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Abstract

Exploitation of software becomes more and more common, as computer systems span
across many areas of our lives. Over the recent years, attacks on software become more
sophisticated. Deployed countermeasures tend to not provide sufficient protection. Effec-
tive countermeasures require thorough checks which are computantionally expensive.

One such countermeasure is Control-Flow Integrity (CFI); a policy developed to de-
fend against Control-flow hijacking, the principal method for code-reuse techniques like
Return-oriented Programming (ROP) and Jump-oriented Programming (JOP). The com-
munity proposed CFI, a technique capable of preventing exploitation by verifying that
every (indirect) control-flow transfer points to a legitimate address. Enabling CFI in real
world systems is not straightforward, since in many cases the actual Control-flow Graph
(CFG) of a program can be only approximated. Even in the case that there is perfect
knowledge of the CFG, ensuring that all return instructions will return to their actual call
sites, without employing a shadow stack, is questionable. On the other hand, the commu-
nity has expressed concerns related to significant overheads stemming from deploying a
shadow stack.

In this work we acknowledge the importance of pushing security in the hardware do-
main, in order to strengthen and accelerate security mechanisms. We project, that imple-
menting a full-featured CFI-enabled Instruction Set Architecture (ISA) in actual hardware
with an in-chip secure memory can be efficiently carried out and the prototype experiences
negligible overheads. For supporting our case, we implement Control-Flow Integrity Ex-
tensions (CFIX) by modifying a SPARC SoC and evaluate the prototype on an FPGA
board by running SPECInt benchmarks instrumented with a fine-grained CFI policy. The
evaluation shows that CFIX can effectively protect applications from code-reuse attacks,
while adding less than 1% runtime overhead and 2% power consumption overhead, mak-
ing it particularly suitable for embedded systems.





Περίληψη

Η κακόβουλη εκμετάλλευση λογισμικού γίνεται ολοένα και ποιο συχνή, με την

εξάπλωση των υπολογιστικών συστημάτων στην καθημερινότητά μας. Τα τελευταία

χρόνια, οι επιθέσεις στο λογισμικό γίνονται ποιο εξελιγμένες. Τα αντίμετρα που

υπάρχουν στα υπολογιστικά συστήματα, τείνουν να μην προφέρουν αρκετή προστασία.

Τα ισχυρά αντίμετρα απαιτούν ενδελεχής ελέγχους που είναι υπολογιστικά ακριβοί.

΄Ενα ικανό αντίμετρο είναι η Ακεραιότητα Ροής Εκτέλεσης (CFI). Είναι μια πο-
λιτική που αναπτύχθηκε έτσι ώστε να προστατεύει το λογισμικό από επιθέσεις που

αλλοιώνουν τη ροή εκτέλεσής του, τη κύρια μέθοδο για επίτευξη τεχνικών επαναχρη-

σιμοποίησης κώδικα, όπως επιστρεφόμενου προγραμματισμού (ROP) και προγραμμα-
τισμού με άλματα (JOP). Η ερευνητική κοινότητα πρότεινε αυτή την τεχνική, ως ικανή
να αποτρέπει τις επιθέσεις αυτές, με το να ελέγχει ότι κάθε αλλαγή στη ροή εκτέλεσης

ενός προγράμματος και προέρχεται από υπολογισμό της νέας διεύθυνσης, καταλήγει

σε σωστή διεύθυνση. Η επέκταση συστημάτων με CFI δεν είναι μια ξεκάθαρη διαδι-
κασία, καθώς ο Γράφος ροής ενός προγράμματος δεν μπορεί να καθοριστεί πάντα με

ακρίβεια. Ακόμα και σε περιπτώσεις που ο Γράφος ροής είναι πλήρως καθορισμένος,

ο ακριβής έλεγχος ότι οι εντολείς επιστροφής γυρνάνε στη διεύθυνση από όπου έγινε

η κλήση, χωρίς τη χρήση μιας προστατευόμενης στοίβας είναι αμφισβητούμενη. ΄Ο-

μως, η ερευνητική κοινότητα αποφεύγει τη χρήση προστατευόμενης στοίβας λόγο της

επιβράδυνσης που επιφέρει.

Σε αυτή τη δουλειά αναγνωρίζουμε τη σημαντικότητα της υλοποίησης μηχανισμών

ασφαλείας σε επίπεδο υλικού με σκοπό την ενίσχυση και επιτάχυνσή τους. Δείχνουμε,

ότι η υλοποίηση μιας αρχιτεκτονικής με εντολές CFI στο υλικό μαζί με προστατευ-
όμενη μνήμη μέσα στον επεξεργαστή είναι εφικτή και το πρωτότυπο είχε ελάχιστη

επιβράδυνση. Για να υποστηρίξουμε την ιδέα μας, υλοποιήσαμε τις Επεκτάσεις Ελέγ-

χου Ροής Εκτέλεσης (CFIX), τροποποιώντας ένα σύστημα SPARC και αξιολογήσαμε
το πρωτότυπο σε πλακέτα FPGA με το να τρέξουμε SPECint προγράμματα μέτρησης
επιδόσεων που είχαν εντολές για λεπτομερή έλεγχο ακεραιότητας ροής. Η αξιολόγη-

ση έδειξε ότι τα CFIX μπορούν να προστατεύσουν αποτελεσματικά τις εφαρμογές από
επιθέσεις επαναχρησιμοποίησης κώδικα και παράλληλα επιβραδύνουν το σύστημα κατά

1% και αυξάνουν την κατανάλωση ενέργειας κατά 2%, καθιστώντας το σύστημα μας

ιδανικό για ενσωματωμένα συστήματα.
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Chapter 1

Introduction

The current technology trend of introducing smart computing capabilities to every day
electronic devices, renders our society more vulnerable than ever before to software ex-
ploitation. Since many systems are entirely software controlled, they must be protected
from adversaries, otherwise the dangers can be very serious. Exploitation of modern
software is undoubtedly still possible, despite many mitigation techniques that have been
enabled in production systems. More than a decade ago, exploiting software was as easy
as just simply smashing the stack [2]. An attacker could fill a vulnerable buffer located in
the stack with their code, write past the buffer smashing the stack, and changing the return
address (of the current stack frame) to point back to their code. Today, this is not possible
anymore due to non-executable data protection (DEP) [3], but attackers can still exploit
software. Advanced exploitation techniques, based on code reuse, commonly known as
Return-Oriented Programming (ROP) [4] and Jump-Oriented Programming (JOP) [5],
are so powerful that can potentially take advantage of any vulnerability and transform
it to a fully functional exploit. These techniques do not introduce new code, but new
functionality in the vulnerable program. Attackers re-use existing parts of the program
and build exploits that can work even when DEP is in place. Code randomization tech-
niques [6, 7, 8, 9] attempt to make code reuse harder by shuffling the location of the code
to be reused, but it has been demonstrated that even a simple information leak can reveal
all of the process’ layout and essentially bypass any randomization scheme [10].

Instead of hiding the code, another potential avenue for stopping exploits is to prevent
new functionality from executing. One promising direction is based on the observation
that modern exploits introduce control-flows that are not part of the program’s Control-
flow Graph (CFG). Control-flow Integrity (CFI) [11] suggests that a running program
should exhibit only the control-flows that are part of the program’s original CFG as ex-
pressed by its source code. Essentially, CFI mandates that any indirect branch should
not be possible to target the address of any instruction in the program, but rather be con-
strained in an allowable set of addresses that have been a priori determined. For example,
consider that in principle a return instruction should be only able to transfer control to the
call site responsible for the associated function call.

CFI, although powerful, still has two open issues related to accuracy and performance.
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2 CHAPTER 1. INTRODUCTION

As far as accuracy is concerned, it is not always easy to compute the program’s CFG. This
is mainly because the source code might not be always available, dynamic code might be
introduced at run-time [12], and heavy use of function pointers can lead to inconclusive
target resolution. This problem has led researchers to develop CFI techniques that are
based on a relaxed approximation of the CFG [13], also known as coarse-grained CFI.
Unfortunately, coarse-grained CFI has been demonstrated to exhibit weak security guar-
antees and it is today well established that it can be bypassed [14]. Approximation of the
ideal CFG through code analysis is not always sound, therefore, at least for protecting
backward edges, the community has suggested shadow stacks [15] - secure memory that
stores all return address during function calls. Many research efforts have stressed that
shadow stacks are important for securing programs, even when we know the program’s
CFG with high accuracy. As was recently demonstrated even an ideal CFI implementa-
tion, without the use of a shadow stack, is vulnerable [16, 17]. A trivial case is when a
function (e.g., memcmp) is called by multiple places in the program. According to the
CFG, all return locations are legitimate, however only one is actually correct. This, es-
sentially allows the attacker to be flexible in creating chains of call-preceded gadgets for
finally exploiting the program. It is thus vital for any CFI implementation to employ a
shadow stack.

In this work, we acknowledge the enhanced security guarantees and performance
boost of hardware implemented security mechanisms. In order to support this acknowl-
edgement we used CFI as the reference use case. CFI is an interesting concept and an
active research field in systems security. Although we still lack of a perfect defense
policy against all exploits, the community actively seeks new algorithms for realizing
CFI flavors. We explore CFI in the context of a hardware implementation. By extend-
ing a pre-existing Instruction Set Architecture(ISA) with new instructions dedicated for
CFI, and deploying shadow memory inside the processor core, we created CFIX, a full-
featured hardware implementation of CFI. We further attempt to quantify the performance
overhead of CFI and demonstrate that the technique can be applied to real systems with
practically negligible overhead. We evaluate the prototype on an FPGA board by run-
ning SPECInt benchmarks instrumented with the additional CFI-related instructions. The
evaluation shows that CFIX can effectively protect applications from code-reuse attacks,
while adding less than 1% runtime overhead.

Compared to similar hardware implementations, such as HAFIX [18], CFIX is (i)
complete, since it protects both forward and backward edges, (ii) faster, since the expe-
rienced overhead is on average less than 1%, and (iii) more accurate, since it employs a
full-functional shadow stack implemented inside the core. Especially, as far as shadow
memory is concerned, CFIX uses a novel system for supporting multiple recursive calls.
Each time a return address is to be saved in the secure memory it is checked with the
top of the shadow stack and if the address is matched, indicating there is a recursive call,
no additional memory is wasted. This dramatically simplifies the design and reduces the
space requirements, but implies that a recursive call can return to its call site immedi-
ately from any depth, thus violating a perfect CFI policy. However, we anticipate that
this policy relaxation has not severe security implications, since system calls and sensi-
tive functions are not recursive and they do not call recursive functions (i.e., hijacking a
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recursive function called by a sensitive system call for jumping to the sensitive call site
is not possible). Furthermore, in terms of completeness, we argue that CFIX is the most
rich hardware implementation of CFI so far, supporting many problematic cases (such as
setjmp/longjmp), which we discuss thoroughly in Section 4.

