53]. Our trace
also follows this property, as we can see in Figure5.2, which shows the cumulative
distribution of the flow sizes. We can see that 86% of the flows contain up to
10 packets, while 97% of the flows have no more than 70 packets. Only 0.4%
of the flows have more than 1000 packets, which corresponds to 5972 out of the
total 1,493,032 flows. There are also 74 flows (0.005%) with more than 100,000
packets. The average flow size in the trace is 50.2 packets.

Based on the above observations, we argue that a NIDS under high loadcon-
ditions would benefit from focusing on the processing of the first packets of each
flow, and discarding the rest. Selecting the packets to be processed by setting a
flow size limit seems promising, since it will affect a small percentage of the flows,
but will also exclude a large portion of the total traffic from processing. Dynami-
cally setting the flow size cutoff limit according to the monitored traffic load is an
important aspect of our approach, which we discuss in the rest of this section.

5.1.2 System Load Monitoring

Under conditions of excessive traffic load, in which the packet processing through-
put of the NIDS is less than the monitored traffic throughput, the NIDS cannot pro-
cess all the monitored traffic and unavoidably the OS kernel starts dropping pack-
ets. Implementing selective packet discarding requires the forecasting ofoverload
conditions that will probably lead to dropped packets before the kernel actually
starts dropping them. Captured packets are initially stored in a socket buffer in ker-
nel space, before being copied to user space and then being delivered to the NIDS
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through the packet capture library, in our caselibpcap [92]. If the NIDS cannot
consume the arriving packets fast enough, the socket buffer will fill up and excess
packets will be dropped.

The main role of the socket buffer is to provide tolerance to short traffic bursts.
In case of short bursts, packets will be buffered as long as the socket buffer has free
space and will eventually be delivered for processing. The duration ofthe burst
and the socket buffer size determine the number of packets that will be dropped,
if any. In Linux, thegetsockopt system call can be used to obtain the socket
buffer size, which allows us to compute the minimum number of packets that can
be buffered in case of a traffic burst by dividing the socket buffer size by 1500—the
usual MTU for Ethernet. In all our experiments, we have set a large socket buffer
size of 6MB, to rule out packet drops due to common small buffer configurations.
If the amount of traffic is constantly higher than the NIDS processing through-
put, packets will be dropped regardless of the socket buffer size, since it will be
constantly full.

Our system identifies overload conditions using three metrics: (i) the occur-
rence of packet drops, (ii) CPU utilization approaching 100%, and (iii) a compari-
son between NIDS processing times and packet inter-arrival times.

Ideally, we would like to perform packet drops and CPU measurements at per-
packet granularity. However, this would incur a prohibitively high overhead. In-
stead, we measure the NIDS’s CPU usage, processing time, and packet drops once
everyN packets have been processed. We choseN based on the socket buffer size
to permit the system to timely detect overloads conditions before any packet drops
are caused by the kernel. We know that kernel can buffer at least thisamount of
packets in case of excessive load, before our discarding technique reacts. Addi-
tionally, N should be large enough to provide accurate measurements, according
to the system’s timing resolution1. Based on the above, in our setting with a 6MB
socket buffer, we empirically setN to 5000.

Every 5000 packets, the system examines whether any packets were dropped
by the kernel in the elapsed period using thepcap stats function oflibpcap [92].
Additionally, the system measures the user and system time using thegetrusage
system call, as well as the real time the NIDS spent while processing the previous
group ofN packets usinggettimeofday. The CPU utilization of the elapsed
period is computed as(user time+ system time)/real time.

For the third metric, we compare the timet required for processing the group
of N packets with the time intervals during which these packets were observed on
the network. The processing timet corresponds to theuser time+ system time,
while the time intervals is computed by subtracting the timestamp of the oldest
packet in the group from the timestamp of the most recent packet. Ift > s, then
this is an indication that the kernel will probably start dropping packets, if not
already. Otherwise, ift < s, the kernel did not drop any packets in that interval.

1In Linux, thegetrusage system call provides 10ms resolution.
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Since we need to predict packet loss events before the CPU gets saturated, we
set an upper threshold for CPU usage and processing time, above whichselective
packet discarding is triggered. Whent > s and the CPU usage is relatively low,
with no packet drop events during that period, the system decides whether more
packets per flow should be processed or not based on a second lowerthreshold.
These two thresholds should be close enough to allow for optimum resourceusage
and prevent CPU under-utilization. We also take into account the typical CPU load
variation during short term intervals to avoid rapid oscillations, i.e, falling into a
loop that would change very often the flow size limit up and down.

After running Snort using different traffic speeds and observing thecorrela-
tion between the traffic load, CPU load, and packet drops, as we discussin Sec-
tion 5.3, we set the above thresholds as follows: the upper threshold is set to 0.95
and the lower threshold is set to 0.8, i.e., 95% and 80% CPU utilization, respec-
tively. Putting it all together, the NIDS triggers selective packet discarding if during
the processing of the previousN packets i) some packets were dropped by the ker-
nel, or ii)CPU utilization > 0.95 andt > 0.95s. The condition for identifying
an idle period isCPU utilization < 0.8 and t < 0.8s. Otherwise, the CPU
utilization is within the desirable range and the flow size limits remain the same.

5.1.3 Flow Size Limit Adjustment Algorithm

Upon detection of an overload condition, the NIDS should back off and reduce
the number of packets that it is going to process. First, we need to specify how
many packets should be discarded, and then this number should be translated to
the proper reduction of the per-flow cutoff limit. Ideally, the number of packets to
be discarded should be such that it would allow the processing time for the packets
in the following group to remain within the desirable range. In other words, the
NIDS processing rate isN/t while the packets are coming with rateN/s We need
to reduce the processing timet to become equal to0.95s, i.e., the number of packets
to be discarded from the next group will correspond to processing timet−(0.95s),
that is:

(t− 0.95s)N/t (5.1)

In case the system observes packet drops in that interval, we should also consider
it in our decision. Therefore, the amount of packets that will be discarded is the
maximum of i) the number of packets dropped in that interval, and ii) the number
of packets estimated using Equation5.1.

If an idle period is detected, the NIDS should ramp up and process more pack-
ets. The system computes the additional number of packets that should be pro-
cessed in a similar manner as for packet drops. The NIDS can spend(0.8s) − t
more processing time in the next group ofN packets, which corresponds to the
following number of packets:

(0.8s− t)N/t (5.2)
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At this point, we have the mechanisms for estimating the number of packets
that the NIDS should discard in case of overload. However, our selection strategy
is based on limiting the flow size, which requires setting an appropriate flow size
threshold. Based on the active flows in the monitored traffic, the system mustesti-
mate the reduction factor for the flow size threshold in order to skip processing the
desirable number of packets. Similarly, in case more packets need to be processed,
the flow size has to be increased appropriately by taking into account the sizes of
the currently active flows.

The algorithm for deriving the new flow size limit for each interval, in case
the above system measurements suggest so, is based on aggregated statistics the
NIDS gathers during the classification of arriving packets into flows. Theflow
classification engine keeps packet counters for predefined flow size ranges, i.e.,
the system stores the number of packets that belong to flows with size from 0 to
100 packets, from 100 to 200 packets, and so on. The flow classificationengine
keeps these statistics using a table of 1000 integers. Each positioni of the table
indicates the number of packets that correspond to flows with size fromi ∗ 100 to
(i+ 1) ∗ 100. The last position of the table counts the packets that belong to flows
with size larger than 100,000 packets.

For each arriving packet, the classifier finds the flow in which the packetbe-
longs to, increases the size of this flow by one (in terms of number of packets),
and also increases the corresponding counter in the flow size statistics table. When
a flow reaches a sizex that is a multiple of 100, it levels up a range in the flow
statistics table by subtracting from the(x/100) − 1 position the size of the flow
in terms of number of packets, and adding it to the next position,(x/100), of the
flow statistics table. When a flow is closed, e.g., due to a proper TCP connection
termination or due to some timeout of inactivity, the size of the flow is subtracted
from the corresponding position of the flow statistics table.

Figure5.3presents the pseudocode of the flow size limit adjustment algorithm.
In case of packet discarding, the algorithm descends the flow statistics table (lines
8–11), starting from the range of the current flow limit (lines 6–7), and counts
the packets that will be discarded in each lower flow size range, until we reach
the desirable number. The procedure for increasing the flow size limit is similar,
by ascending the flow statistics table (lines 18–21) until the required number of
packets is encountered. Then, the flow size limit is adapted accordingly (lines 12–
13, 22–23).

5.2 Implementation within Snort

5.2.1 Selective Packet Discarding

We have implemented the selective packet discarding approach within the Snort [124]
intrusion detection system as a preprocessor configured to run beforethe detection
engine and all other preprocessors. The preprocessor receiveseach packet immedi-
ately after Snort’s Layer-4 packet decoding, and based on the protocol, source and
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1 update_CPU_usage();
2 update_dropped_packets();
3

4 if (dropped_packets || (CPU_usage>0.95 && t>0.95*s)) {
5 reduce_packets = max(dropped_packets, (t-(0.95*s))*N/t);
6 if (limit == NO_LIMIT) range = 1000;
7 else range = limit/100;
8 while (reduce_packets>0 && range>0) {
9 reduce_packets -= flowstats[range];

10 range--;
11 }
12 if (range == 0) limit = 10;
13 else limit = range*100;
14 }
15 else if (cpu_usage<0.8 && t<0.8*s) {
16 increase_packets = ((0.8*s)-t)*N/t;
17 range = limit/100;
18 while (increase_packets>0 && range<1000) {
19 range++;
20 increase_packets -= flowstats[range];
21 }
22 if (range == 1000) limit = NO_LIMIT;
23 else limit = range*100;
24 }

FIGURE 5.3: Simplified pseudocode for the flow size limit adjustment algorithm.

destination IP addresses, and, in case of TCP/UDP packets, source and destination
port numbers, it looks up the corresponding flow through a hash table. For each
flow, the preprocessor keeps statistics about its size in number of packets. Based
on the flow size and the current packet discarding flow size limit, the preprocessor
decides whether the current packet should be discarded, or forwarded to the other
Snort preprocessors and the core detection engine.

Furthermore, as we have discussed in Section5.1.3, the preprocessor keeps the
aggregate number of captured packets for predefined flow size ranges. Flows are
closed either after a timeout of inactivity (set to 10 seconds in our experiments) or
due to normal TCP protocol connection termination after RST of FIN/ACK pack-
ets. It is important to precisely follow TCP connection terminations and discardthe
relevant flow statistics, in order to prevent attackers to evade detection byclosing
and opening new TCP connections immediately. Thus, each new connection will
be considered as new flow and its first packets will always be processed by Snort.

5.2.2 System Performance Monitoring

The second important function of the preprocessor is the flow size limit readjust-
ment according to the algorithm presented in Section5.1.3. As we have described,
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the algorithm is activated everyN packets, since system performance measure-
ments must be performed inN packet intervals. The size of the interval,N , is
automatically chosen based on the size of the socket buffer and the systems’ reso-
lution in measuring CPU time. After processingN packets, the preprocessor rea-
sons about potential overload conditions based on the performance measurements
and adjusts the flow size limit accordingly.

5.3 Experimental Evaluation

In this section, we present the experimental evaluation of our prototype imple-
mentation of selective packet discarding in the Snort IDS. We first examinethe
effect of the flow size limitation in Snort’s performance, using Snort for offline
trace inspection. Then, we experimentally evaluate our technique by replaying the
mixed trace at several high rates, and we compare the detection accuracyof original
Snort when packets are dropped due to overload with our modified Snort with the
selective packet discarding preprocessor enabled to gracefully adapt to the same
overload conditions.

5.3.1 Experimental Environment and Traffic Used

Our experimental environment consists of two PCs interconnected througha 10
Gbit switch. The first PC is used for traffic generation, which is achievedby re-
playing real network traffic traces at different rates usingtcpreplay [145]. The
traffic generation PC is equipped with an Intel Xeon 2.00 GHz CPU with 6 MB
L2 cache, 2 GB RAM, and a 10 Gbit network interface. This setup allowed us to
replay traffic traces with speeds up to 900 Mbit/s. Achieving larger speedswas not
possible using large network traces because usually the trace could not be effec-
tively cached in main memory.

By rewriting the source and destination MAC addresses, the generated traffic is
sent to the second PC, the intrusion detection sensor, which captures the traffic and
inspects it using the original Snort, as well as our extended version with selective
packet discarding. We modified Snort v2.8.3.2, used the latest official rule set [7]
containing 9276 rules, and enabled all the default preprocessors as specified in its
default configuration. The NIDS PC is equipped with an Intel Xeon 2.66 GHz
CPU with 4 MB L2 cache, 2 GB RAM, and a 10 Gbit network interface. The
kernel socket buffer size was set to 6 MB in order to minimize packet drops due to
short packet bursts. Both PCs run 64bit Ubuntu Linux (kernel version 2.6.27).

For the evaluation we used an anonymized one-hour long trace captured at the
access link that connects an educational network with thousands of hoststo the In-
ternet. The trace contains 58,714,906 packets, corresponding to 1,493,032 different
flows, totalling more than 40 GB in size. As already discussed in Section5.1.1, for
this trace Snort generates 1976 alerts from 78 different rules using thedefault rule
set.
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Reasoning about whether these alerts are true positives or not would require
manual inspection of each alert and the corresponding matching packets.Most of
the matching rules are related to common threats such as probes for vulnerable
web applications and database servers, old buffer overflow exploits, and protocol
violations. Such traffic is typically received by DMZ servers. There arealso quite
a few alerts from rules that look for suspicious activity, such asrobots.txt
access orHTTP 403 Forbidden responses, which correspond to 49 and 263
alerts, respectively. Given the nature of the triggered alerts, we believethat most
of them are true positives. However, based on our experience, and since we have
not checked all alerts one by one, we speculate that some of the alerts must be false
positives. In order to strengthen our evaluation, as discussed in Section5.1.1, we
augmented the trace with 120 short traces of real attacks, adding 276 morealerts
from 14 different rules which are definitively true positives.

5.3.2 Flow Cutoff Impact Analysis

In our first experiment, we explore the impact of imposing a limit in the number of
packets of each flow that are going to be processed on Snort’s processing through-
put and detection accuracy. We modified our preprocessor to discard the packets
of each flow after a certain flow size limit has been reached. We ran Snort using
different flow cutoff values using the augmented network traces described in the
previous section. Snort loads the trace for offline analysis and our preprocessor
allows only packets which lay before the maximum allowed flow size limit to be
inspected by Snort’s detection engine. Since this an offline analysis, thereis no
dynamic adaptation in the flow cutoff size—the same flow size limit is used for the
whole duration of each run.

For each run, we measure Snort’s execution time using thetime Unix tool,
which provides us the elapsed user, system, and real time. The processing through-
put is measured as the total trace size divided by the user plus system time. We
repeat each measurement 10 times and report the average value of the throughput
for different flow size limits. For each run, the detection accuracy is defined as
the percentage of alerts triggered for each different flow cutoff value, divided by
the total number of alerts (2252) which we know a priori that are triggeredby the
trace. We are mostly interested in the detection of the 276 attacks that we have
injected in the trace, since we know that the corresponding alerts are definitively
true positives, but it is also desirable to observe as many of the rest of thealerts in
the trace as possible.

Figure5.4 presents Snort’s throughput and detection accuracy when varying
the number of processed packets per flow from 10 to 100,000. The unmodified
version of Snort achieves a throughput of 560 Mbit/s. When enabling theprepro-
cessor, as the number of inspected packets per flow decreases the throughput is
increased, since Snort inspects fewer packets. For instance, for a flow cutoff limit
of 1000 packets, Snort can process up to 1400 Mbit/s of traffic, while with100
packets per flow the processing throughput reaches 2 Gbit/s. When using larger
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FIGURE 5.4: Snort’s throughput and detection accuracy as a function of the flow
size limit.

flow cutoff sizes, the throughput approaches the unmodified Snort’s throughput,
e.g., with a limit of 50,000 packets the throughput drops to 675 Mbit/s, which still
is a 20% improvement.

As the flow cutoff size increases, the number of triggered alerts also increases,
i.e., the number of missed events decreases. For flow limits higher than a few hun-
dreds of packets, only a small percentage of alerts is missed. As already expected
from Figure5.1, alerts are triggered mostly due to packets that belong to the first
few packets of a flow. For instance, processing up to 10,000 packets per flow re-
sults to 5 missed alerts out of the 2252 alerts in the trace. while at the same time
the throughput increases 56%. For a cutoff size of 50,000 packets onlyone alert
was missed. The 276 alerts due to the real attacks that we manually injected areall
triggered even for a cutoff limit as low as 20 packets per flow.

Even when inspecting just the first 100 packets of each flow, 95% of the alerts
are still triggered. Considering the corresponding improvement in Snort’sthrough-
put, which is 3.62 times faster reaching up to 2033 Mbit/s, enabling selective packet
discarding for traffic volumes higher that 560 Mbit/s seems promising. As we are
going to see in the next section, under such conditions, the packet dropsby kernel
result a much higher number of missed alerts. When the monitored traffic through-
put drops to normal and Snort is not high loaded, the selective packet discarding
preprocessor will dynamically adapt the flow size limit as much as effectively dis-
abling packet discarding at all.
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FIGURE 5.5: Performance of unmodi-
fied Snort as a function of the monitored
traffic speed.
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FIGURE 5.6: Performance of Snort with
selective packet discarding as a function
of the monitored traffic speed.

5.3.3 Improving Detection Accuracy under High Load

We now evaluate the detection accuracy of unmodified Snort and our extended
Snort version with selective packet discarding under realistic conditionsof in-
creased load.

Figure 5.5 shows the performance of original Snort when replaying traffic
with speeds varying from 200 to 900 Mbit/s. For each traffic speed, we repeated
the measurements 10 times and report the average of the percentage of triggered
alerts, the CPU utilization of Snort for processing the packets, and the percentage
of dropped packets by the OS. We see that for speeds higher than 500 Mbit/s, a
significant percentage of packets is dropped by the kernel, ranging from 15% for
500 Mbit/s up to 46% for 900 Mbit/s traffic. When packets are dropped, the CPU
utilization is always higher than 99%, since Snort cannot handle the high traffic
volume.

The consequence of these drops is a significant reduction in the number of
detected events. For a traffic speed of 500 Mbit/s, with just 15% of the packets
being randomly dropped by the OS, Snort misses 18% of the alerts, i.e., only 1852
of the total 2252 alerts are reported. When 46% of the packets are dropped, for
900 Mbit/s traffic, about half of the alerts are missed. Even for 400 Mbit/s traf-
fic, a slight percentage of dropped packets (0.096%) causes 16 alertsto be missed
(0.7%). Furthermore, among different runs for the same traffic speed,Snort gener-
ates different sets of alerts, indicative of the non deterministic results that random
packet drops induce.

Moreover, the 276 alerts due to the real attacks we injected are lost with the
same probability as all other alerts in the trace. For instance, for 500 Mbit/s traffic,
Snort identified 223 out of the 276 attacks, missing 19% of the alerts. For 900
Mbit/s, just 55% of these alerts were successfully detected. These resultsdemon-
strate that Snort’s detection accuracy degrades significantly under conditions of
excessive traffic load.
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Figure5.6shows the performance of Snort with selective packet discarding en-
abled. A first observation is that with selective packet discarding, the number of
packets dropped by the kernel is negligible. There are no packet drops for traffic
speeds up to 600 Mbit/s, while there is just a 0.098% of dropped packets for900
Mbit/s. We also notice that for high traffic speeds, the CPU utilization remains
within the desirable range imposed by the 0.8 lower and 0.9 upper thresholds.Fig-
ure5.6also shows the percentage of packets that are selectively discarded accord-
ing to the size of the flow in which they belong to. As we expected, the percentage
of discarded packets increases according to the traffic speed. For instance, in 500
Mbps traffic speed 32% of the packets are selectively discarded from inspection,
in order to prevent Snort overloading. In 900 Mbps, the percentage of discarded
packets reaches 63%. By discarding the desirable amount of packets according to
the traffic load, Snort controls the CPU utilization and keeps it constantly within
the desirable range.

The number of selectively discarded packets is larger than the number of dropped
packets by the kernel in unmodified Snort for the same speeds. There are two ex-
planations for this outcome. First, the selective packet discarding algorithmis
purposely quite aggressive in discarding packets in order to proactively predict and
prevent packet drops from the kernel. Thus, the preprocessor tends to discard more
packets from the end of the flows and benefit from preventing uncontrolled random
packet drops from the kernel. Second, in unmodified Snort, packets are dropped in
kernel level, before they are copied to user level. With selective packetdiscarding,
all packets are first delivered in user space and then are discarded by the Snort pre-
processor, which results to a higher number of discarded packets. However, even
with eventually less inspected packets, selective packet discarding allowsSnort
to achieve a much better detection accuracy, as discussed below. Moreover, the
number of flows affected by selective packet discarding is just 0.42% ofthe to-
tal number of flows for the highest traffic speed of 900 Mbit/s, and even smaller
for lower traffic speeds. In contrast, random packet drops by the kernel affect a
significantly higher number of flows.

Finally, Figure5.6shows the significant improvement in detection accuracy by
enabling selective packet discarding. For all traffic rates, even for 900 Mbit/s, Snort
reports almost all of the alerts that exist in the monitored traffic. For 500 Mbit/s
traffic, our modified Snort reports 2234 out of the 2252 alerts (99.2%),which is
an improvement of 20% over unmodified Snort. The percentage of triggered alerts
remains almost constant as the traffic speed increases, falling slightly to 96.3% for
900 Mbit/s traffic, missing just 84 events.

Since we cannot be sure about the nature of all triggered alerts in the trace, we
study separately the detection accuracy of the 276 attacks we manually injected
in the trace. Figure5.7 presents the number of alerts triggered by our modified
Snort for each traffic speed divided in two categories: the 276 alerts due to the
injected attacks, and the rest 1976 alerts due to the real traffic of the original trace.
We observe that for all traffic speeds, Snort was able to detect all the real attacks
that we manually inserted in the traffic, suggesting that selective packet discarding
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FIGURE 5.7: Alerts triggered by modified Snort as a function of the traffic speed.

indeed tends to improve the detection accuracy of real attacks. Of course, the vast
majority of the alerts due to events in the original trace are still triggered.

5.4 Summary

Events of excessive network traffic load are a common fact that affectsthe perfor-
mance of intrusion detection systems. Under conditions of heavy traffic loador
sudden traffic bursts, the processing throughput of the system cannot cope with the
amount of traffic that needs to be inspected, and the OS unavoidably drops excess
arriving packets at random.

In this chapter, we presented selective packet discarding, a best effort approach
that gracefully reduces the amount of traffic that reach the detection engine of the
NIDS by selectively discarding packets that are less likely to affect its detection
accuracy. We have implemented selective packet discarding in the Snort NIDS as a
preprocessor that constantly measures performance aspects of the system in order
to detect overload conditions and dynamically adjusts the number of packets that
needs to be discarded. This is achieved by setting a cutoff limit to the number of
packets to be inspected for each network flow.

A concern that arises when using selective packet discarding is that a sophis-
ticated attacker could exploit the flow size limit and evade detection by filling the
stream with benign requests and then send the actual attack vector after theflow
cutoff limit has been reached. Although such an attack may be feasible for proto-
cols like HTTP, which allows multiple requests to be sent through the same con-
nection, other services terminate the connection after the end of each transaction,
especially in case of protocol violations or failed requests. Furthermore,for proto-
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cols that support persistent connections, such repetitive behaviour can be detectable
by following the protocol’s request/response semantics. However, without selec-
tive packet discarding, an attacker can evade detection from an overloaded NIDS
by repeating the attack multiple times—depending on the traffic load, after a cer-
tain number of attempts the attack will go undetected. Selective packet discarding
makes such overload attacks harder to achieve.

Our experimental evaluation with real-world traffic and labeled attacks demon-
strates that selective packet discarding improves significantly the detectionaccu-
racy of Snort under increased traffic load conditions, allowing it to detect most of
the attacks that would have otherwise been undetected.



6
Tolerating Overload Attacks

Network traffic monitoring systems are increasingly used to improve the perfor-
mance and security of modern computer networks. These monitoring systems
have always been depended on an efficient and reliable underlying packet cap-
ture mechanism. However, such network traffic monitoring systems are now called
to operate in an unpredictable and sometimes hostile environment where transient
traffic and malicious attackers may easily overload them up to the point where they
cease to function correctly. Unfortunately, traditional packet capturingsystems,
have not been designed for such hostile environments and do not gracefully handle
overhead conditions. For example, when faced with overload conditions and full
packet queues, most packet capturing systems start to discard all incoming packets
for as long as the overload persists and until it resolves itself. We believe that this
naive approach to packet discarding, which surprisingly is still being used by most
network traffic monitoring systems, has three major disadvantages:

• It may drop packets which containimportant information, such as an attack
or a particular pattern.

• It can be exploited by attackers tohide their attack: the attackers can flood
the system with bogus packets up to the point where the system overloads
and starts discarding (i.e., not inspect) most of the incoming packets [27,33,
34,119,135]. Then, attackers can send their attacks being almost sure that
they will evade the monitoring system.

• It robs monitoring applications from the opportunity toselectively discard
the unimportant packetsin the traffic [86,87,89,107], and forward for pro-
cessing and further inspection theimportantones.

75
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To cope with high traffic volumes, several techniques have been proposed for
improving the performance of network intrusion detection systems (NIDSs) by ac-
celerating the packet processing throughput [13, 35, 84, 157]. However, it is not
clear how these approaches cope with existing algorithmic overload attacks,and
more importantly withfutureand potentiallyunknownalgorithmic attacks that may
exist in monitoring applications but have just not been exposed in the public do-
main yet. Other techniques automatically tune the NIDS configuration to balance
detection accuracy and resource requirements [44, 85]. However, given a highly
loaded network, intrusion detection systems based on non-specialized hardware
are usually not able to analyze all traffic to the desired degree [127]. Even af-
ter carefully tuning a NIDS according to the monitored environment, it will still
have to cope with inevitable traffic bursts or unpredictable algorithmic complexity
attacks.

Existing solutions for algorithmic complexity attacks are based on algorithmic
improvements, which consider worst case performance comparing with the aver-
age case [135]. However, software is still written so that it is vulnerable to such
attacks. Thus, monitoring applications and NIDSs have to defend against complex-
ity attacks that have not been seen in the wild yet. In general, it is not clear how to
find and defend against all sources of algorithmic complexity attacks.

