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“If you can’t explain it simply, 
you don’t understand it well enough.” 
 

 

Albert Einstein & Richard Feynman 
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«Theoretical investigation of tungsten disulfide - graphene 

heterostructures» 
 

 

 

 
 

Abstract 
 
Research in two-dimensional (2D) materials and van der Waals heterostructures gains 
enormous popularity across various scientific and engineering disciplines. Electrons 
in these materials can move in two dimensions but are confined in the out of plane 
direction, leading to some fascinating optoelectronic properties. In this direction of 
research, we present Density Functional Theory (DFT) results for the atomic and 
electronic structure of WS2 monolayer, graphene and WS2/graphene heterobilayer. 
We performed DFT calculations to investigate interlayer interactions and the effect of 
lattice mismatch in WS2/graphene van der Waals heterostructures. We found that 
strain affects their binding energy and electronic structure. Examining stability and 
band alignment in these heterostructures with DFT is quite challenging. By using 
different WS2/graphene supercells with different lattice mismatch and by unfolding 
their electronic band structure, we find that strain induces significant electronic 
properties modifications in the WS2 layer, such as direct to indirect band gap 
transitions. Furthermore, in an effort to interpret recent experiments, we studied 
exciton effects in WS2 monolayer using theoretical methods based on the Bethe-
Salpeter equation (BSE) for 2D materials. Our excitonic spectra are in good 
agreement with experimental data and are affected by strain in a way which is 
consistent with confinement effects. Theoretical understanding of the optoelectronic 
properties of WS2/graphene heterostructures complements experimental works and 
provides a powerful tool for exploring potential applications and devices. 
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«Θεωρητική μελέτη ετεροδομών διθειούχου βολφραμίου - 
γραφενίου» 

 

 

 

 

 

Περίληψη 
 

Η έρευνα στα δισδιάστατα (2Δ) υλικά και στις ετεροδομές van der Waals έχει γίνει 
εξαιρετικά δημοφιλής σε διάφορα πεδία της επιστήμης και της μηχανικής. Τα 
ηλεκτρόνια στα υλικά αυτά μπορούν να κινούνται σε δύο διαστάσεις αλλά είναι 
περιορισμένα στην εκτός επιπέδου διεύθυνση, με αποτέλεσμα να παρουσιάζουν 
ορισμένες εντυπωσιακές οπτοηλεκτρονικές ιδιότητες. Σε αυτή την ερευνητική 
κατεύθυνση, παρουσιάζουμε αποτελέσματα Θεωρίας Συναρτησιακού Πυκνότητας 
(Density Functional Theory - DFT) για την ατομική και ηλεκτρονική δομή της μονής 
στρώσης WS2, του γραφενίου και της ετεροδομής διπλής στρώσης WS2/γραφενίου. 
Πραγματοποιήσαμε υπολογισμούς DFT για να διερευνήσουμε τις δια-στρωματικές 
αλληλεπιδράσεις και την επίδραση της αναντιστοιχίας πλέγματος στις ετεροδομές van 
der Waals WS2/γραφενίου. Διαπιστώσαμε ότι η παραμόρφωση επηρεάζει την 
ενέργεια δέσμευσης και την ηλεκτρονική δομή τους. Η μελέτη με DFT της 
σταθερότητας και της διάταξης των ηλεκτρονικών ζωνών σε τέτοιου είδους 
ετεροδομές παρουσιάζει αρκετές δυσκολίες. Χρησιμοποιώντας διαφορετικές υπερ-
κυψελίδες WS2/γραφενίου με διαφορετική αναντιστοιχία πλέγματος και 
ξεδιπλώνοντας την δομή των ηλεκτρονικών ζωνών τους, βρίσκουμε ότι η 
παραμόρφωση προκαλεί αξιοσημείωτες τροποποιήσεις των ηλεκτρονικών ιδιοτήτων 
στο στρώμα WS2, όπως μεταβάσεις από άμεσο σε έμμεσο ενεργειακό χάσμα ζώνης. 
Επιπλέον, σε μια προσπάθεια να ερμηνεύσουμε πρόσφατα πειράματα, μελετήσαμε 
εξιτονικά φαινόμενα στο στρώμα WS2 χρησιμοποιώντας θεωρητικές μεθόδους που 
βασίζονται στην εξίσωση  Bethe-Salpeter (BSE) για 2Δ υλικά. Τα εξιτονικά φάσματα 
που υπολογίζουμε είναι σε συμφωνία με πειραματικά δεδομένα και επηρεάζονται από 
την παραμόρφωση με τρόπο που συνάδει με φαινόμενα κβαντικού περιορισμού. Η 
θεωρητική κατανόηση των οποτηλεκτρονικών ιδιοτήτων των ετεροδομών 
WS2/γραφενίου συμπληρώνει τις πειραματικές εργασίες και παρέχει ένα ισχυρό 
εργαλείο για την διερεύνηση πιθανών εφαρμογών και συσκευών. 
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Chapter 1 
 
Introduction 
 
The study of two-dimensional (2D) layered materials has motivated enormous re-
search activity, because electrons in these materials are absolutely confined in the out 
of plane direction leading to some very interesting quantum physics arising from their 
2D nature. In this work, two of the most interesting 2D materials for optoelectronic 
applications are investigated, graphene and a semiconducting transition metal 
dichalcogenide (TMD), namely tungsten disulfide (WS2). Separate layers of these 2D 
materials can be stacked vertically due to weak van der Waals (vdW) interactions, 
which allow the formation of heterostructures.  
 
In this thesis, we provide theoretical calculations using Density Functional Theory 
(DFT) for understanding the atomic and electronic structure of these 2D materials and 
WS2/graphene heterostructures, as well as excitonic effects in WS2 monolayer. Such 
materials make highly suitable ingredients for components of next generation 
nanoelectronics devices, and give rise to new physical phenomena[1]. 
 
 
1.1 Two-Dimensional Materials 
 
Two-dimensional (2D) materials, often referred to as "single layer materials", are 
crystalline materials consisting of a single layer of atomic thickness. One of the most 
famous of these 2D materials is graphene[2], which is a single layer of graphite in 
which the carbon atoms form a hexagonal honeycomb lattice. Since the isolation of 
graphene in 2004 a large amount of research has been directed in the study of these 
materials[19] and in 2010 the Nobel Prize was awarded to Andre Geim and Konstantin 
Novoselov[5]. Graphene shows outstanding properties such as very high carrier 
mobilities, excellent heat conductivity, and superior mechanical strength. Because of 
its remarkable properties[2][6][50], applications using graphene are developed in a wide 
range of areas, including high-speed electronics[7][9] and optical devices[8], energy 
generation and storage[10][11], hybrid materials[12], chemical sensors[13], and even DNA 
sequencing[14][15][16].  
 
On the other hand, some of the most popular layered materials are the transition metal 
dichalcogenides (TMDs) such as MoS2 and WS2

[17][18]. TMD monolayers are atomi-
cally thin semiconductors of the general type MX2 where M is the transition metal 
atom and X is the chalcogen atom. This structure consists of a layer of transition met-
al among two layers of chalcogen. TMDs have attracted a lot of interest in the post 
graphene layered material era due to their significant optoelectronic properties[3][4][18]. 
TMD materials have the advantage over graphene of having extended bandgap 
tunability through composition, thickness and possibly even strain control. Semicon-
ducting TMDs have a direct gap and can be used in electronics as transistors and in 
optics as emitters and detectors[20][21]. Two-dimensional nanomaterials composed of 
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graphene and nanostructured TMDs have attracted a great deal of interest due to their 
unique properties. Heterostructures of these materials are good candidates for poten-
tial applications in electronic devices such as solar cells, transistors and as a catalyst 
for hydrogen evolution in water splitting[22][60][68][69]. 
 
 
1.2 Computational science  
 
Computational science describes the crucial role of computer as an effective tool in 
science and engineering. It includes many algorithms and models in order to solve 
huge and difficult problems which is impossible to manage by a human.  
 
Materials science problems often require the solution of hard, frequently non-solvable 
via analytical methods equations. It is impossible to analytically solve most models 
that consider more than two bodies, except for a few special cases. This is very incon-
venient because most interesting problems in condensed matter physics consider N 
particles, where N can be anything from a few hundreds to 1023. Therefore, we need 
computational science which is the science that uses the numerical analysis in order 
to solve a problem for which a quantitative theory already exists.  
 
In this case, the modelling method which we use is DFT, as we will discuss in the 
next chapter. The role of computational science in this thesis is the necessary tool 
for developing and implementing modelling at the atomistic level for understanding 
and predicting the atomic structure and the electronic properties of 2D materials.  
 
 
1.3 Thesis Outline  
 
In this thesis, we study the monolayer of WS2, a material in the TMDs family, and 
well-known graphene, which is composed of a single sheet of carbon atoms arranged 
in a honeycomb lattice. We performed DFT calculations for the atomic structure and 
electronic band structure, first separately for the monolayer of WS2 and graphene, and 
then for WS2/Graphene heterostructure in order to analyze the optoelectronic proper-
ties.  
 
The aim of this thesis is to investigate the WS2/Graphene heterostructures and espe-
cially explore atomic structure and electronic band structure. To achieve this goal, we 
built two different sizes of supercell (SC). The heterostructure of WS2 (3 × 
3)/Graphene (4 × 4) with 59 atoms and the heterostructure of WS2 (4 × 4)/Graphene 
(5 × 5) with 98 atoms in order to achieve a small lattice mismatch (approximately 1%) 
which plays a crucial role in the stability of the heterostructure. The strain in 
WS2/Graphene heterostructures affects dramatically the electronic band structure pic-
ture. It is challenging to explain the behavior of band alignment in the electronic band 
structure diagrams. Furthermore, we performed calculations to examine the interlayer 
distance and the optimal configurations. 
 
Finally, we studied the photoluminesce spectrum using the Bethe-Salpeter equation 
(BSE) in 2D systems and calculated excitonic effects in monolayer WS2. The reason 
we study these heterostructures is to gain further knowledge from a theoretical point 
of view about the electronic properties and to complement or confirm experimental 
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works in these systems. These heterostructures have not been extensively studied and 
have prospects that may enable their widespread use in applications.  
 
 
 
 
According to the above, this thesis is organized as follows: after this small introducto-
ry chapter 1, we give, in chapter 2, a brief overview of DFT and theoretical back-
ground behind the electronic band structure calculations. We also discuss, the basic 
concepts of the theory of BSE and last, we give some computational details. Later on, 
in chapter 3, we examine monolayer WS2 and graphene and we present the results for 
their atomic and electronic structure from DFT calculations.  
 
In chapter 4 we present the extensive study for WS2/Graphene heterostructure and we 
give the results from DFT calculations for the atomic and electronic structure for dif-
ferent sizes of supercell (SC). We will analyze and discuss each case and explain the 
role of lattice mismatch on WS2/Graphene heterostructures. In chapter 5, we will in-
vestigate the optical excitations in monolayer of WS2 according to the spectrum from 
the BSE. In chapter 6, we give the conclusions of this thesis and we discuss the recent 
experimental works and future prospects in these vdW heterostructures. 
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Chapter 2 
 
Theoretical and computational methods 
 
In this thesis we use the Density Functional Theory (DFT). In this chapter, we will 
briefly discuss DFT and some of its important concepts. We describe the method 
which we follow for the electronic band structure calculations in the primitive cell 
(PC) and give an overview of the theory for electronic band structure unfolding for 
supercell (SC) calculations. We discuss the basic theory of the Random Phase Ap-
proximation (RPA) and Bethe-Salpeter Equation (BSE), which are the main methods 
we use for excitonic effects. Finally, in the last subsection, we give some computa-
tional details. 
 