As new exploit mitigation techniques and technologies arise, attack methods become
more and more sophisticated, in order to work around or through them. Proposals for
defence are implemented only if they don’t hinder performance or functionality, and those
already in place rarely offer the security they envisioned. This effectively creates an arms
race in which, since new fine grained defence mechanisms are harder to deploy due to
excessive runtime overhead and incompatibility with legacy software, the offensive party
has the advantage.

1.1 Code injection

Code injection is the exploitation of a system’s vulnerability, usually caused by the er-
roneous handling of input data. Code injections can occur in many different types of
applications. For example, in SQL applications text with malicious SQL commands are
inserted in the input fields and due to the absence of input sanitization checks, an attacker
can modify or read sensitive data from a database. In other cases, adversaries can com-
promise servers by injecting server scripting code. A common example in php is the use
of eval function without proper validation of the input can offer an attacker the ability
to execute arbitrary code, even system commands, with the same permission as the target
web service. In application binaries, low-level code injection can be achieved when buffer
overflow vulnerabilities are present in the application’s code. During a buffer overflow,
a program writes data to a buffer, overruns the boundaries allocated for the buffer and
overwrites contiguous memory areas. This behaviour is a well-known security exploit.
By sending specially crafted data to the system it is possible to overwrite code sections
with malicious code, hijacking the system’s functionality. Another method is to write
malicious code and direct the execution to it. This can happen by overwriting a return
address with the address where the buffer holding the malicious code begins. Since the
return and data buffers both reside in the stack a buffer overflow can overwrite the return
address with the address the adversary desires. Stack canaries [19] is a technology, used to
detect modifications to the stack by placing a unique label before any sensitive data, like
the return address, but an attacker can easily bypass this security feature by overwriting
it bit by bit and observing the results. In this work, we focus on defending against buffer
overflow related exploits.

1.1.1 Modern defences

In modern systems such attacks are not effective, since several counter measures prevent
the execution of injected code. Most operating systems are configured with W⊕X policy.
Thus, any attempt to direct the execution on a page with data will result in General Pro-
tection Fault (GPF). Respectively, the same will happen if due to a buffer overflow a store
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operation targets an address inside a page containing code. Many modern processors sup-
port a feature called No Execute (NX), which system software utilizes in order to mark
pages containing the stack and heap as non-executable.

1.2 Code Reuse

Since Data Execution Prevention arrests the execution of injected malicious code, mod-
ern attacks do not depend on injecting malicious code and transferring execution to it.
As a result, attackers sifted the focus to using code already present in executable address
spaces for their nefarious purposes. Code reuse describes a class of sophisticated security
exploits. Herein, an attacker who can overwrite the stack, heap or both of an application,
identifies small pieces of code succeeded with indirect branch instructions (e.g. indirect
calls and returns) in order chain this pieces and form a full fledged exploit. For example,
Return-oriented programming (ROP) is a technique that focuses on hijacking the control-
flow of the target program in order to force it outside the normal instruction execution
sequence. It affects many common used processor architectures including x86, ARM [20]
and SPARC [21] It’s a more advanced version of stack-smashing, in that it utilizes vul-
nerabilities that modify the stack in order to overwrite the return addresses stored within.
The new return addresses are then used to change the control-flow of the executable to the
attacker’s desired path1.1.

Since the attacker now has control over the stack, and subsequently the return ad-
dresses, he can jump to any executable memory in the program’s address space. The
logical next step is to identify the code that he wants to run and set the return address
to point to it. The identified pieces of code are called gadgets. Jump-oriented program-
ming (JOP) relies on the same core idea as ROP, but instead gadgets are chained through
overwriting function pointers.

1.2.1 Gadgets

Gadgets are small sequences of instructions that typically end with a return instruction.
They provide a plethora of functionalities like pushing items to the stack from certain
registers, executing arithmetic and logical operations, performing memory operations,
etc. They can be used by the attacker to achieve a desired functionality, like setting the
environment to execute a call to a certain function.

The attacker chains these gadgets together by pushing the address of each to the stack,
through a stack related vulnerability like a buffer overflow. Since gadgets end with a return
instruction, at the end of its execution, a gadget will jump to the next address pushed to
the stack. The attacker can identify what functionality a gadget will provide either by
disassembling the program, or, if the binary is not available for analysis, by observing
the effects each gadget has on the stack and the control-flow in general, as demonstrated
by Bittau et al. in Hacking Blind[22]. In CISC processors, gadgets are more common,
since the attacker can point execution to any byte of an instruction, hence causing the
interpretation of an instruction to shift away from its original functionality.
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0xb8800000

0x00000001

0xb8800010

0x00000002

0xb8800020

0xb8800010

0x00400000

0xb8800030

Stack Code

0xb8800000:

pop eax

ret

...

0xb8800010:

pop ebx

ret

...

0xb8800020:

add eax, ebx

ret

...

0xb8800030:

mov [ebx], eax

ret

esp

Actions

eax = 1

ebx = 2

eax += ebx

ebx = 0x400000

*ebx = eax

Figure 1.1: Example of how a ROP attack is launched, in the stack has been overwritten
in order to chain the gadgets (by overwriting return addresses) and populate the stack with
values to be used by the gadgets. On the right is what will be the result of the gadget chain.
Figure by V.Pappas.

1.2.2 Return-to-libc

A "return-to-libc" attack relies on overwriting a return address on the call stack, with an
address of a subroutine already present in the process’ memory. In many programs, a vast
majority of system libraries are loaded with the application, giving the attacker a plethora
of functions to be used in order to achieve system compromisation.

1.2.3 Modern Defences

By deploying Address Space Layout Randomization (ASLR)[23] this type of attack is
unlikely to succeed. ASLR is available in most operating systems (Linux, Windows,
Mac OS X). This technique randomly shuffles the position of the major components of
an executable such as heap, stack and libraries in the process’ address space at every
execution. Thus, in order to replace a return address in a meaningful way, an adversary
must guess the address of the subroutine to be used. The number of possible addresses in
64-bit systems renders this guess impossible.

However, an attacker can still bypass this security mechanism by disclosing the base
address of a loaded library. This can be accomplished through leaking a pointer, pointing
to the library through a memory leak or buffer overread. Then, the attacker can calcu-
late the desired function’s address using the leaked address and an offset. Moreover, it
has been demonstrated that even without the disclosure of an application’s memory map,
attacks are still feasible [22].
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1.3 CFI

Those were just a few of the security oriented techniques and technologies widely used
in today’s systems. Though techniques like those put an end to straight-forward code
injecting or taking control of the process, both can still be achieved with a little ingenuity
and new techniques to work around those [24]. The most promising of defences seem to
be the original Control-Flow Integrity (CFI) proposal by Abadi et al [11].

CFI is a principle that aims at guaranteeing that a given program will adhere to its
intended execution path (Control-Flow Graph). Its techniques focus on reinforcing indi-
rect branches, like calls and returns, so as to be immune to tampering from vulnerability
exploits like buffer overflows. The ideal CFI solution, as proposed by Abadi et al. [11],
can be viewed from two contexts: Forward-Edge and Backward-Edge.

Forward-Edge Control-Flow Integrity refers to the reinforcement of forward-edge
branches, i.e. Indirect Call Instructions. Indirect calls utilise function pointers stored
in memory to find their target. Unfortunately, these pointers are not safely stored in mem-
ory and are susceptible to corruption by tampering. Forward-Edge CFI validates that the
indirect call reached a target that belongs to a group of authorised branch targets. This
limits the call to extremely few indirect branch targets, hopefully none that the attacker
could exploit.

Backward-Edge Control-Flow Integrity refers to the reinforcement of backward-edge
branches, i.e. Return Instructions. Returns, like indirect calls, utilize a pointer stored in
the stack as a branch target. This pointer is extremely vulnerable to tampering since it
resides in the stack. Backward-Edge CFI keeps track of the return addresses and verifies
that each return instruction did indeed reach its target.

Any attempts to implement CFI until now where either prohibitive in their perfor-
mance or not secure enough as they where designed to be coarser as a way to alleviate
their performance impact. Those implementations do not follow the guidelines proposed
by the original CFI design and thus do not offer the level of security needed.

1.4 Contributions

This work contributes the following.

1. We present a survay of software security mechanisms implemented in hardware
and argue that such mechanisms when implemented in hardware, provide enhanced
security, while amortising the overhead in comparison with the software implemen-
tation.

2. We design, implement, and evaluate CFIX, a full-featured ISA for supporting pro-
cesses hardened with CFI. The prototype is based on extending a SPARC SoC and
it includes a hardware implementation of a shadow stack.

3. CFIX is complete and accurate. It protects both forward and backward edges, and
the shadow stack implementation can handle recursion of arbitrary depth.
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4. CFIX has practically negligible overhead. We evaluate CFIX with SPECInt and
embeded benchmarks and we record a runtime overhead of less than 1% on average,
which, to the best of our knowledge, stands for the first hardware implementation
for full CFI support with low cost.

5. CFIX is policy agnostic and can deal with all idioms that usually interfere with
hardening indirect jumps, such as the use of longjmp and setjmp. For the pur-
pose of presenting CFIX in this work we enable a fine-grained CFI policy with
shadow-stack support.

We propose an Ideal CFI implementation, true to Abadi’s et al. original proposal. Our
design is fully implemented in hardware, to add as little performance impact as possible,
without sacrificing any security on both forward-edge and backward-edge control trans-
fers. It touches lightly on the architecture of the CPU, only adding to it. Our design can
only benefit from pre-existing security technologies, like ASLR, DEP, Stack Canaries,
etc., and it is recommended that all those defences run alongside our own.

1.5 Organization

This work is organized as follows. In Section 2 we present software security mechanisms
with hardware support, in Section 3 we discuss the generic architecture of CFIX and in
Section 4 we thoroughly present the technical details for implementing the prototype. We
evaluate CFIX in terms of security in Section 6 and in terms of performance in Section 5.
We discuss various aspects of our current and future work in Section 8. We review related
work in Section 7 and, finally, we conclude in Section 9.
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Chapter 2

Background

2.1 Security mechanisms in hardware

Commodity processors include features aiming for enhanced system protection. Industry
considers security as an important factor towards the success of a processing architecture.
This notion is demonstrated through the increasing number of complex security mech-
anisms implemented in hardware over the recent years. Additionally, there are several
research efforts proposing hardware security extensions, in order to tackle sophisticated
threats. Practical and less intrusive research proposals usually are appealing to industries
and are incorporated in commodity processors. Most of the hardware security mecha-
nisms in the industry and the literature aim to provide hardware support for existing de-
fensive techniques that have been implemented solely in software before. Additionally, in
the literature, security proposals leverage hardware mechanisms not intended for security,
proving the need for hardware assisted security.

Pushing security at the hardware domain has many benefits over its software counter-
parts. Hardware is immutable, thus the effort required to bypass such mechanisms is
significantly higher. Almost any software security mechanism is incapable of defending
the system’s functionality if the operating system is vulnerable. Consequently, hardware
security proposals define threat models with powerful adversaries. Taken to the extreme,
the trust computing base defined by a security technique or technology can be reduced to
only include a trusted processor(e.g. SGX).