To address these problems we proposeSelective Packet Paging (SPP): a new
approach for mitigating both traffic overloads and algorithmic attacks by exploiting
the following two dimensions:

• We introduce anew level in the memory hierarchyof packet capturing sys-
tems: a level which is able to store all packets during periods of traffic or
algorithmic overload.

• We propose arandomized timeout algorithmwhich is able to detect mali-
cious network packets that trigger algorithmic overload attacks and isolate
them for further disk processing.

We observe that the root of packet loss in modern packet capture systems is the
limited number of packets that the operating system kernel can store in a memory
buffer. When this buffer fills up, the next incoming packets will be just discarded
until the overload resolves itself. To address this issue, we propose a new memory
management system called Packet Paging. Contrary to the traditional single-layer
memory management systems, Packet Paging exposes a two-layer memory hierar-
chy: (i) the first layer is stored in the main memory of the computer and contains
the most recently received packets. The size of this layer is usually large enough to
handle all incoming traffic at line speed when there is no transient or algorithmic
overload. (ii) The second layer is stored in the local disk storage system and is
used mostly to accommodate packets which can not fit in the first layer. During
an overload, when the first layer fills up, incoming packets continue to be stored
at the second layer until the overload condition resolves itself, or is resolved by
clever choices of selective packet discarding or human intervention. Modern disk
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systems have enough capacity to store several hours of traffic. We believe that this
time is more than enough to allow human intervention to resolve the problem.

In case of carefully crafted packets which exploit an algorithmic complexity
vulnerability, Packet Paging will buffer all the excessive packets to disk, both be-
nign and crafted. Moreover, the crafted packets will be processed in-order and will
eventually slowdown the system. Thus, the completion time for processing benign
packets will be affected significantly, even if no packet is lost. To address this
issue, we have extended Packet Paging with the SPP technique. Based onrandom-
ized timeouts, SPP is able to detect crafted packets that result in slow processing
rates, and to remove these packets from the critical path. Instead of dropping these
packets, we bufferthemto secondary storage and we give them lower priority, so
they will be processed only when the system has the necessary resources. In this
way, the processing time of the rest packets is not affected.

We implemented Packet Paging and SPP techniques within the popular libp-
cap [92] packet capturing library, so that a large class of existing deep packetin-
spection systems can benefit from our approach transparently without any code
modifications. The Packet Paging implementation is based on two basic ideas: (i)
we give priority to apacket storingthread over apacket processingthread and (ii)
while a memory buffer is full, we store packets to disk. The (i) ensures that all
packets will be stored with no losses, while with (ii) we avoid the overheads of
disk I/O in normal cases without overloading. Moreover, to maintain the correct
order in which packets were arrived, we design an indexing structure which points
to the location of the next packet that should given, in memory or disk. We also
aim to optimize disk throughput by writing and reading packets in batches. The
implementation of SPP is based on randomized timeout values and tracking the
number of packets processed in each timeout.

The main contributions of SPP are:

• We demonstrate that the root of packet discarding under overload in the ex-
isting packet capture systems is the poor design choices in memory manage-
ment.

• We propose Selective Packet Paging, a two-layer memory management sys-
tem that is able to store practically all network packets during overloads:
long enough to allow human intervention to solve the problem. SPP is also
able to efficiently resolve algorithmic complexity attacks by detecting and
removing from the critical path any malicious packets that slowdown a mon-
itoring system.

• We implement our system and integrate it with the libpcap packet capture
library [92].

• We experimentally evaluate our approach using the Snort NIDS [124], and
we show that it is able to sustain algorithmic attacks and traffic overloads
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without discarding any packets. Contrary, the traditional packet capture ap-
proach is forced to discard the largest percentage of the incoming packets
and force Snort to miss 100% of the attacks.

• We analytically evaluate the randomized timeout selection approach of SPP
and show that the probability of detecting an algorithmic complexity attack
reaches certainly exponentially fast.

The rest of this chapter is organized as follows: Section6.1 introduces the
design of SPP and Section6.2 provides details of our prototype implementation
within libpcap. In Section6.3 we present analytical and simulation-based evalu-
ation for the detection capabilities of SPP using a randomized timeout. In Sec-
tion 6.4, we experimentally evaluate our techniques under algorithmic complexity
and traffic overload attacks. We show that the Snort NIDS is vulnerable tothese at-
tacks, while SPP achieves significant tolerance against processing andtraffic bursts.
Finally, Section6.5discusses alternative choices, and Section6.6summarizes this
chapter.

6.1 Selective Packet Paging

The main cause of packet loss during overloads, is usually the limited number of
packets that the Operating System’s packet capturing subsystem can store in main
memory. Thus, in case of traffic overloads or algorithmic attacks the main memory
fills up pretty quickly and the rest of the incoming packets are just dropped.One
obvious solution to this problem would be to increase the main memory available
to the packet capturing subsystem. Unfortunately, typical main memories can not
store more than a few minutes of network traffic for a high-speed link. Thus, an
algorithmic attack or a network overload that lasts for more than a few minutes will
eventually lead to packet drops and to reduced system functionality.

In modern systems, the available disk storage, typical few TBs, is up to three
orders of magnitude larger than the available storage capacity in main memory,
which is typically few GBs large. Thus, captured packets can be buffered on disk
for several hours under overload conditions, instead of just a few seconds in main
memory. For instance, a system with 4 GB of RAM and 4 TB of disk storage
monitoring an 1 Gbit/s line, can buffer about 32 seconds of traffic in main memory
and up to about 9 hours of traffic in disk storage.

6.1.1 Multi-level Memory Management

In this work we propose to break away from the single-level memory hierarchy tra-
ditionally used by packet capturing subsystems and employ a multi-level memory
hierarchy consisting of at least two levels: a main memory and a secondary stor-
age. Under normal circumstances captured packets are written in main memory.
Under traffic overload or algorithmic attacks, when the main memory fills up, extra
packets are written to secondary storage.
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FIGURE 6.1: A snapshot of Packet Paging for buffering packets to memory and
disk. The Packet Receive Index indicates that the first two packets arestored in the
Memory Buffer while the third packet is in the Disk Buffer.

Figure6.1presents the two-level memory hierarchy of our approach. The first
layer (i.e., the memory buffer) is organized as a circular queue. As long asthe
buffer is not full, newly arriving packets are written in the memory buffer.When
the main memory buffer fills up, newly arriving packets are stored in the second
layer of the memory hierarchy, i.e., the disk buffer. This buffer is also organized as
a circular queue. Note that while newly arriving packets are being written todisk,
main memory space is being freed up since monitoring applications will consume
existing packets. In this case, we would like to be able to write newly arriving
packets in main memory and thus avoid the disk access overheads. Indeed,our
systemfirst tries to write incoming packets to main memory and only if this is full,
it tries to write them to disk. However, this choice implies that sequentially arriving
packets may be written to different levels of the memory hierarchy, oscillating
between main memory and disk.

For example, suppose three packets (i.e., p1, p2, and p3) arrive in the system
and that main memory can hold only one of them. Then, packet p1 will be written
to main memory and packet p2 will be written to disk. Now, assume that while p2
is written to the disk, the monitoring application consumes one more packet from
main memory and therefore creates space in main memory; thus p3 will now be
written in main memory. At the end, packet p1 will reside in main memory, packet
p2 will reside in disk and packet p3 will reside in main memory. This example
indicates that we need somehow to record the order of arriving packets.
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For this reason we keep a Packet Receive Index which keeps strictly in FIFO
order the location of all incoming packets. To deliver packets in the correct order,
we use one bit for each incoming packet in the Packet Receive Index, as shown in
Figure6.1. This bit indicates whether the next packet to be delivered was stored in
main memory or on disk.

6.1.2 Randomized Timeout Intervals

Although multi-level memory management makes sure that no packets are lost
during an overload, algorithmic attacks may force the CPU to spend most, if not
all, of its time on processing bogus attack packets that just trigger an algorithmic
overload—benign network packets will just keep accumulating on the disk. Selec-
tive Packet Paging advocates that instead of blindly sending subsequent packets to
secondary storage when the main memory is full, we should develop mechanisms
to detect packets that trigger an algorithmic overload, weed them out, and send
themto secondary storage for processing at a later point in time. In this aspect,
they will free-up the CPU which can then be dedicated to processing of the rest of
the network packets.

To detect those packets that trigger an algorithmic overload attack one could
make use of the CPU timestamp counter: read the timestamp counter before and
after processing of each packet. If the packet’s processing time in higher than
a threshold, then this packet can be considered as an algorithmic attach packet,
due to its unusual high processing time. However, this approach has a significant
drawback: the attack packet cannot be evicted from the inspection engine, as it is
detected after its processing ends, so it will result in a system slowdown. Also,
with the timestamp counter the total system’s time is measured, not only the time
spent at the DPI application. Thus, this approach is susceptible to false positives.

An alternative approach to detect those packets is to use a timeout counter
(i.e., a timer): when the monitoring application starts processing a new packet,
a timeout counter is initialised to a timeout value.1 If the timeout counter expires
while the monitoring application is still processing the same packet, then the packet
is considered suspicious. Otherwise, if the packet processing completesbefore the
timeout counter expires, the application starts processing the next in line packet and
the counter is reset to its timeout value. This way, attack packets can be evicted
from the inspection engine and will not delay the system. Also, the time spent
only on the process of the DPI application is measured. Unfortunately, however,
setting and resetting timeout counters at each and every packet could impose a large
processing overhead, especially when timeouts are implemented inside the kernel,
and especially when the network traffic is dominated by small packets.

To reduce this overhead, SPP argues that we should not set the timeout counter
at each and every packet. Instead, the counter should be set atperiodic intervals:
if the packet being processed during the interval expiration is the same packet that

1The value of the timeout counter should be larger than the processing time of ordinary packets
and smaller than the processing time of algorithmic complexity attack packets.
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was being processed at the time the counter was set, then SPP considers thispacket
as suspicious. As a result, the packet, along with all subsequent packetsfrom the
same network flow, will be buffered to disk. Although setting the timeout counter
at periodic intervals has the potential to reduce the timeout processing overhead,
especially if the intervals are long enough, choosing an appropriate timeoutvalue
can be really tricky: a very large timeout value may miss a lot of attack packets,
while a very small value may impose a large processing overhead on the system. To
make matters worse, a single predefined timeout value (or a deterministic sequence
of timeout values) could theoretically be evaded by a sophisticated attacker who
manages to send all attack packets between successive timeouts.

To solve this problem, SPP uses a randomized timeout interval. That is, in-
stead of choosing a predefined constant timeout, SPP chooses a timeout which is
a random variable uniformly distributed in the interval[low, high]. Obviously,
the average value of a timeout is(high + low)/2, which influences the overhead
associated with timeout processing. Choosing a large value forhigh reduces the
(average) timeout overhead, while choosing a small value forlow makes detection
of algorithm attacks easier. Indeed, to make sure that they avoid detection,attack-
ers should only send attack packets that trigger algorithmic complexity attacks that
last for no more thanlow seconds. Therefore, a smalllow value forces a (what
used to be) sophisticated algorithmic complexity attack to degenerate into a brute
force Denial of Service attack consisting of a torrent of attack packets,which can
be easily detected and filtered out.

6.2 Implementation

We implemented Selective Packet Paging within the popular packet capturing li-
brary libpcap [92], so that a large class of existing network monitoring applica-
tions can benefit from SPP without any code modifications. libpcap in Linux uses
thePF PACKET socket, which receives all packets from a network interface card.
Each packet is first stored in memory allocated by the kernel for DMA transfer,
and then copied to user-level accessible memory. In our prototype implementation
we use three separate threads: (i) thepacket capturing and storing thread, which
receives packets from kernel and stores them to memory or on disk if there is no
space in memory; (ii) thepacket processingthread, which finds the next packet
through the Packet Receive Index, and calls the callback function registered by the
monitoring application throughpcap loop() for processing each packet, or re-
turns the packet’s data and header throughpcap next(); and (iii) thedisk I/O
thread, which handles all communication with the secondary storage. We give
higher priority to the packet capturing and storing thread over the packetprocess-
ing thread, to ensure that all packets will be stored during overloads. Tooptimize
disk throughput, the disk I/O thread transfers packets between main memory and
disk in batches. Moreover, to avoid delays from blocking read operations, the disk
I/O thread prefetches the next batch of packets from disk to memory.
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Packet capturing and storing thread:

if (suspicious_flow(next_pkt))
write(next_pkt, disk_buffer, low_priority);

else if (memory_buffer.size==FULL)
write(next_pkt, disk_buffer, normal_priority);

else
add(next_pkt, memory_buffer);

Packet processing thread:

if (packet_index.next==NULL) {
disable_timer();
current_pkt=read(disk_cache, low_prioriy);
process_pkt(current_pkt);
enable_timer();

}
else if (packet_index.next==MEMORY) {

current_pkt=read(memory_buffer);
process_pkt(current_pkt);

}
else if (packet_index.next==DISK) {

current_pkt=read(disk_cache, normal_priority);
process_pkt(current_pkt);

}
pkt_counter++;

Timer expiration handler:

if (pkt_counter==prev_pkt_counter) {
buffer(current_pkt, low_priority);
mark_suspicious_flow(current_pkt);

}
prev_pkt_counter=pkt_counter;
set_timer(low+rand()%(high-low));

FIGURE 6.2: Pseudocode for the implementation of Selective Packet Paging with
a randomized timeout interval.

Figure6.2 presents the pseudocode for implementing SPP with a randomized
timeout. The packet capturing and storing thread receives all packets from the NIC
and stores them in memory or on disk. If a packet belongs to a flow that has been
marked as suspicious, it is stored immediately on disk in a file with low priority
packets. Else, if the memory buffer is full, the packet is stored on disk in a separate
file with normal priority packets.

The packet processing thread selects the next packet for processing. In case
there are packets with normal priority, the next packet is selected from memory
or disk based on the packet indexing structure. If there is no such packet, then a
packet with low priority is selected for processing. In the latter case, the timeris
disabled or the timeout interval is increased, otherwise the timer could expire again
while this packet is being processed.
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The processing thread keeps a counter of the processed packets. When the
timer expires, it checks how many packets have been processed from theprevious
timer expiration. If the number of processed packets remains the same, then the
current packet delays the system for an unreasonably long time. Thus,the packet
is evicted and buffered to disk, while its flow and source IP address are marked as
suspicious. Packets belonging to suspicious flows are also written to disk aslow
priority packets.

The next timer interval is scheduled to a random time between thelow and
high limits.2 The low value is related to the normal processing times: it should
be set slightly higher than the worst-case processing time of a benign packet3. The
high limit controls the overhead for setting and expiring a timer, and the detection
probability. Larger values result in lower overhead and lower detection probability
per packet, i.e., more time to detect a stealthy algorithmic overload attack.

The timer expires based on the time passed while only the current process (or
the system on behalf of the current process) is executing, so SPP is notaffected
by external background activities. Thus, the time passed between two successive
timer expirations was spent only within the packet processing thread. To avoid false
positives, a proper value for thelow limit should be used. Then, only packets with
significant processing delays will be detected as suspicious. But even incase of
false positives, packets will not be dropped. They will follow a different data path,
and they will be eventually processed when the system has the available resources.

6.3 Analytical Evaluation

Using a random timeout uniformly distributed in the range[low, high], Selective
Packet Paging makes it difficult for attackers to evade detection, while keeping the
timeout overhead reasonably low. Indeed, a very large value forhigh keeps the
average timeout value (i.e.,(low + high)/2) reasonably large, and thus the over-
head reasonably low, while a small value forlow forces the attacker to lean towards
sending packets that trigger short algorithmic attacks: shorter in duration thanlow.
Since, however, the timeout is a random variable, it is theoretically possible even
for an attack packet that triggers a long algorithmic attack to evade detection.This
is especially true if the timeout interval chosen during the time the attack packet
is being processed is relatively large. In the rest of this section we show that al-
though it is theoretically possible for one attack packet to evade detection, itis very
unlikely that several attack packets will go undetected. An attacker who wants to
sustain an algorithmic attack has to send several attack packets, and it is improba-
ble that none of them will be detected. In the rest of this section we will estimate

2Thelow andhigh limits can be set either directly by the user, or automatically by the monitoring
application, e.g., by profiling the normal processing times when the system is not under attack.

3In this context, we note as benign packets the normal packets that do not aim to attack the
network monitoring application, and as attack packets the crafted packets that try to impede its correct
operation.
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the probability that SPP detects an attack with a single timeout choice, and then the
average number of timeout intervals that SPP will need to detect the attack.

To simplify our analysis, we initially assume that there are only attack packets,
that each attack packet is being analyzed for a constant interval ofd microseconds,
and thatlow < d. Selective Packet Paging is able to detect an attack if two succes-
sive timeouts expire within the same intervald for the same attack packet. The first
timeout expires at timet1, which will fall within an intervali of an attack packet.
Thus,i × d < t1 < (i + 1) × d. The probability that the second timeout, which
expires at timet2, will also fall within the intervali is:

P (t2 < (i+ 1)× d) =
d− t1 − low

high− low
(6.1)

since there arehigh − low possible choices for a timeout but onlyd − t1 − low
accepted choices so that the second timeout expires within the intervali. In the
unfortunate for the attacker case thatt1 falls in the beginning of the intervali, there
ared − low accepted choices for the second timeout. In case thatt1 falls in the
position(i+ 1)× d− low − 1 of the intervali, there is only one accepted choice
for the second timeout: thelow timeout value. On average, there are(d− low)/2
accepted choices for the second timeout in case that the first timeoutt1 falls within
the first(d − low) values of the intervali. If t1 falls in the lastlow values of the
intervali, there is no accepted choice for the second timeout. Thus, on average over
the whole intervali, there are(d − low)/2 × (d − low)/d + 0 × low/d accepted
choices for the second timeout, for each accepted choice of the first timeout.

Overall, the probability for detection with two timeouts in the same interval is:

P (det) =
(high− low)× (d− low)/2× (d− low)/d

(high− low)× (high− low)

=
(d− low)2

2× d× (high− low)

(6.2)

since the possible choices for two timeouts are(high− low)× (high− low), the
accepted choices for the first timeout are(high − low), and the accepted choices
for the second timeout are(d − low)/2 × (d − low)/d. The probability of not
detecting an attack afterN timeouts have expired is(1 − P (det))N , and thus the
probability of detecting the attack afterN timeouts is1 − (1 − P (det))N : we
see that the detection probability approaches1 very fast asN gets larger. Also,
the detection probability from Equation6.2 means that on average SPP will need
T = 1/P (det)+1 = (2×d×(high− low)/(d− low)2)+1 timeouts to detect the
attack. This number corresponds on average toT × (high − low)/(2 × d) attack
packets andT × (high− low)/2 microseconds.

The outcomes of our analysis are also valid in case that attack packets induce
variable delays with an average delay ofd microseconds. In a more realistic sce-
nario there would be both benign and attack packets, so that the attack packets
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would be a percentagea of the total packets, with0<a<1. The average process-
ing time for a benign packet ist microseconds, and we expect thatt < d. In this
case the detection probability from Equation6.2 is:

P (det) =
a× d

d+ t
×

(d− low)2

2× d× (high− low)
(6.3)

since the probability of the first timeout to expire within an interval of an attack
packet isa×d/(d+t). As the percentagea of the attack packets and the difference
d − t of the processing times between attack and benign packets increase, the
probability of Equation6.3approaches the probability of equation6.2.

6.3.1 Comparison with Simulation Results

To validate our analysis for the detection capabilities of Selective Packet Paging
with a randomized timeout, we perform a simulation-based evaluation and compare
the results with our analytical evaluation. Figure6.3presents the detection time in
milliseconds as a function of the processing time of each attack packet, basedon
both our analysis and our simulation study, for two attack scenarios: i) whenall
packets are attack packets, and ii) when the percentage of attack packetsis 25%.

The processing timet of each benign packet is uniformly distributed between 1
and 30 microseconds, with an average value of 15 microseconds, while theprocess-
ing timed of each attack packet is constant for each simulation. In our simulations
we varyd from 100 to 1000 microseconds, to examine how the detection time
will be affected. The randomized timeout for SPP takes values fromlow=50 to
high=1000 microseconds.

We simulate the processing times of benign and attack packets, according to the
above parameters, and we continuously set a timer randomly between the specified
low andhigh timeout limits. When two successive timeouts expire during the
processing interval of the same attack packet, the experiment ends and outputs the
time passed for the detection. We repeated each experiment for one million times
and we report the average values.

For the analytical evaluation we used the probability from Equation6.3to com-
pute the number of timeoutsT needed for the detection:

T = 1/P (det) + 1 =
2× d× (high− low)× (d+ t)

(d− low)2 × a× d
+ 1 (6.4)

Thus, the average detection time isT × (high− low)/2 microseconds.
In Figure6.3we can see that simulation results are very close to the expected

results based on our analysis. We observe that SPP with the randomized timeout is
able to detect even attacks with very small delays within just a few milliseconds.
For instance, when the processing time of an attack packet is 200 microseconds,
SPP detects the attack within the first 10 ms in case that all packets belong to this
attack. In a more conservative attack, where only 25% of the total packetsimpose
100 microseconds processing time, SPP needs about 170 ms to detect and resolve
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FIGURE 6.3: Detection time as a function of the processing time of the attack
packets. We observe that SPP is able to detect the attack within a few milliseconds
in most cases.

the attack. However, such a conservative attack for a period of a few milliseconds
will not affect significantly the system. More aggressive attacks, which can harm
significantly the monitoring system, are detected by SPP within less than 2 ms.

6.4 Experimental Evaluation

In this section we present experimental results when running the Snort NIDS with
SPP under overload. We first describe the experimental environment (Section6.4.1),
and then we evaluate the performance of SPP during an algorithmic complexity at-
tack (Section6.4.2) and a traffic overload attack (Section6.4.3), comparing with
the original libpcap.

6.4.1 Experimental Environment

The Hardware

Our experimental environment consists of two PCs interconnected througha 10GbE
switch. The first PC is used for traffic generation, which is achieved by replaying
real network traffic and traces at different rates usingtcpreplay [145]. The
traffic generation PC is equipped with two dual-core Intel Xeon 2.66 GHz CPU
with 4 MB L2 cache, 4 GB RAM, and a 10GbE network interface. By rewriting
the source and destination MAC addresses in all packets, the generated traffic is
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sent to the second PC, the intrusion detection sensor, which captures the traffic and
processes it using the Snort NIDS, with the original libpcap for packet capturing as
well as our modified version of libpcap with SPP. The NIDS PC is equipped with
two quad-core Intel Xeon 2.00 GHz CPUs with 6 MB L2 cache, 4 GB RAM, and
a 10GbE network interface. Beyond the system disk, we equipped the NIDS PC
with four 750 GB 7200 RPM SATA disks, organized in RAID 0 using the Linux
software RAIDmdadm utility, resulting to 3 TB total storage. Both PCs run 64bit
Ubuntu Linux (kernel version 2.6.32).

The parameters

The size of the memory mapped buffer between kernel and user level forstoring
packets, when the original libpcap is used, is set to 1 GB. Thus, the original system
is able to tolerate very short processing or traffic spikes, using the 1 GB memory
buffer. Note that, for fairness, the total main memory used in our Selective Packet
Paging system is equal to 1 GB as well: 500 MB socket buffer size and a 500 MB
memory buffer within the modified libpcap. In addition to a main memory of 1
GB, SPP also uses a secondary storage of 3 TB allocated (and distributed) on the
four dedicated magnetic disks. This amount of storage, with the increased disk
throughput achieved using the RAID 0 scheme, aims to provide significantly better
tolerance for prolonged algorithmic attacks and traffic overloads.

We use theext3 file system, with the default ordered journaling mode. Using
ext2 orext3with any other journaling mode results in very similar performance,
since we operate only on a single large file. We run the Snort NIDS [124] version
2.8.3.2, using the latest official Sourcefire VRT rule set [7] containing 9276 rules,
and enable all the default preprocessors as specified in its default configuration.
Note that, since the original Snort implementation is single-threaded, it can not
benefit from the underlying multi-core processor. To have a fair comparison with
SPP, we scheduled all three threads of the SPP implementation to run on a sin-
gle CPU core. Obviously, letting all three threads run on different coreswould
significantly improve performance even further.

The traces

For the evaluation we use four sets of traces, summarized in Table6.1. As back-
ground traffic, we use an anonymized one-hour long trace (namedT1) captured at
the access link that connects a large university campus with thousands of hosts to
the Internet. The trace contains 58,714,906 packets, corresponding to 1,493,032
different flows, totalling more than 46 GB in size. The average traffic rate inthe
trace is about 110 Mbit/s. We replay this trace at the actual rate that it was captured,
as real background traffic. We do not consider the alerts produced by Snort from
this trace’s traffic in our analysis.
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Trace Packets Replay rate
T1: background traffic 58.7 M 110 Mbit/s
T2: crafted packets 1,000 2 Kbit/s–2 Gbit/s
T3: real attacks 7,616 1 Mbit/s
T4: traffic bursts 1.5 M 1 Mbit/s–2.5 Gbit/s

TABLE 6.1: Traces used in our experiments.

The second trace (namedT2) is used in the first experiment in Section6.4.2to
trigger an algorithmic overload in Snort.T2 contains synthetically created packets
which exploit the backtracking vulnerability of a regular expression usedin a Snort
rule, resulting to significant slowdown. The third trace (namedT3) consists of 120
short traces containing real attacks captured in the wild [117]. Snort detects these
attacks using the default rule set, resulting to 276 alerts from 14 differentrules. We
replay this trace continuously in parallel with the second trace, and measurethe
percentage of these 276 alerts that Snort was able to detect when using the original
libpcap and our SPP system. In the second experiment in Section6.4.3, instead
of T2 we replay a short part ofT1 (namedT4) at higher rates, in parallel with
T3, to measure the percentage of alerts that Snort detects under traffic overload
conditions.

Disk Throughput

In our first set of experiments we set out to measure whether SPP is able tosustain
the storage of packets at line speed during a prolonged overload situation. As ex-
pected, the bottleneck is caused by the disk storage system. Thus, we firstmeasure
the throughput at which our RAID 0 system can read and write data in our experi-
mental setup. Table6.2 shows the read and write performance of our disk system
as measured by thebonnie benchmark [22]. We see that the RAID 0 system is
able to sustain 3 Gbit/s of read throughput and 1.8 Gbit/s of write throughput.