 
2.1 Density Functional Theory (DFT) 
 
The introduction of quantum mechanics led to a revolution in science and is regarded 
as the most profound scientific breakthrough of all time. Quantum mechanics explains 
the behavior of matter and interactions on atomic scales. Every quantum mechanical 
phenomenon is described by the Schrödinger equation. DFT is a method in quantum 
mechanical modeling for studying the behavior of the material by solving the Schrö-
dinger equation and finding the ground state of the system which is defined as the 
state in which the system has the lowest possible energy. On the other hand, excited 
state of a quantum mechanical system is any state that has energy greater than the 
ground state.  
 
DFT is now one of the most dominant computational methods for electronic structure 
calculations as well as a tool for many-body problems in solid state physics and mate-
rials science.  DFT was introduced by Hohenberg and Kohn in 1964[23] and the ap-
proximation of the many electron problem arose with results from the work of 
Hohenberg, Kohn and Sham[24]. The Hohenberg-Kohn theorem asserts that the elec-
tronic density of a system determines all ground state properties of the system. In this 
case, the total ground state energy of a many-electron system is a functional of the 
density. So, if we know the electron density functional, we know the total energy of 
our system. Based on these, the basic idea of DFT is to describe an interacting system 
of fermions via its density and not via its many-body wave function.  
 
In DFT, the electronic orbitals are solutions to a Schrödinger equation which depends 
on the electron density rather than on individual electron orbitals. An assumption it 
uses in order to reduce as far as possible the number of degrees of freedom of the sys-
tem is called the Born-Oppenheimer approximation. The Born-Oppenheimer approx-
imation, in a few words, says that nuclei are fixed and the kinetic energy is a function 
of the electrons kinetic energy. This assumption is made because the nucleus is much 
heavier than the electron so it is clear that nuclei move much slower than electrons. 
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DFT applies to many-body systems and considers the interaction between electrons 
and nuclei. Nowadays, most atomic and electronic band structure calculations are 
based on DFT. At this point, some very basic concepts of quantum mechanics that the 
DFT uses are summarized. 
 
 
Schrödinger equation, is a partial differential equation that describes the behavior of 
the quantum state of a physical system. This equation may be independent or depend-
ent on time, and it has the general form: 
 

Η�Ψ = ΕΨ   (1) 
 
where Η� is the hamiltonian operator and Ψ is the wavefunction. 
 
We can write the hamiltonian operator: 
 

Η� = T�e + V�n−e + V�e−e   (2) 
 
where T�e is the operator for the kinetic energy of electron, V�n−e is the operator for the 
potential energy through the Coulomb interactions of the nucleus and electron, V�e−e is 
the operator for the potential energy through Coulomb interaction of the electrons. 
 
If we replace the expressions for the terms of equation we have: 

 
Η� = − ℏ2

2me
∑ 𝛻i2i − e

8πε0
∑ Qi

�rı���⃗ −R��⃗ j�ij + e2

8πε0
∑ 1

�rı���⃗ −r�⃗ j�ij    (3) 

 
The fundamental axiom of DFT is that any property of a system of many interacting 
particles can be viewed as a functional of the electron density n(r⃗), which for 
a normalized Ψ is given by 
 

n(r⃗) = N∫ d3r2 …∫ d3rNΨ∗(r⃗, r⃗2, … , r⃗N)Ψ(r⃗, r⃗2, … , r⃗N)   (4) 
 
where N is the total number of electrons and the total energy of the system can be de-
termined by the expectation value of the hamiltonian: 
 

E[n] = 〈Ψ[n]�T�e + V�n−e + V�e−e�Ψ[n]〉   (5) 
 
Minimizing the energy functional E[n] with respect to n(r⃗) yields the ground state 
density.  
 
The Kohn–Sham equations (non-interacting system): 
 

�− ℏ2

2me
∑ 𝛻i2i − e2

8πε0
∑ Zi

�r�⃗ −R��⃗ i�i + ∫ d3r′n�r′��⃗ � 1
�r�⃗ −r′���⃗ �

+ Vxc[n](r⃗)�ψι(r⃗) = Eiψι(r⃗)   (6) 

 
yields orbitals ψι that produce the density of the original system. 
 
The fourth term of the hamiltonian, the exchange correlation potential, contains the 
many body effects. This term is the most important in DFT because it corrects for the 
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electron self-interaction which leads to the overestimated electron-electron interac-
tion. There are no simple accurate expressions for exchange correlation potential. In 
order to calculate it some approximations are made and for that reason many 
functionals have been developed, such as the Generalized Gradient Approximation 
(GGA), Local Density Approximation (LDA).  
For the purpose of this thesis we will use the LDA functional. LDA was formulated 
based on the properties of the uniform electron gas, and, therefore, it is exact for the 
special case of a uniform electronic system. LDA is a class of approximations for the 
exchange correlation energy functional that depends solely on the electron density at 
each point of space. The LDA can be easily applied using plane waves with periodic 
boundary conditions. In this case the exchange correlation energy is calculated as fol-
lows: 
 

ExcLDA[n] = ∫ n(r⃗)εxc(n)d3r   (7) 
 
 
2.2 Methods for band structure calculation 
 
In this section, we will discuss the theoretical background behind the electronic band 
structure calculations we applied to monolayers WS2, graphene and WS2/Graphene 
heterostructures. At first, the calculation of ground state based on DFT uses some 
simplifications and approximations in order to handle the problem of the infinite 
number of interacting electrons moving in the static field of an infinite number of 
ions. The solution of the Schrödinger equation at zero potential is a plane wave. The 
electrons far from the nuclei behave as free particles and can be represented by plane 
waves. The electrons close to the nucleus behave as in a free atom and hence, atomic 
like functions can be used to represent them. The system with electron-electron inter-
actions can be mapped to a non-interacting electron system, and an infinite solid bulk 
may be considered periodic. The ions in a perfect crystal are arranged in a regular pe-
riodic way. Therefore, the external potential felt by the electrons will also be periodic, 
the period is the same as the length of the unit cell (L).  
 
In one dimension, the external potential on an electron at position r can be expressed 
as V(r) = V(r + L), which is the condition for the use of Bloch's theorem. With the use 
of this theorem it is possible to express the wave functions of the infinite crystal in 
terms of wave functions at reciprocal space vectors of a Bravais lattice. Bloch's theo-
rem uses the periodicity of a crystal to reduce the infinite number of electron wave 
functions to be calculated, to simply the number of electrons in the unit cell of the 
crystal. The wave function is written as the product of a cell periodic part and a wave-
like part as: 
 

Ψi(r⃗) = eik��⃗ r�⃗ fi(r⃗)   (8) 
 
where fi(r⃗) a periodic function with the periodicity of the unit cell and k is the k-point 
that refers to all the values in the first Brillouin zone.  
 

fi(r⃗) = ∑ ciGeiG��⃗ r�⃗G    (9) 
 
The first Brillouin zone is the primitive cell (PC) in the reciprocal space, and it is giv-
en by the volume surrounded by the surfaces with the same distance from one element 
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point of the lattice and its neighbors. The reciprocal space in solid-state physics stands 
for the array of reciprocal lattices. The G��⃗  are the reciprocal lattice vectors which are 
defined by G = 2πm

L
.  

 
 
Therefore, each electronic wavefunction is written as a sum of plane waves. 
 

Ψι(r⃗) = ∑ ci,k+Gei�k��⃗ +G��⃗ �r�⃗G    (10) 
 
The electronic wavefunctions at each k-point are now expressed in terms of a discrete 
plane wave basis set. In principle, this Fourier serie is infinite. However, the coeffi-

cients for the plane waves ci,k��⃗ +G��⃗   each have a kinetic energy ℏ
2��k��⃗ +G��⃗ ��

2

2m
. The plane 

waves with a smaller kinetic energy typically have a more important role than those 
with a very high kinetic energy.  
 
So, this introduction of plane wave energy cut off reduces the basis set to a finite size. 
According to these in this thesis we use plane wave method for electronic band struc-
ture calculations. This means that the wave functions are expanded in plane waves 
and that: 
 

|G+k|2

2
< Ecut   (11) 

 
where Ecut is the energy plane wave cutoff. In this work Ecut = 600eV. 
 
As we said before, with the Bloch's theorem we can write the electron wave function 
as a part of a plane wave like and a periodic function as we can see in the equation 
(8). So, one of the important parameters in this study is the number of k-points. That 
way all the physical properties in the system are periodic functions of the eigenstates 
of the k�⃗  vector. We only need to consider k�⃗  vectors inside the primitive unit cell of the 
reciprocal lattice of the system, which is called Brillouin zone. For example, if we 
want to solve the Schrödinger’s equation for a many body problem in one dimension, 
we just have to take the k points that are in the range between −π

a
≤ k ≤ π

a
 where a is 

the lattice constant. In the next figure 2.1, we can see the graphical representation of 
the k points for the first Brillouin zone for the 2D hexagonal Bravais lattice which is 
used in our thesis: 
 

Figure 2.1 
 



 

17 
 

 
 
 

Figure 2.1: First Brillouin zone for 2D hexagonal Bravais lattice. 
So, the Brillouin zone sampling[26] is defined with the expression kpts = (N1, N2, N3) 
where N1, N2 and N3 are positive integers. This will sample the Brillouin zone with a 
regular grid of N1*N2*N3 k-points. In this work after investigation we determine for 
all electronic band structure calculations to set kpts = (4, 4, 1). So far, we have de-
scribed the theory behind the electronic band structure calculation in PC. However, 
for investigating the electronic band structure for WS2/graphene heterostructures we 
need to build first the supercell (SC) for WS2 and graphene. For this reason, we make 
appropriate SC in which Bloch’s theory may be applied to periodic structures such as 
monolayers. A SC consists of the vectors that define the cell that can be repeated in 
three dimensions and produces the required crystal structure and also the atom posi-
tions in the cell. At this point, it is important to explore and understand the whole pic-
ture about the electronic band structure for SC. Due to the many electrons in the unit 
cell, the electronic band structure of a SC is complicated. For that reason, we follow 
the method for unfolding the band structure of the SC to the one of the PC. According 
to these, we will give below an overview of the theory of electronic band structure 
unfolding for SC calculations. The basis vectors of the SC and PC satisfy: 
 

A��⃗ = M ∗ a�⃗ ,  
 

or 
 

�
A��⃗ 1
A��⃗ 2
A��⃗ 3

� = �
m11 m12 m13
m21 m22 m23
m31 m32 m33

� * �
a�⃗ 1
a�⃗ 2
a�⃗ 3
�,    mij ∈ ℤ   (12) 

 
where A��⃗  and a�⃗  are matrices with the cell basis vectors as rows and M the transfor-
mation matrix. Following the convention adopted above we give a relation similar to 
Eq. (12) which the two reciprocal basis vectors B��⃗ i = � 2π

VSC
� ∗ �A��⃗ jxA��⃗ k� and b�⃗ i =

� 2π
uPC

� ∗ �a�⃗ jxa�⃗ k�: 
 

B��⃗ = M−1 ∗ b�⃗ , 
 

or 
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    �
B��⃗ 1
B��⃗ 2
B��⃗ 3

� = M−1 * �
b�⃗ 1
b�⃗ 2
b�⃗ 3

�,   (13) 

 
where uPC and VSC the volumes of the PC and SC unit cells respectively which are re-
lated by VSC = uPC ∗ det(M). Now, given a wave vector k�⃗  in primitive Brillouin zone 
(PBZ) it is said to fold into a wave vector K��⃗  in supercell Brillouin zone (SBZ) if there 
exists a reciprocal lattice vector G��⃗  (in the SBZ) such that: 
 

K��⃗ = k�⃗ − G��⃗    (14) 
 
Conversely, a wave vector K��⃗  unfolds into k�⃗ i ∈ PBZ 
 

 k�⃗ = K��⃗ + G��⃗    (15) 
 