Another benefit of hardware implemented security is the amortization of the runtime
overhead imposed by the equivalent mechanisms in software. In many cases guarantee-
ing the security of a system requires thorough, computationally expensive checks. The
runtime overhead renders most security mechanisms with strong guarantees impractical
for deployment in real world applications, particularly in real-time critical systems. Other
research efforts try to lessen the overhead by relaxing the security guarantees, however,
offensive security literature proves that such approaches are defective. On the other hand,
circuity dedicated to for those checks accelerates the security mechanism without sacri-
ficing the security guarantees. Results from other hardware security implementations and
our work, prove that intensive security mechanisms can be implemented, as extensions,

9
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on existing hardware while keeping the overhead imposed within a practical margin.

2.2 Security-oriented processor features

In this section we review well established processor features, which aim to increase the
security of a system. Additionally, we present new extensions, which are present in newer
processors but not yet made standard in current software. Thankfully, the adoption of
those technologies in upcoming software is gaining popularity. The slow progress of
including those features in software, is due to the need of source code recompilation,
source code refactoring and the need for the adoption of a security oriented programming
styles. Furthermore, compilers have to adapt their processes to include those features in
order to produce executables that are optimized in terms of performance and security and
the utilization of new technologies.

2.2.1 Protection rings

CPUs support isolation between the operating system and the applications running on it.
The operating system is allowed to take full control on the machines’ resources and ap-
plications. On the other hand, applications run with lower privileges in order to restrain
them from controlling the rest of the machine without supervision. Common RISC archi-
tectures, like ARM and SPARC, provide only two levels of isolation, which are controlled
through the supervisor bit. The supervisor bit is set when the processor executes operat-
ing system’s code and unset when the processor is occupied by an application. Several
machine instructions, controlling machine specific and processor control registers, can
only be executed if the supervisor bit is set. CPUs with x86 architecture include many
different levels of privileges (protection rings) in order to isolate device drivers and also
enable hardware assisted virtualization. The operating system always executes at ring 0
(figure 2.1).

2.2.1.1 Supervisor Mode Execute/Access Prevention (SMEP and SMAP)

In order to increase the granularity of the protection ring system present in x86 processors,
in recent iterations of Intel processors, more policies have been added towards ensuring
the security of a system raising the bar against potential supervisor level vulnerabilities.
SMEP enforces that the operating system cannot execute user-level code, instead the CPU
must switch to a higher ring level first, otherwise the CPU faults. SMAP is complementary
to SMEP as it protects user-space data from being accessed from kernel code.

2.2.2 Virtual Addressing and memory segmentation

Almost every widely used system relies on virtual addressing. This constrains an applica-
tion from interfering with another application’s data. Different applications can reference
the same virtual address but it will be translated to a different physical address
according, to each application’s page table. Moreover, in x86 processors it was possible
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Figure 2.1: Protection rings in x86 processors By Hertzsprung at English Wikipedia, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8950144

to isolate different parts of an application using segments. Thus, different parts of code
residing within the address space of the same application cannot reference the whole ap-
plication’s memory layout. A typical use of this feature in applications with cryptographic
operations is isolating the cryptographic keys from functions responsible for handling user
input. Even if a buffer overread is possible in the code which handles the user input, due
to the segmentation feature an attacker will not be able to read the cryptographic keys. In
modern x86_64 Intel processors memory segmentation is considered deprecated and it is
not supported anymore.

2.2.3 TrustZone

The TrustZone feature is available in ARM processors[25]. This feature enables the sep-
aration of execution domain to the trusted and the untrusted one. The trusted execution
domain is reserved for the trusted system code, while third party applications are exe-
cuted in the untrusted domain. This separation extends to memory and peripherals in
order to achieve system wide security, e.g. a DMA capable peripheral is forbidden access
to memory areas owned by trusted execution domain software.

2.2.4 Data Execution Prevention

Data Execution Prevention (DEP) is a hardware feature which halts an application if the
control-flow targets data. This mechanism raised the bar for potential adversaries, since
placing malicious code as data in the application’s memory and then pointing the program
counter to it, is not possible anymore. Thus, attackers can only rely on existing code in
the application in order to achieve exploitation. Return-Oriented Programming is a so-
phisticated technique, widely used in modern exploits in order to bypass this mechanism.
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Figure 2.2: Overview of an ARM SoC with trustzone. CPU has both execution domains.
Flash and SRAM define trusted and untrusted regions. Peripherals can be defined as
trusted or untrusted in case of security concerns.Of course DMA should also be con-
strained.

DEP has different acronyms depending on the processors’ brand[26]. In Intel pro-
cessors it is referred to as XD bit (eXecute Disable). The feature is controlled through
the most significant bit of a 64-bit page table entry. When this bit is set to 0, the page
is assumed to hold code and can be executed. If the value is 1 the page cannot be exe-
cuted since it holds data. AMD uses the same approach under the name Enhanced Virus
Protection. In ARM architectures it is part of the page table entry format as XN bit (eX-
ecute Never) and is placed in the page descriptor. In SPARC V8 this mechanism is used
through the Reference MMU which has permission policies of Read Only, Read/Write
and Read/Write/Execute in page table entries.

2.2.5 Memory Protection Extensions

Memory Protection eXtensions (MPX) is a feature introduced in Intel processors in 2015,
Linux supports this feature since kernel version 3.19. Software deploying these extensions
is fortified by associating every pointer with a lower and an upper bound. Thus,
every time a pointer is dereferenced, its associated bounds are checked. If the address
stored in the pointer is out of the specified bounds, a bound violation exception is raised.
Since the majority of exploits depend on buffer overflows, this mechanism can effectively
disclose many possible security vulnerabilities in an application.
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Setting and checking the bounds is done using special MPX instructions. To deploy
this feature, the application’s source code must be patched with compiler intrinsics, in
order to pair pointer dereferences with bound initializing and bound checking instruc-
tions. Bound checking takes as operants the pointer and a special register which holds
the pointer’s bounds. In order to support a large number of associated bounds, a Bounds
Table residing in main memory is used. The functionality of the Bounds Table is similar
to paging. The operating system stores the address of each application’s Bounds Table
in the Bounds Directory. When a pointer’s bounds are not in one of the special bounds
registers they are loaded from the bounds table. In summary, MPX extends the processor
with four 128-bit bound registers, each storing a 64-bit lower bound and a 64-bit upper
bound. MPX instructions are used for setting the upper and lower bounds, propagating
them, moving to or from the bounds table.

The appealing security guarantees of this feature however impose a relatively high
runtime overhead. If the bounds checked are not in a register, the bounds of the soon
to be dereferenced pointer must be moved from the Bounds Table in one of the bounds
registers. This operation is relatively expensive since the pointer address must be looked
up in the Bounds Table, a process similar to a TLB miss. Additionally, bounds associated
to each pointer impose significant stress to the processor’s cache system. On average,
MPX deployment using ICC imposed 50% overhead in SPEC benchmarks [27].

Prior to its introduction in Intel processors, bound checking was a well studied tech-
nique in the literature. Software only implementations (e.g. [28], [29]) had several draw-
backs which made them not appealing for use. Non-trivial changes were required in the
source code, the violation detection was limited and also the runtime overhead was very
high. Hardware approaches like Hardbound [30] and CHERI’s [31] processor pointer
bound checking system, are based upon the concept of Fat Pointers. Herein, each pointer’s
value is associated with metadata, like the base address and the length, in order to verify
that when the pointer changes it remains within the bounds. These hardware approaches
achieved better granularity and at the same time the overhead introduced was within an
acceptable margin.

2.2.6 Software Guard Extensions

Software Guard eXtensions (SGX) was proposed in 2013 and introduced in Intel’s Sky-
lake micro-architecture in 2015. Its security guarantees provide isolation between parts of
a user-level application, with the further enhancement of preserving the isolation even if
the drivers, operating system and BIOS are compromised. Effectively, the Trusted Com-
puting Base is reduced to only the processor’s hardware. Using this mechanism, devel-
opers can define code and data to be protected by encapsulating them in an entity called
an enclave. SGX machine code instructions are used to create and initialize an enclave
and move code and data in it. The underlying hardware provides confidentiality and in-
tegrity to the enclave. Enclave data residing in the main memory are encrypted. When
moved inside the processor they are decrypted and checked for integrity. The component
responsible for those operations is the Memory Encryption Engine [32]. The MEE pre-
vents replay attacks, verifying that the data read back to the CPU from the SGX’s DRAM
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region are the same that were most recently written. Integrity and freshness are ensured
using Merkle trees. Thus, even if a passive attacker snoops the bus between the processor
and the main memory, the data acquired will be useless. In the case an active attacker
overwrites SGX memory regions, the MEE will detect the forgery. Currently, the size
allocated for enclaves is limited to 128MB. Next version of SGX (2.0) will support dy-
namic memory allocation. Additionally, a Seal Key, unique to each processor can be used
in order to store the whole enclave when the application is terminated for future use. An-
other selling point for SGX is secure remote computation [33]. A user who wants to use
a remote computation service, can verify that the software running in the remote enclave
is legitimate and that the data sent to the remote host will not be accessible by the remote
host owner. Thus, the user trusts only the author of the software running in the enclave
and the processor’s manufacturer (i.e. Intel). The rest of the infrastructure and the owner
are untrusted.

In the literature, similar proposals exist, aiming to reduce the trust computing base to
only the processor’s chip. The Execute Only Memory (XOM) [34] architecture supports
isolation between many containers (called compartments), by tagging every cache-line
with a container identifier. Additionally, encryption and HMAC verification are integrated
in the processor’s memory controller, in order to verify the integrity of data residing in off-
chip memory. However, XOM is vulnerable to memory replay attacks, i.e. an attacker can
overwrite a memory region with old data which were previously residing in that memory
region. AEGIS [35] trusts a small secure kernel in order to isolate different containers.
The trusted kernel is responsible for isolating applications. Again, off-chip memory is
encrypted in order to protect private data, verified, using HMAC, in order to check the
integrity, and also, Merkle trees are used in order to prevent replay attacks on the off-chip
memory.

2.2.7 Advanced Encryption Standard New Instruction

Secure communication amongst computer systems, relies upon strong cryptography al-
gorithms. The most common algorithm used today is Advanced Encryption Standard
(AES). AES is quite an expensive algorithm. In that notion and by the fact that all the data
communicated through the internet had to be encrypted/decrypted, major semiconductor
industries realized that hardware accelerated cryptography was necessary. In 2010, Intel
included AES New Instructions (AES-NI) in its processors. These instructions are used
in order to improve a systems throughput when processing data with AES. Other vendors
like ARM and AMD also included this new instructions in their products. Although it was
not an addition aiming to improve a system’s security, AES-NI it boosted the fundamen-
tal cryptography algorithm used for secure communication and data protection in modern
systems.

