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Building Efficient Network Traffic Monitoring
Systems Under Heavy Load

Antonis Papadogiannakis

Abstract

Network traffic monitoring is the basis for a multitude of systems, such as intru-
sion detection, network forensics, and traffic classification systemshwhijgport
the robust, efficient, and secure operation of modern computer netwbidws-
ever, building efficient network monitoring systems has become a challetagkg
Emerging network monitoring applications become more demanding in terms of
memory and CPU resources, due to the increasingly complex analysidiopgra
they need to perform on the monitored traffic. Moreover, many networktoren
ing applications need to analyze the captured traffic at higher proto@klayhis
need for reconstructing high-level entities results in increased applicatioplex-
ity and reduced performance. At the same time, the volume of traffic thalcsheu
analyzed in today’s network links increases significantly. This leads towiigg
demand for more resources to monitor the network traffic at line speeds, itvh
is very likely that the deployed monitoring systems will become overloadech Eve
worse, attackers are able to intentionally overload a network monitoringnsyste
to impede its correct operation and pass malicious activities over the network u
detected, as the existing systems do not provide protection against swits.atta
Therefore, there is an increasing need for building efficient andstotetwork
monitoring systems that will provide intelligent overload control mechanisms, will
be able to defend against sophisticated attacks, and will utilize recemaabvan
the available commodity hardware.

In this dissertation we address the above issues, and we propose thew tec
niques and frameworks to improve the performance, accuracy, andtn@ss of
network monitoring systems when processing high volumes of traffic usimg co
modity hardware. Our thesis is that we need to enrich the lower layers df a ne
work monitoring system with intelligence based on flow-level information froen th
transport layer, in order to build efficient network monitoring systems uneavy
load. First, we show that rearranging the captured packet stream bas®urce
and destination port numbers can lead to significant performance bahedit®



improved memory access locality. We implement this technique, which we call
aslocality buffering within a popular packet capture library, and we show its per-
formance improvements in common network monitoring applications. To improve
the accuracy of an overloaded Network-level Intrusion Detection 8ydDS),

we suggest to focus on the first few bytes of each connection, a techwig call
asselective packet discardin@ur evaluation shows that this approach can signif-
icantly improve the effectiveness of a NIDS under extreme load. To defgainst
overload attacks, we proposelective packet pagin@ technique based on a two-
layer memory management system to prevent packet loss, and on a raadomiz
detection approach to find and isolate packets attacking the network monitoring
system. To fill the semantic gap we identified between monitoring applications,
which need to analyze network traffic at higher protocol layers, andtororg
libraries, which deliver just raw IP packets, we present the design, imgsi&ation,

and evaluation of th&tream capture library (Scapia new multicore-aware frame-
work for stream-oriented network traffic monitoring. Scap captures afigkds to
user-level programs reassembled transport-layer streams, allowiagafiole va-
riety of performance optimizations, such as hardware-assisted streacation,
prioritized packet loss, and flexible stream reassembly.  Finally, we shaiv th
our ideas can be applied in other problems of network monitoring systemdlas we
such as long-term network traffic recording and reducing the detectiemcha of

an energy-efficient NIDS. To build more efficient and secure netwawkitoring
systems, all these techniques we propose rely on the fact that monitophggap
tions are actually interested in a stream-oriented analysis.

Thesis Advisor: Professor Evangelos Markatos



2YEOLOUOC ATODOTIXWY LUCTNUSTWY Y10 TNV
Enontela Aoy Tdniod Pdotou

Aviovne Ioradoytavvinne

Heptindn

H ermontela tneg xbvnong evog dixtdou amoteiel tny Bdon yia o TAndoea
CUCTNUATOY, OTWE CUCTAUATO aviyveuong emIECE®Y, UEAETNG NAEXTROVIXWY
EYUANUATWY, Xl CUC TAUATO XATNYOoELTOMGNE NS Xivnong Tou dixtiou. Autd
ToL GUC TAUATO GUUPBEAROLY GNuaVTIXG G TNV alLOTULOTY, ATOBOTIXT, X0 UGN
Aertovpyla Twv oUYYEOVKY OXTOWY. ‘Ouws 1 dnuovpyio anodoTix®y cLC TN
pdtov yio emonteio SixTOwY el yivel Eva apxetd 80oxolo €pyo. OL alyypoveg
EQUPUOYES YL ETOTTEI OXTLMY YIVOVTOL TO AMOUTNTIXEG GE TOPOUE GUC T
HATOVY OIS UVAUT %ot XUXAoL Tou enelepyao Ty, e€outlog TNG ONOEVO XaL TO
TepimAOXNG AVIAUGTC TTOU TRETEL VoL EQUPUOGOUY GTNY XIVNoT| TOU BXTLOU ToU
Topoxorouviolv. Emniéov, TOMES and auTéC TIC EQUPUOYES TRETEL VoL OVOAD-
couv TNV xbvnom Tou dwtiou o TEWTOXOAA LPNAOTECWY eTTEdWY. AuTHh 1|
aVEY XN Yol THY avaoOVIEST) UNVURAT®Y X0l OVTOTATWY o€ udmAdTepa enineda
XAVEL TIC EQUQUOYES AUTEC TOAD O TERITAOXES XL UELOVEL TNV OIOB0GY| TOUC.
Trv Bl otiypr), o oyxog tne xivnong mou Yo meémet vor avahuldel and autég
TIC EQUPUOYEC QUEAVEL ONUAVTIXG OTa oNueEvd dixTua. Autd odnyel oe wa
augavouevn {ATNoN YLol TEPLOGOTEQOUC TORPOUS Yiol TNV avdhucT e xivnong
EVOC TOAD YEHYopou Bixtlou, v elvor ToAD mbovd 6Tl €va TETOo GUCTNUA
enontelog Yo unepgoptwiel. Emmiéov, évag xaxoBoulog yerotng umopel va
UTERPORTOOEL GXOTIIOL €VOL 00O TNUO ETOTTEIS EVOS BIXTUOU ETOL (G TE VO EYU-
TOd{oEL TNV 6WO T AStToupYlot TOU xou Vo TePoEL AmUPAUTAPNTES XUXOBOUAES
OpAC TNELOTNTES PECW AUTOV TOU BIXTLOV, xo(S To UTHEYOVTA GUC THUATO OEV
ToEEY oLV TEOG Tactio evavTiov Tétowy eméoeny. Enouyévng, umdpyet uio aug-
QVOUEVT, avayxn Yiot TNV OYEDlon XoL LVAOTOINCT amodoTX®Y Xal €0pWCTWY
CLCTNUATOY enOTTElNG OIXTOWY Tar ontolar Yo Unopoly var Tapéyouy EEUTVOUS
UMY OVIOHOUS VLol TEQLTTWOELS UTERPORTWonNG, Yo elvon oe éom vor apuviody
anévavtl oc eCehypéveg emdéoels, xou Yo umopody vo olonoloLy anodoTixd Tic
duvatdTNTES TOL TPOoPEREL To hardware.



Ye auth TN OtTe3r) avTHETOTICOUUE To TOEATAVE TEOBAAUNTA, XL TEO-
Telvoude VEeg TEYVES xou ouoTHoTa Yo TNV Bedtiworn tng ambddoong, TNng
axp(Beloc xan e adlomo Tl cLCTNUATWY ENOTTElNC OIXTOWY OToY oUTH ENEE-
epydlovtar PEYSAO OYXO XUXAOPORIIC YENOWOTOLOVTAUS EEOTAIOUS YAUNAOD
%60 10U¢ X evpetag yerone. H 9€on pog etvon 6TL yiar var gTidEovue anodoTixd
CUCTAUATH ETOTTEING OXTOWY TOU €Y0OUV TOAD YEYSAO (POETO TEETEL Vo EU-
TAOUTICOUNE Ta YAUNAGTERA ETUTEDN TOU GLUC THUATOS Ue eupula Tou PactleTton oe
TAnpogoplec and to eninedo petagopds (transport layer)Apyxd, Setyvouue ot
N avadidTadn TN pone TV ToxETwy Ue Bdor Toug apriuoie Yopac (port numbers)
unopel vor BEATIOOEL GNUAVTIXG TNV omO000T AOY® TNG BEATIWUEVNS TOTUIXOT-
TG 0TI TPOOTEAAOES UvAuNG. TAomowjoaue auTAY TNV TEXVIXT, TNV onola
ovopdoope locality buffering uéoo oe pia Snpogiiy BiBA00xn yia etonteio evog
owtOou, xou detyvouue TNV Bedtivon Tng anddoong TOU TEOGHEREL OE TUTLXES
epapuoyéc enonteiog dtiwy. Ta va Bedtidcoupe v axp{Belo evog cuoTh-
patog aviyveuong duxtuoxmy emi€cenmy Tou elval LTERPOPTWUEVO, TEOTEVOUUE
VoL €6 TIACOLUE GTa TpwTa bytestng xdie oOvdeong dtav o alo TN Exel TOAD
MEYGAO PORTO, Lol TEYVIXT| TTOU ATMOXOAOUUE WG ETUAEXTIXY ATOPEUYT TOXETOV.
Ta anoteAéopatd pog Oetyvouy 6Tl auTy 1 TEOCEYYLOT UTOPEl Vo BEATIOOEL
ONUAVTIXE TNV ATOTEAECUATIXOTNTA EVOC GUOTHUTOS OVIYVEUGTC BLXTUAXWDY
em€cEwY O TEPITTMOOELC TOA) PEYAAOU OYx0U Sedouévwy. T var auuviolue
evavTia oe eMECELS TOU UTERPORTWVOUY GXOTIUY TO GUC TNUL, TEOTEVOUUE Wil
VEOL TEYVIXT] TTIOU OVOUAOOUE ETUAEXTIXY) OEALBOTOINOT TaxéTwy. AuTh 1 TEYVIXT
Baoiletar oe éva cbotnua dayeiptong uvAung 8Vo emmédwy yia Vo anoTeédel
TNV OMOAELN TAXETWY, XL OE io LEV0BO0 aviyVEuoTg auTHY TV ETIECEDY ToU
YENOWOTOLEL TUYAUOTNTA WOTE VO EVIOTIOEL X0 VO ATOUOVOOEL TAL TUXETOL TOU
emtidevton 010 obotnua. Eniong, evtoniooue éva xevéd petalld tou T ypeetdlov-
Tl Ol EQUPUOYES EMOTTELNG EVOS BIXTUOU X0 TOU TL TEOCHEPOLY ToL GUC THUNTA
TIOU UTHEYOLY GHUEQO: EVE) OL EPUPUOYES TRETEL VoL avathDGOLY TNV xivnoT Tou
dixthou oe LPNAGTERY TEWTOXOMNA, oL LTdpyoLaeS BiBhlotxec Tapéyouy amhd
IP moncétan. T vor xohOpoupe autd to xevd, mopouctdlouE TOV GYEBIICUO, TNV
vhomoinom xou Ty o&loldynomn e BiBhodrxne Scap (Stream capture library
Scaprapéyet éva xawvolpyto frameworkue eyyevi utootiplen yio cuaTiuaTo
ME TOANOUG TUPHVES PTIXYUEVO Yia TNV avdAUGT, Tng xivnong evog dixtbou oe
LPNAOTEPU TIEWTOXOMAAL Xa BUCIOUEVO GTNV TEOYEAUUUATIO TXT] apalpecn TNS
corc (stream).Etot, n Scapdivel otic epopuoyéc Ty xivnom evog dixtiou oe
OVOXOTUOXELACUEV UNVOUOTOL 0T ETNEdO peTapopds (transport layer)avti oe
amhd IP moxéta, emtpénovtoag €tol mohEg BeAtiwoelc otny anddoor. Erniong
TEOCPEREL XUUVOURYIES BUVATOTNTES, OTWE TEPLXOTH| TOL UEYEVOUC UL POTG UE
v Pordeia g xdpToag BLXTOOU, 0PLOUOE TEOTEQULOTATWY OTIC POEC XL EUE-
At avacOvieon Twv Taxétwy oe unvopata vhnidtepwy eminédwy. Téloc,
Oelyvouue OTL oL LOEEC YOG UTOPOVY YV EQUOUOCTOUY X0 GE GANOL TROBAAUTA
OYETXA PE TNV ETOTTEIL OXTUWY, OTWS EVOL 1) LOXEOYEOVIAL XATOY AP TNS
xivnong xou 1 pelwon tou ypedvou aviyveuong dixTuaxdy emlécewy oe Eva
cUoTNUO PE YaUNAY xotavdhwon evépyetag.  Omndte, v vo QTIAEOVUE TO



Vil

ATOBOTIXG XU O ACQUAY) CUCTAUATO ETOTTELNS, OAEC OL TMUPATEVE TEYVIXES
Tou Teotelvouue Bacilovtal 6To YEYOVOS OTL OL EQPUpUOYES EVBLapEPOVTAL TEMXS

Vo avaAboouy TNy xivnon Tou BixThou Pe BAon TIC CUVBETELC TOU UTEEYOUV OE
uPNAGTERA TEWTOXONAAL.

Enéntne: Kadnyntic Evdyyehoc Mapxatog
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Introduction

Ensuring the correct and secure operation of Internet applicationimoes to be a
significant challenge. Along with the phenomenal growth of the Internetydhe
ume and complexity of Internet traffic is constantly increasing. Emergingyhigh
distributed applications, such as media streaming, cloud computing, antbpeer-
peer file sharing systems, demand for increased bandwidth and imprexfed- p
mance. Moreover, the number of mobile devices that are connected tdeheein
increases tremendously every day. At the same time, the number of attagkstag
Internet-connected systems continues to grow at alarming rates. Besdaseth
increasing number and severity of security incidents, we have also bewssing

a constant increase in attack sophistication.

As networks grow larger and more complicated, with more applications de-
ployed over the Internet, and as security incidents increase and becomeoro
phisticated, effective network monitoring is becoming an essential operation
understanding, managing, and improving the performance and securitpabf
ern computer networks. For example, Network-level Intrusion Detectysteghs
(NIDS) inspect network traffic (both packet headers and payldadfgtect known
attacks 113 124, pinpoint compromised computer6]], and even identify pre-
viously unknown (i.e., zero-day) threatslg 133. Similarly, traffic classifica-
tion tools inspect network packets (both headers and payloads) to ideiffefent
communication patterns and spot potentially undesirable traffic such asdite sh
ing, unsolicited packets, and background radiatibrilp, 79]. Traffic recording
systems are used to store network packets for long-term periods to allowetfo
work forensics analysis, data loss detection, and other types of rettospanaly-
sis [62,83,89,108. Network monitoring applications are also being used to iden-
tify attack sources, to trace packet trajectories, to collect data that facitisdfie
engineering, and to find network operation parameters.
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Therefore, network traffic monitoring is getting increasingly important for a
large set of Internet users and service providers, such as |F&8s,Ncomputer
and telecommunication scientists, security administrators, and managers -of high
performance computing infrastructures. Installing monitoring and secystgiss
at the network level has certain advantages compared to host-basddtinst
it is much easier to deploy, manage, and update a single monitoring or security
middlebox for the whole network, instead of host-based monitoring or security
systems at each client in a large network. Thus, there is a large markgt toda
focused on network monitoring, network surveillance, and networkriggcuAt
the same time, there is a growing interest by researchers for this area, twénpr
the performance and accuracy of such systems, given the very dynatnie of
the network traffic, network applications, and cyber attacks.

Network monitoring is the capture and analysis of the network traffic of an
organization. Typically, network monitoring systems are deployed close to the
access links that connect an organization to Internet, so that they dde siew
of the organization’s network traffic. The base of a network monitorirsgesy is
a packet capturesubsystem, which is responsible to capture the traffic that passes
through the monitored links and deliver it to the monitoring applications for ¢raffi
analysis. Such systems typically operate in two different modes: (@assive
mode, where a separate copy of each packet is captured and anialyzgdllel
with actual network’s operation, or (ii) imline mode, where traffic is analyzed
while passing through the network. In the inline mode, the monitoring systems
are able to interfere in network’s operation and packet forwarding.ekample,
NIDS [113 116,124, traffic classification systemd[12,79], and NetFlow export
probes B, 73] are passive monitoring systems, while Intrusion Prevention Systems
(IPS) [30,114, 139 and firewalls [LOQ operate inline.

In this dissertation, we study the field of network traffic monitoring: we identify
the limitations of existing approaches, we show the necessity for buildingeeffic
network monitoring systems, we discuss the main challenges towards thisrgbal, a
we propose techniques to improve the state-of-the-art works in this\&edesign
and implement our proposed approaches within existing monitoring frameworks
and tools that are widely used by many applications today. We also implement new
frameworks for network traffic monitoring aiming to improve runtime perforneanc
and application development, in order to explore and evaluate the bendfits of
approaches and make them available to the network monitoring community.

1.1 The Need for Efficient Network Traffic Monitoring

While network traffic monitoring was traditionally used for relatively simple net-
work measurement and analysis applications, or just for gathering tpiakes

that are analyzed off-line, in recent years it has become vital for a olass of

more CPU and memory intensive applications, such as intrusion detection sys-
tems [L13 116,124, accurate traffic categorizatiof,[L2, 79|, and NetFlow export
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probes B,73]. Many of these applications need to inspect both the headers and the
whole payloads of the captured packets, a process widely knowleegs packet
inspection(DPI) [60]. For instance, measuring the distribution of traffic among
different applications has become a difficult task. Many applications today
dynamically allocated ports, or operate above popular protocols like HIFePe-
fore, they cannot be simply identified based on a well known port nurivistead,
protocol parsing and several other heuristics, such as searchiag &pplication-
specific string in the packets payloat] 12, 79|, are commonly used. Similarly,
intrusion detection systems, such as Snb24] and Bro [L13], need to be able to
inspect the payload of network packets in order to detect at real time meadwa
intrusion attempts. Threats are identified using attack “signatures” thavalie e
ated by advanced pattern matching algorithms, regular expression matahihg,
other types of complex analysis on the captured packets.

To make meaningful decisions, these monitoring applications usually need to
analyze network traffic at the transport layer and ab&i€j[ For instance, NIDSs
reconstruct the transport-layer data streams to detect attack vectongrgpanulti-
ple packets, and perform traffic normalization to avoid evasion attddksg,119.
Similarly, several traffic classification applications are also based ondlce$sing
of each transport-layer stream. However, the existing frameworksuftafitg net-
work monitoring applications provide just raw IP packets. Tgap between what
applications need and what current frameworks provide leads to gextezode
complexity, to increased development time, and, most importantly, to increased
packet processing time due to the further operations needed to reasHe dbd-
ets into higher level entities.

The complex analysis operations of such demanding applications incur an in-
creased number of CPU cycles spent on the processing of everyezpacket.
Consequently, this reduces the overall processing throughput thapgheation
can sustain without dropping incoming packets. At the same time, as the dpeed o
modern network links and their traffic volume increase, there is a growimgde
for more efficient packet processing using commodity hardware that vidlkide
to keep up with higher traffic loads. Also, the increased processing timacbf e
packet may lead to increased queuing delays and to an overall increthsel@
tency of the monitoring applications. To allow for almost real-time network traffic
monitoring, and for timely automatic responses against malicious activities ¢éhat ar
detected in the monitored network, a low latency should be also guarantéiee by
monitoring systems.

Moreover, all these network monitoring applications have always been de
pended on an efficient and reliable underlying packet capture meamhahiew-
ever, such network traffic monitoring systems are now called to operateiimoze-
dictable and sometimes hostile environment where transient traffic and malicious
attackers may easily overload them up to the point where they cease to functio
correctly [L09 135. For instance, attackers may send crafted packets that exploit
algorithmic complexity attacks to intentionally overload a NIDIS%. Unfor-
tunately, traditional packet capturing systems, have not been designasddh
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hostile environments and do not gracefully handle overhead conditiomsex-
ample, when faced with overload conditions and full packet queues, packet
capturing systems start to discard all incoming packets for as long as tHieaul/e
persists and until it resolves itself. Thus, malicious packets may pass thtioeig
overloaded network monitoring system undetected with high probability| égua
the percentage of packet loss.

To keep up with higher traffic loads, more complex analysis, overloadgserio
and overload attacks, network operators can buy and use more hangsaurces
for network monitoring purposes. However, this will significantly increthgecost
and the energy consumption of these monitoring systems. Contrary, we likauld
to build efficient network traffic monitoring systems that will be able to utilize the
recent advances in today’s commaodity hardware, such as modern feafdet-
work Interface Cards (NICs) and multicore processor architectukeshe same
time, we need to achieve high performance and robustness for thesesysie
packet loss due to extreme processing or traffic load, low processingyatgace-
ful response to overload conditions, and resilience against attaclitarghese
network monitoring systems.

1.2 Challenges and Problem Statement

There are many research works proposing technigues, algorithmsysiean de-
signs to improve network monitoring and network-level intrusion detection sys
tems. Moreover, there are several open source and commercial sslidramet-
work monitoring and network security. We review related works in ChaBiter
However, we see several shortcomings of the existing network monitorirzgiél
and tools, and we show the need for improvements along these directiasnin
mary, we consider the following main challenges for building efficient networ
traffic monitoring systems:

e Challenge 1: Traffic monitoring systems should be able to hanatiere
resource-intensive monitoring applicatiotit spend significantly more pro-
cessing time on each captured packet, due to the more complex operations
they need to perform.

e Challenge 2: Traffic monitoring systems should be able to hantuilgher
traffic throughputas the speed and volume of network links tend to increase
rapidly.

e Challenge 3: Traffic monitoring systems should be able to operate even
whenthe system is overloadesiith a best effort approach. That is, when
there are no available CPU cycles to process all the captured trafficag-the
sirable level, the monitoring system should have an overload control ts focu
on the most important tasks or traffic subsets, and minimize the impact of the
overload on the overall application’s performance and accuracy.élievb
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thatit is very difficult to ensure that such overload situations will neveunc
even with very careful provisioning. Thus, as the traffic load increasel
monitoring applications becoming more resource demanding, the core of a
network monitoring system should have mechanisms for graceful respons
to such overload conditions.

e Challenge 4: Traffic monitoring systems should be able to tolemtasion
attempts such as algorithmic complexity or denial of service attacks try-
ing to intentionally overload the systerB83 34, 109,119 135, or evasion
attempts based on TCP segmentatigii, f1, 66, 150. Thus, we need to
develop mechanisms to detect and mitigate attacks against the monitoring
systems, so that they will be able to operate correctly under the presence
of adversaries and evasion attempts, even in case of unknown attatks an
vulnerabilities that have not yet been discovered.

e Challenge 5:Traffic monitoring systems should havéoav latencyto allow
for timely automatic reactions when malicious activities are detected. As
monitoring applications operate at real time, a low latency is necessary to
guarantee a responsive system for successful network managemadtaick
prevention.

e Challenge 6: Many applications need to monitor network traffichagher
protocol layerssuch as transport-layer streams or application-specific proto-
cols. On the other hand, existing libraries for the development of monitoring
applications provide just raw IP packets. This leads to increased complexity
and runtime overhead for reassembling packets into higher-level entities.

e Challenge 7: Traffic recording systems need s$tore a high traffic volume
for a long period using limited storader retrospective analysis. Thus, they
need to increase the retention period by reducing the storage needed, e.g
using effective compression techniques or by selectively storing the most
useful traffic.

e Challenge 8: Traffic monitoring systems should use modemmmodity
hardwarein order to be cost-effective and easy to deploy. Thus, they should
utilize in the best possible way the recent advances in commaodity hardware,
such a features of modern NICs and multicore processor architectures.

e Challenge 9: Frameworks and systems that provide support for network
monitoring applications should offeerformance optimizations that are trans-
parentfrom the programmers and network operators.

In this dissertation we propose and we study approaches that try tcsaddrre
the above challenges. Given the necessity for efficient network traffittoring,
we aim to design and build new systems and frameworks, or improve the existing
ones, to facilitate the development of efficient network monitoring applicatmns
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improving their runtime performance and their security in a transparent iway f

the programmer. The proposed frameworks will run over commodity haejwa
utilizing recent advances and features offered by the hardwarexgrahd over
general purpose operating systems that are typically used today foyoiepsuch
applications. Moreover, we want to design monitoring systems that will be able
to operate under heavy processing and traffic load. They shouldd®é¢oaiandle
even the cases when the CPU cycles needed by a monitoring applicationto ana
lyze the incoming traffic are more than the available cycles in the hardwade use
This means that we need to add domain-specific intelligence within the monitoring
libraries and systems to focus on the most interesting traffic, or performmaise
critical processing, when the available CPU cycles are not enough tegzall
traffic at the same level.

1.3 Proposed Approaches

To address the above challenges, we aim to apply new techniques withiysthe s
tems and frameworks that can be used by application developers forrketaftic
monitoring, and explore their efficiency and performance benefits. Thaigues

we propose rely on domain-specific knowledge of network monitoring applic
tions. We believe that in order to make the lower layers of the monitoring systems
more efficient under heavy load, we need to understand the needs ajfiiliea-
tions at the higher layers. Thus, we add the proper functionality in therkyitg
libraries based on these observations to provide performance improtzeearah
other features and optimizations.

In summary, in this dissertation we propose the following approaches:

e Locality Buffering : First, we explore how we can improve the memory ac-
cess locality in network monitoring applications. To achieve that, we need
to identify common memory access patterns in different monitoring appli-
cations and then generalize these patterns so that the underlying system ca
exploit them to improve data and code locality. We found that reordering
the captured packet stream by clustering packets with the same port number
before they are delivered to the application leads to improved code and data
locality in a wide class of monitoring applications. This is because these
applications keep state per each transport-layer stream or per eappli-7 a
cation, while sorting packets based on port numbers tends to group togethe
packets of the same stream and same L7 application. Improving the memory
access locality results in significantly less cache misses, and thus to an over-
all performance improvement. We implemented this packet reordering tech-
nique, which we call akcality buffering within the libpcap packet capture
library [92]. This way, existing monitoring applications can transparently
benefit from the reordered packet stream without code modifications.
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e Selective Packet DiscardingNext, we explore ways to improve the behav-
ior of a network monitoring system that is overloaded for a long time period.
We use NIDS as a case study of a popular network monitoring application.
To improve the accuracy of an overloaded NIDS, we propose to fogus o
the most important packets, i.e., the packets that are more important for at-
tack detection. We designed, implemented, and evalusgkttive packet
discarding (SPD)a technique based on the above idea. In our research we
found that the first few packets of each connection, i.e., of each wansp
layer stream, are more likely to contain an attack pattern. Also, these packets
are more useful for the correct operation of the NIDS. Thereforeages of
extreme load, the NIDS can benefit by proactively discard the less importan
packets, i.e., the packets towards the end of large streams in our case. This
way, we can avoid random and uncontrolled packet loss by the undgrlyin
packet capture subsystem, part of which typically relies within the operating
system’s kernel.

e Selective Packet PagingTo tolerate attacks trying to overload a network
monitoring application, like algorithmic complexity or other denial of ser-
vice attacks, we proposselective packet paging (SPFJelective packet
paging proposes (i) to add a second layer into memory management, so that
excess packets will be stored to disk and will not be dropped when memory
buffers are full, and (ii) to detect the packets that take too long to be pro-
cessed, thus delaying the monitoring system, using a randomization-based
detection approach, and push only these attack packets to secondagg sto
while processing them with lower priority. We implemented this technique
within libpcap, and we showed that it is able to make a network monitoring
system resistant to any overload attack or any other overload situation.

e Stream-oriented traffic capture and analysis: We also identify a gap be-
tween existing monitoring libraries and applications’ needs: although there
is a need to monitor network traffic at the transport layer and beyond; exis
ing libraries deliver only raw packets. To address this issue and fill tigis ga
we propose th&tream capture library (Scapjhe first network monitoring
framework built from the ground up for stream-oriented traffic proogss
Based on a kernel module that directly handles flow tracking and TCRrstrea
reassembly, Scap delivers to user-level applications flow-level staistits
reassembled streams by minimizing data movement operations and discard-
ing uninteresting traffic at early stages, while it inherently supports paral-
lel processing on multicore architectures, and uses advanced capabflities
modern network cards.

e Other Applications: Finally, we show that we can use the same principles
to develop techniques for improving two other problems in network mon-
itoring systems as well. First, we focus on reducing the detection latency
of an energy-efficient NIDS. This is necessary, as we found thasttte-
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of-the-art approaches for low-power design, such as frequscaijng and

core deactivation, leads to a disproportionate increase in packetspioge
and queuing times, which has a negative impact on the detection latency and
impedes a timely reaction of a NIDS to the incoming attacks. To address
this issue, we present LEONIDS: a NIDS architecture that pro\ndésiow
power consumptiorand low detection latency at the same time, by iden-
tifying the packets that are more likely to carry an attack and giving them
higher priority so as to achieve low attack detection latency. Then, we ex-
plore ways to store raw network traffic for long-term periods using tzors
storage, which is extremely beneficial for a multitude of monitoring and se-
curity applications. Towards this goal, we propd¥@Dtrace a technique

for storing full-payload packets for arbitrary long periods using fisexd
storage. RRDtrace divides time into intervals and retains a larger number
of packets for most recent intervals. As traffic ages, an aging daemon is
responsible for dynamically reducing its storage space by keeping smaller
representative groups of packets using the proper sampling strategy.

1.4 Thesis and Contributions

Thesis statemenBuilding network traffic monitoring systems based on the transport-
layer stream abstraction, instead of the IP packet abstraction, can reakedsis-
tant to overloads and improve their performance.

We intent to show that the above statement applies to modern network moni-
toring applications. Towards this goal, in this dissertation we make the following
five main contributions:

e Contribution 1. We presentocality buffering a technique that can signif-
icantly improve the memory access locality in network monitoring applica-
tions by transparently reordering the captured packet stream bagsarton
numbers. The improved code and data locality leads to less processing time
per packet, and thus to increased processing throughput, due to tleededu
number of CPU cache misses.

e Contribution 2: We show that the accuracy of an overloaded NIDS can be
significantly improved by focusing on the most important packets for attack
detection, which are the first few packets of each connection. Ouoapipr
calledselective packet discardingionitors the system load and proactively
discards packets towards the end of long flows based on a per-floff cuto
when the system becomes overloaded. This way, random and uncahtrolle
packet loss is avoided and the NIDS is able to detect almost all the attacks
even under extreme load conditions.

e Contribution 3: To tolerate against overload attacks we propasiective
packet paging a technique based on (i) a two-layer memory management
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system, which stores packet to secondary disk storage to ensure that no
packet will be lost under overload, and (ii) a randomization-based -detec
tion approach, which finds and isolate any crafted packets that slowith@wvn
monitoring system. We show that selective packet paging is able to tolerate
any overload attack in a generic and effective way.

e Contribution 4: We identify a gap between monitoring applications and li-
braries: while applications are interested to analyze network traffic at-tran
port layer and beyond, packet capture libraries provide just rawatk-p
ets. This gap leads to increased application complexity and reduced per-
formance. To address this issue, we introduceStream capture library
(Scap) the first network monitoring API build from stream-oriented traffic
capture and analysis. Scap provides the user-level application witeraas
bled transport-layer streams, with inherent multicore support and a vafiety
features, such as subzero copy for stream truncation, prioritizégpass
for overload control, and flexible stream reassembly.

e Contribution 5: We show that our ideas can be applied to other problems
of network monitoring systems, such as reducing the detection latency of
an energy-efficient NIDS and store network traffic traces for longtee-
riods using fixed-size storage. To reduce the detection latency of arpowe
proportional NIDS, we identify the packets with higher probability to contain
an attack and assign them higher priority to achieve fast detection. Fer long
term network traffic recording we choose to sample less traffic as traffic g
older. This way, we focus on most recent traffic while still keeping samples
of past traffic. To select representative samples of older traffic, xpkee
different sampling strategies that fit to each monitoring application, such as
packet sampling, flow sampling, or sampling the number of bytes we keep
from the beginning of each flow.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Ch&peovides some back-
ground information about network traffic monitoring systems and applicatos
Chapter3 presents related work in the broader area of network monitoring systems.
In Chapted we demonstrate how the memory access locality of a network traf-
fic monitoring application can be significantly improved by properly reatirang
the packet stream, based on the source and destination port numbepsedafet
the design, implementation and evaluationaxfality buffering a technique that
exploits this property to increase code and data memory access locality aiid sig
icantly reduce L2 cache misses, resulting in an overall performance et
in network monitoring systems.
In Chapter5 we show that under extreme overload conditions, when packets
will be unavoidably dropped by the system, a NIDS can improve its accimacy
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carefully selecting the packets that will be pro-actively dropped. To this we
introduceselective packet discardingn adaptive technique that pro-actively drops
the less important packets for attack detection when an overload is identgfied b
continuously monitoring the system’s performance.

Chapter6 introducesselective packet pagin@n approach for tolerating over-
load attacks, such as algorithmic complexity attacks, against network monitoring
systems. Selective packet paging combines a two-layer memory managesient sy
tem and a detection technique for packets aiming to slowdown the system. We
present the design, implementation, and evaluation of selective packet)peg
der overload attacks.

In Chapter7 we explain the need for efficient traffic capture and processing
at the transport layer. To accommodate this need we propos®tigmem capture
library (Scap) a stream-oriented framework for high-performance capturing and
processing network traffic at the transport layer. We show that buitdireffic pro-
cessing framework using abstractions from transport layer allows faowved per-
formance, reduced application development complexity, and many feasuces
as prioritized packet loss and subzero copy.

In Chapter8 we explore how we can apply similar approaches in two other
problems of network monitoring systems. First, we identify an energy-latency
tradeoff for network-level intrusion detection systems. To resolve thietth we
propose to process the packets that are more likely to carry an attack whir hig
priority. We present the design, implementation and evaluationEafNIDS a
low-energy and low-latency NIDS, based on the above idea. Thenfudg the
problem of long-term network traffic recording with fixed-size storage.allow
the archiving of network traffic for long time periods we propaisdfic aging a
mechanism that keeps more traffic for the most recent periods, and wenegle
this approach in a tool calleRRDtrace Also, we study how the traffic should
be sampled as it gets older to match the requirements of retrospective network
processing applications.

Finally, in Chapte® we summarize the contributions and results of this disser-
tation, and we outline research directions that can be explored in futuke wo
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Background

In this chapter we give background information about network trafficitndng
systems and applications.

2.1 Network Traffic Monitoring Systems

Network monitoring applications analyze the network traffic by capturingesad
amining individual packets passing through the monitored link, which areahen
lyzed using various techniques, from simple flow-level accounting, togragied
operations like deep packet inspection. Network traffic monitoring systeens a
usually deployed close to the access link with which the monitored networkis con
nected to the Internet. This way, the monitoring applications have a broad view
of the network traffic. Depending on whether the monitoring systems opemnate
separate copies of each packet, or whether they operate within the pgh#hradt-
work, where packets are routed from source to destination, the netaarkoring
systems are divided infmassiveandinline.

Network monitoring applications run either in specialized hardware, or in gen
eral purpose commodity hardware. In this work we mostly consider thendeco
case, although the same techniques we propose can be applied to monisfing s
tems running in specialized hardware as well, to address the same problems. A
monitoring applications typical run over general purpose operatingragstiey
rely on apacket capturesubsystem, part of which is usually implemented within
the operating system kernel. As these operating systems are not optimized fo
network monitoring, their performance for packet capture is usually ptoim.

This is because several data copies are required to transfer eaahedapacket
from kernel to user space, along with an increased number of comiéxhes

13
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between kernel and user level processes, and increased pngcse spent in
kernel and interrupt handling. Therefore, several approaces lreen proposed
to reduce this overhead, which is unnecessary overhead for sysseasjpecifi-
cally for network monitoring $8].

Applications are often interested in monitoring just a subset of the total pack-
ets passing through the network. Thpacket filteringoperation is performed to
efficiently discard the uninteresting packets, usually within the operatingrays
kernel, to avoid unnecessary packet copies to user level. Also, imateases
monitoring systems cannot capture and process all the packets of a kdtwor
In this cases, packet sampling techniques are commonly used. Howsslretesh-
niques are not adequate for all network monitoring and security applisatiam
other way to process a high traffic load is to distribute the packets among multiple
CPU cores or multiple servers. In the rest of this section we give moreniafioon
about packet capture systems, packet filtering, packet sampling,istnithuded
packet processing approaches.

2.1.1 Packet Capture Systems

The packet capture process is the journey of each packet from themit it is de-
livered to the passive monitoring application. First we briefly describedgelar
packet capture process in Linux, and then we describe state-ofttteshniques
for improving the performance of packet capture.

Packet Capture in Linux

Most passive monitoring applications are built on top of libraries for gempaicket
capturing. The most widely used library for packet capturirigibpcap [92]. In
Linux, libpcap is based on PPACKET socket for packet capture. Figuzel de-
picts the whole process of packet reception in Linux. Packets travelthhe Net-
work Interface Card (NIC) through the kernel to reach the user kepplication.
In Linux, this is achieved by issuing an interrupt for each packet or sawrinpt
for a batch of packet®©9B, 125. Then, the kernel hands the packets over to every
socket that matches the specified BPF fil@l]] In case that a socket buffer be-
comes full, the next incoming packets will be dropped from this socket. , thas
size of the socket buffer affects the tolerance of a passive monitgppigation in
short-term traffic or processing bursts. Finally, each packet is capiadnemory
mapped buffer that is accessible by the user-level application.

The packet capture mechanism consists of three tasks: (i) the IntSenpte
Routine (ISR) and (ii) the Soft Interrupt handler (Softirq) in kernel &n) a user
level task that calls a system call to access the next packet from kbroabh a
memory mapped buffer. There is a run time memory allocation from the interrupt
handler for the received packet and a further copy to a memory mapgtst, b
shared between kernel and user level. First, for each incoming ptek&lIC
issues an interrupt. The interrupt handler disables hardware interogpies the
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FIGURE 2.1: Packet capture architecture in Linux

packet from NIC to newly allocated memory, enqueues it to an incoming gueue
issues a software interrupt, and then enables again interrupts. Whemrdnang
queue becomes full (i.e., reaches the high congestion level) new incontketpa
are being discarded from it, and thus from all the open sockets. Pac®e@so

be dropped in NIC's buffer when interrupts are disabled.

When the control of the system is passed to kernel, the software intbanpt
dler runs. For PEPACKET sockets, a software interrupt handler function is called
for each packet and each open PACKET socket. The software interrupt handler
dequeues each packet from the incoming queue and calls a functioacketil-
tering for each open PPACKET socket. Packet filtering in Linux is very similar
to BPF filtering P1]: if a filter has been assigned to an openPRCKET socket,
each packet will be checked against it. If the packet does not matchténgiwill
be discarded from this socket and will not be enqueued in the socket Queue.
Else, if the packet matches the BPF filter, it is enqueued in the socketisgece
gueue. As the actual packet data does not change by any sockettimsikiernel,
they are not copied in each socket’s buffer. Only the packet’s metadatmpied
in each buffer and a pointer is used to indicate the actual packet, whichrisdsh
by all PEPACKET sockets that enqueue this packet. Before adding each packet
a socket’s receive buffer, the software interrupt handler chetlether this queue
if full. In case it is full, the packet is dropped from this socket’s queulee Fize
of a socket's queue can be set by the applications. The finall step offitere
process is fromh i bpcap. It reads each packet from linux kernel through an open
PF_PACKET socket and a memory mapped buffer, shared between kernel and user
level.

In summary, the main problems that limit the performance of packet capture
in Linux are the following: (i) high interrupt service overhead per eaabkpt,
(i) kernel-to-user-space context switching, (iii) data copy and memorgatilon
costs, and (iv) redundant protocol processing in kernel per packet. Several
techniques have been proposed to deal with one or more of the aboegs,igsu
order to improve the packet capturing process. We briefly mention somerof th
in the remaining of this section.
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In order to avoid the kernel-to-user-space context switching and peckies
from kernel to user space for each captured packet, a memory-mepgduliffer
is used to store packets. The general principle of memory-mapping is to allow
access from both kernel and user space to the same memory segmentseihe u
lever applications are then able to read the packets directly from the riffigr,buf
thus avoiding a context switch to the kernel.

The ring buffer plays the same role as the socket buffer that we dedczdr-
lier. The kernel is capable of inserting packets captured by the netwidne
into the ring buffer, while the user is able to read them directly from thererdar
to prevent race conditions between the two different processes tranheader is
placed in front of each packet to ensure atomicity while reading and writicl-p
ets into the buffer. Whenever the processing of a packet is over, it ikethas
read using this header, and the position in which the packet is stored idem@ts
by the kernel as empty. The kernel usesadpointer that points to the first avail-
able position to store the next arrived packet, while the user-level apptiaases
a start pointer that points to the first non-read packet. These two pointersrguara
tee the proper operation of the circular buffer: The kernel simply itetatesigh
the circular buffer, storing newly arrived packets on empty positionskdocks
whenever the end pointer reaches the last empty position, while the udieaapp
tion processes every packet in sequence as long as there are avadlelkdes in
the buffer.

However, in Linux packet capture, packets are still copied from DMAcalied
memory to the memory mapped ring buffer by the software interrupt hart#es.
copyapproaches can reduce data copy operations by sharing memory helitvee
ferent network stack layers within kernel and between kernel antspsee.

To reduce interrupt load, some NICs issue a single interrupt for a gobup
packets instead for every packet received. To avoid interrupheegls, polling
based operation instead of interrupts has been proposed. Polling&alktme
but increases the average receive latency. Moreover, periodicdlitygpthe device
for incoming packets instead of interrupts is dangerous for loosing ke
sudden burst or in high rates. Thus, the time period for polling is importamtier o
to ensure that packets will not be lost in the NIC’s queue. Furthermoreasa
of low rates, polling very often the NIC without having any packers atimay
perform worse than interrupts. One solution is to try to guess the rate afiingo
packets, based on previous measurements, and adapt the polling time tperiod
this rate. Also, a common technique is to switch from interrupts to polling and
backwards according to the incoming packet’s rate. For low rates, iptsraue
preferable while in high rates polling will lead to better performance. The NAPI
polling driver [125 is available in Linux kernel. At high packet rates, the DMA
buffer is polled to process the packets, thus interrupt service owkarehlivelock
phenomena are avoided.
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Enhancing Packet Capture Performance

To improve the performance of packet capturing, several systemsbeavepro-
posed to replace PPACKET: PERING [37,55], netmap 123, PFQ [1g], and
PacketShadeBp]. The common techniques used to overcome limitations of gen-
eral purpose operating systems on packet capture are: (i) memosafigration
and re-use, (i) parallel direct paths, (iii) memory mapping, (iv) zenaycdv)
batch processing, (vi) CPU, interrupt, and memory affinity, and (vii) esgjve
prefetching. These maodifications are implemented in many different layé&: N
drivers, operating system kernel, and user-level libraries.

One of the state-of-the-art system that was designed to replaBACKET in
order to improve packet capture performance isSBNG [37]. PF.RING focuses
on bypassing packet copies and redundant protocol processinigur kernel for
passive monitoring interfaces, reducing the packet’s journey from tetdthe
user application. To achieve this, it uses a ring buffer that is memory mmaped in
user space for storing the packets. Packets are copied by the NEZ diiectly
from the device to the ring buffer, which is accessible from user levaigsses.
In case that a PIRING socket is bounded to a network device, no further protocol
processing will be done by the kernel, resulting in fewer CPU cyclest gmm
packet. This approach assumes that NIC is used only for passiveaiogpand its
packets cannot be used by any other socket expe®IRIE sockets.

Utilizing Multicore Processors

To utilize multicore processors, packet capture libraries rely on NICsliiotlsp
packets into multiple hardware queues. Many modern Ethernet cardsrstipg
partitioning of the incoming receive packet queue (RX-queue) into abRX-
queues, one per each core. This modern hardware feature is Ralteive Side
Scaling (RSS)75]. RSS uses a hash function on packet headers like IP addresses,
port numbers, and protocol number to assign each packet into one diffdgrent
hardware queues. This way, the NIC achieves a good enough loactingldased

on the hash function. Moreover, the traffic is balanced per-flow a¢heshardware
queues: packets belonging to the same connection will be directed to the same
gqueue, allowing for statefull inspection by accessing only a single RXteu&o
exploit parallelism offered by multicore architectures, the system typicaélg as
number of hardware queues equal to the number of the available CP&] eock
assigns one packet queue at each core.