Single Disk RAID 0
Seq. read throughput (Mbit/s) 808 3072
Seq. write throughput (Mbit/s) 466 1790

TABLE 6.2: Throughput of single-disk and multi-disk storage system in our exper-
imental environment, measured by thebonnie benchmark.
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6.4.2 Algorithmic Complexity Attack

Attack Description

In this experiment we perform an algorithmic complexity attack against the Snort
NIDS, similar to the attack described by Smith et al. [135]. Specifically, our at-
tack targets the performance of regular expression matching based on thePCRE
library [67]. PCRE represents regular expressions using a tree-like structure. For
a given input string, PCRE iteratively explores paths in this structure until itfinds
an accepting state, in which case it declares a match. If it fails to find a match, it
backtracks and tries another path until all paths have been explored. Asthe num-
ber of backtracks increase, more time is spent for PCRE matching, and the overall
performance is decreased. Thus, we send a number of crafted packets to Snort
targeted to a specific rule with a vulnerable PCRE regular expression, so that the
packets’ payload result in a large number of backtracks.

To prevent performance problems and denial of service through PCREover-
load, Snort can be configured with a limit on the number of backtracks it performs
per each regular expression. However, this limit can lead to missed alerts and
evasion attacks as well: by cutting short the PCRE backtracks, a rule may not be
triggered on payload that would cause a Snort alert. Attackers may createpackets
with payloads resulting to more backtracks than the specified limit before the com-
plete match, thus evading detection. In our experiments we had disabled the PCRE
backtracking limits.

In this experiment, the attack targets the SMTP Snort rule 2682, which detects
an attempt to exploit a known vulnerability of Internet Explorer that results ine-
mail attachment execution, by sending an incorrect MIME header.4 This rule is
matched against TCP packets destined to port 25, belonging to an established TCP
connection, based on a PCRE expression, as shown below:

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25
(msg:"SMTP spoofed MIME-Type auto-execution attempt";
flow:to_server,established; content:"Content-Type|3A|";
nocase; content:"audio/"; nocase;
pcre:"/Content-Type\x3A\s+audio\/(x-wav|mpeg|x-midi).*
filename=[\x22\x27]?.{1,221}\.(vbs|exe|scr|pif|bat)/smi";
metadata:service smtp; reference:bugtraq,2524;
reference:cve,2001-0154; reference:url,www.microsoft.com/
technet/security/bulletin/MS01-020.mspx;
classtype:attempted-admin; sid:3682; rev:5;)

4 A more detailed analysis of algorithmic complexity attacks based on severalvulnerable Snort
rules is presented in [135]. Except PCRE, the Aho-Corasick string matching algorithm [9] was also
found to be vulnerable to excessive backtracking attacks in Snort, whenit uses nondeterministic finite
automata (NFAs). A detailed analysis of the number of rules which are vulnerable to algorithmic
complexity attacks is out of the score of this work. However, we speculatethat there will almost
always be rules written in a way that algorithmic complexity attacks could be possible.



90 CHAPTER 6. TOLERATING OVERLOAD ATTACKS

The PCRE expression in this rule searches initially for the“Content-Type”
string anywhere in the packet, followed by the byte 0x3A and one or more white
characters, and then for the“audio/” string followed by“x-wav” , “mpeg” or “x-
midi” strings. Then, any sequence of characters is acceptable before the“file-
name=” string is found, optionally followed by the byte 0x22 or 0x27. PCRE will
try to match the largest possible sequence of characters. Next, any sequence from
1 up to 221 characters is again acceptable, looking for the largest possible match.
Finally, if one of the five stings“.vbs” , “.exe” , “.scr” , “.pif” or “.bat” is also
found after all the previous matches, an alert will be triggered.

This regular expression gives us the ability to produce a large number of back-
tracks in a 1500-byte packet. As any character sequence is acceptablebetween the
“audio/” and“filename=” strings, and up to 221 characters before the last string
match, multiple instances of each string needed for a match, except the last one,
can be inserted into the packet’s payload in order to increase the possible paths that
will be traversed while searching for a match. This way, the number of backtracks
will increase exponentially high. We call such PCRE rules asvulnerablerules to
algorithmic complexity attacks. For instance, consider the following payload:

Content-Type0x3A audio/mpegContent-Type0x3A audio/mpeg...
Content-Type0x3A audio/mpegfilename=0x22filename=0x22
filename=0x22filename=0x22...filename=0x22filename=0x22.ba
.ba.ba...ba.ba.ba.ba...filename=0x22filename=0x22.ba.ba...
.ba.ba.ba.ba.ba...filename=0x22filename=0x22.ba.ba.ba...ba.
.ba.ba.ba.ba.ba.ba.ba.ba

The PCRE engine will first try to find a match from offset 0, where the first
“Content-Type” string is found. Then, it will pass all the input till the last“file-
name=” instance. It will continue until the end of the input, with no match found.
Then, PCRE will backtrack once for each previous“filename=” instance in the
payload to search for a match starting from offset 0. Since no match will be made,
PCRE will then repeat the same process starting from each“Content-Type” in-
stance. Thus, the number of backtracks will be approximately equal to the num-
ber that“filename=” string appears multiplied by the number of“Content-Type”
strings.

Based on this pattern, we created 1500-byte packets belonging to an estab-
lished connection destined to port 25 (traceT2). When processed by Snort, each
crafted packet results in approximately21, 120 backtracks during PCRE maching,
and in a processing time about 1360 times slower than the average processing time
for benign SMTP packets in traceT1. We use PCRE and this vulnerable rule as
a proof-of-concept experiment to demonstrate the impact of an algorithmic com-
plexity attack in a network monitoring application, and the performance benefits
offered by SPP to tolerate such attacks.
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FIGURE 6.4: Percentage of dropped packets and packets buffered to disk asa func-
tion of the offered load (packets per minute). We see that as soon as the offered load
exceeds merely102 packets per minute, the original libpcap starts losing packets,
and when the load becomes104 packets per minutes, it drops more than 80% of
the packets. On the contrary, SPP sustains zero loss all the way up to106 packets
per minute. Indeed, only when the offered load increases beyond that, and reaches
the limit of the disk’s write throughput, only then, SPP starts to lose about 18% of
the incoming packets.

Results

Packet loss. In this experiment we set out to explore what is the packet loss
of the original libpcap system and our SPP system during an algorithmic overload
attack. The setup of the experiment is as follows:

1. We replay traceT1 as background traffic at its original rate (110 Mbit/s).

2. We replay traceT2 at a variable rate: we start with a rate as low as 10 packets
per minute and increase it all the way up to106 packets per minute. Recall
that packets in this trace are specially crafted to trigger an algorithmic attack.

3. We transmit traceT3 continuously at a rate of 1 Mbit/s for the entire duration
of the experiment. We run each experiment for 10 minutes.

Figure6.4presents the percentage of the packets dropped by Snort when run-
ning on top of the original libpcap and when running on top of SPP. We observe
that when the offered load (i.e., traceT2) reaches a mere103 packets per minute,
Snort on top of the original libpcap starts losing packets, and when the offered
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FIGURE 6.5: Percentage of detected attacks as a function of the offered load (the
higher the better). We see that as soon as the offered load exceeds just102 packet
per minute, the original libpcap system starts to lose packets and attacks. As the of-
fered load increases, the performance deteriorates. When the offered load exceeds
105 packets per minute, the original libpcap system is able to detect zero attacks.
On the contrary, SPP manages to sustain 100% detection rate for loads as high as
106 packets per minute.

load exceeds104 it loses more than 80% of the packets. On the contrary, at these
loads, SPP loses no packets and manages to store them to disk. Figure6.4 also
presents the percentage of packets buffered to disk with SPP. We see that the pack-
ets buffered to disk by SPP are fewer than the packets dropped by libpcap at similar
rates. This is because by identifying and weeding out algorithmic attack packets,
SPP is able to dedicate more CPU cycles to processing ordinary packets.

These packet losses are directly translated to undetected attacks, i.e., attacks
which have evaded the Intrusion Detection System. Indeed, in Figure6.5we show
the percentage of attacks detected by the two systems. We see that Snort ontop of
the original libpcap starts missing attacks as soon as the offered load exceeds102

packets per second, and loses all attacks as soon as the load reaches105 packets
per second. Thus, to evade detection with probability 99.98%, an attacker has to
send105 crafted packets per minute, exploiting the slowdown from a large num-
ber of backtracks when matching the specific regular expression. Fortunately, at
these load rates, SPP does not miss any of the attacks as all packets are stored to
secondary memory and are eventually inspected by the intrusion detection system.

When using SPP, all attack attempts are detected for up to106 packets per
minute. That is, an attacker needs to send about107 packets per minute to reduce
the probability of being detected just by 17%. In this extreme case, our disk system
was not able to store all incoming packets due to the high traffic rate. Compared
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FIGURE 6.6: Size of memory and disk buffers over a 60-minute time period when
sending 10,000 crafted packets/minute for the first 10 minutes.

to the original libpcap, SPP can handle 10,000 times more crafted packets. Thus,
SPP offers significant tolerance to highly efficient algorithmic complexity attacks.

Recovery time. To measure the time that the system needs to recover from
overload, we performed the following experiment:

• We sent traceT1 at its normal rate for 60 minutes.

• We sent traceT2 at a rate of104 packets per minute for the first 10 minutes
of the experiment.

• We sent traceT3 at an 1 Mbit/s rate for 60 minutes.

Figure6.6 presents the size of memory buffer and disk buffer over time. We
report the size of each buffer every one minute. We observe that with SPP the size
of the memory buffer was always less than 6 MB, for the whole 60-minute period.
The attack packets (and their associated flows) identified by SPP were sent to disk.
Indeed, to accommodate the attack packets, the disk buffer size increasedfrom
16.23 MB (at minute 1) to 165 MB (at minute 10, which was the highest point
of the attack), and then slowly decreased back to zero at minute 48. We should
emphasize that throughout the experiments no packet was lost. Thus, significantly
less packets are stored to disk in case of SPP, since only the attack packetsare
buffered. The attack packets remain to disk and they are processed with slow rates
till minute 48, when the system completely recovers from the attack.
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6.4.3 Traffic Overload

Attack Description

In this set of experiments we set out to explore how SPP responds to traffic bursts.
To do so, we run Snort as in the previous section and feed it with the following
traffic:

1. TraceT1 is sent at its original rate and serves as background traffic.

2. At each minute we send a traffic burst that lasts for 30 seconds, usingthe
traffic from traceT4. The peak rate of the burst is varied throughout the
experiments from 1 Mbit/s up to 2.5 Gbit/s to evaluate how the intensity of
the bursts may influence SPP.

3. TraceT3 that contains 276 real attacks is sent continuously at 1 Mbit/s for
the entire duration of the experiment. Each experiment lasts 10 minutes.

Results

Traffic bursts of constant duration. Figures6.7(a), 6.7(b), and 6.7(c)present
the percentage of dropped packets, the percentage of detected attacks, and the av-
erage delay per packet, as a function of the rate of traffic bursts. We observe that
Snort on top of the original libpcap starts dropping packets when the traffic bursts
are around 1 Gbit/s, resulting in about 17% undetected attacks. When the bursts
reach a rate as high as 2 Gbit/s, 53% of the packets are dropped and 32.5%of the
attacks are missed. On the other hand, Snort with SPP drops no packets and misses
no attacks even at rates as high as 2 Gbit/s. Although our disk system writes pack-
ets with 1.5 Gbit/s throughput, the two-level memory hierarchy allows to store up
to 2 Gbit/s without packet loss. Only when the burst rates exceed 2.25 Gbit/s the
secondary storage is not able to keep up with network traffic and SPP starts to lose
packets.

It has been argued that in some cases, it is better to drop some packets so as to
deliver the rest of them without delay. In this aspect, one might prefer to use the
original libpcap (which drops packets rather than delaying them) rather than using
a version that may delay packets longer. Figure6.7(b)shows that dropping packets
may force the system to miss a significant percentage of attacks: as many as 40%.

In Figure6.7(c)we show that even the approaches that choose to drop some
packets to avoid delaying all of them, do not necessarily reduce delays significantly.
Indeed, we see that with a traffic rate as high as 2 Gbit/s, SPP delivers all packets
to Snort for inspection within 9.25 seconds on average: just 25% slower than the
original libpcap system, which delivers less than half of the packets. Overall, we
believe that dropping about half of the packets in order to deliver the other half
about 25% faster, much like libpcap does, seems not like a trade-off that monitoring
applications would choose to make.
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(a) Dropped packets and packets buffered to disk
as a function of the traffic burst rate for 30-second
bursts.
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(b) Detected attacks as a function of the traffic
burst rate for 30-second bursts.
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(c) Average delay for delivering packets to Snort
as a function of the traffic burst rate for 30-second
bursts.

FIGURE 6.7: Performance of SPP and original libpcap in case of 30-second bursts
as we vary the traffic burst rate.

Traffic bursts of variable duration. Figures6.8(a), 6.8(b), and6.8(c) show
the detected attacks, packet drops, and average delay per packet while varying the
duration of traffic bursts from 1 to 60 seconds with a constant 1.5 Gbit/s traffic
burst rate. Each traffic burst is repeated every minute for 10 minutes. Wesee that
as the duration of traffic burst increases, the original libpcap drops more packets
and Snort misses more attacks. For traffic bursts lasting 40 seconds at a time, 47%
of the packets were dropped due to CPU utilization and only 58% of our injected
attacks were successfully detected, while for traffic bursts lasting 60 seconds, 57%
of the packets were dropped and just 29% of the attacks detected.

Fortunately, SPP tolerates the 1.5 Gbit/s traffic burst even at 60 seconds dura-
tion, i.e., when 1.5 Gbit/s traffic is sent continuously for 10 minutes. All packets
are buffered to disk successfully and are inspected with a slight increase in delay.
In case of 60 seconds duration, the average delay per packet with SPPis 14 sec-
onds, while the original libpcap delivers only the 43% of packets with a delayof
10.8 seconds. The rest 57% of the packets are dropped: they are never delivered.
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(a) Percentage of dropped packets and packets
buffered to disk as a function of the traffic burst
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(b) Percentage of detected attacks as a function of
the traffic burst duration for 1.5 Gbit/s bursts.
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FIGURE 6.8: Performance of SPP and orginal libpcap in case of 1.5 Gbit/s traffic
rate as we vary the burst duration.

Recovery time. In Figure6.9 we present the size of memory and disk buffers
when sending 30-second traffic bursts with 1.5 Gbit/s rate for 10 minutes, and
continue sending only background traffic for another 50 minutes. We report the size
of each buffer once per minute. The memory buffer remains full at 500 MBfor the
first 12 minutes, while the disk buffer size increases continuously during the first
10 minutes all the way up to 21.3 GB. From minute 11 to minute 13, the disk buffer
size is reduced from 21.3 to 3.5 GB, since the system’s resources are sufficient to
process the excessive packets buffered during the traffic bursts. Thus, in the 14th
minute, both memory and disk buffers are empty, so the system has fully recovered
from the traffic overload attack. Compared with the algorithmic complexity attack,
the system recovers faster from traffic overload, in this experiment withinfour
minutes, because packets are not maliciously crafted to further slowdown Snort.
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FIGURE 6.9: Size of memory and disk buffers over a 60-minute time period when
sending for the first 10 minutes traffic bursts of 1.5 Gbit/s with 30 seconds duration.
It takes only 4 minutes for the system to recover from this overload attack.

6.5 Discussion

6.5.1 Real-time Constraints

Our work, much like most of the work in the area of passive network trafficmoni-
toring, focuses on monitoring applications with soft real-time constraints. That is,
applications that can afford to receive network packets with some delay, as long as
they receive all of them. There exist, however, some traffic monitoring applications
that have hard real-time constraints: that is, they can not tolerate any non-trivial
delay of any packet. One example of such hard real-time applications are network
intrusionpreventionsystems. These systems examine all packets that enter a net-
work before they are allowed to reach their final destination. If a packetis found
to be part of an attack then it is dropped, otherwise it is forwarded to its destina-
tion. To provide hard-real time guarantees for such applications, their underlying
systems are over-provisioned so as to be able to handle the worst-case overload
conditions. Our work does not address hard real-time systems, as we do not focus
on over-provisioned systems that can absorb the worst case overloadin a matter of
milliseconds, but we focus on novel approaches, such as two-level memory man-
agement and randomized timeouts, which can be implemented on top of ordinary
hardware.

6.5.2 Disk Throughput

To be efficient, SPP requires a secondary storage system that is fast enough to
write packets at line speed. Fortunately, modern magnetic disks are able to write
data at speeds reaching close to half a Gigabit per second, while modern solid state
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disks write data an order of magnitude faster than that [4]. If this throughput is not
enough to cover a particular line speed, multiple magnetic disks or SSDs can even
be used in parallel (e.g., in a RAID array) to achieve ever higher throughput. For
example, two SSDs seem to be enough to cover a 10GbE network line. Overall,
it seems that a small number of current disks have the bandwidth needed to cover
the speeds of current networks. Given the past improvements in disk bandwidth of
about 40% per year [94], and the recent breakthroughs in storage technology, we
expect commodity storage systems to be able to keep up with network speeds in
the years to come at least as easy as, if not easier than, they do today.

6.6 Summary

Under conditions of excessive network or processing load, passivenetwork moni-
toring applications usually cannot cope with the amount of traffic that needsto be
inspected, and the operating system unavoidably drops excess arriving packets. To
make matters worse, an attacker may evade detection by intentionally overload-
ing a network intrusion detection system up to the point when it starts dropping
packets.

In this chapter we presented Selective Packet Paging, which is based ona two-
level memory management approach to buffer (otherwise dropped) packets and tol-
erate algorithmic complexity attacks, traffic overload attacks, and any other kind of
overload conditions for network monitoring and security applications. Empowered
with a randomized timeout interval, SPP can detect and isolate algorithmic attack
packets, enabling the CPU to be used for more useful purposes, while theappli-
cation is able to processall packets when it recovers from overloads. Selective
Packet Paging provides effective packet buffering for several hours; long enough
for human (or automatic) intervention to kick in and resolve the overload.

We have implemented SPP within the popular libpcap packet capturing library,
so that existing applications can use it without any code modifications. Our exper-
imental evaluation shows that intrusion detection systems, such as Snort, arevul-
nerable to both algorithmic complexity and traffic overload evasion attacks. Even a
few (carefully crafted) packets per second are enough to overload Snort and make
it drop the rest of the monitored traffic, missing any subsequent attacks. Using
SPP, Snort can handle both algorithmic and traffic overload conditions. Indeed,
while Snort on top of the original libpcap missed almost all attacks during an algo-
rithmic overload, SPP enabled Snort to detect 100% of the attacks for speeds of up
to 2 Gbit/s.

We believe that as network monitoring applications get more complicated, they
will be increasingly vulnerable to algorithmic and traffic overload attacks. SPP of-
fers a memory management approach and a dynamic overload detection technique
that provide a seamless solution to this problem without requiring any changes to
the monitoring applications themselves.



7
Stream-Oriented Network Traffic Analysis

To make meaningful decisions, many network monitoring applications need to an-
alyze network traffic at the transport layer and above. For instance, NIDSs recon-
struct the transport-layer data streams to detect attack vectors spanning multiple
packets, and perform traffic normalization to avoid evasion attacks [41, 66, 119].
Similarly, several traffic classification applications are also based on the process-
ing of each TCP-level stream.

Unfortunately, there is agap between monitoring applications and underly-
ing traffic capture tools: Applications increasingly need to reason about higher-
level entities and constructs such as TCP flows, HTTP headers, SQL arguments,
email messages, and so on, while traffic capture frameworks still operate at the
lowest possible level: they provide the raw—possibly duplicate, out-of-order, or
overlapping—and in some cases even irrelevant packets that reach the monitoring
interface [37,91,92]. Upon receiving the captured packets at user space, monitoring
applications usually perform TCP stream reassembly using an existing librarysuch
as Libnids [5] or a custom stream reconstruction engine [113,124]. This results in
additional memory copy operations for extracting the payloads of TCP segments
and merging them into larger stream “chunks” in contiguous memory. Moreover,
it misses several optimization opportunities, such as the early discarding of unin-
teresting packets before system resources are spent to move them to user level, and
assigning different priorities to transport-layer flows so that they can behandled
appropriately at lower system layers.

To bridge this gap and address the above concerns, in this chapter we present
theStream capture library (Scap), a unified passive network monitoring framework
built around the abstraction of theStream, which is elevated into a first-class object
handled by user applications. Designed from the beginning for stream-oriented
network monitoring, Scap (i) provides the high-level functionality needed by mon-
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itoring applications, and (ii) implements this functionality at the most appropriate
place: at user level, at kernel level, or even at the network interface card. On the
contrary, existing TCP stream reassembly implementations are confined, by de-
sign, to operate at user level and, therefore, are deprived from a rich variety of
efficient implementation options.

To enable aggressive optimizations, we introduce the notion ofstream capture:
that is, we elevate theStreaminto a first-class object that is captured by Scap and
handled by user applications. Although previous work treats TCP stream reassem-
bly as a necessary evil [148], used mostly to avoid evasion attacks against intrusion
detection and other monitoring systems, we view streams —not packets— as the
fundamental abstraction that should be exported to network monitoring applica-
tions, and as the right vehicle for the monitoring system to implement aggressive
optimizations all the way down to the operating system kernel and network inter-
face card.

To reduce the overhead of unneeded packets, Scap introduces the notion of
subzero packet copy. Inspired by zero-copy approaches that avoid copying packets
from one main memory location to another, Scap not only avoids redundant packet
copies, but also avoids bringing some packets in main memory in the first place.We
show several cases of applications that are simply not interested in some packets,
such as the tails of large flows [24, 86, 89, 107]. Subzero packet copy identifies
these packets and does not bring them in main memory at all: they are droppedby
the network interface card (NIC)beforereaching the main memory.

To accommodate heavy loads, Scap introduces the notion ofprioritized packet
loss(PPL). Under heavy load, traditional monitoring systems usually drop arriving
packets in a random way, severely affecting any following stream reassembly pro-
cess. However, these dropped packets and affected streams may be important for
the monitoring application, as they may contain an attack or other critical informa-
tion. Even carefully provisioned systems that are capable of handling fullline-rate
traffic can be overloaded, e.g., by a sophisticated attacker that sends adversarial
traffic to exploit an algorithmic complexity vulnerability and intentionally overload
the system [109,135]. Scap allows applications to (i) define different priorities for
different streams and (ii) configure threshold mechanisms that give priority to new
and small streams, as opposed to heavy tails of long-running data transfers.

Scap provides a flexible and expressive Application Programming Interface
(API) that allows programmers to configure all aspects of the stream capture pro-
cess, perform complex per-stream processing, and gather per-flowstatistics with a
few lines of code. Our design introduces two novel features: (i) it enables the early
discarding of uninteresting traffic, such as the tails of long-lived connections that
belong to large file transfers, and (ii) it offers more control for toleratingpacket
loss under high load through stream priorities and best-effort reassembly. Scap
also avoids the overhead of extra memory copies during the reassembly process
by optimally placing TCP segments into stream-specific memory regions, and sup-
ports multi-core systems and network adapters with receive-side scaling [75] for
transparent parallelization of stream processing.
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We have evaluated Scap in a 10GbE environment using real traffic and showed
that it outperforms existing alternatives like Libnids [5] and Snort’s stream re-
assembly [124] in a variety of scenarios. For instance, our results demonstrate
that Scap can capture and deliver at user level all streams with low CPU utilization
for rates up to 5.5 Gbit/s using a single core, while Libnids and Snort start drop-
ping packets at 2.5 Gbit/s due to increased CPU utilization for stream reassembly
at user level. A single-threaded Scap pattern matching application can handle 33%
higher traffic rates than Snort and Libnids, and can process three times more traf-
fic at 6 Gbit/s. Moreover, the single-threaded Scap pattern matching application
can handle traffic speeds of 4 Gbit/s with no loss for stream cutoff values of up to
1MB. In contrast, when Snort and Libnids limit the stream size at user level,even
with very low cutoff values, more than 40% of the packets are still dropped at 4
Gbit/s. When eight cores are used for parallel stream processing, Scap can process
5.5 times higher rates with no packet loss.

In summary, the main contributions of this section are:

• We identify a semantic gap: modern network monitoring applications need
to operate at the transport layer and beyond, while existing monitoring sys-
tems operate at the network layer. To bridge this gap and enable aggressive
performance optimizations, we introduce the notion ofstream capturebased
on the fundamental abstraction of theStream, which is elevated to a first-
class object.

• We introducesubzero packet copy, a technique that takes advantage of filter-
ing capabilities of commodity NICs to not only avoid copying uninteresting
packets across different memory areas, but to avoid bringing them in main
memory altogether.

• We introduceprioritized packet loss, a technique that enables graceful adap-
tation to overload conditions by dropping packets of lower priority streams,
and favoring packets that belong to recent and shorter streams.

• We describe the design and implementation of Scap, a framework that incor-
porates the above features in a kernel-level, multicore-aware subsystem,and
provides a flexible and expressive API for building stream-oriented network
monitoring applications.

• We experimentally evaluate our implementation and demonstrate that it can
capture and deliver transport-layer streams for traffic rates two times higher
than previous approaches, while it can also adapt to overload conditions
more gracefully and predictably.

The rest of this chapter is organized as follows: in section7.1 we present the
design and basic features of Scap, while in section7.2 we outline the main Scap
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API calls. Then, section7.3describes the high-level architecture of Scap, and sec-
tion 7.4 discusses implementation details. In section7.5 we experimentally eval-
uate the performance benefits of Scap, comparing with current network capturing
and monitoring libraries for satisfying common monitoring needs, while replaying
real network traffic captured in the wild. In section7.6we analyze the performance
of prioritized packet loss. Finally, section7.7 compares Scap with other traffic
capture frameworks to put our work into context, and section7.8summarizes this
chapter.

7.1 Design and Features

The design of Scap is driven by two key objectives: programming expressiveness
and runtime performance. In this section, we introduce the main aspects of Scap
across these two dimensions.

7.1.1 Subzero-Copy Packet Transfer

Several network monitoring applications [24,86,89,107] are interested in analyzing
only the first bytes of each connection, especially under high traffic load. This way,
they analyze the more useful (for them) part of each stream and discarda significant
percentage of the total traffic [89]. For such applications, Scap has incorporated
the use of acutoff threshold that truncates streams to a user-specified size, and
discards the rest of the stream (and the respective packets) within the OSkernel or
even at the NIC, avoiding unnecessary data transfers to user space.Applications
can dynamically adjust the cutoff sizeper stream, allowing for greater flexibility.

Besides a stream cutoff size, monitoring applications may be interested in ef-
ficiently discarding other types of less interesting traffic. Many applicationsoften
use a BPF filter [91] to define which streams they want to process, while discard-
ing the rest. In case of an overload, applications may want to discard traffic from
low priority streams or define a streamoverload cutoff[86,107]. Also, depending
on the stream reassembly mode used by an application, packets belonging to non-
established TCP connections or duplicate packets may be discarded. In allsuch
cases, Scap can discard the appropriate packets at an early stage withinthe kernel,
while in many cases packets can be discarded even earlier at the NIC.