2.2.8 Last Branch Record

Last Branch Record (LBR) are register pairs on Intel processors, which implement a ring
buffer in order to hold the most recent branches. Each pair holds the source and the
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destination addresses of executed branches. LBR was introduced in order to assist with
software debugging. However, in kbouncer [36], LBR was utilized in order to transpar-
ently detect control-flow patterns of code reuse attacks. Since LBR imposed a minimal
overhead upon the protected application, this technique was very practical. Although, it
was later proved to not be sufficient for defending against certain cases of ROP exploits
(Section 7).

2.2.9 Dynamic Information Flow Tracking

A notable technique proposed in the literature, in order to counter buffer-overflow re-
lated exploits, is Dynamic Information Flow Tracking (DIFT). The key concept of this
mechanism, is to taint memory regions where un-trusted data are residing, and track their
propagation in the address space. Also, any new data resulting from computation with
tainted data, also become tainted. Exploits are detected with a predefined policy, depend-
ing on the implementation of DIFT. In general, when tainted data are used in a suspicious,
manner a security exception is raised. A common security exception trigger is when
tainted data are used as an indirect jump operand. For example, in the case in which an
attacker overwrites a return address, by exploiting a buffer overflow, input data will be
tainted and the DIFT policy will detect the violation since the return address will also be
tainted. In the majority of DIFT implementations, the protected application is oblivious
of the mechanism, thus there is no need for source code modifications.

Of course, software implementations of such policies impose a very large overhead.
In TaintCheck [37] the DIFT policy is enforced by running the protected application over
Valgrind, in order to instrument Basic Blocks with code which taints memory regions
during data propagation and checks for misuse of the tainted data. The runtime overhead
is above a factor of ten in most benchmarks, rendering such an approach impractical.
On the other hand, hardware implementation of DIFT policies can even protect complex
code, such as an operating system. Meanwhile, the overhead imposed is minimal and does
not affect the application’s usability. In Raksha [38] the Leon3 processor is extended, in
order to provide transparent protection, using DIFT, for the operating system and the user-
level applications. The registers, cache and main memory are extended with a 4-bit tag
in each word in order to support different DIFT policies and fine grained tracking. All
ISA instructions are extended to propagate tags from input to output operands, and check
tags in order to raise security exceptions when attacks are detected. Since tag propagation
and checks are performed during the normal execution of the application, the overhead
incurred is minimal. Negligible overhead is imposed during initialization, paging and I/O
events due to the tag management. Additional overhead is introduced when deploying
security exception handlers in order to suppress false positives.

2.2.10 Instruction Set Randomization

Instruction-Set Randomization (ISR) [39], [40] is a promising technique capable of miti-
gating code injection attacks. The main principle behind ISR is to encrypt the instructions
of executables residing in the main memory and decrypting them just before execution.
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This simple principle is enough to prevent the execution of arbitrary code injected to a
running program by an attacker. Even if an attacker successfully injects code and diverts
the control-flow to the injected code, the result will be an execution exception, since the
injected code will not translate to any meaningful machine instruction.

During application loading, a random key is generated to be used when encrypting
data in memory. The application keys are stored inside the process control block. The
scheduler is responsible for toggling the ISR functionality bit for ISR/non-ISR applica-
tions and set the appropriate key every time an ISR application is scheduled. Finally, the
page fault handler encrypts the faulting page with the application key if the owner appli-
cation is ISR enabled and the page fault originates from the text segment (i.e. the faulting
page contains code).

In ASIST, ISR was implemented by extending the Leon3 processor. In the processor
core, the additional hardware consists of the key registers, where the scheduler loads the
decryption key for the application, the ISR toggle bit, which is used to enable/disable ISR
for applications with/without ISR, and hardware decryption units. Before an instruction
populates the instruction cache, it is decrypted using the loaded application key. When an
injection occurs, the execution of the incorrectly decoded instructions will most probably
result in an illegal instruction exception which can be handled from the user-level. Ad-
ditionally, the return address is encrypted during call instructions and decrypted it during
returns, thereby defending against ROP attacks. Thus, if an attacker overwrites a return
address, upon return the value will not decrypt correctly and the application will most
probably crash.
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CFIX Architecture

3.1 Control Flow Integrity enforcement

Control-flow Integrity (CFI) aims at guaranteeing that the execution flow adheres to the
path determined by the control-flow graph of the program. The control-flow of a program
can be manipulated either on the forward-edge, when the target of an indirect jump is
altered, or on the backward-edge, when a saved return address has been changed. For
forward-edges we ensure that an indirect jump can target only a function entry with the
appropriate label that is generated during the CFG extraction. For backward-edges we
validate that the function’s return instruction targets the address of the original call site.
A more detailed discussion follows.

3.1.1 Forward-edge

The forward-edge is handled as discussed in the original CFI proposal [11]. Every indi-
rectly called function is hard-coded with a label on its entry point. Before the indirect
function call, the function’s label is compared to a label assigned to the call site. Our
approach differs in that we set the label before the indirect call executes, while the vali-
dation takes place immediately after function entry. Before the indirect control transfer,
a SetPCLabel instruction, placed on the delay slot (described in subsection 4.2), stores
a label in a non memory-mapped latch that resides inside the core. On the function en-
try, a CheckLabel instruction verifies that the label equals the one stored in the latch. If
the comparison fails, a control-flow violation is detected, an exception is raised, and the
system handles it appropriately.

3.1.2 Backward-edge

In the case of backward-edge control-flow integrity, we deployed a non-memory mapped
stack which also resides within the core. The concept of a shadow stack is thoroughly
studied in the literature [11, 15, 17]. The general concept is based on the notion that a
function’s return address points to the instruction lying directly below the call site. This

17
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Figure 3.1: Indirect Call States. A SetPCLabel instruction is received, the appropriate memory
modules are set, and the core enters a state where only CheckLabel instructions are accepted. Once
a CheckLabel instruction is received, the labels are compared and execution returns to its normal
flow.

is not always the case, as it is common that a function does not return to the original call
site.

The shadow stack of CFIX is implemented as follows. Before a call instruction exe-
cutes, a copy of the return address is pushed to the shadow stack. When the callee function
returns, the return address is compared with the one on the top of the shadow stack. If
they are not equal, a control-flow violation is detected and handled appropriately by the
system.

Every direct call instruction is paired with a SetPC instruction placed on its delay slot.
The SetPC instruction pushes the current Program Counter to the shadow stack module.
After the callee function returns, a CheckPC instruction, placed in the delay slot of the
return instruction, checks that the computed return address is equal with the address stored
in the shadow stack, incremented by four (one instruction below the SetPC). If the check
fails, a hardware exception is raised, which is handled by the supervising firmware. An
alternative way to process a mismatch between the shadow stack and the main stack, is to
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Normal
Execution

Flow

Return
Address

Validation

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Control
Flow

Violation

Figure 3.2: Return States. A CheckPC instruction is received, the Program Counter is compared
with the top value of the stack and the execution continues normally.

silently force the address obtained from the shadow stack as the return address. Aforesaid
proposition can potentially enhance our architecture with fault tolerance capabilities, since
any tampering of the return address would be rectified by the hardware.

3.2 Architecture Overview

CFIX is based on a series of modifications of the Leon3 [41] core’s pipeline. The architec-
ture consists of unmapped shadow memory elements, more specifically a shadow stack,
a shadow memory array, a shadow register, and six dedicated instructions which function
upon the shadow memory blocks. The shadow stack is utilized in enforcing backward-
edge CFI through the detection of control-flow changes caused by arbitrary return address
modifications, e.g. buffer overflows. Likewise, a single shadow register is used for enforc-
ing forward-edge CFI, effectively protecting the execution flow from vulnerable function
pointers. The shadow memory array is used for enabling setjmp/longjmp support. To
access and utilize the shadow memory blocks, we extended the SparcV8 [42] instruction
set with six instructions.
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3.3 ISA Extension

We extended the SparcV8 ISA with six instructions designed to provide CFI functionality
to the core.

SetPC: Paired with direct call instructions. The SetPC instruction is placed in the delay
slot of the call instruction it is paired with. It pushes the currently executing Program
Counter (PC) to the shadow stack. If the next instruction is a CheckLabel, the SetPC in-
struction suppresses the CFI violation that would normally occur, since the Label Regis-
ter’s value has not been initialized. This functionality is useful in cases where an indirectly
called function is also called directly.

SetPCLabel: Paired with indirect call instructions. This instruction is placed in the delay
slot of the indirect call it is paired with. Its 18 Least Significant (LS) bits carry the label
used to validate the indirect call target. As with the SetPC instruction, the current Program
Counter is pushed to the shadow stack. At the same time, the 18 LS bits are stored in the
Label Register to be used later for validation. If the next instruction executed is not a
CheckLabel, a CFI violation occurs.

CheckLabel: Placed on the entry point of a function that is found during instrumentation
to be an indirect call target. It is the only instruction that can be legally executed after
a SetPCLabel. Its 18 LS bits carry the label used to validate the indirect call target. It
compares the label carried on its 18 LS bits with the value stored in the Label Register.
If the labels match, the register is reset and the execution continues normally, otherwise a
CFI violation is detected and an exception is raised. Since the Label Register is zeroed out
after every CheckLabel, and no call target is assigned zero as a label, the Label Register
cannot be reused without being set again.

CheckPC: Paired with return instructions. This instruction is placed in the delay slot
of the return instruction it is paired with. It compares the program counter of the next
instruction executed, which will be after the branch target is reached, with the address
stored in the top of the shadow stack. If PC equality is confirmed, the shadow stack is
popped and the execution continues. Otherwise, a CFI violation occurs.

3.4 Shadow Stack Incompatibilities

Backward-edge control-flow integrity relies on the Call-Ret pair model of programs. That
means that each time a return instruction jumps to an address different than the one it was
called from, the Call-Ret pair model is violated which leads to a CFI violation. Unfortu-
nately, there are cases that Call-Ret pairs are violated in a legitimate way.

3.4.1 Setjmp/Longjmp

The most common violation is setjmp/longjmp. When a longjmp occurs, the original
stack may unwind by several frames. In the proposal by Davi et al. [18], a longjmp
would not cause a control-flow violation but the intermediate labels would remain active,
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significantly relaxing CFI. We overcome these problems by using dedicated instructions
for setjmp/longjmp support, without sacrificing any security or performance.

Additionally, some designs [43] propose popping the shadow stack till a valid return
address is found or it is empty, causing additional delay cycles. Furthermore, unwinding
the shadow stack can lead to inconsistencies. The address required could exist more than
once in the shadow stack, and since the hardware could not blindly know which of the
addresses is the correct call site, it could settle on the wrong one, causing a violation later
in the execution. Other proposals do not support setjmp/longjmp functionality and any
such jump would be perceived as a control-flow violation.

In order to achieve on cycle synchronization between the shadow stack and the normal
stack, we decided on the addition of two dedicated instructions and a shadow memory ar-
ray. Those new instructions are paired with the call instructions to the setjmp and longjmp
functions themselves.