These equations (14) and (15) summarize the very principle of folding and unfolding 
of states. The vectors K��⃗  and G��⃗  in equation (14) are unique for a given k�⃗ , which means 
that a given wave vector k�⃗  ∈ PBZ is mapped precisely into a single wave vector K��⃗  ∈ 
SBZ (folding). In contrast, equation (15) shows that a given wave vector K��⃗  can be ob-
tained from a number NK��⃗ = detM of different (k�⃗ i, G��⃗ i) pairs (unfolding). According to 
these the electronic structure calculation methods can be applied to a periodic solid 
using either a PC or a SC representation. By solving the Schrödinger equation of the 
electronic system, we can obtain both the eigenvectors ��k�⃗ n�� in PC and ��K��⃗ m �� in SC 
(where n and m stand for band indices) and the dispersion relations E�k�⃗ �  and E�K��⃗ �, 
which are well-defined quantities in both representations. In this direction, the basic 
idea of an unfolding procedure is to recover, from the SC calculation alone, either the 
PC eigenvectors ��k�⃗ n�� and their contributions to the SC eigenstates ��K��⃗ m ��, or the E�k�⃗ � 
picture from the often complicated E�K��⃗ �. The basic relation which has a crucial role in 
the unfolding method is the spectral function of the PC calculation starting from ei-
genvalues and eigenfunctions of the SC one. Spectral function can be presented as 
follows: 
 

A�k�⃗ , E� = ∑ PK��⃗ mm �k�⃗ �δ�EK��⃗ m − E�   (16) 
 

where PK��⃗ m�k�⃗ � are the spectral weights defined by: 
 

PK��⃗ m�k�⃗ � = ���K��⃗ m�k�⃗ n��
2

n

 

 
This quantity represents the probability of finding a set of PC states ��k�⃗ n�� contributing 
to the SC state ��K��⃗ m�� which give information about how much of the amount of Bloch 
character ��k�⃗ n�� is preserved in ��K��⃗ m ��P

[27][28][29]. 
 
 
2.3 Theoretical approximation methods for excitons 
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After the analysis of the theory for electronic structure calculations in this work we 
will also study optical excitations in monolayer of WS2 through DFT calculations. In 
our thesis, we followed two approximation methods in order to calculate the dynam-
ical dielectric function for excitation effects, which are the Random Phase Approxi-
mation (RPA) and Bethe-Salpeter Equation (BSE). For this purpose, it is important in 
this section to present an overview of RPA and BSE methods respectively. 
 
The RPA[25][30][31] is a non-perturbative method which accounts for the weak screened 
Coulomb interaction and used for describing the dynamic linear electronic response of 
many-electron systems. RPA uses local field and electrons are assumed to respond 
only to the total electric potential Vtot(r) which is the sum of the external perturbing 
potential Vext(r) and a screening potential Vsc(r). 

  

Vtot(r) = Vext(r) + Vsc(r)   (17) 

In the RPA, the key quantity is the non-interacting density response function χ0 which 
describes the change of the density δnn−i if the external potential undergoes a small 
change δVtot according to the relation (18). 

 

δnn−i = χ0δVtot   (18), 

 

where χ0 is the polarizability of the system in reciprocal space derived by Ad-
ler [32] and Wiser [33] and is written as: 

 

χGG′
0 (q,ω) = 1

Ω
∑ ∑

fnk−fn′k+q
ω+εnk−εn′k+q+iη

�ψnk�e−i(q+G)∗r�ψn′k+q�Ωcelln,n′
ΒΖ
k �ψnk�ei(q+G′)∗r′�ψn′k+q�Ωcell   (19) 

 
where εnk and ψnk are the eigenvalue and eigen wavefunction, which is normalized to 
1 in the crystal volume Ω = Ωcell*Nk and q stands for the Bloch vector of the incident 
wave and G(G′) are reciprocal lattice vectors. The sum of occupation fnk should be the 
total number of electrons in the crystal, satisfying 

 
∑ fnknk = NkN   (20) 

 

where N is the number of electrons in a single unit cell and Nk is the number of unit 
cells k-points. 

The external perturbing potential is assumed to oscillate at a single frequency ω, so 
that the model yields via a self-consistent field (SCF) method[34] a dynam-
ic dielectric function denoted by εGG′

RPA(q,ω) given as: 

 

εGG′
RPA(q,ω) = δGG′ −

4π
|q+G|2 χGG′

0 (q,ω)   (21) 

https://en.wikipedia.org/wiki/Random_phase_approximation#cite_note-1
https://en.wikipedia.org/wiki/Random_phase_approximation#cite_note-1
https://en.wikipedia.org/wiki/Random_phase_approximation#cite_note-3
https://wiki.fysik.dtu.dk/gpaw/documentation/tddft/dielectric_response.html?highlight=random%20phase%20approximation#adler
https://wiki.fysik.dtu.dk/gpaw/documentation/tddft/dielectric_response.html?highlight=random%20phase%20approximation#wiser


 

20 
 

 
and from that the macroscopic dielectric function is defined by  
 

εΜ(q,ω) = 1
ε00−1(q,ω)   (22) 

 
As a result, the optical absorption spectrum (ABS) is obtained through  
 

ABS = ImεΜ(q → 0,ω)   (23) 
 
After we presented the RPA, we will discuss the BSE which is the second theoretical 
approximation method (for excitons) which we followed. BSE is an object which cal-
culates optical and dielectric properties of material systems including the electron-
hole interaction. The BSE has been successfully applied to describe two-particle exci-
tations and represents also a powerful tool to deal with excitation energies like ab-
sorption spectra. In this framework, as we understand the BSE calculation is the se-
cond stage after DFT. The first stage starts with perform DFT calculation which gives 
a ground state structure of the system, by solving the Kohn-Sham (KS) equations in 
LDA. In order to get improved response functions and describe correctly the im-
portant excitonic effects we solve the BSE for the polarizability. This leads in general 
to excellent absorption spectra[70]. In practice, the BSE can be solved by diagonalizing 
a two-particle excitonic Hamiltonian which moreover provides information about the 
excitonic eigenstates and eigenvalues. In transition space and using the only-resonant 
approximation it is given as: 

HeffAλ = EλAλ   (24)  

where Aλ 34T, Ελ are the eigenvectors and eigenvalues of the two-particle Hamiltonian. In 
practice we evaluate everything in frequency domain, reciprocal space and transitions 
basis. The excitonic Hamiltonian reads: 

Huu′cc′kk′
eff = (εck − εuk)δuu′δcc′δkk′ + ⟨uck|u�|u′c′k′⟩ − ⟨uck|W|u′c′k′⟩   (25) 

where uu′, cc′, kk′ indexes of valence band, conduction band and k-vector, respective-
ly and εck , εuk are quasi-particle energies. 

The term u� is the Coulomb potential without the long-range part and describes the 
electron-hole exchange: 

⟨uck|u�|u′c′k′⟩ = 4π
Ω
∑ 1

|G|2 �ck�eiG∗r�uk��u′k′�e−iG∗r�c′k′�G≠0    (26) 

and W is the screened Coulomb electron-hole interaction part given as: 

⟨uck|W|u′c′k′⟩ = −4π
Ω
∑

εGG′
−1 (q)

|q+G|2 �ck�ei(q+G)∗r�c′k′��u′k′�e−i(q+G)∗r�uk�GG′ δq,k−k′   (27) 
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Generally, the goal of BSE is to find a value for the macroscopic dielectric 
tion εΜ(ω) which is directly related with some measurable quantity. The absorption 
spectrum, is given by the imaginary part of εΜ(ω). If we only consider the resonant 
part of the excitonic Hamiltonian, we permit only positive frequency transitions to 
mix, the macroscopic dielectric function is given by 

εM(ω) = 1 − limq→0 u0(q)∑
�∑ �u�e−iq∗r�c�Aλ

(uc)
(uc) �

2

Ελ−ω−iηλ    (28)  

Good agreement between theory and experiment can only be achieved by taking into 
account the electron-hole interaction and the Bethe-Salpeter gives a very successful 
calculation of ABS.  

However, in this case where we study 2D materials, the W which is the screening 
Coulomb interaction plays a fundamental role in the BSE. For this reason, the W re-
quires a special treatment in order to decouple and eliminate the screening from layers 
in periodic images to better describing the excitonic effects in 2D materials. The solu-
tion comes with use of a truncated Coulomb interaction[71] which implanted in BSE 
(BSE-truncated) with screened interaction W gives: 

W00(q = 0) = 1
ΩΓ
∫ dquc(q)�1 + q ∗ 𝛻qε00−1�(q)|q=0�   (29) 

 
where ΩΓ is a small volume containing q = 0 and uc(q) = 4πRc

|q|  is the truncated Cou-

lomb interaction which effect to eliminated the interlayer interactions. 
 
 
2.4 Computational details 

In the last section of this chapter we will give some additional computational details 
we applied on thesis, including calculation parameters. 

Monolayers of WS2, Graphene and heterostructures of WS2/Graphene are investigat-
ed using DFT, where the LDA exchange-correlation functional was used and the sys-
tems were modelled using the Atomic Simulation Environment (ASE) module.[35] The 
calculations were performed using the Grid-based Projector-Augmented Wave 
(GPAW) module[36], which is a DFT python code based on the Projector-Augmented 
Wave (PAW) method. The wave functions are described with Plane-Waves (PW) 
mode. We applied the parameter “mode = PW(600)” which means the plane-wave 
energy cut off is 600eV and for all calculations. In the monolayer WS2 and all of 
heterostructures which include already tungsten (W), we defined the parameter “set-
ups = {'W': '6'}” which means for each W we have six valence electrons. The optimal 
number of k-points in Brillouin-zone chosen for all of the systems is (kx, ky, kz) = (4, 
4, 1) which gives a well-converged energy. Additionally, the selection for the number 
of electronic bands (which was done with the parameter “nbands”) depended on the 
number of atoms and was at least equal to 50% more than the number of atomic orbit-
als. In this work for each calculation we added more unoccupied bands for improved 
convergence. In order to control the smearing of the occupation numbers of electronic 
states, we set the parameter “occupations = FermiDirac(0.01)” which means the width 

http://www.python.org/
https://wiki.fysik.dtu.dk/gpaw/documentation/literature.html#literature
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of the electronic levels is 0.01eV according to the Fermi-Dirac distribution. To con-
clude, for all structures we also added 8Å vacuum of unit cell in the z-axis direction to 
avoid any convergence problems in simulation box. 

 
 
 
 
 
 
 
Chapter 3  
 
WS2 monolayer and Graphene 
 
In order to achieve the purpose of this thesis which is the study of WS2/graphene 
heterostructures, it is necessary to define and examine the WS2 monolayer and 
graphene separately. In this chapter, we will present the foundations of our thesis 
which is a WS2 monolayer and graphene, two materials which belong to the family of 
2D materials. We examined a WS2 monolayer which was constructed from a primi-
tive cell (PC) consisting of three atoms (W, 2 S) and a 3x3 WS2 supercell (SC) which 
consists of twenty-seven atoms (9 W, 18 S). Furthermore, we investigated graphene 
which was constructed of a PC consisting of two atoms (2 C) and a 4x4 graphene 
supercell (SC) which consists of thirty-two atoms (32 C). We will discuss shortly the 
characteristics for each one and next we will analyze the results we obtained from 
DFT calculations for the atomic structure and the electronic band structure in these 
2D materials. The purpose of these DFT calculations for WS2 monolayer and 
graphene is to find the optimal structural parameters which minimize the total ground 
state energy. We present reliable structural and electronical properties which are agree 
with experimental results. 
 
 
3.1 WS2 monolayer 
 
WS2 monolayer is a material in the TMDs family. As a semiconductor, it has a direct 
band gap 2.1eV[37][38] that offers significant optoelectronic properties[18] which are 
promising for use in electronics. WS2 monolayer is a layered material with sheets 
consisting of a layer of tungsten atoms sandwiched between two layers of sulfur at-
oms in a trigonal prismatic coordination as seen in Figure 3.1. In this section, we ex-
amine and discuss the theoretical results from DFT calculations for the atomic and 
electronic structure of monolayer WS2 and compare with the current experimental 
works. 
 