To achieve this, Scap capitalizes on modern network interfaces that provide fil-
tering facilities directly in hardware. For example, Intel’s 82599 10G interface [74]
supports up to 8K perfect match and 32K signature (hash-based) Flow Director fil-
ters (FDIR). These filters can be added and removed dynamically, within nomore
than 10 microseconds, and can match a packet’s source and destination IPad-
dresses, source and destination port numbers, protocol, and a flexible2-byte tuple
anywhere within the first 64 bytes of the packet. Packets that match an FDIRfilter
are directed to the hardware queue specified by the filter. If this hardware queue is
not used by the system, the packets will be just dropped at the NIC layer, and they
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will never be copied to the system’s main memory [39]. When available, Scap uses
FDIR filters to implement all above mentioned cases of early packet discarding.
Else, the uninteresting packets are dropped within the OS kernel.

7.1.2 Prioritized Packet Loss

Scap introducesPrioritized Packet Loss(PPL) to enable the system to invest its
resources effectively during overload. This is necessary becausesudden traffic
bursts or overload conditions may force the packet capturing subsystemto fill up
its buffers and randomly drop packets in a haphazard manner. Even worse, attack-
ers may intentionally overload the monitoring system while an attack is in progress
so as to evade detection. Previous research in NIDSs has shown that being able to
handle different flows [43, 85, 109], or different parts of each flow [86, 107], in
different ways can enable the system to invest its resources more effectively and
significantly improve detection accuracy. PPL is a priority assignment technique
that enables user applications to define the priority of each stream so that incase
of overload, packets from low-priority streams are the first ones to go. User ap-
plications can also define a threshold for the maximum stream size under overload
(overloadcutoff). Then, packets situated beyond this threshold are the ones to be
dropped.

As long as the percentage of used memory is below a user-defined thresh-
old (calledbase threshold), PPL drops no packets. When, however, the used
memory exceeds thebase threshold, PPL kicks in: it first divides the mem-
ory abovebase threshold into n (equal to the number of used priorities) re-
gions usingn + 1 equally spaced watermarks (i.e.,watermark0, watermark1,
..., watermarkn), wherewatermark0 = base threshold andwatermarkn =
memory size. When a packet belonging to a stream with theith priority level
arrives, PPL checks the percentage of memory used by Scap at that time.If it is
abovewatermarki, the packet is dropped. Otherwise, if the percentage of mem-
ory used is betweenwatermarki andwatermarki−1, PPL makes use of theover-
load cutoff, if it has been defined by the user. Then, if the packet is located in its
stream beyond theoverloadcutoff byte, it is dropped. In this way, high priority
streams, as well as newly created and short streams if anoverloadcutoff is defined,
will be accommodated with higher probability.

7.1.3 Flexible Stream Reassembly

To support monitoring at the transport layer, Scap provides differentmodes of TCP
stream reassembly. The two main objectives of stream reassembly in Scap are:
(i) to provide transport-layer reassembled chunks in continuous memory regions,
which facilitates stream processing operations, and (ii) to perform protocol normal-
ization [66,150]. Scap currently supports two different modes of TCP stream re-
assembly:SCAP TCP STRICT andSCAP TCP FAST. In the strict mode, streams
are reassembled according to existing guidelines [41, 150], offering protection
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against evasion attempts based on IP/TCP fragmentation. In the fast mode, streams
are reassembled in abest-effortway, offering resilience against packet loss caused
in case of overloads. In this mode, Scap follows the semantics of the strict mode
as closely as possible, e.g., by handling TCP retransmissions, out-of-order packets,
and overlapping segments. However, to accommodate for lost segments, stream
data is written without waiting for the correct next sequence number to arrive. In
that case, Scap sets a flag to report that errors occurred during the reassembly of a
particular chunk.

Scap uses target-based stream reassembly to implement different TCP reassem-
bly policies according to different operating systems. Scap applications can set a
different reassembly policy per each stream. This is motivated by previouswork,
which has shown that stream reassembly performed in a NIDS may not be accu-
rate [119]. For instance, the reconstructed data stream may differ from the actual
data stream observed by the destination. This is due to the different TCP reassem-
bly policies implemented by different operating systems, e.g., when handling over-
lapping segments. Thus, an attacker can exploit such differences to evade detec-
tion. Shankar and Paxson [131] developed an active mapping solution to determine
what reassembly policy a NIDS should follow for each stream. Similarly to Scap,
Snort uses target-based stream reassembly [103] to define the reassembly policy
per host or subnet.

Scap also supports UDP: a UDP stream is the concatenation of the payloads
of the arriving packets of the respective UDP flow. For other protocolswithout
sequenced delivery, Scap return each packet for processing without reassembly.

7.1.4 Parallel Processing and Locality

Scap has inherent support for multi-core systems, hiding from the programmer
the complexity of creating and managing multiple processes or threads. This is
achieved by transparently creating a number of worker threads for user-level stream
processing (typically) equal to the number of the available cores. Using affinity
calls, the mapping of threads to CPU cores is practically one-to-one. Scap also
dedicates a kernel thread on each core for handling packet receptionand stream
reassembly. The kernel and worker threads running on the same core process the
same streams. As each stream is assigned to only one kernel and worker thread,
all processing of a particular stream is done on the same core, reducing,in this
way, context switches, cache misses [42, 115], and inter-thread synchronization
operations. The kernel and worker threads on each core communicate through
shared memory and events: a new event for a stream is created by the kernel thread
and is handled by the worker thread using a user-defined callback function for
stream processing.

To balance the network traffic load across multiple NIC queues and cores,Scap
uses both static hash-based approaches, such as Receive Side Scaling (RSS) [75],
and dynamic load balancing approaches, such as flow director filters (FDIR) [74].
This provides resiliency to short-term load imbalance that could adversely affect
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application performance. First, Scap detects a load imbalance when one of the
cores is assigned a portion of the total streams larger than a threshold. Then, sub-
sequent streams assigned by RSS to this core are re-directed with an FDIRto the
core that handles the lowest number of streams at the time.

7.1.5 Performance Optimizations

In case that multiple applications running on the same host monitor the same traf-
fic, Scap provides all of them with a shared copy of each stream. Thus, the stream
reassembly operation is performed only once within the kernel, instead of multiple
times for each user-level application. If applications have different configurations,
e.g., for stream size cutoff or BPF filters, the capture system takes a besteffort
approach to satisfy all requirements. For instance, it sets the largest among the
cutoff sizes for all streams, and keeps streams that match at least one of the fil-
ters, marking the applications that should receive each stream and their respective
cutoff.

Performing stream reassembly in the kernel also offers significant advantages
in terms of cache locality. Existing user-level TCP stream reassembly implemen-
tations receive packets of different flows highly interleaved, which results in poor
cache locality [111]. In contrast, Scap provides user-level applications with re-
assembled streams instead of randomly interleaved packets, allowing for improved
memory locality and reduced cache misses.

7.2 Scap API

Scap is based around the abstraction of thestream: a reconstructed TCP session
between two endpoints defined by a 5-tuple (protocol, source and destination IP
address, source and destination port). Monitoring applications receivea unique
stream descriptorstream t for each new stream. This descriptor can be used to
access all information, data, and statistics about the stream, and is providedas a
parameter to all stream manipulation functions. Table7.1presents the main fields
of thestream t structure, and Table7.2lists the main functions of the Scap API.
In the following, we give a brief overview of the main functions of the API, and
provide two simple examples that demonstrate its expressiveness and flexibility.

7.2.1 Initialization

An Scap program begins with the creation of an Scap socket usingscap create(),
which specifies the interface to be monitored. The programmer can also specify
various properties, such as the memory size of the buffer for storing stream data,
the stream reassembly mode, and whether the application needs to receive the in-
dividual packets of each stream. Upon successful creation, the returnedscap t
descriptor, which keeps configuration parameters, is used for all subsequent con-
figuration operations. These include setting a BPF filter [91] to receive a subset of
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Data field Description

stream hdr hdr; Stream header

uint32 t src ip, dst ip; Source/Destination IP address
uint16 t src port, dst port; Source/Destination port
uint8 t protocol; Protocol
uint8 t direction; Stream direction

stream stats stats; Stream statistics

struct timeval start, end; Beggining/end time
uint64 t bytes, Total bytes,

bytes dropped, dropped bytes,
bytes discarded, discarded bytes,
bytes captured; captured bytes

uint32 t pkts, Total packets,
pkts dropped, dropped packets,
pkts discarded, discarded packets,
pkts captured; captured packets

Other fields

uint8 t status; Stream status
uint8 t error; Error flags
char *data; Pointer to last chunk’s data
int data len; Data length of the last chunk
stream t *opposite; Stream in the opposite direction
int cutoff; Stream’s cutoff
int priority; Stream’s priority
int chunk size; Stream’s chunk size
int chunks; Stream’s total chunks
int processing time; Stream’s processing time

TABLE 7.1: Data fields of the stream descriptorstream t.

the traffic, cutoff values for different stream classes or stream directions, the num-
ber of worker threads for balancing stream processing among the available cores,
the chunk size, the overlap size between subsequent chunks, and an optional time-
out for delivering the next chunk for processing. Theoverlap argument is used
when some of the last bytes of the previous chunk are also needed in the beginning
of the next chunk, e.g., for matching a pattern that might span consecutivechunks.
Theflush timeout parameter can be used to deliver for processing a chunk
smaller than the chunk size when this timeout passes, in case the user needs to
ensure timely processing.

7.2.2 Stream Processing

Scap allows programmers to write and register callback functions for three differ-
ent types of events: stream creation, the availability of new stream data, and stream
termination. When a stream is created or terminated, or when enough data have
been captured for a stream’s chunk processing, a new event is triggered and the re-
spective callback is executed. Each callback function takes as a single argument a
stream t descriptorsd, which corresponds to the stream that triggered the event.
As shown in Table7.1, this descriptor provides access to detailed information about
the stream, such as the stream’s IP addresses, port numbers, protocol,and direc-
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Scap Function Prototype Description

scap t *scap create(const char *device, int memory size, Creates an Scap socket
int reassembly mode, int need pkts)

int scap set filter(scap t *sc, char *bpf filter) Applies a BPF filter to an Scap socket
int scap set cutoff(scap t *sc, int cutoff) Changes the default stream cutoff value
int scap add cutoff direction(scap t *sc, int cutoff, Sets a different cutoff value for

int direction) each direction
int scap add cutoff class(scap t *sc, int cutoff, Sets a different cutoff value for a subset

char* bpf filter) of the traffic
int scap set worker threads(scap t *sc, int thread num) Sets the number of threads for stream processing
int scap set parameter(scap t *sc, int parameter, Changes defaults: inactivity timeout, chunk size,

int value) overlap size, flush timeout, base threshold,
overload cutoff

int scap dispatch creation(scap t *sc, Registers a callback routine for handling stream
void (*handler)(stream t *sd)) creation events

int scap dispatch data(scap t *sc, Registers a callback routine for processing newly
void (*handler)(stream t *sd)) arriving stream data

int scap dispatch termination(scap t *sc, Registers a callback routine for handling stream
void (*handler)(stream t *sd)) termination events

int scap start capture(scap t *sc) Begins stream processing
void scap discard stream(scap t *sc, stream t *sd) Discards the rest of a stream’s traffic
int scap set stream cutoff(scap t *sc, stream t sd, Sets the cutoff value of a stream

int cutoff)
int scap set stream priority(scap t *sc, stream t *sd, Sets the priority of a stream

int priority)
int scap set stream parameter(scap t *sc, stream t *sd, Sets a stream’s parameter: inactivity timeout,

int parameter, int value) chunk size, overlap size, flush timeout,
reassembly mode

int scap keep stream chunk(scap t *sc, stream t *sd) Keeps the last chunk of a stream in memory
char *scap next stream packet(stream t *sd, Returns the next packet of a stream

struct scap pkthdr *h) Returns the next packet of a stream
int scap get stats(scap t *sc, scap stats t *stats) Reads overall statistics for all streams
void scap close(scap t *sc) Closes an Scap socket

TABLE 7.2: The main functions of the Scap API.

tion, as well as useful statistics such as byte and packet counters for all,dropped,
discarded, and captured packets, and the timestamps of the first and last packet of
the stream. Among the rest of the fields, thesd->status field indicates whether
the stream is active or closed (by TCP FIN/RST or by inactivity timeout), or if its
stream cutoff has been exceeded, and thesd->error field indicates stream re-
assembly errors, such as incomplete TCP handshake or invalid sequencenumbers.
There is also a pointer to thestream t in the opposite direction, and stream’s
properties like cutoff, priority, and chunk size.

The stream processing callback can access the last chunk’s data and itssize
through thesd->data and sd->data len fields. In case no more data is
needed,scap discard stream() can notify the Scap core to stop collecting
data for this stream. Chunks can be efficiently merged with following ones using
scap keep chunk(). In the next invocation, the callback will receive a larger
chunk consisting of both the previous and the new one. Using the stream descrip-
tor, the application is able to set the stream’s priority, cutoff, and other parameters
like stream’s chunk size, overlap size, flush timeout, and reassembly mode.

In case they are needed by an application, individual packets can be delivered
usingscap next stream packet(). Packet delivery is based on the chunk’s
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data and metadata kept by Scap’s packet capture subsystem for each packet. Based
on this metadata, even reordered, duplicate, or packets with overlapping sequence
numbers can be delivered in the same order as captured. This allows Scapto sup-
port packet-based processing along with stream-based processing, e.g., to allow the
detection of TCP attacks such as ACK splitting [126]. The only difference between
Scap’s packet delivery and packet-based capturing systems is that packets from the
same stream are processed together, due to the chunk-based delivery. As an added
benefit, such flow-based packet reordering has been found to significantly improve
cache locality [111].

The stream’s processing time and the total number of processed chunks are
available through thesd->processing time andsd->chunks fields. This
enables the identification of streams that are processed with very slow ratesand
delay the application, e.g., due to algorithmic complexity attacks [109,135]. Upon
the detection of such a stream, the application can handle it appropriately, e.g., by
discarding it or reducing its priority, to ensure that this adversarial traffic will not
affect the application’s correct operation.

7.2.3 Use Cases

We now show two simple applications written with Scap.

Flow-Based Statistics Export

The following listing shows the code of an Scap application for gathering andex-
porting per-flow statistics. Scap already gathers these statistics and storesthem in
thestream t structure of each stream, so there is no need to receive any stream
data. Thus, the stream cutoff can be set to zero, to efficiently discard alldata. All
the required statistics for each stream can be retrieved upon stream termination by
registering a callback function.

1 scap_t *sc = scap_create("eth0", SCAP_DEFAULT,
2 SCAP_TCP_FAST, 0);
3 scap_set_cutoff(sc, 0);
4 scap_dispatch_termination(sc, stream_close);
5 scap_start_capture(sc);
6

7 void stream_close(stream_t *sd) {
8 export(sd->hdr.src_ip, sd->hdr.dst_ip,
9 sd->hdr.src_port, sd->hdr.dst_port,

10 sd->stats.bytes, sd->stats.pkts,
11 sd->stats.start, sd->stats.end);
12 }

In line 1 we create a new Scap socket for capturing streams from theeth0 in-
terface. Then, we set the stream cutoff to zero (line 3) for discarding all stream data,
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we set thestream close() as a callback function to be called upon stream ter-
mination (line 4), and finally we start the capturing process (line 5). Thestream
close() function (lines 7–12) exports the statistics of the stream through thesd
descriptor that is passed as its argument.

Pattern Matching

The following listing shows the few lines of code that are required using Scap for
an application that searches for a set of known patterns in the captured reassembled
TCP streams.

1 scap_t *sc = scap_create("eth0", 512M,

2 SCAP_TCP_FAST, 0);

3 scap_set_worker_threads(sc, 8);

4 scap_dispatch_data(sc, stream_process);

5 scap_start_capture(sc);

6

7 void stream_process(stream_t *sd) {

8 search(patterns, sd->data, sd->len, MatchFound);

9 }

We begin by creating an Scap socket without setting a cutoff, so that all traffic
is captured and processed (lines 1–2). Then, we configure Scap with eight worker
threads, each pinned to a single CPU core (assuming a machine with eight cores),
to speed up pattern matching with parallel stream processing. Finally, we regis-
ter stream process() as the callback function for processing stream chunks
(line 4) and start the capturing process (line 5). Thesearch() function looks
for the set of known patterns withinsd->len bytes starting from thesd->data
pointer, and calls theMatchFound() function in case of a match.

7.3 Architecture

This section describes the architecture of the Scap monitoring framework for stream-
oriented network traffic capturing and processing.

7.3.1 Kernel-level and User-level Support

Scap consists of two main components: a loadable kernel module and a user-level
API stub, as shown in Figure7.1. Applications communicate through the Scap
API stub with the kernel module to configure the capture process and receive mon-
itoring data. Configuration parameters are passed to the kernel through the Scap
socket interface. Accesses tostream t records, events, and actual stream data
are handled through shared memory. For user-level stream processing, the stub
receives events from the kernel module and calls the respective callback function
for each event.
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FIGURE 7.1: Overview of Scap’s architecture.

The overall operation of the Scap kernel module is depicted in Figure7.2. Its
core is a software interrupt handler that receives packets from the network device.
For each packet, it locates the respectivestream t record through a hash table
and updates all relevant fields (stream t handling). If a packet belongs to a new
stream, a newstream t record is created and added into the hash table. Then, it
extracts the actual data from each TCP segment, by removing the protocol headers,
and stores it in the appropriate memory page, depending on the stream in which it
belongs (memory management). Whenever a new stream is created or terminated,
or a sufficient amount of data has been gathered, the kernel module generates a
respective event and enqueues it to an event queue (event creation).

7.3.2 Parallel Packet and Stream Processing

To scale performance, Scap uses all available cores in the system. To efficiently
utilize multi-core architectures, modern network interfaces can distribute incoming
packets into multiple hardware receive queues. To balance the network traffic load
across the available queues and cores, Scap uses both RSS [75], which uses a
hash function based on the packets’ 5-tuple, and dynamic load balancing,using
flow director filters [74], to deal with short-term load imbalance. To map the
two different streams of each bi-directional TCP connection to the same core, we
modify the RSS seeds as proposed by Woo and Park [151].

Each core runs a separate instance of the NIC driver and Scap kernel module to
handle interrupts and packets from the respective hardware queue. Thus, each Scap
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FIGURE 7.2: The operation of the Scap kernel module.

instance running on each core will receive a different subset of network streams,
as shown in Figure7.1. Consequently, the stream reassembly process is distributed
across all the available cores. To match the level of parallelism provided bythe
Scap kernel module, the Scap’s user-level stub creates as many worker threads as
the available cores, hiding from the programmer the complexity of creating and
managing multiple processes or threads. Each worker thread processesthe streams
delivered to its core by its kernel-level counterpart. This collocation of user-level
and kernel-level threads that work on the same data maximizes locality of reference
and cache affinity, reducing, in this way, context switches, cache misses[42,115],
and inter-thread synchronization. Each worker thread polls a separateevent queue
for events created by the kernel Scap thread running on the same core,and calls the
respective callback function registered by the application to process each event.

7.4 Implementation

We now give more details on the implementation of the Scap monitoring frame-
work.

7.4.1 Scap Kernel Module

The Scap kernel module implements a new network protocol for receiving pack-
ets from network devices, and a new socket class,PF SCAP, for communication
between the Scap stub and the kernel module. Packets are transferred tomemory
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through DMA, and the driver schedules them for processing within the software
interrupt handler—the Scap’s protocol handler in our case.

7.4.2 Fast TCP Reassembly

For each packet, the Scap kernel module finds and updates its respectivestream t
record, or creates a new one. For fast lookup, we use a hash table byrandomly
choosing a hash function during initialization. Based on the transport-layerproto-
col headers, Scap extracts the packet’s data and writes them directly to thecurrent
memory offset indicated in thestream t record. Packets belonging to streams
that exceed their cutoff value, as well as duplicate or overlapping TCP segments,
are discarded immediately without unnecessarily spending further CPU andmem-
ory resources for them. Streams can expire explicitly (e.g., via TCP FIN/RST), or
implicitly, due to an inactivity timeout. For the latter, Scap maintains anaccess list
with the active streams sorted by their last access time. Upon packet reception, the
respectivestream t record is simply placed at the beginning of the access list,
to keep it sorted. Periodically, starting from the end of the list, the kernel module
compares the last access time of each stream with the current time, and expires all
streams for which no packet was received within the specified period by creating
stream termination events.

7.4.3 Memory Management

Reassembled streams are stored in a large memory buffer allocated by the kernel
module and mapped in user level by the Scap stub. The size of this buffer is given as
argument in thescap create() function (buffer len). The kernel module
allocates the respective memory pages during initialization, and it is responsible to
manage the usage of this memory among the several streams. For each stream,a
contiguous memory block is allocated (by our own memory allocator) according
to the stream’s chunk size. When this block fills up, the chunk is delivered for
processing (by creating a respective event) and a new block is allocatedfor the
next chunk. The Scap stub has access to this block through memory mapping, so
an offset is enough for locating each stored chunk.

To avoid dynamic allocation overhead, a large number ofstream t records
are pre-allocated during initialization, and are memory-mapped by the Scap stub.
More records are allocated dynamically as needed. Thus, the number of streams
that can be tracked concurrently is not limited by Scap.

7.4.4 Event Creation

A new event is triggered on stream creation, stream termination, and whenever
stream data is available for processing. A data event can be triggered for one of
the following reasons: (i) a memory chunk fills up, (ii) a flush timeout is passed,
(iii) a cutoff value is exceeded, or (iv) a stream is terminated. When a stream’s
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cutoff threshold is reached, Scap creates a final data processing event for its last
chunk. However, itsstream t record remains in the hash table and in the access
list, so that monitoring continues throughout its whole lifetime. This is required
for gathering flow statistics and generating the appropriate termination event.

To avoid contention when the Scap kernel module runs in parallel across sev-
eral cores, each core inserts events in a separate queue. When a newevent is
added into a queue, thesk data ready() function is called to wake up the cor-
responding worker thread, which callspoll()whenever its event queue is empty.
Along with each event, the Scap stub receives and forwards to the user-level ap-
plication a pointer to the respectivestream t record. To avoid race conditions
between the Scap kernel module and the application, Scap maintains a secondin-
stance of eachstream t record. The first copy is updated within the kernel,
while the second is read by the user-level application. The kernel module updates
the necessary fields of the secondstream t instance right before a new event for
this stream is enqueued.

7.4.5 Hardware Filters

Packets taking part in the TCP three-way handshake are always captured. When
the cutoff threshold is triggered for a stream, Scap adds dynamically the neces-
sary FDIR filters to drop at the NIC layer all subsequent packets belonging to this
stream. Note that although packets are dropped before they reach main memory,
Scap needs to know when a stream ends. For this reason, we add filters todrop
only packets that contain actual data segments (or TCP acknowledgements), and
still allow Scap to receive TCP RST or FIN packets that may terminate a stream.

This is achieved using the flexible 2-byte tuple option of FDIR filters. We have
modified the NIC driver to allow for matching the offset, reserved, and TCPflags
2-byte tuple in the TCP header. Using this option, we add two filters for each
stream: the first matches and drops TCP packets for which only the ACK flagis
set, and the second matches and drops TCP packets for which only the ACKand
PSH flags are set. The rest of the filter fields are based on each stream’s5-tuple.
Thus, only TCP packets with RST or FIN flag will be forwarded to Scap kernel
module for stream termination.

Streams may also be terminated based on an inactivity timeout. For this reason
Scap associates a timeout with each filter installed to the NIC, and removes the
filter when this timeout expires. To remove filters, Scap keeps a list with all filters
sorted based on their timeout values. Thus, an FDIR filter is removed (i) when
a TCP RST or FIN packet arrives for a given stream, or (ii) when the timeout
associated with a filter expires. Note that in the second case the stream may still
be active, so if a packet of this stream arrives upon the removal of its filter, Scap
will immediately re-install the filter. This is because the cutoff of this stream has
exceeded and the stream is still active. To handle long running streams, re-installed
filters get a timeout twice as large as before. In this way, long-running flows will
only be evicted a logarithmic number of times from NIC’s filters. If there is no
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space left on the NIC to accommodate a new filter, a filter with a small timeout is
evicted, as it does not correspond to a long-lived stream.

Scap needs to provide accurate flow statistics upon the termination of streams
that had exceeded their cutoff, even if most of their packets were discarded at the
NIC. Unfortunately, existing NICs provide only aggregate statistics for packets
across all filters—not per each filter. However, Scap is able to estimate accurate
per-flow statistics, such as flow size and flow duration for TCP streams, based
on the TCP sequence numbers of the RST/FIN packets. Also, by removing the
NIC filters when their timeout expires, Scap receives packets from thesestreams
periodically and updates their statistics.

Our implementation is based on the Intel 82599 NIC [74], which supports RSS
and flow director filters. Similarly to this card, most modern 10GbE NICs such as
Solarflare [138], SMC [134], Chelsio [26], and Myricom [101], also support RSS
and filtering capabilities, so Scap can be effectively used with these NICs as well.

7.4.6 Handling Multiple Applications

Multiple applications can use Scap concurrently on the same machine. Given
that monitoring applications require only read access to the stream data, there
is room for stream sharing to avoid multiple copies and improve overall perfor-
mance. To this end, all Scap sockets share a single memory buffer for stream data
andstream t records. As applications have different requirements, Scap tries
to combine and generalize all requirements at kernel level, and apply application-
specific configurations at user level.

7.4.7 Packet Delivery

An application may be interested in receiving both reassembled streams, as well
as their individual packets, e.g., to detect TCP-level attacks [126]. Scap supports
the delivery of the original packets as captured from the network, if an application
indicates that it needs them. Then, Scap internally uses another memory-mapped
buffer that contains records for each packet of a stream. Each record contains a
packet header with the timestamp and capture length, and a pointer to the original
packet payload in the stream.

7.4.8 API Stub

The Scap API stub usessetsockopt() to pass parameters to kernel module for
handling API calls. Whenscap start capture() is called, each worker
thread runs an event-dispatch loop that polls its corresponding event queue, reads
the next available event, and executes the registered callback function for this event.
The event queues containstream t objects, which have anevent field and a
pointer to the nextstream t in the event queue. If this pointer is NULL, then
there is no event in the queue, and the stub callspoll() to wait for future events.
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7.5 Experimental Evaluation

We experimentally evaluate the performance of Scap, comparing it to other stream
reassembly libraries for common monitoring tasks, such as flow statistics export
and pattern matching, while replaying real network traffic at different rates.

