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Abstract

Studies from the 2000s have reported on the non-randomness of gene distribution in the
eukaryotic genome. Numerous studies have pointed out the existence of gene clustering in
all major eukaryotic kingdoms, that is thought to enable the co-regulation of functionally-
related and often co-expressed genes. In our current work we build on previous results
of our lab (Nikolaou (2018); Tsochatzidou et al. (2017)), in order to study the existence of
an underlying compartmentalized genomic organization in saccharomyces cerevisiae, which
correlates the topological to the functional features of the genes. In order to achieve that,
we have devised an algorithm that evaluates the existence of gene-clustering at the linear
level and can be applied on any genomic categorization. This method works on the basis
of a permutation test strategy, which assesses a) the enrichment of genes in specific chro-
mosomes and b) the linear intergenic distances between consecutive input genes. Starting
from a subset of genes of a specific type, the algorithm returns a set of delineated at co-
ordinate level sub-clusters, which enclose genes positioned in greater proximity than ex-
pected by chance on a chromosome. We have applied this approach on a large variety
of publicly available genomic categories, which include transcription factor gene-targets,
gene ontology terms and other partitions related to evolutionary age, conservation level
and transcriptional plasticity. We have detected clustering in almost every category that we
examined. Seemingly, transcriptional regulation, expression variability and conservation
level constrain the organization of the genes at the linear level. We have also found rare
but interesting cases of sparse gene-positioning, regarding genes of a younger evolutionary
age and genes considered integral components of the membrane. In a novel approach, our
pipeline allows for the association of genomic properties through the assessment of over-
lapping sub-clusters. We have identified correlated patterns between clusters of genes with
low conservation and high transcriptional plasticity, while also finding that clusters related
to the membranes overlap with such regions, implying a positional bias of such functions
towards the telomeres.
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1

Introduction

1.1 | Saccharomyces cerevisiae

1.1.1 | Saccharomyces cerevisiae as a model organism
Budding yeast Saccharomyces cerevisiae is an eukaryotic, single-cellular organism that is widely
used as an experimental system. Its rapid growth and low living costs make its manipulation
easier compared to the other animal models. The budding yeast genome was the first eukary-
otic genome to be fully sequenced in 1996 (Goffeau et al. (1996)), aiding in the development of
various functional genomic tools. Its genome consists of approximately 12Mb pairs and more
than 6000 protein-coding genes (Goffeau et al. (1996)). One of yeast’s major contributions in
research is the gene-protein functional association through the construction of mutants (Bot-
stein and Fink (2011)) leading to the creation of various kinds of libraries, e.g. deletion libraries
(Scherens and Goffeau (2004)). The progress in studying yeast’s genetics and molecular biology
served as a motivation to introduce researchers in the development of many high-throughput
technologies (Cho et al. (1998); DeRisi et al. (1997); Lashkari et al. (1997)) leading to the ex-
pansion of the yeast’s and other model organisms’ available genetic-data toolbox. Yeast and
humans share a wide range of functional pathways (Kuchaiev and Pržulj (2011)) regarding the
cell cycle (Hartwell (2002)), metabolism (Petranovic et al. (2010)) and other major pathways
(Chen and Thorner (2007); De Virgilio and Loewith (2006)), making it also a suitable model to
study human disorders (Petranovic and Nielsen (2008)).

1.1.2 | Saccharomyces cerevisiae nucleus and genome organization
The budding yeast is characterized by both unique and conserved eukaryotic traits. As men-
tioned before, the Saccharomyces cerevisiae genome is approximately 12Mb pairs long. It is or-
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Chapter 1. Introduction 1.1. Saccharomyces cerevisiae

ganized in sixteen chromosomes which host approximately 6200 protein-coding genes. The
positioning of genes on the chromosomes is quite compact as 70% of the genome is occupied
by genes (Goffeau et al. (1996)), interrupted only by a low number of (approximately 250) in-
trons (Barrass and Beggs (2003)). Although more complex eukaryotic genomes consist of repet-
itive elements, budding yeast chromosomes have little repetitive DNA (apart from the rDNA
and telomeres) and potentially no satellite repeat DNA at the centromeres (Taddei and Gasser
(2012)).