To match this level of parallelism and speed-up the packet capture priocas
multicore processor, the packet capture module in the operating systeeh keed
to spawn one thread per each core that polls a respective RX-dauE¢r exam-
ple, PERING kernel module exposes a different queue to user-level applcatio
to allow for multithreaded packet processing at user level.
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Using Specialized Hardware

Another possible solution to accelerate packet capturing is to use spetiadizt
ware optimized for high-speed packet capture. For instance, DAG mimigjtor
cards P] are capable of full packet capture at high speeds. Contrary to commod
ity network adapters, a DAG card is capable of retrieving and mapping nietwo
packets to user space throughexo-copyinterface, which avoids costly interrupt
processing. It can also stamp each packet with a high precision timestamgeA la
static circular buffer, which is memory-mapped to user-space, is useditainiv-

ing packets and avoid costly packet copies. User applications can diaectgs
this buffer without the invocation of the operating system kernel.

When using DAG cards, many performance problems occurred in Lintkepa
capturing can be eliminated, but at a price that is prohibitively high for magg-o
nizations. On the other hand, commodity hardware is always preferathi@ach
easier to find and deploy for network monitoring. In addition, specializedwere
alone may not be enough for advanced monitoring tasks at high netweekisp
e.g., intrusion detection.

2.1.2 Packet Filtering

Packet filtering is a commonly used technique for data reduction, that issege

in monitoring systems due to limited processing and storage resources. Fiigering
the deterministic selection of packets based on their content. Each papketch

by the monitoring network interface is matched against a set of rules in twder
determine whether it is interesting for a particular application. Since the arobunt
traffic traveling on a network segment, especially in the network core, eande,
filtering out irrelevant traffic is an essential step to reduce the demandms t&fr
storage and processing power on the monitoring and analysis tools.

Filtering usually implies extracting relevant fields from each packet andgjusin
their value to evaluate the rules. For example, packets from a given hd3tTd?
packets can be selected using filtering. Packet filtering is a special tpaeket
classification §4] that is used by various networking functions to group packets
with common properties and separate packets that need to be proceferediljt

Many approaches have been proposed and implemented for in-kexciadtp
filtering. High performance packet filtering is a very important issue in ntwo
monitoring, since it is usually the first task performed by a monitoring application
in order to select the subset of the traffic it is interested in, and it has tadbe f
Therefore, implementing packet filtering as early as possible is necdssatig-
carding the uninteresting packets at the first steps, avoiding furtheceaeagary
processing of these packet by the kernel layers. Thus, implementat&ids the
OS kernel provides efficient packet filtering in this extent. Moreovaraeket
filtering technique has to perform fast and efficient rule matching in thearktw
packets, while it also has to be flexible and expressive enough to ceveppiica-
tions needs in selecting the desirable portion of the traffic.
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A popular in-kernel packet filter is BPP]]. BPF defines an assembly-like
language to perform comparisons between packet header fieldsvemdvaiues,
and complex combinations using such comparisons that compose a treleckase
pression evaluation. In Linux, one BPF filter can be assigned to eadtARKET
socket. This is usually perform during the initialization process of a monitoring
application. BPF filter evaluation in Linux is performed inside the kernel. i&efo
the software interrupt routine enqueues each packet to a socket, ib# packet
is checked with the socket's filter — if a filter has been assigned to this sdoket.
order to evaluate the BPF filter, the kernel employs an optimized interpretiiefo
assembly-like BPF filter language. Thus, packets not matching the filter are im-
mediately discarded before enqueued to the socket buffer and copisdrtspace.
Packets that matched the filter are copied to user space for furthespingéy the
applications. This makes the BPF filtering implementation efficient for improving
the packet capturing performance, so applications should utilize filteriegeuer
it is possible to significantly improve their performance.

The packet filtering computation in case of BPF is fast due to the optimized
interpreter for the assembly-like BPF language which describe the filtdt. fiBP
tering language is expressive enough to support rules based cet paekler fields
for the basic network protocols. Thus, it can support filters base® @ddresses,
port numbers, etc. However, BPF supports only stateless filtering (foiteper-
formance high). Also, filtering based on payload inspection is not posside-
erally, there is a tradeoff between flexibility and performance in packeaifigeso
the proposed techniques either choose to focus in one of these twoshboitrg
to keep a good balance between them.

Dynamic Packet Filtering

Dynamic packet filteringefer to on-line packet selection, where filtering criteria
may frequently change over time. When a monitoring application cannot fully
specify its criteria a priori, but the unknown part can only be determinedrat
time, the filtering criteria have to be updated. For instance, filters that match the
traffic of peer-to-peer applications, FTP transfers at dynamically rgések port
numbers, RTSP and other multimedia protocols, VolIP (SIP protocol), neleel to
updated with the dynamically negotiated port numbers. Also, NIDS may decide to
perform more expensive and deep packet analysis on suspiciolss flays upon

the detection of a suspicious flow (at run time) a new or updated filter sheuld b
defined for this task.

With BPF and other techniques used for simple packet filtering operatipns, u
dating the filter is an expensive and slow operation, which may lead to a pik&bd
packets will de lost. This is because these filtering techniques were rnighdéds
for dynamic filtering. Proposed solutions for this problem either attempt to modif
the simple packet filtering techniques, by reducing the cost of filter updaiing
propose new dynamic filtering techniqudgy, 157.
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Hardware Filtering Capabilities at the NIC

Modern NICs offer advanced packet filtering capabilities in hardwakés way,
packets can be filtered at the NIC layer, which is very efficient, as pacthat

do not match the specified filter will be discarded directly at the NIC. They, th
will not be copied into the memory of the monitoring system, and no CPU cy-
cle will be spent for uninteresting packets. Therefore, monitoring syssbimsld
utilize NIC's filtering capabilities and should push their filters into the hardware
to significantly improve their performance. Dynamic packet filtering can be als
implemented with hardware filter8§.

Moving Packet Processing to Kernel Packet Filter

Packet filtering techniques usually perform only packet discardingcket copy
operations in kernel, based on stateless rule matching. More complex packe
cessing is left for user level applications. Other approaches, sudhFaF 6] and
FFPF [L9], move more packet processing capabilities from userspace into kernel,
reducing context switches and improving the overall performance. Fgrihi®se
these techniques provide a richer programming framework for packe¢gsing at

the packet filter level. Also, they use in-kernel persistent memory to pecstate

in packet filtering.

2.1.3 Packet Sampling

Packet sampling is an other commonly used technique for data reduction, whe
the network traffic is too much to process or store. Sampling is the selection of
a representative subset of packets. This subset is used to infetekiymrabout

the whole set of observed packets without processing them all. Theigele@y
depend on packet’s position, packet’s content, or random decisiohie Yacket
filtering is a deterministic selection of packets based on their content, whicksmean
that packets with the same properties will be always selected, packet samplin
is a non-deterministic selection of packets, as it cannot be determined onty fr
packet’s content. The selection may be random or not: although it may agdeadle

on some packet properties, it not necessary that all the packets mathbsey
properties will be selected — only a percentage of them may be sampled.

Several different sampling strategies have been propakgd They are cur-
rently being standardized by the Packet Sampling (PSAMP) Working Grbilne
Internet Engineering Task Forces (IETHY]. The strategy that each system se-
lects for sampling is important for the accuracy of the monitoring application that
will use the sampled data, since the set of sampled packets should beregres
tive enough for the purpose needed. The deployment of a samplingygtedtes
at the provisioning of specific characteristics of the parent populatienl@awver
cost than a full census would demand. Therefore, in order to plan dkugam-
pling strategy it is crucial to determine the needed type of metric that should be
estimated and the desired degree of accuracy in advance. The metricre$tinte
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can range from simple packet counts up to the estimation of whole distribufions o
flow characteristics.

Regarding the implementation of sampling techniques in a network monitoring
architecture, similar with filtering it will be more effective when implemented as
early as possible, e.g., within the OS kernel, in order to discard early theyhsd
packets. PRRING [37] implements sampling before storing the packets in the ring
buffer, at the device driver level, while other techniqug9] [mplements packet
sampling by extending the BPF implemenation.

Sampling is very often implemented in high-end routers today, for recording
aggregated sampled traffic statistics like sampled NetFI&djs Packet sampling
is an attractive techniques for routers because it is computationally effia®it
requires minimal state and counters, and less storage. As routers’ maatiope
is not traffic monitoring, they cannot offer much of their resourcesh sicCPU
and memory, for this purpose. Moreover, the high bandwidth usage iretin@rk
to transport the collected data records from routers to a NetFlow collectdninga
can be significantly reduced using sampling. Adaptive filtering, basededrétfic
load, has been also proposed.

Common Sampling Strategies

The sampling techniques can be classified into two main categqaeket sam-
pling andflow sampling Packet sampling is simple to implement with low CPU
power and memory requirements. However, it is inaccurate for the irdfereh
flow statistics such as the original flow size distribution. For instance, it ig eas
to miss the short flows. Flow sampling has been proposed as an alternative to
overcome the limitations of packet sampling, e.g., to improve the accuracy in flow
statistics inference. However, it imposes increased memory and CPU pewer
quirements, which may be prohibitive for implementing in routers. To partially
address this issue, especially to reduce memory and bandwidth requiretr@eimts
niques like smart samplingtg] and sample-and-holbP] have been proposed as
two variants of flow sampling with a focus on accurate estimation of heavy4itter
Systematic packet samplimyolves the selection of packets according to a de-
terministic function. There are two ways to trigger the selection: count-haitled
the periodic selection every K packets or time-based, where a packédedsese
every constant time interval. The first approach gives more accusiltisén es-
timation of traffic parameters. Systematic sampling is easy to implement, but it is
vulnerable to bias errors in metrics with related intervals and can be pretigted
attackers when the data are used for security applicatiomrantiom packet sam-
pling, a packet is selected with a probability basd on a random process. §pntra
Random flow samplinfirst classifies packets into flows based on flow construc-
tion rules. It then samples each flow with some probability. Usamglom additive
sampling the potential problems of systematic sampling are avoided. In this tech-
nique, the intervals between successive packet selections are iddapesndom
variables with a common distribution. In this way, synchronization and prduxlicta
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ity problems are avoided. Imout-of-N samplingn packets are randomly selected
out of the total N packets. For this sampling scheme each packet has an equ
chance of being drawn, and sample size is fixes. One way to achieve rthis ra
dom selection is to generate n different random numbers in the range &f.1ro
probabilistic samplingthe decision whether a packet will be selected is made in
accordance to a predefined selection probability. The sample size gafonvdif-
ferent trials. Inuniform probabilistic samplingeach packet has the same selection
probability, while innon-uniform probabilistic samplinthe selection probability
can vary for different packets. In the latter, the probability dependb@packet’s
content, e.g., to give higher probability to rare and important packets. ddere
using non-uniform probabilistic samplingndflow state packets can be selected
based on the state of the flow they belong to or by the state of the other flows
currently being monitored.

Sample-and-hol@52] performs a flow table lookup for each incoming packet
to see if a flow entry for the packet's flow exists. If exists, the packetlectsd
and the flow entry is updated. Otherwise, if there is no flow entry for th&giac
it is randomly selected and a new flow entry is created. The selection pirobab
ity increases with the size of the packet. Unlike random packet samplinggall th
subsequent packets of a flow are selected once the flow entry is creaeatt
sampling[48] is a size dependent flow record selection algorithm that applies to
complete flow records.

The sampling rate, i.e., the probability of packet selection in random sampling,
directly affects the accuracy of the estimated metric. The more packets-are se
lected, the better accuracy will succeed. On the other hand, high samalewy r
lead to more resources consumption. Adaptive packet sampling techradues
just the sampling rate to traffic load to further reduce memory consumption or to
improve accuracy. Adaptive NetFLovb]] is based on this approach. In order
to adjust properly the sampling rate, traffic rate prediction approacleessad.
Rate constrained sampling approaches select a specified number ¢$ olojecg
a measurement interval, thus limiting the sampling rate. Reservoir sampling is a
typical example. A special buffer (reservoir) holds a predefined murobsam-
ples. As more samples are being processed the contents of the resernydie ma
replaced. Therefore, the contents of the reservoir each time repeetsaa random
sample. Other approachet9] work under strict resource constraints by sampling
into a buffer of fixed size.

Applications of Packet Sampling

Packet and flow sampling has been used extensively to solve trafficeengig

and pricing problems, such as heavy hitter identificaté$)$2, 99, 120 and flow

size estimation22, 144. For these applications, flow sampling provides better
accuracy. To improve the estimation of TCP flow statistics using packet sampling
the use of TCP sequence numbers have been propt28d [The basic idea is
that the presence of unsampled packets can be inferred by noting teasimg
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byte counter given by the sequence number field of the TCP sampledpatke
shown that this technique helps to fill the holes left by packet sampling in iregain
information about the original flow sizes. However, it is still not as adeuas

flow sampling. Other sampling approaches try to provide statistical perfagnan
similar to flow sampling with computational cost similar to packet sampling cost
for TCP packets]44. Such approaches also utilize TCP headers, such as sequence
numbers and SYN/ACK/FIN flags.

While active measurements exchange probe packets between host peees to
sure network latency and packet loss rate, passive measuremenis @xpdova-
tions of traffic at two measurement points to infer the same metrics about fketwor
performance. For example, trajectory samplig has been proposed as a method
to correlate sampling of traffic at different locations. Routers samplegtacily
if a hash calculated over packet fields falls in a given set.

The use of sampled packet data has been also proposed for secahisign
and anomaly detection. However, the impact of packet sampling on theaagcur
of these applications depends on the sampling strategy and samplinQ;&@].[

2.1.4 Load Shedding

Load shedding techniques reduce the load of a passive monitoring Syiemit
is under severe stress, due to large traffic volumes or sudden traf§its bsuch
techniques should continuously monitor the system’s performance foloadsr
and upon the detection of an overload situation a subset of the incoming wlffi
de discarding from processing. Their goal is to avoid uncontrolledgidoks, by
selecting the traffic that will be lost, thus gracefully degrading their perémce
under excessive traffic load.

A load shedding approachl §] is proposed for the CoMo passive network
monitoring infrastructure70l. The CoMo monitoring system handles multiple
arbitrary and continuous traffic queries. Passive monitoring applicaticném-
plemented with such traffic queries in CoMo, i.e., they define the subset of the
traffic that their interested in, perform the desirable processing, aritlipe re-
sults. CoMo load shedding mechanism operates without explicit knowleédbe o
traffic queries. Instead, it extracts a set of features from the traféarms to build
an on-line prediction model of the query resource requirements. A &e@u
counter that describes a specific property of a sequence of paekgtsrumber
of unique source IP addresses). The features that best modekthegae usage
of each query are automatically identified and used to predict the overdlblfoa
the system. At the same time, measurements of the system resources are continu
ously performed, focused on CPU usage. By correlating the pastarsuf the
selected features with their corresponding CPU usage measurementgstdm s
can predict the CPU usage for the current counters of the same feaiihen an
overload is predicted, the system applies load shedding techniques unsiogru
packet sampling and flow sampling. At the same time, it attempts to maintain the
accuracy of the applications within acceptable levels.
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Load shedding is also proposed as a defence to overload attacks inadhe Br
NIDS [113. No specific packet discarding strategy is proposed, so the NIDS ope
ator will be responsible to define one. This idea is based on the assumptien tha
NIDS operator can choose a packet discarding strategy that captscoeet from
attackers (security through obscurity).

2.1.5 Distributing the Load

An other way to deal with a highly loaded passive monitoring application, is to
distribute its load in multiple CPUs. Multiple CPUs can be found by utilizing mul-
tiprocessing or multicore systems, as especially the latter have become commodity
hadrware today. Libraries and techniques for efficient programming iticone
systems have been developed, and can be utilized by passive monitoriuddio e

the offered parallelism. An other possible solution is to sustain a cluster ofdCs
offload the workload from a single computer. In this case, a traffic splittehina

is usually responsible to capture and then split the packets to the clustdryas,

to equally balancing their load.

In both techniques the thoughtful selection of how the traffic will be split into
the different CPUs, by the load balancer, is of significant importanadfid mon-
itoring and analysis initially seems as a non-parallel task, because packets tr
sequentially through the network links and they are captured in sequenae b
single NIC. However, the large number of parallel transport-layer siseia the
network, as we Il as the many different classes of packets and theediffepera-
tions the applications perform on each class, offer several straiglafdischemes
for traffic splitting. For instance, flow-based traffic splitting strategy sesigsod
choice for most of the monitoring applications.

The packet capture process can be improved in multicore processess by
ploiting the multiple RX queues in recent NICs and parallelize the packet eaptur
ing using all the available cores. Moreover, packets can be delivédiieimtly
to different ring buffers for utilizing multiple threads, so that the userilpaeket
processing can be parallelized using multiple threads or multiple processes.

However, today’s commodity hardware and software is able to captunerand
cess traffic up to few Gbit/sec rates, mainly due to limitations with the current PC
buses bandwidth, CPU load and disk bandwidth, in case of writing paekeistito
disk. To overcome this limitation, monitoring architectures for higher speads ha
been proposed by distributing the traffic across a set of machines &hablar to
process lower speeds. To split the traffic in multiple machines, custom asgdw
has been designed. Also, to avoid the use of custom hardware moderrefeof
Ethernet switches have been used to bundle lower speed interfacessimiglea
higher speed interface. Also, it is important to use the appropriate loaddala
ing method for distributing equivalently the load to each link. Common switches
support load balancing based on MAC addresses, |IP addressesupdbers and
combinations. Load balancing based on flow identifiers (IP addresskepanh
numbers) is a good choice, in order to keep the corresponding datad¢ngeth
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Applications \ Analysis \
Traffic Recording Full Packets, Storage
NetFlow Export Packet Headers, Storage
Accounting and Billing Packet Headers, Counters
QoS Monitoring Packet Headers, Counters
Accurate Traffic Classification Full Packets, Deep Packet Inspectipn
Intrusion Detection Full Packets, Deep Packet Inspectipn
Anomaly Detection Packet Headers, Machine Learning

TABLE 2.1: List with popular network traffic monitoring applications

2.2 Network Monitoring Applications

There is a multitude of network traffic monitoring applications, from security,
forensics and network surveillance to network performance monitoroupuent-
ing, and traffic classification. Tab®1lists some of the popular network monitor-
ing applications today, along with the analysis each one require to perfotheon
captured traffic.

Packet capture and dump42| is a very basic monitoring application, which
simply captures packets from the wire and may save them to disk for rettospe
offline analysis. It may be required to save full packets, i.e., both prbteamlers
and payload. In high traffic volumes, packet capture applications mag forc the
elimination of packets that are of no interest, using packet filtering, to eeG&tJ
and memory usage, as well as disk requirements for the storage of lariget pa
traces that can become very large in size in high traffic volumes.

Besides simple packet capture and dump, there are more advance neafrork
fic recording systems that aim to store full packets for a relatively low gesfo
time (retention) for retrospective analys&3[89, 108. These systems are focus
to increase the throughput that packets can be stored in modern stgstg@s
utilize the available store in the best possible way, e.g., by using compreission,
crease the retention period, and perform packet indexing operatispetn up
retrospective queries on large volumes of captured trébf: [There are several
potential applications of such systems: network forensics analysis,tideted
compromised machines, matching of new signatures in past traffic, evaladtion
new systems with real capture traffic, and any other types of retrogpectalysis.

NetFlow [29 is one of the most commonly used protocol for monitoring net-
work usage and collecting aggregated information about network traffah) as
NetFlow records. Collecting flow records is typically performed by roytshsch
gather and export such records to some collector. However, as therkedpeed
increases, most routers are not able to do full flow analysis and hage fpacket
sampling to keep upB[l]. Flow collection and export applications have been also
moved to passive monitoring sensors running in commodity PCs, which can be
used at high speeds when routers can not deliver flow records wiltkimng a very
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low sampling rate. For efficient processing of high traffic volumes, flopoeix
applications capture and process only the first few bytes of each tpadkeout
loosing any valuable information, in order to capture just the protocoldreahd
to discard packet payloads. Such flow records can be used to shiows/anfor-
mation about the monitored network traffic.

Internet and application service providers use accounting application to
their customers based on their actual traffic or network usage. Thesy@ing
applications are interested in accurately measuring various characteoisties
work traffic like bandwidth usage, flow statistics and top bandwidth consuming
hosts. These measurements require only header information per packetths
use ofsamplingtechniques has been proposed from several research workd to dea
with high network volumes with the minimum possible impact to the applications
accuracy.

QoS and performance monitoring applications focus in estimating useful net-
work metrics based on passive measurements, such as network Rapiid+Ee [77],
application-level Round-Trip Timé&H] and throughput, packet retransmissiobd [
packet reorderingdb], one-way delay and jitter, and packet loss raliog|. Header
only capturing is enough for all these applications, while some of them aezlba
on flow record statisticsl06]. For better resistance to high traffic speestanpled
data are often used.

The accurate classification of network traffic among the layer-7 application
that generate the respective packets has become a difficult task cairésanore
complex analysis. Instead of the traditional port-based classificationséhefaly-
namically allocated port numbers by many recent applications, and the pep-of
ular protocols, like HTTP, to implement several different applications altam-
poses more complex analysis in each packet, usually callddegspacket inspec-
tion). Therefore, protocol parsing, matching application-specific sigagtwithin
the packets’ payload, and several other heuristics are commonly LiSET9].

This kind of processing is much more CPU intensive, which leads to lower pro
cessing throughput and higher packet drop rate. To improve therpenfice under
high network load and reduce the CPU usage, traffic classification ajimlisanay
select a subset of the total packets for inspection. For instance, orilystifEacket

of each flow may be inspected for categorizing the flad},Jand only packets that
does not belong to an already classified flow.

Network-level intrusion detection systems play an important role in the security
of modern network architectures. A NIDS constantly monitors the netwoffictra
in order to detect attacks or suspicious activity by matching packet datastiga
known patternsJ13 124. Such patterns, or rules, identify attacks by matching
both header fields and payloads of the captured packets. While signatoieing
is a computationally intensive proce23], NIDS also need to perform operations
like packet decoding, filtering, and IP/TCP stream reconstrucééhtp form a
fully functional system. All these necessary operations make NIDS a Cfeb-in
sive application, significantly limiting its processing throughdi&7). Thus, under
high network volumes a significant number of packets will be dropped]ties
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in undetected attacks. A resourceful attacker may intentionally overlod®8 N
with a flood of crafted packets to passs real attack packets without tiapeas
they may be dropped before inspected by the NIDE[135].

Finally, anomaly detection approaches are based on profiling the network u
age under normal behavior, raising alarms when abnormal conditiodg&eted.
Packet headers or aggregated traffic statistics can be used fdiveffecomaly
detection and behavior analysis using machine learning techniques, whileeghe
of sampled data in anomaly detection metrics is still an open research quéskion [
88].

2.2.1 Network-level Intrusion Detection Systems

Network-level Intrusion Detection Systems, such as Srif2f][and Bro [L13,
match the network packets against a set of rules, using multiple pattern match-
ing techniquesy], regular expression matching{], and other complex analysis.
Moreover, they perform several other operations like protocol dieagp stream
reassembly, and protocol normalization. These requirements for mordeoomp
per-packet inspection and the constant increase in network speetimbétivated
numerous works for improving the performance of NIDSs. A lot of reseavorks
have been done to improve the algorithms used by a NIDS, e.g., the perfgman
of pattern matching algorithms and regular expressions evaluation, tosediea
overall throughput of NIDS. Other works propose the use of spee@lmrdware

or splitting the load into multiple processing units. Such solutions indeed improve
NIDS performance, but with an additional cost of a specialized haeaamulti-

ple processors instead of a commodity PC.

The Snort NIDS

Snort [L24] is a popular open source intrusion detection system baseadles
or signatures which describe attacks and other suspicious activities. Using these
rules it inspects the network traffic and whenever all options of one rutehma
against a network packet, it generates a respective alert at real tmog’sSules
are divided into two logical parts: the rule header and the rule optionsrulés
header determines the rule action that will be triggered in a case of a match and
also defines the protocol, the source and destination IP addressebeasulirce
and destination ports for the packets that will be checked against thisTrles,
only a subset of the packet, specified in rule’s header, will be matcredsaghe
rule’s patterns and regular expressions. The rule’s options containgraattack
description, the packet fields to be inspected, and the patterns or regpitassions
that may lead to a full match. Snort parses all the given rules and repsebem
with automata and a two-dimension list.

The Snort receives packets through libpcap packet capture libFanst, the
packet is decoded up to the transport layer. Then, Snort can beyaadiwith
several preprocessors: each packet will pass from each of #imeehpreproces-
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sors before the inspection engine. Such preprocessors are sédpdar defrag-
mentation, protocol normalization, stream reassembly, while a user is alstvable
implement and enable custom preprocessors as well. Then, packetbnoasth
the core detection engine, which is responsible for pattern matching operatid
attack detection. Moreover, the user can add custom or existing detekigng
Finally, there output plugins for alert generation and logging.

Using Specialized Hardware

To speed-up the inspection process, few NIDSs implementations aredraspd-
cialized hardware. Content addressable memd5$[157) is suitable to perform
parallel comparisons in packets payload against the NIDS rules, anficsigtly
accelerate a NIDS. Many FPGA-based NIDS architectures have be@amiemted

to accelerate pattern matchint3[ 14], while network processors have been also
used to speed-up NIDS operatior&0[35] Moreover, modern graphics process-
ing units (GPUs) have been used to speed up pattern matctAspfpr intrusion
detection.

Distributing NIDS Load

To cope with high traffic volumes, NIDS architectures have been propmsex-
ploit multicore processors for parallel inspectidilfl], or to distribute the load
across to multiple NIDS sensor84, 128 146. A slicing mechanism divides the
traffic into subsets, which are assigned to sensors in a way that east sahtains
all the necessary evidence to detect a specific attack without any rmesmhimu-
nication between the sensors. Moreover, the load balancer may useidyead-
back from the sensors about their current load in order to adapt ffie galitting
accordingly and improve load balancing decisions.

NIDS Tuning and Performance Adaptation

Provisioning and tuning a NIDS is a significant process for its correteffective
operation. Besides a static NIDS configuration, some research appsopoo-
pose to dynamically reconfigure the NIDS based on the run-time conditions. B
periodically measuring the NIDS’s performance, the system may deactivate
less critical tasks and analysB], or may process a different subset of traffic that
requires less processing from the NID&]. Other research approaches try to pre-
dict the resource consumption of a NIDS based on a traffic sample, arntiese
predictions to automatically derive a suitable NIDS configurati. [
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2.2.2 Traffic Classification Systems

Peer-to-peer and multimedia applications are often violating corporate palities
when detected they are often blocked or rate limited. Consequently, stvebrke
applications have started to masquerade and obfuscate their traffic inmeadeid
detection. They are not based on common ports any more and their praoeols
becoming more complex, like the Skype’s protocol for example, using pagoa
cryption and other obfuscation techniques. Moreover, HTTP is becomdang and
more popular for an increasing set of web-based applications. Tlassijfging the
HTTP traffic into the actual applications that generate it requires more intalige
traffic analysis.

Accurate per-application traffic classification and identification technidaes
pend ondeep packet inspectiorboth header and packet payload need to be in-
spected. They are usually based on application protocol specific [zttedsig-
natures, common behaviors, and several other heuristics. This inspestjigires
more complex analysis and reduces the packet processing throughpeitway
to improve the performance of traffic classification systems is to improve the sig-
natures’ accuracy and flow-based classification. Improving the acgwf the
signatures that will be matched against the network’s traffic not only ingptioe
classification accuracy, but it can also increase the throughput of ststems.
This is because an accurate signature will limit the string search only to specifi
bytes within a packet or within a flow. Thus, the packet capture length mhambe
ited to the first few bytes in many cases with carefully designed signatureb. Su
optimizations lead to significant performance improvements, as much less data is
processed.

We refer toflow-based classification techniquas the techniques that try to
classify transport-layer flows, according to the application that gersdtagen. The
flow-based classification techniques have a significant performameditoehen
only the first few packets (or bytes) of a flow are inspected. Inddtat,iaspecting
the first few packets of a flow with no success, i.e., the flow cannot bsifitas
it is probably useless to continue searching for applications signaturissvdry
likely that there is no signature for this type of traffic, and further preiceswill be
only overhead to the system. Thus, it is preferable to mark this flow as tuwkh
Similarly, when a packet matches an application signature, its flow is classified
accordingly. Thus, the next packets of this flow will not be inspectetipilbe
only used for accounting the application’s bandwidth usage. Therdfonebased
traffic classification can significantly reduce the packet processirig cos

Other classification techniques perform less fine grained analysis, osing
traffic and flow statistics, such as packet and flow sizes, interarrivabtiaed
aggregated statistics, which are useful for traffic classification baseélmavioral
analysis and machine learning techniqué&z 78, 80].
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2.2.3 Network Traffic Archiving Systems

To enable network forensics and other kinds of retrospective anadgsisral traf-
fic recording systems have been developed to store full packets in mstdeage
systems. Many of the proposed techniques focus on reducing the acofdraffic
that should be stored for high-volume traffic links, either using efficiemres-
sion schemes[7, 141] or clever packet selection approach88,B9,108§. Other
systems focus on improving the throughput for writing network packets tagto
systems, in order to support line ratel[40]. Finally, improving query responses
in such systems have been studied, and packet indexing techniqudseleavero-
posed for this purposé&e].



Related Work

In this chapter we discuss related work in the broader area of networkariog
and network security systems.

3.1 Improving the Performance of Packet Capture

Braun et al. 21] and Schneider et al1p9 compare the performance of packet
capturing libraries on different operating systems using the same hargbhar
forms and provide guidelines for system configuration to achieve optinntdrpe
mance. Several research effort3,[19,37,102 123 have focused on improving the
performance of packet capturing through kernel and library modificatid hese
approaches reduce the time spent in kernel and the number of memoryg tepie
quired for delivering each packet to the application.

Our proposed techniques can be combined with such optimizations to achieve
even better performance. However, all these approaches opeitate rétwork
layer. Thus, monitoring applications that require transport-layer streamdds
implement stream reassembly, or use a separate user-level libratiingesure-
duced performance and increased application complexity. In contragtopese
Scap that operates at the transport layer and directly assembles incaackegs
to streams in the kernel, offering the opportunity for a wide variety of perémce
optimizations and many features. Moreover, we show that memory accedig/loc
in passive network monitoring applications can be improved when reordgreng
packet stream based on source and destination port nunii®&411. Thus, our
locality buffering approach aims to improve the packet processing pesfoce
of the monitoring application itself, by exploiting the inherent locality of the in-
memory workload of the application. Scap also improves memory access locality
and cache usage in a similar manner when grouping packets into streams.

31
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3.2 Taking Advantage of Multicore Systems

Previous work has dealt with how to use multicore systems to improve the perfor
mance of network monitoring systems. Fusco and CSi (itilize the receive-side
scaling (RSS) feature of modern NIC&], which split the network traffic in mul-
tiple RX queues, usually equal to the number of CPU cores, to parallelizetpac
capturing using all CPU cores. Moreover, packets are copied dirgotly €ach
hardware queue to a corresponding ring buffer, which is exposesgenlevel as

a virtual network interface. Thus, applications can easily and efficieptitthe

load to multiple threads or processes without contention.

Sommer et al.139 take advantage of multicore processors to pararrelize event-
based network prevention systems, using multiple event queues that t¢oHect
gether semantically related events for in-order execution. Since the erents-
lated, keeping them within a single queue localizes memory access to shaeed sta
by the same thread. Pesterev et &19 improve TCP connection locality in mul-
ticore servers using the flow director filters to optimally balance the TCP [mcke
among the available cores.

3.3 Distributing The Traffic Load

Schneider et al.130 show that commodity hardware and software is able to cap-
ture low traffic rates, mainly due to limitations with buses bandwidth and CPU
load. To cope with this limitation, the authors propose a monitoring architecture
for higher speed interfaces by splitting the traffic across a set of neidesower

speed interfaces, using a feature of current Ethernet switchesl€thiéed config-
uration for load balancing is left for the application. Vallentin et &6 present

a NIDS cluster based on commodity PCs. Some front-end nodes are sidpon

to distribute the traffic across the cluster's back-end nodes. Seveifed tistri-

bution schemes are discussed, focused on minimizing the communication between
the sensors and keeping them simple enough to be implemented effectively in the
front-end nodes. Hashing a flow identifier is proposed as the rightehoic

3.4 Improving Memory Locality

The concept of locality buffering for improving passive network monitrap-
plications, and, in particular, intrusion detection and prevention systemdjraias
introduced by Xinidis et al.]53, as part of a load balancing traffic splitter for
multiple network intrusion detection sensors that operate in parallel. In this wor
the load balancer splits the traffic to multiple intrusion detection sensors, so that
similar packets (e.g., packets destined to the same port) are processedamthe
sensor. In this approach, however, the splitter uses a limited number dfyloca
buffers and copies each packet to the appropriate buffer basedsting on its
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destination port number. Our locality buffering approach differs in two mage
pects. First, we have implemented locality buffering within a packet capturing
library, instead of a separate network element. To the best of our kngeyledir
prototype implementation within the libpcap library is the first attempt for provid-
ing memory locality enhancements for accelerating packet processing iredge
and transparent way for existing passive monitoring applications. S8etttmma-

jor improvement of our locality buffering approach is that packets aractotally
copied into separate locality buffers. Instead, we maintain a separatevirnilex
allows for scaling the number of locality buffers up to 64K.

Locality enhancing techniques for improving server performance heea b
widely studied. For instance, Markatos et 80][present techniques for improving
request locality on a Web cache, which results to significant improvements in th
file system performance.

3.5 Packet Filtering

Kernel-level packet filtering improve the processing throughput of aitoidmg
application, as uninteresting packets are discarded in kernel andvarededvered

in user level. A BPF filter 1] can be used for simple filtering needs, e.g., for
choosing a subset of the traffic. Dynamic packet filtering reduces 8t@tadding
and removing filters at runtime38, 147, 152. Deri et al. B9] propose to use the
NIC’s flow director filters for common filtering needs. Besides from cogyain
discarding packets based on a stateless filter expression, otheramsosuch as
FFPF [L9], xPF [76], and FLAME [1Q], allow applications to move simple tasks
from user level to the kernel packet filter to improve performance. Vigests

a relatively different approach in Scap: applications empowered with esa@tr
abstraction can communicate their stream-oriented filtering and procesgidg ne
to the underlying kernel module at runtime through the Scap API, to achiews lo
complexity and better performance. For instance, Scap is able to filtertpacke
within the kernel or at the NIC layer based on a flow size cutoff limit, allowing
to set dynamically different cutoff values per-stream, while the existindcgiac
filtering systems are not able to support a similar functionality.

3.6 TCP Stream Reassembly

Libnids [5] is a user-level library on top of libpcap for TCP stream reassembly
based on the emulation of a Linux network stack. Similarly, the Stred@g [
preprocessor, part of Snort NID$34], performs TCP stream reassembly at user
level, emulating the network stacks of various operating systems. Scags Stiar

ilar goals with Libnids and Stream5. However, previous works treat TCIRurstr
reassembly as a necessitylff], mostly for the avoidance of evasion attacks against
intrusion detection systemd], 66, 150. On the contrary, Scap views transport-
layer streams as the fundamental abstraction that is exported to network rimgnito
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applications, and as the right vehicle for the monitoring system to implement ag-
gressive optimizations.

The main drawback of existing libraries for stream reassembly is their per-
formance overhead, as they operate at user level, above the papketirng sub-
system. Scap provides the first OS subsystem for stream capturingefivar d
reassembled transport-layer streams directly to user-level applications.

Handley et al. 6], Dharmapurikar and Paxso#1], and Vutukuru et al.150
explain how an attacker can exploit protocol ambiguities to evade detection in a
NIDS, and present the proper mechanisms for robust stream redgserdmor-
malization under the presence of adversaries. Scap performs follogesrdmuire-
ments in a strict stream reassembly mode, while it also supports a more relaxed
best-efforistream reassembly mode that provides resiliency to packet drops due to
system overloads.

3.7 Network-level Intrusion Detection Systems

The requirements for more complex per-packet inspection, the consteehge in
network speeds, and the limited resources of commodity hardware havatadtiv
numerous works for improving the performance of NIDSs. To speethepn-
spection process, many NIDS implementations use specialized hardwareriike ¢
tent addressable memoryg6, 157, FPGAs [L3,14], network processors3p, 35|
and graphics processing units4f. To cope with high traffic volumes, other ap-
proaches propose to distribute the load across multiple machines insteadgf us
a single sensor84, 128 144, or to use multicore processors for parallel inspec-
tion [114). These solutions offer almost linear processing throughput improve-
ment, but with the additional cost of buying specialized hardware or psoce
with more cores. However, overloads are still possible in such systemsénofa
traffic bursts that exceed the NIDS processing throughput, or if orteeoindi-
vidual sensors of a NIDS cluster is overloaded. Furthermore, atkakay inten-
tionally overload a NIDS to degrade its performance and increase theicefi&o
evade detectiorll9 135.

Lee et al. 5] propose to dynamically reconfigure the NIDS to provide optimal
performance based on the current run-time conditions. By periodicallgumeg
the performance of the system, the NIDS deactivates some less criticahtatks
analysis, while an active firewall terminates offending connections. Tpsoach
focuses on determining the best configuration according to the givelitioms and
resource constraints. On the other hand, we propose to selectivedydijsackets
with minimum impact to the detection accuracy without changing the NIDS con-
figuration. We also propose selective packet paging to ensure thaickiis will
be inspected.

Another related approach by Dreger et d3][deals with packet drops due to
overloads using load levels, which are precompiled sets of filters comdapy to
subsets of traffic which the NIDS enables and disables depending omthmad.
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Upon detecting an overload based on CPU measurements, the systerofbéacks
a filter set that requires less processing capacity. The main differdrtbatap-
proach from our selective packet discarding technique is that it refiélseoNIDS
operator to statically define an ordering of filters. On the other hand,tselec
packet discarding does not use any filters and does not requirenamyddge for
the network traffic or the processing times for specific types of traffic.

A more recent work from the same authofd][presents a model for monitor-
ing the resource usage of a NIDS, and then predicting its resourceroptisn.
These predictions are used, based on a sample of the monitored traffidpto a
matically derive a suitable NIDS configuration. While this approach can help th
NIDS operator to find a suitable configuration automatically, we proposetisele
packet discarding to allow a NIDS to adapt its performance under higheloaal
if no configuration can prevent overloads.

Gonalez and Paxsorbp] present a technique that extends the NIDS with a
secondary path for packet delivery in which the packets are rand@migled, are
not decoded, and TCP reassembly is not performed. While the packetsrmath
path are still processed as normal, the secondary path is tailored to rifkémd
of analysis such as large connection and heavy hitters detection, are cesed
to improve the performance for such kinds of analysis that do not remgaesving
all monitored packets.

3.8 Stream Truncation

The time Machine network traffic recording syste®3][exploits the heavy-tailed
nature of Internet traffic to reduce the number of packets that aredstardisk for
retrospective analysis by applying a per-flow cutoff. Maier et@d] €oupled Time
Machine with a NIDS for enabling postmortem forensics queries. Our W6R@

and Limmer and DressleBf] use a per-flow cutoff under overload conditions, so
that a NIDS focuses on the beginning of each connection and discackistp that
are less likely to affect its detection accuracy. Canini, et} propose a similar
scheme for traffic classification, by sampling more packets from the begifin
each flow. Lin et al.87] present a system for storing and replaying network traffic,
using an(N, M, P) scheme to reduce the traffic stored: they suggest to capture N
bytes per flow and then M bytes per packet for the next P packets obthe fl

Scap shares a similar approach with the above works, but implements it within
a general framework for fast and efficient network traffic monitoringing the
Stream abstraction to enable the implementation of performance improvements
at the most appropriate level. For instance, Scap implements the per-flofiv cuto
inside the kernel or at the NIC layer, while previous approaches hamgtement
it in user space. As a result, they first recemiepackets from kernel in user space,
and then discard those that are not needed.
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3.9 Load Shedding

Load shedding is proposed as a defence against overload attackBmo tREDS [113.
However, the discarding strategy is not discussed, so the NIDS opiregsponsi-

ble to define one. We propose selective packet discarding as a diffeael shed-
ding technique, which suggests a new subset of traffic that should terdisl,
based on the position of the packet within its corresponding fldW]|[ Barlet-Ros

et al. [16] also propose a load shedding technique in the CoMo passive monitoring
infrastructure 70]. Using an on-line prediction model for the query resource re-
quirements, the monitoring system sheds load under conditions of exxtsdiic
using uniform packet and flow sampling.

3.10 Packet Sampling

Packet sampling has been successfully applied for network flow monitoring
switches and routers to record aggregated sampled traffic statistics likéeslamp
NetFlow [51], as the processing, memory, and storage resources in these devices
are limited. Several sampling strategies have been proposed, whichregstigu

being standardized by the Packet Sampling Working Group of IETF [The
choice of a suitable strategy depends on traffic characteristics or otistateseded

to be inferred.

Rate adaptive sampling has been proposed for dealing with traffic lodbirar
ity. Adaptive NetFlow 1] uses traffic rate prediction techniques to adjust prop-
erly the sampling rate. Drobisz and Christens#®] present an adaptive scheme
based on CPU utilization and packet interarrival times. Choi et28]. dieter-
mine the sampling probability adaptively according to traffic dynamics to atecura
traffic load estimation. Hernandez et @8] use a predictive approach to antici-
pate load variations and adjust accordingly the sampling interval to meet sgmplin
volume constraints. Similarly, rate constrained sampling approaches ssfet-a
ified number of packets during a measurement interval. The method ptbbgse
Duffield et al. 9] works under strict resource constraints by sampling into a buffer
of fixed size. All these approaches adapt the sampling rate based fanltad,
while in RRDtrace we propose to adapt the sampling rate according to how old
the stored traffic is, in order to provide better accuracy when progeisnmost
recent traffic.

Brauckhoff et al. 0] examine the impact of packet sampling on anomaly de-
tection metrics for the Blaster worm outbreak. Blaster uses random sgaimnin
TCP port 135, so it can be detected using flow counters. Howeverchowmters
are heavily affected from packet sampling. While packet and byte ceuate not
affected from sampling, they cannot detect Blaster anomalies. The flvapgn
metric is shown to be more robust to packet sampling than flow counters. tMai e
al. [88] examine the performance of volume and port scan anomaly detection meth-
ods with sampled data using four different strategies. The results showellttize
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sampling strategies significantly degrade the performance of the detectmn alg
rithms. Among the four sampling schemes, random flow sampling introduces the
least amount of distortion. Smart sampliy] and sample-and-hol&bp] are less
resource intensive than random flow sampling, but perform poorly ircanéext

of anomaly detection, since they miss small flows that are often related to attacks

Overall, the impact of sampled data for anomaly detection metrics depends on
the sampling strategy, sampling rate, and the analysis that should be pe&tforme
Applying packet sampling to signature-based NIDSs will result in missedkattac
while it is not appropriate for NIDSs that need to perform TCP streasserably.
Contrary, we propose techniques like selective packet paging toestiguinspec-
tion of all packets in cases where sampling or load shedding are notadequ

3.11 Algorithmic Complexity Attacks

When deterministic finite automata (DFAs) are used for rule matching, each byte
of traffic is examined exactly once, thus backtracking does not occowekkr,
DFAs experience exponential memory requirements and may not fit in memory in
case of large rulesets. Nondeterministic finite automata (NFAs) reduce thergnemo
requirements by allowing the matcher to be in multiple states concurrently. This
is usually achieved through backtracking, which can be exploited foialdeh
service attacks. Several research works have proposed to impeoperformance

of regular expression matchingl, 136 137, 154] by combining the benefits of
both NFAs and DFAs. Kirrage et al82] present a static analysis technique to
detect regular expressions that are vulnerable to algorithmic complexitksattac

Cheng et al.27] categorize and discuss a variety of evasion techniques against
NIDSes. Smith et al.]35 introduce an algorithmic complexity evasion attack
against the Snort NIDS, which exploits the backtracking behavior ofmaliehing
in order to evaluate signatures at all possible string match offsets. Thpps®
memoization as an algorithmic solution to deal with attacks targeting backtracking-
based algorithms, by reducing the difference between the averageaastoase
costs. The idea is based on a memoization table that is used to store intermediate
state that will not be recomputed.