7.5.1 Experimental Environment

The hardware We use a testbed comprising two PCs interconnected through a
10 GbE switch. The first, equipped with two dual-core Intel Xeon 2.66 GHz CPUs
with 4MB L2 cache, 4GB RAM, and an Intel 82599EB 10GbE NIC, is used for
traffic generation. The second, used as a monitoring sensor, is equipped with two
quad-core Intel Xeon 2.00 GHz CPUs with 6MB L2 cache, 4GB RAM, and an
Intel 82599EB 10GbE NIC used for stream capture. Both PCs run 64-bit Ubuntu
Linux (kernel version 2.6.32).

The trace To evaluate stream reassembly implementations with real traffic, we
replay a one-hour long anonymized trace captured at the access link thatconnects
to the Internet a University campus with thousands of hosts. The trace contains
58,714,906 packets and 1,493,032 flows, totaling more than 46GB, 95.4% of which
is TCP traffic. To achieve high replay rates (up to 6 Gbit/s) we split the trace in
smaller parts of 1GB that fit into main memory, and replay each part 10 times while
the next part is being loaded in memory.

The parameters We compare the following systems: (i) Scap, (ii) Libnids v1.24 [5],
(iii) YAF v2.1.1 [73], a libpcap-based flow export tool, and (iv) the Stream5 prepro-
cessor of Snort v2.8.3.2 [124]. YAF, Libnids and Snort rely on libpcap [92], which
uses thePF PACKET socket for packet capture on Linux. Similarly to Scap’s ker-
nel module, thePF PACKET kernel module runs as a software interrupt handler
that stores incoming packets to a memory-mapped buffer, shared with libpcap’s
user-level stub. In our experiments, the size of this buffer is set to 512MB, and the
buffer size for reassembled streams is set to 1GB for Scap, Libnids, andSnort. We
use a chunk size of 16KB, theSCAP TCP FAST reassembly mode, and an inactiv-
ity timeout of 10 seconds. The majority of TCP streams terminate explicitly with
TCP FIN or RST packet, but we also use an inactivity timeout to expire UDP, and
TCP flows that do not close normally. As we replay the trace at higher ratesthan
its actual capture rate, an inactivity timeout of 10 seconds is a reasonable choice.

7.5.2 Flow-Based Statistics Export: Drop Anything Not Needed

In our first experiment we evaluate the performance of Scap for exporting flow
statistics, comparing with YAF and with a Libnids-based program that receives
reassembled flows. By setting the stream cutoff value to zero, Scap discards all
stream data after updating stream statistics. When Scap is configured to usethe
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FIGURE 7.3: Performance comparison of flow-based statistics export for YAF,
Libnids, and Scap, for varying traffic rates.

FDIR filters, the NIC discards all packets of a flow after TCP connection estab-
lishment, except from the TCP FIN/RST packets, which are used by Scap for flow
termination. Although Scap can use all eight available cores, for a fair compari-
son, we configure it to use a single worker thread, as YAF and Libnids are single-
threaded. However, for all tools, interrupt handling for packet processing in the
kernel takes advantage of all cores, utilizing NIC’s multiple queues.

Figures7.3(a), 7.3(b), and7.3(c) present the percentage of dropped packets,
the average CPU utilization of the monitoring application on a single core, and the
software interrupt load while varying the traffic rate from 250 Mbit/s to 6 Gbit/s.
We see that Libnids starts losing packets when the traffic rate exceeds 2 Gbit/s. The
reason can be seen in Figures7.3(b)and7.3(c), where the total CPU utilization of
Libnids exceeds 90% at 2.5 Gbit/s. YAF performs slightly better than Libnids, but
when the traffic reaches 4 Gbit/s, it also drives CPU utilization to 100% and starts
losing packets as well. This is because both YAF and Libnids receive all packets
in user space and then drop them, as the packets themselves are not needed by the
monitoring application.

Scap processes all packets even at 6 Gbit/s load. As shown in Figure7.3(b), the
CPU utilization of the Scap application is always less than 10%, as it practically
does not do any work at all. All the work has already been done by Scap’s kernel
module. One would expect the overhead of this module (shown in Figure7.3(c)) to
be relatively high. Fortunately, however, the software interrupt load ofScap is even



7.5. EXPERIMENTAL EVALUATION 117

lower compared to YAF and Libnids, even when FDIR filters are not used,because
Scap does not copy the incoming packets around: as soon as a packet arrives, the
kernel module accesses only the needed information from its headers, updates the
respectivestreamt, and just drops it. In contrast, Libnids and YAF receive all
packets to user space, resulting in much higher overhead. YAF performsbetter
than Libnids because it receives only the first 96 bytes of each packetand it does
not perform stream reassembly.

When Scap uses FDIR filters to discard the majority of the packets at NIC layer
it achieves even better performance. Figure7.3(c)shows that the software interrupt
load is significantly lower with FDIR filters: as little as 2% for 6 Gbit/s. Indeed,
Scap with FDIR brings into main memory as little as 3% of the total packets—
just the packets involved in TCP session creation and termination. The rest of the
packets are just not needed, and they are never brought in the main memory.

7.5.3 Delivering Streams to User Level: The Cost of an Extra Memory
Copy

In this experiment, we explore the performance of Scap, Snort, and Libnids when
delivering reassembled streams to user level without any further processing. The
Scap application receives all data from all streams with no cutoff, and runs as a
single thread. Snort is configured with only the Stream5 preprocessor enabled,
without any rules. The Libnids application also receives all the reassembled TCP
and UDP streams, without any operation of them. Figure7.4(a)shows the percent-
age of dropped packets as a function of the traffic rate. Scap deliversall steams
without any packet loss for rates up to 5.5 Gbit/s. On the other hand, Libnidsstarts
dropping packets at 2.5 Gbit/s (drop rate: 1.4%) and Snort at 2.75 Gbit/s (drop rate:
0.7%). Thus, Scap is able to deliver reassembled streams to the monitoring appli-
cations for more than two times higher traffic rates. When the input traffic reaches
6 Gbit/s, Libnids drops 81.2% and Snort 79.5% of the total packets received.

The reason for this performance difference lies in the extra memory copy op-
erations needed for stream reassembly at user level. When a packet arrives for
Libnids and Snort, the kernel writes it in the next available location in a common
ring buffer. When performing stream reassembly, Libnids and Snort mayhave
to copyeach packet’s payload from the ring buffer to a memory buffer allocated
specifically for this packet’s stream. Scap avoids this extra copy operationbecause
the kernel module copies the packet’s datanot to a common buffer, but directly
to a memory buffer allocated specifically for this packet’s stream. Figure7.4(b)
shows that the CPU utilization of the Scap user-level application is considerably
lower than the utilization of Libnids and Snort, which at 3 Gbit/s exceeds 90%,
saturating the processor. In contrast, the CPU utilization for the Scap application
is less then 60% even for speeds up to 6 Gbit/s, as the user application does very
little work: all the stream reassembly is performed in the kernel module, which
increases the software interrupt load, as can be seen in Figure7.4(c).
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FIGURE 7.4: Performance comparison of stream delivery for Snort, Libnids, and
Scap, for varying traffic rates.

7.5.4 Concurrent Streams

An attacker could try to saturate the flow table of a stream reassembly library by
creating a large number of established TCP flows, so that a subsequent malicious
flow cannot be stored. In this experiment, we evaluate the ability of Scap, Libnids,
and Snort to handle such cases while increasing the number of concurrent TCP
streams up to 10 million. Each stream consists of 100 packets with the maximum
TCP payload, and streams are multiplexed so that the desirable number of concur-
rent streams is achieved. For each case, we create a respective packet trace and
then replay it at a constant rate of 1 Gbit/s, as we want to evaluate the effect of con-
current streams without increasing the traffic rate. As in the previous experiment,
the application uses a single thread and receives all streams at user level,without
performing any further processing.

Figure7.5shows that Scap scales well with the number of concurrent streams:
as we see in Figure7.5(a), no stream is lost even for 10 million concurrent TCP
streams. Also, Figures7.5(b)and7.5(c)show that the CPU utilization and software
interrupt load of Scap slightly increase with the number of concurrent streams, as
the traffic rate remains constant. On the other hand, Snort and Libnids cannot han-
dle more than one million concurrent streams, even though they can handle 1 Gbit/s
traffic with less than 60% CPU utilization. This is due to internal limits that these
libraries have for the number of flows they can store in their data structures. In con-
trast, Scap does not have to set such limits because it uses a dynamic memory man-
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FIGURE 7.5: Performance comparison of Snort, Libnids, and Scap, for a varying
number of concurrent streams.

agement approach: when more memory is needed for storingstream t records,
Scap allocates dynamically the necessary memory pools to capture all streams.In
case an attacker tries to overwhelm the Scap flow table, Scap will use all the avail-
able memory forstream t records. When there is no more free memory, Scap’s
policy is to always store newer streams by removing from the flow table the older
ones, i.e., streams with the highest inactivity time based on the access list.

7.5.5 Pattern Matching

In the following experiments, we measure the performance of Scap with an appli-
cation that receives all streams and searches for a set of patterns. Wedo not apply
any cutoff so that all traffic is delivered to the application, and a single worker
thread is used. Pattern matching is performed using the Aho-Corasik string match-
ing algorithm [9]. We extracted 2,120 strings based on thecontent field of the
“web attack” rules from the official VRT Snort rule set [7], and use them as our
patterns. These strings resulted in 223,514 matches in our trace.

In this experiment We compare Scap with Snort and Libnids using the same
string matching algorithm and set of patterns in all three cases. To ensure afair
comparison, Snort is configured only with the Stream5 preprocessor enabled, which
performs transport-layer stream reassembly, using a separate Snort rule for each of
the 2,120 patterns, applied to all traffic, so that all tools end up using the same
automaton. The Scap and Libnids programs load the 2,120 patterns from a file,
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FIGURE 7.6: Performance comparison of pattern matching for Snort, Libnids, and
Scap, for varying traffic rates.

build the respective DFA, and start receiving streams. We use the same chunk size
of 16KB for all tools.

Figure7.6(a)shows the percentage of dropped packets for each application as
a function of the traffic rate. We see that Snort and Libnids process traffic rates
of up to 750 Mbit/s without dropping any packets, while Scap processes upto 1
Gbit/s traffic with no packet loss with one worker thread. The main reasons for
the improved performance of Scap are the improved cache locality when group-
ing multiple packets into their respective transport-layer streams, and the reduced
memory copies during stream reassembly.

Moreover, Scap drops significantly fewer packets than Snort and Libnids, e.g.,
at 6 Gbit/s it processes three times more traffic. This behavior has a positiveeffect
on the number of matches. As shown in Figure7.6(b), under the high load of 6
Gbit/s, Snort and Libnids match less than 10% of the patterns, while Scap matches
five times as many: 50.34%. Although the percentage of missed matches for Snort
and Libnids is proportional to the percentage of dropped packets, the accuracy of
the Scap application is affected less from high packet loss rates. This is because
Scap under overload tends to retain more packets towards the beginning ofeach
stream. As we use patterns from web attack signatures, they are usually found
within the first few bytes of HTTP requests or responses. Also, Scap tries to deliver
contiguous chunks, which improves the detection abilities compared to delivery of
chunks with random holes.
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FIGURE 7.7: L2 cache misses of pattern matching using Snort, Libnids, and Scap,
for varying traffic rates.

Favoring Recent and Short Streams

We turn our attention now to see how dropped packets affect the different stream
reassembly approaches followed by Scap, Libnids, and Snort. While Libnids and
Snort drop packets randomly under overload, Scap is able to (i) assign more mem-
ory to new or small streams, (ii) cut the long tails of large streams, and (iii) deliver
more streams intact when the available memory is limited. Moreover, the Scap
kernel module always receives and processes all important protocolpackets during
the TCP handshake. These packets may result in the creation of new streams, but
they do not carry data to be stored. In contrast, when a packet capturelibrary drops
these packets due to overload, the user-level stream reassembly librarywill not be
able to reassemble the respective streams, resulting in completely lost streams.In-
deed, Figure7.6(c)shows that the percentage of lost streams in Snort and Libnids
is proportional to the packet loss rate (shown in Figure7.6(a)). In contrast, Scap
loses significantly less streams than the corresponding packet loss ratio. Even for
81.2% packet loss at 6 Gbit/s, only 14% of the total streams are completely lost.

Locality

Let’s now turn our attention to see how different choices made by different tools
impact locality of reference and, in the end, determine application performance.
For the same pattern matching experiment, we also measure the number of L2
cache misses as a function of the traffic rate (Figure7.7), using the processor’s
performance counters [6].

We see that when the input traffic is about 0.25 Gbit/s, Snort experiencesabout
25 misses per packet, Libnids about 21, while Scap experienceshalf of them: just
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10.2 misses per packet. We have to underline that at this low traffic rate noneof
the three tools misses any packets, and we know that none of the tools is stressed,
so they all operate in their comfort zone. The reason that Lidnids and Snort have
twice as many cache misses as Scap can be traced to the better locality of reference
of the Scap approach. By reassembling packets into streams from the momentthey
arrive, packets are not copied around: consecutive segments arrive together, are
stored together, and are consumed together. On the contrary, Libnids and Snort
perform packet reassembly too late: the segments have been stored in (practically)
random locations all over the main memory.

Packet Delivery

To evaluate the packet delivery performance of Scap, we ran the same applica-
tion when Scap was configured with packet support, and pattern matching was
performed on the delivered packet payloads. The results are shown inFigure7.6
as well. We see that the performance of Scap remains the same when the pat-
tern matching application operates on each packet, i.e., the percentages of dropped
packets and lost streams do not change. We just observe a slight decrease in the
number of successful matches, which is due to missed matches for patterns span-
ning the payloads of multiple successive packets.

7.5.6 Cutoff Points: Discarding Less Interesting Packets Before It Is
Too Late

Several network monitoring applications need to receive only the initial partof each
data flow [24,86,107], usually because they do not have the computing capacity to
process the entire stream [107,109]. Other systems, such as Time Machine [89],
elevate the ability to store only the beginning of each flow into one of their fun-
damental properties. In this experiment, we set out to explore the effectiveness of
Libnids, Snort, and Scap when implementing cutoff points. For Snort, we mod-
ified Stream5 to discard packets from streams that exceed a given cutoff value.
Similarly, when the size of a stream reaches the cutoff value, Libnids stops the
collection of data for this stream. In Scap, we just call thescap set cutoff()
function in program’s preamble using the desirable cutoff. We also compareScap
with and without using FDIR filters, which are added dynamically to the NIC for
each stream when its cutoff is reached, to discard the rest of its packets at the card.
The applications search for the same set of patterns as in the previous experiment.

Figures7.8(a), 7.8(b), and 7.8(c) show the percentage of packet loss, CPU
utilization, and software interrupt load as a function of the cutoff for a fixed traffic
rate of 4 Gbit/s. Interestingly, even for a zero cutoff size, i.e., when all data of each
flow is discarded, both Snort and Libnids experience as much as 40% packet loss,
as shown in the left part of Figure7.8(a). This is because Snort and Libnids first
bringall packets to user space, and then discard the bytes they do not need. Indeed,
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FIGURE 7.8: Performance comparison of Snort, Libnids, and Scap, for varying
stream size cutoff values at 4 Gbit/s rate.

Figures7.8(b)and7.8(c)show that the total CPU utilization of Libnids and Snort
is always close to 100% at this traffic rate irrespectively of the cutoff point.

In contrast, for cutoff points smaller than 1MB, Scap has no packet loss and
very small CPU utilization. For instance, when Scap uses a 10KB cutoff, theCPU
load is reduced from 97% to just 21.9%, as 97.6% of the total traffic is efficiently
discarded. At the same time, 83.6% of the matches are still found, and no stream
is lost. This outcome demonstrates how the stream cutoff, when implemented ef-
ficiently, can improve performance by cutting the long tails of large flows, andal-
lows applications to keep monitoring the first bytes of each stream at high speeds.
When the cutoff point increases beyond 1MB, CPU utilization reaches saturation
and even Scap starts dropping packets. Enhancing Scap with hardwarefilters to
discard packets within the NIC reduces the software interrupt load, and thus re-
duces the packet loss for cutoff values larger than 1MB.

7.5.7 Stream Priorities: Less Interesting Packets Are The First Ones
To Go

To experimentally evaluate the effectiveness of Prioritized Packet Loss (PPL), we
ran the same pattern matching application using a single worker thread while set-
ting two priority classes. As an example, we set a higher priority to all streams with
source or destination port 80, which correspond to 8.4% of the total packets in our
trace. The rest of the streams have the same (low) priority. Figure7.9 shows the
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FIGURE 7.9: Packet loss for high- and low-priority streams, for varying traffic
rates.

percentage of dropped packets for high-priority and low-priority streams as a func-
tion of the traffic rate. When the traffic rate exceeds 1 Gbit/s, the single-threaded
pattern matching application cannot process all incoming traffic, resulting in afrac-
tion of dropped packets that increases with higher traffic rates. However, we see
that no high-priority packet is dropped for traffic rates up to 5.5 Gbit/s, while a
significant number of low-priority packets are dropped at these rates—up to 85.7%
at 5.5 Gbit/s. At the traffic rate of 6 Gbit/s, we see a small packet loss of 2.3% for
high-priority packets out of the total 81.5% of dropped packets.

7.5.8 Using Multiple CPU Cores

In all previous experiments the Scap application ran on a single thread, to allow
for a fair comparison with Snort and Libnids, which are single-threaded.However,
Scap is naturally parallel and can easily use a larger number of cores. Inthis
experiment, we explore how Scap scales with the number of cores. We use the
same pattern matching application as previously, without any cutoff, and configure
it to use from one up to eight worker threads. Our system has eight cores, and each
worker thread is pinned to one core.

Figure7.10(a)shows the packet loss rate as a function of the number of worker
threads, for three different traffic rates. When using a single thread,Scap processes
about 1 Gbit/s of traffic without packet loss. When using seven threads,Scap pro-
cesses all traffic at 4 Gbit/s with no packet loss. Figure7.10(b)shows the maximum
loss-free rate achieved by the application as a function of the number of threads.
We see that performance improves linearly with the number of threads, starting at
about 1 Gbit/s for one worker thread and going all the way to 5.5 Gbit/s for eight
threads.

The reason that we do not see a speedup of eight when using eight worker
threads is the following: even though we restrict the user application to run on a
limited number of cores, equal to the number of worker threads, the operating sys-
tem kernel runs always on all the available cores of the processor. Therefore, when
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FIGURE 7.10: Performance of an Scap pattern matching application for a varying
number of worker threads.

Scap creates less than eight worker threads, it is only the user-level application that
runs on these cores. The underlying operating system and Scap kernel module runs
on all cores.

7.6 Analysis

In this section, we analyze the performance of Prioritized Packet Loss (PPL) un-
der heavy load, aiming to explore at what point PPL should start droppinglow-
priority packets so that high priority ones do not have to be dropped. Forsim-
plicity lets assume that we have two priorities:low andhigh. We defineN to be
(memory size − base threshold)/2. If the used memory exceedsN , then PPL
will start dropping low priority packets. Given thatN is finite, we would like to
explore what is the probability thatN will fill up and we will have to drop high-
priority packets. To calculate this probability we need to make a few more assump-
tions. Assume that high-priority packet arrivals follow a Poisson distribution with
a rate ofλ, and that queued packets are consumed by the user level application. We
assume that the service times for packets follow an exponential distribution with
parameterµ. Then, the whole system can be modeled as anM/M/1/N queue.
The probability that all the memory will fill up is:

Pfull =
1− ρ

1− ρN+1
ρN (7.1)

whereρ = λ/µ. Due to the PASTA property of the Poisson processes, this is
exactly the probability of packet loss:Ploss = Pfull.

Figure7.11plots the packet loss probability for high-priority packets as a func-
tion of N . We see that a memory size of a few tens of packet slots are enough to
reduce the probability that a high-priority packet is lost to10−8. We note, however,
that the speed with which the probability is reduced depends onρ: the fraction of
the high-priority packets over all traffic which can be served by the full capacity of
the system. We see that whenρ is 0.1, that is, when only 10% of the packets are
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high-priority ones, then less than 10 slots are more than enough to guarantee that
there will be practically no packet loss. Whenρ is 0.5 (i.e., 50% of the traffic is
high-priority), then a little more than 20 packet slots are enough, while whenρ is
0.9, then about 150 packet slots are enough.

The analysis can be extended to more priority levels as well. Assume, for
example, that we have three priority levels:low, medium, andhigh, thatN =
(memory size− base threshold)/3, that medium-priority packet arrivals follow
a Poisson distribution with a rate ofλ1, and that high-priority packet arrivals follow
a Poisson distribution with a rate ofλ2. As previously, assume that the service
times for packets follow an exponential distribution with parameterµ. Then, the
system can be described as a Markov chain with2N nodes:
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The packet loss probability for high-priority packets is:

Ploss = ρN1 ρN2 p0 (7.2)

whereρ1 = (λ1 + λ2)/µ, ρ2 = λ2/µ, and

p0 = 1/(
1− ρN+1

1

1− ρ1
+ ρ

N/3
1

1− ρN+1
2

1− ρ2
)

The packet loss probability for medium-priority packets remains:

Ploss =
1− ρ1

1− ρ1N+1
ρ1

N (7.3)

Figure 7.12 plots the packet loss probability for high-priority and medium-
priority packets as a function of N. We assume thatρ1 = ρ2 = 0.3. We see
that a few tens of packet slots are enough to reduce the packet loss probability
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FIGURE 7.13: Categorization of network monitoring tools and systems that sup-
port commodity NICs.

for both high-priority and medium-priority packets to practically zero. Thus,we
believe that PPL provides an effective mechanism for preventing uncontrolled loss
of important packets in network monitoring systems.

7.7 Comparison With Other Capture Frameworks

There exists lots of related work in the area of traffic capture and analysis. To
place our work in context, Figure7.13categorizes Scap and related works along
two dimensions: the main abstraction provided to applications, i.e., packet, set of
packets, or stream, and the level at which this abstraction is implemented, i.e., user
or kernel level. Traditional systems such as Libpcap [92] use thepacketas basic
abstraction and are implemented in user level (bottom left of the figure). More
sophisticated systems such as netmap [123], FLAME [10], and PFRING [37] also
use the packet as basic abstraction, but are implemented with kernel modifica-
tions to deliver better performance (bottom right of the figure). MAPI [143] and
FFPF [19] use higher level abstractions such as theset of packets. Libnids and
Stream5 provide the transport-layerStreamas their basic abstraction, but operate
at user level and thus achieve poor performance and miss several opportunities of
efficiently implementing this abstraction (top left of the figure). We see Scap asthe
only system that provides a high-level abstraction, and at the same time implements
it at the appropriate level, enabling a wide range of performance optimizations and
features.
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7.8 Summary

In this chapter, we have identified a gap in network traffic monitoring: applica-
tions usually need to express their monitoring requirements at a high level, using
notions from the transport layer or even higher, while most monitoring tools still
operate at the network layer. To bridge this gap, we have presented the design,
implementation, and evaluation of Scap, a network monitoring framework that of-
fers an expressive API and significant performance improvements forapplications
that process traffic at the transport layer and beyond. Scap gives the stream abstrac-
tion a first-class status, and provides an OS subsystem for capturing transport-layer
streams while minimizing data copy operations by optimally placing network data
into stream-specific memory regions. It also offers a variety of features and perfor-
mance optimizations, by (i) discarding uninteresting traffic efficiently within the
kernel, (ii) reacting to overload conditions by dropping low priority traffic,(iii) uti-
lizing multi-core architectures for parallel stream processing, and (iv) improving
the memory locality and cache usage by grouping packets into steams. Using the
Scap API, the user-level applications are able to communicate their stream-oriented
needs directly to the underlying Scap kernel module.

The results of our experimental evaluation demonstrate that Scap is able to de-
liver all streams for rates up to 5.5 Gbit/s using a single core, two times higher
than the other existing approaches. An Scap-based application for patternmatch-
ing handles 33% higher traffic rates and processes three times more trafficat 6
Gbit/s than Snort and Libnids. Moreover, we observe that user-level implementa-
tions of per-flow cutoff just reduce the packet loss rate, while Scap’s kernel-level
implementation and subzero copy eliminate completely packet loss for stream cut-
off values of up to 1MB when performing pattern matching operations at 4 Gbit/s.
This outcome demonstrates that cutting the long tails of large flows can be ex-
tremely beneficial when traffic is discarded at early stages, i.e., within the kernel
or even better at the NIC, in order to spend the minimum possible number of CPU
cycles for uninteresting packets. When eight cores are used for parallel stream
processing, Scap is able to process 5.5 times higher traffic rates with no packet
loss.

As networks are getting increasingly faster and network monitoring applica-
tions are getting more sophisticated, we believe that approaches like Scap, which
enable aggressive optimizations at kernel-level or even at the NIC level,will be-
come increasingly more important in the future.



8
Other Applications

In this chapter we explore how we can use similar approaches to solve two other
problems related to network monitoring systems. First, we study the problem of en-
ergy efficiency in network monitoring systems, using NIDS as a case study.While
building an energy-efficient NIDS, we identify an energy-latency tradeoff: while
reducing the NIDS power consumption, the detection latency is significantly in-
creased. We also explain how the increased detection latency impedes the timely
reaction of a NIDS to the incoming attacks. To reduce the detection latency and
resolve this tradeoff, we identify the most important packets for fast detection and
we process them with higher priority.

In the second part of this chapter, we address the problem of long-termtraffic
recording using fixed-size storage. We propose the idea oftraffic aging, to keep
more traffic for recent time intervals and sample less traffic as it gets older. To
select representative samples of the stored packets, we explore different sampling
strategies such as random packet sampling, random flow sampling, and per-flow
cutoff, to store less packets from the beginning of each flow.

8.1 Low-Power and Low-Latency Network Monitoring

Low power consumption is one of the main design goals in today’s computer sys-
tems. Recently, much effort has been put into improving the energy efficiency in
a variety of areas like data centers [132], high performance computing [36], mo-
bile devices [112], and networks [63]. Towards this direction, we aim to build
an energy-efficient Network-level Intrusion Detection System (NIDS). NIDS are
commonly deployed to detect security violations, enhancing the secure operation
of modern computer networks. They perform computationally heavy operations

129



130 CHAPTER 8. OTHER APPLICATIONS

like pattern matching, regular expression matching, and other types of complex
analysis to detect at real time malicious activities in the monitored network. Thus,
NIDS usually utilize multicore systems [114] or cluster of servers [84,128,146] to
cope with increased link speeds and complicated analysis of network traffic.