Figure 3.1 
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Figure 3.1: The atomic structure of WS2 showing the trigonal prismatic coordination 
as well as the sandwiched layered structure of the material. 
3.1.1 Structure of WS2 monolayer 
 
In this subsection, we show the structure of WS2 monolayer which is a PC consisting 
of 3 atoms (W, S, S) as we see in Figure 3.2. We performed DFT calculations in order 
to find the optimal structural parameters as well as the minimum total energy ground 
state of the system. As we said, WS2 monolayer has hexagonal structure in trigonal 
prismatic coordination with space group P63/mmc. The geometry is defined by the 
lattice vectors a1, a2, a3 and the atom position vectors RW, RS, RS within the unit cell. 
They can be defined in various different but equivalent ways. In this work, we use the 
following configuration for the lattice vectors: 
 

a1 = a (-1/2, √3/2, 0), a2 = a (1, 0, 0), a3 = c (0, 0, 1) 
 
where a is the lattice constant, c is the parameter of hexagonal lattice 
 
Now, the position vectors for tungsten (W) and sulfurs (S): 
 

RW = 1/3 a1 + 2/3 a2 + 1/4 a3 
 

RS = 2/3 a1 + 1/3 a2 + (1-u) a3 
 

RS = 2/3 a1 + 1/3 a2 + (u-1/2) a3 
 
where u is the parameter which determines the distance between sulfurs. The distance 
ds-s between sulfurs for WS2: 
 

ds-s / 2 = (3/4 - u) * c   (30) 
 

Figure 3.2 
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Figure 3.2: The unit cell of WS2 monolayer consists of three atoms W, S, S. 

 
According to the above lattice vectors a1, a2, a3 and the atom position vectors R 
within the unit cell, we performed some iterations with DFT and calculated the total 
energy of system around of lattice constant a=3.153Å[37][39] and parameter u=0.618 
(ds-s = 3.148Å). We kept the parameter c=12Å constant.  
 
The iterations started with lattice constant a of 3.11Å to 3.19Å with step 0.01Å and 
for each value of the calculation the total energy is shown Table.1. 
 

Table.1 
 

Energy (eV) Lattice constant (Å) 
-24.277 3.11 

-24.286 3.12 

-24.292 3.13 

-24.295 3.14 

-24.296 3.15 

-24.294 3.16 

-24.290 3.17 

-24.283 3.18 

-24.274 3.19 

 
The energy curve E (eV) (axis -y) as a function of lattice constant a (Å) (axis -x) was 
fitted to a second degree polynomial of the form: 
 

y = ax2 + bx + c   (31) 
 

Figure 3.3 
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Figure 3.3: The energy curve E (eV) as a function of lattice constant a (Å) of WS2 
monolayer. 
Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=3.148 we find a=3.148Å, Emin=-24.296eV 

 
Furthermore, we followed the same procedure and performed some iterations around 
of parameter u=0.618 (ds-s=3.148Å) while keeping lattice constant a=3.148Å and 
c=12Å stable. The iterations began with u parameter of 0.615 to 0.621 with step 0.001 
and done for each value the calculation of total energy as we seen in Table.2. 
 

Table.2 
 

Energy (eV) Parameter u 
-24.255 0.615 

-24.274 0.616 

-24.287 0.617 

-24.295 0.618 

-24.296 0.619 

-24.292 0.620 

-24.281 0.621 

 
The energy curve E (eV) (axis -y) as a function of parameter u (axis -x) is fitted with a 
second degree polynomial of the form (31). 
 

Figure 3.4 
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Figure 3.4: The energy curve E (eV) as a function of parameter u of WS2 monolayer. 
Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=0.619  
 
we find u=0.619 (ds-s=3.144Å), Emin=-24.296eV 
 
According to these results, were determined as the optimized unit cell lattice 
parameters a=3.148Å, u=0.619 (ds-s=3.144Å), c=12Å for the WS2 monolayer. 
Percentage error is only 0.158% with the experimental value of lattice constant 
a=3.153Å[37] for the WS2 bulk crystal and that means we have reliable results for the 
description of the structure of this material. 
 
 
3.1.2 Electronic band structure of WS2 monolayer 

After a review of the structure of the WS2 monolayer and after finding the optimized 
structural parameters, we discuss its electronic structure. The band structure of WS2 
monolayer and its isoelectronic compounds of the group six TMD family, is distinctly 
different from that of graphene. The indirect to direct crossover in single layer WS2 
results from local shift of valence band hills and conduction band valleys in the 
Brillouin zone[41]-[47]. The conduction band minimum (CBM) and valence band max-
imum (VBM) coincide at the K point, making them direct gap semiconductor. In this 
subsection, this behavior is predicted by DFT calculations and is in agreement with 
photoemission experiments on WS2 single layer[48]. Based on the results for the struc-
ture of WS2 monolayer, with optimized unit cell lattice parameters are a=3.148Å, 
u=0.619 (ds-s = 3.144Å), c=12Å, we perform DFT calculations for the electronic band 
structure. The basis vectors of the corresponding reciprocal lattice are  
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b1 = (2π/a)*(0, −�1
3
 , 0), b2 = (2π/a)*(1, �1

3
, 0) 

and the Brillouin zone for the 2D crystal is a hexagon as seen in Figure 3.5. 

Figure 3.5 

 

Figure 3.5: The 2D Brillouin zone of WS2. 

In this electronic band structure calculation of WS2 monolayer we selected the M-K-
G path in the Brillouin zone to represented the result as shown below. 

Figure 3.6 

 

Figure 3.6: Bandstructure of WS2 monolayer. 
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The electronic band structure for WS2 monolayer on the above diagram was calculat-
ed within the LDA approximation with 1.945eV direct band gap in K-point and Fermi 
level was set to zero (E-Efermi = 0eV) with Fermi energy Efermi = -1.080eV. We ob-
served that the PW mode in LDA gives very good description of the electronic struc-
ture, close to the experimental 2.1eV[37][38][40] band gap. 

 

3.1.3 Structure of WS2 supercell 

In order to achieve the purpose of this thesis which is the study of WS2/graphene 
heterostructures, it is necessary to define supercells (SCs) of WS2 monolayer. This 
plays a crucial role in the structure and stability of WS2/graphene heterostructure. The 
SCs consist of PC with the same lattice vectors a1, a2, a3 as in the subsection 3.1.1 
that are repeated in two dimensions (x and y) and produce the required monolayer 
structure and the atom positions in the (SC). We produced and studied the 3x3 
supercell (SC) of WS2 monolayer which consists of 27 atoms (9 W, 18 S) as we see in 
Figure 3.7. We performed DFT calculations as in section 3.1.1 to find the optimal 
structural parameters as well as to minimum total ground state energy of system. 

 
 

Figure 3.7 
 

 
Figure 3.7: 3x3 supercell of WS2 monolayer consisting of 27 atoms (9 W, 18 S). 

 
 
We performed some iterations with DFT for calculating the total energy of system 
around of lattice constant a=9.444Å (3x3.148Å) and parameter u=0.618 (ds-s = 
3.148Å) which as we said determines the distance between sulfurs. We kept the 
parameter c=12Å stable. The iterations started with SC lattice constant a of 9.40Å to 
9.48Å with step 0.01Å for the calculation of the total energy as we see in Table.3. 
 

Table.3 
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Energy (eV) Lattice constant (Å) 

-218.820 9.40 

-218.830 9.41 

-218.838 9.42 

-218.842 9.43 

-218.844 9.44 

-218.843 9.45 

-218.839 9.46 

-218.833 9.47 

-218.824 9.48 

 
 
 
 
 
 
The energy curve E (eV) (axis -y) as a function of lattice constant a (Å) (axis -x) is 
fitted with second degree polynomial of the form (31). 
 

 
Figure 3.8 
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Figure 3.8: The energy curve E (eV) as a function of lattice constant a (Å) of WS2 
supercell. 
 
 
Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=9.442 we find a=9.442Å, Emin=-218.844eV 
 
Furthermore, we followed the same procedure and performed some iterations around 
of parameter u=0.618 (ds-s=3.148Å) while keeping lattice constant a=9.442Å and 
c=12Å stable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The iterations began with u parameter of 0.615 to 0.621 with step 0.001 and done for 
each value the calculation of total energy as we seen in Table.4. 
 

Table.4 
 

Energy (eV) Parameter u 
-218.461 0.615 

-218.632 0.616 

-218.754 0.617 

-218.825 0.618 

-218.844 0.619 

-218.808 0.620 

-218.715 0.621 

 
The energy curve E (eV) (axis -y) as a function of parameter u (axis -x) is fitted with a 
second degree polynomial of the form (31). 
 

Figure 3.9 
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Figure 3.9: The energy curve E (eV) as a function of parameter u of WS2 supercell. 

 
Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=0.619  
 
we find u=0.619 (ds-s = 3.144Å), Emin=-218.844eV 
 
According to these results, are determined the optimized lattice parameters a=9.442Å, 
u=0.619 (ds-s = 3.144Å), c=12Å for the 3x3 SC of WS2 monolayer. We have the same 
lattice parameters with the PC of 3 atoms of WS2 monolayer where we discussed in 
subsection 3.1.1 except for lattice constant a=9.442Å which has a value closely to 
3x3.148Å as we expected because of the periodicity of PC by 3 in x and y direction. 
These results mean we have made successfully built of SC for description of structure 
in this material. 
 
 
3.1.4 Electronic band structure of WS2 supercell 
 

After a review of the structure of 3x3 supercell (SC) of WS2 monolayer and after we 
found the optimized structural parameters, we discuss the electronic structure of WS2 
supercell. We expected the conduction band minimum (CBM) and valence band max-
imum (VBM) to coincide at the K point, giving a direct gap semiconductor. Based on 
the results of the structure of WS2 supercell, for the optimized supercell lattice pa-
rameters a=9.442Å, u=0.619 (ds-s =3.144Å), c=12Å, we perform DFT calculation for 
the electronic band structure. The Brillouin zone is a hexagon as we discussed in sub-
section 3.1.2 (Figure 3.5). In this electronic band structure calculation of WS2 
supercell we selected the M-K-G path in Brillouin zone to represent the result as 
shown below. 

Figure 3.10 
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Figure 3.10: Bandstructure of WS2 supercell. 

 
 

 

The electronic band structure for the WS2 supercell on the above diagram must be 
exactly the same with WS2 monolayer, as we discussed in subsection 3.1.2. However, 
we observe a large number of electronic bands which give a confusing and unrealistic 
electronic band structure picture for the WS2 monolayer. The explanation comes from 
the periodicity of SC (3x3 PC in this case) as well as the large number of valence 
electrons which of this system. 

The quite messy electronic band structure of WS2 supercells is resolved with the band 
structure unfolding method. This method described in section 2.2 aims to unfold the 
band structure of the SC to the PC. For this unfolding electronic band structure calcu-
lation of the WS2 supercell we selected the same M-K-G path in Brillouin zone and 
the is shown below (Figure 3.11). 
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Figure 3.11

 

Figure 3.11: Unfolding bandstructure of WS2 supercell. 

 

As we can see above, is clarified confusing picture for the electronic band structure 
calculation for the WS2 supercell. In this electronic band structure diagram, we got 
1.949eV direct band gap in K-point and Fermi level was set to zero (E-Efermi = 0eV) 
with Fermi energy Efermi = -1.177eV which is almost the same with the WS2 
monolayer. In conclusion, this method proved a useful tool to produce the real elec-
tronic structure picture for WS2 supercell and also gave reliable results which agree 
with the PC WS2 monolayer calculation (Figure 3.6). 