Normal
Execution

Flow

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Save top
Shadow Stack

Index

Setjmp
Labels

10

….

Current
Index

label

Figure 3.3: Setjmp Finite State Machine. An SJCFI instruction stores the current state of the
Shadow Stack.

SJCFI: The first one, SJCFI, is paired with the setjmp function. It is placed two instruc-
tions below the call to setjmp - the instruction to which a call to setjmp would return to,
when acounting for the delay slot. It carries a unique label on it 8LS bits - different from
the label used for forward edge enforcement. Much like setjmp, it serves two purposes, (i)
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0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Shadow Stack
Sync
State

Setjmp
Labels
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….

Stored
Index

label

Long jump
State

Any
Instruction

Figure 3.4: Longjmp Finite State Machine. An LJCFI instruction puts the core in a state waiting
for an SJCFI instruction. The next SJCFI will not store the environment but restore it to the state
that it was the last time an SJCFi instruction was executed on its own.

it sets the environment to support a longjmp, and (ii) acts as a landing point for the jump
itself.

In the first case, once a setjmp returns, the first instruction executed would be SJCFI.
The label is used as an index to the new memory element. During SJCFI’s execution,
the index of the top element of the shadow stack is stored in the new memory element
using the label as an index. This pairs this particular landing point to the current state of
the shadow stack. Even though the addresses remain in the shadow stack, they cannot be
exploited by an attacker as the only way to use them would be to raise the index, which
cannot happen without overwriting the addresses with correct ones.

SJCFI also acts as a landing point for a longjmp. Since it is placed two instructions
below the call to setjmp, and a longjump will return to its equivalent setjmp call site, it
will be the first instruction executed after such a jump.

For SJCFI to support long jumps, an LJCFI instruction is assumed to have been al-
ready executed. In this case, instead of reading the index of the stack and writing it to the
new memory element, SJCFI reads the index from the memory element (once again using
its label) and sets the stack to it. Since the index of the shadow stack corresponds with
the stack frame once again, execution and CFI enforcement can continue normally. The
next SJCFI instruction executed will use the first functionality unless another LJCFI was
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executed before that.

LJCFI: The LJCFI instruction is only used to signify that a longjmp is underway. It is
placed in the delay slot of a longjmp call and flags that a long jump is executed. After
the long jump function is executed, the program counter should point to an SJCFI instruc-
tion, which will use the second of its functionalities, synchronizing the shadow stack and
clearing the longjmp state flag.

The functionality of those two instructions is graphically represented in figures 3.3
and 3.4.

3.4.2 Tail-Call Elimination

Another case of Call-Ret pair violation is tail call elimination. As shown in figure 3.7,
before calling bar, foo’s return address (stored inside the o7 register) is moved to global
register g1. When the call instruction is executed, register o7 will be overwritten with the
current program counter (0x20) which serves as bar function’s return address. Finally,
in the delay slot of the call instruction, the return address of foo is restored in register
o7. The effect of the above code snippet is that bar function will return to foo function’s
call site. In our design, this optimization renders the shadow-stack inconsistent with the
main stack. Thus, this particular optimization has to be disabled in order to run the bench-
marks. Adding support for this optimization is possible, by simply not instrumenting the
eliminated call site, though that might pose a great security concern.

<foo>

0x0   :              . . . 
0x10 : mov %o7, %g1 
0x14 : call bar     
0x18 : mov %g1, %o7
0x1C :  . . . 

Figure 3.7: SPARC V8 tail call elimination example. The calling function (foo) replaces the
return address of the callee function (bar) with its own. Bar will return to the function that called
foo, skipping it.

3.5 Recursion Support

The memory available to the shadow stack is finite and implemented statically inside the
core, where there is no dynamic memory allocation. Hence, support for recursion could
potentially be limited, since an, albeit unusual, recursion of a large depth can fill the
shadow with many entries of the same address. In order to address this, we implemented
an optimization that handles such cases.

Before the SetPC and SetPCLabel instructions push the current PC to the shadow
stack, the stack is topped and the two addresses are compared. If the addresses are differ-
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ent, the new address is pushed. Otherwise, the address is not pushed, but the current index
of the shadow stack is marked as recursive on a separate bitmap, parallel to the shadow
stack.

During the CheckPC execution, if the address currently being compared has the re-
cursion bit activated, it is not popped from the stack. If the address comparison results
in a mismatch and the top address is recursive, the top address is popped and the PC is
compared with the next one. If the addresses match, execution continues normally and,
if the (now) top address is not marked as recursive, it is popped. Otherwise, should the
comparison again result in a mismatch, the corresponding violation is raised.

3.6 Instrumentation

Instrumentation takes place at the assembly-level of C programs. We assume that input
programs are products of standard C compilers (such as, GCC and Clang), and they do not
include custom assembly idioms. Instrumentation by no means is limited to C-compiler
generated assembly. In fact, any assembly code is instrumentable as long as a Call-Ret-
like model is sustained. The modifications where always minor and mostly consisted of
moving restore instructions out of the delay slots, and replacing ret instructions with
retl instructions, in order to account for that change. In most cases the script was able
to insert our instructions in place of nop instructions.

In figures 3.5 and 3.6 we show the instrumentation of a direct call in the SparcV8
assembly language. The logic behind the instrumentation is fairly simple as it consists of
pairing every call and return with a CFI instruction. For calls, we add a SetPC instruction
below them, and for returns, a CheckPC.

We have designed our instructions to take advantage of the delay slot below branches
in the SPARC V8 architecture. With that in mind, any instructions residing in the delay
slot must be moved out of the slot, before the branch. The most usual case of instructions
that need to be moved are restore instructions as they almost always reside in the delay
slot of their respective return instructions.

Since the restore instruction changes the focus of the register window, we must com-
pensate for it moving before the return instruction. The ret instruction expects to find the
return address in register i7, but because the register windows have shifted, the appropri-
ate value is now stored in register o7. Thankfully, the SPARC assembler provides another
instruction with this case in mind, retl.

In Figures 3.8 and 3.9 we show the typical instrumentation of an indirect function call
in the SparcV8 assembly language. The backward-edge components remain essentially
the same, with the only modification being that the SetPC instruction is switched with a
SetPCLabel instruction. But now, the forward-edge components are also in use. Specifi-
cally, SetPCLabel, storing the hard-coded label for later comparison, and the CheckLabel
instruction, placed on the function entry point in order to perform said comparison.
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<function_1>

0x0   : save %sp, -42, %sp
0x4   : call 100       ! function_2
0x8   : nop
0x10   :  . . .
0x14 : 

<function_2>

0x100   : save   %sp, -90, %sp
0x104   :              . . .
0x138   : ret     
0x13C   : restore
 

return

call

Figure 3.5: SparcV8 assembly - direct function call without CFI instrumentation.

<function_1>

0x0   : save %sp, -42, %sp
0x4   : call 100       ! function_2
0x8   : setpc     
0xC   :  . . .
0x10 : 

<function_2>

0x100   : save   %sp, -90, %sp
0x104   :              . . .
0x134   : restore
0x138   : retl     
0x13C   : checkpc
 

return

call

Figure 3.6: SparcV8 assembly - direct function call with CFI instrumentation. A SetPC instruc-
tion is placed on the delay slot of the call instruction, and a CheckPC on the delay slot below
the return. The restore instruction is pushed above the return and the return instruction changes to
account for it.
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<function_1>

0x0   : save %sp, -42, %sp
0x4   : sethi    %hi(0x0), %g1
0x8   : or         %g1, 0x100, %g1
0xC   : call  %g1
0x10 : nop     
0x14 :  . . .
0x18 : 

Calculation
of function_2 

address

<function_2>

0x100   :  save   %sp, -90, %sp
0x104   :       . . .
0x134   : ret
0x138   : restore     

 

return

call

Figure 3.8: SparcV8 indirect function call without CFI instrumentation. The address in loaded in
a register which is used to perform the indirect call. Otherwise, the call performs similarly to the
direct call.

<function_1>

0x0   : save %sp, -42, %sp
0x4   : sethi    %hi(0x0), %g1
0x8   : or         %g1, 0x100, %g1
0xC   : call  %g1
0x10 : setpclabel      0xc0de     
0x14 :  . . .
0x18 : 

<function_2>

0x100   : checklabel       0xc0de
0x104   : save   %sp, -90, %sp
0x108   :              . . .
0x134   : restore
0x138   : retl     
0x13C   : checkpc
 

call

return

Figure 3.9: SparcV8 indirect function call with CFI instrumentation. A SetPCLabel instruction
is placed on the delay slot below the indirect call. A CheckLabel instruction is placed on the entry
point of the indirectly called function. Finally, a CheckPC instruction is placed in the delay slot of
the return instruction.



Chapter 4

CFIX Prototype Implementation

In this section we describe the CFIX prototype implementation, we present the results
of the hardware synthesis using an Virtex 6 [44] FPGA board, in terms of additional
hardware needed compared to the unmodified processor, and finally we discuss how the
proposed system can be easily ported to other architectures and systems.

4.1 Introduction to the Leon3 Softcore

We modified the Leon3 SPARC V8 processor [41], a 32-bit open-source synthesizable
processor, to implement the security features required for a hardware-based CFI support.
All hardware modifications require less than 500 lines of VHDL code. Leon3 uses a
single-issue, 7-stage pipeline. Our implementation has 8 register windows, an 16 KB
2-way set associative instruction cache, and a 16 KB 4-way set associative data cache.

4.2 Delay Slot

In the SparcV8 architecture, as with many other RISC ISAs, exists the concept of a delay
slot. In those architectures, any instruction directly below a branch is always executed as
if before it, regardless of the result. Subsequently, the instruction slot below a branch is
called a delay slot. CFIX was built with that mechanism in mind, though it is by no means
a prerequisite.

4.3 Memory Element Additions

The implementation of the prototype presented in this paper requires several memory
elements. Specifically, a dedicated 32 bit register, a dedicated 128*32 bit stack, a bitmap
of 128 bits, and a dedicated 128*8 bit memory module. All memory elements are only
accessible using the new CFI instructions of the prototype.

The register (Label Register) is used in storing the label used for indirect jump veri-
fication (forward edge). The stack (Shadow Stack) is used in storing the return addresses

27
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of the functions currently executing, so as to add a measure of redundancy and validate
return instructions (backward edge). The bitmap holds the recursion bit for the return ad-
dresses of the Shadow Stack. The third memory module is used to provide setjmp/longjmp
support.

All four memory elements are not memory-mapped, and thus are only accessible
through the use of the CFI instructions, while there is no interference with additional
peripherals or supervising software. Since the memory elements do not rely on the data
cache, or use any existing buses, they do not encumber the core’s memory bandwidth.
Also, since the elements do not reside in RAM, they can be accesed with just one cycle of
delay for both reads and writes.