Although NIDS are usually provisioned to operate at link rate, in order to be
able to handle a fully utilized network (at the worst case), most networks aretyp-
ically much less utilized than their maximum capacity. This results in increased
power consumption at low traffic load. To reduce the energy spent under low traf-
fic we aim at building a power-proportional NIDS using Dynamic Voltage andFre-
quency Scaling (DVFS) and sleep states (C-states), which can be foundin modern
processors. The system should consume the less power needed to sustain the in-
coming traffic load. We found that a NIDS consumes less power when it uses
the smallest number of cores that can operate at the lowest possible frequency to
process the network traffic, by keeping these cores nearly fully utilized.Our re-
sults indicate that this energy-efficient NIDS can process all packets withup to
23% lower power consumption than the original system at low rates. However, we
observe a significant increase on the detection latency due to higher packet pro-
cessing times when reducing the frequency, and mostly due to increased queuing
delays imposed by the high utilization.

A low detection latency is very important for a NIDS in order to ensure a timely
reaction to the attack. Upon the detection of a packet that carries an attack,the
NIDS can actively terminate the offending connection or install a new firewall rule.
This reaction should be immediate, before the attack packets reach the victim’s
machine and the attack succeeds. Therefore, our results indicate a new tradeoff
for NIDS: theenergy-latency tradeoff. Our key idea to resolve this tradeoff is to
identify the most important packets for attack detection and process them with
higher priority, resulting in low latency and fast detection. The rest packets are
processed with lower priority to achieve an overall low power consumption.

We explore two alternative approaches to reduce the latency of high-priority
packets:time sharingandspace sharing. In time sharing we use a typical priority
queue scheduling in each core. In space sharing the high-priority packets follow
a different path, using dedicated cores with much lower utilization to achieve low
latency. To implement space sharing we use features of modern network interface
cards (NIC) to move efficiently the processing of least-significant packets to cores
with higher utilization, a technique we call asflow migration. We experimentally
compare the two approaches and we find that space sharing has a better power-
latency ratio. This is because time sharing cannot efficiently reduce the queuing
delays during a high utilization.

Based on these approaches we propose LEoNIDS: a NIDS architecture that
resolves the energy-latency tradeoff. The implementation of LEoNIDS uses NIC
features, a specialized kernel module, a modified user-level library, and it is based
on the popular Snort NIDS [124]. LEoNIDS consumes less power, proportionally
to the traffic load, while its detection latency remains low and almost constant at
any traffic load.
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8.1.1 Towards a Power Proportional NIDS

We first explore the design space to build a power-proportional NIDS.

Experimental Environment

Our testbed consists of two machines interconnected with a 10 GbE switch. Both
machines are equipped with two six-core Intel Xeon E5-2620 processors with
15 MB L2 cache, 8 GB RAM, and an Intel 82599EB 10 GbE network interface.
The clock frequency of these processors can be scaled from 1.2 GHzto 2.0 GHz
using DVFS, which results in 9 available frequency steps (P-states). They also sup-
port Intel Turbo Boost technology to further increase their frequency up to 2.5 GHz.
To reduce power consumption, each idle core can be put independently into one of
the 3 available sleep states: C1, C3 or C6. We measure the power consumption
in the NIDS machine using the Watts up? PRO ES device, by sampling and stor-
ing the power at one second intervals. All our measurements run for significantly
higher time periods than one second.

The first machine is used for traffic generation. The generated traffic reaches
the second machine, which runs Snort IDS [124] v2.8.3.2 with official rule set [7]
containing 8308 rules. We use PFRING [55] v5.3.0 and ixgbe driver v3.7.17 to
split the incoming traffic to active cores using the Receive Side Scaling (RSS) [75]
feature of Intel 82599 NIC [74]. We set the size of the ring buffer that stores
packets at each core to 4096 slots. To change the frequency we use thecpufrequtils
package. Both machines run 64-bit Linux (kernel version 3.5.0).

We generate real traffic by replaying an one-hour long anonymized trace cap-
tured at the access link of an educational network. The trace contains 58,714,906
packets and 1,493,032 flows, totaling more than 40GB, 95.4% of which is TCP
traffic. For this trace Snort triggers 1851 alerts from 76 different rules. Most of the
matching rules are related to common threats and protocol violations. In orderto
strengthen our evaluation, we augmented the trace with 120 traces of real attacks
captured in the wild [117], adding 233 more alerts from 14 different rules.

Power Consumption

The system’s idle power consumption is 85.1 W, and when Snort fully utilizes all
cores it consumes 145.7 W. Thus, we estimate that the extra power from idle state
is consumed by the NIDS. As NIDS perform heavy computational operations, the
CPU consumes the larger portion of energy in the system. We measure the CPU
power consumption by accessing the RAPL (Running Average Power Limit) reg-
isters provided by each Intel Xeon E5-2620 CPU, which measure the totalenergy
consumed by each chip. Varying the traffic load results in different NIDSutiliza-
tions. In all NIDS utilizations, 58-62% of the total power is consumed by the two
CPUs.

Modern processors offer two ways to reduce power consumption: frequency
scaling (DVFS), and sleep states (C-states). Intel processors have asingle volt-
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Active cores Frequency Power consumption Detection latency
6 2.0 GHz 107.0 W 0.371 ms
8 1.5 GHz 104.2 W 0.856 ms
10 1.2 GHz 100.2 W 1.228 ms

TABLE 8.1: Using more cores at lower frequency consumes less power but results
in higher detection latency. (when processing 1.5 Gbit/sec).

age and frequency regulator, so the frequency changes uniformly atall cores of a
processor. However, each core can operate in a different C-state tosave energy.
The power consumption of each core consists of (i) active power consumed when
the core processes packets at the current frequency, (ii) power consumed to enter
a C-state, and (iii) power consumed during the idle state. We see that idle cores
consume less power when they are in C6 state, so we put inactive cores in this
state. There is an increased latency to wake up cores from C6 state, so weneed to
activate them few microseconds before this core will be necessary.

Based on the packet arrival rate, we aim to find the most energy-efficient strat-
egy for a NIDS by properly adapting the frequency and the number of active cores
(not in C-states). The two main questions are: (i) is it better to operate at lower fre-
quency or utilize sleep states? (ii) is it better to use more cores on lower frequency
or less cores at higher frequency?

To find the optimal strategy we measure Snort’s power consumption as a func-
tion of the CPU frequency and the number of active cores, when sendingtraffic at a
constant rate of 0.6 Gbit/sec. Figure8.1(a)shows that the lowest power consump-
tion is achieved when using 4 active cores at 1.2 GHz, which is the minimum setup
that is able to handle the 0.6 Gbit/sec traffic with no packet loss. In this setup we
see up to 21% reduced power consumption compared to 12 cores at the maximum
frequency.

We observe that the less power is consumed when the system operates at the
lowest possible frequency with no idle time, instead of running at higher frequen-
cies and entering C-states during idle periods. Moreover, we see that using more
cores at lower frequency is more energy efficient than using less cores at higher
frequencies. For instance, Table8.1shows three alternative setups that can be used
to process 1.5 Gbit/sec, as they offer approximately the same computing power:
6 cores at 2.0 GHz, 8 cores at 1.5 GHz, or 10 core at 1.2 GHz. We see that 10
cores at 1.2 GHz consume less power than the other cases. Figure8.1(c)shows the
average utilization of active cores. We see that power consumption decreases as
the core utilization increases and approaches 100%. This is because being idle is
not sufficiently efficient, i.e., the power consumed to enter and leave C-states and
during these idle periods is quite significant.
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FIGURE 8.1: Fewer cores and lower frequency reduce the power consumptionbut
increase the detection latency. Power consumption, detection latency, and core
utilization as a function of frequency and number of active cores when running
Snort and sending constant traffic at 0.6 Gbit/sec. We see that power consumption
decreases as the utilization of active cores approaches 100%. However, this results
in increased detection latency.

Adapt to the Traffic Load

Our results indicate that a power-proportional NIDS should utilize the smallest
number of cores that are able to sustain the incoming traffic without any packet
loss when they operate at the lowest possible frequency. Therefore,the system
should dynamically adapt to the traffic load by changing the frequency andactivat-
ing/deactivating cores. We observe that it is preferable to first activatecores of the
same CPU, which explains the larger distance in the power consumption between
6 and 8 cores in Figure8.1(a).

A NIDS is based on the underlying packet capturing system to receive packets
for processing. To tolerate processing spikes or short-term overloads, the packet
capturing system is able to store a limited number of packets in memory queues
(ring buffers). Modern NICs [74] offer multiple receive queues and are able to
distribute the packets among them to allow for efficient multicore processing [55].
Thus, a packet capturing system with multicore support uses a separate queue per
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FIGURE 8.2: A straight-forward power-proportional NIDS consumes less power
with higher detection latency. Power consumption and detection latency of a
straight-forward power-proportional NIDS versus the original NIDSas a function
of traffic rate.

core. When queues are getting full, the system has a strong indication of higher
load than it can handle with the current setup, so it needs to employ more cores
or increase the frequency. A straight-forward power-proportionalNIDS uses the
following strategy:

1. The system starts with a single active core at the minimum frequency.

2. It continuously monitors the queues’ usage.

2.1. If queues are filled by more than ahigh threshold:

2.1.1. If there are inactive cores, it wakes up one more core.

2.1.2. Else, it increases the frequency of all cores to the next step.

2.2. If queues are filled by less than alow threshold:

2.2.2. If lowest frequency is used, it deactivates one core.

2.2.2. Else, it decreases the frequency to the previous step.

We implemented this online adaptation algorithm within the packet capturing
subsystem, as a Linux kernel loadable module, and we ran Snort over this system
while varying the load. We sethigh thresholdto 90% andlow thresholdto 70%.
Figure 8.2 (bottom part) shows the power consumption of this straight-forward
energy-efficient NIDS as a function of the traffic rate, compared to the original
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FIGURE 8.3: The energy-latency tradeoff. Detection latency as a function of power
consumption when sending 0.6 Gbit/sec traffic. We see that detection latency in-
creases significantly as power consumption is reduced.

system. We see that the vanilla system consumes 24% less power when processing
0.2 Gbit/sec, compared with the power consumption at 3 Gbit/sec. Contrary, the
power-proportional NIDS adapts much better to the load reducing the power con-
sumption by 39% when processing 0.2 Gbit/sec. In low rates, it consumes up to
23% less power than the original Snort.

8.1.2 The Energy-Latency Tradeoff in NIDS

Although a power-proportional NIDS is able to handle the same traffic as theorig-
inal system with lower energy consumption, we would like to explore the impact
of this approach on the detection latency.

Detection Latency

We instrumented Snort to measure the attack detection latency, by subtracting from
the time that an alert is triggered the timestamp of the packet that contains the
attack. The packet’s timestamp is set within the packet capturing module before
the packet is queued. Figure8.1(b)shows the detection latency as a function of
frequency and number of active cores for 0.6 Gbit/sec traffic. We see alinear
increase when frequency is reduced up to 1.6 GHz and up to 8 cores areused,
but we see an exponential increase to the detection latency when core utilization
exceeds 70%. To better see the relation between power consumption and detection
latency we replot these data in Figure8.3. We see a clear tradeoff: to achieve
power consumption lower than 100 W, the detection latency should be increased
2–7 times.
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Table8.1 leads us to the same outcome: although using 10 cores at 1.2 GHz
consumes the less power, it comes at a price of significantly increased latency.
Figure8.2(upper part) shows the detection latency of a power-proportional NIDS,
compared to the original system. We see that although it consumes less power, it
has a significantly higher detection latency at all rates. This is because this system
selects the frequency and number of cores that lead to high utilization, closeto
100%, in order to save energy. As a consequence, the detection latencyremains
always high.

Deconstructing Detection Latency

We define detection latency as the time passed from the arrival of the last packet
that contains the attack till the alert generation in the NIDS. Thus, the detection
latency is equal to the latency imposed per each attack packet, from the capturing
time till it finished processing. The packet latency can be divided in three parts:
(i) interrupt handling time, i.e., the time spent for packet handling in OS kernel,
(ii) queuing delay, i.e., the time that packet waits in a queue to be delivered for
processing, and (iii)processing timeby the NIDS at user level. We see that the
interrupt handling time per packet is negligible compared to queuing delay and
NIDS processing time. Thus, the increased detection latency may occur dueto
higher processing times when reducing the frequency or due to higher queuing
delays imposed by the increased utilization.

To explore why detection latency is increased, we measure how much each part
contribute to the detection latency as we vary the offered traffic rate for different
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frequencies. We instrumented Snort to measure (i) the queuing delay per packet, by
subtracting the packet’s timestamp from the time that packet is received in Snort for
processing, and the packet’s processing time in Snort. Figure8.4shows the average
processing time and queuing delay per each attack packet for traffic rates ranging
from 0.5 Gbit/sec to 1.5 Gbit/sec, when using 12 cores in 1.2 GHz, 1.8 GHz, and
2.3 GHz. In low frequency and high rates, when the system is more utilized, queu-
ing delay is the main factor of the increased detection latency. For instance, when
processing 1.5 Gbit/sec at 1.2 GHz, queuing delay is 7 times higher than process-
ing time. This is because the higher utilization results in a large number of packets
waiting at each queue and thus in an exponentially higher queuing delay. Incon-
trast, processing time increases linearly as we decrease frequency.

8.1.3 Solving the Energy-Latency Tradeoff in NIDS

We aim to solve the energy-latency tradeoff using domain-specific knowledge on
NIDS. This will enable us to build a NIDS with both low power consumptionand
low detection latency. The key idea of our approach is based on the fact that there
is a small percentage of packets with significantly higher probability to contain an
attack. These are the first few packets of each connection. Then we propose two
alternative approaches to process these packets with low latency, while consuming
less power proportional to the workload.

Identify the Most Important Packets for Detection Latency

One way to address the energy-latency tradeoff in NIDS would be to keepthe
utilization of active cores within a specific range, so to keep power consumption
and detection latency lower than the respective thresholds. However, in this way a
NIDS cannot achieve the lowest possible power consumption, while detection la-
tency may also be much higher. To efficiently resolve the tradeoff, we use domain-
specific knowledge about NIDS: we capitalize on the fact that not all packets have
the same probability to carry an attack. By identifying the most interesting packets,
a NIDS is able to process them with higher priority to achieve fast detection, while
efficiently reducing the power consumption at each traffic load at the same time.

A key abstraction we use to identify the most important packets for attack de-
tection is the networkflow: a flow is defined as the set of packets belonging to
the same one-way connection, i.e., packets with same protocol, source and desti-
nation IP addresses and port numbers (5-tuple). Previous works have shown that
most attacks are found among the first few bytes of each flow [86,89,107]. This
is because many types of threats like port scanning, service probes andOS fin-
gerprinting, code-injection attacks, and brute force login attempts, requirea new
connection for each attempt, and the attack vector is found in the first few bytes of
the flow. In contrast, very large streams usually correspond to file transfers, VoIP
communication, or streaming media applications, which typically are not related to
security threats. Due to the heavy-tailed flow size distribution in the Internel [53],
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Attack category Labeled attacks Background traffic attacks
Web attacks 14 635

Specific threats 15 282
IMAP & SMTP 1 172
NetBIOS & RPC 200 236
Attack responses 0 213
SQL & MySQL 0 188

Other (spyware, backdoor, misc) 3 125

TABLE 8.2: Classification of the attacks detected in our trace.

the first bytes of each flow correspond to a very small percentage of thetotal traffic.
Thus, processing the respective packets with higher priority and lower latency will
result in faster detection for most attacks.

To validate and analyze our choice for high-priority packets in a NIDS, wemea-
sure the position of each attack within its flow, for attacks detected while running
Snort with our trace. As we explained in Section8.1.1, we injected 233 real attacks
into the trace (labeled attacks), while the background traffic contains 1851more at-
tacks. Most of these attacks are related to popular threats and protocol violations.
Table8.2presents a classification of these attacks based on Snort’s ruleset [7].

Figure8.5shows the CDF of the detected attacks’ position within their flows.
We see that 50% of the attacks are found within the first 2 KB of a flow, while 90%
of the attacks are detected in the first 30 KB of their flows. Only 2% of the attacks
are found beyond the first 200 KB. We observed that the labeled attacks, which we
consider more important as they correspond to real attacks and have been validated
as true positives, are always detected within the first 5 KB of their flows. We found
that the small percentage of attacks detected beyond 100 KB of a flow correspond
to less significant threats and are usually triggered by threshold-based rules. Thus,
the first few bytes of each flow have a much higher probability to actually contain
an attack. We can separate the respective packets by applying a cutoff value to the
flow size. Then we classify as high priority the packets until this cutoff.

Figure8.5 also presents the CDF of the fraction of traffic that is located in a
flow before the corresponding position on the x-axis. This fraction is the percentage
of high-priority traffic as a function of the cutoff applied. For instance, 10% of the
total traffic is found in the first 500 KB of the flows. This means that a cutoffvalue
of 500 KB per flow will classify 10% of the total traffic as high-priority, and99%
of the attacks can be detected on this high-priority traffic.

Tolerating Evasion Attempts

An attacker could try to exploit the flow cutoff mechanism used for priority assign-
ment in order to increase detection latency and impede a timely reaction. Thus,
we aim to protect LEoNIDS against such attacks. One way to exploit the cutoff
mechanism would be to overburden the system with high-priority packets, e.g., by
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is a small fraction of the total traffic. CDF of attack’s position at each flow and
fraction of traffic per each position.

sending a large number of small flows. However, as we explain in the following
sections, LEoNIDS properly adapts to the traffic load by increasing frequency and
active cores so that the latency of high-priority packets remains always low. In the
worst case, e.g., a fully utilized system only with high-priority packets, LEoNIDS
will approach the behavior of the original system: it may spend the maximum
available power to keep latency of high-priority packets low.

Another way for an attacker to exploit our cutoff-based approach would be to
push the attack into low-priority packets, resulting in higher detection latency.To
address this attack, we take a number of countermeasures. We define flowcutoff
in bytes, not in packets, so an attacker cannot exceed it by sending smallpackets.
To handle persistent connections, like HTTP keep-alive connections, we reset flow
size to zero for each new request or response. Finally, we use a lowerlimit for the
flow cutoff value. This is because most protocol implementations have a maximum
protocol message (request/response) and headers size, and may close connections
exceeding the size. Thus, putting the attack beyond this size is not always possible.

For instance, many attacks are detected at the HTTP protocol, usually based on
a signature matching in URI or request headers. Although attackers can send an
arbitrary large URI to exceed cutoff, e.g., by adding KBs of space characters before
URI, which are stripped by servers, or by adding dummy parameters with large val-
ues, all Web servers have amaximum URI sizeconfiguration option. Similarly, the
have amaximum request sizeoption). When a URI exceeds this limit, anHTTP/1.1
414 Request-URI Too Largeerror is returned, and request is not processed. Hence,
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the actual attack cannot succeed. Similarly, when themaximum request sizelimit
is exceeded, servers respond withHTTP/1.1 400 Bad Request (Header
Field Too Long).

In most Web servers, the default maximum URI size is 8 KB. Thus, using
a cutoff larger than 8 KB ensures the timely detection of allsuccessfulattacks
against servers using this limit. To find out how many of the popular Web servers
use this default limit, we sent a request with URI slightly larger than 8 KB to the
top-100 Web sites based on the ranking ofalexa.com. The 98 of them responded
with anHTTP/1.1 414 Request-URI Too Large error, while only two
of them accepted the request. When sending requests with 100 KB long URI, all
the top-100 Web sites responded with error. Similarly, other protocols (e.g.,IMAP,
SMTP, NetBIOS) have also a maximum message size. Even if it is equal to few
MBs, the fraction of high-priority traffic remains low. Another reason for setting
a lower limit for cutoff value is that 49% of the Snort rules in our ruleset usethe
depthkeyword: these rules require a pattern to be detected in a specific distance
from the beginning of a packet or flow.

Priority Enforcement

Since we have identified the most important packets for fast detection, we need to
ensure a low latency for these packets when the system enters into a powersaving
mode and active cores’ utilization increases. We propose two alternative techniques
to ensure low latency for the high-priority packets:time sharingandspace sharing.

Time Sharing

Time sharing uses a typical priority queue scheduling to favor the high-priority
packets. It first classifies packets into flows and then uses a flow cutoffto assign
them a low or high priority. Then, packets are stored into the respective priority
queue. When a new packet is scheduled for processing, the NIDS choose the next
packet from the high-priority queue. If this queue is empty, a low-priority packet
is chosen. However, this priority queue scheduling is non preemptive: when a
high-priority packet arrives and a low-priority packet is being processed, the NIDS
cannot evict the low-priority packet to serve immediately the high-priority packet.
Time sharing follows the same strategy described at section8.1.1 to adapt fre-
quency and number of cores.

Space Sharing

In time sharing, the cores of the energy-efficient NIDS remain almost fully utilized.
This may cause reduced performance due to the non-preemptive priority queue
scheduling. In space sharing, we use separate cores for each priority. We aim to
keep cores that serve high-priority packets less utilized, to ensure low latency. In
contrast, cores serving low-priority packets can remain highly utilized to allowfor
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reduced power consumption. The increased latency for low-priority packets is less
likely to affect the overall detection latency. As the majority of the packets have
low priority (see Figure8.5), most cores can be used to serve low-priority packets
with high utilization that is necessary to achieve significant energy savings.

In order to reduce even more the detection latency, we would like to increase
the frequency of the dedicated cores used to serve high-priority packets. However,
the single per chip regulator in out Intel processors limits significantly our ability
to change the frequency of high priority cores independently of low priority cores.
Fortunately, our analysis in section8.1.2shows that core utilization is the main
factor of an increased detection latency. Thus, just reducing the utilizationcould
be enough to achieve our low latency goal even with a lower frequency, which is
necessary for low priority cores to reduce their power consumption.

Space sharing is based on two main ideas:flow migrationandadaptive core
management.

Flow migration. The flow migration technique, assisted by advanced features
of modern NICs, is used to distribute efficiently the packets into cores basedon
their priority. Initially, all packets arrive at the high-priority cores. Then, packets
are classified into flows. When a flow size exceeds the specified cutoff value, the
flow is moved into a low-priority core by instructing the NIC to schedule all the
successive packets of this flow into this core. Thus, only the high-prioritypackets
remain for processing into the high-priority cores. The low-priority packets are
moved to the rest cores using the flow migration technique.

Adaptive core management.Space sharing dynamically partitions the active
cores into high-priority and low-priority cores, based on the workload. It uses the
optimum number of high-priority cores that keep their utilization within a desirable
range. Using more cores than necessary may increase power consumption, while
less cores may increase detection latency. Therefore, we propose the following
adaptive core management algorithm, which extends the core/frequency adaptive
algorithm we presented in Section8.1.1:

1. The system starts with one high-priority and one low-priority core.

2. It continuously monitors the queues’ usage.

2.1. If high-priority queues are filled by more than ahigh-priority up thresh-
old:

2.1.1. If exist inactive cores, activate a high-priority core.

2.1.2. Else increase the frequency.

2.1.3. If maximum frequency is used, reduce flow cutoff until it reaches
a certain limit.

2.2. If high-priority queues are filled by less than ahigh-priority down thresh-
old:

2.2.3. Increase cutoff up to a certain limit.
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2.2.1. Else reduce the frequency.

2.2.2. If lowest frequency is used, deactivate a high-priority core.

2.3. If low-priority queues are filled by more than alow-priority up thresh-
old:

2.3.1. If exist inactive cores, activate a low-priority core.

2.3.2. If all cores are used, increase the frequency.

2.4. If low-priority queues are filled by less than alow-priority down thresh-
old:

2.4.1. Reduce the frequency.

2.4.2. If lowest frequency is used, deactivate a low-priority core.

Thehigh-priority up thresholdensures a low utilization for high-priority pack-
ets. Thelow-priority up thresholdensures that no packet will be lost. We can
also control the load of high- and low- priority cores by changing the cutoff value,
which divides the traffic into high- and low-priority packets. However, decreasing
the flow cutoff is not always a good choice, as the probability that an attackoccurs
in a low-priority packet increases. Thus, we keep the cutoff always within a certain
range.

8.1.4 Implementation

Based on the two alternative approaches we implemented LEoNIDS: a NIDS ar-
chitecture that offers both low power consumption, proportionally to the load, and
low detection latency. Figure8.6illustrates the architecture of LEoNIDS with time
sharing and space sharing. Our implementation utilizes advanced features of mod-
ern NICs, and it is based on a specialized kernel module that modifies the packet
capturing subsystem. Moreover, it includes a modified user-level packet capturing
library and slight modifications to Snort NIDS [124].

We implemented the online frequency adaptation and core management algo-
rithm within the packet capturing subsystem as a Linux kernel loadable module.
Both time sharing and space sharing are implemented within this module. The
module runs as a protocol handler and processes all captured packets. It monitors
the packet queues per each core and properly adapts the number of active cores and
the CPU frequency. This module is also responsible to store packets in the proper
queues and impose a scheduling or load balancing policy. The packets aredis-
tributed among the available cores either with the RSS hash-based load balancing
scheme [75] or with a dynamic load balancing scheme using the flow director fil-
ters (FDIR), which are used to define the core that will serve each flow.We deliver
packets at user-level through memory mapped buffers, and we built a libpcap [92]
wrapper library. Then, we link Snort with this user-level library, insteadof the
original libpcap.
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FIGURE 8.6: The LEoNIDS architecture with time sharing and space sharing.

Time Sharing

In time sharing we extend the ring buffers of the packet capturing system using a
typical priority queue scheme. The incoming packets are classified into flowsand
are assigned a low or high priority. Based on its priority, each packet is stored in the
proper queue. The modified user level library reads the next packet from the high
priority queue, and only if it is empty, from the low priority queue. This packet is
then delivered to Snort for processing.

Space Sharing

In space sharing we use dedicated cores to process the high-priority packets with
reduced latency. We aim to keep the utilization of these cores between 30%–50%,
which results in low queuing delays as we see in Sections8.1.2and??. Based
on the queue utilization we properly adapt flow cutoff, number of high-priority
cores, and frequency. The RSS uses a redirection table to distribute the incoming
packets to the available cores. To implement space sharing, we first modify the
redirection table so that RSS splits all packets only to high-priority cores. Then,
these cores classify packets into flows. When a flow exceeds the cutoff size, an
FDIR filter is added to the NIC in order to move the processing of this flow to
a low-priority core (flow migration). The low-priority core is chosen in a round-
robin fashion. Each flow that exceeds the cutoff value moves from one core to
another only once, so the cache locality is not significantly affected. Usingthe
FDIR filters for flow migration is highly efficient and improves cache performance,
as each core accesses only its local data. We keep a list with all filters that are
installed at the NIC, so when a flow expires (either explicitly by a TCP RST/FIN
packet, or by an inactivity timeout) the respective FDIR filter is removed by the
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FIGURE 8.7: The optimal cutoff for time sharing and space sharing. Detection
latency as a function of cutoff. In both time sharing and space sharing we see the
lowest detection latency for 500 KB per flow.