The basic principles governing the nuclear organization can be observed in all eukaryotes,
from yeast to humans. During interphase, the budding yeast chromosomes achieve a very
characteristic configuration in the nucleus (Duan et al. (2010)), which is thought to serve in
the simplification of chromosomal intermingling (Pouokam et al. (2019)). This conformation
is called Rabl and is characterized by a centromeric center adjacent to the spindle pole body
(SPB) and extending chromosomal arms with telomeres anchored in the nuclear envelope (NE)
(Figure 1.1). Transcription factors, nuclear pore proteins and chromatin remodellers play a cru-
cial role in the spatial organization of the yeast genome (Brickner et al. (2019); Jo et al. (2021)).
According to the Duan et al. (2010) model, chromosomes occupy distinct regions in the nu-
cleus, with the smaller ones having higher inter-chromosomal contact frequencies, as they are
cramped in a smaller part of the nucleus close to the centromeres.

Figure 1.1: Two views representing the yeast genome from two different angles, as provided by
Duan et al. (2010). This model was created by transforming the contact frequency of different
regions into distance in space. Enclosed in the dashed lines is the centromeric center, while the
arrow pinpoints the nucleolus formed by chromosome XII.

We know that the genome of the higher eukaryotes is not randomly positioned inside the
nucleus, as there are functional compartments determined by specific enzymes and chromatin
states (Lieberman-Aiden et al. (2009); Rao et al. (2014)), Figure 1.3). Similarly, a study in yeast
revealed the existence of TAD-like domains, each characterized by distinct nucleosomal ar-
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(a) TAD-like domains in yeast

(b) The segmentation of the
genome on the basis of the
TAD-like domains

Figure 1.2: Depicted in 1.2a are the TAD-like domains across the chromosome IV of the yeast
as shown in Nikolaou (2018). Depicted at the top of 1.2a is the frequency of contacts in a 3C
map using the data of Duan et al. (2010) while, shown at the bottom are the resulting TAD-
like domains created on the basis of structural and functional properties. Black represents the
insulating regions while the rest of the colours indicate different TAD classes. Shown in 1.2b is
the distribution of the different TAD-like domains across the yeast chromosomes.

chitectures, transcriptional regulators and positional preferences, segmenting the genome into
seven compartments, as shown in Figure 1.2 (Nikolaou (2018)). Zooming out, we observe that
the nuclear organization of the yeast genome seems to reflect distinct functional processes. The
accumulation of the rDNA in the nucleolus opposite to the (Spindle Pole Body) SPB, is a site
dedicated to ribosome biogenesis enriched in RNA-polI, serving as a most striking example
of functional compartmentalization in the nucleus (Taddei and Gasser (2012)). Furthermore,
telomeric regions near the periphery host repetitive DNA, while being unfavorable for RNA-
pol II transcription, as they are enriched in silencing factors (Taddei and Gasser (2012)). Ge-
nomic compartmentalization seems to exist at multiple levels and it has inspired a number of
studies trying to unveil the principles governing the organization of the genomes at both linear
and three-dimensional levels.
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Chapter 1. Introduction 1.2. The non-random positioning of genes

1.2 | The non-random positioning of genes

1.2.1 | Gene Clustering
In the early 2000s, the science world was already talking about the non-randomness of the
genes’ distribution across the genome (Hurst et al. (2004)). Now it is known that gene position-
ing in either the linear or the spatial level affects the genes’ regulation and thus their expression
(Misteli (2004); Takizawa et al. (2008)). As already mentioned, the genome of higher eukayotes
is organized in a non-random manner, segregated into open and closed chromatin and form-
ing genome-wide compartments that occupy distinct regions in the nucleus (Lieberman-Aiden
et al. (2009)) (Figure 1.3).