Croshy and Wallach34] present an algorithmic complexity attack that ex-
ploits deficiencies of common data structures, and propose new hasHingjtess
which sacrifice average case performance for worst case perioen&han and
Traore B1] propose a model to detect algorithmic complexity attacks based on
historical information of execution time and input characteristics, usingssgn
analysis. The authors propose to drop requests that do not confahnthir
model. However, in a NIDS this policy would result in successful evadiatks,
when an adversary sends an actual attack with a non conforming patésk.
et al. [8] propose the use of dedicated CPU cores to defend against algorithmic
complexity attacks in NIDS.
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Although the above works can address algorithmic complexity attacks against
specific algorithms used in network monitoring systems, network monitoring and
security software is still written so that it may be vulnerable to all sorts of algo-
rithmic complexity attacks. Thus, monitoring and security applications still have
to defend against complexity attacks that have not yet been seen in théovéld,
sure a robust and secure processing of the network traffic. Tewisidirection,
selective packet paging is a generic defense mechanism for any |paygie of
algorithmic attack or other overload situation.

3.12 Traffic Archiving Systems

A simple approach to increase retention when storing network traffic is fo kee
less data per packet. A common choice is to store only the first few bytes of
each packet, which typically correspond to protocol headers. Sotety firotocol
headers, monitoring applications can infer useful information and netweik

rics, while this approach can reduce significantly the storage sp2@earjd thus
increase retention. However, several monitoring applications, sualtasate traf-

fic classification, as well as security applications commonly need to perfeep d
packet inspection operations, which require both the protocol headeszll as

the payload of each packdéd(Q]. Moreover, even with this significant reduction in
storage requirements, retention time is still limited.

Another approach for efficient traffic recording is applied in the Time hitae
system 83,89, where only the first N bytes of each flow are recorded based on
a per-flow cutoff. This approach leverages the heavy tailed distribufidlow
sizes that is commonly found in Internet traffic, since most of the traffic iilgla h
volume network comes from just a few flows. Therefore, most of the flills
not be affected by the cutoff and will be fully recorded, while recordingy the
beginning of a few large flows leads to significant savings in disk spaoeetrkr,
this technique cannot accurately estimate network metrics like total traffic volume
and flow sizes. Furthermore, Time Machine stores approximately the samat&amou
of traffic per day, and thus inevitably it can store traffic for a few daylg.orhen,
it has to delete the past traffic.

Another solution that is commonly used to retain information about network
usage in high volume networks for long-term periods is to maintain higher-leve
abstractions of the network traffi@%$, 93, 121] or store aggregated data like Net-
Flow records 29]. Storing aggregated data instead of network packets can reduce
dramatically the required disk space, while other higher-level abstractaombge
used with fixed-size storage. However, such data formats limit significargly th
usefulness. They can be adequate only for specific applications if thedeaf
interest are known a priori. Any packet-level information will be lost, so ynan
applications and deep packet inspection techniques do not work witlegajgd
traffic summaries. On the other hand, full-payload packet traces offeln aource
of information and allow for fine-grained analysis.
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RRDtool [L04 employs a Round Robin Database to store time-series data for
very long periods in fixed-size storage using data aggregation. THigréeaf
RRDtool has made it a popular choice for storing and visualising time-seatas d
like temperatures, CPU load, and network metrics like bandwidth, delayketpac
loss, and many other. RRDtool is based on an aging process usingaidatisn
function (usually average) to consolidate multiple primary data points to form a
single consolidated data point. Therefore, older data will have less detaililb
be representative for the corresponding time periods.

Cooke et al. 1] present a multi-format data storage technique that works with
fixed storage and fixed time. First, packets are stored, and later on thegar
gregated and transformed into flows as they age. Flows are finally ajgdeigto
counters. Storage allocation algorithms divide the available storage betfnesen
different aggregation levels. The main shortcoming of this technique is tieat fi
grained analysis cannot be performed in old data, e.g., find possiblecotetbat-
tacks or identify peer-to-peer and multimedia traffic using flow informationteMo
over, having different data formats over time makes the analysis more Hitfian
having always the same data format.

Instead of storing actual packets, payload attribution techniql®d Etore
compressed digests of packet payloads. Based on an excerpt wérapgicket
payload, these techniques indicate the presence of packets that coriésnex-
act payload and their source, destination and time of appearance onttgkne
Though, the actual payloads of the stored packets cannot be infSumth tech-
niques are useful for forensics analysis and some security applicat®msng
and Wetherall 140 present an algorithm for traffic compression by identifying
and eliminating redundancy. Compression can effectively reduce tregstéor
protocols and applications with high redundancy.

The Bunker network tracing syste®] first writes all traffic to disk, to ensure
that no packet is lost, and then performs offline the costly anonymizatiam-ope
tions. This is similar to our proposed selective packet paging techniqueeéo,
our technique combines both memory and disk buffering in a hybrid archiggctu
so that packets are buffered in memory under normal situations to avoiidikg d
overheads, and packets are buffered to disk only when the memoey beffomes
full. While their system is oriented for anonymizing network traffic safely; ou
technique aims to protect network monitoring and security applications frem de
nial of service attacks and other overloads.

Anderson et al.I1] present tools for recording packets at kernel-level to pro-
vide bulk storage at high rates. Hyperict0] employs a write-optimized stream
file system for high-speed storage using bloom filters to index stream Qaia.
work can utilize such techniques to improve performance for storing patie
disk.

Gigascope 32] is a stream database which offers an SQL-like language for
queries on the packet stream, but does not focus on long-termaktchivspeedup
the query response times in packet traces, pcaplrig@pfoposes packet indexing
techniques using compressed bitmaps.
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3.13 Gap Analysis

Despite the significant research work that has been performed in thisnsgeden-
tify several open research problems that are still needed to be aedréssst, the
ever-increasing volume of network traffic and the increased complexityooftor-

ing applications require for improved performance. Although many of teeigus
works focus on performance, modern hardware offers new fesstune: capabilities
that can be used to improve the performance of network monitoring systems. As
there are many network monitoring applications and tools developed, which co
prise a large amount of code and lot of human effort, we would definitelfepr
to achieve significant performance improvements in a completely transpeagnt
from the applications, without any code modifications needed. Although sbme
the previous works try to offer backwards compatibility with legacy application
and libraries, we need more approaches that offer transparent optimgatial
performance improvements.

We also identify a gap on overload control in network monitoring systems. Due
to the high traffic load and application complexity, even after careful piaviisg
of a monitoring system, there is always a high probability that the system will get
overloaded and start dropping packets from its memory buffers. umately,
previous works have not focus on this problem. Contrary, we aim to fillgafs
by providing the proper overload control, using domain-specific knoydeaf the
network monitoring applications.

Moreover, attackers are becoming more sophisticated and they try to pass ma
licious activities through the network without being detected by the monitoring
systems. For example, attackers can intentionally overload a monitoring system
to impede its detection capabilities, without significant effort, e.g, by exploiting
algorithmic complexity vulnerabilities. Thus, we need to develop generic degen
against such evasion attempts. More specifically, a generic defensestagay
type of algorithmic complexity or overload attack is still missing.

Finally, we identify a gap between the current network monitoring frameworks
and network monitoring applications. Although monitoring applications are inter-
ested in analyzing the network traffic at higher protocol layers, e.g., Si@ams,
web pages, email messages, or SQL queries, the current monitoringvivaksef-
fer just raw IP packets. These packets belong to multiple concurrenéctians in
the monitored network, and they can be out of order, retransmitted, agwénted
packets. Thus, applications need to reconstruct such packets into tes-teagel
entities to allow for useful processing, and perform protocol normalizati@void
evasion attempts based on TCP segmentation attacks. Unfortunately, hdhieve
reconstruction leads to increased code complexity, increased applicatielopg-
ment time, and, most importantly, to reduced performance due to excessave d
copies. We believe that building new network monitoring frameworks using the
proper abstractions to fill this gap will facilitate the development of new monitor-
ing applications, and will provide significant performance improvementsraore
opportunities for performance optimizations and useful features.



Enhancing Memory Access Locality

A common characteristic that is often found in network traffic monitoring applica
tions is that they usually perform different operations on differentsygdgackets.

For example, a NIDS applies a certain subset of attack signatures oatpadth
destination port 80, i.e., it applies the web-attack signatures on packéitsedes

to web servers, while a different set of signatures is applied on pdelstined to
database servers, and so on. Furthermore, NetFlow probes, tedéfgocization,

as well as TCP stream reassembly, which has become a mandatory furfction o
modern NIDS 66], all need to maintain a large data structure that holds the active
network flows found in the monitored traffic at any given time. Thus, fakpts
belonging to the same network flow, the process accesses the sametpardata
structure that corresponds to the particular flow.

In all above cases, we can identifyazality of executed instructions and data
references for packets of the same type. In this chapter, we presenthtech-
nique for improving packet processing performance by taking advardgaghis
locality property which is commonly exhibited by many different passive monitor
ing applications. In practice, the captured packet stream is a mix of intedeav
packets that correspond to hundreds or thousands of differekétppes, de-
pending on the monitored link. Our approach, callecklity buffering is based
on reordering the packet stream that is delivered to the monitoring appficats
way that enhances the locality of the application’s code execution anddzssa
improving the overall packet processing performance.

We have implemented locality buffering In bpcap [92], the most widely
used packet capturing library, which allows for improving the perforreawica
wide range of passive monitoring applications written on top iobpcap in a
transparent way, without the need to modify them. Our implementation com-
bines locality buffering with memory mapping, which optimizes the performance

41
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of packet capturing by mapping the buffer in which packets are storduetkernel
into user level memory.

Our experimental evaluation using real-world applications and netwoffictraf
shows that locality buffering can significantly improve packet procedsirggigh-
put and reduce the packet loss rate. For instance, the popular %exhibits
a 21% increase in the packet processing throughput and is able tsproc®
higher traffic rates with no packet loss.

The rest of this chapter is organized as follows: In Sedlidrwe describe the
overall approach of locality buffering, while in Sectidr2 we present in detail our
implementation of locality buffering within thei bpcap packet capturing library.
Section4.3 presents the experimental evaluation of our prototype implementation
using three popular passive monitoring tools. Finally, Sedtidrliscusses limita-
tions of our approach and future directions, and SecetiBsummaries this chapter.

4.1 Locality Buffering

The starting point of our work is the observation that several widely pssdive
network monitoring applications, such as intrusion detection systems, eafor
most identical operations for a certain class of packets. At the same tinezediff
packet classes result to the execution of different code paths, aathtactesses to
different memory locations. Such packet classes include the packepadicular
network flow, i.e., packets with the same protocol, source and destinatiai IP a
dresses, and source and destination port numbers, or even widersckash as all
packets of the same application-level protocol, e.g., all HTTP, FTP, or Béiib
packets.

Consider for example a NIDS like Snofitd4]. Each arriving packet is first de-
coded according to its Layer 2—4 protocols, then it passes througtrasprapro-
cessorswhich perform various types of processing according to the packet ty
and finally it is delivered to the main inspection engine, which checks thespack
protocol headers and payload against a set of attack signaturesrdiagto the
packet type, different preprocessors may be triggered. For irst#P@ackets go
through the IP defragmentation preprocessor, which merges fragmé@énpestk-
ets, TCP packets go through the TCP stream reassembly preproegsisbrye-
constructs the bi-directional application level network stream, while HT TRgia
go through the HTTP preprocessor, which decodes and normalizeB BHibtocol
fields. Similarly, the inspection engine will check each packet only agamgbset
of the available attack signatures, according to its type. Thus, packéisadet® a
Web server will be checked against the subset of signatures tailoreeli@ifécks,
FTP packets will be checked against FTP attack signatures, and so on.

When processing a newly arrived packet, the code of the corresppicpro-
cessors, the subset of applied signatures, and all other accetsstradetures will
be fetched into the CPU cache. Since packets of many different types will ke
highly interleaved in the monitored traffic mix, different data structures aale c
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FIGURE 4.1: The effect of locality buffering on the incoming packet stream.

will be constantly alternating in the cache, resulting to cache misses andeteduc
performance. The same effect occurs in other monitoring applicatiooh, asu
NetFlow collectors or traffic classification applications, in which arrivingkeds

are classified according to the network flow in which they belong to, whishlte

to updates in a corresponding entry of a hash table. If many conctiwesstare
active in the monitored link, their packets will arrive interleaved, and thdiereift
portions of the hash table will be constantly being transferred in and otliteof
cache, resulting to poor performance.

The above observations motivated us to explore whether changing #reiord
which packets are delivered from the OS to the monitoring application improves
packet processing performance. Specifically, we speculated theanmging the
captured traffic stream so that packets of the same class are deliveted ap-
plication in “batches” would improve the locality of code and data accesses, a
thus reduce the overall cache miss ratio. This rearrangement can teptaally
achieved by buffering arriving packets into separate “buckets,faneach packet
class, and dispatching each bucket at once, either whenever it §etsr fafter
some predefined timeout since the arrival of the first packet in the budte
instance, if we assume that packets with the same destination port number cor-
respond to the same class, then interleaved packets destined to diffewatkn
services will be rearranged so that packets destined to the same nednaick sire
delivered back-to-back to the monitoring application, as depicted in Filre

Choosing the destination port number as a class identifier strikes a goodéala
between the number of required buckets and the achieved locality for cagnmon
used network monitoring applications. Indeed, choosing a more fineegralas-
sification scheme, such as a combination of the destination IP address &nd po
number, would require a tremendous amount of buckets, and wouldlpyghat
add overhead, since most of the applications of interest to this workrpe(t®
tuple) flow-based classification. At the same time, packets destined to the same
port usually correspond to the same application-level protocol, so theyrigder
the same Snort signatures and preprocessors, or will belong to the sameégb-
boring” entries in a network flow hash table.

However, sorting the packets by destination port only would completely sepa
rate the two directions of each bi-directional flow, i.e., client requests &emer
responses. This would increase significantly the distance betweensteane
response packets, and in case of TCP flows, the distance between 18iYal a
SYN/ACK packets. For traffic processing operations that require tcesidpoth
directions of a connection, this would add a significant delay, and eJvntiea
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crease memory locality, due to the separation of each bi-directional flow in two
parts. Moreover, TCP reassembly would suffer from extreme buffaritil the
reception of pending ACK packets, or even discard the entire flow. Xample,

this could happen in case that ACKs are not received within a timeout peniod

a packet is received before the SYN packet, i.e., before the TCP ctiomestab-
lishment. Furthermore, splitting the two directions of a flow would alter the order
in which the packets are delivered to the application. This could causéeprsb

to applications that expect the captured packets to be delivered with maradipn
increasing timestamps.

Based on the above, we need a sorting scheme that will be able to keep the
packets of both directions of a flow together, in the same order, and atrifestane
maintain the benefits of packet sorting based on destination port: good |aoadity
lightweight implementation. Our choice is based on the observation that thes serv
port number, which commonly characterizes the class of the flow, is usuaiy lo
than the client port number, which is usually a high port number randomlsecho
by the OS. Also, both directions of a flow have the same pair of port numbers
in just reverse order. Packets in server-to-client direction have tlhierseport as
source port number. Hence, in most cases, choosing the smaller poeenethe
source and destination port numbers of each packet will give us thierseport
in both directions. In case of known services, low ports are almost alwsagd.

In case of peer-to-peer traffic or other applications that may use highrssde
port numbers, connections between peers are established using higlomply.
However, sorting based on any of these two ports has the same effeeidoality
of the application’s memory accesses. Sorting always based on the smadieg a
the two port numbers ensures that packets from both directions will beechds
together, and their relative order will always be maintained. Thus, aicelis to
sort the packets according to the smaller between the source and destimatfon

4.1.1 Feasibility Estimation

To get an estimation of the feasibility and the magnitude of improvement that local-
ity buffering can offer, we performed a preliminary experiment whemgbysorted
off-line the packets of a network trace based on the lowest betweenuheesand
destination port numbers, and fed it to a passive monitoring application.cohis
responds to applying locality buffering using buckets of infinite size. Dedhitait

the trace and the experimental environment are discussed in Séiowe ran
Snort v2.9 124 using both the sorted and the original trace, and measured the
processing throughput (trace size divided by user time), L2 cachesnasé CPU
cycles of the application. Snort was configured with all the default pegssors
enabled as specified in its default configuration file and used the latesalafile

set [7] containing 19,009 rules. The Aho-Corasick algorithm was used forrpatte
matching P]. The L2 cache misses and CPU clock cycles were measured using the
PAPI library [6], which utilizes the hardware performance counters.
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| Performance metric | Original trace | Sorted trace | Improvement |
Throughput (Mbit/s) 473.97 596.15 25.78%
Cache misses (per packet 11.06 1.33 87.98%
CPU cycles (per packet) 31,418.91 24,657.98 21.52%

TABLE 4.1: Snort’s performance using a sorted trace.

Table 4.1 summarizes the results of this experiment (each measurement was
repeated 100 times, and we report the average values). We obsdrgertirey
results to a significant improvement of more than 25% in Snort's packe¢gso0@
throughput, L2 cache misses are reduced by more than 8 times, and 21@Pldss
cycles are consumed.

From the above experiment, we see that there is a significant potential of im-
provement in packet processing throughput using locality bufferingeyer, in
practice, rearranging the packets of a continuous packet streammlyabeodone
in short intervals, since we cannot indefinitely wait to gather an arbitraniggela
number of packets of the same class before delivering them to the monitoring
application—the captured packets have to be eventually delivered to thesdipp
within a short time interval (in our implementation, in the orders of milliseconds).
Note that slightly relaxing the in-order delivery of the captured packetsitseto
a delay between capturing the packet, and actually delivering it to the mogitorin
application. However, such a sub-second delay does not actualty tiféecorrect
operation of the monitoring applications that we consider in this work (déiger
an alert or reporting a flow record a few milliseconds later is totally acceptable
Furthermore, packet timestamps are computefibrelocality buffering, and are
not altered in any way, so any inter-packet time dependencies remain intact.

4.2 Implementation within | i bpcap

We have chosen to implement locality buffering withinbpcap, the most widely
used packet capturing library, which is the basis for a multitude of passire-
toring applications. Typically, applications read the captured packetsghieaoall
such agpcap_next orpcap_l oop, one at a time, in the same order as they ar-
rive to the network interface. By incorporating locality buffering withinbpcap,
monitoring applications continue to operate as before, taking advantageatifyo
buffering in a transparent way, without the need to alter their code or lark thith
extra libraries. Indeed, the only difference is that consecutive calls &p_next

or similar functions will most of the time return packets with the same destina-
tion or source port number, depending on the availability and the time cornstrain
instead of highly interleaved packets with different port numbers.
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4.2.1 Periodic Packet Stream Sorting

Inl i bpcap, whenever the application attempts to read a new packet, e.g., through
a call topcap_next , the library reads a packet from kernel and delivers it to the
application. Usingocap_l oop, the application registers a callback function for
packet processing that is called once per each captured packétaeekkrnel by

I i bpcap. In case that memory mapping is not supported, the packet is copied
through ar ecv call from kernel space to user space in a small buffer equal to
the maximum packet size, and theoap_next returns a pointer to the beginning

of the new packet or the callback function registeredployap_| oop is called.

With memory mapping, the next packet stored by kernel in the shared rifey bu

is returned to application or processed by the callback function. If nkepaare
storedpol | is called to wait for the next packet reception.

So far, we have conceptually described locality buffering as a setaifets,
with packets having the same source or destination port ending up into the same
bucket. One straightforward implementation of this approach would be tollgctua
maintain a separate buffer for each bucket, and copy each arriviigeipto its
corresponding buffer. However, this has the drawback that an@xpsais required
for storing each packet to the corresponding bucket, right after ibbas fetched
from the kernel.

In order to avoid additional packet copy operations, which incur sigmific
overhead, we have chosen an alternative approach. We distinguvséelmetwo
different phases: the packgatheringphase, and the packeétliveryphase. In the
case without memory mapping, we have modified the single-packet-sized bliff
| i bpcap to hold a large number of packets instead of just one. During the packet
gathering phase, newly arrived packets are written sequentially into ffer by
increasing the buffer offset in theecv call until the buffer is full or a certain
timeout has expired. Fdri bpcap implementation with memory mapping sup-
port, the shared buffer is split into two parts. The first part of the bisfased for
gathering packets in the gathering phase, and the second part farthgipackets
based on the imposed sorting. The gathering phase lasts either till the usdfir
for packet gathering gets full or till a timeout period expires.

Instead of arranging the packets into different buckets, which rexjaiveextra
copy operation for each packet, we maintain an index structure that sgettié
order in which the packets in the buffer will be delivered to the applicatisindu
the delivering phase, as illustrated in Fig@t2 The index consists of a table
with 64K entries, one for each port number. Each entry in the table pointgto th
beginning of a linked list that holds references to all packets within thebwfth
the particular port number. In the packet delivery phase, the padketielvered
to the application ordered according to their smaller port by traversing lesich
sequentially, starting from the first non-empty port number entry. In thiswe
achieve the desired packet sorting, while, at the same time, all packets riemain
place, at the initial memory location in which they were written, avoiding extra
costly copy operations. In the following, we discuss the two phases in netaé.d
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FIGURE 4.2: Using an indexing table with a linked list for each port, the packets
are delivered to the application sorted by their smaller port number.

In the beginning of each packet gathering phase the indexing table exizeso
ingnenset () . For each arriving packet, we perform a simple protocol decoding
for determining whether it is a TCP or UDP packet, and consequently exisac
source and destination port numbers. Then, a new reference faatketps added
to the corresponding linked list. For non-TCP or non-UDP packets eaarte is
added into a separate list. The information that we keep for every packat
node of the linked lists includes the packet's length, the precise timestamp of the
time when the packet was captured, and a pointer to the actual packet tlaa in
buffer.

Instead of dynamically allocating memory for new nodes in the linked lists,
which would be an overkill, we pre-allocate a large enough number o symates,
equal to the maximum number of packets that can be stored in the buffenexére
a new reference has to be added in a linked list, a spare node is pickeq.fakls
fast insertion of new nodes at the end of the list, we keep a table with 64kep®in
to the tail of each list.

The overhead of this indexing process is negligible. We measured it using a
simple analysis application, which just receives packets in user spatkeemndis-
cards them, resulting to less than 6% overhead for any traffic rate. Tresabe
most of the CPU time in this application is spent for capturing packets and deliv-
ering them to user space. The overhead of finding the port numbeizdalirth a
node to our data structure for each packet is negligible compared totpzsgke
turing and other per-packet overheads. The overhead of makingtheough a
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nmenset () call) the indexing table is also negligible, since we make it once for
a large group of packets. In this measurement we used a simple analyigis-app
tion which does not benefit from improved cache memory locality. For reddw
applications this overhead is even smaller, and as we observe in oumespt
evaluation (Sectiont.3) the benefits from memory locality enhancements outreach
by far this overhead.

The system continues to gather packets until the buffer becomes fuleotedic
timeout has elapsed. The timeout ensures that if packets arrive with atevtha
application will not wait too long for receiving the next batch of packethe T
buffer size and the timeout are two significant parameters of our agpreexce
they influence the number of sorted packets that can be delivered togdleatipn
in each batch. Both timeout and buffer size can be defined by the application
Depending on the per-packet processing complexity of each applicet@huyffer
size determines the benefit in its performance. In Sedti8Bwe examine the effect
that the number of packets in each batch has on the overall performsingghree
different passive monitoring applications. The timeout parameter is mosttgdela
to the network’s workload.

Upon the end of the packet gathering phase, packets can be detiveéhedap-
plication following the order imposed by the indexing structure. For thatqaep
we keep a pointer to the list node of the most recently delivered packetingtar
from the beginning of the index table, whenever the application requestgva n
packet, e.g., throughcap_next , we return the packet pointed either by the next
node in the list, or, if we have reached the end of the list, by the first naithe olext
non-empty list. The latter happens when all the packets of the same pottdrive
delivered (i.e., the bucket has been emptied), so conceptually the syatdinues
with the next non-empty group.

4.2.2 Using a Separate Thread for Packet Gathering

In case that memory mapping is not supported in the system, a single buffer will
be used for both packet gathering and delivery. A drawback of tbheealmple-
mentation is that during the packet gathering phase, the CPU remains idle most
of the time, since no packets are delivered to the application for procassing
meanwhile. Reversely, during the processing of the packets that weged in
the previous packet gathering period, no packets are stored in the. burffcase
that the kernel’s socket buffer is small and the processing time for therturatch
of packets is increased, it is possible that a significant number of patlestget
lost by the application in case of high traffic load.

Although in practice this effect does not degrade performance wloghtshe-
outs are used, we can improve further the performance of locality ndfer this
case by employing a separate thread for the packet gathering phisdsned with
the usage of two buffers instead of a single one. The separate patketigg
thread receives the packets from the kernel and stores themwaiteduffer and
also updates its index. In parallel, the application receives packetsdoessing
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from the main thread dfi bpcap, which returns the already sorted packets of the
secondead buffer Each buffer has its own indexing table.

Upon the completion of both the packet gathering phase, i.e., after the timeout
expires or when the write buffer becomes full, and the parallel pacKkistede
phase, the two buffers are swapped. The write buffer, which nowlisffpackets,
turns to a read buffer, while the now empty read buffer becomes a wriferbilihe
whole swapping process is as simple as swapping two pointers, while seraapho
operations ensure the thread-safe exchange of the two buffers.

4.2.3 Combine Locality Buffering and Memory Mapping

A step beyond is to combine locality buffering with memory mapping to further
increase the performance of each individual technique. While memoryintapp
improves the performance of packet capturing, locality buffering aims toanepr
the performance of the user application that processes the captuiedspac

The buffer where the network packets are stored iilbpcap with mem-
ory mapping support is accessible from both the kernel landpcap library.
The packets are stored sequentially into this buffer by the kernel as theg, a
while thel i bpcap library allows a monitoring application to process them by
returning a pointer to the next packet throygbap_next or calling the callback
function registered througpcap_| oop for each packet that arrives. In case the
buffer is empty] i bpcap blocks, callingool | , waiting for new packets to arrive.
Packet processing is performed by a user-defined handler functibis tiegistered
throughpcap_l oop orpcap_di spat ch and is called once for each packet that
arrives.

After finishing with the processing of each packet, through the callbaw-fu
tion or when the nexpcap_next is called,| i bpcap marks the packet as read
so that the kernel can later overwrite the packet with a new one. Othelifvise
packet is marked as unread, the kernel is not allowed to copy a newtpatkthis
position of the buffer. In this way, any possible data corruption that cohafben
by the parallel execution of the two processes (kernel and monitorinigatpn)
is avoided.

The implementation of locality buffering in the memory mapped version of
| i bpcap does not require to maintain a separate buffer for sorting the arriving
packets, since we have direct access to the shared memory mappedbufiech
they are stored. To deliver the packets sorted based on the sourestimratdon
port number to the application, we process a small portion of the sharéat buf
each time as a batch: instead of executing the handler function every time a new
packet is pushed into the buffer, we wait until a certain amount of pabkstbeen
gathered or a certain amount of time has been elapsed. The batch afspatken
ordered based on the smaller of source and destination port numbers.

The sorting of the packets is performed as described in Seti#h The same
indexing structure, as depicted in Figur, was built to support the sorting. The
structure contains pointers directly to the packets on the shared buffen, The
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handler function is applied iteratively on each indexed packet basecdeoorder
imposed by the indexing structure. After the completion of the handler function
the packet is marked for deletion as before in order to avoid any rackticors
between the kernel process and the user-level library.

A possible weakness of not using an extra buffer, as described iln$42.2
is that if the batch of the packets is large in comparison to the shared baffer,
significant number of packets may get lost during the sorting phase irotaggh
traffic load. However, as discussed in Sectb8 the fraction of the packets that
we need to sort is very small compared to the size of the shared bufierefohe,
it does not affect the insertion of new packets in the meanwhile.

In case of memory mapping, a separate thread for the packet gathedasg ph
is not required. New incoming packets are captured and stored into thedsha
buffer by the kernel in parallel with the packet delivery and procesgirase, since
kernel and user level application (including thiebpcap library) are two different
processes. Packets that have been previously stored in buffernsi kee sorted
in batches during the gathering phase and then each sorted batch efspak
delivered one-by-one to the application for further processing.

4.3 Experimental Evaluation

4.3.1 Experimental Environment

Our experimental environment consists of two PCs interconnected theodgh
Gbit switch. The first PC is used for traffic generation, which is achidwece-
playing real network traffic traces at different rates ugiegr epl ay [145. The
traffic generation PC is equipped with two dual-core Intel Xeon 2.66 GHd CP
with 4 MB L2 cache, 6 GB RAM, and a 10 Gbit network interface (SMC 10G
adapter with XFP). This setup allowed us to replay traffic traces with spgeds
to 2 Gbit/s. Achieving larger speeds was not possible using large netvemdstr
because usually the trace could not be effectively cached in main memaory.

By rewriting the source and destination MAC addresses in all packetsethe g
erated traffic is sent to the second PC, the passive monitoring sensch, eap-
tures the traffic and processes it using different monitoring applicatibims.pas-
sive monitoring sensor is equipped with two quad-core Intel Xeon 2.00G@Mis
with 6 MB L2 cache, 6 GB RAM, and a 10 Gbit network interface (SMC 10G
adapter with XFP). The size of memory mapped buffer was set to 60,00@$ra
in all cases, in order to minimize packet drops due to short packet bundesed,
we observe that when packets are dropped by kernel, in higher trafés, the
CPU utilization in the passive monitoring sensor is always 100%. Thus, iexeur
periments, packets are lost due to the high CPU load. Both PCs run 64hbitWwbu
Linux (kernel version 2.6.32).

For the evaluation we use an anonymized one-hour long trace captutesl at
access link that connects an educational network with thousands oftbdsis
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Internet. The trace contains 58,714,906 packets, corresponding ® 032if-
ferent flows, totalling more than 40 GB in size. To achieve high speeds, Bp tp
Gbit/s, we split the trace into a few smaller parts, which can be effectivelyethc

in the 6 GB main memory, and we replay each part of the trace for 10 times in each
experiment.

We measure the performance of the monitoring applications on top of the origi-
nal version of i bpcap- 1. 1. 1 and our mofidied version with locality buffering.
The latter combines locality buffering with the memory mapping. For each setting,
we measure the L2 cache misses and the CPU clock cycles by reading the CPU
performance counters through the PAPI libraB} [Another important metric we
measure is the percentage of packets being droppdd bpcap, which is oc-
curred when replaying traffic in high rates due to high CPU utilization.

Traffic generation begins after the application has been initiated. The applic
tion is terminated immediately after capturing the last packet of the replayed trace
All measurements were repeated 10 times and we report the average \akies
focus mostly on the discussion of our experiments using Snort IDS, whitleis
most resource-intensive among the tested applications. However, wirefyp
report on our experiences with Appmon and Fprobe monitoring applications

4.3.2 Snort

As in the experiments of Sectighl.], we ran Snort v2.9 using its default configu-
ration, in which all the default preprocessors were enabled, and &kths latest
official rule set [] containing 19,009 rules. Initially, we examine the effect that
the size of the buffer in which the packets are sorted has on the ovepéiltap
tion performance. We vary the size of the buffer from 100 to 32,000¢iackhile
replaying the network trace at a constant rate of 250 Mbit/s. We send teaffi
several rates, but we first present results from constant 250 Mipit/s 80 packets
were dropped at this rate, to examine the effect of buffer size on CEldgpent
and L2 cache misses when no packets are lost. We do not use any time@s#dn th
experiments for packet gathering. As long as we send traffic at canmsatanthe
buffer size determines how long the packet gathering phase will lasteBisgy,

a timeout value corresponds to a specific buffer size.

Figures4.3and4.4 show the per-packet CPU cycles and L2 cache misses re-
spectively when Snort processes the replayed traffic using the drigidanodified
versions of i bpcap. Bothl i bpcap versions use the memory mapping support,
with the same size for the shared packet buffer (60,000 frames) foe&sr Fig-
ured.5presents the percentage of the packets that are being dropped bwBeort
replaying the traffic at 2 Gbit/s, for each different version obpcap.

We observe that increasing the size of the buffer results to fewer caisises,
fewer clock cycles, less dropped packets, and generally to an operédkmance
improvement for the locality buffering implementations. This is because using
a larger packet buffer offers better possibilities for effective pasketing, and
thus to better memory locality. However, increasing the size from 8,000 to 32,00
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packets gives only a slight improvement. Based on this result, we cons@4 8
packets as an optimum buffer size in our experiments. When sending inadfic
constant rate of 250 Mbit/s, with no timeout specified, 8,000 packets & Iside
roughly correspond to an 128 millisecond period at average.

We can also notice that using locality buffering we achieve a significant re-
duction in L2 cache misses from 13.4 per packet to 4.1, when using a 8,000-
packet buffer, which is an improvement of 3.3 times against Snort with thimatig
I i bpcap library. Therefore, Snort’s user time and clock cycles are significantly
reduced using locality buffering, making it faster by more than 20%. Maeo
when replaying the traffic at 2 Gbit/s, the packet loss ratio is reduced %y 33
Thus, Snort with locality buffering and memory mapgddopcap performs sig-
nificantly better than using the originial bpcap with memory mapping support.
When replaying the trace at low traffic rates, with no packet loss, Satptits the
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same set of alerts with and without locality buffering, so the packet reéagidoes
not affect the correct operation of Snort’s detection process.

We repeated the experiment by replaying the trace in different ratefngang
from 100 to 2,000 Mbit/s and in every case we observed a similar behaniaH |
rates, 8,000 packets was found to be the optimum buffer size. Using tti&s buf
size, locality buffering results in all rates to a significant reduction in Sncatthe
misses and CPU cycles, similar to the improvement observed for 250 Mbit/s traffi
against the original i bpcap. The optimum buffer size depends mainly on the
nature of traffic in the monitored network and on the network monitoring applica
tion’s processing.

An important metric for evaluating the performance of our implementations is
the percentage of the packets that are being dropped in high trafficoytibe
kernel due to high CPU load, and the maximum processing throughputribet S
can sustain without dropping packets. In Figdréwe plot the average percentage
of packets that are being lost while replaying the trace with speeds rafiging
100 to 2,000 Mbit/s, with a step of 100 Mbit/s. The 2,000 Mbit/s limitation is due
to caching the trace file parts from disk to main memory in the traffic generator
machine, in order to generate real network traffic. We used a 8,0(&{dacality
buffer, which was found to be the optimal size for Snort when replayingrace
file at any rate.

Using the unmodifiedl i bpcap with memory mapping, Snort cannot process
all packets in rates higher than 600 Mbit/s, so a significant percentagecké{s
is being lost. On the other hand, using locality buffering the packet psowes
time is accelerated and the system is able to process more packets in the same time
interval. As shown in Figurd.6, using locality buffering Snort becomes much
more resistant in packet loss, and starts to lose packets at 1 Gbit/s ins®@@@ of
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Mbit/s. Moreover, at 2 Gbit/s, our implementation drops 33% less packets than th
originall i bpcap.

Figure4.7 shows Snort's CPU utilization as a function of the traffic rate, for
rates varying from 100 Mbit/s to 2 Ghit/s, with a 100 Mbit/s step, and a locality
buffer size of 8,000 packets. We observe that for low speeds, locaiffgring
reduces the number of CPU cycles spent for packet processing theeitoproved
memory locality. For instance, for 500 Mbit/s, Snort’s CPU utilization with locality
buffering is reduced by 20%. The CPU utilization when Snort does reolioasility
buffering exceeds 90% for rates higher than 600 Mbit/s, and reaghts8.3%
for 1 Ghit/s. On the other hand, using locality buffering, Snort's CPU utilization
exceeds 90% for rates higher than 1 Gbit/s, and reaches about 97% f@bit/s
rate. We also observe that packet loss events occur due to high CPUtiotiljza
when it approaches 100%. Without locality buffering, 92.7% CPU utilizatwon f
700 Mbit/s results to 1.4% packet loss rate, while 98% utilization for 1.1 Gbit/s
results to 47.2% packet loss.

In Figure4.8we plot the average percentage of dropped packets while replay-
ing traffic with normal timing behavior, instead of sending traffic with a cortstan
rate. We replay the traffic of our trace based on it's normal traffic pattetmen
the trace was captured, using the multiplier option of tcprepl#yg[tool. Thus,
we are able to replay the trace at the speed that it was recorded, whiMisi@s
on average, or at a multiple of this speed. In this experiment we examinerthe pe
formance of Snort using the original and our modifiecdbpcap in case of normal
traffic patterns with packet bursts, instead of constant traffic ratessend the
trace using multiples from 1 up to 16, and we plot the percentage of drqyzuéd
ets as a function of this multiplication factor. We use 8,000 packets as bifder s
and 100 ms timeout.

We observe that locality buffering reduces the percentage of droppadets
in higher traffic rates, when using larger multiplication factors. Snort withlitc
buffering starts dropping packets when sending traffic eight times thstethe ac-
tual speed of the trace, while Snort with the origihabpcap drops packets from
four times faster speed. When replaying traffic 16 times faster than thedezto
speed, which results to 1,408 Mbit/s on average, Snort with locality budfelriops
34% less packets.

Since both versions dfi bpcap use a ring buffer for storing packets with
the same size, they are resistant to packet bursts at a similar factor. &tpwev
| i bpcap with locality buffering is faster, due the improved memory locality, and
so it is more resistant to packet drops in cases of overloads and trafits b

4.3.3 Appmon

Appnon [12] is a passive network monitoring application for accurate per-application
traffic identification and categorization. It uses deep-packet inspeatidmpacket
filtering for attributing flows to the applications that generate them. We ran App-
mon on top of our modified version bf bpcap to examine its performance using
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different buffer sizes that vary from 100 to 32,000 packets, and eoenpith the
originall i bpcap. Figure4.9presents the Appmon’s CPU cycles and Figh0
the L2 cache misses measured while replaying the trace at a constant 58@ of
Mbit/s. At this rate no packet loss was occurred.

The results show that Appmon’s performance can be improved using tie loc
ity buffering implementation, reducing the CPU cycles by about 16% compared
Appmon using the origindli bpcap. Cache misses are reduced by up to 31% for
32,000 packets buffer size and 28% for 16,000 packets. We notice thasénof
Appmon the optimum buffer size is around 16,000 packets, while in Snort 8,000
packets size is enough to optimize the performance. This happens bégmise
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mon is not so CPU-intensive as Snort, so it requires a larger amountlkéigao
be sorted in order to achieve a significant performance improvement.

We ran Appmon with traffic rates varying from 250 to 2,000 Mbit/s, observing
similar results. Since Appmon does less processing than snort, less paiekets
dropped in high rates. The output of Appmon remains identical in all cagash
means that the periodic packet stream sorting does not affect thetogperation
of Appmon’s classification process.

4.3.4 Fprobe

Fpr obe [3] is a passive monitoring application that collects traffic statistics for
each active flow and exports the corresponding NetFlow records.aVEprobe
with the original and our modified version bf bpcap and performed the same
measurements as with Appmon.

Figure4.11plots the CPU cycles and Figufel2the L2 cache misses of the
Fprobe variants for buffer sizes from 100 up to 32,000 packets, wdplaying the
trace at a rate of 500 Mbit/s.

We notice a speedup of about 11% in Fprobe when locality buffering is en-
abled, for 4,000 packets buffer size, while cache misses are redyd&®n The
buffer size that optimizes the overall performance of Fprobe in this searpimd
4,000 packets. No packet loss occurred for Fprobe at all traffis.ratprobe is
even less CPU-intensive than Appmon and Snort since it performs oely ag-
erations per packet. The time spent in kernel for packet capturing igisagly
larger than the time spent in user space. Thus, Fprobe benefits lesthdm
cality buffering enhancements. For passive monitoring applications irrgettes
performance improvement due to locality buffering increases as the timeiapen
user space increases, and also depends on memory access paittafasresults
were observed for all rates of the replayed traffic.
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4.4 Discussion

We consider two main limitations of our locality buffering approach. The first lim-
itation is that the packet reordering we impose results in non-monotonic giicgea
timestamps among different flows (it guarantees monotonic increasing timestamps
only per eachbi-directional flow). Therefore, applications that require this prop-
erty, e.g., for connection timeout issues, may have problems when dealing with
non-monotonic increasing timestamps. Such applications should either be modi-
fied to handle this issue, otherwise they cannot use our approach.

The second limitation of our approach is that our generic implementation within
I i bpcap, which sorts packets based on source or destination port numbers, may
not be suitable for applications that require a custom packet sortinghedsk
ing approach, e.g., based on application’s semantics. Monitoring applisatiay
perform similar processing for packets with specific port numbers, wtacimot
be known to the packet capturing library. Such applications should mobus
modified| i bpcap version, but instead implement a custom scheduling scheme
for packet processing order. Our implementation’s goal, is to impt@respar-
ently the performance of a large class of existing applications, where the tpacke
processing tasks depend mainly on the packets port numbers.

In particular, locality buffering technique is intended for applications which
perform similar processing and similar memory accesses for the same class of
packets, e.g., for packets of the same flow or packets belonging to the ggmae h
level protocol or application. For instance, signature-based intrugiacton sys-
tems can benefit from locality buffering, due to different set of sigmstunatched
against different classes of packets. Other types of monitoring appfisatiay
not gain the same performance improvement from locality buffering.

Finally, recent trends impose the use of multiple CPU cores per processor,
stead of building and using faster processors. Thus, applicationsdshtilize
all the available CPU cores to take full advantage of modern hardwarérand
prove their performance. Although L2 cache memory becomes larger iastew
processors, maore processor cores tend to access the sharechke? sadocality
enhancements can still benefit the overall performance. Our appcaache ex-
tended to exploit memory locality enhancements for improving the performance
of multithreaded applications running in multicore processors. Improving mem-
ory locality for each thread, which usually runs on a single core, is an iwpor
factor that can significantly improve packet processing performanaeh thread
should process similar packets to improve its memory access locality, similarly to
our approach, which is intended for single-threaded applications.

Applications usually choose to split packets to multiple threads (one thread
per core) based on flow identifiers. A generic locality-aware apprimacdfficient
packet splitting to multiple threads, in order to optimize cache usage in each CPU
core, should sort packets based on their port numbers and then thieiteto the
multiple threads. This will lead to improved code and data locality in each CPU
core, similarly to our locality buffering approach. However, in some apiitioa
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the best splitting of packets to multiple threads can be done only by the application
itself, based on custom application’s semantics, e.g., custom sets of ports with
similar processing. In these cases, a generic library for improved menaaityo
cannot be used.

4.5 Summary

In this chapter, we presented a technique for improving the packetgsiogeper-
formance in a wide range of passive network monitoring applications bynairig
the locality of code and data accesses. Our approach is based oeriegrthe
captured packets before delivering them to the monitoring application oy
together packets with the same source or destination port number. THis tesu
improved locality in application code and data accesses, and consequealtly to
overall increase in the packet processing throughput and to a signifiearease
in the packet loss rate.

To maximize improvements in processing throughput, we combine locality
buffering with memory mapping, an existing techniqué irbpcap that optimizes
the performance of packet capturing. By mapping a buffer into sharetbnyethis
technique reduces the time spent in context switching for delivering pafrioen
kernel to user space.

We describe in detail the design and implementation of locality buffering within
I i bpcap. Our experimental evaluation using three representative passive moni-
toring applications shows that all applications gain a significant perforeniamne
provement when using the locality buffering implementations, while the system
can keep up with higher traffic speeds without dropping packets. Sgalifilo-
cality buffering results to a 25% increase in the processing throughpaé&nort
IDS and allows it to process two times higher traffic rates without packesdrop

Using the original i bpcap implementation, the Snort sensor starts to drop
packets when the monitored traffic speed reaches 600 Mbit/s, while usialg loc
ity buffering, packet loss is exhibited beyond 1 Gbit/s. Fprobe, a NetFpore
probe, and Appmon, an accurate traffic classification application, alsbiesig-
nificant throughput improvements, up to 12% and 18% respectively, gthiey
do not perform as CPU-intensive processing as Snort.

Overall, we believe that implementing locality buffering witHinbpcap is
an attractive performance optimization, since it offers significant paidoce im-
provements to a wide range of passive monitoring applications, while atithe sa
time its operation is completely transparent, without the need to modify existing
applications. Our implementation of locality buffering in the memory mapped ver-
sion ofl i bpcap offers even better performance, since it combines optimizations
in both the packet capturing and packet processing phases.



Improving Accuracy Under Heavy Load

Over the past few years we have been witnessing an increasing nuhsieeuaty
breaches and malicious activities in the Interri&q. Network Intrusion Detec-
tion Systems (NIDSs) are crucial for the detection of security violationsasyli-
cious activity, enhancing the robustness and secure operation of muetarorks.
However, the constant increase in link speeds and number of secueigigimoses
significant challenges to NIDSs, which need to cope with higher trafficrvetu
and perform increasingly complex per-packet processing.