NIC. The intel 82599 NIC [74] offers up to 8K perfect match and 32K signature-
based FDIR filters. In case all filters are used, space sharing evicts theoldest filter
to accommodate a new flow.

8.1.5 Experimental Evaluation

Comparing Time Sharing with Space Sharing

Finding the optimal cutoff. Using a small cutoff reduces the percentage of high-
priority packets, and thus their queue utilization and queuing delays. However, the
probability that an attack will be found in low-priority packets, which experience
a higher delay, increases. To find out the optimal cutoff for time sharing and space
sharing, we vary the cutoff values from 50 KB to 150 MB per flow while send-
ing constant traffic at 1.0 Gbit/sec. Figure8.7 shows that the optimal cutoff for
both approaches is close to 500 KB. Using this cutoff, 99% of the attacks reside
into the high-priority packets. For lower cutoff values, more attacks are found in
low-priority packets with increased detection latency, while higher cutoff values
increase the queuing delay of high-priority packets. We also see that space sharing
achieves a lower detection latency for all cutoff values below 20 MB, up to 50%
lower (for 50 KB cutoff) and 35% lower for the optimal cutoff of 500 KB per flow.

The effect of priority on latency. To better understand the detection latency
we observed, we explore how the packet’s latency (queuing plus processing time)
changes for each priority with different cutoff values. Figure8.8shows the latency
of high- and low-priority packets for time and space sharing as a function of cutoff
when sending at 1.0 Gbit/sec. In time sharing, we see that low-priority packets
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(b) Space sharing

FIGURE 8.8: Low-priority packets in time sharing experience a much higher la-
tency that high-priority packets. Latency of high- and low-priority packets for time
sharing and space sharing as a function of cutoff when sending at 1.0 Gbit/sec. We
see that both high-priority and (especially) low-priority packets experience lower
latency in space sharing comparing with time sharing.

experience up to 49.3 times higher latency than high-priority packets. As cutoff
increases, we see a slight increase on the latency of high-priority packets due to the
larger number of packets arriving at high-priority queues. Contrary,the latency of
low-priority packets significantly decreases until cutoff reaches 750 KB, because
the fraction of low-priority packets decreases, resulting in much less utilization in
low-priority queues. When cutoff increases above 750 KB, the latency of low-
priority packets increases fast. This is because they the low-priority packets wait
for an increasing number of high-priority packets to be processed.

In space sharing, we see a much lower difference between the latency oflow-
and high-priority packets. Note that both low- and high-priority packets experience
lower latency compared to time sharing. Especially the latency of low-priority
packets is significantly lower and clearly decreases as cutoff increases. This is
because low- and high-priority packets are processed in parallel in different cores,
and the fraction of low-priority packets decrease with higher cutoff values. The
latency of high-priority packets is also reduced, as space sharing is ableto keep
high-priority cores less utilized. As the fraction of high-priority packets increase
with cutoff, we see a slight increase on their latency for higher cutoff values. The
increased latency in high-priority packets for very small cutoff values is due to the
overhead of the very often FDIR establishments.

Comparing All Approaches

Varying the load. We now compare all approaches, i.e.,(i) the original Snort,
(ii) the straight-forward power-proportional NIDS we described in section8.1.1,
(iii) LEoNIDS with time sharing, and(iv) LEoNIDS with space sharing, in terms
of both detection latency and energy efficiency when varying the traffic load. In
time sharing we use a 500 KB cutoff, which was found to perform better. Inspace
sharing we use an adaptive cutoff that ranges from 300 KB to 1 MB, i.e., close to
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FIGURE 8.9: Space sharing offers the best power-latency ratio. Power consump-
tion and detection latency of all approaches as a function of traffic rate. We see
that LEoNIDS with space sharing consumes the same power with other power-
proportional approaches, but with significantly lower detection latency. Compared
to the original system, space sharing consumes 23% less power and achieves lower
detection latency for traffic rates higher than 2.5 Gbit/sec.

the optimal values. Figure8.9shows the power consumption and detection latency
of all approaches as a function of traffic rate. We see that LEoNIDS withboth
approaches consumes approximately the same power as the power-proportional
NIDS, significantly lower than the consumption of the original Snort. Despite the
lower consumption, LEoNIDS achieves a significantly lower detection latencythan
the power-proportional NIDS, close to the latency of the original system.

Space sharing performs quite better than time sharing: although both consume
approximately the same power, space sharing achieves more than 40% lowerdetec-
tion latency. This is due to the non-preemptive priority queues used in time sharing:
a high-priority packet may wait for a low-priority packet that is being processed.
Moreover, the overall utilization of active cores in time sharing remain very high,
so it cannot efficiently reduce the queuing delays of high-priority packets.

Overall, LEoNIDS with space sharing consumes 22% less power than the orig-
inal system and it is able to detect attacks with an order of magnitude lower la-
tency than the straight-forward power-proportional NIDS. Moreover, space sharing
achieves a lower detection latency than the original system for rates higherthan 2.5
Gbit/sec. This is due to the higher priority given at the beginning of each flow.As
the original system does not give priority to these packets, it experiences higher de-
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FIGURE 8.10: Space sharing performs better under realistic traffic variations.
Traffic rate, power consumption, and detection latency over time.

tection latency compared to both time and space sharing at high traffic rates where
all approaches result in an almost fully utilized system.

Realistic traffic variations. In our next experiment we compare all approaches
in a realistic scenario of traffic variations. We replayed our one-hour long trace at
its original rate using a 30x multiplier, resulting in an 120-seconds long experiment.
Figure8.10shows the traffic rate, power consumption, and detection latency of all
approaches over time. We see that again LEoNIDS with space sharing achieves the
lowest detection latency among the other power-proportional approaches.

Active response.In our last experiment we examine how the detection latency
of each approach affects the effectiveness of a NIDS reaction to actively terminate
offending TCP connections. We configured Snort withflexresp2plugin for active
response, and we added a rule to match a specific string and respond with reset to
both source and destination hosts of the matched flow. While sending background
traffic at 1.0 Gbit/sec, we were also sending connections with packets matching
this string. We sent a constant number of packets per connection, while varying
its duration. Figure8.11shows the percentage of successfully closed connections
by active response when sending 100 such connections, as a functionof connec-
tion’s duration. We see that the straight-forward power-proportional NIDS cannot
respond in time and close connections shorter than 6 ms with more than 50% prob-
ability. Contrary, LEoNIDS is able to terminate most connections lasting more
than 3 ms, similar to the original Snort.
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FIGURE 8.11: LEoNIDS close most offending connections longer than 3 ms. Per-
centage of closed connections using active response as a function of connection’s
duration.

8.1.6 Summary

In this work we studied the problem of improving the energy efficiency of a NIDS
using common power management capabilities like DVFS and C-states. As NIDSs
are usually overprovisioned to operate at the maximum link capacity, while these
links are usually much less utilized, there are significant opportunities to reduce
power consumption. However, while building a power-proportional NIDS, we
identified an energy-latency tradeoff: the reduced power consumption results in
a significant increase on the detection latency, which impedes a timely automatic
reaction of the NIDS to the incoming attacks. By analyzing the detection latency
we showed that the main reason for this increase is the high queuing delays im-
posed by the high core utilization.

We presented the design, implementation, and evaluation of LEoNIDS: a NIDS
that resolves the energy-latency tradeoff. The key idea of LEoNIDS isto process
with higher priority the first few bytes of each flow, which have a higher probability
to carry an attack, to achieve low latency and fast detection. Then, we proposed two
alternative techniques: time sharing and space sharing. Time sharing usesa typical
priority queue scheduling, while space sharing uses dedicated cores withlower
utilization to process high-priority packets. Our experimental evaluation shows
that LEoNIDS performs better with space sharing than with time sharing. Overall,
LEoNIDS with space sharing consumes significantly less power, proportionally to
the load, and constantly low attack detection latency at the same time.
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8.2 Long-Term Network Traffic Recording

Live traffic monitoring systems capture and process packets in real time. Regard-
less of the particular use, captured packets are usually discarded onceprocessed.
However,recording the raw network traffic to disk for long-term periods can be
very useful for a multitude of applications, such as troubleshooting network prob-
lems and measuring traffic trends or observing the historical evolution of thetraf-
fic. Moreover, while the Internet evolves over the years, new applications and more
security breaches appear. Thus, long-term recording of Internet traffic can signifi-
cantly contribute to better analyze and understand the Internet evolution.

Network traffic recording is also critical for many security purposes. Anomaly
detection techniques require a long-term baseline of past traffic to build profiles for
normal traffic and users. Postmortem forensics analysis is also based onpast traffic
to identify malicious activities that happened before the time that an attack is de-
tected. For instance, looking back in time can help us to identify how the attackers
compromised a system, what they did, and find out which data have been exposed
to them. Moreover, lawful interception and data retention have been enforced re-
cently by many national regulations to enrich crime evidence by reconstructing
past VoIP calls or other kinds of network-based communications.

When new vulnerabilities and attack signatures for Network Intrusion Detec-
tion Systems (NIDS) are released, long-term recording of network traffic allows
to identify past attacks and compromised systems that otherwise would go unde-
tected. Also, it is common practice to test new NIDS signatures using past traffic
to eliminate false positives. NIDS and other passive monitoring applications are
trained, tuned, and properly configured based on recorded traffic from the network
in which they will be deployed. Packet traces are also commonly used for bench-
marking network monitoring applications and can be replayed in different rates
using tools liketcpreplay [145].

Unfortunately, recording all traffic in high volume networks is impossible even
for short-term periods, due to the high storage needs. For instance, a network with
300 Mbit/sec average load requires about 3.2 TB of storage for recording one day’s
traffic. Thus, the limited storage resources of a commodity PC allow for storing
hours or maybe a few days of traffic in the best case. However, recording the
network traffic for long-term periods using a reasonable amount of storage would
be extremely beneficial for all applications mentioned above.

Storing only the first few bytes from each packet, which typically corresponds
to protocol headers, can reduce the required storage and increase data retention [96].
However, monitoring applications that need to inspect both the headers andthe pay-
load of the packets, a process widely known asdeep packet inspection[60], cannot
operate with header-only traces. Two traditional approaches for data reduction are
aggregation and sampling. Aggregation is effective when the traffic’s features of
interest are known in advance, while sampling techniques select a representative
group of packets uniformly over time. The sampling rate is an important parameter
for the accuracy on inferring various network metrics. Higher sampling rates result
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to better accuracy but require more storage space, and thus retention is reduced
when using fixed-size storage. On the other hand, lower sampling rates increase
data retention but inevitably reduce the accuracy of many applications.

In this chapter we presentRRDtrace, a technique for storing packets for long-
term periods in fixed-size storage, inspired by the popular RRDtool [104]. We
choose to store full-payload packet traces, which provide a rich source of infor-
mation suitable for all kinds of analyses, from coarse-grained measurements of
network properties to fine-grained operations like deep packet inspection. RRD-
tracedivides time into intervals and retains more detail for more recent intervals,
i.e, allocates more storage to recent time intervals and less storage to older time in-
tervals. Also, older time intervals become longer than more recent ones. RRDtrace
is based on anagingmechanism that dynamically reduces the space occupied by
the data of a time interval as it ages, by keeping only a subset of the packetsof that
interval using sampling. Thus, as a time interval gets older, the sampling rate for
storing its data decreases.

Many sampling techniques have been extensively studied for applications like
traffic accounting, billing, and measurements like heavy-hitters identification and
flow size estimation. However, the applicability of sampling techniques in other
passive monitoring applications like traffic classification and intrusion detection
has not received the same attention. Our study attempts to answer the following
questions:

• Which sampling strategies should be used to select a useful subset of packets
when reducing the storage space that will allow us to infer as many as pos-
sible desirable properties from the trace? Which strategies are suitable for
which properties?

• How much back in time can we go, i.e., what is the lowest sampling rate that
still allows us to infer desirable properties from an RRDtrace with accept-
able accuracy?

To answer these questions, we evaluate the impact of three different sampling
strategies by decreasing sampling rates on inferring desirable network properties
using a large trace of real traffic. Our results indicate that RRDtrace using flow
sampling can accurately estimate flow size distribution and distribution of flows
among applications regardless of the sampling rate. Average flow size and percent-
age of traffic per application are estimated more accurately in recent time intervals.
For estimating the percentage of malicious hosts and flows, reduction of traffic
volume using a per-flow cutoff provides the more accurate estimates for recent
intervals. Random packet sampling performs well only for few of the examined
properties. Compared to a constant sampling rate strategy, RRDtrace can store
traffic for arbitrary long time periods and offers higher accuracy for more recent
traffic.
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FIGURE 8.12: Storage allocation in RRDtrace for S=2 TB.

8.2.1 Our Approach: RRDtrace

Our approach, calledRRDtrace, is inspired from the properties found in round
robin databases. It aims to store full-payload packets for long-term periods in
fixed-size storage. RRDtrace divides the time into unequal intervals and retains
more packets from recent intervals, while keeping smaller subsets of packets from
older intervals. Older time intervals are longer and utilize less storage. Recent time
intervals are smaller with more storage assigned. The duration of time intervals and
how the available storage is assigned to them can be defined either by the users,
according to the network in which RRDtrace will be deployed, or automatically by
RRDtrace.

A typical example of storage allocation in RRDtrace is shown in Figure8.12.
We assume that the available storage for RRDtrace isS = 2 TB. We select the
initial time intervalt0 to be one day and we assign the half storage (1 TB) to it.
The next time intervalt1 is twice as large ast0 with the half storage oft0, i.e., t1
is two days long with 500 GB storage. Thus, int1 (days 2–3), 1 out of 4 packets
that were initially stored is selected to remain in the trace. Each subsequent time
interval is two times larger and has half the storage than its preceding one.

In this storage allocation algorithm different initial time intervalst0 can be
defined, occupying the half of the available storage. All the next intervalsare
formed based ont0 and available storageS. In case that the traffic volume int0 is
less thanS/2, all packets in this interval can be stored. Else, packet sampling is
imposed from the first time interval. An other option is to let RRDtrace to select
the first intervalt0 in a way that all the packets during this interval are stored in the
corresponding storage (with no sampling). Then,t0 will be the time interval with
traffic volume equal toS/2. This approach works well when the traffic volume in
t0 intervals does not vary significantly.

When at0 period passes, anagingdaemon is responsible to appropriately re-
duce the storage used in each time interval. For instance, the number of packets
stored during the lastt0 will be reduced by 25%, and similarly with the next inter-
vals in order to conform with the storage allocation scheme described above. The
aging daemon reduces the storage capacity in each interval by selecting a repre-
sentative group of packets with the appropriate sampling rate. The packetselection
strategy is an important parameter for the usefulness of RRDtrace.
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We suggest the use of sampling instead of aggregation for two reasons. First,
data is retained in the same format, which is very convenient for analysis andpro-
cessing by existing applications. Moreover, aggregation requires knowledge of the
traffic’s features of interest in advance, whereas sampling allows the retention of
arbitrary detail while at the same time reducing data volumes.

Sampling Strategies

Since RRDtrace may be used by multiple applications, different sampling strate-
gies may be suitable for different applications. We have implemented three sam-
pling strategies to evaluate their effectiveness using several monitoring applica-
tions. Each sampling strategy defines the way thatk packets should be selected out
of the totalN packets in a time interval (sampling rates = k/N ), to respectively
reduce the storage. We consider that a sampling rate has a similar effect in packets
and storage reduction.

Packet Sampling The simplest strategy to selectk out ofN packets is systematic
count-based sampling, i.e., selecting one everyN/k packets. However, systematic
sampling is vulnerable to bias errors due to synchronisation with periodic patterns
in the traffic and can be predicted.

Random packet sampling avoids the potential problems of systematic sam-
pling. We choose to implement stratified random sampling. In this technique,
theN packets are divided tok equal groups (with size ofN/k packets) and one
packet from each group is randomly selected. In systematic count-basedsampling
the first packet of each group would be always selected.

Flow Sampling Research works by Hohn and Veitch [69] and Duffield et al. [48]
have shown that packet sampling is inaccurate for the inference of flow statistics
such as the original flow size distribution. For instance, it is easy to miss com-
pletely the short flows. Flow sampling has been proposed as an alternativeto over-
come the limitations of packet sampling. Hohn and Veitch [69] show that flow
sampling improves the accuracy in flow statistics inference.

When a flow is selected, all the packets that belong to this flow are stored, while
from an unselected flow no packets are stored. Flow sampling approaches for form-
ing flow records focus mostly on selecting large flows, which has a larger impact
to billing and accounting applications. So, non-uniform flow sampling techniques,
like smart sampling [47] and sample-and-hold [52], have been proposed for accu-
rate estimation of heavy hitters. These techniques give higher probabilities inlarge
flows to be selected and form flow records.

In our case, we aim to select a representative group of flows for applications
like traffic classification, building profiles, and security applications. Thus, we
choose a uniform flow sampling approach. Random flow sampling with sampling
rates could be used. Similarly, hash-based sampling could be performed, using
a hash function over the 5-tuple which defines a flow and then selectsk out of



8.2. LONG-TERM NETWORK TRAFFIC RECORDING 153

the possibleN hash values. However, these approaches do not guarantee that the
selected flows will result tok out of N packets selection, and to the desirable
storage reduction, due to the heavy-tailed distribution of flow sizes. Therefore,
hash-based and simple random flow sampling, as well as smart and sample-and-
hold sampling strategies, cannot accurately reduce the storage.

We need to specify a flow sampling scheme that selectsl flows out of theM
total flows in a time interval, withk packets in total. This flow sampling scheme
works as follows: First we classify packets into flows. During the classification, we
maintain an indexing table with the flows sorted based on their size and a histogram
with flow sizes. Then, we randomly select one flow at a time, with a size ofxi
packets, while

∑
xi < k stands. Only flows with size less thank −

∑
xi packets

that have not been selected so far, are candidates for selection. These flows can be
easily found using the indexing table and the histogram with flow sizes. Assuming
that we haveF flows with size less thank −

∑
xi packets that have not been

selected before, a random number from1 to F is used to select the corresponding
flow from the indexing table. The selected flows are marked and removed from the
indexing table and flow size histogram. The selection process ends whenl flows
with

∑l
i=0

xi = k have been selected. Finally, the packets from the selected flows
are written to disk, with a second pass in the trace, in respect to the order that they
have been received.

Per-Flow Cutoff Our third strategy for selecting representative packets is to use
a per-flow cutoff, i.e., select always the firstC packets of each flow. Time Ma-
chine [89] uses a statically user configured per-flow cutoff to limit the amount of
traffic that will be stored. On the other hand, RRDtrace reduces the amount of traf-
fic that will be stored according to the time interval that the traffic belongs to, thus
different cutoffs are applied to different time intervals. As traffic ages,the per-flow
cutoff will be properly reduced.

We implemented an algorithm that selects a per-flow cutoffC in a way that
k packets are selected out of the totalN packets. The algorithm is based on a
histogram of aggregated statistics. In the first step we classify packets in flows.
During this classification, we also maintain a table which indicates the number of
flows that exceed each flow size. For instance, the positioni of the table,t[i], will
contain the number of flows that have at leasti packets. When theith packet of a
flow is classified,t[i] will be incremented by one.

Using this table, we can find the number of packets that correspond to a specific
per-flow cutoffx from

∑x
i=0

t[i]. The selected cutoffC will be the largest position
in the table that

∑C
i=0

t[i] ≤ k will be valid. In the second step of the algorithm,
having the proper cutoffC, packets are classified again into flows and each packet
is selected only if its position in the flow is less thanC. Otherwise, the packet is
not stored in the new file.

This per-flow cutoff strategy selectsk packets in total from all the flows that
appear in a time interval. Thus, it can accurately estimate the number of flows but
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not their size. Its main advantage is that the trace will contain the first packets
from all the flows, so it will be suitable for security applications, e.g., port scan and
intrusion detection, but not for traffic classification and accounting applications.

Implementation

RRDtrace is implemented using two separate threads: the capture and aging dae-
mons. Thecapture daemonuses libpcap [92] to capture packets for thet0 interval,
impose sampling, if needed, int0 and initially store the packets in a memory buffer.
When the memory buffer becomes full, the packets are written to disk. Separate
files are used for eacht0.

Theaging daemonis responsible for reducing the storage as traffic ages. After
eacht0, it reads packets from the files of each interval, imposes the new sampling
rates and writes the selected packets to the updated files. The two threads donot ac-
cess the disk concurrently to improve disk’s performance. Thus, the aging daemon
runs only when the capture daemon writes packets to the memory buffer.

Applications of RRDtrace

We focus on using RRDtrace for the following two classes of possible applications:

1) Study the historical evolution of traffic:Using RRDtrace we aim to infer the
distribution of traffic among different applications, the distribution of flows sizes,
the number of security alerts, the percentage of the malicious population and how
all these change over the years.

2) Security applications:

a) Building profiles for normal traffic patterns based on RRDtrace to be used by
anomaly detection metrics.

b) Forensics analysis, which often requires the reconstruction of paststreams for
lawful interception or inspecting past traffic from suspicious or compromised
hosts to identify more malicious operations or sensitive data exposed to attack-
ers.

c) Intrusion detection in past traffic, for training new signatures to eliminate false
positives, for detecting past attacks that were using a recently disclosed vulner-
ability, or for estimating the percentage of infected hosts.

8.2.2 Retention Study

We examine the operation of RRDtrace and compare its retention with other ap-
proaches by capturing and storing the traffic in the access link of an educational
network. The average traffic load in the network is 178 Mbps with total traffic 1.92
TB/day on average. Assuming we have 2 TB available storage,t0 should be set to
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FIGURE 8.13: Retention time and storage utilization for RRDtrace and other ap-
proaches with 2 TB of available storage.

12.5 hours in order to store all packets during this interval in 1 TB. Aftert0, for the
next 25 hours, 25% of these packets will be stored in 500 TB.

Figure8.13presents the retention and the corresponding storage used per day
for full-payload packet recording, headers-only recording (80 bytes per packet),
when recording the first 500 packets per-flow and when using RRDtrace with t0 =
1 day andt0 = 3 days.

Since the daily traffic volume in the network is 1.92 TB, we can store all the
packets with full payload for 25 hours only in the 2 TB storage. When capturing
and storing only 80 bytes per packet, 173.22 GB are required per day, which results
to 11.55 days retention. Applying a per-flow cutoff is a more effective approach,
due to the heavy-tailed distribution of flow sizes. Using a cutoff of 500 packets
per flow results to 107.76 GB/day stored and 18.56 days retention. A cutoffof 100
packets per flow results to 67.86 GB/day and 29.47 days retention.

On the other hand, retention in RRDtrace can be arbitrary large. Figure8.13
shows the storage allocation in RRDtrace for the first 100 days using two different
values oft0. For t0 = 1 day, 1 TB will be used for the last day’s traffic, 15.6
GB/day for 8–15 days ago, 3.9 GB/day for 16–31 days and 976 MB/day for 32–63
days ago. Selecting 976 MB from the total 1.92 TB daily traffic implies 0.05%
sampling rate. For one year ago, 15.3 MB/day traffic will be available, while for
two years ago traffic 7.65 MB/day will be stored. Whent0 = 3 days, 333 GB/day
will be used for the three last days. For 10–20 days ago, 20.83 GB/day will be
stored, which implies 1.1% sampling rate. For one year ago, 81.4 MB/day traffic
will be stored in this case.
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8.2.3 Experimental Evaluation

To experimentally evaluate the usefulness of RRDtrace, we measure the accuracy
of several properties when running passive monitoring applications andapplying
the different sampling strategies with decreasing sampling rates in a trace with real
traffic. Our evaluation has three main objectives: First, to compare RRDtrace with
uniform and constant sampling when both approaches reduce equally thesize of
the trace. Moreover, we aim to study how the three different sampling strategies
with reducing sampling rates affect the accuracy on inferring traffic’s properties
from the RRDtrace. Finally, we examine how the accuracy is reduced across the
retention time, as sampling rates are getting smaller, for different properties and
sampling strategies.

We used an anonymized packet trace captured during one hour at the access
link that connects an educational network with thousands of hosts to the Internet.
The trace contains 73,162,723 packets, corresponding to 1,728,878 different flows,
totalling about 46 GB in size.

In the first set of experiments, we compare RRDtrace with the three sampling
strategies which use constant sampling rate, when all the approaches reduce the
size of the trace to 10% of its original size, i.e., toS = 4.6 GB. Thus, we applied
to the original trace packet and flow sampling with 10% sampling rate and per-flow
cutoff of 74 packets per flow, which all resulted to 10% of the original trace’s size.
In RRDtrace, we used ast0 the most recent1/20 interval of the trace. In this way,
RRDtrace assigned the half of the available storage,S/2, to this interval, selecting
all the packets from it. The next two more recent1/20 intervals of the trace were
assignedS/4 storage, resulting to the selection of 25% of the packets during these
intervals. For the four next intervals, 6.25% sampling rate was performed,and so
forth. We tried all the sampling strategies with RRDtrace and we present results
from the strategy that was found to perform better with each estimated property.
The produced trace was always close to 4.6 GB, 10% of the initial trace’s size.
We report the accuracy of each measured property separately for each of the1/20
intervals of the trace, to compare the different approaches with RRDtrace.

For the second set of experiments, we applied packet sampling, flow sampling
and per-flow cutoff to the original trace using sampling rates from 1 to1/4096,
resulting in multiple sampled traces. For packet and flow sampling, where packets
are selected in a random way, we produced 20 traces for each case and we present
the average values. Thus, for each sampling rate we created traces with each strat-
egy. Settingt0 = 1 day, for each past day we plot the value inferred from the
traces with the corresponding sampling rate. For instance,1/4096 sampling rate
corresponds to 64–127 days ago. In sampling rates below1/256, the respective
per-flow cutoff becomes 1 packet per flow, which means that this strategycannot
be applied in very low sampling rates.

We first evaluate the accuracy on estimating flow statistics, like the original
flow size distribution and average flow size. Then, we examine the accuracy on
inferring the distribution of traffic and flows among the applications that generate
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them, using the Appmon tool [12]. Snort NIDS [124] was used to examine if the
percentage of hosts and flows that produce security alerts can be inferred from the
sampled traces. The accuracy for each property is measured by comparing the
value inferred from each sampled trace with the real value from the unsampled
trace. In the remaining of this section, we present the evaluation for each property
separately.