 

3.2 Graphene 

Graphene is made of sp2 hybridized carbon atoms arranged in a hexagonal honey-
comb lattice[49][50] as seen in see Figure 3.12. The sp2 hybridizations between the s or-
bital and two p orbitals lead to a trigonal planar structure with a formation of σ bond 
between carbon atoms. Graphene is a semi-metal with a characteristic electronic 
structure which is band gap free. It exhibits outstanding electronic, optical, mechani-
cal and thermal properties. This makes it interesting for a multitude of applications, 
such as flexible electronics and to replace rare elements used as transparent conduc-
tors, for example in displays[51]. In this section, we will introduce the theoretical re-
sults from DFT calculations for the atomic and the electronic structure of graphene 
and compare them with experimental results. 
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Figure 3.12 

Figure 3.12: Shows the hexagonal structured carbon atoms of monolayer graphene. 

 

3.2.1 Structure of Graphene 

In monolayer graphene, three of the four valence electrons hybridize in an sp2 config-
uration to form the strong σ bonds while the last electron of the carbon atoms forms 
the half-filled 2pz orbital normal to the plane of hexagonal carbon lattice, resulting in 
π covalent bonds. There are three atomic orbitals of sp2 covalent bonding for each 
carbon atom, 2s, 2px, and 2py. The strong σ bonds are the main reason for the me-
chanical strength and structural robustness of the lattice structure in carbon allotropes. 
Governed by the Pauli principle, these lower energy levels form a deep fully filled 
valence band. These strong covalent bonds make graphene the thinnest, and yet the 
strongest material ever measured, being at least five to ten times stronger than 
steel[54][55].  

In this subsection, we build the structure of graphene with a PC consisting of two at-
oms of carbon (C, C) as seen in Figure 3.13. We performed DFT calculations in order 
to find the optimal structural parameter which is the lattice constant as well as the 
minimum total (ground state) energy of system. We define for graphene in cartesian 
coordinates the real space unit vectors a1, a2, a3 and the atom position vectors RC 
within the unit cell: 

a1 = a (√3/2, 1/2, 0), a2 = a (−√3/2, 1/2, 0), a3 = c (0, 0, 1) 

where a is the lattice constant and c is the parameter of hexagonal lattice. 

Now the position vectors for two carbons (C): 
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RC = 0 a1 + 0 a2 + 1/4 a3  

RC = 1/3 a1 + 2/3 a2 + 1/4 a3 

 

Figure 3.13 

 

Figure 3.13: Unit cell of graphene consist of two atoms of carbon C. 

 

We performed some iterations with DFT for calculating the total energy of the system 
around of lattice constant of a = 2.46Å[52] while keeping the parameter c=8Å stable.  

 

 

 

The iterations started with lattice constant a of 2.40Å to 2.50Å with step 0.01Å and 
for each value, the calculation of total energy is presented in Table.5. 

Table.5 
 

Energy (eV) Lattice constant (Å) 
-20.136 2.40 
-20.157 2.41 

-20.173 2.42 

-20.183 2.43 

-20.189 2.44 
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-20.190 2.45 

-20.186 2.46 

-20.178 2.47 

-20.165 2.48 

-20.149 2.49 

-20.128 2.50 

 
The energy curve E (eV) (axis -y) as a function of lattice constant a (Å) (axis -x) is 
fitted with a second degree polynomial of the form (31).  

Figure 3.14 

 
Figure 3.14: The energy curve E (eV) as a function of lattice constant a (Å) of 
graphene. 

Determining the minimum, 

dy/dx = 2ax + b=0 => x= - b/(2a) =>x=2.447 we find a=2.447Å, Emin=-20.190eV   
 
According to these results, the optimized unit cell lattice parameters a=2.447Å and 
c=8Å for the graphene. We have a percentage error only 0.520% are comparing to the 
experimental value of the lattice constant 2.46Å[52][53] and that means we have reliable 
results for the description of the structure of graphene. 
 
 
3.2.2 Electronic band structure of Graphene 
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After studying the atomic structure of graphene and having found the optimized 
lattice constant where the system has minimum total energy, we investigated the 
electronic structure. Based on modern band structure studies of graphene, the material 
demonstrates typical properties as a semimetal. The electronic excitations however 
exhibit a unique linear dispersion with properties resembling to “relativistic” particles. 
The conduction band and the valence band in pristine graphene meet at a single point 
around which the wave functions of electrons are described by the Dirac equation, in 
contrast with conventional 2D systems which a hyperbolic dispersion relation[56]. 
According to the results for the structure of graphene we set the optimized unit cell 
lattice parameters a=2,447Å and c=8Å to performed DFT calculations for the 
electronic band structure. The basis vectors of the corresponding reciprocal lattice are 
 

h1 = 2π/α*( 1
√3

, 1, 0), h2 = 2π/α*(− 1
√3

, 1, 0) 
 
The Brillouin zone for the graphene is the hexagon seen in Figure 3.15. 
 
 

Figure 3.15 

 
Figure 3.15: The 2D Brillouin zone of graphene. 

 
 

 
 
 
 
In this electronic band structure calculation of graphene, we selected the M-K-G path 
of the Brillouin zone to represent the results, as seen below (Figure 3.16). 
 
 

 
Figure 3.16 
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Figure 3.16: Bandstructure of graphene. 

 
 
The electronic band structure for graphene on the above diagram was calculated by 
LDA. The results show as zero band gap at the K-point and Fermi level was set to 
zero (E-Efermi = 0eV) with Fermi energy Efermi = -0.928eV. This band structure 
description is supported by most existing experimental data. 
 
 
3.2.3 Structure of Graphene supercell 
 
In this subsection, we define the structure of graphene supercell (SC). The SC consist 
of PC with the same lattice vectors a1, a2, a3 as in the subsection 3.2.1 that are repeat-
ed in two dimensions x and y and produces the required monolayer structure and also 
the atom positions in the cell. In this case, we produce and study a 4x4 supercell (SC) 
of graphene which consists of 32 atoms of carbon C as seen in Figure 3.17. We follow 
the same procedure to perform DFT calculations as in section 3.2.1 to find the optimal 
structural parameters as well as to minimum total ground state energy of the system. 
 

 
 

Figure 3.17 
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Figure 3.17: 4x4 supercell of graphene consist of 32 atoms of carbon C. 

 
We performed some iterations with DFT for calculating the total energy of the system 
around the lattice constant a=9.788Å (4x2.447Å) while keeping the parameter c=8Å 
fixed. The iterations started with a lattice constant of 9.74Å to 9.83Å with step 0.01Å 
and the total energy is seen in Table.6. 
 
 

Table.6 
 

Energy (eV) Lattice constant (Å) 
-323.201 9.74 

-323.220 9.75 

-323.235 9.76 

-323.244 9.77 

-323.249 9.78 

-323.249 9.79 

-323.246 9.80 

-323.236 9.81 

-323.223 9.82 

-323.204 9.83 

 
 
 
The energy curve E (eV) (axis -y) as a function of lattice constant a (Å) (axis -x) is 
fitted with a second degree polynomial of the form (31). 
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Figure 3.18 
 

 
Figure 3.18: The energy curve E (eV) as a function of lattice constant a (Å) of 
graphene supercell. 
 
 
Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=9.785 we find a=9.785Å, Emin=-323.250eV 
 
According to these results, the optimized lattice parameters are a=9.785Å, c=8Å for 
the 4x4 SC of graphene. The value of lattice constant a=9.785Å is close to 4x2.447Å 
as expected because of the periodicity of PC by 4 in x and y direction. These results 
mean that we have successfully constructed SC to describe the graphene structure. 
 
 
3.2.4 Electronic band structure of Graphene supercell 

After a review of the structure of 4x4 supercell (SC) of graphene and after we found 
the optimized structural parameters, we discussed the electronic structure of graphene 
supercell. The Brillouin zone is a hexagon as we discussed in subsection 3.2.2 (Figure 
3.15). We expect the conduction band minimum (CBM) and the valence band maxi-
mum (VBM) to meet at a single point K, where the wave functions of electrons are 
described by the Dirac equation.  

 

Based on the results of the structure of graphene supercell with optimized supercell 
lattice parameters a=9.785Å and c=8Å we performed DFT calculation for the elec-
tronic band structure. In this electronic band structure calculation of graphene 
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supercell, we selected the M-K-G path in Brillouin zone to represent the result as 
shown below (Figure 3.19). 

 

Figure 3.19 

 

Figure 3.19: Bandstructure of graphene supercell. 

 

The electronic band structure for graphene supercell on the above diagram should 
must be exactly the same with graphene, as we discussed in subsection 3.2.2. Howev-
er, we observe many other electronic bands which give a confusing and unrealistic 
electronic band structure picture for graphene. The explanation comes on from the 
periodicity of PC (4x4 in this case) as well as the many valence electrons which has 
this system. Applying the unfolding method described in section 2.2 the result is 
shown below (Figure 3.20) 

 

 

 

Figure 3.20 
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Figure 3.20: Unfolding bandstructure of graphene supercell. 
 
 

As we can see above, the confused picture is clarified for the electronic band structure 
for graphene supercell. In this electronic band structure diagram, we got 0eV band 
gap in K-point and Fermi level was set to zero (E-Efermi = 0eV) with Fermi energy 
Efermi = -0.926eV which is almost the same with the graphene. In conclusion, this 
method proved a useful tool to produce the real electronic structure picture for 
graphene supercell and also gave reliable results which agree with graphene PC. At 
this point, upon completion of chapter 3 we see that DFT calculations within LDA, 
describe very well the atomic and electronic structure of WS2 monolayer and 
graphene. Moreover, the band structure unfolding method gave us the right infor-
mation about electronic structure of supercells and will help us to understood the 
physical meaning of these. With these tools, we move on to the next step to described 
the WS2/Graphene heterostructures, which we will discuss in chapter 4. 

 

 
 
 
 
 
 
Chapter 4 
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WS2/Graphene heterostructures 
 
The 2D materials, which includes WS2 monolayer and graphene, can be fabricated 
into atomically thin films since the intralayer bonding arises from their strong cova-
lent character, while the interlayer interaction is mediated by weak van der Waals 
(vdW) forces. The weak electron coupling at the interface of vdW heterostructures 
offers the possibility of combining the intrinsic electronic properties of the individual 
2D layers.  
 
In particular, WS2/Graphene vdW heterostructures are remarkable because of the high 
carrier mobility[57] and broadband absorption[58] of graphene, as well as the direct 
bandgap[21][59][61] and extremely strong light matter interactions[62] of monolayer WS2. 
For this reason, these unique WS2/Graphene heterostructures are candidates for many 
potential applications such as solar photovoltaics. Based on these, in this chapter 4 we 
will theoretical investigate for WS2/Graphene heterostructures. We studied two dif-
ferent sizes of supercells (SC) WS2 (3 × 3)/Graphene (4 × 4), which consists of 59 
atoms, and WS2 (4 × 4)/Graphene (5 × 5), which consists of 98 atoms. We performed 
DFT calculations for the atomic structure and electronic band structure in these vdW 
heterostructures. This theoretical investigation has led to a pressing need for a full un-
derstanding of the electronic structure as well as to explain the behavior of band 
alignment of strained WS2/Graphene vdW heterostructures. 
 
 
4.1 Heterostructure of WS2(3x3)/Graphene(4x4)  
 
In this section, we will discuss the SC of WS2 (3 × 3)/Graphene (4 × 4) 
heterostructure which is consist of 59 atoms on TW (Top Tungsten) configuration, 
that means the layers stacked in specific orientation with fifth tungsten (W) atom is 
over of twelfth carbon (C) atom as we see in Figure 4.1. We performed DFT 
calculations for the WS2 (3 × 3)/Graphene (4 × 4) heterostructure to find the optimal 
structural parameters which minimize the total ground state energy. Based on these 
theoretical results we will discuss also the lattice mismatch in the supercell and its 
crucial role in the stability of the heterostructure.  
 