NIDSs operate isoft real time meaning that under conditions of heavy traffic
load the system will operate with degraded performance. When the netrhafiik
load becomes higher than the peak processing throughput the NIDSis@mns
the CPU becomes saturated, and the Operating System inevitably startsxgropp
packets before delivering them to the NIDS, impeding its detection ability. Since
these packets are not inspected, if they are part of an attack or otherouslic
activity, then that event will be missed.

Several techniques have been proposed for improving the perfoenédNeDSs
by accelerating the packet processing throughput and thus progesgier traffic
loads [L3,35,84,157]. Other techniques automatically tune the NIDS configuration
to balance detection accuracy and resource requiren®eh85[. However, given a
highly loaded network, intrusion detection systems based on non-spediatirg-
ware are usually not able to analyze all traffic to the desired ded@#&. [Even
after carefully tuning the NIDS according to the monitored environment, it will
still have to cope with inevitable traffic bursts or processing spik&§||

In this chapter, we preseselective packet discarding technique that allows
a NIDS to dynamically diagnose conditions of excessive traffic load and mini-
mize their impact on its detection accuracy by choosing which packets sheuld b
dropped. Using selective packet discarding, the system selectiips/siocessing
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packets that are less likely to affect the correct operation of the detextgine as
soon as possible, instead of letting the Operating System randomly dropping a
ing packets. This allows the NIDS to inspect a larger number of “usefudketa
that are important to the detection process.

We observe that the first packets of a connection play a crucial role to the
correct detection of a large class of attacks. For instance, signaturdséats
like network service probes and reconnaissance attacks, brutddgiocattempts,
protocol misbehaviour, and code-injection attacks, usually match packetsréh
among the first few hundred packets of a network flow. Moreover, tsecontrol
packets of a TCP connection are crucial to proper flow tracking and Sifeam
reassembly, which are mandatory features of modern NIB&&19. If any of the
packets in the TCP three-way handshake is lost, the corresponding flomotide
considered established, and potential attack vectors in this flow may eetete d
tion. On the other hand, very large flows usually correspond to file ees)SP2P
traffic, or streaming media applications, which typically are not related taisgcu
threats. Inspecting all packets from such “heavy-hitters,” which cma@ large
percentage of the total traffic, usually does not contribute much to thetidetec
accuracy of a NIDS.

We implemented selective packet discarding in the Snort intrusion detection
system 24 as a preprocessor that runs before the detection engine and all other
preprocessors. It maintains state for the active flows and limits the numpaclof
ets that will be inspected per flow by discarding them from the rest pcepsors
and Snort’s core detection engine. It is also responsible to measureldyeadd
CPU usage when Snort is processing a group of packets and respeatljust the
number of packets that will forward for further inspection.

We experimentally evaluated our technique using production traffic, mixed
with real attacks that Snort can detect. We replay the traffic at high sjptes
using several traffic patterns, and we compare the detection accuracgioal
Snort when packets are dropped with our modified Snort, with the sel@etoket
discarding preprocessor enabled. Under overload conditions, itn@adrSnort
implementation misses a significant number of packets, resulting to a congjderab
lower number of alerts, with many of the labeled attacks in our trace passiteg un
tected. This is a result of the random packet dropped by the Operatstgrylin
contrast, selective packet discarding significantly improves the deteciiomay
of Snort under increased traffic conditions, allowing it to detect mosteottacks
that would have otherwise been missed.

The rest of this chapter is organized as follows: Sedidmntroduces selective
packet discarding and Secti@n2 provides the details of our implementation in
Snort. In Sectiorb.3, we experimentally evaluate our technique under realistic
conditions by replaying real traffic traces with different speeds. Fina#gtiors.4
summarizes this chapter.
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5.1 Selective Packet Discarding

Ideally, an intrusion detection system should be able to capture and irelpect
network traffic passing through the monitored link. In highly loaded netsjork
this may not be possible due to the limited computational power of the monitoring
sensor. For traffic speeds higher than a few hundred Mbit/s, the systenot
process all monitored traffic, which unavoidably leads to packet diidg.|

One way to offload the detection engine is to select a subset of the monitored
traffic to be excluded from the NIDS processing using a capture filténglimitial-
ization 91]. However, in a typical deployment, such a filter usually excludes only
a small subset of the traffic, while events of excessive traffic load i&tytraffic
can still occur. Given that under such conditions some packets will intevy
get lost, we argue that it is better to proactively discard those packetarthbdss
likely to affect the detection effectiveness of the system, instead of lettinQ&e
drop packets at random.

In this section, we describe in detail the design and implementation of selec-
tive packet discarding, which dynamically controls which packets areggoiget
dropped in case of overload conditions with the minimal impact to the detection
ability of the system. We first discusghich packets should be considered for dis-
carding, and we propose a selection based on the flow size and the pasition
packets in their flows. Then, we describe the performance measuremantseth
NIDS should perform periodically to monitor the system’s load and dewitken
selective packet discarding should be triggered. Finally, we presealgarithm
that dynamically estimatdsow manypackets should be dropped according to the
system performance measurements.

5.1.1 Flow-based Packet Selection

The starting point of our work is the observation that in a typical NIDS, some
network packets play a more important role for the detection of a large dass o
threats than the rest of the traffic, i.e., without processing these patheits,is

an increased probability to miss an attack. For example, inspecting the grotoco
interactions of commonly targeted services like RPC and NETBIOS seems more
important than inspecting a large file transfer of a file-sharing application.

Probably the most widely used abstraction when referring to networkctraffi
besides the network packets themselves, isdte/ork flow A network flow com-
prises packets with the same protocol, source and destination IP addrasde
source and destination port numbers (same 5-tuple) and representaecton
between two hosts.

The first packets of a network connection are very important for theecor
detection of a large class of attacks. Many types of threats like port scann
service probes and OS fingerprinting, code-injection attacks, andforatelogin
attempts, require a new connection for each attempt, and the attack vectallg us
present in the first few thousands KB of the flow. By contrast, veryelatgeams
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usually correspond to file transfers, VolP communication, or streaming rapedia
plications, which typically are not related to security threats. Very long nétwo
flows usually comprise a large portion of the total traffic in an organizatiogis
work, and inspecting the packets towards the end of such flows usuaity rou
contribute much to the detection accuracy of a NIDS.

Another reason for the increased importance of the first packets ofreection
is the flow tracking and TCP stream reassembly functionality of modern NIDSs
The packets in the three-way TCP handshake, which are always thpafileets
in a TCP flow, are crucial for updating the state of a new flow as it is est&bljsh
identifying the direction of each stream, and performing TCP stream maasdf
a control packet is lost during the connection initialization phase, thesmoneling
flow will not be considered as established and possible attack vectasnpria
subsequent packets of this flow may evade detection.

Analyzing the 9276 rules in the default rule set of Sna@it jve observe that
4627 of them contain the keywofd ow. est abl i shed, which defines that the
detection engine should process the rest of the rule only if the packeigsdio an
already established TCP connection. If under high load conditions &patthe
three-way handshake does not reach Snort’s flow tracking pregsog; then the
rules that rely on flow tracking will never match for that flow, and potentiaicks
will not be detected.

Furthermore, attack vectors that span multiple packets in the beginning of the
stream, such as the shellcode of a code injection attack or the URI of a malicious
XSS HTTP request, are usually inspected after the original stream leasrée
assembled by the TCP stream reassembly preprocessor (Stream5 in Short)
packets are being dropped randomly by the OS, the stream reassengrycpse
sor may not receive a packet containing part of an attack, leaving éssembled
stream incomplete.

To verify our intuition based on the above observations, we analyzeestic
real attacks and extracted the actual position of the attack vector within the flo
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We ran Snort using real traffic captured at the access link of an gdoahinsti-
tution network, which triggers 1976 alerts from 78 different rules. Wehir aug-
mented the trace with 120 traces containing real attacks captured in thedtvid [
which Snort detects using the default rule set. We interspersed thesg imaan-
dom offsets within the large trace, so that the resulting trace generates aftota
2252 alerts due to 92 different attack signatures. Further details algoiatie and
the experimental environment are discussed in Seé&tidri

We slightly modified Snort to categorize packets into flows, and report the
rank of the matching packet within its flow when it matches an attack signature.
Figure5.1shows the cumulative distribution of the matching packet position within
the flow for the 2252 alerts in the above trace. We observe that most oleifte a
are triggered by the first few packets of a flow. For instance, 90% oélires
were triggered within the first 30 packets of the flow, and only 3% of thesaler
are triggered from packets coming after the 100th packet. This hapeeasise
there is a large class of malicious activities that most of the time takes place in the
beginning of the flow. Such malicious activity includes port scans, attatkke
authorization and authentication mechanisms, usage of P2P applicationk (whic
often violates the corporate policy), as well as some protocol violations.

Flows usually follow a heavy tailed distribution on the Internet, i.e., the great
majority of the flows have a quite small size, while only a very small subset has a
very large size and is responsible for most of the total traffic volus8E Pur trace
also follows this property, as we can see in Figbu2 which shows the cumulative
distribution of the flow sizes. We can see that 86% of the flows contain up to
10 packets, while 97% of the flows have no more than 70 packets. Only 0.4%
of the flows have more than 1000 packets, which corresponds to 53¢t the
total 1,493,032 flows. There are also 74 flows (0.005%) with more than A®0,0
packets. The average flow size in the trace is 50.2 packets.

Based on the above observations, we argue that a NIDS under highdoad
ditions would benefit from focusing on the processing of the first gaakdeeach
flow, and discarding the rest. Selecting the packets to be processedttiby se
flow size limit seems promising, since it will affect a small percentage of thesflow
but will also exclude a large portion of the total traffic from processingnadmi-
cally setting the flow size cutoff limit according to the monitored traffic load is an
important aspect of our approach, which we discuss in the rest of ttisise

5.1.2 System Load Monitoring

Under conditions of excessive traffic load, in which the packet psicgshrough-
put of the NIDS is less than the monitored traffic throughput, the NIDS dgne
cess all the monitored traffic and unavoidably the OS kernel starts dgpppirk-
ets. Implementing selective packet discarding requires the forecastowgbdad
conditions that will probably lead to dropped packets before the kentehldy
starts dropping them. Captured packets are initially stored in a socket uier-
nel space, before being copied to user space and then being dtlivehe NIDS
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through the packet capture library, in our chsdpcap [92]. If the NIDS cannot
consume the arriving packets fast enough, the socket buffer willfilnd excess
packets will be dropped.

The main role of the socket buffer is to provide tolerance to short traffistb.
In case of short bursts, packets will be buffered as long as the tdudffer has free
space and will eventually be delivered for processing. The duratigheoburst
and the socket buffer size determine the number of packets that will ippehip
if any. In Linux, theget sockopt system call can be used to obtain the socket
buffer size, which allows us to compute the minimum number of packets that can
be buffered in case of a traffic burst by dividing the socket buffer By 1500—the
usual MTU for Ethernet. In all our experiments, we have set a largeesbaiffer
size of 6MB, to rule out packet drops due to common small buffer corstguns.
If the amount of traffic is constantly higher than the NIDS processing girou
put, packets will be dropped regardless of the socket buffer sizeg #imwill be
constantly full.

Our system identifies overload conditions using three metrics: (i) the occur-
rence of packet drops, (ii) CPU utilization approaching 100%, and (iigrapari-
son between NIDS processing times and packet inter-arrival times.

Ideally, we would like to perform packet drops and CPU measuremenés-at p
packet granularity. However, this would incur a prohibitively high oeah In-
stead, we measure the NIDS’s CPU usage, processing time, and paipg®bdce
every N packets have been processed. We chivsmsed on the socket buffer size
to permit the system to timely detect overloads conditions before any paciet d
are caused by the kernel. We know that kernel can buffer at leastrtiosint of
packets in case of excessive load, before our discarding techreqoesr Addi-
tionally, N should be large enough to provide accurate measurements, according
to the system’s timing resolutioh Based on the above, in our setting with a 6MB
socket buffer, we empirically sét to 5000.

Every 5000 packets, the system examines whether any packets wppedro
by the kernel in the elapsed period usingpleap _st at s function ofl i bpcap [92].
Additionally, the system measures the user and system time usiggthieisage
system call, as well as the real time the NIDS spent while processing theysev
group of N packets usingyet t i neof day. The CPU utilization of the elapsed
period is computed a8user time + system time)/real time.

For the third metric, we compare the timeequired for processing the group
of N packets with the time intervalduring which these packets were observed on
the network. The processing timeorresponds to theser time + system time,
while the time intervak is computed by subtracting the timestamp of the oldest
packet in the group from the timestamp of the most recent packet>If, then
this is an indication that the kernel will probably start dropping packetsptf n
already. Otherwise, if < s, the kernel did not drop any packets in that interval.

In Linux, theget r usage system call provides 10ms resolution.
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Since we need to predict packet loss events before the CPU gets shtumte
set an upper threshold for CPU usage and processing time, above sefective
packet discarding is triggered. When> s and the CPU usage is relatively low,
with no packet drop events during that period, the system decides wimethe
packets per flow should be processed or not based on a secondthwesirold.
These two thresholds should be close enough to allow for optimum resegage
and prevent CPU under-utilization. We also take into account the typidall@ai
variation during short term intervals to avoid rapid oscillations, i.e, falling into a
loop that would change very often the flow size limit up and down.

After running Snort using different traffic speeds and observingctireela-
tion between the traffic load, CPU load, and packet drops, as we disc&ex-
tion 5.3, we set the above thresholds as follows: the upper threshold is set to 0.95
and the lower threshold is set to 0.8, i.e., 95% and 80% CPU utilization, respec-
tively. Putting it all together, the NIDS triggers selective packet discgrdloiuring
the processing of the previol packets i) some packets were dropped by the ker-
nel, orii) C PU utilization > 0.95 andt > 0.95s. The condition for identifying
an idle period isC PU utilization < 0.8 andt < 0.8s. Otherwise, the CPU
utilization is within the desirable range and the flow size limits remain the same.

5.1.3 Flow Size Limit Adjustment Algorithm

Upon detection of an overload condition, the NIDS should back off addae

the number of packets that it is going to process. First, we need to spegify h
many packets should be discarded, and then this number should be titslate
the proper reduction of the per-flow cutoff limit. Ideally, the number of pésko

be discarded should be such that it would allow the processing time for thketsa

in the following group to remain within the desirable range. In other words, the
NIDS processing rate i&/t while the packets are coming with raté/s We need

to reduce the processing tim& become equal t©.95s, i.e., the number of packets

to be discarded from the next group will correspond to processingtin{.95s),

that is:

(t — 0.955) N/t (5.1)

In case the system observes packet drops in that interval, we shoulicoalsider

it in our decision. Therefore, the amount of packets that will be dischisléhe
maximum of i) the number of packets dropped in that interval, and ii) the number
of packets estimated using Equat®i.

If an idle period is detected, the NIDS should ramp up and process mdte pac
ets. The system computes the additional number of packets that should-be pr
cessed in a similar manner as for packet drops. The NIDS can $pe¥sd — ¢
more processing time in the next group M8f packets, which corresponds to the
following number of packets:

(0.85 — t)N/t (5.2)
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At this point, we have the mechanisms for estimating the number of packets
that the NIDS should discard in case of overload. However, our satestiategy
is based on limiting the flow size, which requires setting an appropriate flow size
threshold. Based on the active flows in the monitored traffic, the systemestirst
mate the reduction factor for the flow size threshold in order to skip privgetse
desirable number of packets. Similarly, in case more packets need to lesgedc
the flow size has to be increased appropriately by taking into account geedfiz
the currently active flows.

The algorithm for deriving the new flow size limit for each interval, in case
the above system measurements suggest so, is based on aggregatiaxd shetis
NIDS gathers during the classification of arriving packets into flows. fldwe
classification engine keeps packet counters for predefined flow ages, i.e.,
the system stores the number of packets that belong to flows with size from 0 to
100 packets, from 100 to 200 packets, and so on. The flow classifietigine
keeps these statistics using a table of 1000 integers. Each pasdfdaihe table
indicates the number of packets that correspond to flows with size#frod0 to
(i + 1) = 100. The last position of the table counts the packets that belong to flows
with size larger than 100,000 packets.

For each arriving packet, the classifier finds the flow in which the pamiet
longs to, increases the size of this flow by one (in terms of number of packets
and also increases the corresponding counter in the flow size statisticdtéiea
a flow reaches a size that is a multiple of 100, it levels up a range in the flow
statistics table by subtracting from tlie/100) — 1 position the size of the flow
in terms of number of packets, and adding it to the next positie/100), of the
flow statistics table. When a flow is closed, e.g., due to a proper TCP cormectio
termination or due to some timeout of inactivity, the size of the flow is subtracted
from the corresponding position of the flow statistics table.

Figure5.3presents the pseudocode of the flow size limit adjustment algorithm.
In case of packet discarding, the algorithm descends the flow statistiegltabs
8-11), starting from the range of the current flow limit (lines 6-7), anght®
the packets that will be discarded in each lower flow size range, until aehre
the desirable number. The procedure for increasing the flow size limit is similar
by ascending the flow statistics table (lines 18-21) until the required nunfiber o
packets is encountered. Then, the flow size limit is adapted accordingly (e
13, 22-23).

5.2 Implementation within Snort

5.2.1 Selective Packet Discarding

We have implemented the selective packet discarding approach within the Bt
intrusion detection system as a preprocessor configured to run bieéodetection
engine and all other preprocessors. The preprocessor reeaisiepacket immedi-
ately after Snort’s Layer-4 packet decoding, and based on the ptpsoeirce and
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updat e_CPU_usage();
updat e_dr opped_packet s();

1
2
3
4 if (dropped_packets || (CPU usage>0.95 && t>0.95xs)) {

5 reduce_packets = max(dropped_packets, (t-(0.95*s))*xNt);
6 if (limMt == NOLIMT) range = 1000;

7 el se range = |imt/100;

8 whi |l e (reduce_packets>0 && range>0) {

9 reduce_packets -= flowstats[range];

10 range--;

1 }

12 if (range == 0) limt = 10;

13 else limt = range*100;

15 else if (cpu_usage<0.8 && t<0.8*s) {

16 i ncrease_packets = ((0.8xs)-t)*Nt;

17 range = limt/100;

18 whil e (increase_packets>0 && range<1000) {
19 ranget++;

20 i ncrease_packets -= fl owstats[range];

21 }
22 if (range == 1000) limt = NOLIMT;
23 else limt = range*100;

FIGURE 5.3: Simplified pseudocode for the flow size limit adjustment algorithm.

destination IP addresses, and, in case of TCP/UDP packets, sodrdestimation
port numbers, it looks up the corresponding flow through a hash tableedeh
flow, the preprocessor keeps statistics about its size in number of pa8estsd
on the flow size and the current packet discarding flow size limit, the pcepsor
decides whether the current packet should be discarded, or fied/do the other
Snort preprocessors and the core detection engine.

Furthermore, as we have discussed in Sedidr3 the preprocessor keeps the
aggregate number of captured packets for predefined flow sizes.aRtmvs are
closed either after a timeout of inactivity (set to 10 seconds in our expetsinen
due to normal TCP protocol connection termination after RST of FIN/ACK<pac
ets. Itis important to precisely follow TCP connection terminations and dishard
relevant flow statistics, in order to prevent attackers to evade detecticloging
and opening new TCP connections immediately. Thus, each new connedtion w
be considered as new flow and its first packets will always be pratégssnort.

5.2.2 System Performance Monitoring

The second important function of the preprocessor is the flow size limijustad
ment according to the algorithm presented in Seciidn3 As we have described,
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the algorithm is activated every packets, since system performance measure-
ments must be performed iN packet intervals. The size of the interva, is
automatically chosen based on the size of the socket buffer and the sysisms
lution in measuring CPU time. After processingpackets, the preprocessor rea-
sons about potential overload conditions based on the performancersmaasts
and adjusts the flow size limit accordingly.

5.3 Experimental Evaluation

In this section, we present the experimental evaluation of our prototype-imple
mentation of selective packet discarding in the Snort IDS. We first exathae
effect of the flow size limitation in Snort’'s performance, using Snort fdlinaf
trace inspection. Then, we experimentally evaluate our technique by iregpling
mixed trace at several high rates, and we compare the detection acoloaigynal
Snort when packets are dropped due to overload with our modified Sitbrthe
selective packet discarding preprocessor enabled to gracefulht tléhe same
overload conditions.

5.3.1 Experimental Environment and Traffic Used

Our experimental environment consists of two PCs interconnected theodgh
Gbit switch. The first PC is used for traffic generation, which is achidwece-
playing real network traffic traces at different rates ugiegr epl ay [145. The
traffic generation PC is equipped with an Intel Xeon 2.00 GHz CPU with 6 MB
L2 cache, 2 GB RAM, and a 10 Gbit network interface. This setup alloveetd u
replay traffic traces with speeds up to 900 Mbit/s. Achieving larger spgagsiot
possible using large network traces because usually the trace coulé effeb-
tively cached in main memory.

By rewriting the source and destination MAC addresses, the generdfaxisra
sent to the second PC, the intrusion detection sensor, which capturesfticeatrd
inspects it using the original Snort, as well as our extended version Wibtise
packet discarding. We modified Snort v2.8.3.2, used the latest offideatat [7]
containing 9276 rules, and enabled all the default preprocessopecified in its
default configuration. The NIDS PC is equipped with an Intel Xeon 2.6& GH
CPU with 4 MB L2 cache, 2 GB RAM, and a 10 Gbit network interface. The
kernel socket buffer size was set to 6 MB in order to minimize packetdidop to
short packet bursts. Both PCs run 64bit Ubuntu Linux (kernel veri6.27).

For the evaluation we used an anonymized one-hour long trace captuhed a
access link that connects an educational network with thousands otbdisesin-
ternet. The trace contains 58,714,906 packets, corresponding to Ba@#férent
flows, totalling more than 40 GB in size. As already discussed in Sestiof for
this trace Snort generates 1976 alerts from 78 different rules usirdgethalt rule
set.
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Reasoning about whether these alerts are true positives or not wayuiidere
manual inspection of each alert and the corresponding matching pabkastsof
the matching rules are related to common threats such as probes for vignerab
web applications and database servers, old buffer overflow explaidsp@tocol
violations. Such traffic is typically received by DMZ servers. Therezdse quite
a few alerts from rules that look for suspicious activity, suclr abot s. t xt
access oHTTP 403 For bi dden responses, which correspond to 49 and 263
alerts, respectively. Given the nature of the triggered alerts, we behavenost
of them are true positives. However, based on our experience jrzcal\ge have
not checked all alerts one by one, we speculate that some of the alertsafiaisieh
positives. In order to strengthen our evaluation, as discussed in Séctidnwe
augmented the trace with 120 short traces of real attacks, adding 276tadee
from 14 different rules which are definitively true positives.

5.3.2 Flow Cutoff Impact Analysis

In our first experiment, we explore the impact of imposing a limit in the number of
packets of each flow that are going to be processed on Snort’s piogéilsrough-

put and detection accuracy. We modified our preprocessor to dis@phtikets

of each flow after a certain flow size limit has been reached. We ran Ssiog u
different flow cutoff values using the augmented network traces destribthe
previous section. Snort loads the trace for offline analysis and oprqaressor
allows only packets which lay before the maximum allowed flow size limit to be
inspected by Snort’'s detection engine. Since this an offline analysis, itheme
dynamic adaptation in the flow cutoff size—the same flow size limit is used for the
whole duration of each run.

For each run, we measure Snort’s execution time using thee Unix tool,
which provides us the elapsed user, system, and real time. The pracéssiungh-
put is measured as the total trace size divided by the user plus system time. We
repeat each measurement 10 times and report the average value obtighthut
for different flow size limits. For each run, the detection accuracy is eefas
the percentage of alerts triggered for each different flow cutoff valivided by
the total number of alerts (2252) which we know a priori that are triggbyetthe
trace. We are mostly interested in the detection of the 276 attacks that we have
injected in the trace, since we know that the corresponding alerts aréideljn
true positives, but it is also desirable to observe as many of the rest alettie in
the trace as possible.

Figure 5.4 presents Snort's throughput and detection accuracy when varying
the number of processed packets per flow from 10 to 100,000. The ufiedod
version of Snort achieves a throughput of 560 Mbit/s. When enablingréyro-
cessor, as the number of inspected packets per flow decreases tnghfiubis
increased, since Snort inspects fewer packets. For instance, v autoff limit
of 1000 packets, Snort can process up to 1400 Mbit/s of traffic, while L0t
packets per flow the processing throughput reaches 2 Gbit/s. Whemn lagjer



70 CHAPTER 5. IMPROVING ACCURACY UNDER HEAVY LOAD

100 . Ao Ao oee A----A oo A----A
-

-12500
. Lown)
80 - Throughput 7
S A Alerts o
S 2000 =
R} A 4
© 60 - =
o £
o [=)
2 1500 3
5 % £
g o
< 1000 &
20 - 2
0

0 T T T 1 500

10 100 1000 10000 100000

Flow size limit (#packets/flow)

FIGURE 5.4: Snort’s throughput and detection accuracy as a function of the flo
size limit.

flow cutoff sizes, the throughput approaches the unmodified Snortsighput,
e.g., with a limit of 50,000 packets the throughput drops to 675 Mbit/s, which still
is a 20% improvement.

As the flow cutoff size increases, the number of triggered alerts alsasese
i.e., the number of missed events decreases. For flow limits higher than arfiew hu
dreds of packets, only a small percentage of alerts is missed. As alnepeisted
from Figure5.1, alerts are triggered mostly due to packets that belong to the first
few packets of a flow. For instance, processing up to 10,000 packeflopwere-
sults to 5 missed alerts out of the 2252 alerts in the trace. while at the same time
the throughput increases 56%. For a cutoff size of 50,000 packetsoslalert
was missed. The 276 alerts due to the real attacks that we manually injectdd are
triggered even for a cutoff limit as low as 20 packets per flow.

Even when inspecting just the first 100 packets of each flow, 95% of¢nts a
are still triggered. Considering the corresponding improvement in Stileréagh-
put, which is 3.62 times faster reaching up to 2033 Mbit/s, enabling selectikeipa
discarding for traffic volumes higher that 560 Mbit/s seems promising. Asreve a
going to see in the next section, under such conditions, the packetluydesnel
result a much higher number of missed alerts. When the monitored traffigtinrou
put drops to normal and Snort is not high loaded, the selective paidaeatrding
preprocessor will dynamically adapt the flow size limit as much as effectively d
abling packet discarding at all.
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5.3.3 Improving Detection Accuracy under High Load

We now evaluate the detection accuracy of unmodified Snort and ourdexten
Snort version with selective packet discarding under realistic conditdns-
creased load.

Figure 5.5 shows the performance of original Snort when replaying traffic
with speeds varying from 200 to 900 Mbit/s. For each traffic speed, peated
the measurements 10 times and report the average of the percentageeavettigg
alerts, the CPU utilization of Snort for processing the packets, and toemgage
of dropped packets by the OS. We see that for speeds higher than 508, M
significant percentage of packets is dropped by the kernel, ranging 6% for
500 Mbit/s up to 46% for 900 Mbit/s traffic. When packets are dropped, &g C
utilization is always higher than 99%, since Snort cannot handle the hiffic tra
volume.

The consequence of these drops is a significant reduction in the nurhber o
detected events. For a traffic speed of 500 Mbit/s, with just 15% of theepgck
being randomly dropped by the OS, Snort misses 18% of the alerts, i.e., &5y 1
of the total 2252 alerts are reported. When 46% of the packets areedtofuy
900 Mbit/s traffic, about half of the alerts are missed. Even for 400 Mbitfs tra
fic, a slight percentage of dropped packets (0.096%) causes 16talbesnissed
(0.7%). Furthermore, among different runs for the same traffic sg@reatt gener-
ates different sets of alerts, indicative of the non deterministic resultsahdom
packet drops induce.

Moreover, the 276 alerts due to the real attacks we injected are lost with the
same probability as all other alerts in the trace. For instance, for 500 Mbifis,tra
Snort identified 223 out of the 276 attacks, missing 19% of the alerts. Fbr 90
Mbit/s, just 55% of these alerts were successfully detected. These résoitm-
strate that Snort’s detection accuracy degrades significantly undditioos of
excessive traffic load.
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Figure5.6shows the performance of Snort with selective packet discarding en-
abled. A first observation is that with selective packet discarding, thebeu of
packets dropped by the kernel is negligible. There are no packes €wopraffic
speeds up to 600 Mbit/s, while there is just a 0.098% of dropped packe®@or
Mbit/s. We also notice that for high traffic speeds, the CPU utilization remains
within the desirable range imposed by the 0.8 lower and 0.9 upper threskaes.
ure5.6also shows the percentage of packets that are selectively discamed-ac
ing to the size of the flow in which they belong to. As we expected, the pegenta
of discarded packets increases according to the traffic speed. Fmdasin 500
Mbps traffic speed 32% of the packets are selectively discarded frgpedtion,
in order to prevent Snort overloading. In 900 Mbps, the percentbdescarded
packets reaches 63%. By discarding the desirable amount of packetsliag to
the traffic load, Snort controls the CPU utilization and keeps it constantly within
the desirable range.

The number of selectively discarded packets is larger than the numbrexpgfedt
packets by the kernel in unmodified Snort for the same speeds. Tlete@ex-
planations for this outcome. First, the selective packet discarding algorithm
purposely quite aggressive in discarding packets in order to proqpiretict and
prevent packet drops from the kernel. Thus, the preprocessis temliscard more
packets from the end of the flows and benefit from preventing undadn@andom
packet drops from the kernel. Second, in unmodified Snort, pacletya@pped in
kernel level, before they are copied to user level. With selective paisedrding,
all packets are first delivered in user space and then are discardee nort pre-
processor, which results to a higher number of discarded packetsevdgveven
with eventually less inspected packets, selective packet discarding &loars
to achieve a much better detection accuracy, as discussed below. Miorem/
number of flows affected by selective packet discarding is just 0.42%eofo-
tal number of flows for the highest traffic speed of 900 Mbit/s, and eveallsr
for lower traffic speeds. In contrast, random packet drops by theekaffect a
significantly higher number of flows.

Finally, Figure5.6 shows the significant improvement in detection accuracy by
enabling selective packet discarding. For all traffic rates, everDf@diMbit/s, Snort
reports almost all of the alerts that exist in the monitored traffic. For 500 Mbit/s
traffic, our modified Snort reports 2234 out of the 2252 alerts (99.28hich is
an improvement of 20% over unmodified Snort. The percentage of triggézets
remains almost constant as the traffic speed increases, falling slightly & $&.3
900 Mbit/s traffic, missing just 84 events.

Since we cannot be sure about the nature of all triggered alerts in tlegWwac
study separately the detection accuracy of the 276 attacks we manually dnjecte
in the trace. Figurd.7 presents the number of alerts triggered by our modified
Snort for each traffic speed divided in two categories: the 276 aleddalthe
injected attacks, and the rest 1976 alerts due to the real traffic of theadrigine.

We observe that for all traffic speeds, Snort was able to detect aletiattacks
that we manually inserted in the traffic, suggesting that selective packerdisg
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FIGURE 5.7: Alerts triggered by modified Snort as a function of the traffic speed.

indeed tends to improve the detection accuracy of real attacks. Of cthesest
majority of the alerts due to events in the original trace are still triggered.

5.4 Summary

Events of excessive network traffic load are a common fact that atfesserfor-
mance of intrusion detection systems. Under conditions of heavy trafficdoad
sudden traffic bursts, the processing throughput of the system toempmwith the
amount of traffic that needs to be inspected, and the OS unavoidably elxopss
arriving packets at random.

In this chapter, we presented selective packet discarding, a bedtagfproach
that gracefully reduces the amount of traffic that reach the detectianesofithe
NIDS by selectively discarding packets that are less likely to affect itsctiete
accuracy. We have implemented selective packet discarding in the SDBtds a
preprocessor that constantly measures performance aspects oftidra gy order
to detect overload conditions and dynamically adjusts the number of packéts th
needs to be discarded. This is achieved by setting a cutoff limit to the number of
packets to be inspected for each network flow.

A concern that arises when using selective packet discarding is tlogihéss
ticated attacker could exploit the flow size limit and evade detection by filling the
stream with benign requests and then send the actual attack vector aftiemthe
cutoff limit has been reached. Although such an attack may be feasiblediar- p
cols like HTTP, which allows multiple requests to be sent through the same con-
nection, other services terminate the connection after the end of eachctians
especially in case of protocol violations or failed requests. Furtherrfmrproto-



74 CHAPTER 5. IMPROVING ACCURACY UNDER HEAVY LOAD

cols that support persistent connections, such repetitive behaeiniecdetectable
by following the protocol’s request/response semantics. However, widebec-
tive packet discarding, an attacker can evade detection from an ageddNIDS
by repeating the attack multiple times—depending on the traffic load, after a cer-
tain number of attempts the attack will go undetected. Selective packet diggard
makes such overload attacks harder to achieve.

Our experimental evaluation with real-world traffic and labeled attacks demon
strates that selective packet discarding improves significantly the detection
racy of Snort under increased traffic load conditions, allowing it to detest of
the attacks that would have otherwise been undetected.



Tolerating Overload Attacks

Network traffic monitoring systems are increasingly used to improve theperfo
mance and security of modern computer networks. These monitoring systems
have always been depended on an efficient and reliable underlyoigtpeap-
ture mechanism. However, such network traffic monitoring systems areatlted ¢

to operate in an unpredictable and sometimes hostile environment wherentansie
traffic and malicious attackers may easily overload them up to the point whegre th
cease to function correctly. Unfortunately, traditional packet captwsysgems,
have not been designed for such hostile environments and do nofugiabandle
overhead conditions. For example, when faced with overload conditizoh$ud
packet queues, most packet capturing systems start to discard all incpadkets

for as long as the overload persists and until it resolves itself. We beliav¢hik
naive approach to packet discarding, which surprisingly is still beied by most
network traffic monitoring systems, has three major disadvantages:

e |t may drop packets which contaimportant informationsuch as an attack
or a particular pattern.

e |t can be exploited by attackers ide their attack the attackers can flood
the system with bogus packets up to the point where the system overloads
and starts discarding (i.e., not inspect) most of the incoming packét3dq,
34,119 135. Then, attackers can send their attacks being almost sure that
they will evade the monitoring system.

¢ It robs monitoring applications from the opportunity gelectively discard
the unimportant packets the traffic B6,87,89,107], and forward for pro-
cessing and further inspection timeportantones.

75
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To cope with high traffic volumes, several techniques have been mdgos
improving the performance of network intrusion detection systems (NIDBagb
celerating the packet processing throughfg B5, 84, 157. However, it is not
clear how these approaches cope with existing algorithmic overload attawis,
more importantly witffutureand potentialllunknowralgorithmic attacks that may
exist in monitoring applications but have just not been exposed in the pudlic d
main yet. Other techniques automatically tune the NIDS configuration to balance
detection accuracy and resource requiremetds8b]. However, given a highly
loaded network, intrusion detection systems based on non-specializbhdanar
are usually not able to analyze all traffic to the desired dedt2d.[ Even af-
ter carefully tuning a NIDS according to the monitored environment, it will still
have to cope with inevitable traffic bursts or unpredictable algorithmic complexity
attacks.

Existing solutions for algorithmic complexity attacks are based on algorithmic
improvements, which consider worst case performance comparing witlvéine a
age casel35. However, software is still written so that it is vulnerable to such
attacks. Thus, monitoring applications and NIDSs have to defend agamgtex-
ity attacks that have not been seen in the wild yet. In general, it is not aatch
find and defend against all sources of algorithmic complexity attacks.

To address these problems we prop8séective Packet Paging (SPR) new
approach for mitigating both traffic overloads and algorithmic attacks by gixgo
the following two dimensions:

e We introduce anew level in the memory hierarclof packet capturing sys-
tems: a level which is able to store all packets during periods of traffic or
algorithmic overload.

e \We propose aandomized timeout algorithrwhich is able to detect mali-
cious network packets that trigger algorithmic overload attacks and isolate
them for further disk processing.

We observe that the root of packet loss in modern packet capturensyistéhe
limited number of packets that the operating system kernel can store in a memory
buffer. When this buffer fills up, the next incoming packets will be justatided
until the overload resolves itself. To address this issue, we propose aesory
management system called Packet Paging. Contrary to the traditional lsipgte-
memory management systems, Packet Paging exposes a two-layer meraory hier
chy: (i) the first layer is stored in the main memory of the computer and contains
the most recently received packets. The size of this layer is usually laoygk to
handle all incoming traffic at line speed when there is no transient or algocith
overload. (ii) The second layer is stored in the local disk storage systenisa
used mostly to accommodate packets which can not fit in the first layer. During
an overload, when the first layer fills up, incoming packets continue to lbedsto
at the second layer until the overload condition resolves itself, or is re$dly
clever choices of selective packet discarding or human interventionleMalisk
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systems have enough capacity to store several hours of traffic. Weebtleg this
time is more than enough to allow human intervention to resolve the problem.

In case of carefully crafted packets which exploit an algorithmic complexity
vulnerability, Packet Paging will buffer all the excessive packets to, disth be-
nign and crafted. Moreover, the crafted packets will be processedigr-and will
eventually slowdown the system. Thus, the completion time for processingbenig
packets will be affected significantly, even if no packet is lost. To additeis
issue, we have extended Packet Paging with the SPP technique. Bas@d om-
ized timeouts, SPP is able to detect crafted packets that result in slow siraces
rates, and to remove these packets from the critical path. Instead gfidgapese
packets, we buffethemto secondary storage and we give them lower priority, so
they will be processed only when the system has the necessary esolrc¢his
way, the processing time of the rest packets is not affected.

We implemented Packet Paging and SPP techniques within the popular libp-
cap P2] packet capturing library, so that a large class of existing deep patket
spection systems can benefit from our approach transparently withgutoale
modifications. The Packet Paging implementation is based on two basic ideas: (i)
we give priority to apacket storinghread over gpacket processinthread and (ii)
while a memory buffer is full, we store packets to disk. The (i) ensures that a
packets will be stored with no losses, while with (ii) we avoid the overheads of
disk I/O in normal cases without overloading. Moreover, to maintain theecbrr
order in which packets were arrived, we design an indexing structhiehvpoints
to the location of the next packet that should given, in memory or disk. Ve als
aim to optimize disk throughput by writing and reading packets in batches. The
implementation of SPP is based on randomized timeout values and tracking the
number of packets processed in each timeout.

The main contributions of SPP are:

e We demonstrate that the root of packet discarding under overload ixthe e
isting packet capture systems is the poor design choices in memory manage-
ment.

e We propose Selective Packet Paging, a two-layer memory management sys
tem that is able to store practically all network packets during overloads:
long enough to allow human intervention to solve the problem. SPP is also
able to efficiently resolve algorithmic complexity attacks by detecting and
removing from the critical path any malicious packets that slowdown a mon-
itoring system.

e We implement our system and integrate it with the libpcap packet capture
library [92)].

e We experimentally evaluate our approach using the Snort NII2g| [ and
we show that it is able to sustain algorithmic attacks and traffic overloads



78 CHAPTER 6. TOLERATING OVERLOAD ATTACKS

without discarding any packets. Contrary, the traditional packet capiH
proach is forced to discard the largest percentage of the incomingtpacke
and force Snort to miss 100% of the attacks.

e We analytically evaluate the randomized timeout selection approach of SPP
and show that the probability of detecting an algorithmic complexity attack
reaches certainly exponentially fast.

The rest of this chapter is organized as follows: SecBdhintroduces the
design of SPP and Sectidh2 provides details of our prototype implementation
within libpcap. In Sectior6.3 we present analytical and simulation-based evalu-
ation for the detection capabilities of SPP using a randomized timeout. In Sec-
tion 6.4, we experimentally evaluate our techniques under algorithmic complexity
and traffic overload attacks. We show that the Snort NIDS is vulneraltfese at-
tacks, while SPP achieves significant tolerance against processitrgfiicdursts.
Finally, Section6.5discusses alternative choices, and Sedii@summarizes this
chapter.

6.1 Selective Packet Paging

The main cause of packet loss during overloads, is usually the limited nurhber o
packets that the Operating System’s packet capturing subsystem camstuain
memory. Thus, in case of traffic overloads or algorithmic attacks the main memory
fills up pretty quickly and the rest of the incoming packets are just droppee.
obvious solution to this problem would be to increase the main memory available
to the packet capturing subsystem. Unfortunately, typical main memoriesotan n
store more than a few minutes of network traffic for a high-speed link. ,Téus
algorithmic attack or a network overload that lasts for more than a few minutes will
eventually lead to packet drops and to reduced system functionality.

In modern systems, the available disk storage, typical few TBs, is up to three
orders of magnitude larger than the available storage capacity in main memory,
which is typically few GBs large. Thus, captured packets can be buffemedisk
for several hours under overload conditions, instead of just a feansks in main
memory. For instance, a system with 4 GB of RAM and 4 TB of disk storage
monitoring an 1 Gbit/s line, can buffer about 32 seconds of traffic in main memor
and up to about 9 hours of traffic in disk storage.

6.1.1 Multi-level Memory Management

In this work we propose to break away from the single-level memory uleyara-
ditionally used by packet capturing subsystems and employ a multi-level memory
hierarchy consisting of at least two levels: a main memory and a secortdary s
age. Under normal circumstances captured packets are written in main memory
Under traffic overload or algorithmic attacks, when the main memory fills upa extr
packets are written to secondary storage.
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FIGURE 6.1: A snapshot of Packet Paging for buffering packets to memory and
disk. The Packet Receive Index indicates that the first two packesscaesl in the
Memory Buffer while the third packet is in the Disk Buffer.

Figure6.1 presents the two-level memory hierarchy of our approach. The first
layer (i.e., the memory buffer) is organized as a circular queue. As lottigeas
buffer is not full, newly arriving packets are written in the memory bufiéthen
the main memory buffer fills up, newly arriving packets are stored in thenskeco
layer of the memory hierarchy, i.e., the disk buffer. This buffer is alsamizpd as
a circular queue. Note that while newly arriving packets are being writtelistq
main memory space is being freed up since monitoring applications will consume
existing packets. In this case, we would like to be able to write newly arriving
packets in main memory and thus avoid the disk access overheads. Iodeed,
systenfirst tries to write incoming packets to main memory and only if this is full,
it tries to write them to disk. However, this choice implies that sequentially agivin
packets may be written to different levels of the memory hierarchy, oscillating
between main memory and disk.

For example, suppose three packets (i.e., pl, p2, and p3) arrive igsieens

and that main memory can hold only one of them. Then, packet p1 will be written
to main memory and packet p2 will be written to disk. Now, assume that while p2
is written to the disk, the monitoring application consumes one more packet from
main memory and therefore creates space in main memory; thus p3 will now be
written in main memory. At the end, packet p1 will reside in main memory, packet
p2 will reside in disk and packet p3 will reside in main memory. This example
indicates that we need somehow to record the order of arriving packets.
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For this reason we keep a Packet Receive Index which keeps strictliz@ F
order the location of all incoming packets. To deliver packets in the doorder,
we use one bit for each incoming packet in the Packet Receive Inglskasvn in
Figure6.1 This bit indicates whether the next packet to be delivered was stored in
main memory or on disk.

6.1.2 Randomized Timeout Intervals

Although multi-level memory management makes sure that no packets are lost
during an overload, algorithmic attacks may force the CPU to spend most, if not
all, of its time on processing bogus attack packets that just trigger an algorithmic
overload—benign network packets will just keep accumulating on the dislecS

tive Packet Paging advocates that instead of blindly sending subdempakets to
secondary storage when the main memory is full, we should develop mechanisms
to detect packets that trigger an algorithmic overload, weed them out, add se
themto secondary storage for processing at a later point in time. In this aspect,
they will free-up the CPU which can then be dedicated to processing oéshefr

the network packets.

To detect those packets that trigger an algorithmic overload attack one could
make use of the CPU timestamp counter: read the timestamp counter before and
after processing of each packet. If the packet's processing time inrhighe
a threshold, then this packet can be considered as an algorithmic attdat, pac
due to its unusual high processing time. However, this approach hasitcsign
drawback: the attack packet cannot be evicted from the inspectionegragsrit is
detected after its processing ends, so it will result in a system slowdousao, A
with the timestamp counter the total system’s time is measured, not only the time
spent at the DPI application. Thus, this approach is susceptible to fagves.