4.4 Leon3 Pipeline Modifications

The modifications required for supporting the new instructions, discussed in Section 3, to
the core are exclusive to the pipeline. The design relies on a new process, the hardware
equivalent of a software thread, for avoiding heavy modifications to the critical path of
the pipeline. The process contains all the CFI functionality, while the Leon3 pipeline is
only modified to handle the input and output for the process; such as the current and next
Program Counter, signals indicating annulled instructions, exceptions, and the instructions
themselves. We discuss here how each instruction is implemented.

SetPC: The basic function of the SetPC instruction is to push the current PC to the
Shadow Stack during the memory stage of the execution. Additionally, during the ex-
ecution stage of the pipeline, it sets a flag that is used to suppress the Invalid Label
violation (discussed in subsection 4.5) that occurs if the next instruction executed is a
CheckLabel. If the next instruction is not in fact a CheckLabel, the flag is reset. This
implementation allows a function called directly to be called indirectly as well. To avoid
an exception, the violation must be suppressed, as the Label Register is not currently set.

To support recursion, the instruction first tops the stack during the register access
stage of the execution. If the address is the same as the current PC, it does not push it
to the stack but instead marks the current index as recursive. Otherwise, it performs as
previously described.

SetPCLabel: This instruction also pushes the current PC to the Shadow Stack during the
memory stage and supports recursive calls as SetPC does. Additionally, SetPCLabel sets
the Label Register to the value carried in its 18 LS bits. The value is extracted from the
instruction during the decode stage and is set to the Label Register during the memory
stage of the execution. Finally, it raises a flag that ensures that the next instruction exe-
cuted is in fact a CheckLabel. If the next instruction is not a CheckLabel, then a violation
is raised that will lead to an exception during the violating instruction’s exception stage.

CheckPC: The CheckPC instruction serves a simple purpose. During the register ac-
cess stage, it tops the Shadow Stack, increments the value by 4 (one instruction below
the SetPC), and compares the result with the next Program Counter (nPC). If equality is
confirmed, then the stack is popped. If the result is not the expected value, a violation is
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raised leading to an exception during the exception stage.
Much like the SetPC and SetPCLabel instructions, if recursion optimization is in

place, the functionality shifts. If the top address in the stack is marked as recursive, it
is not popped, so that it can be used again later. If the address comparison results in a
mismatch and the top address is marked as recursive, the stack is popped and another
comparison is performed two cycles later, during the memory access stage. If the new
comparison holds, execution continues normally and, if the top address is not recursive,
it is popped. If the comparison fails again, a mismatch violation is raised during the
exception stage.

CheckLabel: This instruction, much like the SetPCLabel instruction, carries a label on its
18 LS bits. This label is extracted during the decode stage of the execution, and compared
to the label stored in the Label Register during the execution stage. If label equality is
not confirmed, then a violation is raised, leading to an exception. Otherwise, the Label
Register is reset during the memory stage.

The CheckLabel instruction requires that a SetPC or SetPCLabel instruction was the
last instruction to execute. Otherwise the Label Register is not set and its contents are
zeroed. This leads to a violation, as no function is assigned zero as a label, unless a SetPC
is the last instruction executed, which suppresses the violation.

LJCFI: LJCFI raises a flag to signify that a longjmp is underway. It does not carry any
labels or uses any memory beyond the signal used for the flag.

SJCFI: SJCFI carries a label in its 8LS bits that is extracted at the decode stage. During
the execution stage, depending on whether the flag is set by LJCFI, it either reads the top
value’s index from the Shadow Stack or retrieves the new index from the new memory
element, using the label as an index. Finally, during the memory stage, again depending
on the flag, it either stores the Shadow Stack’s index to the memory element with the label
as an index, or it sets the index retrieved from the new memory element to the Shadow
Stack.
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4.5 Violations

The various problems and errors detected during execution are summed in the following
violations:

Label Mismatch: Raised when the label stored in the Label Register is not equal to the
label the CheckLabel instruction carries. It can also mean that the Label Register has not
been set at all. This is a forward-edge CFI violation.

PC Mismatch: Raised when a CheckPC instruction detects tampering on the return ad-
dress. The address stored in the Shadow Stack is not the address to which the return
instruction jumped. This is a backward-edge CFI violation.

Flow: Raised when the instruction executed after a SetPCLabel is not a CheckLabel. The
indirect call targeted a function that has not been found to be a valid indirect target during
instrumentation. This is a forward-edge CFI violation.

Empty: Raised when a CheckPC instruction tries to validate a return address while the
stack is empty. More return addresses have been popped than have been pushed. This is a
backward-edge CFI violation.

Full: Raised when a SetPC or a SetPCLabel instruction pushes a return address while the
stack is full. This is not a CFI violation, but an error that is raised when the stack fills.
For the implementation presented in this paper, a 128 word Shadow Stack is used and is
capable to run all benchmarks. Nevertheless, a larger Shadow Stack can be easily placed
in the core if needed.

In the prototype implemented on the Leon3 softcore, all violations lead to an illegal
instruction exception on the exception stage of the pipeline thus, puting the Integer Unit
in Error Mode and halting the execution. Alternatively, a custom exception can be easily
created and handled by either the hardware or the supervising software.

4.6 Portability to Other Architectures

The design of our implementation does not actively change the core’s architecture, but
simply adds a few components and checks. Our implementation on Leon3 took advantage
of the delay slots on branch instructions, existing in many RISC architectures, but that
mechanism is by no means a prerequisite for the technology to function. The design
only touches on very basic concepts of computer architecture, like the Program Counter,
interrupts and exceptions, that are present in any modern core. All modifications for
supporting CFIX are only additive to the processor, and rely on components present in
any core. and without extending call and return instructions in order to manipulate the
Shadow Stack like proposed by [43]. The logic of these instructions has been a constant
since the beginning. Therefore, the design presented in this paper can be ported to any
architecture with minimal effort, and, as shown in section 5.5, with a small area overhead
footprint.
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Chapter 5

Performance Evaluation
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Figure 5.1: Presentation of the runtime overhead measured with our implementation compared
to the runtime on a vanilla Leon3 core.

5.1 Testing Environment

We synthesized and programmed the modified Leon3 softcore on a Xilinx ml605-rev.e
FPGA board. The FPGA has 1024 MB DDR3 SO-DIMM memory and the design oper-
ates at 120 MHz clock frequency. It has also several peripherals including an 100Mb Eth-
ernet interface. Since we are targeting embedded systems, we ran all tests without an op-
erating system present. The benchmarks are SpecInt2000 [45] and a few microprocessor-
based, namely Coremark [46], Dhrystone [47], and matmul [48].

5.2 BareFS

Since the Spec suite is not designed for use in embedded systems, and running on bare-
metal has the drawback of not offering the functionality of either files or command line
arguments, we had to modify the code of each benchmark in order for it to be able to read
its input files and arguments. The modifications included hard-coding all input files and

35



36 CHAPTER 5. PERFORMANCE EVALUATION

required command line arguments to buffers, as well as changing any instructions related
to I/O so that all input comes from memory, and any possible output is either discarded,
written to a new buffer, or sent to stdout/stderr.

The end purpose of the library was to simulate the functionality of file input and output
by creating a pseudo file system based on strings, by filtering any function calls utilizing
files, and practically acting as a proxy to stdio for any calls targeting stdin/stdout/stderr.
That goal was achieved by overloading the FILE struct with one of our own creation that
carried within it the file itself in a buffer, as well as various metadata such as file length,
position, whether EOF (End Of File) has been reached, etc.

Likewise, every stdio function, that used that struct as an argument, was overloaded
with our own implementations so as to handle our struct. For example, fgetc was over-
loaded to myfgetc. Any calls to that function where bound to use either our FILE
struct or stdin. In the first case, we handled the call by returning the next character
in the buffer and incrementing the position in its struct. In the second case, we made a
second call to stdio and returned the value we received from there.

5.3 NOP Equivalence & Profiler Verification

Due to the architecture of the Leon3 core, our CFI instructions have the same execution
time as a NOP instruction since we do not generate any main memory traffic. This allows
us to perform various sanity checks during our testing phase, with regards to expected
overhead. One such test consists of running all benchmarks, on an unmodified (vanilla)
Leon3 core, with NOP instructions in place of our CFI instructions. All checks performed
during the testing phase verified our results. Finally all results are also verified by us-
ing a profiler to count all calls, both direct and indirect, and returns executed during the
benchmarks’ runtimes. Again, all results were consistent.

5.4 Runtime Overhead

To measure the overall runtime overhead we ran each benchmark multiple times, instru-
mented with CFI instructions, on the modified core, which is programmed on the ml605-
rev.e FPGA. Before each run, both the instruction and data cache were flushed. The results
are depicted in Figure 5.1 and the average runtime overhead is under 1%.

We have omitted gcc and eon from SpecInt2000. In the case of gcc, CFI violations
occur during normal execution, since several return addresses change after being pushed
to the shadow stack. This has been confirmed by Dang et al. [15]. For evaluating gcc we
count NOP instructions, since they are equivalent to CFI instructions (see Section 5.3).
While the overhead reported is without the full CFI instrumentation, counting NOP in-
structions is really close to measuring the actual CFI instrumentation.

In the case of eon we were unable to sufficiently instrument because is was written
in unstardised C++. The main problems were that we could not detect VTables and that
some return addresses changed during runtime. An analysis of the code, on the assembly
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level, revealed that the program loaded return addresses deirectly from memory, a few
stack frames below the current one.

Interestingly, the gap benchmark came very close to reaching the maximum theoret-
ical overhead of 6.60%. In order to measure our theoritical max runtime overhead, we
measured a loop executing only indirect calls to a function which in turn immidiately exe-
cuted a return instruction. The extreme overhead reported by running the gap benchmark
is the result of just that - a tight loop executing a multitude of indirect calls.

5.5 Hardware Overhead

We implemented our design firstly without setjmp/longjmp support or the recursion opti-
mization. The resulting area overhead of our implementation, as detailed by the reports
of the Xilinx tools used to synthesize the design, was very low, using an additional 0.65%
registers and 0.81% LUTs (look-up tables). With setjmp/longjmp support and the recur-
sion optimization in place, the area overhead increased significantly to 2.52% registers
and 2.55% LUTs. The additions to the design do not seem to add to the critical path of
the processor and thus do not lower the maximum frequency that the core can achieve on
the board.

5.6 Power Consumption

We measured the impact of our CFI implementation with regards to power consumption,
using Xilinx XPower Analyzer tool. Our results indicate that the power consumption
overhead is only 1.2%. Setjump/longjump support increases the power consumption to
1.7%.