At the linear level, multiple studies reported cases of co-expressed genes clustering from
yeast to humans. The first evidence came from Cho et al. (1998), who have shown, through
mRNA level characterization, that 25% of genes with cell-cycle-dependent expression patterns
were directly adjacent to genes induced in the same phase of the cell cycle (Figure 1.4). Clus-
tering was also found in other species as well. Approximately 15% of C. elegans genes are con-
tained in operon formations, transcribed in polycistronic pre-mRNAs, stretching between two
and eight genes long (Blumenthal et al. (2002)). In Arabidopsis thaliana it was shown that neigh-
bouring genes are co-expressed (Williams and Bowles (2004)). At a larger scale, in humans, it
was shown that the housekeeping genes, highly expressed in a variety of tissues as defined by
Serial Analysis of Gene Expression (SAGE) tags, show significantly smaller dispersion than ex-
pected by chance (Lercher et al. (2002)). Finally, Boutanaev et al. (2002) claim that 45% of genes
expressed solely in the testes are organized in uninterrupted stretches of at least four genes. A
looser definition of a cluster by permitting intervening genes of different expression patterns
led to the identification of much larger clusters. Although clustering was found across many
major species, it seems that there is a correlation between the physical cluster size and the com-
plexity of the organisms, as cluster sizes range from a few kilobases in yeast, characterized by
a compact genome, to several megabases in mammals (Hurst et al. (2004)).

Why are genes positionally clustered? One major hypothesis claims that the clustering
of genes enables co-regulation, either on the small scale (e.g. bidirectional promoters) or on
a broader scale (e.g. chromatin-mediated regulation). Various studies supporting this no-
tion report that functionally related genes, participating in the same GO-terms (Tiirikka et al.
(2014)) or in the same KEGG pathways (Lee and Sonnhammer (2003)), are clustered across
many organisms. Nevertheless, the latter report that although there is a significant tendency
for genes to cluster across all the species examined (human, worm, fly, A. thaliana and yeast),
the fraction of pathways with significant chromosomal clustering was highly variable, rang-
ing from 30% for D. melanogaster to 98% for yeast. Similarly, in yeast Teichmann and Veitia
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Figure 1.3: ’The chromatin packing in the nucleus is consistent with the behaviour of a fractal
globule’, as mentioned in Lieberman-Aiden et al. (2009). C) Top: an unfolded polymer chain,
4000 monomers. Depicted below are two folding models of the chromatin. The first refers to
the equilibrium globule characterized by a highly entangled structure. The second refers to
the fractal globule and is characterized by the formation of distinct monochromatic blocks as
regions that are nearby at the linear level are brought together also at the 3D level. D) The
genome architecture at three levels. Top: two distinct compartments reflecting the open and
close chromatin with chromosomes occupying distinct territories, middle: individual chromo-
somes, bottom: at the scale of single megabases, the chromosome consists of a series of fractal
globules

(2004) showed that genes, whose products participate in stable protein-protein interactions,
are found to be strongly linked, which helps in their co-regulation and thus in the maintenance
of the right stoichiometry. Additionally, Poyatos and Hurst (2006) have shown that proximal
genes in a protein-protein interaction network in yeast tend to be positionally linked and of-
ten co-expressed. Janga et al. (2008) showed that most of the yeast transcription factors that
they examined have positionally clustered gene-targets, implying that transcriptional regula-
tion constrains the positioning of genes. A different work conducted on the human genome
by Thévenin et al. (2014) has shown that functionally related gene groups are concentrated in
specific chromosomes, while at the same time being positioned at smaller distances across the
chromosomes. Finally, a work based on the 3D yeast model of Duan et al. (2010), claims that
there is an enrichment of inter-chromosomal links connecting loci of genes with the same GO-
term (Homouz and Kudlicki (2013)). In more complex genomes, increased co-expression has
been shown to be a characteristic of specific chromosomal regions associated with Topologi-
cally Associated Domains (TADs) (Krefting et al. (2018)).
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Figure 1.4: Depicted is a histogram, as shown in Kruglyak and Tang (2000), with a fraction
of highly correlated expression patterns among consecutive gene-pairs (white) versus all gene
pairs (gray). For example, the bars at 0.80 show that 1.2% of consecutive genes have expression
patterns with a correlation between 0.80 and 0.90, compared to 0.40% of all gene pairs.