An alternative approach to detect those packets is to use a timeout counter
(i.e., a timer): when the monitoring application starts processing a new packet,
a timeout counter is initialised to a timeout vafudf the timeout counter expires
while the monitoring application is still processing the same packet, then thetpacke
is considered suspicious. Otherwise, if the packet processing comipégtas the
timeout counter expires, the application starts processing the next in liketzen
the counter is reset to its timeout value. This way, attack packets can bedevicte
from the inspection engine and will not delay the system. Also, the time spent
only on the process of the DPI application is measured. Unfortunatelyeveow
setting and resetting timeout counters at each and every packet coulaimiaoge
processing overhead, especially when timeouts are implemented insiderikg ker
and especially when the network traffic is dominated by small packets.

To reduce this overhead, SPP argues that we should not set the timnaatgrc
at each and every packet. Instead, the counter should be petiedic intervals:
if the packet being processed during the interval expiration is the sarketjhat

1The value of the timeout counter should be larger than the processing ftiondinary packets
and smaller than the processing time of algorithmic complexity attack packets.
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was being processed at the time the counter was set, then SPP consigeskais
as suspicious. As a result, the packet, along with all subsequent pé&chkatthe
same network flow, will be buffered to disk. Although setting the timeout counte
at periodic intervals has the potential to reduce the timeout processinigeawkr
especially if the intervals are long enough, choosing an appropriate tinialoet
can be really tricky: a very large timeout value may miss a lot of attack packets,
while a very small value may impose a large processing overhead on thesyste
make matters worse, a single predefined timeout value (or a deterministicseque
of timeout values) could theoretically be evaded by a sophisticated attatker w
manages to send all attack packets between successive timeouts.

To solve this problem, SPP uses a randomized timeout interval. That is, in-
stead of choosing a predefined constant timeout, SPP chooses a timédutsvh
a random variable uniformly distributed in the interyahw, high]. Obviously,
the average value of a timeout(Bigh + low)/2, which influences the overhead
associated with timeout processing. Choosing a large valukif@r reduces the
(average) timeout overhead, while choosing a small valuefommakes detection
of algorithm attacks easier. Indeed, to make sure that they avoid detexitack-
ers should only send attack packets that trigger algorithmic complexity attaks th
last for no more tharow seconds. Therefore, a smédhw value forces a (what
used to be) sophisticated algorithmic complexity attack to degenerate into a brute
force Denial of Service attack consisting of a torrent of attack pacitish can
be easily detected and filtered out.

6.2 Implementation

We implemented Selective Packet Paging within the popular packet capturing li-
brary libpcap 2], so that a large class of existing network monitoring applica-
tions can benefit from SPP without any code modifications. libpcap in Lises u
the PF_PACKET socket, which receives all packets from a network interface card.
Each packet is first stored in memory allocated by the kernel for DMA teans
and then copied to user-level accessible memory. In our prototype impldinanta
we use three separate threads: (i) paeket capturing and storing thread/hich
receives packets from kernel and stores them to memory or on disk & i \eo
space in memory; (ii) th@acket processinthread, which finds the next packet
through the Packet Receive Index, and calls the callback functionesgfisby the
monitoring application throughcap_| oop() for processing each packet, or re-
turns the packet’'s data and header thropglap_next () ; and (iii) thedisk I/O
thread which handles all communication with the secondary storage. We give
higher priority to the packet capturing and storing thread over the ppciegss-

ing thread, to ensure that all packets will be stored during overloadspflimize

disk throughput, the disk I/O thread transfers packets between main menubry a
disk in batches. Moreover, to avoid delays from blocking read opematibe disk

1/0 thread prefetches the next batch of packets from disk to memory.
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Packet capturing and storing thread:
i f (suspicious_flow next_pkt))
write(next_pkt, disk_buffer, lowpriority);
else if (nenory_buffer.size==FULL)
write(next_pkt, disk_buffer, normal _priority);
el se
add(next _pkt, nenory_buffer);
Packet processing thread:
i f (packet_index. next ==NULL) {
di sable tiner();
current _pkt=read(di sk_cache, low prioriy);

process_pkt (current _pkt);
enabl e_tiner();

}

el se i f (packet_i ndex. next ==MEMCRY) {
current _pkt=read(nenory_buffer);
process_pkt (current _pkt);

}
el se i f (packet _i ndex. next ==DI SK) {

current _pkt=read(di sk_cache, normal _priority);
process_pkt (current _pkt);

}

pkt _count er ++;
Timer expiration handler:
i f (pkt_counter==prev_pkt_counter) {

buf fer(current _pkt, low priority);
mar k_suspi ci ous_f | ow current _pkt);

}

prev_pkt _count er =pkt _counter;
set _tinmer(lowtrand() % hi gh-1ow));

FIGURE 6.2: Pseudocode for the implementation of Selective Packet Paging with
a randomized timeout interval.

Figure 6.2 presents the pseudocode for implementing SPP with a randomized
timeout. The packet capturing and storing thread receives all pac&etgtie NIC
and stores them in memory or on disk. If a packet belongs to a flow thateeas b
marked as suspicious, it is stored immediately on disk in a file with low priority
packets. Else, if the memory buffer is full, the packet is stored on disk iparate
file with normal priority packets.

The packet processing thread selects the next packet for pragedsicase
there are packets with normal priority, the next packet is selected from rgemo
or disk based on the packet indexing structure. If there is no suclepdbkn a
packet with low priority is selected for processing. In the latter case, the t#mer
disabled or the timeout interval is increased, otherwise the timer could exjaiie a
while this packet is being processed.
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The processing thread keeps a counter of the processed packets thigh
timer expires, it checks how many packets have been processed fraretheus
timer expiration. If the number of processed packets remains the same, ¢ghen th
current packet delays the system for an unreasonably long time. fheugacket
is evicted and buffered to disk, while its flow and source IP address atethas
suspicious. Packets belonging to suspicious flows are also written to disw as
priority packets.

The next timer interval is scheduled to a random time betweerictheand
high limits.> The low value is related to the normal processing times: it should
be set slightly higher than the worst-case processing time of a benignthatke
high limit controls the overhead for setting and expiring a timer, and the detection
probability. Larger values result in lower overhead and lower detectiaiogtility
per packet, i.e., more time to detect a stealthy algorithmic overload attack.

The timer expires based on the time passed while only the current process (o
the system on behalf of the current process) is executing, so SPP a$fexted
by external background activities. Thus, the time passed between twessie
timer expirations was spent only within the packet processing thread oidfalse
positives, a proper value for thiew limit should be used. Then, only packets with
significant processing delays will be detected as suspicious. But evaséof
false positives, packets will not be dropped. They will follow a diffadata path,
and they will be eventually processed when the system has the availahleoes

6.3 Analytical Evaluation

Using a random timeout uniformly distributed in the rangev, high], Selective
Packet Paging makes it difficult for attackers to evade detection, whifgrigethe
timeout overhead reasonably low. Indeed, a very large valuéiigh keeps the
average timeout value (i.€Jow + high)/2) reasonably large, and thus the over-
head reasonably low, while a small value fow forces the attacker to lean towards
sending packets that trigger short algorithmic attacks: shorter in duratiai.
Since, however, the timeout is a random variable, it is theoretically possibie e
for an attack packet that triggers a long algorithmic attack to evade dete€hian.

is especially true if the timeout interval chosen during the time the attack packet
is being processed is relatively large. In the rest of this section we staivaith
though it is theoretically possible for one attack packet to evade detecti®meity
unlikely that several attack packets will go undetected. An attacker wintsvta
sustain an algorithmic attack has to send several attack packets, and it ibampro
ble that none of them will be detected. In the rest of this section we will estimate

2Thelow andhigh limits can be set either directly by the user, or automatically by the monitoring
application, e.g., by profiling the normal processing times when themyistaot under attack.

%In this context, we note as benign packets the normal packets that darmao attack the
network monitoring application, and as attack packets the crafted pacietytto impede its correct
operation.
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the probability that SPP detects an attack with a single timeout choice, and then the
average number of timeout intervals that SPP will need to detect the attack.

To simplify our analysis, we initially assume that there are only attack packets,
that each attack packet is being analyzed for a constant interdahafroseconds,
and thatow < d. Selective Packet Paging is able to detect an attack if two succes-
sive timeouts expire within the same interddbr the same attack packet. The first
timeout expires at time;, which will fall within an intervali of an attack packet.
Thus,i x d < t; < (i + 1) x d. The probability that the second timeout, which
expires at time,, will also fall within the intervali is:

d—t; — low

Pltz < (i41)xd) = high — low

(6.1)

since there aréigh — low possible choices for a timeout but only— ¢; — low
accepted choices so that the second timeout expires within the inieriralthe
unfortunate for the attacker case thatalls in the beginning of the interva) there
ared — low accepted choices for the second timeout. In casetihails in the
position(i + 1) x d — low — 1 of the intervali, there is only one accepted choice
for the second timeout: thew timeout value. On average, there &tle— low)/2
accepted choices for the second timeout in case that the first tithefalls within
the first(d — low) values of the interval. If ¢; falls in the lastow values of the
intervali, there is no accepted choice for the second timeout. Thus, on avege ov
the whole intervat, there ardd — low)/2 x (d — low)/d 4+ 0 x low/d accepted
choices for the second timeout, for each accepted choice of the first timeou
Overall, the probability for detection with two timeouts in the same interval is:

(high — low) x (d — low)/2 x (d — low)/d
(high — low) x (high — low)

B (d — low)?

2 xd x (high — low)

P(det) =

(6.2)

since the possible choices for two timeouts @rgyh — low) x (high — low), the
accepted choices for the first timeout &hégh — low), and the accepted choices
for the second timeout argl — low)/2 x (d — low)/d. The probability of not
detecting an attack aftey timeouts have expired id — P(det))", and thus the
probability of detecting the attack afté¥ timeouts isl — (1 — P(det))": we
see that the detection probability approachegry fast asiV gets larger. Also,
the detection probability from Equatidh2 means that on average SPP will need
T =1/P(det)+1 = (2xd x (high—low)/(d—low)?) + 1 timeouts to detect the
attack. This number corresponds on averadg to (high — low)/(2 x d) attack
packets and” x (high — low)/2 microseconds.

The outcomes of our analysis are also valid in case that attack packete induc
variable delays with an average delaydoficroseconds. In a more realistic sce-
nario there would be both benign and attack packets, so that the attacktgpack
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would be a percentageof the total packets, with < a < 1. The average process-
ing time for a benign packet ismicroseconds, and we expect that d. In this
case the detection probability from Equati®2is:

_axd (d — low)?

T A+t 2xdx (high —low)
since the probability of the first timeout to expire within an interval of an attack
packetisz x d/(d+t). As the percentageof the attack packets and the difference

d — t of the processing times between attack and benign packets increase, the
probability of Equatioré.3approaches the probability of equatiére.

P(det) (6.3)

6.3.1 Comparison with Simulation Results

To validate our analysis for the detection capabilities of Selective Pack@idPa
with a randomized timeout, we perform a simulation-based evaluation and cempar
the results with our analytical evaluation. Fig@@ presents the detection time in
milliseconds as a function of the processing time of each attack packet, tmased
both our analysis and our simulation study, for two attack scenarios: i) athen
packets are attack packets, and ii) when the percentage of attack pad&ds.

The processing timeof each benign packet is uniformly distributed between 1
and 30 microseconds, with an average value of 15 microseconds, whilettess-
ing timed of each attack packet is constant for each simulation. In our simulations
we vary d from 100 to 1000 microseconds, to examine how the detection time
will be affected. The randomized timeout for SPP takes values frans50 to
high=1000 microseconds.

We simulate the processing times of benign and attack packets, according to the
above parameters, and we continuously set a timer randomly between ¢ifedpe
low and high timeout limits. When two successive timeouts expire during the
processing interval of the same attack packet, the experiment endstpuotsahe
time passed for the detection. We repeated each experiment for one million times
and we report the average values.

For the analytical evaluation we used the probability from Equai8ito com-
pute the number of timeoufs needed for the detection:

2 x d x (high — low) x (d +t)
(d—low)? xaxd

T=1/P(det)+ 1= +1 (6.4)
Thus, the average detection timéelis< (high — low)/2 microseconds.

In Figure6.3we can see that simulation results are very close to the expected
results based on our analysis. We observe that SPP with the randomizedttisneo
able to detect even attacks with very small delays within just a few milliseconds.
For instance, when the processing time of an attack packet is 200 micnolseco
SPP detects the attack within the first 10 ms in case that all packets belong to this
attack. In a more conservative attack, where only 25% of the total packetse
100 microseconds processing time, SPP needs about 170 ms to detezdaae r
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FIGURE 6.3: Detection time as a function of the processing time of the attack
packets. We observe that SPP is able to detect the attack within a few millisecond
in most cases.

the attack. However, such a conservative attack for a period of a feweaundlsls
will not affect significantly the system. More aggressive attacks, whachharm
significantly the monitoring system, are detected by SPP within less than 2 ms.

6.4 Experimental Evaluation

In this section we present experimental results when running the Srip8& ilith

SPP under overload. We first describe the experimental environmesitdf$6.4.1),

and then we evaluate the performance of SPP during an algorithmic complexity a
tack (Section6.4.2 and a traffic overload attack (Sectiér.3, comparing with

the original libpcap.

6.4.1 Experimental Environment
The Hardware

Our experimental environment consists of two PCs interconnected thadl@BbE
switch. The first PC is used for traffic generation, which is achievedplaying
real network traffic and traces at different rates udingr epl ay [145. The
traffic generation PC is equipped with two dual-core Intel Xeon 2.66 GHZ CP
with 4 MB L2 cache, 4 GB RAM, and a 10GbE network interface. By rewriting
the source and destination MAC addresses in all packets, the geneedfieddr
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sent to the second PC, the intrusion detection sensor, which capturesfficeatrd
processes it using the Snort NIDS, with the original libpcap for packeticing as
well as our modified version of libpcap with SPP. The NIDS PC is equipped with
two quad-core Intel Xeon 2.00 GHz CPUs with 6 MB L2 cache, 4 GB RAM] an
a 10GbE network interface. Beyond the system disk, we equipped th€ RID
with four 750 GB 7200 RPM SATA disks, organized in RAID 0 using the Linux
software RAIDndadmuitility, resulting to 3 TB total storage. Both PCs run 64bit
Ubuntu Linux (kernel version 2.6.32).

The parameters

The size of the memory mapped buffer between kernel and user levstioiong
packets, when the original libpcap is used, is set to 1 GB. Thus, the driyistam

is able to tolerate very short processing or traffic spikes, using the 1 GBonye
buffer. Note that, for fairness, the total main memory used in our SeleciivkeP
Paging system is equal to 1 GB as well: 500 MB socket buffer size an@ &80
memory buffer within the modified libpcap. In addition to a main memory of 1
GB, SPP also uses a secondary storage of 3 TB allocated (and distyibnttd:
four dedicated magnetic disks. This amount of storage, with the increased d
throughput achieved using the RAID 0 scheme, aims to provide significagttigrb
tolerance for prolonged algorithmic attacks and traffic overloads.

We use theext 3 file system, with the default ordered journaling mode. Using
ext 2 orext 3 with any other journaling mode results in very similar performance,
since we operate only on a single large file. We run the Snort NI2g] jversion
2.8.3.2, using the latest official Sourcefire VRT rule §@tcontaining 9276 rules,
and enable all the default preprocessors as specified in its defailjuo@tion.

Note that, since the original Snort implementation is single-threaded, it can not
benefit from the underlying multi-core processor. To have a fair coisgramith

SPP, we scheduled all three threads of the SPP implementation to run on a sin-
gle CPU core. Obviously, letting all three threads run on different coegdd
significantly improve performance even further.

The traces

For the evaluation we use four sets of traces, summarized in Bablé\s back-

ground traffic, we use an anonymized one-hour long trace (ndihgdaptured at
the access link that connects a large university campus with thousandstsftt

the Internet. The trace contains 58,714,906 packets, correspondingOt®a32

different flows, totalling more than 46 GB in size. The average traffic ratean
trace is about 110 Mbit/s. We replay this trace at the actual rate that it wased,

as real background traffic. We do not consider the alerts produc&mart from

this trace’s traffic in our analysis.
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Trace Packets Replay rate
T1: background traffig 58.7 M 110 Mbit/s

T2: crafted packets 1,000 | 2 Kbit/s—2 Gbit/s
T3: real attacks 7,616 1 Mbit/s

T4: traffic bursts 1.5M | 1 Mbit/s-2.5 Gbit/s

TABLE 6.1: Traces used in our experiments.

The second trace (nam@@) is used in the first experiment in Sectiér.2to
trigger an algorithmic overload in Snoif2 contains synthetically created packets
which exploit the backtracking vulnerability of a regular expression ursadsnort
rule, resulting to significant slowdown. The third trace (nam&jlconsists of 120
short traces containing real attacks captured in the Wild][ Snort detects these
attacks using the default rule set, resulting to 276 alerts from 14 diffeutss. We
replay this trace continuously in parallel with the second trace, and metsure
percentage of these 276 alerts that Snort was able to detect when wsorgthal
libpcap and our SPP system. In the second experiment in Se&doB instead
of T2 we replay a short part of1 (namedT4) at higher rates, in parallel with
T3, to measure the percentage of alerts that Snort detects under trafficaove
conditions.

Disk Throughput

In our first set of experiments we set out to measure whether SPP is aligtéin

the storage of packets at line speed during a prolonged overload situAtax-
pected, the bottleneck is caused by the disk storage system. Thus, weetisire
the throughput at which our RAID 0 system can read and write data inxparie
mental setup. Tablé.2 shows the read and write performance of our disk system
as measured by theonni e benchmark22]. We see that the RAID 0 system is
able to sustain 3 Gbit/s of read throughput and 1.8 Gbit/s of write throughput.

Single Disk| RAID 0
Seq. read throughput (Mbit/s 808 3072
Seq. write throughput (Mbit/s 466 1790

TABLE 6.2: Throughput of single-disk and multi-disk storage system in ourrexpe
imental environment, measured by thenni e benchmark.
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6.4.2 Algorithmic Complexity Attack
Attack Description

In this experiment we perform an algorithmic complexity attack against thet Snor
NIDS, similar to the attack described by Smith et 43%. Specifically, our at-
tack targets the performance of regular expression matching based BECRIE
library [67]. PCRE represents regular expressions using a tree-like structore. F
a given input string, PCRE iteratively explores paths in this structure ufitids

an accepting state, in which case it declares a match. If it fails to find a match, it
backtracks and tries another path until all paths have been explorettie Asim-

ber of backtracks increase, more time is spent for PCRE matching, andetel o
performance is decreased. Thus, we send a number of craftedipéakenort
targeted to a specific rule with a vulnerable PCRE regular expressionaisthéh
packets’ payload result in a large number of backtracks.

To prevent performance problems and denial of service through RVRIE
load, Snort can be configured with a limit on the number of backtracksfies
per each regular expression. However, this limit can lead to missed alerts an
evasion attacks as well: by cutting short the PCRE backtracks, a rule niég no
triggered on payload that would cause a Snort alert. Attackers may paekets
with payloads resulting to more backtracks than the specified limit before the co
plete match, thus evading detection. In our experiments we had disabledRie PC
backtracking limits.

In this experiment, the attack targets the SMTP Snort rule 2682, which detects
an attempt to exploit a known vulnerability of Internet Explorer that results-in
mail attachment execution, by sending an incorrect MIME heatdrhis rule is
matched against TCP packets destined to port 25, belonging to an estbliGRe
connection, based on a PCRE expression, as shown below:

alert tcp $EXTERNAL_NET any -> $SMIP_SERVERS 25

(nmsg: "SMIP spoofed M ME- Type aut o-execution attenpt"”;
flow to_server, established; content:"Content-Type|3A";
nocase; content:"audi o/"; nocase;

pcre: "/ Cont ent - Type\ x3A\ s+audi o\ / ( x- wav| npeg| x-m di ). *
filename=[\x22\x27]7?.{1, 221}\. (vbs| exe|scr|pif|bat)/sm";
net adat a: servi ce sntp; reference: bugtraq, 2524;

ref erence: cve, 2001- 0154; reference: url, ww. m crosoft. conl
technet/security/bulletin/MS01-020. nspx;

cl asstype: attenpt ed- admi n; sid: 3682; rev:5;)

4 A more detailed analysis of algorithmic complexity attacks based on sexdradrable Snort
rules is presented irlB5. Except PCRE, the Aho-Corasick string matching algoriti®nfas also
found to be vulnerable to excessive backtracking attacks in Snort, iurees nondeterministic finite
automata (NFAs). A detailed analysis of the number of rules which areskafbte to algorithmic
complexity attacks is out of the score of this work. However, we specthatethere will almost
always be rules written in a way that algorithmic complexity attacks could bsilple.
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The PCRE expression in this rule searches initially for ‘@entent-Type”
string anywhere in the packet, followed by the byte Ox3A and one or moite wh
characters, and then for thaudio/” string followed by“x-wav” , “mpeg” or “x-
midi” strings. Then, any sequence of characters is acceptable befotiehe
name=" string is found, optionally followed by the byte 0x22 or 0x27. PCRE will
try to match the largest possible sequence of characters. Next, argnseduom
1 up to 221 characters is again acceptable, looking for the largest j[gossikch.
Finally, if one of the five sting$.vbs”, “.exe”, “.scr”, “.pif” or “.bat” is also
found after all the previous matches, an alert will be triggered.

This regular expression gives us the ability to produce a large numbeckf b
tracks in a 1500-byte packet. As any character sequence is accdmbbéen the
“audio/” and“filename=" strings, and up to 221 characters before the last string
match, multiple instances of each string needed for a match, except the éast on
can be inserted into the packet’s payload in order to increase the possitctipat
will be traversed while searching for a match. This way, the number ofttzatis
will increase exponentially high. We call such PCRE rules@serablerules to
algorithmic complexity attacks. For instance, consider the following payload:

Cont ent - TypeOx3A audi o/ npegCont ent - TypeOx3A audi o/ npeg. ..
Cont ent - TypeOx3A audi o/ npegfi | enane=0x22fi | ename=0x22

fil enane=0x22fil enane=0x22...fil ename=0x22fil enanme=0x22. ba
. ba. ba...ba. ba. ba. ba...fil ename=0x22fi | enane=0x22. ba. ba. .

. ba. ba. ba. ba. ba...fil enane=0x22fi | enane=0x22. ba. ba. ba. . . ba.
. ba. ba. ba. ba. ba. ba. ba. ba

The PCRE engine will first try to find a match from offset 0, where the first
“Content-Type” string is found. Then, it will pass all the input till the |d$iie-
name="instance. It will continue until the end of the input, with no match found.
Then, PCRE will backtrack once for each previdtiename=" instance in the
payload to search for a match starting from offset 0. Since no match will lde,ma
PCRE will then repeat the same process starting from &aohtent-Type” in-
stance. Thus, the number of backtracks will be approximately equal touthe n
ber that‘filename=" string appears multiplied by the number“@fontent-Type”
strings.

Based on this pattern, we created 1500-byte packets belonging to an estab
lished connection destined to port 25 (trac@). When processed by Snort, each
crafted packet results in approximatély, 120 backtracks during PCRE maching,
and in a processing time about 1360 times slower than the average prgdessin
for benign SMTP packets in tradel. We use PCRE and this vulnerable rule as
a proof-of-concept experiment to demonstrate the impact of an algorithome c
plexity attack in a network monitoring application, and the performance benefits
offered by SPP to tolerate such attacks.
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FIGURE 6.4: Percentage of dropped packets and packets buffered to diskras

tion of the offered load (packets per minute). We see that as soon asdtexddbad
exceeds merely0? packets per minute, the original libpcap starts losing packets,
and when the load becom@g* packets per minutes, it drops more than 80% of
the packets. On the contrary, SPP sustains zero loss all the wayl 0 packets

per minute. Indeed, only when the offered load increases beyond titlateaches
the limit of the disk’s write throughput, only then, SPP starts to lose about ¥8% o
the incoming packets.

Results

Packet loss. In this experiment we set out to explore what is the packet loss
of the original libpcap system and our SPP system during an algorithmitmader
attack. The setup of the experiment is as follows:

1. We replay trac&1 as background traffic at its original rate (110 Mbit/s).

2. Wereplay trac@?2 at a variable rate: we start with a rate as low as 10 packets
per minute and increase it all the way upl¥f packets per minute. Recall
that packets in this trace are specially crafted to trigger an algorithmic attack.

3. We transmit trac&3 continuously at a rate of 1 Mbit/s for the entire duration
of the experiment. We run each experiment for 10 minutes.

Figure6.4 presents the percentage of the packets dropped by Snort when run-
ning on top of the original libpcap and when running on top of SPP. Werebse
that when the offered load (i.e., trat&) reaches a mer&)? packets per minute,
Snort on top of the original libpcap starts losing packets, and when teeedff
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FIGURE 6.5: Percentage of detected attacks as a function of the offered laad (th
higher the better). We see that as soon as the offered load exceeti¥jpscket

per minute, the original libpcap system starts to lose packets and attack® @fs th
fered load increases, the performance deteriorates. When theddffexeexceeds

10° packets per minute, the original libpcap system is able to detect zero attacks.
On the contrary, SPP manages to sustain 100% detection rate for loadf @s hig
10% packets per minute.

load exceeds0 it loses more than 80% of the packets. On the contrary, at these
loads, SPP loses no packets and manages to store them to disk. &igatso
presents the percentage of packets buffered to disk with SPP. We stéethack-

ets buffered to disk by SPP are fewer than the packets dropped bygiapsamilar
rates. This is because by identifying and weeding out algorithmic attaclefsack
SPP is able to dedicate more CPU cycles to processing ordinary packets.

These packet losses are directly translated to undetected attacks, i.&s attac
which have evaded the Intrusion Detection System. Indeed, in Figbiree show
the percentage of attacks detected by the two systems. We see that Stoprodn
the original libpcap starts missing attacks as soon as the offered loadisx6ée
packets per second, and loses all attacks as soon as the load re@cpaskets
per second. Thus, to evade detection with probability 99.98%, an attaake¢oh
send10® crafted packets per minute, exploiting the slowdown from a large num-
ber of backtracks when matching the specific regular expression. nabety, at
these load rates, SPP does not miss any of the attacks as all packetseatdcsto
secondary memory and are eventually inspected by the intrusion detecttemsy

When using SPP, all attack attempts are detected for up‘gackets per
minute. That is, an attacker needs to send aboUpackets per minute to reduce
the probability of being detected just by 17%. In this extreme case, ouryisis
was not able to store all incoming packets due to the high traffic rate. Cochpare
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FIGURE 6.6: Size of memory and disk buffers over a 60-minute time period when
sending 10,000 crafted packets/minute for the first 10 minutes.

to the original libpcap, SPP can handle 10,000 times more crafted packets, Th
SPP offers significant tolerance to highly efficient algorithmic complexity kstac

Recovery time.  To measure the time that the system needs to recover from
overload, we performed the following experiment:

e We sent tracd'l at its normal rate for 60 minutes.

e We sent tracd?2 at a rate ofl0* packets per minute for the first 10 minutes
of the experiment.

e We sent tracd 3 at an 1 Mbit/s rate for 60 minutes.

Figure6.6 presents the size of memory buffer and disk buffer over time. We
report the size of each buffer every one minute. We observe that wRHigPsize
of the memory buffer was always less than 6 MB, for the whole 60-minutegherio
The attack packets (and their associated flows) identified by SPP weite siésk.
Indeed, to accommodate the attack packets, the disk buffer size incrieased
16.23 MB (at minute 1) to 165 MB (at minute 10, which was the highest point
of the attack), and then slowly decreased back to zero at minute 48. \Wiklsho
emphasize that throughout the experiments no packet was lost. ThuBcaigty
less packets are stored to disk in case of SPP, since only the attack paekets
buffered. The attack packets remain to disk and they are processedowittates
till minute 48, when the system completely recovers from the attack.
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6.4.3 Traffic Overload
Attack Description

In this set of experiments we set out to explore how SPP responds to bnafits.
To do so, we run Snort as in the previous section and feed it with the folipwin
traffic:

1. TraceT1 is sent at its original rate and serves as background traffic.

2. At each minute we send a traffic burst that lasts for 30 seconds, tgng
traffic from traceT4. The peak rate of the burst is varied throughout the
experiments from 1 Mbit/s up to 2.5 Gbit/s to evaluate how the intensity of
the bursts may influence SPP.

3. TraceT3 that contains 276 real attacks is sent continuously at 1 Mbit/s for
the entire duration of the experiment. Each experiment lasts 10 minutes.

Results

Traffic bursts of constant duration.  Figures6.7(a) 6.7(b) and 6.7(c)present

the percentage of dropped packets, the percentage of detected,atatkise av-
erage delay per packet, as a function of the rate of traffic bursts. Wénabthat
Snort on top of the original libpcap starts dropping packets when thecthaffsts

are around 1 Gbit/s, resulting in about 17% undetected attacks. Whenrgis bu
reach a rate as high as 2 Gbit/s, 53% of the packets are dropped and@&2H%6
attacks are missed. On the other hand, Snort with SPP drops no packetsaas

no attacks even at rates as high as 2 Gbit/s. Although our disk system vattes p
ets with 1.5 Gbit/s throughput, the two-level memory hierarchy allows to store up
to 2 Gbit/s without packet loss. Only when the burst rates exceed 2.25 Ghit/s th
secondary storage is not able to keep up with network traffic and SRPtstérse
packets.

It has been argued that in some cases, it is better to drop some packet®so a
deliver the rest of them without delay. In this aspect, one might prefesedahe
original libpcap (which drops packets rather than delaying them) rathewiag
a version that may delay packets longer. Fighi&b)shows that dropping packets
may force the system to miss a significant percentage of attacks: as madfpas 4

In Figure6.7(c)we show that even the approaches that choose to drop some
packets to avoid delaying all of them, do not necessarily reduce delayscagtly.
Indeed, we see that with a traffic rate as high as 2 Gbit/s, SPP deliveexchk#ts
to Snort for inspection within 9.25 seconds on average: just 25% sloasrtkie
original libpcap system, which delivers less than half of the packets. aDvere
believe that dropping about half of the packets in order to deliver the biddé
about 25% faster, much like libpcap does, seems not like a trade-off tmatiaring
applications would choose to make.



6.4. EXPERIMENTAL EVALUATION 95

100 ® Packets buffered to disk 1004 -
A packets dropped with original pcap . N
80 @ Packets-dropped-with-Selective-Packet Paging X 80 = 2
< 3 TAa L
€ 5 g2 g 60 TA-a
2 -5 &
% - A °
o - A 1]
g 40 = é 40
,/ 2 ® Snort with Selective Packet Paging
20 X 20+ A snort with original pcap
/
oe 0 T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Traffic burst rate (Mbps) Traffic burst rate (Mbps)

(a) Dropped packets and packets buffered to difl) Detected attacks as a function of the traffic
as a function of the traffic burst rate for 30-secortalirst rate for 30-second bursts.
bursts.

-
N

® Snort with Selective Packet Paging
A Snort with original pcap

=
© o

Delay per packet (seconds)
Y
\
»>
»
>

0e
0 500 1000 1500 2000 2500
Traffic burst rate (Mbps)

(c) Average delay for delivering packets to Snort
as a function of the traffic burst rate for 30-second
bursts.

FIGURE 6.7: Performance of SPP and original libpcap in case of 30-secastsbu
as we vary the traffic burst rate.

Traffic bursts of variable duration. Figures6.8(a) 6.8(b) and6.8(c) show
the detected attacks, packet drops, and average delay per padketarping the
duration of traffic bursts from 1 to 60 seconds with a constant 1.5 Gbitfictraf
burst rate. Each traffic burst is repeated every minute for 10 minutese@/éhat

as the duration of traffic burst increases, the original libpcap drops packets
and Snort misses more attacks. For traffic bursts lasting 40 seconds at e
of the packets were dropped due to CPU utilization and only 58% of our idjecte
attacks were successfully detected, while for traffic bursts lasting @hdec57%

of the packets were dropped and just 29% of the attacks detected.

Fortunately, SPP tolerates the 1.5 Gbit/s traffic burst even at 60 secorads d
tion, i.e., when 1.5 Gbit/s traffic is sent continuously for 10 minutes. All packets
are buffered to disk successfully and are inspected with a slight ircieatelay.

In case of 60 seconds duration, the average delay per packet witis SBRBec-
onds, while the original libpcap delivers only the 43% of packets with a daflay
10.8 seconds. The rest 57% of the packets are dropped: they arededivered.
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FIGURE 6.8: Performance of SPP and orginal libpcap in case of 1.5 Gbit/s traffic
rate as we vary the burst duration.

Recovery time. In Figure6.9 we present the size of memory and disk buffers
when sending 30-second traffic bursts with 1.5 Gbit/s rate for 10 minutes, an
continue sending only background traffic for another 50 minutes. Wetrtye size

of each buffer once per minute. The memory buffer remains full at 50GdviBhe

first 12 minutes, while the disk buffer size increases continuously durmdjrit

10 minutes all the way up to 21.3 GB. From minute 11 to minute 13, the disk buffer
size is reduced from 21.3 to 3.5 GB, since the system’s resources fcgestito
process the excessive packets buffered during the traffic buristss, ih the 14th
minute, both memory and disk buffers are empty, so the system has fullyerecbv
from the traffic overload attack. Compared with the algorithmic complexity attack,
the system recovers faster from traffic overload, in this experiment within
minutes, because packets are not maliciously crafted to further slowdowvh S
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FIGURE 6.9: Size of memory and disk buffers over a 60-minute time period when
sending for the first 10 minutes traffic bursts of 1.5 Gbit/s with 30 secon@sidn.
It takes only 4 minutes for the system to recover from this overload attack.

6.5 Discussion

6.5.1 Real-time Constraints

Our work, much like most of the work in the area of passive network trafbai-
toring, focuses on monitoring applications with soft real-time constraintst iha
applications that can afford to receive network packets with some dalégng as

they receive all of them. There exist, however, some traffic monitorinticapions

that have hard real-time constraints: that is, they can not tolerate antriviah-
delay of any packet. One example of such hard real-time applicationstarerke
intrusionpreventionsystems. These systems examine all packets that enter a net-
work before they are allowed to reach their final destination. If a paskeund

to be part of an attack then it is dropped, otherwise it is forwarded to itindes

tion. To provide hard-real time guarantees for such applications, theerlying
systems are over-provisioned so as to be able to handle the worst-eak@mdv
conditions. Our work does not address hard real-time systems, as v ficuas

on over-provisioned systems that can absorb the worst case ovirlaadatter of
milliseconds, but we focus on novel approaches, such as two-level menam-
agement and randomized timeouts, which can be implemented on top of ordinary
hardware.

6.5.2 Disk Throughput

To be efficient, SPP requires a secondary storage system that imfagjheto
write packets at line speed. Fortunately, modern magnetic disks are ablggo wr
data at speeds reaching close to half a Gigabit per second, while maotidrstate
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disks write data an order of magnitude faster than t#jat{ this throughput is not
enough to cover a particular line speed, multiple magnetic disks or SSDsean ev
be used in parallel (e.g., in a RAID array) to achieve ever higher thimutgh-or
example, two SSDs seem to be enough to cover a 10GbE network line. llQvera

it seems that a small number of current disks have the bandwidth neededtto ¢

the speeds of current networks. Given the past improvements in digkvizth of

about 40% per yea©H], and the recent breakthroughs in storage technology, we
expect commodity storage systems to be able to keep up with network speeds in
the years to come at least as easy as, if not easier than, they do today.

6.6 Summary

Under conditions of excessive network or processing load, passiveork moni-
toring applications usually cannot cope with the amount of traffic that nieciols
inspected, and the operating system unavoidably drops excess@packets. To
make matters worse, an attacker may evade detection by intentionally overload-
ing a network intrusion detection system up to the point when it starts dropping
packets.

In this chapter we presented Selective Packet Paging, which is basetivon
level memory management approach to buffer (otherwise droppedisaakd tol-
erate algorithmic complexity attacks, traffic overload attacks, and any atigeok
overload conditions for network monitoring and security applications. Erapedv
with a randomized timeout interval, SPP can detect and isolate algorithmic attack
packets, enabling the CPU to be used for more useful purposes, whiggplie
cation is able to procesal packets when it recovers from overloads. Selective
Packet Paging provides effective packet buffering for sevaratd) long enough
for human (or automatic) intervention to kick in and resolve the overload.

We have implemented SPP within the popular libpcap packet capturing library,
so that existing applications can use it without any code modifications. @er-ex
imental evaluation shows that intrusion detection systems, such as Snantj-are
nerable to both algorithmic complexity and traffic overload evasion attacks &v
few (carefully crafted) packets per second are enough to overload &1d make
it drop the rest of the monitored traffic, missing any subsequent attacksg U
SPP, Snort can handle both algorithmic and traffic overload conditiorteeth
while Snort on top of the original libpcap missed almost all attacks during @na alg
rithmic overload, SPP enabled Snort to detect 100% of the attacks falspetep
to 2 Ghit/s.

We believe that as network monitoring applications get more complicated, they
will be increasingly vulnerable to algorithmic and traffic overload attack® &P
fers a memory management approach and a dynamic overload detectiaguechn
that provide a seamless solution to this problem without requiring any chdoge
the monitoring applications themselves.



Stream-Oriented Network Traffic Analysis

To make meaningful decisions, many network monitoring applications need to an
alyze network traffic at the transport layer and above. For instan&Srecon-
struct the transport-layer data streams to detect attack vectors spanritiglemu
packets, and perform traffic normalization to avoid evasion attatk$6, 119.
Similarly, several traffic classification applications are also based on the$s-
ing of each TCP-level stream.

Unfortunately, there is @ap between monitoring applications and underly-
ing traffic capture tools Applications increasingly need to reason about higher-
level entities and constructs such as TCP flows, HTTP headers, SQmeangs,
email messages, and so on, while traffic capture frameworks still opdrttie a
lowest possible level: they provide the raw—possibly duplicate, out-@épror
overlapping—and in some cases even irrelevant packets that reachitenng
interface B7,91,92]. Upon receiving the captured packets at user space, monitoring
applications usually perform TCP stream reassembly using an existing |garainy
as Libnids p] or a custom stream reconstruction engih#&3 124]. This results in
additional memory copy operations for extracting the payloads of TCP sggme
and merging them into larger stream “chunks” in contiguous memory. Mergov
it misses several optimization opportunities, such as the early discardingmef u
teresting packets before system resources are spent to move themlévelsand
assigning different priorities to transport-layer flows so that they cahanelled
appropriately at lower system layers.

To bridge this gap and address the above concerns, in this chapteesenpr
the Stream capture library (Scapa unified passive network monitoring framework
built around the abstraction of tfgtream which is elevated into a first-class object
handled by user applications. Designed from the beginning for stremmted
network monitoring, Scap (i) provides the high-level functionality needechdn-

99
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itoring applications, and (ii) implements this functionality at the most appropriate
place: at user level, at kernel level, or even at the network interfaige ©n the
contrary, existing TCP stream reassembly implementations are confinee- by d
sign, to operate at user level and, therefore, are deprived frachavariety of
efficient implementation options.

To enable aggressive optimizations, we introduce the notistredm capture
that is, we elevate th8treaminto a first-class object that is captured by Scap and
handled by user applications. Although previous work treats TCP streassem-
bly as a necessary evil48, used mostly to avoid evasion attacks against intrusion
detection and other monitoring systems, we view streams —not packets— as the
fundamental abstraction that should be exported to network monitoring applic
tions, and as the right vehicle for the monitoring system to implement aggeessiv
optimizations all the way down to the operating system kernel and network inter
face card.

To reduce the overhead of unneeded packets, Scap introducestithe ofo
subzero packet copynspired by zero-copy approaches that avoid copying packets
from one main memory location to another, Scap not only avoids redundekep
copies, but also avoids bringing some packets in main memory in the first place.
show several cases of applications that are simply not interested in saketpa
such as the tails of large flowg4, 86,89, 107. Subzero packet copy identifies
these packets and does not bring them in main memory at all: they are ditmpped
the network interface card (NI@eforereaching the main memory.

To accommodate heavy loads, Scap introduces the notipniasitized packet
loss(PPL). Under heavy load, traditional monitoring systems usually droyigri
packets in a random way, severely affecting any following streamegdsy pro-
cess. However, these dropped packets and affected streams may bivinfoo
the monitoring application, as they may contain an attack or other critical informa-
tion. Even carefully provisioned systems that are capable of handliniiedtate
traffic can be overloaded, e.g., by a sophisticated attacker that sevelsaihl
traffic to exploit an algorithmic complexity vulnerability and intentionally overload
the system109 135. Scap allows applications to (i) define different priorities for
different streams and (ii) configure threshold mechanisms that givetpriomew
and small streams, as opposed to heavy tails of long-running data teansfer

Scap provides a flexible and expressive Application Programming logerfa
(API) that allows programmers to configure all aspects of the streamregmto-
cess, perform complex per-stream processing, and gather pestitstics with a
few lines of code. Our design introduces two novel features: (i) itkeisahe early
discarding of uninteresting traffic, such as the tails of long-lived cammesthat
belong to large file transfers, and (ii) it offers more control for tolerapagket
loss under high load through stream priorities and best-effort reagge@bap
also avoids the overhead of extra memory copies during the reassembésgro
by optimally placing TCP segments into stream-specific memory regions, and sup-
ports multi-core systems and network adapters with receive-side sc@bhépf
transparent parallelization of stream processing.
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We have evaluated Scap in a 10GbE environment using real traffic anetdh
that it outperforms existing alternatives like Libnids] and Snort’s stream re-
assembly 124 in a variety of scenarios. For instance, our results demonstrate
that Scap can capture and deliver at user level all streams with low CP Utiditiz
for rates up to 5.5 Gbit/s using a single core, while Libnids and Snort stapt dr
ping packets at 2.5 Gbhit/s due to increased CPU utilization for stream redgsemb
at user level. A single-threaded Scap pattern matching application cale [¥39d
higher traffic rates than Snort and Libnids, and can process three tintesrab
fic at 6 Gbhit/s. Moreover, the single-threaded Scap pattern matching ajplica
can handle traffic speeds of 4 Gbit/s with no loss for stream cutoff valugs
1MB. In contrast, when Snort and Libnids limit the stream size at user leveh
with very low cutoff values, more than 40% of the packets are still droppdd a
Gbit/s. When eight cores are used for parallel stream processing c&ongrocess
5.5 times higher rates with no packet loss.

In summary, the main contributions of this section are:

e We identify a semantic gap: modern network monitoring applications need
to operate at the transport layer and beyond, while existing monitoring sys-
tems operate at the network layer. To bridge this gap and enable aggressi
performance optimizations, we introduce the notiostedam capturdased
on the fundamental abstraction of tBé&ream which is elevated to a first-
class object.

e We introducesubzero packet copg technique that takes advantage of filter-
ing capabilities of commodity NICs to not only avoid copying uninteresting
packets across different memory areas, but to avoid bringing them in main
memory altogether.

e We introduceprioritized packet lossa technique that enables graceful adap-
tation to overload conditions by dropping packets of lower priority streams,
and favoring packets that belong to recent and shorter streams.

e We describe the design and implementation of Scap, a framework that incor-
porates the above features in a kernel-level, multicore-aware subsystém,
provides a flexible and expressive API for building stream-orientedar&tw
monitoring applications.

e We experimentally evaluate our implementation and demonstrate that it can
capture and deliver transport-layer streams for traffic rates two timestigh
than previous approaches, while it can also adapt to overload conditions
more gracefully and predictably.

The rest of this chapter is organized as follows: in sectidnwe present the
design and basic features of Scap, while in secti@we outline the main Scap
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API calls. Then, sectioii.3describes the high-level architecture of Scap, and sec-
tion 7.4 discusses implementation details. In sectiohwe experimentally eval-
uate the performance benefits of Scap, comparing with current netaptiring

and monitoring libraries for satisfying common monitoring needs, while replaying
real network traffic captured in the wild. In sectidr®we analyze the performance
of prioritized packet loss. Finally, sectioh7 compares Scap with other traffic
capture frameworks to put our work into context, and secli@summarizes this
chapter.

7.1 Design and Features

The design of Scap is driven by two key objectives: programming eSpergess
and runtime performance. In this section, we introduce the main aspectspf Sc
across these two dimensions.

7.1.1 Subzero-Copy Packet Transfer

Several network monitoring applicatior#486,89,107] are interested in analyzing
only the first bytes of each connection, especially under high traffic [6laid way,
they analyze the more useful (for them) part of each stream and dessagulificant
percentage of the total traffi@9]. For such applications, Scap has incorporated
the use of acutoff threshold that truncates streams to a user-specified size, and
discards the rest of the stream (and the respective packets) within ther@s or
even at the NIC, avoiding unnecessary data transfers to user siypphkcations
can dynamically adjust the cutoff siper streamallowing for greater flexibility.