Furthermore, we will examine and discuss the theoretical results from DFT 
calculations. In the electronic structure of the WS2 (3 × 3)/Graphene (4 × 4) 
heterostructure to is examined if the behavior of miss-crossing band alignment of the 
heterostructure is connected directly with the lattice mismatch. The strain in WS2 (3 × 
3)/Graphene (4 × 4) heterostructure affects dramatically the electronic band structure 
picture and that is confirmed with our results. 
 
 
 
 
 
 
 
 
 

Figure 4.1 
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Figure 4.1: Side and top of view of the WS2(3x3)/Graphene(4x4) heterostructure on 
TW configuration. 
 
 
4.1.1 Structure of WS2(3x3)/Graphene(4x4) supercell 
 
As seen in Figure 4.2, the method we followed to constructed the heterostructure is to 
put the already discussed (in chapter 3) 3x3 SC of WS2 monolayer over the 4x4 SC of 
graphene on TW configuration. The reason we chose TW configuration is because it 
exhibits the lowest total energy compared to others configurations. This 
heterostructure has hexagonal lattice structure and we performed DFT calculations in 
order to find the optimal structural parameters which minimize the total ground state 
energy of system. In this work, the geometry was defined by the following configura-
tion for the lattice vectors a1, a2, a3: 
 

a1 = a (-1/2, √3/2, 0), a2 = a (1, 0, 0), a3 = c (0, 0, 1) 
 

Figure 4.2 
 

 
Figure 4.2: WS2(3x3)/Graphene(4x4) supercell consist of 59 atoms 9W, 18S, 32C. 

 
In order to define the optimal structural parameters for WS2(3x3)/Graphene(4x4) 
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heterostructure we followed two calculations steps. In the first step we relaxed with 
stress tensor method the SC in TW configuration until the system converged to the 
minimum total energy and we obtained the structural parameters. We found lattice 
constant a=9.690Å and parameter u=0.621 (ds-s = 3.096Å)[65] which determines the 
distance between sulfurs in the WS2(3x3)/Graphene(4x4) heterostructure while 
keeping the parameter c=12Å fixed. Furthermore, we determined for the 
heterostructure the parameter z which describes the interlayer distance between the 
carbon atoms with the closest sulfur atoms plane according to the relation, 
 

dc−s = �u− 1
2

+ z� ∗ c − 1
4
∗ c   (32) 

 
In this case we found the parameter z=0.408 that means interlayer distance of 
heterostructure dc-s=3.348Å[63]. Afterwards, we got these initial structural parameters 
for WS2(3x3)/Graphene(4x4) heterostructure and continued with DFT calculations for 
each parameter to confirm and improve the accuracy. Specifically, we performed 
some iterations with DFT for calculating the total energy of the system around lattice 
constant a=9.690Å while keeping the parameters u=0.621 (ds-s = 3.096Å), z=0.408 
(dc-s=3.348Å) and c=12Å stable. The iterations started with lattice constant a of 9.65Å 
to 9.73Å with step 0.01Å and done for each value the calculation of total energy as we 
seen in Table.7. 
 

Table.7 
 

Energy (eV) Lattice constant(Å) 
-541.910 9.65 

-541.937 9.66 

-541.956 9.67 

-541.968 9.68 

-541.972 9.69 

-541.970 9.70 

-541.959 9.71 

-541.941 9.72 

-541.917 9.73 
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The energy curve E (eV) as a function of lattice constant a (Å) was fitted with a 
second degree polynomial of the form (31). 
 

Figure 4.3 

 

Figure 4.3 The energy curve E (eV) as a function of lattice constant a (Å) of 
WS2(3x3)/Graphene(4x4) supercell. 
 

Determining for minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=9.690 we find a=9.690Å, Emin=-541.972eV 
 
According to that result we determined the optimized lattice constant a=9.690Å for 
the WS2(3x3)/Graphene(4x4) heterostructure. In order to make this equilibrium 
heterostructure we observed we have 2.60% the 3x3 SC of WS2 monolayer stretched 
from the equilibrium state (a= 9.444Å) and also, we have compressed by 0.97% the 
4x4 SC of graphene (a=9.785Å), respectively.  
 
Afterwards, we followed the same procedure for the WS2(3x3)/Graphene(4x4) 
heterostructure and we performed some iterations around of parameter u=0.621 (ds-s = 
3.096Å) while keeping lattice constant a=9.690Å, parameter z=0.408(dc-s=3.348Å) 
and c=12Å stable.  
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The iterations began with u parameter of 0.618 to 0.625 with step 0.001 and done for 
each value the calculation of total energy as we seen in Table.8. 
 

Table.8 
 

Energy (eV) Parameter u 
-541.672 0.618 

-541.820 0.619 

-541.919 0.620 

-541.972 0.621 

-541.964 0.622 

-541.905 0.623 

-541.790 0.624 

-541.618 0.625 

 
 
The energy curve E (eV) (axis -y) as a function of parameter u (axis -x) was fitted 
with a second degree polynomial of the form (31). 
 

Figure 4.4 
 

 
Figure 4.4 The energy curve E (eV) as a function of parameter u of 
WS2(3x3)/Graphene(4x4) supercell. 
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Determining for minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=0.621  
 
we find u=0.621 (ds-s=3.096Å), Emin=-541.972eV 
 
According to these results, were determined the optimized super cell lattice 
parameters a=9.690Å, u=0.621 (ds-s=3.096Å), c=12Å for the 
WS2(3x3)/Graphene(4x4) heterostructure. We observe that in the heterostructure we 
have smaller distance ds-s=3.096Å between sulfurs than in the 3x3 SC of WS2 
monolayer which is ds-s = 3.144Å. That happened because the sulfur in WS2 
monolayer experienced van der Walls interactions with carbon atoms in graphene. 
 
Finally, we repeated the same procedure to decide for the last parameter z which 
described the interlayer distance of heterostructure. We performed some iterations 
around of parameter z=0.408 (dc-s=3.348Å) while keeping lattice constant a=9,690Å, 
parameter u=0.621 (ds-s=3.096Å) and c=12Å stable. The iterations began with 
interlayer distance z of 0.405 to 0.410 with step 0.001 and each value the calculation 
of total energy is seen in Table.9. 
 
 

Table.9 
 

Energy (eV) Distance z 
-541.9711 0.405 

-541.9723 0.406 

-541.9728 0.407 

-541.9726 0.408 

-541.9723 0.409 

-541.9714 0.410 
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The energy curve E (eV) as a function of parameter z was fitted with a second degree 
polynomial of the form (31). 
 

Figure 4.5 
 

 
Figure 4.5: The energy curve E (eV) as a function of parameter z of 
WS2(3x3)/Graphene(4x4) supercell. 
 
Determining for minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=0.407  
 
we find z=0.407 (dc-s=3.336Å), Emin=-541.9728eV 
 
We found the optimized interlayer distance z=0.407 (dc-s=3.336Å)[63][64][67] of 
WS2(3x3)/Graphene(4x4) heterostructure. That value of interlayer distance of 
heterostructure agrees with other works. In conclusion, we have found all the 
optimized structural parameters of the heterostructure, and we calculate the binding 
energy based on the relation below: 
 

Ebinding = EWS2(3x3)/Graphene(4x4) -EWS2(3x3) - EGraphene(4x4)   (33) 

 
The binding energy of the WS2(3x3)/Graphene(4x4) heterostructure was found to be 
0.121eV. As we expected we have small binding energy because of weak interactions 
between layers. However, we have a positive value of the binding energy and this 
probably happened because we have a 2.60% lattice mismatch in the heterostructure. 
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4.1.2 Electronic band structure of WS2(3x3)/Graphene(4x4) supercell 
 
After studying the structure of WS2(3x3)/Graphene(4x4) heterostructure and after we 
found the optimized structural parameters, we will discuss the electronic structure. 
We examine the results from DFT calculations for the electronic structure of the WS2 
(3 × 3)/Graphene (4 × 4) heterostructure to explain the behavior of the combined gap-
less semi-metallic graphene on the direct gap (1.945eV) WS2 monolayer semiconduc-
tor. The Brillouin zone is a hexagon as we discussed in subsection 3.2.2 (Figure 3.15). 
We use the optimized supercell lattice parameters a=9.690Å, u=0.621 (ds-s=3.096Å), 
z=0.407 (dc-s=3.336Å), c=12Å and we perform DFT calculation for electronic band 
structure. In this electronic band structure calculation of heterostructure, we selected 
the M-K-G path in Brillouin zone to represent the results, as shown below (Figure 
4.6). 
 

Figure 4.6 

 
Figure 4.6: Bandstructure of WS2(3x3)/Graphene(4x4) supercell. 

 

As we see in the above band structure diagram we got zero band gap of the K-point 
and Fermi level was set to zero (E-Efermi = 0eV) with Fermi energy Efermi = 0.556eV. 
We have the conduction band minimum (CBM) and the valence band maximum 
(VBM) meeting at a single point K for graphene, as expected. On the other hand, we 
expected for the WS2 monolayer the conduction band minimum (CBM) and the va-
lence band maximum (VBM) to coincide at the K point. However, we observed the 
CBM and the VBM for WS2 monolayer shifted to the G-point[65][66]. The reason for 
this band alignment is due to 2.60% lattice mismatch of heterostructure and this re-
sults in a dislocation in the hexagonal Brillouin zone. In order to further investigate 
the band structure of the heterostructure and since we have many number of electronic 
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bands due to repeated periodicity of PC, we proceeded to the band structure unfolding 
of WS2 (3 × 3)/Graphene (4 × 4) heterostructure.  

This method as we described in section 2.2 aims to unfold the band structure of the 
SC to the PC. These band structure unfolding calculations help to fully understand the 
electronic structure as well as to explain the behavior of band alignment of the 
strained heterostructure. We start by calculating the electronic band structure unfold-
ing of the WS2(3x3)/Graphene(4x4) supercell with respect to the WS2 monolayer PC. 
We selected the same M-K-G path in Brillouin zone to represented the result as 
shown below (Figure 4.7). 

Figure 4.7 

 

Figure 4.7: Bandstructure of the WS2(3x3)/Graphene(4x4) supercell unfolded in the 
PC of WS2 monolayer. 
 
As we see in the above unfolded band structure diagram of the 
WS2(3x3)/Graphene(4x4) supercell to the WS2 monolayer PC, we observe a quite 
different electronic structure comparing to the unfolded band structure diagram of 
WS2 supercell (subsection 3.1.4). In the case of the heterostructure we have an 
indirect band gap 1.672eV between VBM (G-point) and CBM (K-point) and we also 
observe a decreased gap (by 0.516eV) between VBM and CBM in M-point. That 
happened because of in order to made this equilibrium heterostructure we have 2.60% 
strained on 3x3 SC of WS2 monolayer.  
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In order to complete the investigation of the electronic structure of the heterostructure 
we proceeded to another calculation for the unfolding electronic band structure of the 
WS2(3x3)/Graphene(4x4) supercell to the graphene PC. We selected the same M-K-G 
path in Brillouin zone and the result is shown below. 
 

Figure 4.8 

 

Figure 4.8: Bandstructure of the WS2(3x3)/Graphene(4x4) supercell unfolded in the 
PC of graphene. 