Implementation Power (mW)
Original Leon3 6072.11

CFI Leon3 6149.34
CFI Leon3 with SJ/LJ support 6176.92
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Chapter 6

Security Evaluation

In this chapter we discuss the security guarantees provided by CFIX. In our threat model
we assume that the attacker can exploit a vulnerability, either a stack or heap overflow, or
use-after-free, present in the application’s source code. This vulnerability can be further
used to overwrite key components of the running process like return addresses, function
pointers, or VTable pointers. We also consider that the attacker has successfully bypassed
ASLR or fine-grained randomization [10], and has full knowledge of the process’ mem-
ory layout. Nevertheless, the system enforces that (i) the .text segment is non-writable
preventing the application’s code from being overwritten, and (ii) the .data segment
is non-executable [3] blocking the attacker from executing directly data with proper CFI
annotation. Both of those principles are commonplace in today’s systems preventing soft-
ware exploitation. Although, code reuse attacks are designed to circumvent, and were
spurred by, said defences. With that in mind, we set our goals to fill the gaps left behind
by the existing defences, by securing the integrity of both forward edge and backward
edge control-flow transfers.

6.1 Defence with CFI ISA extensions

By forcing every return instruction to adhere to the address stored at the top of the Shadow
Stack, ROP attacks are effectively foiled. In all our tests, every change in the control
flow of the application, provoked by a return instruction that was not consistent with the
Shadow Stack’s top value, led to a CFI violation being raised, leading to a trap in the core
and the eventual termination of the execution.

Similarly, an indirect call not leading to a pre-approved function entry point would
always raise a CFI violation and halt the execution. Thus, foiling again most JOP attacks
by limiting the possible positions in the program that such a jump would be allowed to
target. The granularity of the forward-edge protection is directly proportional to the depth
of the analysis performed on compile time.
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6.2 Exploitation Prevention

We run a multitude of small programs designed to violate the CFI principles in different
ways, e.g. indirectly jumping with invalid labels, or no labels at all, modifying return
addresses on runtime, stressing the Shadow Stack, and various others. Using behavioural
simulation with Xilinx’s[49] Isim tool, we had total transparency of every signal in the
Leon3 softcore, and therefore the shadow memory elements themselves. We could ob-
serve every microbenchmark’s effect on the Shadow Stack and the core in general. The
observations were consistent with our expectations. Every control-flow violation expected
was raised and detected, halting the execution. Finally, we further confirmed our obser-
vations by additonally running the microbenchmarks on the programmed FPGA board,
again finding the expected results.



Chapter 7

Related Work

CFI is the base of many proposed mitigation techniques in the literature. Most of them
are software-based, although there are some attempts for delivering CFI-aware proces-
sors. In this section, we discuss a representative selection of CFI solutions proposed in
the literature and their limitations. A high level summary of this section is presented in
table 7.1.

7.1 Coarse-Grained Approaches

Many techniques are based on relaxing the CFG a process should adhere to, thus the CFI
policy enforced is coarser in comparison with the original CFI proposal [11]. Although
coarse-grained CFI, as implemented in CFI for COTS binaries [13] and CCFIR [50], is
practical and aims at protecting directly binaries and impose really low overhead, the
security guarantees are less. Other proposals rely on hardware assistance [36, 51] in order
to transparently protect applications but again, they have been proven to be weak.

7.1.1 CFI for COTS binaries

A proposal of Zhang et al. [13] is a CFI implementation that can fortify binaries by static
binary rewriting. Their tool can work on commercial-off-the shelf binaries, without de-
bug symbols and relocation information, i.e. stripped binaries. The CFI policy proposed
in this work, is based on the following approach. The binary is disassembled in order to
identify, all the possible addresses of indirect control flow targets. This set contains, all
call preceded sites (since return addresses, target such sites), constant code pointers and
computed code pointers. Every return instruction and indirect jump, is instrumented to
jump to a CFI validation function, in order to ensure that the indirect control flow instruc-
tion targets one of the previously collected target addresses. Although, such policy does
not ensure that return instructions will return to the original call-site. It even allows any
indirect control flow instruction to target any address contained in the collected indirect
target address set collected by the binary analysis.
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7.1.2 CCFIR

Compact CFI and Randomization (CCFIR) [50] is also a CFI implementations that can
protect binaries, through binary instrumentation. In CCFIR, all legal targets of indirect
jumps (not returns) are collected in a Springboard section in a similar manner as in CFI for
COTS binaries. Return instructions are only allowed to target call preceded sites, while
indirect jumps are only allowed to target addresses contained in the Springboard. In order
to hide the addresses stored in the Springboard from potential attackers, the Springboard
is in a random memory area. However, memory disclosure attacks can bypass this protec-
tion. Although CCFIR has finer granularity than CFI for COTS binaries, it cannot defeat
attacks utilizing call preceded gadgets [14].

7.1.3 Kbouncer

Kbouncer [36] transparently monitors applications using LBR in order to detect return
instructions which target addresses not preceded by a call instruction. The entry of
WinAPI function in instrumented in order to validate the aforementioned rule every time
a system function is called. In addition, if the eight more recent branches are sort se-
quence of instructions followed by return (i.e. gadgets) are also perceived as attacks. This
defence mechanism is able to defend only against conventional ROP attacks. Forward-
edge indirect control flow branches, are not validated at all. Again, it was demonstrated
that these policies are vulnerable as well [52]. Herein, an attacker can use call preceded
gadgets in order to evade kBouncer’s policy.

7.1.4 ROPecker

ROPecker [51], also leverages LBR in a same manner as kBouncer. Although, ROPecker,
inspects the application more frequently and more thoroughly. In addition to checking at
every system call, checks are performed when execution is directed towards a page which
is not in the executable set of pages. ROPpecker is invoked due to the generated page fault.
If an attack is not detected, the faulting page is marked as executable, the last recently used
page as non-executable (in order to generate a new fault when referenced) and the execu-
tion resumes. The checks rely on detecting gadget like branching behaviour in the LBR
i.e. small number of instructions followed by an indirect branch. Additionally, ROPecker
tries to analyse what will happen after the execution is resumed. This is accomplished
by disassembling the instruction sequence that starts at the target address, i.e. the address
which caused the page fault. If an indirect branch instruction is found after a short number
of instructions, the instruction stream is classified as a potential gadget. ROPecker will
then emulate the instructions in order to compute the indirect branch target address and
check if it also leads to a potential gadget using the aforementioned method. If it reaches
an instruction sequence which is not short, it stops searching. Any instruction stream with
less than six instruction followed by an indirect branch which does not contain any direct
branches is considered gadget. ROPecker detects an attack if a sequence of 11 potential
gadgets is found during a check. However, again, it was quickly demonstrated that such
policy is vulnerable as well [53, 54, 55].
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7.2 Selective, Fine-Grained CFI

The community realized that coarse-grained CFI does not provide sufficient security, re-
covering the semantics of all objects from binaries is not always possible and systems
operating on binaries are all subject to more sophisticated attacks [56]. Thus focused on
more fine-grained policies that can be applied at the compiler level, requiring the recom-
pilation of the application’s source code. Proposals also argued, that selectively securing
only the frequently exploited elements of a running process, and not all indirect branches,
as for example are VTable pointers is sufficient. However, even compiler applied fine-
grained policies have been also demonstrated vulnerable, unless a shadow-stack imple-
mentation [17] is in place.

7.2.1 VTint

VTint [57] is a defense solution that protects binaries from VTable hijacking attacks.
Binary rewriting is used in order to instrument security checks before virtual functions
are dispatched. Binaries are analyzed in order to identify the VTables and the virtual call
sites. Identified VTables are instrumented with a special ID in order to be differentiated
from data and then moved to a read-only memory area, in order to be protected from
arbitrary writes. Virtual call sites are instrumented with checks in order to verify that the
memory area pointed by the virtual pointer is read-only and the virtual table ID is correct.

7.2.2 Virtual-Table Verification

Virtual-Table Verification [58] (VTV), is an implementation of a relatively fine-
grained granularity forward-edge control flow integrity mechanism. It is implemented
in GCC and LLVM in order to achieve better accuracy in recovering the semantics of
C++ objects and emit checks at the call sites of virtual functions. To prevent attacks, VTV
verifies at every virtual call the validity, of the VTable pointer being used for the virtual
call, before allowing the call to execute. In order for a VTable pointer to be valid, it must
point, either to the VTable for the static type of the object, or to a VTable belonging to
its descendant classes. Every virtual call site, is instrumented at IR code level in order to
call a verifier function before executing the call. The verifier function takes as input the
VTable pointer and the set of valid VTable pointers for the site. If the VTable pointer is
not in the set, the verifier function, invokes a failure function.

7.2.3 ShrinkWrap

ShrinkWrap [59], also aims to protect C++ VTables. It is built upon VTV and refines
its policies in order to provide optimal protection. The main problem identified in VTV
was that in cases of multiple inheritance, a call-site can have access to a large number of
unrelated VTables. Thus, providing a very coarse grained protection. In order to redefine
the policy of VTV and make it more fine grained, in ShrinkWrap, at every virtual call
site, the set of valid legitimate virtual pointers, consists of, the VTables of the class and
all the descendant VTables and not all the VTables of the descendant classes. Further, a
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more optimal policy can reduce the set of legitimate VTables. The compiler knows the
type of the object and the VTable of this object in every virtual call site. Thus, each call
site can be associated with only the VTable of the class type in that call site and only the
descendant VTables of that type.

7.3 Hardware Implementations

In this work, we do not promote a new CFI flavor, but, rather we argue that a processor
architecture that supports fine-grained CFI policies and deploys an in-chip shadow stack
can be implemented and offer strong security guarantees at a low cost (less than 1% over-
head on average). Similar processors have been proposed in the literature, however none
is as complete and as fast as ours.

7.3.1 Branch Regulation

In Branch Regulation [60], neither forward or backward edge control flow changes are
secured adequately. Forward edges are augmented by coarse-grained CFI, which enforces
that branching can target a functions entry or any point within the currently executing
function. On the other hand, backward edges are protected by a shadow stack that keeps
track of the program’s return addresses, however, the stack itself is not secured against
tampering as it resides in mapped memory. In CFIX the shadow stack is not mapped on
the host’s memory, thus it cannot be tampered.

7.3.2 HAFIX

Davi et al. [18] proposed HAFIX, a system for backward edge CFI and, unlike Branch
Regulation, HAFIX does use dedicated, hidden memory elements for storing critical in-
formation. Their implementation utilizes labels to mark functions as active call sites. La-
bels are used as index in a bitmap, which dictates if a function is active or inactive. When
a call instruction is executed the next instruction must be a CFIBR in order to activate the
function. Only active functions are valid as return instruction targets. CFIDEL instruc-
tions are appended in the epilogue of each function in order to deactivate them during
return. However, the aforementioned design has the disadvantage of allowing the attacker
to jump to any active function. This is important, since their method also allows for an
attacker, using stack unwinding, to avoid the execution of CFIDEL instructions in order to
deactivate functions and eventually mark every function as an active one, thus effectively
permitting jumps anywhere in the program, and therefore being possibly vulnerable. For
forward-edge control flow transfers they rely upon VTV [58]

7.3.3 XFI

Budiu et al. [61] propose the usage of hard-coded labels for both forward edge and back-
ward edge control-flow integrity enforcement. The usage of labels for backward-edge
protection certainly limits the attacker, but still allows him to take advantage of functions
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that are called by many call sites, such as memcpy. Essentially, this implementation is
vulnerable, since it lacks of a shadow-stack implementation.