Besides a stream cutoff size, monitoring applications may be interested in ef-
ficiently discarding other types of less interesting traffic. Many applicatidtes
use a BPF filter91] to define which streams they want to process, while discard-
ing the rest. In case of an overload, applications may want to discard tiraffin
low priority streams or define a streaowerload cutoff{86,107]. Also, depending
on the stream reassembly mode used by an application, packets belongamg to n
established TCP connections or duplicate packets may be discarded.suclall
cases, Scap can discard the appropriate packets at an early stageheitkennel,
while in many cases packets can be discarded even earlier at the NIC.

To achieve this, Scap capitalizes on modern network interfaces that effivid
tering facilities directly in hardware. For example, Intel's 82599 10G interfad]
supports up to 8K perfect match and 32K signature (hash-based) Flteat® fil-
ters (FDIR). These filters can be added and removed dynamically, withimone
than 10 microseconds, and can match a packet’s source and destinaddn IP
dresses, source and destination port numbers, protocol, and a fl2sbigte tuple
anywhere within the first 64 bytes of the packet. Packets that match anfi#eIR
are directed to the hardware queue specified by the filter. If this haedyusue is
not used by the system, the packets will be just dropped at the NIC laykthay
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will never be copied to the system’s main mema9][ When available, Scap uses
FDIR filters to implement all above mentioned cases of early packet disgardin
Else, the uninteresting packets are dropped within the OS kernel.

7.1.2 Prioritized Packet Loss

Scap introduceg®rioritized Packet Los¢PPL) to enable the system to invest its
resources effectively during overload. This is necessary becaudsien traffic
bursts or overload conditions may force the packet capturing subsystéinup

its buffers and randomly drop packets in a haphazard manner. Evee vedtack-

ers may intentionally overload the monitoring system while an attack is in progress
S0 as to evade detection. Previous research in NIDSs has shownititgagbke to
handle different flows43, 85, 109, or different parts of each flow8g, 107, in
different ways can enable the system to invest its resources moré¢veffgand
significantly improve detection accuracy. PPL is a priority assignment tea@niq
that enables user applications to define the priority of each stream so ttegen

of overload, packets from low-priority streams are the first ones to gger dp-
plications can also define a threshold for the maximum stream size undéyaa/er
(overloadcutoff). Then, packets situated beyond this threshold are the ones to be
dropped.

As long as the percentage of used memory is below a user-defined thresh-
old (calledbase_threshold), PPL drops no packets. When, however, the used
memory exceeds thiase_threshold, PPL kicks in: it first divides the mem-
ory abovebase_threshold into n (equal to the number of used priorities) re-
gions usingn + 1 equally spaced watermarks (i.ewatermarkg, watermarky,

..., watermark,), wherewatermarky = base_threshold andwatermark, =
memory_size. When a packet belonging to a stream with thgpriority level
arrives, PPL checks the percentage of memory used by Scap at thatftiitnis.
abovewatermark;, the packet is dropped. Otherwise, if the percentage of mem-
ory used is betweewatermark; andwatermark; 1, PPL makes use of traver-
load_cutoff, if it has been defined by the user. Then, if the packet is located in its
stream beyond theverloadcutoff byte, it is dropped. In this way, high priority
streams, as well as newly created and short stream®ienoad cutoff is defined,

will be accommodated with higher probability.

7.1.3 Flexible Stream Reassembly

To support monitoring at the transport layer, Scap provides diffenextes of TCP
stream reassembly. The two main objectives of stream reassembly in ®cap ar
(i) to provide transport-layer reassembled chunks in continuous memgionss
which facilitates stream processing operations, and (ii) to perform grltocmal-
ization [66,150. Scap currently supports two different modes of TCP stream re-
assemblySCAP_TCP_STRI CT andSCAP_TCP_FAST. In the strict mode, streams
are reassembled according to existing guidelinels 150, offering protection



104 CHAPTER 7. STREAM-ORIENTED NETWORK TRAFFIC ANALYSIS

against evasion attempts based on IP/TCP fragmentation. In the fast tmedms

are reassembled inkaest-effortway, offering resilience against packet loss caused
in case of overloads. In this mode, Scap follows the semantics of the strie mod
as closely as possible, e.g., by handling TCP retransmissions, out@fpackets,
and overlapping segments. However, to accommodate for lost segmes#sn str
data is written without waiting for the correct next sequence number teearim

that case, Scap sets a flag to report that errors occurred duringgbeembly of a
particular chunk.

Scap uses target-based stream reassembly to implement different BE&mea
bly policies according to different operating systems. Scap applicationseatea
different reassembly policy per each stream. This is motivated by prewiots
which has shown that stream reassembly performed in a NIDS may notbe ac
rate [L119. For instance, the reconstructed data stream may differ from the actual
data stream observed by the destination. This is due to the different BS$era-
bly policies implemented by different operating systems, e.g., when handlarg ov
lapping segments. Thus, an attacker can exploit such differencesde detec-
tion. Shankar and Paxsob3]] developed an active mapping solution to determine
what reassembly policy a NIDS should follow for each stream. Similarly to Scap
Snort uses target-based stream reassenifig] fo define the reassembly policy
per host or subnet.

Scap also supports UDP: a UDP stream is the concatenation of the payloads
of the arriving packets of the respective UDP flow. For other protoaisout
sequenced delivery, Scap return each packet for processingavittaissembly.

7.1.4 Parallel Processing and Locality

Scap has inherent support for multi-core systems, hiding from the qroger
the complexity of creating and managing multiple processes or threads. This is
achieved by transparently creating a number of worker threads fotewsd stream
processing (typically) equal to the number of the available cores. Usfimityaf
calls, the mapping of threads to CPU cores is practically one-to-one. $&map a
dedicates a kernel thread on each core for handling packet recepiibstream
reassembly. The kernel and worker threads running on the samerooesg the
same streams. As each stream is assigned to only one kernel and woeket, th
all processing of a particular stream is done on the same core, reducitiis
way, context switches, cache missd®,[L15, and inter-thread synchronization
operations. The kernel and worker threads on each core communicairgth
shared memory and events: a new event for a stream is created byribktkezad
and is handled by the worker thread using a user-defined callbackdurfor
stream processing.

To balance the network traffic load across multiple NIC queues and &xap,
uses both static hash-based approaches, such as Receive Sidg Gas) /5],
and dynamic load balancing approaches, such as flow director filtetR)}F4].
This provides resiliency to short-term load imbalance that could adverfebt a
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application performance. First, Scap detects a load imbalance when one of th
cores is assigned a portion of the total streams larger than a threshold. stive
sequent streams assigned by RSS to this core are re-directed with artd-hER
core that handles the lowest number of streams at the time.

7.1.5 Performance Optimizations

In case that multiple applications running on the same host monitor the same traf-
fic, Scap provides all of them with a shared copy of each stream. Traustrdam
reassembly operation is performed only once within the kernel, instead of faultip
times for each user-level application. If applications have differenfigorations,
e.g., for stream size cutoff or BPF filters, the capture system takes afif@st
approach to satisfy all requirements. For instance, it sets the largespéim®n
cutoff sizes for all streams, and keeps streams that match at least oreféf th
ters, marking the applications that should receive each stream and gpEctiee
cutoff.

Performing stream reassembly in the kernel also offers significanhtelyes
in terms of cache locality. Existing user-level TCP stream reassembly implemen-
tations receive packets of different flows highly interleaved, whichlte$n poor
cache locality 111]. In contrast, Scap provides user-level applications with re-
assembled streams instead of randomly interleaved packets, allowing fowadpro
memory locality and reduced cache misses.

7.2 Scap API

Scap is based around the abstraction ofdfieam a reconstructed TCP session
between two endpoints defined by a 5-tuple (protocol, source and distifa
address, source and destination port). Monitoring applications reaeiveéque
stream descriptost r eamt for each new stream. This descriptor can be used to
access all information, data, and statistics about the stream, and is pragided
parameter to all stream manipulation functions. Tablepresents the main fields
of thest r eamt structure, and Tabl@é.2lists the main functions of the Scap API.
In the following, we give a brief overview of the main functions of the ARida
provide two simple examples that demonstrate its expressiveness and flexibility

7.2.1 |Initialization

An Scap program begins with the creation of an Scap socket asiag_cr eat e() ,
which specifies the interface to be monitored. The programmer can alsifyspec
various properties, such as the memory size of the buffer for storingnstdata,
the stream reassembly mode, and whether the application needs to reeaive th
dividual packets of each stream. Upon successful creation, theeelsicap _t
descriptor, which keeps configuration parameters, is used for alkgubsat con-
figuration operations. These include setting a BPF fid} {o receive a subset of
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Data field

Description

streamhdr hdr;
uint32t src.ip, dst.p;

uint16.t src_port, dst_port;

ui nt 8.t protocol;
uint8t direction;

Stream header
Source/Destination IP address
Source/Destination port
Protocol

Stream direction

streamstats stats;

struct tineval start, end;

uint 64t bytes,
byt es_dr opped,
byt es_di scar ded,
byt es_capt ur ed;
ui nt 32t pkts,
pkt s_dr opped,
pkt s_di scar ded,
pkts_capt ured;

Stream statistics
Beggining/end time
Total bytes,
dropped bytes,
discarded bytes,
captured bytes
Total packets,
dropped packets,
discarded packets,
captured packets

ui nt 8.t status;
uint8.t error;

char xdata;

int data.len;
streamt *opposite;
int cutoff;

int priority;

int chunk_si ze;

int chunks;

int processing.ting;

Other fields

Stream status

Error flags

Pointer to last chunk’s data
Data length of the last chunk
Stream in the opposite direction
Stream'’s cutoff

Stream'’s priority

Stream’s chunk size
Stream'’s total chunks
Stream’s processing time

TABLE 7.1: Data fields of the stream descrip&irr eamt .

the traffic, cutoff values for different stream classes or streamtobres; the num-

ber of worker threads for balancing stream processing among theldgaslares,

the chunk size, the overlap size between subsequent chunks, apticarabtime-

out for delivering the next chunk for processing. Toeer | ap argument is used

when some of the last bytes of the previous chunk are also needed irgihaibg

of the next chunk, e.g., for matching a pattern that might span consechtiviks.

Thefl ush_ti meout parameter can be used to deliver for processing a chunk
smaller than the chunk size when this timeout passes, in case the user needs to
ensure timely processing.

7.2.2 Stream Processing

Scap allows programmers to write and register callback functions for tliffee d

ent types of events: stream creation, the availability of new stream datatraam
termination. When a stream is created or terminated, or when enough data hav
been captured for a stream’s chunk processing, a new event is &ibged the re-
spective callback is executed. Each callback function takes as a sigglaemt a

st r eamt descriptoisd, which corresponds to the stream that triggered the event.
As shown in Tabl€& .1, this descriptor provides access to detailed information about
the stream, such as the stream'’s IP addresses, port numbers, pratatdirec-
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Scap Function Prototype

Description

scap_t *scap.-create(const char =*device, int nenory.size,

int reassenbl y_node, int need_pkts)
int scapset filter(scapt *sc, char xbpf filter)
int scap-set _cutoff(scapt *sc, int cutoff)
int scap.add_cutoff _direction(scapt *sc, int cutoff,

int direction)
int scap.add_cutoff class(scapt *sc, int cutoff,
char* bpf filter)
int scap.set _worker _threads(scapt *sc, int thread.nun
int scap-set_paraneter(scap-t *sc, int paraneter,
int val ue)

int scap.di spatchcreation(scapt *sc,

voi d (xhandl er)(streamt =sd))
int scap.di spatch_data(scap-t *sc,

voi d (+handl er)(streamt =sd))
int scap.dispatch_ternination(scapt *sc,

voi d (+handl er)(streamt =sd))
int scap-start_capture(scap-t *sc)
voi d scap.di scard_strean(scap.t *sc, streamt =*sd)
int scap-set _streamcutoff(scapt *sc, streamt sd,

int cutoff)
int scap-set_streampriority(scapt *sc, streamt =*sd,
int priority)

int scap-set_streamparaneter(scap-t *sc, streamt =sd,
int paraneter, int value)

int scap_keep_streamchunk(scap_t *sc, streamt =*sd)
char =*scap-next _streampacket (streamt =sd,

struct scap_pkthdr =h)
int scap-get _stats(scap-t *sc, scapstats.t *stats)
voi d scap-cl ose(scap-t *sc)

Creates an Scap socket

Applies a BPF filter to an Scap socket

Changes the default stream cutoff value

Sets a different cutoff value for

each direction

Sets a different cutoff value for a subset

of the traffic

Sets the number of threads for stream processing
Changes defaults: inactivity_timeout, chunk_size,
overlap_size, flush_timeout, base_threshold,
overload_cutoff

Registers a callback routine for handling stream
creation events

Registers a callback routine for processing newly
arriving stream data

Registers a callback routine for handling stream
termination events

Begins stream processing

Discards the rest of a stream’s traffic

Sets the cutoff value of a stream

Sets the priority of a stream

Sets a stream’s parameter: inactivity_timeout,
chunk_size, overlap_size, flush_timeout,
reassembly_mode

Keeps the last chunk of a stream in memory
Returns the next packet of a stream

Returns the next packet of a stream

Reads overall statistics for all streams
Closes an Scap socket

TABLE 7.2: The main functions of the Scap API.

tion, as well as useful statistics such as byte and packet counters forogdhed,
discarded, and captured packets, and the timestamps of the first anadkest pf
the stream. Among the rest of the fields, e >st at us field indicates whether
the stream is active or closed (by TCP FIN/RST or by inactivity timeout), or if its
stream cutoff has been exceeded, andstie>er r or field indicates stream re-
assembly errors, such as incomplete TCP handshake or invalid secuenbers.
There is also a pointer to thet r eamt in the opposite direction, and stream’s

properties like cutoff, priority, and chunk size.

The stream processing callback can access the last chunk’s data aiz its

through thesd- >dat a and sd- >dat a_l en fields.

In case no more data is

neededscap_di scard_strean() can notify the Scap core to stop collecting
data for this stream. Chunks can be efficiently merged with following oneg usin
scap. keep_chunk() . Inthe nextinvocation, the callback will receive a larger
chunk consisting of both the previous and the new one. Using the stresumide
tor, the application is able to set the stream'’s priority, cutoff, and othenpeteas
like stream’s chunk size, overlap size, flush timeout, and reassembly mode.

In case they are needed by an application, individual packets cariberelé
usingscap_next _st r eampacket () . Packet delivery is based on the chunk’s
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data and metadata kept by Scap’s packet capture subsystem foraeeh [Based
on this metadata, even reordered, duplicate, or packets with overlagujogrece
numbers can be delivered in the same order as captured. This allowSgp
port packet-based processing along with stream-based procesgint allow the
detection of TCP attacks such as ACK splittii@@. The only difference between
Scap’s packet delivery and packet-based capturing systems is thatp&om the
same stream are processed together, due to the chunk-based délé/aryadded
benefit, such flow-based packet reordering has been found to sagntifi improve
cache locality 111].

The stream'’s processing time and the total number of processed chenks ar
available through thed- >pr ocessi ng_t i me andsd- >chunks fields. This
enables the identification of streams that are processed with very slowarates
delay the application, e.g., due to algorithmic complexity attatR8,[L35. Upon
the detection of such a stream, the application can handle it appropriatelyaye.g
discarding it or reducing its priority, to ensure that this adversarial ¢rafiil not
affect the application’s correct operation.

7.2.3 Use Cases

We now show two simple applications written with Scap.

Flow-Based Statistics Export

The following listing shows the code of an Scap application for gatheringeand
porting per-flow statistics. Scap already gathers these statistics andthrem

thest r eamt structure of each stream, so there is no need to receive any stream
data. Thus, the stream cutoff can be set to zero, to efficiently discaddtall All

the required statistics for each stream can be retrieved upon stream tesmina
registering a callback function.

scap_t *sc = scap_create("eth0", SCAP_DEFAULT,
SCAP_TCP_FAST, 0);

scap_set _cutoff(sc, 0);

scap_di spatch_term nati on(sc, streamclose);

scap_start_capture(sc);

voi d streamcl ose(streamt =*sd) {
export(sd->hdr.src_ip, sd->hdr.dst_ip,
sd->hdr. src_port, sd->hdr.dst_port,
sd- >stats. bytes, sd->stats. pkts,
sd->stats.start, sd->stats.end);
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In line 1 we create a new Scap socket for capturing streams froet the in-
terface. Then, we set the stream cutoff to zero (line 3) for discardliay@am data,
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we set thest r eamcl ose() as a callback function to be called upon stream ter-
mination (line 4), and finally we start the capturing process (line 5).sftreeam

cl ose() function (lines 7-12) exports the statistics of the stream throughdhe
descriptor that is passed as its argument.

Pattern Matching

The following listing shows the few lines of code that are required using 8ra
an application that searches for a set of known patterns in the capéassembled
TCP streams.

scap_t *sc = scap_create("eth0", 512M
SCAP_TCP_FAST, 0);

scap_set worker_threads(sc, 8);

scap_di spatch_dat a(sc, stream process);

scap_start_capture(sc);

voi d stream process(streamt =*sd) {
search(patterns, sd->data, sd->len, MatchFound);

}

We begin by creating an Scap socket without setting a cutoff, so thatféitt tra
is captured and processed (lines 1-2). Then, we configure Scapiglithnerker
threads, each pinned to a single CPU core (assuming a machine with eigé, cor
to speed up pattern matching with parallel stream processing. Finally, ug reg
terst reampr ocess() as the callback function for processing stream chunks
(line 4) and start the capturing process (line 5). Blear ch() function looks
for the set of known patterns withsd- > en bytes starting from thed- >dat a
pointer, and calls thivat chFound() function in case of a match.

© 0 N o g 9~ W N B

7.3 Architecture

This section describes the architecture of the Scap monitoring framewatkdam-
oriented network traffic capturing and processing.

7.3.1 Kernel-level and User-level Support

Scap consists of two main components: a loadable kernel module and laweder-
API stub, as shown in Figuré.1 Applications communicate through the Scap
API stub with the kernel module to configure the capture process angeeunen-
itoring data. Configuration parameters are passed to the kernel throai@cdp
socket interface. Accessesdbr eamt records, events, and actual stream data
are handled through shared memory. For user-level stream pragessinstub
receives events from the kernel module and calls the respective ¢afloaation

for each event.
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FIGURE 7.1: Overview of Scap’s architecture.

The overall operation of the Scap kernel module is depicted in Figrdts
core is a software interrupt handler that receives packets from thwriedevice.
For each packet, it locates the respective eamt record through a hash table
and updates all relevant fieldst(r eamt handling). If a packet belongs to a new
stream, a newst r eamt record is created and added into the hash table. Then, it
extracts the actual data from each TCP segment, by removing the protactsrs,
and stores it in the appropriate memory page, depending on the stream mitwhic
belongs (memory management). Whenever a new stream is created or tedminate
or a sufficient amount of data has been gathered, the kernel modwdeatEna
respective event and enqueues it to an event queue (event cyeation

7.3.2 Parallel Packet and Stream Processing

To scale performance, Scap uses all available cores in the system. clendfi
utilize multi-core architectures, modern network interfaces can distributenimgp
packets into multiple hardware receive queues. To balance the netwifickltrad
across the available queues and cores, Scap uses both7HS®vlich uses a
hash function based on the packets’ 5-tuple, and dynamic load balamusiimg,
flow director filters 4], to deal with short-term load imbalance. To map the
two different streams of each bi-directional TCP connection to the sanse wer
modify the RSS seeds as proposed by Woo and H&H.[

Each core runs a separate instance of the NIC driver and Scap kerdele to
handle interrupts and packets from the respective hardware quieus,. 8ach Scap
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FIGURE 7.2: The operation of the Scap kernel module.

instance running on each core will receive a different subset ofarktaireams,

as shown in Figur@.1 Consequently, the stream reassembly process is distributed
across all the available cores. To match the level of parallelism providedeby
Scap kernel module, the Scap’s user-level stub creates as manyr\Wodads as

the available cores, hiding from the programmer the complexity of creating and
managing multiple processes or threads. Each worker thread prottességams
delivered to its core by its kernel-level counterpart. This collocation ef-les/el

and kernel-level threads that work on the same data maximizes locality tdmeée

and cache affinity, reducing, in this way, context switches, cache njk2¢esl 5,

and inter-thread synchronization. Each worker thread polls a sepaeatequeue

for events created by the kernel Scap thread running on the samewdreglls the
respective callback function registered by the application to procebssaqnt.

7.4 Implementation

We now give more details on the implementation of the Scap monitoring frame-
work.

7.4.1 Scap Kernel Module

The Scap kernel module implements a new network protocol for receivnlg-p
ets from network devices, and a new socket clRssSCAP, for communication
between the Scap stub and the kernel module. Packets are transfamechtoy
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through DMA, and the driver schedules them for processing within tftevae
interrupt handler—the Scap’s protocol handler in our case.

7.4.2 Fast TCP Reassembly

For each packet, the Scap kernel module finds and updates its respéctaamt
record, or creates a new one. For fast lookup, we use a hash tabdadbgmly
choosing a hash function during initialization. Based on the transport-agpér-
col headers, Scap extracts the packet’s data and writes them directlyciortbat
memory offset indicated in thet r eamt record. Packets belonging to streams
that exceed their cutoff value, as well as duplicate or overlapping TGP eas,
are discarded immediately without unnecessarily spending further CPbhamd
ory resources for them. Streams can expire explicitly (e.g., via TCP FIN/RBT
implicitly, due to an inactivity timeout. For the latter, Scap maintainaegess list
with the active streams sorted by their last access time. Upon packet recéipdio
respectivest r eamt record is simply placed at the beginning of the access list,
to keep it sorted. Periodically, starting from the end of the list, the kernelfeod
compares the last access time of each stream with the current time, and eXpire
streams for which no packet was received within the specified periodeayiicg
stream termination events.

7.4.3 Memory Management

Reassembled streams are stored in a large memory buffer allocated byrteke ker
module and mapped in user level by the Scap stub. The size of this buffestisag
argument in thescap_cr eat e() function @uf f er _| en). The kernel module
allocates the respective memory pages during initialization, and it is resfmttsib
manage the usage of this memory among the several streams. For each stream,
contiguous memory block is allocated (by our own memory allocator) according
to the stream’s chunk size. When this block fills up, the chunk is delivered fo
processing (by creating a respective event) and a new block is allofmatéuke
next chunk. The Scap stub has access to this block through memory magping
an offset is enough for locating each stored chunk.

To avoid dynamic allocation overhead, a large numbestafeamt records
are pre-allocated during initialization, and are memory-mapped by the Sdap stu
More records are allocated dynamically as needed. Thus, the numhbeearhs
that can be tracked concurrently is not limited by Scap.

7.4.4 Event Creation

A new event is triggered on stream creation, stream termination, and wdrene
stream data is available for processing. A data event can be triggereddof

the following reasons: (i) a memory chunk fills up, (ii) a flush timeout is passed
(i) a cutoff value is exceeded, or (iv) a stream is terminated. When anssea
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cutoff threshold is reached, Scap creates a final data processingfevés last
chunk. However, itst r eamt record remains in the hash table and in the access
list, so that monitoring continues throughout its whole lifetime. This is required
for gathering flow statistics and generating the appropriate termination event.

To avoid contention when the Scap kernel module runs in parallel acguss s
eral cores, each core inserts events in a separate queue. Whenexerdvis
added into a queue, thlek _dat a_r eady() function is called to wake up the cor-
responding worker thread, which caglisl | () whenever its event queue is empty.
Along with each event, the Scap stub receives and forwards to thdéewséiap-
plication a pointer to the respectigd r eamt record. To avoid race conditions
between the Scap kernel module and the application, Scap maintains a second
stance of eaclst reamt record. The first copy is updated within the kernel,
while the second is read by the user-level application. The kernel mogdktes
the necessary fields of the secatd eamt instance right before a new event for
this stream is enqueued.

7.4.5 Hardware Filters

Packets taking part in the TCP three-way handshake are always aptivhen

the cutoff threshold is triggered for a stream, Scap adds dynamically tles-nec
sary FDIR filters to drop at the NIC layer all subsequent packets biglgrg this
stream. Note that although packets are dropped before they reach maimynemo
Scap needs to know when a stream ends. For this reason, we add filteopto
only packets that contain actual data segments (or TCP acknowledgenagiats)
still allow Scap to receive TCP RST or FIN packets that may terminate a stream.

This is achieved using the flexible 2-byte tuple option of FDIR filters. We have
modified the NIC driver to allow for matching the offset, reserved, and &3
2-byte tuple in the TCP header. Using this option, we add two filters for each
stream: the first matches and drops TCP packets for which only the ACKsflag
set, and the second matches and drops TCP packets for which only thed€CK
PSH flags are set. The rest of the filter fields are based on each stieéupte.

Thus, only TCP packets with RST or FIN flag will be forwarded to Scamdder
module for stream termination.

Streams may also be terminated based on an inactivity timeout. For this reason
Scap associates a timeout with each filter installed to the NIC, and removes the
filter when this timeout expires. To remove filters, Scap keeps a list with alkfilter
sorted based on their timeout values. Thus, an FDIR filter is removed (i) whe
a TCP RST or FIN packet arrives for a given stream, or (i) when the titheo
associated with a filter expires. Note that in the second case the stream may still
be active, so if a packet of this stream arrives upon the removal of its Htap
will immmediately re-install the filter. This is because the cutoff of this stream has
exceeded and the stream is still active. To handle long running streainstaked
filters get a timeout twice as large as before. In this way, long-runningsfloil
only be evicted a logarithmic number of times from NIC'’s filters. If there is no
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space left on the NIC to accommodate a new filter, a filter with a small timeout is
evicted, as it does not correspond to a long-lived stream.

Scap needs to provide accurate flow statistics upon the termination of streams
that had exceeded their cutoff, even if most of their packets were dstat the
NIC. Unfortunately, existing NICs provide only aggregate statistics faket
across all filters—not per each filter. However, Scap is able to estimateadec
per-flow statistics, such as flow size and flow duration for TCP streansgdba
on the TCP sequence numbers of the RST/FIN packets. Also, by remowng th
NIC filters when their timeout expires, Scap receives packets from giesams
periodically and updates their statistics.

Our implementation is based on the Intel 82599 NFg][which supports RSS
and flow director filters. Similarly to this card, most modern 10GbE NICs sach a
Solarflare 1138, SMC [134], Chelsio R6], and Myricom [L01], also support RSS
and filtering capabilities, so Scap can be effectively used with these NI@gsla

7.4.6 Handling Multiple Applications

Multiple applications can use Scap concurrently on the same machine. Given
that monitoring applications require only read access to the stream data, ther
is room for stream sharing to avoid multiple copies and improve overall perfo
mance. To this end, all Scap sockets share a single memory buffer famstiagta
andst reamt records. As applications have different requirements, Scap tries
to combine and generalize all requirements at kernel level, and apply ajpphic
specific configurations at user level.

7.4.7 Packet Delivery

An application may be interested in receiving both reassembled streamsilas we
as their individual packets, e.g., to detect TCP-level attatR§[ Scap supports

the delivery of the original packets as captured from the network, ipahication
indicates that it needs them. Then, Scap internally uses another memorganapp
buffer that contains records for each packet of a stream. Eachdreoatains a
packet header with the timestamp and capture length, and a pointer to thelorigina
packet payload in the stream.

7.4.8 API Stub

The Scap API stub useet sockopt () to pass parameters to kernel module for
handling API calls. Wherscap_start _capture() is called, each worker
thread runs an event-dispatch loop that polls its corresponding eveuegreads
the next available event, and executes the registered callback funattbrsfevent.
The event queues conta@it r eamt objects, which have aavent field and a
pointer to the nexst r eamt in the event queue. If this pointer is NULL, then
there is no event in the queue, and the stub @allsl () to wait for future events.
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7.5 Experimental Evaluation

We experimentally evaluate the performance of Scap, comparing it to otbanstr
reassembly libraries for common monitoring tasks, such as flow statisticstexpor
and pattern matching, while replaying real network traffic at differetetsra

7.5.1 Experimental Environment

The hardware We use a testbed comprising two PCs interconnected through a
10 GbE switch. The first, equipped with two dual-core Intel Xeon 2.66 GRZE

with 4MB L2 cache, 4GB RAM, and an Intel 82599EB 10GbE NIC, is usad f
traffic generation. The second, used as a monitoring sensor, is eduiihetwo
quad-core Intel Xeon 2.00 GHz CPUs with 6MB L2 cache, 4GB RAM, amd a
Intel 82599EB 10GbE NIC used for stream capture. Both PCs runt@4blintu
Linux (kernel version 2.6.32).

The trace To evaluate stream reassembly implementations with real traffic, we
replay a one-hour long anonymized trace captured at the access lirdotitadcts

to the Internet a University campus with thousands of hosts. The tradaic®n
58,714,906 packets and 1,493,032 flows, totaling more than 46GB, 95.4%babf w

is TCP traffic. To achieve high replay rates (up to 6 Gbit/s) we split the trace in
smaller parts of 1GB that fit into main memory, and replay each part 10 times while
the next part is being loaded in memory.

The parameters We compare the following systems: (i) Scap, (ii) Libnids v1.24 [
(iii) YAF v2.1.1 [ 73], a libpcap-based flow export tool, and (iv) the Stream5 prepro-
cessor of Snort v2.8.3.224]. YAF, Libnids and Snort rely on libpca®g], which
uses thé®’F_PACKET socket for packet capture on Linux. Similarly to Scap’s ker-
nel module, thePF_PACKET kernel module runs as a software interrupt handler
that stores incoming packets to a memory-mapped buffer, shared with liepcap
user-level stub. In our experiments, the size of this buffer is set to Bl2¥d the
buffer size for reassembled streams is set to 1GB for Scap, LibnidSraord We
use a chunk size of 16KB, ttf&CAP_TCP_FAST reassembly mode, and an inactiv-
ity timeout of 10 seconds. The majority of TCP streams terminate explicitly with
TCP FIN or RST packet, but we also use an inactivity timeout to expire URiP, a
TCP flows that do not close normally. As we replay the trace at higher ttzdes

its actual capture rate, an inactivity timeout of 10 seconds is a reasormdibe c

7.5.2 Flow-Based Statistics Export: Drop Anything Not Needed

In our first experiment we evaluate the performance of Scap for argditow
statistics, comparing with YAF and with a Libnids-based program that reseiv
reassembled flows. By setting the stream cutoff value to zero, Scapdtisaihr
stream data after updating stream statistics. When Scap is configured tttreuse
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FIGURE 7.3: Performance comparison of flow-based statistics export for YAF,
Libnids, and Scap, for varying traffic rates.

FDIR filters, the NIC discards all packets of a flow after TCP connectgabe
lishment, except from the TCP FIN/RST packets, which are used by Scépw
termination. Although Scap can use all eight available cores, for a fair @omp
son, we configure it to use a single worker thread, as YAF and Libn&lsiagle-
threaded. However, for all tools, interrupt handling for packet @ssmg in the
kernel takes advantage of all cores, utilizing NIC’s multiple queues.

Figures7.3(a) 7.3(b) and7.3(c) present the percentage of dropped packets,
the average CPU utilization of the monitoring application on a single core, and the
software interrupt load while varying the traffic rate from 250 Mbit/s to 6 Gbit/s
We see that Libnids starts losing packets when the traffic rate exceedd< Ghe
reason can be seen in Figuig8(b)and7.3(c) where the total CPU utilization of
Libnids exceeds 90% at 2.5 Gbit/s. YAF performs slightly better than Libnids, b
when the traffic reaches 4 Gbit/s, it also drives CPU utilization to 100% ang sta
losing packets as well. This is because both YAF and Libnids receive &éfsac
in user space and then drop them, as the packets themselves are ndtimetrae
monitoring application.

Scap processes all packets even at 6 Gbhit/s load. As shown in Fig(bg the
CPU utilization of the Scap application is always less than 10%, as it practically
does not do any work at all. All the work has already been done by'Skamel
module. One would expect the overhead of this module (shown in Fig8(¢e) to
be relatively high. Fortunately, however, the software interrupt log&tap is even
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lower compared to YAF and Libnids, even when FDIR filters are not ussthuse
Scap does not copy the incoming packets around: as soon as a paiviest, he
kernel module accesses only the needed information from its headdegesjhe
respectivestreamt, and just drops it. In contrast, Libnids and YAF receive all
packets to user space, resulting in much higher overhead. YAF perfmettes
than Libnids because it receives only the first 96 bytes of each pankiet does
not perform stream reassembly.

When Scap uses FDIR filters to discard the majority of the packets at NI€C laye
it achieves even better performance. Figu&c)shows that the software interrupt
load is significantly lower with FDIR filters: as little as 2% for 6 Gbit/s. Indeed,
Scap with FDIR brings into main memory as little as 3% of the total packets—
just the packets involved in TCP session creation and termination. Thef tbst o
packets are just not needed, and they are never brought in the main memory

7.5.3 Delivering Streams to User Level: The Cost of an Extra Memaor
Copy

In this experiment, we explore the performance of Scap, Snort, and silvhen
delivering reassembled streams to user level without any further [@iagesThe
Scap application receives all data from all streams with no cutoff, ansl aara
single thread. Snort is configured with only the Stream5 preprocessabiesh
without any rules. The Libnids application also receives all the reassdmie
and UDP streams, without any operation of them. Figud€a)shows the percent-
age of dropped packets as a function of the traffic rate. Scap detiteseams
without any packet loss for rates up to 5.5 Ghit/s. On the other hand, Libtads
dropping packets at 2.5 Ghit/s (drop rate: 1.4%) and Snort at 2.75 Gbitfsr@te:
0.7%). Thus, Scap is able to deliver reassembled streams to the monitorliag app
cations for more than two times higher traffic rates. When the input traffahesa
6 Gbit/s, Libnids drops 81.2% and Snort 79.5% of the total packets reteive

The reason for this performance difference lies in the extra memory qopy 0
erations needed for stream reassembly at user level. When a packes &or
Libnids and Snort, the kernel writes it in the next available location in a common
ring buffer. When performing stream reassembly, Libnids and Snort maag
to copyeach packet's payload from the ring buffer to a memory buffer allocated
specifically for this packet’s stream. Scap avoids this extra copy opelaitause
the kernel module copies the packet's datd to a common buffer, but directly
to a memory buffer allocated specifically for this packet’s stream. Figukéb)
shows that the CPU utilization of the Scap user-level application is conbigiera
lower than the utilization of Libnids and Snort, which at 3 Gbit/s exceeds 90%,
saturating the processor. In contrast, the CPU utilization for the Scap aipuhic
is less then 60% even for speeds up to 6 Gbit/s, as the user applicationedpes v
little work: all the stream reassembly is performed in the kernel module, which
increases the software interrupt load, as can be seen in Hgi(a
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FIGURE 7.4: Performance comparison of stream delivery for Snort, Libnidg, a
Scap, for varying traffic rates.

7.5.4 Concurrent Streams

An attacker could try to saturate the flow table of a stream reassembly libyary b
creating a large number of established TCP flows, so that a subsequaibusa
flow cannot be stored. In this experiment, we evaluate the ability of Scapidsib
and Snort to handle such cases while increasing the number of camcti@e
streams up to 10 million. Each stream consists of 100 packets with the maximum
TCP payload, and streams are multiplexed so that the desirable numbecaf-con
rent streams is achieved. For each case, we create a respectie¢ fpac& and
then replay it at a constant rate of 1 Gbit/s, as we want to evaluate theafftamn-
current streams without increasing the traffic rate. As in the previousrienent,

the application uses a single thread and receives all streams at usewidvelt
performing any further processing.

Figure7.5shows that Scap scales well with the number of concurrent streams:
as we see in Figur@.5(a) no stream is lost even for 10 million concurrent TCP
streams. Also, Figuréa5(b)and7.5(c)show that the CPU utilization and software
interrupt load of Scap slightly increase with the number of concurrerdrsseas
the traffic rate remains constant. On the other hand, Snort and Libnidstdaamn-
dle more than one million concurrent streams, even though they can handigsl G
traffic with less than 60% CPU utilization. This is due to internal limits that these
libraries have for the number of flows they can store in their data structuresn-
trast, Scap does not have to set such limits because it uses a dynamic memory ma
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FIGURE 7.5: Performance comparison of Snort, Libnids, and Scap, for angary
number of concurrent streams.

agement approach: when more memory is needed for stetingamt records,
Scap allocates dynamically the necessary memory pools to capture all stiteams.
case an attacker tries to overwhelm the Scap flow table, Scap will use alldifie a
able memory fost r eamt records. When there is no more free memory, Scap’s
policy is to always store newer streams by removing from the flow table the olde
ones, i.e., streams with the highest inactivity time based on the access list.

7.5.5 Pattern Matching

In the following experiments, we measure the performance of Scap withgin ap
cation that receives all streams and searches for a set of patterms W@ apply
any cutoff so that all traffic is delivered to the application, and a singlekavor
thread is used. Pattern matching is performed using the Aho-Corasik string-ma
ing algorithm P]. We extracted 2,120 strings based on ¢tluat ent field of the
“web attack” rules from the official VRT Snort rule séf][ and use them as our
patterns. These strings resulted in 223,514 matches in our trace.

In this experiment We compare Scap with Snort and Libnids using the same
string matching algorithm and set of patterns in all three cases. To engaire a
comparison, Snortis configured only with the Stream5 preprocessoleehahich
performs transport-layer stream reassembly, using a separate @adarreach of
the 2,120 patterns, applied to all traffic, so that all tools end up using the same
automaton. The Scap and Libnids programs load the 2,120 patterns from a file
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FIGURE 7.6: Performance comparison of pattern matching for Snort, Libnids, and
Scap, for varying traffic rates.

build the respective DFA, and start receiving streams. We use the samie silze
of 16KB for all tools.

Figure7.6(a)shows the percentage of dropped packets for each application as
a function of the traffic rate. We see that Snort and Libnids procedgtrates
of up to 750 Mbit/s without dropping any packets, while Scap processés Lp
Ghbit/s traffic with no packet loss with one worker thread. The main reasons f
the improved performance of Scap are the improved cache locality whep-gro
ing multiple packets into their respective transport-layer streams, and theeckd
memory copies during stream reassembly.

Moreover, Scap drops significantly fewer packets than Snort and lspaid.,
at 6 Gbit/s it processes three times more traffic. This behavior has a pesigee
on the number of matches. As shown in Figdté(b) under the high load of 6
Gbit/s, Snort and Libnids match less than 10% of the patterns, while Scap matche
five times as many: 50.34%. Although the percentage of missed matches for Sno
and Libnids is proportional to the percentage of dropped packets, theaay of
the Scap application is affected less from high packet loss rates. Thisaside
Scap under overload tends to retain more packets towards the beginreagtof
stream. As we use patterns from web attack signatures, they are usualty fo
within the first few bytes of HTTP requests or responses. Also, Scaptrigeliver

contiguous chunks, which improves the detection abilities compared to getdizer
chunks with random holes.
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FIGURE 7.7: L2 cache misses of pattern matching using Snort, Libnids, and Scap,
for varying traffic rates.

Favoring Recent and Short Streams

We turn our attention now to see how dropped packets affect the diffstream
reassembly approaches followed by Scap, Libnids, and Snort. Whilédisilamd
Snort drop packets randomly under overload, Scap is able to (i) assignmson-

ory to new or small streams, (ii) cut the long tails of large streams, and (iii))ateliv
more streams intact when the available memory is limited. Moreover, the Scap
kernel module always receives and processes all important prqtackéts during

the TCP handshake. These packets may result in the creation of nemstiad
they do not carry data to be stored. In contrast, when a packet céiprarg drops
these packets due to overload, the user-level stream reassembly Vililtargt be

able to reassemble the respective streams, resulting in completely lost stieams.
deed, Figureg.6(c)shows that the percentage of lost streams in Snort and Libnids
is proportional to the packet loss rate (shown in Figiu&a). In contrast, Scap
loses significantly less streams than the corresponding packet loss natio fde
81.2% packet loss at 6 Gbit/s, only 14% of the total streams are completely lost.

Locality

Let's now turn our attention to see how different choices made by diffe¢oais
impact locality of reference and, in the end, determine application perfaenan
For the same pattern matching experiment, we also measure the number of L2
cache misses as a function of the traffic rate (Figuii®, using the processor’s
performance counter§]|

We see that when the input traffic is about 0.25 Gbit/s, Snort experiahoes
25 misses per packet, Libnids about 21, while Scap experidratesf them: just
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10.2 misses per packet. We have to underline that at this low traffic rateafione
the three tools misses any packets, and we know that none of the tools sedtres
so they all operate in their comfort zone. The reason that Lidnids and Saee
twice as many cache misses as Scap can be traced to the better localityesfaefer
of the Scap approach. By reassembling packets into streams from the ntbheent
arrive, packets are not copied around: consecutive segments tgether, are
stored together, and are consumed together. On the contrary, LibrddSremt
perform packet reassembly too late: the segments have been storeaticgily)
random locations all over the main memory.

Packet Delivery

To evaluate the packet delivery performance of Scap, we ran the gaplieaa

tion when Scap was configured with packet support, and pattern matclisg w
performed on the delivered packet payloads. The results are shdwgure7.6

as well. We see that the performance of Scap remains the same when the pat-
tern matching application operates on each packet, i.e., the percentagegped
packets and lost streams do not change. We just observe a slighasednehe
number of successful matches, which is due to missed matches for pafiams s
ning the payloads of multiple successive packets.

7.5.6 Cutoff Points: Discarding Less Interesting Packets Befe It Is
Too Late

Several network monitoring applications need to receive only the initiabpagch
data flow R4,86,107], usually because they do not have the computing capacity to
process the entire strearhi(f7, 109. Other systems, such as Time Machii@g][
elevate the ability to store only the beginning of each flow into one of their fun-
damental properties. In this experiment, we set out to explore the efiaetg of
Libnids, Snort, and Scap when implementing cutoff points. For Snort, we mod-
ified Stream5 to discard packets from streams that exceed a given caltiod. v
Similarly, when the size of a stream reaches the cutoff value, Libnids steps th
collection of data for this stream. In Scap, we just callgle@p_set cut of f ()
function in program’s preamble using the desirable cutoff. We also con§uae
with and without using FDIR filters, which are added dynamically to the NIC for
each stream when its cutoff is reached, to discard the rest of its patkie¢scard.
The applications search for the same set of patterns as in the previcaramesmt.
Figures7.8(a) 7.8(b) and 7.8(c) show the percentage of packet loss, CPU
utilization, and software interrupt load as a function of the cutoff for adfixaffic
rate of 4 Gbhit/s. Interestingly, even for a zero cutoff size, i.e., when &l ofleeach
flow is discarded, both Snort and Libnids experience as much as 40Rétpass,
as shown in the left part of Figurg8(a) This is because Snort and Libnids first
bringall packets to user space, and then discard the bytes they do not neset,Ind
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FIGURE 7.8: Performance comparison of Snort, Libnids, and Scap, for v@ryin
stream size cutoff values at 4 Gbit/s rate.

Figures7.8(b)and7.8(c)show that the total CPU utilization of Libnids and Snort
is always close to 100% at this traffic rate irrespectively of the cutofftpoin

In contrast, for cutoff points smaller than 1MB, Scap has no packet luds a
very small CPU utilization. For instance, when Scap uses a 10KB cutoff; fié
load is reduced from 97% to just 21.9%, as 97.6% of the total traffic is efilgie
discarded. At the same time, 83.6% of the matches are still found, and nmstrea
is lost. This outcome demonstrates how the stream cutoff, when implemented ef-
ficiently, can improve performance by cutting the long tails of large flows,adnd
lows applications to keep monitoring the first bytes of each stream at higlispe
When the cutoff point increases beyond 1MB, CPU utilization reachesasiatu
and even Scap starts dropping packets. Enhancing Scap with harfiltesiseto
discard packets within the NIC reduces the software interrupt load, arsdréa
duces the packet loss for cutoff values larger than 1MB.