At this unfolded band structure diagram of the WS2(3x3)/Graphene(4x4) supercell to 
the graphene PC, we observe the same characteristics compared to the unfolded band 
structure diagram of graphene supercell (subsection 3.2.4). In this equilibrium 
heterostructure the compression by 0.97% of the 4x4 SC of graphene does not influ-
ence the electronic structure. Based on these results we predict that the magnitude of 
lattice mismatch affects the electronic properties of the WS2 monolayer of the 
heterostructure. In contrast, for lattice mismatch less than 1%, as is the case of 
graphene the electronic properties have not been influenced. In order to present more 
realistic electronic structure for the WS2/Graphene heterostructure it is necessary to 
study a supercell with lattice mismatch less than 2.60%, as we do in the next section. 
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4.2 Heterostructure of WS2(4x4)/Graphene(5x5) 
 
In this section, we will move on to examine one more system of WS2/Graphene 
heterostructure in order to achieve lattice mismatch less than 1%. We investigate the 
SC of the WS2 (4 × 4)/Graphene (5 × 5) heterostructure which consists of 98 atoms as 
we see in Figure 4.9. We performed DFT calculations for the WS2 (4 × 4)/Graphene 
(5 × 5) heterostructure to find the optimal structural parameters. We will discuss the 
theoretical results from DFT calculations for the electronic structure of the WS2 (4 × 
4)/Graphene (5 × 5) heterostructure and compare some results with the heterostructure 
of WS2 (3 × 3)/Graphene (4 × 4) already studied. 
 

Figure 4.9 
 

 
Figure 4.9: Side and top of view of the WS2(4x4)/Graphene(5x5) heterostructure. 
 
 
4.2.1 Structure of WS2(4x4)/Graphene(5x5) supercell 
 
In this subsection, we describe the structure of the WS2 (4 × 4)/Graphene (5 × 5) 
heterostructure that we will study. We build a supercell of 4x4 unit cells of WS2 
monolayer on top of a supercell of 5x5 unit cells of graphene which consists of 98 
atoms (16W, 32S, 50C) as we see in Figure 4.10. We investigated different configura-
tions of the WS2 (4 × 4)/Graphene (5 × 5) heterostructure like as TW (Top Tungsten) 
and TS (Top Sulfur) but the system exhibited the lowest total energy in another con-
figuration after relaxed. This heterostructure has hexagonal lattice structure as ex-
pected and we performed DFT calculations in order to find the optimal structural pa-
rameters which minimize the total ground state energy of system.  
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The geometry is defined by the following configuration for the lattice vectors a1, a2, 
a3: 
 

a1 = a (-1/2, √3/2, 0), a2 = a (1, 0, 0), a3 = c (0, 0, 1) 
 

Figure 4.10 
 

 
Figure 4.10: WS2(4x4)/Graphene(5x5) supercell consist of 98 atoms 16W, 32S, 50C. 

 
In order to define the optimal structural parameters of the WS2(4x4)/Graphene(5x5) 
heterostructure we followed the same procedure as in subsection 4.1.1. We relaxed the 
SC of heterostructure until the system converged to the minimum total energy and 
then we measured the structural parameters.  
 
We found lattice constant a=12.350Å and parameter u=0.617 which determines the 
distance between sulfurs (ds-s=3.192Å)[65] in the WS2(4x4)/Graphene(5x5) 
heterostructure while keeping the parameter c=12Å stable. Furthermore, we 
determined the parameter z which describes the interlayer distance between the 
carbon atoms with the closest sulfur atoms according to the relation (32) as we said in 
subsection 4.1.1. In this case we found the parameter z=0.414 which means that 
interlayer distance in the heterostructure is dc-s=3.372Å[63][64][67]. Afterwards, we used 
these initially structural parameters for WS2(4x4)/Graphene(5x5) heterostructure and 
continued with DFT calculations for each parameter to confirm and improve the 
accuracy. Specifically, we performed some iterations with DFT for calculating the 
total energy of the system around lattice constant a=12.350Å while keeping the 
parameters u=0.617 (ds-s = 3.192Å), z=0.414 (dc-s=3.372Å) and c=12Å stable.  
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The iterations started with lattice constant a of 12.32Å up to 12.36Å with step 0.01Å 
and the results for the total energy as seen in Table.10. 
 

Table.10 
 

Energy (eV) Lattice constant (Å) 
-894.265 12.32 

-894.284 12.33 

-894.296 12.34 

-894.300 12.35 

-894.296 12.36 

 
The energy curve E (eV) as a function of lattice constant a (Å) was fitted with a 
second degree polynomial of the form (31). 
 

Figure 4.11 
 

 
Figure 4.11: The energy curve E (eV) as a function of lattice constant a (Å) of 
WS2(4x4)/Graphene(5x5) supercell. 
 
Determining for minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=12.350  
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we find a=12.350Å, Emin=-894.300eV 
 
 
 
According to that result, we determined the optimized lattice constant a=12.350Å for 
the WS2(4x4)/Graphene(5x5) heterostructure. We observe that we have 1.92% 
compressions of the 4x4 SC of WS2 monolayer from the equilibrium state (a= 
12.592Å) and also, we have stretched by 0.96% the 5x5 SC of graphene (a=12.232Å), 
respectively. That lattice mismatch of the heterostructure, will hopefully give a good 
description of the binding energy and electronic properties. 
 
Afterwards, we followed the same procedure for the WS2(4x4)/Graphene(5x5) 
heterostructure and we performed some iterations around u=0.617 (ds-s = 3.192Å) 
while keeping lattice constant a=12.350Å, parameter z=0.414 (dc-s=3.372Å) and 
c=12Å stable. The iterations began with u parameter of 0.614 to 0.620 with step 0.001 
and done for each value the calculation of total energy as we seen in Table.11. 
 
 

Table.11 
 

Energy (eV) Parameter u 
-893.929 0.614 

-894.146 0.615 

-894.271 0.616 

-894.300 0.617 

-894.230 0.618 

-894.059 0.619 

-893.783 0.620 
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The energy curve E (eV) as a function of parameter u was fitted with a second degree 
polynomial of the form (31). 
 

Figure 4.12 
 

 
Figure 4.12: The energy curve E (eV) as a function of parameter u of 
WS2(4x4)/Graphene(5x5) supercell. 
 
Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=0.617  
 
we find u=0.617 (ds-s = 3.192Å), Emin=-894.300eV 

 
According to these results, the optimized super cell lattice parameters are a=12.350Å, 
u=0.617 (ds-s = 3.192Å), c=12Å for the heterostructure. We observe that for the 
WS2(4x4)/Graphene(5x5) heterostructure we have bigger distance u=0.617 (ds-s = 
3.192Å) between sulfurs atoms than WS2(3x3)/Graphene(4x4) heterostructure, which 
has u=0.621 (ds-s=3.096Å). The interlayer distance is bigger z=0.414 (dc-s=3.372Å) 
than z=0.407 (dc-s=3.336Å), respectively. 
 
Finally, we repeated the same procedure to decide for last parameter z which 
described the interlayer distance of heterostructure. We performed some iterations 
around of parameter z=0.414 (dc-s=3.372Å) while keeping lattice constant a=12.350Å, 
parameter u=0.617 (ds-s = 3.192Å) and c=12Å stable.  
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The iterations began with interlayer distance z of 0.411 up to 0.416 with step 0.001 as 
seen in Table.12. 
 

Table.12 
 

Energy (eV) Parameter z 
-894.297 0.411 

-894.299 0.412 

-894.300 0.413 

-894.300 0.414 

-894.299 0.415 

-894.297 0.416 

 
The energy curve E (eV) as a function of parameter z was fitted with a second degree 
polynomial of the form (31). 
 

Figure 4.13 
 

 
Figure 4.13: The energy curve E (eV) as a function of parameter z of 
WS2(4x4)/Graphene(5x5) supercell. 
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Determining the minimum, 
 
dy/dx = 2ax + b=0 => x= - b/(2a) =>x=0.414 
 
we find z=0.414 (dc-s=3.372Å), Emin=-894.300eV 
We found the optimized interlayer distance z=0.414 (dc-s=3.372Å) of 
WS2(4x4)/Graphene(5x5) heterostructure and that is close to the interlayer distance 
dc-s=3.336Å of the WS2(3x3)/Graphene(4x4) heterostructure. Based on these 
agreements we determine that the WS2(4x4)/Graphene(5x5) heterostructure are built 
successfully. In conclusion, according to these results we have found all the optimized 
structural parameters of the heterostructure. The binding energy of the 
WS2(4x4)/Graphene(5x5) heterostructure was found to be -0.159eV. We have small 
binding energy because we have van der Waals interactions between the layers. The 
negative value of binding energy means that the heterostructure is stable. 
 
 
4.2.2 Electronic band structure of WS2(4x4)/Graphene(5x5) supercell 
 
After determining the atomic structure of the WS2(4x4)/Graphene(5x5) 
heterostructure and after we found the optimized structural parameters, we will dis-
cuss the electronic structure. We examined the theoretical results from DFT calcula-
tions in electronic structure for the WS2(4x4)/Graphene(5x5) supercell to explain the 
behavior of combined gapless semi-metallic graphene on direct gap 1.945eV semi-
conductor WS2 monolayer. The Brillouin zone is a hexagon as we discussed in sub-
section 3.2.2 (Figure 3.15). Based on the results of the structure of supercell 
WS2(4x4)/Graphene(5x5) heterostructure we defined the optimized supercell lattice 
parameters a=12.350Å, u=0.617 (ds-s=3.192Å), z=0.414 (dc-s=3.372Å), c=12Å and 
we performed DFT calculation for electronic band structure. In this electronic band 
structure calculation of heterostructure, we selected the M-K-G path in Brillouin zone 
to represented the result as shown below (Figure 4.14). 
 

Figure 4.14 
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Figure 4.14: Bandstructure of WS2(4x4)/Graphene(5x5) supercell. 
As we see in the above band structure diagram we measured zero band gap at the K-
point and Fermi level was set to zero (E-Efermi = 0eV) with Fermi energy Efermi = 
0.581eV of heterostructure. We have the conduction band minimum (CBM) and the 
valence band maximum (VBM) meeting at a single point K that describes the behav-
ior of graphene in the heterostructure, as expected. Additionally, we observe for the 
WS2 monolayer the conduction band minimum (CBM) and the valence band maxi-
mum (VBM) band alignment with graphene at the K point[63]. This electronic struc-
ture of the WS2(4x4)/Graphene(5x5) heterostructure is quite different from the 
WS2(3x3)/Graphene(4x4) heterostructure. The explanation comes from the 1.92% 
lattice mismatch of the WS2(4x4)/Graphene(5x5) heterostructure resulting in we have 
smaller dislocation in the hexagonal Brillouin zone and this allows us to reproduced 
more efficient and reliable the electronic structure for WS2/Graphene 
heterostructures. 

In order to a deeper understanding of the band structure of heterostructure because we 
have many number of electronic bands due to repeated periodicity of PC, we proceed-
ed to the band structure unfolding method of the WS2 (4 × 4)/Graphene (5 × 5) 
heterostructure. This method as we described in section 2.2 aim to unfolding the band 
structure of the SC to the PC. This band structure unfolding calculation we helped to 
clearly understanding how influence the electronic structure of each monolayer on 
heterostructure if we have lattice mismatch less than 1%. We calculated electronic 
band structure unfolding of the WS2(4x4)/Graphene(5x5) supercell to the WS2 
monolayer PC. We selected the same M-K-G path in Brillouin zone to represented the 
result as shown below. 

Figure 4.15 
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Figure 4.15: Bandstructure of the WS2(4x4)/Graphene(5x5) supercell unfolded in the 
PC of WS2 monolayer. 
 