Flow Size Distribution

Flow size distribution is a useful metric for traffic engineering, traffic classification,
anomaly detection techniques and for studying how network traffic changes over
the time. We examine the accuracy on inferring the average and mean flow size
and the original distribution of flow sizes using sampled traces.

Figure8.14compares the accuracy on the estimation of average flow size using
RRDtrace and sampling with constant rate for the reduction of the trace’s size to
10% of its original size. RRDtrace used flow sampling, that is the best choicefor
inferring flow statistics, with adaptive sampling rate to retain more packets from
the first parts of the trace and result also to 10% of the original trace’s size. Packet
and flow sampling used 10% sampling rate, while 74 packets per-flow resultedto
the same reduction in the trace’s size. We plot the accuracy of the averageflow
size estimation separately from the most recent to the older1/20 time interval of
the original trace, by comparing with the actual value from the respective interval
in the unsampled trace.

During the most recent interval RRDtrace retains all the packets, thus it is 100%
accurate. For the next two intervals RRDtrace performs 25% flow sampling,so it
is more accurate than 10% flow sampling. In the next four intervals, RRDtrace
uses 6.25% sampling rate and its accuracy remains close to 10% flow sampling.
Overall, compared with constant flow sampling, for the three more recent intervals
RRDtrace is more accurate, for the next four intervals with similar accuracyand
in the older intervals flow sampling outperforms RRDtrace from 5% up to mostly
20%. If we need to further reduce the storage size, e.g., to 1% of the original
size using RRDtrace and 1% sampling rate, RRDtrace will be more accurate for a
longer time period. When RRDtrace is used for live traffic recording, the dynamic
storage re-assignment is the only way to retain data for arbitrary long periods, since
sampling with constant rate will have limited retention using fixed-size storage.

Figure8.15compares the accuracy of the three different sampling strategies in
RRDtrace for estimating average flow size. Flow sampling is always more accurate
than packet sampling and per-flow cutoff, which are not effective strategies for
the inference of flow sizes. Using flow sampling, average flow size is accurately
estimated for a few days period. For the past two days, the estimation is 96.5%
accurate with sampling rate 25%. RRDtrace slightly overestimates the average
flow size, due to more possibilities for the selection of very large flows. For 4–7
days ago, the estimation is 94.7% accurate. RRDtrace tends to underestimate the
average flow size for lower sampling rates. Due to the heavy tailed distributionof
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FIGURE 8.14: Accuracy on average
flow size estimation using RRDtrace and
a constant 10% sampling rate.
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FIGURE 8.15: Average flow size es-
timation using RRDtrace with different
sampling strategies.
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FIGURE 8.16: Flow size distribution for
8–15 days ago, with an1/64 sampling
rate and 5 packets per-flow cutoff.

flow sizes, there is a higher possibility for small flows to be randomly selected in
low sampling rates than large flows. Moreover, very large flows cannot be selected
in low sampling rates due to the storage size limitation. Up to one month ago,
average flow size is estimated with 83.7% accuracy.

On the other hand, flow size distribution can be accurately estimated using flow
sampling with low sampling rates. Figure8.16shows the cumulative distribution
of flow sizes for packet and flow sampling with1/64 sampling rate and for 5 pack-
ets per-flow cutoff. Packet sampling is not accurate, since many small flows are
completely lost. Per-flow cutoff strategy can estimate correctly the size of flows
up to 5 packets in this case, according to the cutoff limit. The rest of the flows
are considered with 5 packets size and there is no clue for their actual size. Flow
sampling is accurate even with1/4096 sampling rate. Thus, in flow size distribu-
tion property the accuracy does not depend on the sampling rate for flow sampling.
Flow sampling and per-flow cutoff estimate correctly the mean flow size, that is 2
packets per flow, while packet sampling incorrectly estimate it as one packetper
flow.
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While per-flow cutoff cannot accurately estimate the flow sizes, it accurately
estimates the actual number of flows, since it retains at least one packet from each
flow. Our flow sampling strategy can provide a less accurate estimation of the
actual number of flows. If we had chosen to select exactlys × M flows from an
interval withM total flows for a sampling rates, we could infer the actual number
of flows by multiplying withs the flows found in the sampled trace. Since this
strategy does not always reduce the storage bys, we chose to select the number
of flows with the desirable reduction in storage. Even so, we observe thatfor high
sampling rates the chosen flow sampling strategy selects abouts ×M flows, so it
can infer the actual number of flows. For low rates, it tends to select more than
s×M flows and thus overestimates the actual number of flows up to two times in
1/4096 sampling rate.

Per-Application Traffic Classification

The next property we examine is the classification of network traffic and flows to
the applications that generate them. We aim to infer the percentage of traffic and
flows that each application contributes to the total traffic and flows in the network.
For these measurements we ran Appmon with our sampled traces. Appmon classi-
fies flows and traffic into applications using both port-based classification and deep
packet inspection to identify peer-to-peer and multimedia applications that usedy-
namically allocated port numbers, based on application specific signatures.For
instance, Web traffic is all the packets from/to port 80, except from peer-to-peer
packets masqueraded as Web packets. A flow is classified as BitTorrent flow when
a packet of the flow, usually the first, contains a BitTorrent protocol-specific string.
Specifically, the Peer Wire Protocol in BitTorrent establishes a handshake using
well known keywords in the first packets. BitTorrent traffic is all the packets that
belong to a flow classified as BitTorrent. We present the results for the two most
popular applications found in the trace, Web and BitTorrent.

In Figures8.17and 8.20we compare the accuracy of RRDtrace with the accu-
racy of 10% packet and flow sampling and 74 packets per-flow cutoff onestimating
the percentages of Web and BitTorrent traffic respectively. In case of Web traffic
percentage, packet sampling is clearly the most accurate strategy, due to the simple
port-based classification. However, packet sampling significantly affects the detec-
tion of BitTorrent traffic, so flow sampling is the most accurate approach in this
case. Comparing RRDtrace with constant 10% flow sampling in Figure8.20, we
observe the effect of sampling rate adaptation in RRDtrace algorithm. For thethree
most recent intervals RRDtrace is clearly more accurate, for the next four intervals
almost equal and for the rest of the trace provides less but close accuracy compared
with constant flow sampling.

Figures8.18and 8.21compare the different sampling strategies across the re-
tention time for Web and BitTorrent traffic percentage estimation respectively. We
observe that packet sampling provides very accurate estimates of the Webtraffic
percentage regardless of how old the data are, i.e., how low the sampling rateis.
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FIGURE 8.17: Accuracy on Web traffic
percentage estimation using RRDtrace
and a constant 10% sampling rate.
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FIGURE 8.18: Percentage of Web traffic
using RRDtrace with different sampling
strategies.
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FIGURE 8.19: Percentage of Web flows
out of the classified flows.

Thus, packet sampling fits well with the simple port-based traffic classification.
However, packet sampling cannot estimate accurately the percentage of BitTorrent
traffic even for recent traffic with higher sampling rates. This is becausepacket
sampling affects significantly the detection of a BitTorrent flow. Since packets
are randomly selected, the packet which contains the BitTorrent keywordmay be
missed. As a consequence, all the selected packets from this flow will not be classi-
fied as BitTorrent packets, leading to significant error in the estimation’s accuracy.

On the other hand, flow sampling is the most accurate approach for estimating
the percentage of BitTorrent traffic. In flow sampling, all packets from aselected
flow are present, so the flow-based classification process is not affected. Thus, it
can estimate the percentage of BitTorrent traffic till 30 days ago with more than
87% accuracy. For the same period, it can estimate the Web traffic percentage with
accuracy 98.75%. The decreasing sampling rates affect the accuracyof flow sam-
pling. While it has good accuracy up to 30 days ago, for older time periods ittends
to overestimate Web traffic and underestimate the BitTorrent traffic percentage.

The third packet selection strategy, based on a per-flow cutoff, cannot account
correctly the percentage of traffic for each application. While most of the traffic
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FIGURE 8.20: Accuracy on BitTor-
rent traffic percentage estimation using
RRDtrace and a constant 10% sampling
rate.
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FIGURE 8.21: Percentage of BitTor-
rent traffic using RRDtrace with differ-
ent sampling strategies.
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FIGURE 8.22: Percentage of BitTorrent
flows out of the classified flows.

can be successfully classified by the first packets of the flow, the cutoffaffects non-
uniformly the traffic volume stored from each application. For instance, BitTorrent
has usually large flows which are highly affected from the cutoff, resulting to an
underestimation of the BitTorrent traffic percentage, as we observe in Figure8.21.
On the other hand, Web flows are typically smaller and thus less affected, leading
to an overestimation of Web traffic.

However, per-flow cutoff can accurately estimate the number of Web and Bit-
Torrent flows, even if it cannot infer the correct percentages overthe total traffic.
Even with one packet per flow, BitTorrent flows can be usually detected.Fig-
ure 8.19 shows the percentage of Web flows and Figure8.22 the percentage of
BitTorrent flows out of the flows that were successfully classified. We observe that
both flow sampling and per-flow cutoff can accurately estimate the percentage of
flows for each application for arbitrary low sampling rates, with flow sampling be
slightly more accurate. While packet sampling can estimate successfully the Web
traffic percentage, it cannot estimate correctly the number of Web flows.
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FIGURE 8.23: Accuracy on malicious
hosts percentage estimation using RRD-
trace and a constant 10% sampling rate.
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FIGURE 8.24: Percentage of hosts that
trigger security alerts.
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FIGURE 8.25: Percentage of flows that
trigger security alerts.

Estimation of Malicious Population

Network traffic stored in sampled traces can provide some information aboutpast
networking attacks, suspicious activities and malicious hosts. Instead of trying
to infer the actual attacks that happened in the past, we focus on estimating the
percentage of hosts and flows that generates security alerts and how thispercentage
changes over the time. We ran Snort NIDS in the unsampled and sampled traces
with each sampling strategy and sampling rate, aiming to measure the accuracy
on estimating these percentages. We consider the source IP addresses of packets
that produce Snort alerts as malicious hosts. The percentage of malicious hosts is
estimated by dividing the number of unique malicious hosts with the total number
of hosts that are present in each sampled trace. We also ran Snort with the reduced
trace in 10% of its original size with RRDtrace and constant sampling techniques
and compare their accuracy on the estimated percentage of malicious hosts.

We observe that with a per-flow cutoff of 74 packets, 84% of the alerts that were
triggered in the original trace are also detected. For security applications,per-flow
cutoff is a good choice for data reduction since a large class of attacks is detected in
the beginning of the flows. For instance, network service probes, bruteforce login
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attempts and code-injection attacks usually appear in the first few hundred packets
of a network flow. Moreover, due to the heavy tailed distribution of flow sizes, the
74-packet per-flow cutoff affects only 1.6% of the flows that contributemost of the
traffic, resulting to a reduction rate of 90%.

Figure 8.23 presents the results for the reduced trace. Per-flow cutoff strat-
egy has the best accuracy in estimation of the malicious host percentage. Packet
sampling has better accuracy than flow sampling on the malicious host estimation.
Using the trace sampled with 10% packet sampling, Snort finds significantly more
attacks than with the trace produced with 10% flow sampling, 18% and 3% of the
actual alerts respectively. Per-flow cutoff strategy retains all the hoststhat were
present in the original trace, while packet sampling only a subset of them (27.5%).
Thus, the accuracy of the malicious hosts percentage in case of packet sampling is
close to the accuracy when using the per-flow cutoff.

Flow sampling is not a good choice for this property. Therefore, for estimating
the malicious hosts percentage we use the per-flow cutoff strategy with RRDtrace,
which dynamically adapts the cutoff to store more packets per flow for the recent
time intervals. In the three more recent intervals RRDtrace has 100% accuracy,
since the cutoff of 2754 packets per flow that is applied in second and thirdin-
tervals does not affect the malicious hosts detection. After the seventh interval,
the accuracy of RRDtrace with per-flow cutoff degrades significantly, since the 5
packets per flow cutoff results to less malicious hosts be detected.

Figure8.24shows the effect of sampling rates on each strategy when estimat-
ing the percentage of malicious hosts. Per-flow cutoff is very accurate for 7 days
ago and has reasonable accuracy till 15 days in the past. For older traffic, the lower
sampling rates affect significantly its accuracy, leading to underestimation of ma-
licious hosts percentage. This happens because this strategy retains all the hosts
in the trace but less packets from each one, so less attacks and malicious hosts
will be detected at lower sampling rates, resulting to a reduced percentage.On the
other hand, packet sampling overestimates the percentage of malicious hostsand
its accuracy is not affected by decreasing sampling rates. With the reduction of
sampling rate, both the number of detected malicious hosts and the number of total
hosts in the sampled trace are reduced. Therefore, while per-flow cutoff is more
accurate at high sampling rates, at lower sampling rates packet sampling provides
best accuracy and should be preferred.

Figure8.25presents the percentage of flows that trigger alerts in Snort out of
the total flows found in the sampled traces. As we expected, per-flow cutoff pro-
vides the most accurate estimations for the last 15 days, but for older time periods
it degrades significantly. All the sampling strategies are highly affected by the re-
ducing sampling rates in this case. With packet sampling Snort finds a reasonable
number of alerts and malicious flows, but the total number of flows found in the
sampled trace is not proportional with the sampling rate. While flow sampling
selects the proper amount of flows, less alerts are found in the producedtraces
compared with packet sampling and the percentage of malicious flows is underes-
timated.
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8.2.4 Summary

Recording raw network traffic for long-term periods is extremely usefulfor a mul-
titude of monitoring and security applications, such as troubleshooting network
problems, studying the Internet evolution, postmortem forensics analysis and es-
timating the malicious population over time. The high volumes of network traffic
highlight the need for data reduction and optimized traffic storage systems. In this
paper we present RRDtrace, a technique that enables storing raw network packets
in fixed-size disk space for arbitrary long periods, while retaining more detailed
information for most recent traffic. RRDtrace dynamically reduces storage space
as traffic ages using three alternative sampling strategies: packet sampling, flow
sampling, and per-flow cutoff.

We experimentally evaluated RRDtrace with each sampling strategy by mea-
suring the accuracy of flow size distribution estimation, traffic classification,and
malicious hosts detection across the retention period using real traffic. Ourmain
findings are the following:

1. When RRDtrace is used offline to reduce the size of a trace, it provides
higher accuracy for the most recent part and the same accuracy for the rest,
compared to constant sampling that has the same effect in trace size. When
RRDtrace is used for live recording, it can store packets for arbitrarylong
periods based on the dynamic storage reduction, while constant sampling
has limited retention.

2. Some properties can be accurately inferred regardless of how old thetraffic
is, i.e., using arbitrary low sampling rates. Such properties include flow size
distribution using flow sampling, the percentage of Web and BitTorrent flows
using flow sampling or a per-flow cutoff, and the percentage of Web traffic
using packet sampling.

3. In contrast, other properties are highly affected by sampling rate and can be
accurately inferred only in recent periods. Such properties include average
flow size, percentage of BitTorrent traffic, and percentage of hosts and flows
that trigger security alerts.

4. Flow sampling is overall the most robust technique for flow statistics and
traffic classification inference, but it performs poorly in estimation of mali-
cious population.

5. Per-flow cutoff strategy can estimate the actual number of flows and detect
more attacks. However, it is not able to infer flow size and cannot be used
with low sampling rates, as the cutoff reaches rapidly to one packet per flow
and cannot be further reduced.

6. Packet sampling can estimate very accurately the percentage of Web traffic
but not BitTorrent traffic, as it highly affects the corresponding detection
algorithm. Moreover, it cannot estimate correctly any flow statistics.
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7. To estimate the percentage of malicious hosts, per-flow cutoff is more ac-
curate for recent time intervals, while packet sampling is more accurate for
older time intervals with low sampling rates.
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9
Conclusions

9.1 Summary

In this dissertation we explored the problems that arise when building networktraf-
fic monitoring systems under heavy load. We showed the need to improve perfor-
mance and robustness of monitoring systems in a generic way transparently from
the applications. More specifically, we showed that we need to improve memory
access locality to achieve better performance (Chapter 4), the necessity for over-
load control mechanisms in network monitoring systems (Chapter 5), and defences
against overload attacks (Chapter 6). Moreover, we demonstrated the need to use
the proper abstractions in network monitoring frameworks for improved perfor-
mance and expressiveness (Chapter 7). Finally, we showed that similar approaches
can be used for two other applications (Chapter 8): reducing the detectionlatency
in energy-efficient NIDS and long-term traffic recording.

Towards all these goals, we followed the approach of amplifying the core com-
ponents of a network monitoring system with intelligence based on transport-layer
information. We demonstrated that such intelligence can improve code and data
memory locality, provide efficient overload control mechanisms, reduce thedetec-
tion latency of NIDS, and lead to overall improvements in performance and accu-
racy of monitoring applications. Moreover, we rely on abstractions derived from
transport-layer to build new frameworks that facilitate the development of emerg-
ing network monitoring applications with high performance under heavy load.

The main contributions of this work are the new techniques we proposed for
efficient traffic monitoring under heavy load. We designed and implemented these
techniques, either within existing libraries or by introducing new frameworks, and
we evaluated their efficiency while exploring their main properties and existing
tradeoffs.

167
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First, we studied memory locality in network monitoring applications and we
proposedlocality buffering to improve code and data locality, reduce L2 cache
misses, and improve performance in a transparent way to the applications (Chapter
4). Then, we focused on overload control. We proposedselective packet discard-
ing technique to gracefully adapt to overload conditions by pro-actively discarding
the less important packets for NIDS, which are the packets towards the endof large
flows (Chapter 5). To tolerate overload attacks, such as algorithmic complexity or
denial of service attacks, we proposedselective packet paging: a two-layer memory
management system to store excess packets in secondary storage systems, accom-
panied with a randomization-based approach to detect crafted packets attacking the
monitoring system (Chapter 6).

To enable the development of efficient network monitoring at the transport
layer and beyond, we proposed theStream capture library (Scap)(Chapter 7). Scap
delivers reassembled transport-layer streams and an expressive APIfor stream-
oriented traffic analysis based on the Stream abstraction. It also offersa variety of
features, such as stream truncation at kernel or NIC level (subzerocopy), priori-
tized packet loss, best-effort stream reassembly, and inherent support for multicore
architectures.

We also applied similar ideas to solve two other problems in network moni-
toring systems (Chapter 8). First, we exposed the energy-latency tradeoff in in-
trusion detection systems: as we reduce power consumption with state-of-the-art
approaches, such as frequency scaling and core deactivation, we noticed a signifi-
cant increase in the detection latency. We showed that this impedes a timely auto-
matic reaction to the incoming attacks, e.g., using an active response to terminate
offending TCP connections. To resolve the energy-latency tradeoff,we presented
LEoNIDS: a low-latency and low-energy NIDS. Low energy is achievedby state-
of-the-art power management techniques tailored for NIDS, while low-latency is
achieved by assigning priorities to the captured packets (Section 8.1). We assign
higher priority to the packets that are more likely to contain an attack, which are
the few first packets of each flow, and we showed that using dedicated cores to
process these high-priority packets (space sharing) is more efficient that using a
typical priority queue per each core (time sharing).

Finally, we presented a new technique for archiving network traffic forlong-
term periods using fixed-size storage (Section 8.2). This technique, called RRD-
trace, is based ontraffic agingidea: we keep more traffic for recent time intervals,
and we reduce the traffic that remains on disk as it gets older. To select smaller
representative samples as time passes, we explored different sampling strategies:
packet sampling, flow sampling, and flow size cutoff. In packet and flow sampling,
we randomly select packets or flows that will be retained, based on the sampling
rate. In flow size cutoff, we keep less bytes per each flow as the flow becomes
older. We studied the effect of these strategies on the accuracy of commonnetwork
monitoring applications, and we found that the best strategy depends on theappli-
cation’s needs: while some applications need to retain less bytes for more flows,
other applications need to retain more bytes for less flows.
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Our work resulted in several prototype implementations: (i) a modified libpcap
with locality buffering, (ii) a Snort preprocessor with selective packet discarding,
(iii) a modified libpcap with selective packet paging, (iv) the Stream captureli-
brary (Scap) for stream-oriented traffic capture and analysis, consisting of a kernel
module, a user-level library, and few sample applications, (v) a new kernel module,
a modified libpcap, and modifications into the Snort NIDS for an energy-efficient
NIDS with low detection latency, and (vi) the RRDtrace tool for long-term net-
work traffic recording. We used these prototype implementations for experimental
evaluation in our studies. Moreover, we plan to release the libraries and tools we
developed or modified so that they can be used by researchers or network operators
interested in efficient network traffic monitoring.

Our experimental evaluation results showed that the techniques we proposed
and their prototype implementations are able to improve the efficiency of network
traffic monitoring systems, offering effective overload control mechanisms and tol-
erance against sophisticated evasion attempts and overload attacks. Moreover, we
showed improved memory locality and improved energy-efficiency without affect-
ing other important performance metrics like throughput and latency.

9.2 Future Work

We believe that as network traffic and Internet applications become more complex,
with an increasing number of security incidents, we will need more effectivenet-
work monitoring to ensure the correct and secure operation of today’s and future
networks. As network traffic volume increases, monitoring applications become
more complex, and attackers more sophisticated, we will always need to improve
the existing network monitoring frameworks, which should also adapt to the new
needs of the monitoring applications and utilize advances in commodity hardware.
Towards this need, we believe that our work contributes to improve the state-of-the-
art in network monitoring research directions we explored in this dissertation. As
this area is rapidly evolving, due to the dynamic nature of the Internet traffic, ap-
plications, and attacks, along with the frequent advances in commodity hardware,
such efforts should be continued in the future.

There are several directions that can be explored as part of future work in the
area of network monitoring and security. To improve the performance and effi-
ciency of network monitoring systems, routing-assisted techniques can be devel-
oped. For instance, adding intelligence into a router for selectively forwarding
only the most interesting traffic for network monitoring or security analysis (e.g.,
the first few bytes of each flow) to a passive monitoring system may improve the
overall performance of the network.

Moreover, recent advances in Software-Defined Networking (SDN)and the
use of OpenFlow switches can be explored to improve network monitoring sys-
tems. For instance, network monitoring can benefit from SDN by collecting new
sources of monitoring data from OpenFlow switches. Another direction could be to
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dynamically route the network traffic using SDN principles in a way that it passes
through the proper network monitoring sensors or intrusion detection systems, en-
suring correct traffic inspection and avoid overloaded monitoring systemsor other
middleboxes. Also, SDN applications may benefit from network monitoring data
and applications as well. For instance, getting input data from monitoring probes
may help an SDN routing architecture to make the proper routing decisions. Thus,
coupling SDN with network monitoring systems may be helpful for both worlds.

In future work, we could also explore additional directions related to our pro-
posed techniques. We can exploit the memory access locality we observed inthis
work for more efficient traffic processing in multicore processors. More specifi-
cally, we can improve the performance of multicore systems by splitting the traffic
in a way that related packets (not only packets belonging to the same connection)
will be scheduled for processing by the same core. For example, packetsbelong-
ing to the same high-level application and will result in a similar processing by
the monitoring application can be processed by the same core to exploit memory
locality and optimize performance.

Moreover, we can integrate our proposed techniques with other approaches,
such as zero copy APIs and other high-performance packet captureand processing
systems, to combine their performance benefits. We can also use selective packet
paging with faster disk systems (e.g., SSD disks, RAID or other very fast storage
systems) for improved performance, and utilize other advances in storagearea.

Similarly, we can implement the RRDtrace tool with indexing approaches for
faster query responses and optimized storage systems to improve the throughput
that packets are stored to disk. Among the future work with RRDtrace will be to
find an implement a single sampling strategy to reduce data based on traffic aging.
Also, our future work may include building real-world applications using Scap.

To improve the query response times for retrospective analysis in networktraf-
fic recording systems, more sophisticated indexing techniques can be designed
and implemented. Moreover, exploiting locality can also significantly improve
the query response times of traffic recording systems: by properly rearranging the
packet stream before writing packets to disk we can place related packets, which
may be accessed by the same queries, in adjacent positions in disk. This way, disk
accesses can be localized so that the typically low disk access speed can be signif-
icantly increased. Especially when this packet reordering is combined with packet
indexing techniques, the disk accesses can be localized to a specific partof the disk,
where most packet matching the same query can be found, while the larger part of
the trace will not be read. Such locality can be achieved with some knowledge
about the common queries, e.g., based on common header fields or application
protocols. Thus, packets can be sorted before they are stored in disk based on this
fields.

In future work, we can also explore how we can leverage the recent advances in
cloud computing to improve network traffic monitoring. Cheap processing power
and storage offered by cloud providers today might be utilized by monitoringand
security systems to move network traffic processing and storage towards such cloud
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systems. Moreover, the popularity of cloud computing in a multitude of applica-
tions today require to build network monitoring systems tailored for cloud comput-
ing systems and applications. Our proposed ideas could be utilized in such cloud
network monitoring systems as well, due to the heavy traffic load in data centers.
Thus, selective packet processing approaches can reduce the cost and at the same
time improve the performance and accuracy in such environments. Moreover, we
suggest to develop overload control mechanisms and defenses again evasion at-
tempts and overload denial of service attacks. Especially when network traffic
may be transfered from a monitoring sensor to another processing unit (ina local
or remote network), in a distributed network monitoring system, a selective transfer
of the captured traffic will reduce the bandwidth overhead as well.

Finally, a big challenge in network traffic monitoring and network security sys-
tems today is the inspection and analysis of encrypted traffic. Application protocols
using encryption, like HTTPS, become increasingly popular in the Internettoday.
Although this increase significantly the security of the end users and of these appli-
cations, encryption may be also employed by malicious users and malicious soft-
ware to hide their activities and avoid detection by network-level security systems.
This poses significant challenges to network monitoring systems and NIDS. There-
fore, these systems need to evolve and develop new analysis techniques toaddress
this issue. For instance, behavioral analysis using machine learning techniques can
be combined with traditional signature-based traffic inspection to recognizemali-
cious or other interesting activities in the encrypted network packets, and classify
them into their respective high-level applications. Another alternative is to deploy
SSL proxies in networks that need to inspect the unencrypted SSL network traffic
for security or other important purposes. This way, traffic will not be encrypted at
the monitoring system, which has also an SSL proxy, but it will be encrypted in
the rest of the network path. However, the deployment of such SSL proxies is not
always possible, while SSL traffic is a (popular) subset of the existing encrypted
traffic in the Internet.
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