7.5.7 Stream Priorities: Less Interesting Packets Are The Fst Ones
To Go

To experimentally evaluate the effectiveness of Prioritized Packet IR#is)( we

ran the same pattern matching application using a single worker thread while set-
ting two priority classes. As an example, we set a higher priority to all streatins w
source or destination port 80, which correspond to 8.4% of the totabpakour
trace. The rest of the streams have the same (low) priority. Fig@rghows the
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FIGURE 7.9: Packet loss for high- and low-priority streams, for varying traffic
rates.

percentage of dropped packets for high-priority and low-priority stieas a func-
tion of the traffic rate. When the traffic rate exceeds 1 Gbit/s, the singladbce
pattern matching application cannot process all incoming traffic, resultinfyaica
tion of dropped packets that increases with higher traffic rates. Haywareesee
that no high-priority packet is dropped for traffic rates up to 5.5 Gbit/d|endn
significant number of low-priority packets are dropped at these ratpge-85.7%

at 5.5 Ghit/s. At the traffic rate of 6 Gbit/s, we see a small packet loss of 28% f
high-priority packets out of the total 81.5% of dropped packets.

7.5.8 Using Multiple CPU Cores

In all previous experiments the Scap application ran on a single thread, wo allo
for a fair comparison with Snort and Libnids, which are single-threaHesever,
Scap is naturally parallel and can easily use a larger number of corethisin
experiment, we explore how Scap scales with the number of cores. Weause th
same pattern matching application as previously, without any cutoff, arfijoom

it to use from one up to eight worker threads. Our system has eigld,cord each
worker thread is pinned to one core.

Figure7.10(a)shows the packet loss rate as a function of the number of worker
threads, for three different traffic rates. When using a single th&ezap processes
about 1 Ghit/s of traffic without packet loss. When using seven thr&dg pro-
cesses all traffic at 4 Gbit/s with no packet loss. Figui®(b)shows the maximum
loss-free rate achieved by the application as a function of the numbereafdsr
We see that performance improves linearly with the number of threads, gtattin
about 1 Gbit/s for one worker thread and going all the way to 5.5 Gbit/s foit eig
threads.

The reason that we do not see a speedup of eight when using eigkerwor
threads is the following: even though we restrict the user application torrun o
limited number of cores, equal to the number of worker threads, the oppsysa
tem kernel runs always on all the available cores of the processerefine, when
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FIGURE 7.10: Performance of an Scap pattern matching application for a varying
number of worker threads.

Scap creates less than eight worker threads, it is only the user-I@lelion that

runs on these cores. The underlying operating system and Scaprkechde runs
on all cores.

7.6 Analysis

In this section, we analyze the performance of Prioritized Packet Ld3s) (-

der heavy load, aiming to explore at what point PPL should start dropgpung
priority packets so that high priority ones do not have to be dropped.siRor
plicity lets assume that we have two prioritidsw andhigh. We defineN to be
(memory_size — base_threshold)/2. If the used memory exceed$, then PPL

will start dropping low priority packets. Given that is finite, we would like to
explore what is the probability tha¥ will fill up and we will have to drop high-
priority packets. To calculate this probability we need to make a few more assump
tions. Assume that high-priority packet arrivals follow a Poisson distribudiith
arate of)\, and that queued packets are consumed by the user level application. We
assume that the service times for packets follow an exponential distribution with
parameten:.. Then, the whole system can be modeled ag/Bi\//1/N queue.

The probability that all the memory will fill up is:

L—p '~
Pfull:mp

(7.1)
wherep = \/u. Due to the PASTA property of the Poisson processes, this is
exactly the probability of packet l0s$),.s = Py

Figure7.11plots the packet loss probability for high-priority packets as a func-
tion of V. We see that a memory size of a few tens of packet slots are enough to
reduce the probability that a high-priority packet is lost@o®. We note, however,
that the speed with which the probability is reduced depends ¢ime fraction of
the high-priority packets over all traffic which can be served by the apbcity of
the system. We see that wherns 0.1, that is, when only 10% of the packets are
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of N. packets as a function of N.

high-priority ones, then less than 10 slots are more than enough to guatiaate
there will be practically no packet loss. Wherns 0.5 (i.e., 50% of the traffic is
high-priority), then a little more than 20 packet slots are enough, while when
0.9, then about 150 packet slots are enough.

The analysis can be extended to more priority levels as well. Assume, for
example, that we have three priority levelsw, medium, andhigh, that N =
(memory_size — base_threshold) /3, that medium-priority packet arrivals follow
a Poisson distribution with a rate &f, and that high-priority packet arrivals follow
a Poisson distribution with a rate of. As previously, assume that the service
times for packets follow an exponential distribution with parameteirhen, the
system can be described as a Markov chain @ithnodes:

Al+A2 At A1+ A2 A2
e e T N e
SS0) SRS () SRS )
I n I In [t

The packet loss probability for high-priority packets is:
}Dloss = p]leéVpo (72)

Wherep1 = ()\1 + )\2)/,[1, P2 = )\2/”, and

po=1/( T Lo
L—p1 Lol-p

The packet loss probability for medium-priority packets remains:

l—p1  w
Ploss = mpl (7.3)
Figure 7.12 plots the packet loss probability for high-priority and medium-
priority packets as a function of N. We assume that= ps = 0.3. We see
that a few tens of packet slots are enough to reduce the packet |dssbpity
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FIGURE 7.13: Categorization of network monitoring tools and systems that sup-
port commodity NICs.

for both high-priority and medium-priority packets to practically zero. Thues,
believe that PPL provides an effective mechanism for preventing trudiexd loss
of important packets in network monitoring systems.

7.7 Comparison With Other Capture Frameworks

There exists lots of related work in the area of traffic capture and analysis
place our work in context, Figuré.13 categorizes Scap and related works along
two dimensions: the main abstraction provided to applications, i.e., packef, set o
packets, or stream, and the level at which this abstraction is implemented,ére., us
or kernel level. Traditional systems such as Libpc@® Lse thepacketas basic
abstraction and are implemented in user level (bottom left of the figure).e Mor
sophisticated systems such as netni&§], FLAME [10], and PERING [37] also

use the packet as basic abstraction, but are implemented with kernel modifica
tions to deliver better performance (bottom right of the figure). MARIJ and
FFPF [L9] use higher level abstractions such as $e¢ of packets Libnids and
Stream5 provide the transport-lay@treamas their basic abstraction, but operate
at user level and thus achieve poor performance and miss seveaatwppes of
efficiently implementing this abstraction (top left of the figure). We see ScHpeas
only system that provides a high-level abstraction, and at the same time impéemen
it at the appropriate level, enabling a wide range of performance optimizadith
features.
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7.8 Summary

In this chapter, we have identified a gap in network traffic monitoring: applica
tions usually need to express their monitoring requirements at a high levay, usin
notions from the transport layer or even higher, while most monitoring taitils s
operate at the network layer. To bridge this gap, we have presenteesignd
implementation, and evaluation of Scap, a network monitoring framewaork that of
fers an expressive API and significant performance improvemengpfaications

that process traffic at the transport layer and beyond. Scap geetdam abstrac-
tion a first-class status, and provides an OS subsystem for capturisparéshayer
streams while minimizing data copy operations by optimally placing network data
into stream-specific memory regions. It also offers a variety of featuréperfor-
mance optimizations, by (i) discarding uninteresting traffic efficiently within the
kernel, (ii) reacting to overload conditions by dropping low priority traffiic) uti-

lizing multi-core architectures for parallel stream processing, and (ivjawipg

the memory locality and cache usage by grouping packets into steams. Using the
Scap API, the user-level applications are able to communicate their stréamedr
needs directly to the underlying Scap kernel module.

The results of our experimental evaluation demonstrate that Scap is able to de
liver all streams for rates up to 5.5 Ghit/s using a single core, two times higher
than the other existing approaches. An Scap-based application for pati&ch-
ing handles 33% higher traffic rates and processes three times more dtaffic
Gbit/s than Snort and Libnids. Moreover, we observe that user-levéémgnta-
tions of per-flow cutoff just reduce the packet loss rate, while Scagisdt-level
implementation and subzero copy eliminate completely packet loss for stream cut-
off values of up to 1MB when performing pattern matching operations atidsGb
This outcome demonstrates that cutting the long tails of large flows can be ex-
tremely beneficial when traffic is discarded at early stages, i.e., within timelke
or even better at the NIC, in order to spend the minimum possible number of CPU
cycles for uninteresting packets. When eight cores are used folgbateeam
processing, Scap is able to process 5.5 times higher traffic rates with ket pac
loss.

As networks are getting increasingly faster and network monitoring applica-
tions are getting more sophisticated, we believe that approaches like Suah, w
enable aggressive optimizations at kernel-level or even at the NIC isilebe-
come increasingly more important in the future.



Other Applications

In this chapter we explore how we can use similar approaches to solve ten oth
problems related to network monitoring systems. First, we study the problem of e
ergy efficiency in network monitoring systems, using NIDS as a case Stvlije
building an energy-efficient NIDS, we identify an energy-latency toffdevhile
reducing the NIDS power consumption, the detection latency is significantly in-
creased. We also explain how the increased detection latency impedes the timely
reaction of a NIDS to the incoming attacks. To reduce the detection latency and
resolve this tradeoff, we identify the most important packets for fast tieteand

we process them with higher priority.

In the second part of this chapter, we address the problem of longtteffio
recording using fixed-size storage. We propose the iddgaffic aging to keep
more traffic for recent time intervals and sample less traffic as it gets older. T
select representative samples of the stored packets, we exploremtiff@ampling
strategies such as random packet sampling, random flow sampling, afidwe
cutoff, to store less packets from the beginning of each flow.

8.1 Low-Power and Low-Latency Network Monitoring

Low power consumption is one of the main design goals in today’s computer sys
tems. Recently, much effort has been put into improving the energy effician

a variety of areas like data centeds3p], high performance computing], mo-

bile devices 112, and networks §3]. Towards this direction, we aim to build
an energy-efficient Network-level Intrusion Detection System (NIDEDS are
commonly deployed to detect security violations, enhancing the securatioper

of modern computer networks. They perform computationally heavy tipesa

129
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like pattern matching, regular expression matching, and other types of comple
analysis to detect at real time malicious activities in the monitored network. Thus,
NIDS usually utilize multicore system414] or cluster of serversd4, 128 144 to
cope with increased link speeds and complicated analysis of network.traffic

Although NIDS are usually provisioned to operate at link rate, in order to be
able to handle a fully utilized network (at the worst case), most networkiypse
ically much less utilized than their maximum capacity. This results in increased
power consumption at low traffic load. To reduce the energy spent imderaf-
fic we aim at building a power-proportional NIDS using Dynamic Voltage fired
quency Scaling (DVFS) and sleep states (C-states), which can beifooratiern
processors. The system should consume the less power needed ito thesta-
coming traffic load. We found that a NIDS consumes less power when ét use
the smallest number of cores that can operate at the lowest possiblerfogdio
process the network traffic, by keeping these cores nearly fully utiligaat. re-
sults indicate that this energy-efficient NIDS can process all packetsupitio
23% lower power consumption than the original system at low rates. Howwese
observe a significant increase on the detection latency due to highest gaok
cessing times when reducing the frequency, and mostly due to increaseithgju
delays imposed by the high utilization.

A low detection latency is very important for a NIDS in order to ensure a timely
reaction to the attack. Upon the detection of a packet that carries an dttack,
NIDS can actively terminate the offending connection or install a new fiteula.

This reaction should be immediate, before the attack packets reach the victim’s
machine and the attack succeeds. Therefore, our results indicate aadewoftr

for NIDS: theenergy-latency tradeoffOur key idea to resolve this tradeoff is to
identify the most important packets for attack detection and process them with
higher priority, resulting in low latency and fast detection. The rest gacke
processed with lower priority to achieve an overall low power consumption.

We explore two alternative approaches to reduce the latency of hightprio
packetsitime sharingandspace sharingln time sharing we use a typical priority
queue scheduling in each core. In space sharing the high-priorityetsaftdlow
a different path, using dedicated cores with much lower utilization to achieve lo
latency. To implement space sharing we use features of modern netwafkéete
cards (NIC) to move efficiently the processing of least-significant gadkecores
with higher utilization, a technique we call #ew migration We experimentally
compare the two approaches and we find that space sharing has a befter p
latency ratio. This is because time sharing cannot efficiently reduce thengue
delays during a high utilization.

Based on these approaches we propose LEoONIDS: a NIDS archiebtatr
resolves the energy-latency tradeoff. The implementation of LEONIDS N§&
features, a specialized kernel module, a modified user-level libraait &based
on the popular Snort NIDSLR4. LEoNIDS consumes less power, proportionally
to the traffic load, while its detection latency remains low and almost constant at
any traffic load.
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8.1.1 Towards a Power Proportional NIDS

We first explore the design space to build a power-proportional NIDS.

Experimental Environment

Our testbed consists of two machines interconnected with a 10 GbE switch. Both
machines are equipped with two six-core Intel Xeon E5-2620 procesgitin

15 MB L2 cache, 8 GB RAM, and an Intel 82599EB 10 GbE network interfa
The clock frequency of these processors can be scaled from 1.2d5H@ GHz
using DVFS, which results in 9 available frequency steps (P-statesy.al$msup-

port Intel Turbo Boost technology to further increase their frequeipdo 2.5 GHz.

To reduce power consumption, each idle core can be put independeatbnia of

the 3 available sleep states: C1, C3 or C6. We measure the power consumption
in the NIDS machine using the Watts up? PRO ES device, by sampling and stor-
ing the power at one second intervals. All our measurements run for seymtify
higher time periods than one second.

The first machine is used for traffic generation. The generated trafiithes
the second machine, which runs Snort 1024 v2.8.3.2 with official rule setT]
containing 8308 rules. We use FNG [55] v5.3.0 and ixgbe driver v3.7.17 to
split the incoming traffic to active cores using the Receive Side Scaling)(HS|S
feature of Intel 82599 NIC74]. We set the size of the ring buffer that stores
packets at each core to 4096 slots. To change the frequency we epeiftezjutils
package. Both machines run 64-bit Linux (kernel version 3.5.0).

We generate real traffic by replaying an one-hour long anonymizee tage-
tured at the access link of an educational network. The trace contains45806
packets and 1,493,032 flows, totaling more than 40GB, 95.4% of which is TCP
traffic. For this trace Snort triggers 1851 alerts from 76 differentstuldost of the
matching rules are related to common threats and protocol violations. Intorder
strengthen our evaluation, we augmented the trace with 120 traces ofteeiisa
captured in the wild117], adding 233 more alerts from 14 different rules.

Power Consumption

The system’s idle power consumption is 85.1 W, and when Snort fully utilizes all
cores it consumes 145.7 W. Thus, we estimate that the extra power frontatiie s
is consumed by the NIDS. As NIDS perform heavy computational opestiba
CPU consumes the larger portion of energy in the system. We measure the CPU
power consumption by accessing the RAPL (Running Average Power Liegt) r
isters provided by each Intel Xeon E5-2620 CPU, which measure thestodady
consumed by each chip. Varying the traffic load results in different Nibl&a-
tions. In all NIDS utilizations, 58-62% of the total power is consumed by the two
CPUs.

Modern processors offer two ways to reduce power consumptioguérey
scaling (DVFS), and sleep states (C-states). Intel processors rsmgla volt-
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Active cores | Frequency | Power consumption| Detection latency
6 2.0 GHz 107.0 W 0.371 ms
8 1.5 GHz 1042 W 0.856 ms
10 1.2 GHz 100.2 W 1.228 ms

TABLE 8.1: Using more cores at lower frequency consumes less powersulltisre
in higher detection latency. (when processing 1.5 Gbit/sec).

age and frequency regulator, so the frequency changes uniforraliycares of a
processor. However, each core can operate in a different C-stata/éoenergy.
The power consumption of each core consists of (i) active power cogsuhen

the core processes packets at the current frequency, (ii) powsuced to enter

a C-state, and (iii) power consumed during the idle state. We see that ide core
consume less power when they are in C6 state, so we put inactive cores in th
state. There is an increased latency to wake up cores from C6 state nemd/é&n
activate them few microseconds before this core will be necessary.

Based on the packet arrival rate, we aim to find the most energy-effitiet-
egy for a NIDS by properly adapting the frequency and the numbertivkatores
(not in C-states). The two main questions are: (i) is it better to operate atmve
quency or utilize sleep states? (ii) is it better to use more cores on loweefregu
or less cores at higher frequency?

To find the optimal strategy we measure Snort’s power consumption as-a func
tion of the CPU frequency and the number of active cores, when setndifig at a
constant rate of 0.6 Gbit/sec. Figu8el(a)shows that the lowest power consump-
tion is achieved when using 4 active cores at 1.2 GHz, which is the minimum setup
that is able to handle the 0.6 Gbit/sec traffic with no packet loss. In this setup we
see up to 21% reduced power consumption compared to 12 cores at the maximu
frequency.

We observe that the less power is consumed when the system operates at th
lowest possible frequency with no idle time, instead of running at highquée-
cies and entering C-states during idle periods. Moreover, we see thgtraere
cores at lower frequency is more energy efficient than using less abreigher
frequencies. For instance, TalBd shows three alternative setups that can be used
to process 1.5 Gbhit/sec, as they offer approximately the same computing: power
6 cores at 2.0 GHz, 8 cores at 1.5 GHz, or 10 core at 1.2 GHz. We se&(ha
cores at 1.2 GHz consume less power than the other cases. Bifj(okshows the
average utilization of active cores. We see that power consumptionagesras
the core utilization increases and approaches 100%. This is becaugadbeiis
not sufficiently efficient, i.e., the power consumed to enter and leave G statke
during these idle periods is quite significant.
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FIGURE 8.1: Fewer cores and lower frequency reduce the power consunijution
increase the detection latency. Power consumption, detection latencypend c
utilization as a function of frequency and number of active cores whenimg
Snort and sending constant traffic at 0.6 Gbhit/sec. We see that pong&uroption
decreases as the utilization of active cores approaches 100%. Hothéveesults

in increased detection latency.

Adapt to the Traffic Load

Our results indicate that a power-proportional NIDS should utilize the srhalles
number of cores that are able to sustain the incoming traffic without anyepack
loss when they operate at the lowest possible frequency. Therdfieresystem
should dynamically adapt to the traffic load by changing the frequencyaetivét-
ing/deactivating cores. We observe that it is preferable to first actheats of the
same CPU, which explains the larger distance in the power consumption betwee

6 and 8 cores in Figurg.1(a)

A NIDS is based on the underlying packet capturing system to receckesa
for processing. To tolerate processing spikes or short-term overldiael packet
capturing system is able to store a limited number of packets in memory queues
(ring buffers). Modern NICs7{4] offer multiple receive queues and are able to
distribute the packets among them to allow for efficient multicore processsig [
Thus, a packet capturing system with multicore support uses a sepaeate per
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FIGURE 8.2: A straight-forward power-proportional NIDS consumes lessgrow
with higher detection latency. Power consumption and detection latency of a
straight-forward power-proportional NIDS versus the original Ni&Sa function

of traffic rate.

core. When queues are getting full, the system has a strong indicationhafrhig
load than it can handle with the current setup, so it needs to employ mor® core
or increase the frequency. A straight-forward power-proportiddiBIS uses the
following strategy:

1. The system starts with a single active core at the minimum frequency.
2. It continuously monitors the queues’ usage.

2.1. If queues are filled by more tharhigh threshold

2.1.1. If there are inactive cores, it wakes up one more core.
2.1.2. Else, it increases the frequency of all cores to the next step.

2.2. If queues are filled by less thari@wv threshold

2.2.2. If lowest frequency is used, it deactivates one core.
2.2.2. Else, it decreases the frequency to the previous step.

We implemented this online adaptation algorithm within the packet capturing
subsystem, as a Linux kernel loadable module, and we ran Snort oveystess
while varying the load. We sdtigh thresholdto 90% andow thresholdto 70%.
Figure 8.2 (bottom part) shows the power consumption of this straight-forward
energy-efficient NIDS as a function of the traffic rate, compared to tiggnal
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FIGURE 8.3: The energy-latency tradeoff. Detection latency as a functioneépo
consumption when sending 0.6 Gbit/sec traffic. We see that detection latency in
creases significantly as power consumption is reduced.

system. We see that the vanilla system consumes 24% less power whessproce
0.2 Gbit/sec, compared with the power consumption at 3 Ghit/sec. Contrary, the
power-proportional NIDS adapts much better to the load reducing therpmmme
sumption by 39% when processing 0.2 Gbit/sec. In low rates, it consumes up to
23% less power than the original Snort.

8.1.2 The Energy-Latency Tradeoff in NIDS

Although a power-proportional NIDS is able to handle the same traffic asritpe
inal system with lower energy consumption, we would like to explore the impact
of this approach on the detection latency.

Detection Latency

We instrumented Snort to measure the attack detection latency, by subtreatng f
the time that an alert is triggered the timestamp of the packet that contains the
attack. The packet's timestamp is set within the packet capturing module before
the packet is queued. Figugl(b)shows the detection latency as a function of
frequency and number of active cores for 0.6 Gbit/sec traffic. We deear
increase when frequency is reduced up to 1.6 GHz and up to 8 coresede

but we see an exponential increase to the detection latency when cordiatiliza
exceeds 70%. To better see the relation between power consumptiontacibae
latency we replot these data in FiguBe8. We see a clear tradeoff: to achieve
power consumption lower than 100 W, the detection latency should be iedreas
2—7 times.
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FIGURE 8.4: The main cause of increased detection latency is higher queuing
delay. Processing time and queuing delay as a function of traffic ratee¥\nat

for low frequency and high rates, when the latency significantly incesasreuing
delay is much higher than processing time.

Table 8.1 leads us to the same outcome: although using 10 cores at 1.2 GHz
consumes the less power, it comes at a price of significantly increasedylaten
Figure8.2 (upper part) shows the detection latency of a power-proportional NIDS
compared to the original system. We see that although it consumes less ppower
has a significantly higher detection latency at all rates. This is becausgstess
selects the frequency and number of cores that lead to high utilization, tclose
100%, in order to save energy. As a consequence, the detection latenains
always high.

Deconstructing Detection Latency

We define detection latency as the time passed from the arrival of the Esdtpa
that contains the attack till the alert generation in the NIDS. Thus, the detection
latency is equal to the latency imposed per each attack packet, from theimgptu
time till it finished processing. The packet latency can be divided in thrae:pa
(i) interrupt handling timei.e., the time spent for packet handling in OS kernel,
(ii) queuing delayi.e., the time that packet waits in a queue to be delivered for
processing, and (iiiprocessing timdy the NIDS at user level. We see that the
interrupt handling time per packet is negligible compared to queuing delay and
NIDS processing time. Thus, the increased detection latency may occuo due
higher processing times when reducing the frequency or due to higlesiingu
delays imposed by the increased utilization.

To explore why detection latency is increased, we measure how muchaach p
contribute to the detection latency as we vary the offered traffic rate flarelift
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frequencies. We instrumented Snort to measure (i) the queuing delagqieat poy
subtracting the packet’s timestamp from the time that packet is received inf&nor
processing, and the packet’s processing time in Snort. F&jdshows the average
processing time and queuing delay per each attack packet for traffécreatging

from 0.5 Gbit/sec to 1.5 Gbit/sec, when using 12 cores in 1.2 GHz, 1.8 GHz, and
2.3 GHz. In low frequency and high rates, when the system is more utilized; q

ing delay is the main factor of the increased detection latency. For instahea, w
processing 1.5 Ghit/sec at 1.2 GHz, queuing delay is 7 times higher tharsgroce
ing time. This is because the higher utilization results in a large number of packets
waiting at each queue and thus in an exponentially higher queuing delagnin
trast, processing time increases linearly as we decrease frequency.

8.1.3 Solving the Energy-Latency Tradeoff in NIDS

We aim to solve the energy-latency tradeoff using domain-specific kngeled
NIDS. This will enable us to build a NIDS with both low power consumptaoa

low detection latency. The key idea of our approach is based on the &chtre

is a small percentage of packets with significantly higher probability to contain a
attack. These are the first few packets of each connection. Thenopega two
alternative approaches to process these packets with low latency, wikleramng
less power proportional to the workload.

Identify the Most Important Packets for Detection Latency

One way to address the energy-latency tradeoff in NIDS would be to theep
utilization of active cores within a specific range, so to keep power consump
and detection latency lower than the respective thresholds. Howeveis indi a
NIDS cannot achieve the lowest possible power consumption, while detéatio
tency may also be much higher. To efficiently resolve the tradeoff, wearsaid-
specific knowledge about NIDS: we capitalize on the fact that not akgiahave
the same probability to carry an attack. By identifying the most interesting fscke
a NIDS is able to process them with higher priority to achieve fast detectiofe w
efficiently reducing the power consumption at each traffic load at the same time
A key abstraction we use to identify the most important packets for attack de-
tection is the networklow. a flow is defined as the set of packets belonging to
the same one-way connection, i.e., packets with same protocol, sourcestird d
nation IP addresses and port numbers (5-tuple). Previous worksshawn that
most attacks are found among the first few bytes of each 888D, 107. This
is because many types of threats like port scanning, service probed Sifich-
gerprinting, code-injection attacks, and brute force login attempts, reguissv
connection for each attempt, and the attack vector is found in the first f@s by
the flow. In contrast, very large streams usually correspond to file temsfolP
communication, or streaming media applications, which typically are not related to
security threats. Due to the heavy-tailed flow size distribution in the InteB3gl [
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Attack category Labeled attacks | Background traffic attacks
Web attacks 14 635
Specific threats 15 282
IMAP & SMTP 1 172
NetBIOS & RPC 200 236
Attack responses 0 213
SQL & MySQL 0 188
Other (spyware, backdoor, misc) 3 125

TABLE 8.2: Classification of the attacks detected in our trace.

the first bytes of each flow correspond to a very small percentage ttti¢raffic.
Thus, processing the respective packets with higher priority and lovegrckawill
result in faster detection for most attacks.

To validate and analyze our choice for high-priority packets in a NID Snea-
sure the position of each attack within its flow, for attacks detected while rgnnin
Snort with our trace. As we explained in Sectii.1, we injected 233 real attacks
into the trace (labeled attacks), while the background traffic containsrh85d at-
tacks. Most of these attacks are related to popular threats and proioletions.
Table8.2 presents a classification of these attacks based on Snort’s riipset [

Figure8.5shows the CDF of the detected attacks’ position within their flows.
We see that 50% of the attacks are found within the first 2 KB of a flow, widité 9
of the attacks are detected in the first 30 KB of their flows. Only 2% of thelattac
are found beyond the first 200 KB. We observed that the labeled atiablch we
consider more important as they correspond to real attacks and havedtieated
as true positives, are always detected within the first 5 KB of their flonesfathd
that the small percentage of attacks detected beyond 100 KB of a floaspord
to less significant threats and are usually triggered by threshold-balesd Thus,
the first few bytes of each flow have a much higher probability to actualltagon
an attack. We can separate the respective packets by applying a eltefto the
flow size. Then we classify as high priority the packets until this cutoff.

Figure8.5 also presents the CDF of the fraction of traffic that is located in a
flow before the corresponding position on the x-axis. This fraction is¢hegmtage
of high-priority traffic as a function of the cutoff applied. For instand@%alof the
total traffic is found in the first 500 KB of the flows. This means that a cualifie
of 500 KB per flow will classify 10% of the total traffic as high-priority, aBf%
of the attacks can be detected on this high-priority traffic.

Tolerating Evasion Attempts

An attacker could try to exploit the flow cutoff mechanism used for priorisjgas

ment in order to increase detection latency and impede a timely reaction. Thus,
we aim to protect LEONIDS against such attacks. One way to exploit thdf cuto
mechanism would be to overburden the system with high-priority packetsbg.g
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FIGURE 8.5: Most attacks are detected within the first few KBs of a flow, which
is a small fraction of the total traffic. CDF of attack’s position at each flo@ an
fraction of traffic per each position.

sending a large number of small flows. However, as we explain in the folipwin
sections, LEONIDS properly adapts to the traffic load by increasingiénecy and
active cores so that the latency of high-priority packets remains alwaysridhe
worst case, e.g., a fully utilized system only with high-priority packets, LEEXSN

will approach the behavior of the original system: it may spend the maximum
available power to keep latency of high-priority packets low.

Another way for an attacker to exploit our cutoff-based approacHduoel to
push the attack into low-priority packets, resulting in higher detection latérry.
address this attack, we take a number of countermeasures. We defireufdiv
in bytes, not in packets, so an attacker cannot exceed it by sending=okdts.

To handle persistent connections, like HTTP keep-alive connectienseset flow

size to zero for each new request or response. Finally, we use allovitdor the

flow cutoff value. This is because most protocol implementations have a maximum
protocol message (request/response) and headers size, and neagocinsctions
exceeding the size. Thus, putting the attack beyond this size is not alossible.

For instance, many attacks are detected at the HTTP protocol, usualtydrase
a signature matching in URI or request headers. Although attackerendras
arbitrary large URI to exceed cutoff, e.g., by adding KBs of spaceadhears before
URI, which are stripped by servers, or by adding dummy parameters wgj Vai-
ues, all Web servers haveneaximum URI sizeonfiguration option. Similarly, the
have amaximum request sizption). When a URI exceeds this limit, &TTP/1.1
414 Request-URI Too Largeror is returned, and request is not processed. Hence,
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the actual attack cannot succeed. Similarly, whemtlagimum request sizienit
is exceeded, servers respond WHRTP/ 1. 1 400 Bad Request (Header
Field Too Long).

In most Web servers, the default maximum URI size is 8 KB. Thus, using
a cutoff larger than 8 KB ensures the timely detection ofsaltcessfubttacks
against servers using this limit. To find out how many of the popular Weleserv
use this default limit, we sent a request with URI slightly larger than 8 KB to the
top-100 Web sites based on the rankingateixa.com The 98 of them responded
with anHTTP/ 1. 1 414 Request-URI Too Lar ge error, while only two
of them accepted the request. When sending requests with 100 KB longlURI
the top-100 Web sites responded with error. Similarly, other protocols (&A4R,
SMTP, NetBIOS) have also a maximum message size. Even if it is equal to few
MBs, the fraction of high-priority traffic remains low. Another reason fettiag
a lower limit for cutoff value is that 49% of the Snort rules in our rulesetthse
depthkeyword: these rules require a pattern to be detected in a specific distance
from the beginning of a packet or flow.

Priority Enforcement

Since we have identified the most important packets for fast detection, edetoe
ensure a low latency for these packets when the system enters into agastivey
mode and active cores’ utilization increases. We propose two alternativeigees
to ensure low latency for the high-priority packeisie sharingandspace sharing

Time Sharing

Time sharing uses a typical priority queue scheduling to favor the highigrio
packets. It first classifies packets into flows and then uses a flow ¢ataffsign
them a low or high priority. Then, packets are stored into the respectivatyr
queue. When a new packet is scheduled for processing, the NIDSelioe next
packet from the high-priority queue. If this queue is empty, a low-priorégket
is chosen. However, this priority queue scheduling is non preemptivenah
high-priority packet arrives and a low-priority packet is being preedsthe NIDS
cannot evict the low-priority packet to serve immediately the high-prioritke&ac
Time sharing follows the same strategy described at se&ibri to adapt fre-
quency and number of cores.

Space Sharing

In time sharing, the cores of the energy-efficient NIDS remain almost ftillged.
This may cause reduced performance due to the non-preemptive priogteq
scheduling. In space sharing, we use separate cores for eadtypNde aim to
keep cores that serve high-priority packets less utilized, to ensure laoucyatin
contrast, cores serving low-priority packets can remain highly utilized to dtow
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reduced power consumption. The increased latency for low-prioritggtads less
likely to affect the overall detection latency. As the majority of the packetg hav
low priority (see Figure8.5), most cores can be used to serve low-priority packets
with high utilization that is necessary to achieve significant energy savings.

In order to reduce even more the detection latency, we would like to increase
the frequency of the dedicated cores used to serve high-priority satkewever,
the single per chip regulator in out Intel processors limits significantly oilityab
to change the frequency of high priority cores independently of lowipyioores.
Fortunately, our analysis in secti@?l.2 shows that core utilization is the main
factor of an increased detection latency. Thus, just reducing the utilizediold
be enough to achieve our low latency goal even with a lower frequertghvis
necessary for low priority cores to reduce their power consumption.

Space sharing is based on two main idefé®v migrationandadaptive core
management

Flow migration. The flow migration technique, assisted by advanced features
of modern NICs, is used to distribute efficiently the packets into cores ased
their priority. Initially, all packets arrive at the high-priority cores. Thpackets
are classified into flows. When a flow size exceeds the specified cuto#f,\the
flow is moved into a low-priority core by instructing the NIC to schedule all the
successive packets of this flow into this core. Thus, only the high-pripaitkets
remain for processing into the high-priority cores. The low-priority p&laee
moved to the rest cores using the flow migration technique.

Adaptive core management.Space sharing dynamically partitions the active
cores into high-priority and low-priority cores, based on the workloadsés the
optimum number of high-priority cores that keep their utilization within a desirable
range. Using more cores than necessary may increase power consymypiie
less cores may increase detection latency. Therefore, we proposelltverfg
adaptive core management algorithm, which extends the core/frequdaptive
algorithm we presented in Secti8ril.1

1. The system starts with one high-priority and one low-priority core.
2. It continuously monitors the queues’ usage.
2.1. If high-priority queues are filled by more tharih-priority up thresh-

old:

2.1.1. If exist inactive cores, activate a high-priority core.

2.1.2. Else increase the frequency.

2.1.3. If maximum frequency is used, reduce flow cutoff until it reaches
a certain limit.

2.2. If high-priority queues are filled by less thahigh-priority down thresh-
old:

2.2.3. Increase cutoff up to a certain limit.
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2.2.1. Else reduce the frequency.
2.2.2. If lowest frequency is used, deactivate a high-priority core.

2.3. If low-priority queues are filled by more than@wv-priority up thresh-
old:

2.3.1. If exist inactive cores, activate a low-priority core.
2.3.2. If all cores are used, increase the frequency.

2.4. If low-priority queues are filled by less tharaw-priority down thresh-
old:

2.4.1. Reduce the frequency.
2.4.2. If lowest frequency is used, deactivate a low-priority core.

Thehigh-priority up thresholdensures a low utilization for high-priority pack-
ets. Thelow-priority up thresholdensures that no packet will be lost. We can
also control the load of high- and low- priority cores by changing the tusdfie,
which divides the traffic into high- and low-priority packets. Howeverrdasing
the flow cutoff is not always a good choice, as the probability that an attealkrs
in a low-priority packet increases. Thus, we keep the cutoff alwaysméticertain
range.

8.1.4 Implementation

Based on the two alternative approaches we implemented LEoNIDS: a NiDS a
chitecture that offers both low power consumption, proportionally to the, laad

low detection latency. Figui@ 6illustrates the architecture of LEoNIDS with time
sharing and space sharing. Our implementation utilizes advanced fedtured-o

ern NICs, and it is based on a specialized kernel module that modifies ¢ketpa
capturing subsystem. Moreover, it includes a modified user-level paakéuring
library and slight modifications to Snort NID%24].

We implemented the online frequency adaptation and core management algo-
rithm within the packet capturing subsystem as a Linux kernel loadable lsnodu
Both time sharing and space sharing are implemented within this module. The
module runs as a protocol handler and processes all captured pdtketsitors
the packet queues per each core and properly adapts the numbgretames and
the CPU frequency. This module is also responsible to store packets inoiher pr
gueues and impose a scheduling or load balancing policy. The packealssare
tributed among the available cores either with the RSS hash-based loaditglanc
scheme T5] or with a dynamic load balancing scheme using the flow director fil-
ters (FDIR), which are used to define the core that will serve each V\ndeliver
packets at user-level through memory mapped buffers, and we builtGapip2]
wrapper library. Then, we link Snort with this user-level library, instefdhe
original libpcap.
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FIGURE 8.6: The LEONIDS architecture with time sharing and space sharing.

Time Sharing

In time sharing we extend the ring buffers of the packet capturing syssam a
typical priority queue scheme. The incoming packets are classified into #liod/s
are assigned a low or high priority. Based on its priority, each packetresitothe
proper queue. The modified user level library reads the next packatthe high
priority queue, and only if it is empty, from the low priority queue. This packe
then delivered to Snort for processing.

Space Sharing

In space sharing we use dedicated cores to process the high-priarkgtpavith
reduced latency. We aim to keep the utilization of these cores between 828p—5
which results in low queuing delays as we see in Sect&t and ??. Based

on the queue utilization we properly adapt flow cutoff, number of highripyio
cores, and frequency. The RSS uses a redirection table to distributectimaiing
packets to the available cores. To implement space sharing, we first moglify th
redirection table so that RSS splits all packets only to high-priority coreen,Th
these cores classify packets into flows. When a flow exceeds the cizmffan
FDIR filter is added to the NIC in order to move the processing of this flow to
a low-priority core (flow migration). The low-priority core is chosen in anmdu
robin fashion. Each flow that exceeds the cutoff value moves from oreto
another only once, so the cache locality is not significantly affected. Ubkimg
FDIR filters for flow migration is highly efficient and improves cache parfance,

as each core accesses only its local data. We keep a list with all filtersréghat a
installed at the NIC, so when a flow expires (either explicitly by a TCP RST/FIN
packet, or by an inactivity timeout) the respective FDIR filter is removed by the



144 CHAPTER 8. OTHER APPLICATIONS

1.2 r T
Time sharing ——
11 Space sharing -~ - -]

09}
0.8 F
0.7
0.6 F
05 F
04 f
0.3

Detection latency (ms)

100KB 500KB  2MB 10MB 50MB
Cutoff (KB per flow)

FIGURE 8.7: The optimal cutoff for time sharing and space sharing. Detection
latency as a function of cutoff. In both time sharing and space sharingevthe
lowest detection latency for 500 KB per flow.

NIC. The intel 82599 NIC 74] offers up to 8K perfect match and 32K signature-
based FDIR filters. In case all filters are used, space sharing evicifigst filter
to accommodate a new flow.

8.1.5 Experimental Evaluation
Comparing Time Sharing with Space Sharing

Finding the optimal cutoff. Using a small cutoff reduces the percentage of high-
priority packets, and thus their queue utilization and queuing delays. Howbe
probability that an attack will be found in low-priority packets, which expere
a higher delay, increases. To find out the optimal cutoff for time sharidgpace
sharing, we vary the cutoff values from 50 KB to 150 MB per flow whiledsen
ing constant traffic at 1.0 Ghit/sec. FiguBe7 shows that the optimal cutoff for
both approaches is close to 500 KB. Using this cutoff, 99% of the attaskdere
into the high-priority packets. For lower cutoff values, more attacks aredan
low-priority packets with increased detection latency, while higher cutdtfesa
increase the queuing delay of high-priority packets. We also see tha sparing
achieves a lower detection latency for all cutoff values below 20 MB, u@% 5
lower (for 50 KB cutoff) and 35% lower for the optimal cutoff of 500 KBrgw.
The effect of priority on latency. To better understand the detection latency
we observed, we explore how the packet’s latency (queuing plusgsiocgetime)
changes for each priority with different cutoff values. FigBr@shows the latency
of high- and low-priority packets for time and space sharing as a functioutoff
when sending at 1.0 Gbit/sec. In time sharing, we see that low-priority sacke
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FIGURE 8.8: Low-priority packets in time sharing experience a much higher la-
tency that high-priority packets. Latency of high- and low-priority pasker time
sharing and space sharing as a function of cutoff when sending abit/8&e. We
see that both high-priority and (especially) low-priority packets expeedower
latency in space sharing comparing with time sharing.

experience up to 49.3 times higher latency than high-priority packets. A# cuto
increases, we see a slight increase on the latency of high-prioritytsatike to the
larger number of packets arriving at high-priority queues. Conttheylatency of
low-priority packets significantly decreases until cutoff reaches 750b€Bause
the fraction of low-priority packets decreases, resulting in much less utilizatio
low-priority queues. When cutoff increases above 750 KB, the latehdgwe
priority packets increases fast. This is because they the low-priorityeaekait

for an increasing number of high-priority packets to be processed.

In space sharing, we see a much lower difference between the latetuwy-of
and high-priority packets. Note that both low- and high-priority packgtee&nce
lower latency compared to time sharing. Especially the latency of low-priority
packets is significantly lower and clearly decreases as cutoff incredgas is
because low- and high-priority packets are processed in parallel erdiff cores,
and the fraction of low-priority packets decrease with higher cutoff w&lughe
latency of high-priority packets is also reduced, as space sharing iscakéep
high-priority cores less utilized. As the fraction of high-priority packetsaase
with cutoff, we see a slight increase on their latency for higher cutoffeglThe
increased latency in high-priority packets for very small cutoff valuesiéstd the
overhead of the very often FDIR establishments.

Comparing All Approaches

Varying the load. We now compare all approaches, i.@., the original Snort,
(71) the straight-forward power-proportional NIDS we described in se@iart,
(7i7) LEONIDS with time sharing, an¢iv) LEONIDS with space sharing, in terms
of both detection latency and energy efficiency when varying the traffid.ldn
time sharing we use a 500 KB cutoff, which was found to perform bettespéce
sharing we use an adaptive cutoff that ranges from 300 KB to 1 MB, lasedo
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FIGURE 8.9: Space sharing offers the best power-latency ratio. Poweucgns

tion and detection latency of all approaches as a function of traffic rate se&
that LEONIDS with space sharing consumes the same power with otherpower
proportional approaches, but with significantly lower detection latenoyngared

to the original system, space sharing consumes 23% less power anceadbiger
detection latency for traffic rates higher than 2.5 Gbit/sec.

the optimal values. Figurg.9shows the power consumption and detection latency
of all approaches as a function of traffic rate. We see that LEONIDS kath
approaches consumes approximately the same power as the powetipngho
NIDS, significantly lower than the consumption of the original Snort. Despée th
lower consumption, LEONIDS achieves a significantly lower detection latévacy

the power-proportional NIDS, close to the latency of the original system.

Space sharing performs quite better than time sharing: although both consume
approximately the same power, space sharing achieves more than 40%ébeer
tion latency. This is due to the non-preemptive priority queues used in timaghar
a high-priority packet may wait for a low-priority packet that is being pased.
Moreover, the overall utilization of active cores in time sharing remain vigly,h
so it cannot efficiently reduce the queuing delays of high-priority packe

Overall, LEONIDS with space sharing consumes 22% less power thani¢je or
inal system and it is able to detect attacks with an order of magnitude lower la-
tency than the straight-forward power-proportional NIDS. Moregsgaice sharing
achieves a lower detection latency than the original system for rates liigime2.5
Gbit/sec. This is due to the higher priority given at the beginning of each Asw.
the original system does not give priority to these packets, it expesdrnigker de-
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FIGURE 8.10: Space sharing performs better under realistic traffic variations.
Traffic rate, power consumption, and detection latency over time.

tection latency compared to both time and space sharing at high traffic ragées wh
all approaches result in an almost fully utilized system.

Realistic traffic variations. In our next experiment we compare all approaches
in a realistic scenario of traffic variations. We replayed our one-how tate at
its original rate using a 30x multiplier, resulting in an 120-seconds long &xrpat.
Figure8.10shows the traffic rate, power consumption, and detection latency of all
approaches over time. We see that again LEoNIDS with space shariegexthe
lowest detection latency among the other power-proportional appreache

Active response.In our last experiment we examine how the detection latency
of each approach affects the effectiveness of a NIDS reaction tebcterminate
offending TCP connections. We configured Snort Wigixresp2plugin for active
response, and we added a rule to match a specific string and respondseithor
both source and destination hosts of the matched flow. While sending baokiyr
traffic at 1.0 Gbit/sec, we were also sending connections with packets nmtchin
this string. We sent a constant number of packets per connection, whylega
its duration. Figure8.11shows the percentage of successfully closed connections
by active response when sending 100 such connections, as a fuottionnec-
tion’s duration. We see that the straight-forward power-proportion@iS\tannot
respond in time and close connections shorter than 6 ms with more than 50% prob
ability. Contrary, LEONIDS is able to terminate most connections lasting more
than 3 ms, similar to the original Snort.



148

CHAPTER 8. OTHER APPLICATIONS

__ 100 —
\o\f/ /////
2 L
S 80rf
= -
Q
c
S 60 |
)
o
Q
3
S 40 F
2
2
17} | Original Snort
8 20 / Power-proportional Snort —-----
o] . LEONIDS with time sharing -------
] e LEONIDS with space sharing -
2 agly . . . . . .

0

0 1 2 3 4 5 6 7 8 9 10

Duration of offending connection (ms)
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8.1.6 Summary

In this work we studied the problem of improving the energy efficiency of RN
using common power management capabilities like DVFS and C-states. As NIDSs
are usually overprovisioned to operate at the maximum link capacity, while thes
links are usually much less utilized, there are significant opportunities taeedu
power consumption. However, while building a power-proportional NIi®
identified an energy-latency tradeoff: the reduced power consumpegrits in
a significant increase on the detection latency, which impedes a timely automatic
reaction of the NIDS to the incoming attacks. By analyzing the detection latency
we showed that the main reason for this increase is the high queuing delays im-
posed by the high core utilization.