 
 
 
 
As we see in the above unfolding band structure diagram of the 
WS2(4x4)/Graphene(5x5) supercell to the WS2 monolayer PC we observed small 
differences of the electronic structure compared to the unfolding band structure 
diagram of WS2 supercell (subsection 3.1.4). In this case of heterostructure we have 
an indirect band gap 1.992eV between VBM near to K-point and CBM where it is 
between K-point and G-point. We also, observed opened a gap by 0.295eV between 
VBM and CBM in M-point. The small differences on unfolding band structure 
diagram we happened because of in order to made this equilibrium 
WS2(4x4)/Graphene(5x5) heterostructure we have 1.92% compressed on 4x4 SC of 
WS2 monolayer. These results confirm that the magnitude of tensile strain or 
compression is very sensitive quantity and affects to the pure electronic properties of 
WS2 monolayer on heterostructure even though we have lattice mismatch less than 
1%. 
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Chapter 5 
 
Excitons in monolayer WS2 
 
In this chapter, we use the approximation methods RPA, BSE and BSE-truncated as 
we described in section 2.3, in order to find the macroscopic dielectric function 
εΜ(ω) as well as to extract the optical ABS from imaginary its part. We absorption 
calculated the longitudinal part of 2D polarizability to we determine the excitation 
effects for monolayer of WS2. Based on these, we investigated firstly the excitation 
effects in the optimal equilibrium structure of WS2 monolayer (determined in subsec-
tion 3.1.1) and then we performed these calculations with isotropically stretching and 
compressing the WS2 monolayer. The reason we did these calculations is to see how 
strain on a monolayer WS2 affects the optical ABS. We performed DFT calculations 
and used the approximations methods RPA, BSE and BSE-truncated to calculate the 
longitudinal part of 2D polarizability to investigate excitons of monolayer WS2, the 
results are shown in Figure 5.1. We used the optimal equilibrium structure of mono-
layer WS2 with unit cell lattice parameters a=3.148Å, u=0.619 (ds-s=3.144Å), c=12Å, 
as determined in subsection 3.1.1. In our calculation, we use the computational details 
as we discussed in section 2.4 but for k-points sampling we replaced with large densi-
ty of k-points (kx, ky, kz) = (30, 30, 1)[71] which are required for the BSE spectrum of 
2D systems to converge. The noninteracting response function χ0 was constructed 
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from LDA wave functions and the PW cutoff for the response function (local-field 
effects) was set to 50eV. 
 

Figure 5.1

 

Figure 5.1: Polarizability of monolayer WS2 calculated with the RPA, BSE and BSE 
truncated. 

 

The resulting spectrum for monolayer WS2 is shown above in Figure 5.1. We ob-
served that for BSE polarizability with Coulomb truncation we obtain the A exciton in 
2.130eV but for BSE polarizability without Coulomb truncation we measure 2.350eV, 
whereas RPA does not show an exciton peak (due to the RPA calculation neglecting 
electron hole interactions). The excitonic effects are much stronger due to the reduced 
screening in 2D. In particular, we can identify a distinct exciton well below the band 
edge. We saw that without Coulomb truncation, the BSE spectrum is shifted upward 
in energy due the screening of electron-hole interactions from periodic images. Exper-
imentally, the absorption spectrum of monolayer WS2 exhibits for A exciton peak 
around 2.02eV[72]. According to these, the theoretical results from BSE spectrum, 
(and specifically for Coulomb truncated) we represent show a reliable approximation 
method to describe and predict the excitation effects for 2D materials, with good 
agreement of experimental results. After we investigated the excitation effects for 
equilibrium structure of monolayer WS2, we move on to studied the excitons in 
strained monolayer WS2. We applied isotropic stretching by 5% and 10% in the equi-
librium structure of monolayer WS2. We performed for each case DFT calculations 
and used the approximations methods RPA, BSE and BSE-truncated to calculate the 
longitudinal part of 2D polarizability. In the case of 5% stretched monolayer WS2, the 
lattice constant is a=3.198Å and for 10% stretched a=3.248Å. The other unit cell lat-
tice parameters as well as computational details for RPA and BSE methods are the 
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same as in the equilibrium structure. The resulting spectra for 5% and 10% stretched 
monolayer WS2 are shown below in Figure 5.2 and Figure 5.3, respectively.  

Figure 5.2 

 
Figure 5.2: Polarizability of 5% stretched monolayer WS2 calculated with the RPA, 
BSE and BSE truncated. 
 
 
 
 
 

Figure 5.3 
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Figure 5.3: Polarizability of 10% stretched monolayer WS2 calculated with the RPA, 
BSE and BSE truncated. 
 
For the cases of the stretched monolayer WS2, the results for the A exciton for each 
approximations method are shown below in Table.13. 
 

Table.13 
 

Monolayer of WS2 Stretched 5% Stretched 10% 
Exciton A A 

RPA - - 
BSE 2.182eV 2.034eV 

BSE truncated 1.965eV 1.818eV 
 
We observe that for stretched by 5% and 10% monolayer WS2, the energies of 
excitons decreased compared to the equilibrium structure. In the case of stretched by 
5% in monolayer WS2 (Figure 5.2) we saw that the BSE spectrum with Coulomb 
truncation, is shifted downward 0.165eV for A exciton compare to the ABS of mono-
layer WS2 at equilibrium (Figure 5.1). On the other hand, in the case of stretched by 
10% in monolayer WS2 (Figure 5.3), we see that the spectrum for BSE-truncated is 
shifted even further downward by 0.312eV for A exciton. Furthermore, again in both 
cases without Coulomb truncation, the BSE spectrum is shifted upward in energy due 
the screening of electron hole interactions from periodic images, whereas RPA does 
not show any exciton peak. These results are clues that the stretching of monolayer 
WS2 affect directly in the optical ABS. A reasonable explanation for that is quantum 
confinement[73] as discussed later. In this case, the size of the unit cell increases in 
monolayer WS2, this means increased to confining dimension makes the motion of 
randomly moving electron less restricted.  
 
We examined the excitation effects for the case of stretched monolayer WS2, we 
move on to study the excitons in the case of compressed monolayer WS2. We applied 
isotropic compressive strain by 5% and 10% in the equilibrium structure of monolayer 
WS2. We performed for each case DFT calculations and used the approximations 
methods RPA, BSE and BSE truncated to calculate the longitudinal part of 2D 
polarizability. In the case of 5% compressed monolayer WS2, the lattice constant is 
a=3.098Å and for 10% compressed was set in a=3.048Å. The other unit cell lattice 
parameters as well as computational details for RPA and BSE methods are the same 
as in the equilibrium structure. The resulting spectra for 5% and 10% compressed 
monolayer WS2 are shown below in Figure 5.4 and Figure 5.5 respectively.  
 
 

Figure 5.4 
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Figure 5.4: Polarizability of 5% compressed monolayer WS2 calculated with the RPA, 
BSE and BSE truncated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 
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Figure 5.5: Polarizability of 10% compressed monolayer WS2 calculated with the 
RPA, BSE and BSE truncated. 
 
For these cases of compressed monolayer WS2 the results for the A exciton for each 
approximation method are shown below in Table.14. 
 

Table.14 
 

Monolayer of WS2 Compressed 5% Compressed 10% 
Exciton A A 

RPA - - 
BSE 2.539eV 2.749eV 

BSE truncated 2.316eV 2.522eV 
 
According to these results, we observe that for 5% and 10% compression of monolay-
er WS2 the energies of excitons increase compared to the equilibrium structure of 
monolayer WS2. In the case of 5% compression (Figure 5.4), we see that 
the BSE spectrum with Coulomb truncation, is shifted upward 0.186eV for A exciton 
compared to the equilibrium monolayer WS2 (Figure 5.1). On the other hand, in the 
case of 10% compression of monolayer WS2 (Figure 5.5), we see that the spectrum 
for BSE-truncated is shifted even further upward with 0.392eV for A exciton com-
pared to the equilibrium monolayer WS2. Furthermore, we see again in both cases 
that without Coulomb truncation, the BSE spectrum is shifted upward in energy due 
the screening of electron hole interactions from periodic images, whereas RPA does 
not show any exciton peaks. These results show that compression of monolayer WS2 
influence the spectrum. The explanation is the same such as in case of the stretched 
monolayer WS2 and is due to the quantum confinement effect.  
 
In conclusion, in this chapter we saw that the BSE spectrum with Coulomb truncation 
for monolayer WS2 produced the best results to describe and predict the excitation 
effects in agreement with experimental results. We observed also, that the strained 
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(stretch or compress) monolayer WS2 influence significantly the photoluminescence 
as well as the excitation effects due to quantum confinement effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 6 
 
Conclusions 
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In this work, we performed first principles calculations in order to investigate the 
electronic properties of WS2/Graphene bilayers. We used GPAW, an open source py-
thon code based on projector-augmented wave (PAW) method and the atomic simula-
tion environment (ASE). In the DFT calculations for the atomic and electronic struc-
ture we chose LDA for the exchange-correlation functional and the parameter “setups 
= {'W': '6'}”, that is six valence electrons for W atom, which proved vital to provide 
the best description for the structural and electronic properties of monolayer WS2, 
graphene, and WS2/graphene heterostructure.   
 
More specifically, we achieved percentage error less than 0.6% for the atomic struc-
ture parameters, such as lattice constants, comparing with experimental values for 
both graphene and WS2 monolayer. With our electronic band structure calculations, 
we confirmed the semiconducting (direct band gap) characteristics for the monolayer 
WS2 and for graphene we observed the Dirac cone in the Brillouin zone which de-
scribes the semi-metallic (band gap free) behavior, as expected. Furthermore, we used 
the electronic band structure unfolding method for supercell calculations, which 
proved an extraordinary and reliable process to reproduce the true electronic band 
structure of monolayer WS2 and graphene supercells.  
 
Our theoretical investigation of different WS2/Graphene heterostructures showed that 
lattice mismatch plays a crucial role in these hetero-bilayers. For the 
WS2(3x3)/Graphene(4x4) supercell in its equilibrium configuration, we found that the 
WS2 monolayer was stretched by 2.60%, with important consequences for the stabil-
ity of the heterostructure and its electronic band structure. We observed an indirect 
band gap transition (G-K) with a value of 1.672 eV compared to the direct (K-K) 
1.945eV band gap in equilibrium monolayer WS2. However, the compression by 
0.97% of graphene in the equilibrium heterostructure does not have any visible influ-
ence on the electronic band structure. On the other hand, we found that in the equilib-
rium WS2(4x4)/Graphene(5x5) supercell there is a 1.92% compression of monolayer 
WS2. Although we obtained a stable heterostructure in this case, the electronic band 
structure was affected showing an indirect transition with a 1.992eV band gap be-
tween the valence band maximum near the K-point and the conduction band mini-
mum shifted near to the Γ-point. We also observed a gap widening by 0.295eV be-
tween valence band maximum and conduction band minimum at the M-point compar-
ing to the electronic band structure of the equilibrium free-standing monolayer. 
Graphene was stretched by 0.96% in the equilibrium heterostructure but this had not 
influence on the electronic structure of the WS2(4x4)/Graphene(5x5) heterostructure. 
Based on these results, it is clear that the indirect transitions as well as the miss-
crossing band alignment in the electronic band structure of WS2/Graphene 
heterostructures is due to the strained supercells of monolayer WS2. Our results are in 
agreement with previous theoretical studies on strained monolayer TMDs and indicate 
that the graphene substrate may modify monolayer WS2 band structure through strain. 
Moreover, the small strain on the graphene layer has no effect in its semi-metallic 
properties inside WS2/Graphene heterostructures.  
 
 
In this work, we also studied excitonic effects in monolayer WS2 by following differ-
ent approximation methods such as RPA, BSE and BSE-truncated. We obtained the 
best description from the BSE spectrum with Coulomb truncation due to the reduced 
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screening in 2D. We find a peak at 2.130eV for the exciton and at 2.732eV for the 
band gap. We observed that for strained monolayer WS2, by 5% and 10%, the absorp-
tion spectrum changes significantly in a way which is totally consistent with quantum 
confinement effects.  
 
Theoretical investigation of 2D materials, such as monolayer WS2 and graphene as 
well as WS2/Graphene heterostructures in our case, gives fascinating results for the 
atomic and electronic structure which may lead to the controlled manipulation of elec-
trical and optical properties in these 2D materials. These materials, single layers as 
well as vdW heterostructures, are great candidates for technological applications. 
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