7.3.4 NSA’s CFI

NSA’s proposal on hardware CFI [62] facilitates a shadow stack to protect return addresses
and landing point instructions to augment indirect-call transfers. In order to improve the
flexibility of the shadow stack, they propose the use of a shadow MMU that will handle
the management of the shadow memory. However, their proposal lacks granularity on
forward-edge flow integrity, thus an attacker can point an indirect branch on any landing
point instruction.

7.3.5 Intel CET

Finally, in June 2016, Intel announced Control-flow Enforcement Technology [63] (CET).
In CET a shadow stack is defined in order to protect backward-edge control flow transfers
in a manner similar to our design. In contrary to our design, when CET is enabled, call
instructions are responsible for pushing the return address in the shadow stack as well as
in the original stack. Ret instructions pop the shadow stack and ensure that it matches the
return address acquired from the application’s stack. In case of mismatch an exception is
raised and the execution of the application stops. The shadow stack’s integrity is protected
by the MMU in order to prevent an adversary from overwriting the return addresses re-
siding in it. Any memory instruction, trying to access the contents of the shadow stack is
blocked by the MMU and a page fault is raised. In order to protect forward-edge control
flow transfers ENDBRANCH instruction is used to mark the legitimate landing points for
call and indirect jump instructions within the applications code. When a jump is issued
CET enters WAIT_FOR_ENDBRANCH state. If an ENDBRANCH instruction is not the
next instruction in the program stream, the processor raises a control protection fault.



46 CHAPTER 7. RELATED WORK

Proposal SW/HW Forward
Edge

Backward
Edge

Setjmp
Longjmp
Support

Source
code
recompilation

Shadow
Stack

Abadi et al. CFI SW FINE FINE N Y Y
CFI for COTS
Binaries

SW COARSE COARSE Y N N

CCFIR SW COARSE COARSE Y N N
Kbouncer HW

assisted
COARSE COARSE Y N N

ROPecker HW
assisted

COARSE COARSE Y N N

VTint SW COARSE N Y N N
VTV SW COARSE N Y N N
ShrinkWrap SW FINE N Y Y N
Branch Regulation HW COARSE FINE N Y Y
HAFIX HW N COARSE Y Y N
XFI HW FINE COARSE Y Y N
NSA’s CFI HW COARSE FINE NA Y Y
Intel CET HW COARSE FINE NA Y Y
CFIX HW FINE FINE Y N Y

Table 7.1: A summary of CFI related proposals.
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Discussion & Future Work

CFIX’s design does not offer support for multi-threaded environments. A single shadow
stack located in the core is not sufficient to store the return addresses for all the processes
that share the processor. Implementing an array of shadow stacks inside the core would
be a step towards achieving this functionality. Unfortunately, such a hardware implemen-
tation is not feasible, due to the substantial area overhead it would introduce; the array
would have to be large enough to store the shadow stack for every active process.

This approach can be easily implemented by having a small array of shadow stacks
indexed by the processes’ IDs. When a context switch occurs, the operating system has
to store the new running process’ ID to a memory-mapped register that is visible to the
control-flow integrity pipeline. The pipeline would, in turn, use it to select the appropriate
shadow stack for the running process. When the process is terminated, a cfiexit instruction
will be issued in order to invalidate the process’ slot in the shadow stack array. Addition-
ally, several software stacks could be integrated in one hardware stack. Instead of using
an array of shadow stacks, the operating system could use one shadow stack for storing
return addresses along with their respective process ID. Once a process terminates, all
stale records contained at the shadow stack should be cleaned up by the operating system.
Enabling multiple shadow stacks is part of our future work.

The most novel approach, that handles multi-threaded environments, is proposed by
IAD [62]. They conclude that the optimal design for a shadow memory assisted archi-
tecture has to derive a large subset of the logic from the existing MMU subsystem. In
essence, the core is augmented with a second MMU(Shadow MMU), that reserves a small
part of the system’s memory, and denies access to it for everything but itself and the the
set of CFI instructions from the core’s extended ISA.

Compared to our design, the above approach would provide the same level of security,
but would trade-off performance for multi-threading support. The performance degrada-
tion is owed to the fact that the CFI instructions would now operate on the slow system
memory, and not the initial memory located inside the processor’s core. An obvious op-
timization, is to include enough memory for one process inside the core, much like in
our current design, and utilize the shadow MMU in order to swap the CFI values of the
executing thread at every context switch. With this optimization, the shadow MMU ar-
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chitecture would add minor performance overhead over our initial design, considering the
overhead imposed by the context switch itself, and therefore it could be essentially used
on top of CFIX. We plan to explore this integration in our future work.



Chapter 9

Conclusion

In recent years, a trend has begun among the leading hardware manufacturers, in devel-
oping and providing hardware-assisted security enforcement techniques in commodity
hardware; in particular, processors. With the advent of the Internet Of Things and with
our planet and lives becoming ever more interconnected, this is a very welcome trend
indeed.

In this work we aimed to provide security solutions against one of the most timeless,
yet still prevalent software exploits found in the wild; Code-Reuse attacks through Stack-
Smashing. Proposed software-only defenses, either lack in security assurances, or impose
prohibitive runtime overheads, making them impractical for deployment in any system.
Not wanting to propose another impractical security scheme, we opted to follow the trend
set by the Industry and pushed a well studied security technique to the hardware domain.

We began by presenting a small rundown of the history of stack smashing attacks and
the existing defenses against them. We explained the concept of Control Flow Integrity
and its strong security guarantees, but, also, its shortcomings, with regards to execution
time overheads, that render it a very poor choice for enhancing a system’s security. We
discussed the advantages of using hardware enforced principles, to gain the benefits of the
lower runtime overheads imposed during execution, as well as the extra security provided
by the immutability of hardware. Finally, before presenting our own work, we discussed
the state-of-the-art in hardware security, and how those techniques, while substantially
raising the bar for any attacker, can not fully protect a system, even when used in con-
junction with one another.

Control Flow Integrity is a principle that was designed to offer complete protection
against any sort of control-flow hijacking attacks, that hinges on the malicious manipu-
lation of control-flow variables by an adversary. Indeed, CFI can offer a perfect security
scheme for protecting against such attacks, as long as its principles are followed to the let-
ter, and not relaxed so as to amortize its, decidedly, large runtime overhead. Using what
we previously discussed, namely that hardware-assisted security techniques can greatly
alleviate such overheads, we set forth to outline a CFI implementation that would make no
compromises to its security assurances, even strengthening them further, while maintain-
ing a very manageable performance degradation. We designed our proposed CFI scheme
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to also make use of the immutability of hardware, requiring that all memory elements
needed, be unmapped; hence, invisible to the software, and by extension, any potential
attackers.

To achieve these goals, we extended the SPARCv8 ISA of a Leon3 processor, with
new instructions and memory elements, to provide the functionality envisioned. We over-
came the hurdles and edge-cases that arose without lowering the level of security offered.
The implemented design successfully met the requirements we had set for it, offering
perfect Control Flow Integrity, while keeping the average runtime overhead just under
1%.
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[59] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos, “Shrinkwrap:
Vtable protection without loose ends.” in ACSAC. ACM, 2015, pp. 341–
350. [Online]. Available: http://dblp.uni-trier.de/db/conf/acsac/acsac2015.html#
HallerGAPB15

[60] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, “Branch regula-
tion: Low-overhead protection from code reuse attacks,” in Computer Architecture
(ISCA), 2012 39th Annual International Symposium on. IEEE, 2012, pp. 94–105.

[61] M. Budiu, U. Erlingsson, and M. Abadi, “Architectural support for software-based
protection,” in Proceedings of the 1st workshop on Architectural and system support
for improving software dependability. ACM, 2006, pp. 42–51.

[62] “Hardware Control Flow Integrity for an IT Ecosystem,” https://github.com/iadgov/
Control-Flow-Integrity/tree/master/paper, 2015.

[63] “Control-flow Enforcement Technology Preview,” https://software.intel.com/sites/
default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf,
2016.

http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dblp.uni-trier.de/db/conf/acsac/acsac2015.html#HallerGAPB15
http://dblp.uni-trier.de/db/conf/acsac/acsac2015.html#HallerGAPB15
https://github.com/iadgov/Control-Flow-Integrity/tree/master/paper
https://github.com/iadgov/Control-Flow-Integrity/tree/master/paper
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

	1 Introduction
	1.1 Code injection
	1.1.1 Modern defences

	1.2 Code Reuse
	1.2.1 Gadgets
	1.2.2 Return-to-libc
	1.2.3 Modern Defences

	1.3 CFI
	1.4 Contributions
	1.5 Organization

	2 Background
	2.1 Security mechanisms in hardware
	2.2 Security-oriented processor features
	2.2.1 Protection rings
	2.2.2 Virtual Addressing and memory segmentation
	2.2.3 TrustZone
	2.2.4 Data Execution Prevention
	2.2.5 Memory Protection Extensions
	2.2.6 Software Guard Extensions
	2.2.7 Advanced Encryption Standard New Instruction
	2.2.8 Last Branch Record
	2.2.9 Dynamic Information Flow Tracking
	2.2.10 Instruction Set Randomization


	3 CFIX Architecture
	3.1 Control Flow Integrity enforcement
	3.1.1 Forward-edge
	3.1.2 Backward-edge

	3.2 Architecture Overview
	3.3 ISA Extension
	3.4 Shadow Stack Incompatibilities
	3.4.1 Setjmp/Longjmp
	3.4.2 Tail-Call Elimination

	3.5 Recursion Support
	3.6 Instrumentation

	4  CFIX Prototype Implementation
	4.1 Introduction to the Leon3 Softcore
	4.2 Delay Slot
	4.3 Memory Element Additions
	4.4 Leon3 Pipeline Modifications
	4.5 Violations
	4.6 Portability to Other Architectures

	5 Performance Evaluation
	5.1 Testing Environment
	5.2 BareFS
	5.3 NOP Equivalence & Profiler Verification
	5.4 Runtime Overhead
	5.5 Hardware Overhead
	5.6 Power Consumption

	6 Security Evaluation
	6.1 Defence with CFI ISA extensions
	6.2 Exploitation Prevention

	7 Related Work
	7.1 Coarse-Grained Approaches
	7.1.1 CFI for COTS binaries
	7.1.2 CCFIR
	7.1.3 Kbouncer
	7.1.4 ROPecker

	7.2 Selective, Fine-Grained CFI
	7.2.1 VTint
	7.2.2 Virtual-Table Verification
	7.2.3 ShrinkWrap

	7.3 Hardware Implementations
	7.3.1 Branch Regulation
	7.3.2 HAFIX
	7.3.3 XFI
	7.3.4 NSA's CFI
	7.3.5 Intel CET


	8 Discussion & Future Work
	9 Conclusion