We presented the design, implementation, and evaluation of LEONIDS: a NIDS
that resolves the energy-latency tradeoff. The key idea of LEoONIRS jisocess
with higher priority the first few bytes of each flow, which have a highebpbility
to carry an attack, to achieve low latency and fast detection. Then, weged two
alternative techniques: time sharing and space sharing. Time sharing typésal
priority queue scheduling, while space sharing uses dedicated corefowih
utilization to process high-priority packets. Our experimental evaluatiowsho
that LEONIDS performs better with space sharing than with time sharing.aver
LEoNIDS with space sharing consumes significantly less power, propaftjao
the load, and constantly low attack detection latency at the same time.
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8.2 Long-Term Network Traffic Recording

Live traffic monitoring systems capture and process packets in real tingarde
less of the particular use, captured packets are usually discardegmuessed.
However,recordingthe raw network traffic to disk for long-term periods can be
very useful for a multitude of applications, such as troubleshooting nktprob-
lems and measuring traffic trends or observing the historical evolution dfdhe
fic. Moreover, while the Internet evolves over the years, new applitedod more
security breaches appear. Thus, long-term recording of Inteafét tcan signifi-
cantly contribute to better analyze and understand the Internet evolution.

Network traffic recording is also critical for many security purposesorialy
detection techniques require a long-term baseline of past traffic to boifidasrfor
normal traffic and users. Postmortem forensics analysis is also bapadidnaffic
to identify malicious activities that happened before the time that an attack is de-
tected. For instance, looking back in time can help us to identify how the attacker
compromised a system, what they did, and find out which data have beeseexp
to them. Moreover, lawful interception and data retention have beencedfoe-
cently by many national regulations to enrich crime evidence by reconsguctin
past VoIP calls or other kinds of network-based communications.

When new vulnerabilities and attack signatures for Network Intrusion Betec
tion Systems (NIDS) are released, long-term recording of networkdralftows
to identify past attacks and compromised systems that otherwise would ge unde
tected. Also, it is common practice to test new NIDS signatures using pd8t traf
to eliminate false positives. NIDS and other passive monitoring applicatiens ar
trained, tuned, and properly configured based on recorded tnafficthe network
in which they will be deployed. Packet traces are also commonly used ichbe
marking network monitoring applications and can be replayed in differ¢as ra
using tools liket cpr epl ay [145.

Unfortunately, recording all traffic in high volume networks is impossiblaneve
for short-term periods, due to the high storage needs. For instanetyark with
300 Mbit/sec average load requires about 3.2 TB of storage for riegpode day’s
traffic. Thus, the limited storage resources of a commodity PC allow for storing
hours or maybe a few days of traffic in the best case. However, diegpthe
network traffic for long-term periods using a reasonable amount adigéowould
be extremely beneficial for all applications mentioned above.

Storing only the first few bytes from each packet, which typically cowads
to protocol headers, can reduce the required storage and incedaseténtion$o].
However, monitoring applications that need to inspect both the headetiseapaly-
load of the packets, a process widely knowrmlasp packet inspectigQ], cannot
operate with header-only traces. Two traditional approaches for eldition are
aggregation and sampling. Aggregation is effective when the traffiaisifes of
interest are known in advance, while sampling techniques select a eafatige
group of packets uniformly over time. The sampling rate is an important paramete
for the accuracy on inferring various network metrics. Higher samplitegr@sult
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to better accuracy but require more storage space, and thus retentemuced
when using fixed-size storage. On the other hand, lower sampling rates$ec
data retention but inevitably reduce the accuracy of many applications.

In this chapter we preseRRDtrace a technique for storing packets for long-
term periods in fixed-size storage, inspired by the popular RRD@][ We
choose to store full-payload packet traces, which provide a rich safrinfor-
mation suitable for all kinds of analyses, from coarse-grained measoterg
network properties to fine-grained operations like deep packet inspedRigD-
trace divides time into intervals and retains more detail for more recent intervals,
i.e, allocates more storage to recent time intervals and less storage to older time in-
tervals. Also, older time intervals become longer than more recent onestré&iRD
is based on aaging mechanism that dynamically reduces the space occupied by
the data of a time interval as it ages, by keeping only a subset of the patkieds
interval using sampling. Thus, as a time interval gets older, the sampling rate fo
storing its data decreases.

Many sampling techniques have been extensively studied for applicatiens lik
traffic accounting, billing, and measurements like heavy-hitters identificatidn a
flow size estimation. However, the applicability of sampling techniques in other
passive monitoring applications like traffic classification and intrusion detectio
has not received the same attention. Our study attempts to answer the following
questions:

e Which sampling strategies should be used to select a useful subsekefgac
when reducing the storage space that will allow us to infer as many as pos-
sible desirable properties from the trace? Which strategies are suitable for
which properties?

e How much back in time can we go, i.e., what is the lowest sampling rate that
still allows us to infer desirable properties from an RRDtrace with accept-
able accuracy?

To answer these questions, we evaluate the impact of three differenlirrgmp
strategies by decreasing sampling rates on inferring desirable netwapkriies
using a large trace of real traffic. Our results indicate that RRDtracey dlsiw
sampling can accurately estimate flow size distribution and distribution of flows
among applications regardless of the sampling rate. Average flow sizesrehp
age of traffic per application are estimated more accurately in recent timesilsterv
For estimating the percentage of malicious hosts and flows, reduction o€ traffi
volume using a per-flow cutoff provides the more accurate estimates fentrec
intervals. Random packet sampling performs well only for few of the exathin
properties. Compared to a constant sampling rate strategy, RRDtracéooan s
traffic for arbitrary long time periods and offers higher accuracy foreecent
traffic.
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FIGURE 8.12: Storage allocation in RRDtrace for S=2 TB.

8.2.1 Our Approach: RRDtrace

Our approach, calleRRDtrace is inspired from the properties found in round
robin databases. It aims to store full-payload packets for long-termdseiio
fixed-size storage. RRDtrace divides the time into unequal intervals &mdge
more packets from recent intervals, while keeping smaller subsets oftgeom
older intervals. Older time intervals are longer and utilize less storage. Réoen
intervals are smaller with more storage assigned. The duration of time intemdals a
how the available storage is assigned to them can be defined either by the use
according to the network in which RRDtrace will be deployed, or automaticglly b
RRDtrace.

A typical example of storage allocation in RRDtrace is shown in Figut@

We assume that the available storage for RRDtrace is 2 TB. We select the
initial time intervalt, to be one day and we assign the half storage (1 TB) to it.
The next time intervat, is twice as large ag with the half storage ofy, i.e.,t;

is two days long with 500 GB storage. Thus,tin(days 2—3), 1 out of 4 packets
that were initially stored is selected to remain in the trace. Each subsequent time
interval is two times larger and has half the storage than its preceding one.

In this storage allocation algorithm different initial time intervalscan be
defined, occupying the half of the available storage. All the next inteivads
formed based on, and available storag€. In case that the traffic volume g is
less thanS/2, all packets in this interval can be stored. Else, packet sampling is
imposed from the first time interval. An other option is to let RRDtrace to select
the first intervak, in a way that all the packets during this interval are stored in the
corresponding storage (with no sampling). Thignwill be the time interval with
traffic volume equal t&/2. This approach works well when the traffic volume in
to intervals does not vary significantly.

When at period passes, agingdaemon is responsible to appropriately re-
duce the storage used in each time interval. For instance, the number etpack
stored during the last will be reduced by 25%, and similarly with the next inter-
vals in order to conform with the storage allocation scheme described.abbge
aging daemon reduces the storage capacity in each interval by selecépgea r
sentative group of packets with the appropriate sampling rate. The se&etion
strategy is an important parameter for the usefulness of RRDtrace.
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We suggest the use of sampling instead of aggregation for two reasiosts. F
data is retained in the same format, which is very convenient for analysisrand
cessing by existing applications. Moreover, aggregation requiresledge of the
traffic’s features of interest in advance, whereas sampling allows taetien of
arbitrary detail while at the same time reducing data volumes.

Sampling Strategies

Since RRDtrace may be used by multiple applications, different sampling strate-
gies may be suitable for different applications. We have implemented three sam-
pling strategies to evaluate their effectiveness using several monitorpigap
tions. Each sampling strategy defines the way khadckets should be selected out

of the total N packets in a time interval (sampling rate= k/N), to respectively
reduce the storage. We consider that a sampling rate has a similar effackitp

and storage reduction.

Packet Sampling The simplest strategy to seldcout of N packets is systematic
count-based sampling, i.e., selecting one evéry packets. However, systematic
sampling is vulnerable to bias errors due to synchronisation with periodicmsatte
in the traffic and can be predicted.

Random packet sampling avoids the potential problems of systematic sam-
pling. We choose to implement stratified random sampling. In this technique,
the N packets are divided tb equal groups (with size aV/k packets) and one
packet from each group is randomly selected. In systematic count-basgiing
the first packet of each group would be always selected.

Flow Sampling Research works by Hohn and Veitd@f] and Duffield et al. 48]
have shown that packet sampling is inaccurate for the inference of flbistist®
such as the original flow size distribution. For instance, it is easy to miss com-
pletely the short flows. Flow sampling has been proposed as an altercabiver-
come the limitations of packet sampling. Hohn and Veit68] [show that flow
sampling improves the accuracy in flow statistics inference.

When a flow is selected, all the packets that belong to this flow are stordd, wh
from an unselected flow no packets are stored. Flow sampling appsiactierm-
ing flow records focus mostly on selecting large flows, which has a largeadmp
to billing and accounting applications. So, non-uniform flow sampling teclesiqu
like smart sampling47] and sample-and-holdbp], have been proposed for accu-
rate estimation of heavy hitters. These techniques give higher probabiliterg@
flows to be selected and form flow records.

In our case, we aim to select a representative group of flows for apipis
like traffic classification, building profiles, and security applications. Thues
choose a uniform flow sampling approach. Random flow sampling with sampling
rate s could be used. Similarly, hash-based sampling could be performed, using
a hash function over the 5-tuple which defines a flow and then seteatd of
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the possibleV hash values. However, these approaches do not guarantee that the
selected flows will result tég: out of N packets selection, and to the desirable
storage reduction, due to the heavy-tailed distribution of flow sizes. Tdrere
hash-based and simple random flow sampling, as well as smart and sardple-a
hold sampling strategies, cannot accurately reduce the storage.

We need to specify a flow sampling scheme that selefttsvs out of theM
total flows in a time interval, with packets in total. This flow sampling scheme
works as follows: First we classify packets into flows. During the clasditia, we
maintain an indexing table with the flows sorted based on their size and a histogra
with flow sizes. Then, we randomly select one flow at a time, with a size; of
packets, whilé " x; < k stands. Only flows with size less than- > z; packets
that have not been selected so far, are candidates for selectiore fldves can be
easily found using the indexing table and the histogram with flow sizes. Asgumin
that we haveF' flows with size less that — > x; packets that have not been
selected before, a random number frono F' is used to select the corresponding
flow from the indexing table. The selected flows are marked and remowertifre
indexing table and flow size histogram. The selection process ends ivilosvs
with !, z; = k have been selected. Finally, the packets from the selected flows
are written to disk, with a second pass in the trace, in respect to the ortidraiia
have been received.

Per-Flow Cutoff Our third strategy for selecting representative packets is to use
a per-flow cutoff, i.e., select always the fiStpackets of each flow. Time Ma-
chine BY] uses a statically user configured per-flow cutoff to limit the amount of
traffic that will be stored. On the other hand, RRDtrace reduces the darobiaf-
fic that will be stored according to the time interval that the traffic belongs ts, thu
different cutoffs are applied to different time intervals. As traffic agfes per-flow
cutoff will be properly reduced.

We implemented an algorithm that selects a per-flow cufbth a way that
k packets are selected out of the tofélpackets. The algorithm is based on a
histogram of aggregated statistics. In the first step we classify packetsiis. fl
During this classification, we also maintain a table which indicates the number of
flows that exceed each flow size. For instance, the positadrihe table[:], will
contain the number of flows that have at leaptickets. When thg;, packet of a
flow is classified[i] will be incremented by one.

Using this table, we can find the number of packets that correspond taificpe
per-flow cutoffz from >~  t[:]. The selected cutoff’ will be the largest position
in the table thaﬁfzo t[i] < k will be valid. In the second step of the algorithm,
having the proper cutoff’, packets are classified again into flows and each packet
is selected only if its position in the flow is less than Otherwise, the packet is
not stored in the new file.

This per-flow cutoff strategy seleckspackets in total from all the flows that
appear in a time interval. Thus, it can accurately estimate the number of flaws bu
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not their size. Its main advantage is that the trace will contain the first packets
from all the flows, so it will be suitable for security applications, e.g., poahsand
intrusion detection, but not for traffic classification and accounting agiphics.

Implementation

RRDtrace is implemented using two separate threads: the capture and agiing da
mons. Thecapture daemonses libpcap92] to capture packets for thig interval,
impose sampling, if needed, ipand initially store the packets in a memory buffer.
When the memory buffer becomes full, the packets are written to disk. Separa
files are used for eadh.

Theaging daemotis responsible for reducing the storage as traffic ages. After
eacht, it reads packets from the files of each interval, imposes the new sampling
rates and writes the selected packets to the updated files. The two threadsdeo
cess the disk concurrently to improve disk’s performance. Thus, thg dggmon
runs only when the capture daemon writes packets to the memory buffer.

Applications of RRDtrace

We focus on using RRDtrace for the following two classes of possible apioiits:

1) Study the historical evolution of trafficusing RRDtrace we aim to infer the
distribution of traffic among different applications, the distribution of floss,
the number of security alerts, the percentage of the malicious populatioroand h
all these change over the years.

2) Security applications:

a) Building profiles for normal traffic patterns based on RRDtrace to bd bg
anomaly detection metrics.

b) Forensics analysis, which often requires the reconstruction ospasims for
lawful interception or inspecting past traffic from suspicious or comprethis
hosts to identify more malicious operations or sensitive data exposed to attack-
ers.

¢) Intrusion detection in past traffic, for training new signatures to eliminége fa
positives, for detecting past attacks that were using a recently disclabestv
ability, or for estimating the percentage of infected hosts.

8.2.2 Retention Study

We examine the operation of RRDtrace and compare its retention with other ap-
proaches by capturing and storing the traffic in the access link of an thohala
network. The average traffic load in the network is 178 Mbps with total ¢r&af2
TB/day on average. Assuming we have 2 TB available storggdould be set to
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FIGURE 8.13: Retention time and storage utilization for RRDtrace and other ap-
proaches with 2 TB of available storage.

12.5 hours in order to store all packets during this interval in 1 TB. Aftefior the
next 25 hours, 25% of these packets will be stored in 500 TB.

Figure8.13presents the retention and the corresponding storage used per day
for full-payload packet recording, headers-only recording (8@&byer packet),
when recording the first 500 packets per-flow and when using RR®&wihtg =
1 day andty = 3 days.

Since the daily traffic volume in the network is 1.92 TB, we can store all the
packets with full payload for 25 hours only in the 2 TB storage. When caygfu
and storing only 80 bytes per packet, 173.22 GB are required per tdayh vesults
to 11.55 days retention. Applying a per-flow cutoff is a more effective@ggh,
due to the heavy-tailed distribution of flow sizes. Using a cutoff of 500 g@&ck
per flow results to 107.76 GB/day stored and 18.56 days retention. A ciitb®0
packets per flow results to 67.86 GB/day and 29.47 days retention.

On the other hand, retention in RRDtrace can be arbitrary large. F&gu8e
shows the storage allocation in RRDtrace for the first 100 days using tfeoetit
values ofty. Fortg = 1 day, 1 TB will be used for the last day’s traffic, 15.6
GB/day for 8-15 days ago, 3.9 GB/day for 16—31 days and 976 MB/te3263
days ago. Selecting 976 MB from the total 1.92 TB daily traffic implies 0.05%
sampling rate. For one year ago, 15.3 MB/day traffic will be available, wbile f
two years ago traffic 7.65 MB/day will be stored. Whgn= 3 days, 333 GB/day
will be used for the three last days. For 10-20 days ago, 20.83 GB/diayew
stored, which implies 1.1% sampling rate. For one year ago, 81.4 MB/day traffi
will be stored in this case.
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8.2.3 Experimental Evaluation

To experimentally evaluate the usefulness of RRDtrace, we measure tira@cc
of several properties when running passive monitoring applicationgppiging
the different sampling strategies with decreasing sampling rates in a tracesalith r
traffic. Our evaluation has three main objectives: First, to compare RRDiviile
uniform and constant sampling when both approaches reduce equalliz¢hef
the trace. Moreover, we aim to study how the three different sampling gieate
with reducing sampling rates affect the accuracy on inferring traffidperties
from the RRDtrace. Finally, we examine how the accuracy is reducedste
retention time, as sampling rates are getting smaller, for different propentks a
sampling strategies.

We used an anonymized packet trace captured during one hour atcéssac
link that connects an educational network with thousands of hosts to threénte
The trace contains 73,162,723 packets, corresponding to 1,728,878 mliflews,
totalling about 46 GB in size.

In the first set of experiments, we compare RRDtrace with the three sampling
strategies which use constant sampling rate, when all the approaches tbeé
size of the trace to 10% of its original size, i.e.,40= 4.6 GB. Thus, we applied
to the original trace packet and flow sampling with 10% sampling rate andquer-fl
cutoff of 74 packets per flow, which all resulted to 10% of the originaldiasize.

In RRDtrace, we used as the most recent/20 interval of the trace. In this way,
RRDtrace assigned the half of the available stor&ge, to this interval, selecting

all the packets from it. The next two more recép0 intervals of the trace were
assigneds/4 storage, resulting to the selection of 25% of the packets during these
intervals. For the four next intervals, 6.25% sampling rate was perforametso
forth. We tried all the sampling strategies with RRDtrace and we preseritsresu
from the strategy that was found to perform better with each estimatedrprope
The produced trace was always close to 4.6 GB, 10% of the initial traizes s
We report the accuracy of each measured property separatelycfooéthel /20
intervals of the trace, to compare the different approaches with RRDtrace

For the second set of experiments, we applied packet sampling, flow sgmplin
and per-flow cutoff to the original trace using sampling rates from 1/#996,
resulting in multiple sampled traces. For packet and flow sampling, wherefsack
are selected in a random way, we produced 20 traces for each che® gmesent
the average values. Thus, for each sampling rate we created tracesetithtet-
egy. Settingty = 1 day, for each past day we plot the value inferred from the
traces with the corresponding sampling rate. For instah6#)96 sampling rate
corresponds to 64-127 days ago. In sampling rates bel@a6, the respective
per-flow cutoff becomes 1 packet per flow, which means that this stratagyot
be applied in very low sampling rates.

We first evaluate the accuracy on estimating flow statistics, like the original
flow size distribution and average flow size. Then, we examine the agcarmac
inferring the distribution of traffic and flows among the applications that ige¢ee
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them, using the Appmon toolP]. Snort NIDS [L24] was used to examine if the
percentage of hosts and flows that produce security alerts can bedhfesm the
sampled traces. The accuracy for each property is measured by cognfiee
value inferred from each sampled trace with the real value from the uhsdmp
trace. In the remaining of this section, we present the evaluation for eapbrty
separately.

Flow Size Distribution

Flow size distribution is a useful metric for traffic engineering, traffic éfacsdion,
anomaly detection techniques and for studying how network traffic clsamegr
the time. We examine the accuracy on inferring the average and mean flow size
and the original distribution of flow sizes using sampled traces.
Figure8.14compares the accuracy on the estimation of average flow size using
RRDtrace and sampling with constant rate for the reduction of the trace’'dcsiz
10% of its original size. RRDtrace used flow sampling, that is the best cFmice
inferring flow statistics, with adaptive sampling rate to retain more packets from
the first parts of the trace and result also to 10% of the original traces Becket
and flow sampling used 10% sampling rate, while 74 packets per-flow resolted
the same reduction in the trace’s size. We plot the accuracy of the aviimage
size estimation separately from the most recent to the dld# time interval of
the original trace, by comparing with the actual value from the respectieeval
in the unsampled trace.
During the most recent interval RRDtrace retains all the packets, thu9id# 1
accurate. For the next two intervals RRDtrace performs 25% flow samgiinig,
is more accurate than 10% flow sampling. In the next four intervals, RR®trac
uses 6.25% sampling rate and its accuracy remains close to 10% flow sampling.
Overall, compared with constant flow sampling, for the three more recentatger
RRDtrace is more accurate, for the next four intervals with similar accuaady
in the older intervals flow sampling outperforms RRDtrace from 5% up to mostly
20%. If we need to further reduce the storage size, e.g., to 1% of the arigin
size using RRDtrace and 1% sampling rate, RRDtrace will be more accurate fo
longer time period. When RRDtrace is used for live traffic recording, yimachic
storage re-assignment is the only way to retain data for arbitrary longdsesimce
sampling with constant rate will have limited retention using fixed-size storage.
Figure8.15compares the accuracy of the three different sampling strategies in
RRDtrace for estimating average flow size. Flow sampling is always morezsecu
than packet sampling and per-flow cutoff, which are not effectiveegjias for
the inference of flow sizes. Using flow sampling, average flow size israiy
estimated for a few days period. For the past two days, the estimation is 96.5%
accurate with sampling rate 25%. RRDtrace slightly overestimates the average
flow size, due to more possibilities for the selection of very large flows. F@r 4
days ago, the estimation is 94.7% accurate. RRDtrace tends to underestimate the
average flow size for lower sampling rates. Due to the heavy tailed distriboition
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flow sizes, there is a higher possibility for small flows to be randomly selected in
low sampling rates than large flows. Moreover, very large flows carmeelected

in low sampling rates due to the storage size limitation. Up to one month ago,
average flow size is estimated with 83.7% accuracy.

On the other hand, flow size distribution can be accurately estimated using flow
sampling with low sampling rates. Figu8el6shows the cumulative distribution
of flow sizes for packet and flow sampling withi64 sampling rate and for 5 pack-
ets per-flow cutoff. Packet sampling is not accurate, since many sma$i Hosv
completely lost. Per-flow cutoff strategy can estimate correctly the size o$ flow
up to 5 packets in this case, according to the cutoff limit. The rest of the flows
are considered with 5 packets size and there is no clue for their actuaFmxe
sampling is accurate even with4096 sampling rate. Thus, in flow size distribu-
tion property the accuracy does not depend on the sampling rate fordioplisg.
Flow sampling and per-flow cutoff estimate correctly the mean flow size, that is 2
packets per flow, while packet sampling incorrectly estimate it as one ppeket
flow.
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While per-flow cutoff cannot accurately estimate the flow sizes, it acdyrate
estimates the actual number of flows, since it retains at least one pamket&ch
flow. Our flow sampling strategy can provide a less accurate estimation of the
actual number of flows. If we had chosen to select exactty M flows from an
interval with M total flows for a sampling rate we could infer the actual number
of flows by multiplying with s the flows found in the sampled trace. Since this
strategy does not always reduce the storage,lwe chose to select the number
of flows with the desirable reduction in storage. Even so, we observéothiaigh
sampling rates the chosen flow sampling strategy selects about/ flows, so it
can infer the actual number of flows. For low rates, it tends to select mare th
s x M flows and thus overestimates the actual number of flows up to two times in
1/4096 sampling rate.

Per-Application Traffic Classification

The next property we examine is the classification of network traffic amesfto

the applications that generate them. We aim to infer the percentage of tradfic a
flows that each application contributes to the total traffic and flows in the metwo
For these measurements we ran Appmon with our sampled traces. Appman class
fies flows and traffic into applications using both port-based classificatiddeep
packet inspection to identify peer-to-peer and multimedia applications thattise
namically allocated port numbers, based on application specific signatkogs.
instance, Web traffic is all the packets from/to port 80, except from-fpepeer
packets masqueraded as Web packets. A flow is classified as BitToowentlflen

a packet of the flow, usually the first, contains a BitTorrent protocotifipestring.
Specifically, the Peer Wire Protocol in BitTorrent establishes a handsisikg
well known keywords in the first packets. BitTorrent traffic is all thekkmds that
belong to a flow classified as BitTorrent. We present the results for the tvgd mo
popular applications found in the trace, Web and BitTorrent.

In Figures8.17and 8.20we compare the accuracy of RRDtrace with the accu-
racy of 10% packet and flow sampling and 74 packets per-flow cutatmating
the percentages of Web and BitTorrent traffic respectively. In ch¥déeb traffic
percentage, packet sampling is clearly the most accurate strategy, daeimte
port-based classification. However, packet sampling significantlytaffiee detec-
tion of BitTorrent traffic, so flow sampling is the most accurate approachisn th
case. Comparing RRDtrace with constant 10% flow sampling in FigL2@ we
observe the effect of sampling rate adaptation in RRDtrace algorithm. Firdes
most recent intervals RRDtrace is clearly more accurate, for the nexinfieuvals
almost equal and for the rest of the trace provides less but closeaagaaompared
with constant flow sampling.

Figures8.18and 8.21compare the different sampling strategies across the re-
tention time for Web and BitTorrent traffic percentage estimation respectiidy
observe that packet sampling provides very accurate estimates of th&raffieb
percentage regardless of how old the data are, i.e., how low the samplirig.rate
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Thus, packet sampling fits well with the simple port-based traffic classification
However, packet sampling cannot estimate accurately the percentag&afé&ht
traffic even for recent traffic with higher sampling rates. This is becpasket
sampling affects significantly the detection of a BitTorrent flow. Since pgacke
are randomly selected, the packet which contains the BitTorrent keywaydbe
missed. As a consequence, all the selected packets from this flow wik roded&si-
fied as BitTorrent packets, leading to significant error in the estimationigracy.

On the other hand, flow sampling is the most accurate approach for estimating

the percentage of BitTorrent traffic. In flow sampling, all packets froselacted
flow are present, so the flow-based classification process is noteaffethus, it

can estimate the percentage of BitTorrent traffic till 30 days ago with more than

87% accuracy. For the same period, it can estimate the Web traffic payeemta
accuracy 98.75%. The decreasing sampling rates affect the acairtay sam-
pling. While it has good accuracy up to 30 days ago, for older time perioelsds
to overestimate Web traffic and underestimate the BitTorrent traffic pegmnta

The third packet selection strategy, based on a per-flow cutoff, taecount
correctly the percentage of traffic for each application. While most of féar
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can be successfully classified by the first packets of the flow, the @affefits non-
uniformly the traffic volume stored from each application. For instance, Bitho
has usually large flows which are highly affected from the cutoff, reguliinan
underestimation of the BitTorrent traffic percentage, as we observe ume8g21
On the other hand, Web flows are typically smaller and thus less affectéihdea
to an overestimation of Web traffic.

However, per-flow cutoff can accurately estimate the number of Web &nd B
Torrent flows, even if it cannot infer the correct percentages theetotal traffic.
Even with one packet per flow, BitTorrent flows can be usually detected-
ure 8.19 shows the percentage of Web flows and Fig8r22 the percentage of
BitTorrent flows out of the flows that were successfully classified. W&eove that
both flow sampling and per-flow cutoff can accurately estimate the pereentag
flows for each application for arbitrary low sampling rates, with flow samplimg b
slightly more accurate. While packet sampling can estimate successfully the Web
traffic percentage, it cannot estimate correctly the number of Web flows.
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Estimation of Malicious Population

Network traffic stored in sampled traces can provide some information ghstit
networking attacks, suspicious activities and malicious hosts. Insteadiiog try
to infer the actual attacks that happened in the past, we focus on estimating the
percentage of hosts and flows that generates security alerts and hperttéatage
changes over the time. We ran Snort NIDS in the unsampled and samplesl trace
with each sampling strategy and sampling rate, aiming to measure the accuracy
on estimating these percentages. We consider the source IP addifgsaekets
that produce Snort alerts as malicious hosts. The percentage of maliostissh
estimated by dividing the number of unique malicious hosts with the total number
of hosts that are present in each sampled trace. We also ran Snort wigdltleed
trace in 10% of its original size with RRDtrace and constant sampling tectsique
and compare their accuracy on the estimated percentage of malicious hosts.

We observe that with a per-flow cutoff of 74 packets, 84% of the alerts\ibiee
triggered in the original trace are also detected. For security applicaierfipw
cutoff is a good choice for data reduction since a large class of attackteisteld in
the beginning of the flows. For instance, network service probes, funte login
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attempts and code-injection attacks usually appear in the first few hunackdtp
of a network flow. Moreover, due to the heavy tailed distribution of flowsitee
74-packet per-flow cutoff affects only 1.6% of the flows that contrilnest of the
traffic, resulting to a reduction rate of 90%.

Figure 8.23 presents the results for the reduced trace. Per-flow cutoff strat-
egy has the best accuracy in estimation of the malicious host percentadet Pa
sampling has better accuracy than flow sampling on the malicious host estimation.
Using the trace sampled with 10% packet sampling, Snort finds significantly mor
attacks than with the trace produced with 10% flow sampling, 18% and 3% of the
actual alerts respectively. Per-flow cutoff strategy retains all the hloatsvere
present in the original trace, while packet sampling only a subset of thérs%).
Thus, the accuracy of the malicious hosts percentage in case of paokairg is
close to the accuracy when using the per-flow cutoff.

Flow sampling is not a good choice for this property. Therefore, for etitigna
the malicious hosts percentage we use the per-flow cutoff strategy with RE&Dtr
which dynamically adapts the cutoff to store more packets per flow for tremtec
time intervals. In the three more recent intervals RRDtrace has 100% agcura
since the cutoff of 2754 packets per flow that is applied in second andithird
tervals does not affect the malicious hosts detection. After the seventlaiyter
the accuracy of RRDtrace with per-flow cutoff degrades significantigesthe 5
packets per flow cutoff results to less malicious hosts be detected.

Figure8.24shows the effect of sampling rates on each strategy when estimat-
ing the percentage of malicious hosts. Per-flow cutoff is very accuraté days
ago and has reasonable accuracy till 15 days in the past. For older, tiedflower
sampling rates affect significantly its accuracy, leading to underestimation-of ma
licious hosts percentage. This happens because this strategy retairestaikth
in the trace but less packets from each one, so less attacks and malicgsis ho
will be detected at lower sampling rates, resulting to a reduced perce@adhbe
other hand, packet sampling overestimates the percentage of malicioughasts
its accuracy is not affected by decreasing sampling rates. With the redwdtio
sampling rate, both the number of detected malicious hosts and the number of total
hosts in the sampled trace are reduced. Therefore, while per-flowf @utabre
accurate at high sampling rates, at lower sampling rates packet samphndgsro
best accuracy and should be preferred.

Figure8.25presents the percentage of flows that trigger alerts in Snort out of
the total flows found in the sampled traces. As we expected, per-flonf quitaf
vides the most accurate estimations for the last 15 days, but for older tinoeper
it degrades significantly. All the sampling strategies are highly affectedéyeth
ducing sampling rates in this case. With packet sampling Snort finds a eddson
number of alerts and malicious flows, but the total number of flows found in the
sampled trace is not proportional with the sampling rate. While flow sampling
selects the proper amount of flows, less alerts are found in the proditzmes
compared with packet sampling and the percentage of malicious flows isasader
timated.
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8.2.4 Summary

Recording raw network traffic for long-term periods is extremely usfeiuh mul-
titude of monitoring and security applications, such as troubleshooting rietwor
problems, studying the Internet evolution, postmortem forensics analysiesan
timating the malicious population over time. The high volumes of network traffic
highlight the need for data reduction and optimized traffic storage systerttss|
paper we present RRDtrace, a technigue that enables storing rawkemeokets

in fixed-size disk space for arbitrary long periods, while retaining motailde
information for most recent traffic. RRDtrace dynamically reduces stospace

as traffic ages using three alternative sampling strategies: packet saniipling
sampling, and per-flow cutoff.

We experimentally evaluated RRDtrace with each sampling strategy by mea-
suring the accuracy of flow size distribution estimation, traffic classificatiad,
malicious hosts detection across the retention period using real trafficm@iar
findings are the following:

1. When RRDtrace is used offline to reduce the size of a trace, it provides
higher accuracy for the most recent part and the same accuracyefoedt
compared to constant sampling that has the same effect in trace size. When
RRDtrace is used for live recording, it can store packets for arbitoary
periods based on the dynamic storage reduction, while constant sampling
has limited retention.

2. Some properties can be accurately inferred regardless of how dichifie
is, i.e., using arbitrary low sampling rates. Such properties include flow size
distribution using flow sampling, the percentage of Web and BitTorrent flows
using flow sampling or a per-flow cutoff, and the percentage of Webdaraffi
using packet sampling.

3. In contrast, other properties are highly affected by sampling rateamte
accurately inferred only in recent periods. Such properties includege
flow size, percentage of BitTorrent traffic, and percentage of host$lews
that trigger security alerts.

4. Flow sampling is overall the most robust technique for flow statistics and
traffic classification inference, but it performs poorly in estimation of mali-
cious population.

5. Per-flow cutoff strategy can estimate the actual number of flows andtdete
more attacks. However, it is not able to infer flow size and cannot be used
with low sampling rates, as the cutoff reaches rapidly to one packet per flow
and cannot be further reduced.

6. Packet sampling can estimate very accurately the percentage of Wb traf
but not BitTorrent traffic, as it highly affects the corresponding daiac
algorithm. Moreover, it cannot estimate correctly any flow statistics.
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7. To estimate the percentage of malicious hosts, per-flow cutoff is more ac-
curate for recent time intervals, while packet sampling is more accurate for
older time intervals with low sampling rates.
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Conclusions

9.1 Summary

In this dissertation we explored the problems that arise when building netwdrk
fic monitoring systems under heavy load. We showed the need to improwe-perf
mance and robustness of monitoring systems in a generic way transparemntly f
the applications. More specifically, we showed that we need to improve memory
access locality to achieve better performance (Chapter 4), the necessityef-
load control mechanisms in network monitoring systems (Chapter 5), anuodsfe
against overload attacks (Chapter 6). Moreover, we demonstrate@¢delm use
the proper abstractions in network monitoring frameworks for improvetbper
mance and expressiveness (Chapter 7). Finally, we showed that sipgtaicahes
can be used for two other applications (Chapter 8): reducing the detéatigmty

in energy-efficient NIDS and long-term traffic recording.

Towards all these goals, we followed the approach of amplifying the @ore ¢
ponents of a network monitoring system with intelligence based on transpert-la
information. We demonstrated that such intelligence can improve code and data
memory locality, provide efficient overload control mechanisms, reduceetez-
tion latency of NIDS, and lead to overall improvements in performance acut ac
racy of monitoring applications. Moreover, we rely on abstractions dérfvom
transport-layer to build new frameworks that facilitate the development ofgeme
ing network monitoring applications with high performance under heavy load.

The main contributions of this work are the new techniques we proposed for
efficient traffic monitoring under heavy load. We designed and implemenéseé th
techniques, either within existing libraries or by introducing new framewankd
we evaluated their efficiency while exploring their main properties and existing
tradeoffs.

167
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First, we studied memaory locality in network monitoring applications and we
proposedocality bufferingto improve code and data locality, reduce L2 cache
misses, and improve performance in a transparent way to the applicatioastéC
4). Then, we focused on overload control. We propassldctive packet discard-
ing technique to gracefully adapt to overload conditions by pro-activelhadikiog
the less important packets for NIDS, which are the packets towards thod Emde
flows (Chapter 5). To tolerate overload attacks, such as algorithmic coitypbex
denial of service attacks, we proposatective packet paging two-layer memory
management system to store excess packets in secondary storage,systems
panied with a randomization-based approach to detect crafted packeksajthe
monitoring system (Chapter 6).

To enable the development of efficient network monitoring at the transport
layer and beyond, we proposed SBieeam capture library (ScagChapter 7). Scap
delivers reassembled transport-layer streams and an expressivierAfRleam-
oriented traffic analysis based on the Stream abstraction. It also affensety of
features, such as stream truncation at kernel or NIC level (suloogng, priori-
tized packet loss, best-effort stream reassembly, and inhererdarsépmulticore
architectures.

We also applied similar ideas to solve two other problems in network moni-
toring systems (Chapter 8). First, we exposed the energy-latency fir&uléo
trusion detection systems: as we reduce power consumption with state-arftthe
approaches, such as frequency scaling and core deactivatiomtiweda signifi-
cant increase in the detection latency. We showed that this impedes a timely auto-
matic reaction to the incoming attacks, e.g., using an active response to terminate
offending TCP connections. To resolve the energy-latency tradeeffiresented
LEONIDS: a low-latency and low-energy NIDS. Low energy is achicvedtate-
of-the-art power management techniques tailored for NIDS, while lomdigtées
achieved by assigning priorities to the captured packets (Section 8.1)s3ma
higher priority to the packets that are more likely to contain an attack, which are
the few first packets of each flow, and we showed that using dedicated to
process these high-priority packetpéce sharingis more efficient that using a
typical priority queue per each corénie sharing.

Finally, we presented a new technique for archiving network traffiddog-
term periods using fixed-size storage (Section 8.2). This techniqued CR®-
trace, is based otraffic agingidea: we keep more traffic for recent time intervals,
and we reduce the traffic that remains on disk as it gets older. To seleli¢isma
representative samples as time passes, we explored different samaiegiss:
packet sampling, flow sampling, and flow size cutoff. In packet and feonpting,
we randomly select packets or flows that will be retained, based on thdisgmp
rate. In flow size cutoff, we keep less bytes per each flow as the floantes
older. We studied the effect of these strategies on the accuracy of conetwork
monitoring applications, and we found that the best strategy depends apiilie
cation’s needs: while some applications need to retain less bytes for moss flow
other applications need to retain more bytes for less flows.
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Our work resulted in several prototype implementations: (i) a modified libpcap
with locality buffering, (ii) a Snort preprocessor with selective packstarding,

(iif) a modified libpcap with selective packet paging, (iv) the Stream capiure
brary (Scap) for stream-oriented traffic capture and analysis, ¢orgses a kernel
module, a user-level library, and few sample applications, (v) a nevekerodule,

a modified libpcap, and modifications into the Snort NIDS for an energgiefii
NIDS with low detection latency, and (vi) the RRDtrace tool for long-term net-
work traffic recording. We used these prototype implementations for enpetal
evaluation in our studies. Moreover, we plan to release the libraries atsdweo
developed or modified so that they can be used by researchers orkepeoators
interested in efficient network traffic monitoring.

Our experimental evaluation results showed that the techniques we ptopos
and their prototype implementations are able to improve the efficiency of network
traffic monitoring systems, offering effective overload control mechmasiand tol-
erance against sophisticated evasion attempts and overload attackevéftovee
showed improved memory locality and improved energy-efficiency withdetaf
ing other important performance metrics like throughput and latency.

9.2 Future Work

We believe that as network traffic and Internet applications become monglex,

with an increasing number of security incidents, we will need more effengte
work monitoring to ensure the correct and secure operation of todagi'$uaure
networks. As network traffic volume increases, monitoring applicationsrhec
more complex, and attackers more sophisticated, we will always need to ienprov
the existing network monitoring frameworks, which should also adapt to te ne
needs of the monitoring applications and utilize advances in commodity hardware
Towards this need, we believe that our work contributes to improve thedtébe-

art in network monitoring research directions we explored in this dissertatisn
this area is rapidly evolving, due to the dynamic nature of the Internet trafiic
plications, and attacks, along with the frequent advances in commodity aerdw
such efforts should be continued in the future.

There are several directions that can be explored as part of fututeiwthe
area of network monitoring and security. To improve the performance fiind e
ciency of network monitoring systems, routing-assisted techniques caevié d
oped. For instance, adding intelligence into a router for selectively foling
only the most interesting traffic for network monitoring or security analysis (e
the first few bytes of each flow) to a passive monitoring system may impreve th
overall performance of the network.

Moreover, recent advances in Software-Defined Networking (S&md) the
use of OpenFlow switches can be explored to improve network monitoring sys
tems. For instance, network monitoring can benefit from SDN by collecting ne
sources of monitoring data from OpenFlow switches. Another directioll d@to
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dynamically route the network traffic using SDN principles in a way that itg®ss
through the proper network monitoring sensors or intrusion detectionmnsyses-
suring correct traffic inspection and avoid overloaded monitoring systemother
middleboxes. Also, SDN applications may benefit from network monitoring data
and applications as well. For instance, getting input data from monitoringeprob
may help an SDN routing architecture to make the proper routing decisions, Th
coupling SDN with network monitoring systems may be helpful for both worlds.

In future work, we could also explore additional directions related to oox p
posed techniques. We can exploit the memory access locality we obsertbésl in
work for more efficient traffic processing in multicore processors. évepecifi-
cally, we can improve the performance of multicore systems by splitting the traffic
in a way that related packets (not only packets belonging to the same tionjec
will be scheduled for processing by the same core. For example, pde{etsy-
ing to the same high-level application and will result in a similar processing by
the monitoring application can be processed by the same core to exploit memory
locality and optimize performance.

Moreover, we can integrate our proposed techniques with other apfE®a
such as zero copy APIs and other high-performance packet captdrgrocessing
systems, to combine their performance benefits. We can also use selectet p
paging with faster disk systems (e.g., SSD disks, RAID or other very tfastge
systems) for improved performance, and utilize other advances in starege

Similarly, we can implement the RRDtrace tool with indexing approaches for
faster query responses and optimized storage systems to improve thehfiubug
that packets are stored to disk. Among the future work with RRDtrace will be to
find an implement a single sampling strategy to reduce data based on traffic agin
Also, our future work may include building real-world applications usingoSca

To improve the query response times for retrospective analysis in netvabrk
fic recording systems, more sophisticated indexing techniques can be atesign
and implemented. Moreover, exploiting locality can also significantly improve
the query response times of traffic recording systems: by properlsareang the
packet stream before writing packets to disk we can place related pasketh
may be accessed by the same queries, in adjacent positions in disk. Thidiskay
accesses can be localized so that the typically low disk access speesl signif
icantly increased. Especially when this packet reordering is combined adtep
indexing techniques, the disk accesses can be localized to a specititthartlisk,
where most packet matching the same query can be found, while the largef p
the trace will not be read. Such locality can be achieved with some knowledge
about the common queries, e.g., based on common header fields or application
protocols. Thus, packets can be sorted before they are stored inadisl bn this
fields.

In future work, we can also explore how we can leverage the receabads in
cloud computing to improve network traffic monitoring. Cheap processingpow
and storage offered by cloud providers today might be utilized by monitauilg
security systems to move network traffic processing and storage towstuslsud
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systems. Moreover, the popularity of cloud computing in a multitude of applica-
tions today require to build network monitoring systems tailored for cloud comput-
ing systems and applications. Our proposed ideas could be utilized in sueh clo
network monitoring systems as well, due to the heavy traffic load in data centers
Thus, selective packet processing approaches can reduce tlendas the same
time improve the performance and accuracy in such environments. Moyem/e
suggest to develop overload control mechanisms and defenses agsioneat-
tempts and overload denial of service attacks. Especially when netwdiik tra
may be transfered from a monitoring sensor to another processing uaitdaal

or remote network), in a distributed network monitoring system, a selectiv&éran

of the captured traffic will reduce the bandwidth overhead as well.

Finally, a big challenge in network traffic monitoring and network security sys
tems today is the inspection and analysis of encrypted traffic. Applicaticoqmis
using encryption, like HTTPS, become increasingly popular in the Int¢odety.
Although this increase significantly the security of the end users and @& Hygsi-
cations, encryption may be also employed by malicious users and malicious soft-
ware to hide their activities and avoid detection by network-level secursigsys.
This poses significant challenges to network monitoring systems and NH2ge-T
fore, these systems need to evolve and develop new analysis techniquiesdss
this issue. For instance, behavioral analysis using machine learninggeeblican
be combined with traditional signature-based traffic inspection to recogratie
cious or other interesting activities in the encrypted network packets,lassify
them into their respective high-level applications. Another alternative isptogt
SSL proxies in networks that need to inspect the unencrypted SSL ketratiic
for security or other important purposes. This way, traffic will not bergpted at
the monitoring system, which has also an SSL proxy, but it will be encrypted in
the rest of the network path. However, the deployment of such SSligsr¢s<not
always possible, while SSL traffic is a (popular) subset of the existicgypted
traffic in the Internet.
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