Although there is evidence that clustering is correlated to functionally related genes and
co-expression, probably at both the linear and the 3D level, there are other studies supporting
that this does not explain the full picture. Different studies in yeast claim that the drive behind
the genes’ clustering is the reduction of transcriptional noise, as there is evidence that they ac-
cumulate in constantly open chromatin "sinks" in which transcriptional bursting is minimized
(Batada and Hurst (2007); Wang et al. (2011)). Supporting this notion, Kustatscher et al. (2017)
note that the co-expression of functionally unrelated neighbouring genes may be a side effect
of the selection for noise reduction. They claim that the genome "compensates" for such a co-
expression by buffering the co-expressed genes’ products at the protein level. Similarly, studies
in the 3D level support that noise-reduction constrains the organization of the yeast genome at
the 3D level as well (Singh et al. (2016)).
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(a) Up- and Down-regulated gene clusters
(b) Topological and functional preferences of
the gene clusters

Figure 1.5: Depicted in 1.5a are the up- and down-regulated gene clusters on chromosome
4, as shown in Tsochatzidou et al. (2017). The clusters were created by merging genes with
similar (positive or negative) GRO values. Red indicates up-regulation, while blue indicates
down-regulation. Depicted in A) is the distribution of the two clusters across the chromosomes
while in B) is a heatmap representing the GO-terms enrichments across the two cluster types.
Finally, depicted in C) is a volcano plot showing the significant enrichments of transcription
factor binding sites (TFBS) across the two clusters types. Enrichments are shown as log2-based
observed/expected ratios. Values >0 indicate enrichment and values <0 indicate depletion. P-
values correspond to 1000 permutations for each transcriptional regulator.

1.2.2 | Gene clustering upon topoisomerase perturbation in yeast
The motivation for the current project came from a previous work of our lab, in which we have
unveiled the existence of a compartmentalized organization of the yeast genome during stress.
Tsochatzidou et al. (2017) worked on a genome-wide transcription run-on (GRO) experiment
conducted shortly after the thermal inactivation of topoisomerase II which caused a transient
accumulation of topological stress to the cell.

Upon these conditions they detected the emergence of 116 up- and down-regulated concor-
dant gene clusters with more than seven genes each, which have strong positional and func-
tional preferences, as depicted in Figure 1.5. These clusters tend to be co-expressed at levels
which are higher than the ones expected by chance and are found to have opposing topologi-
cal preferences, with the up-regulated clusters being positioned farther from the centromeres,
while the down-regulated occupy regions near the centromeres. This segregation expands to
the functional level as well, with up-regulated genes being mostly enriched in stress-related
GO-terms and in more complex regulation patterns than the down-regulated genes, which
were found to be mostly related to basic cellular functions characterized by a less complex
regulation, depleted of TATA elements and transcription factor binding sites.

By analyzing more properties of gene-clusters, including the directionality of genes, the
lengths of intergenic regions, their conservation level and even the frequency of contacts in the
three-dimensional space, they have described a segregated genome architecture that resem-
bles an "Urbanization process", as depicted in Figure 1.6. The genome near the centromeres,
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which are enriched in down-regulated clusters, represents the "old city center", characterized
by its ancient, tightly-positioned genes, related to basic cellular functions, while the "suburban
genome" near the chromosomal outskirts, enriched in up-regulated clusters, is characterized
by sparsely positioned, less conserved genes mostly related to stress response and secondary
functions.

Figure 1.6: The topological and functional preferences of the co-regulated gene clusters reflect
a compartmentalized genome architecture, as described in Tsochatzidou et al. (2017). Depicted
here is a representation of the Genome Urbanization in the interphase nucleus acquiring the
Rabl conformation. The centromeric ’old city center’, enriched in down-regulated gene clusters
under topoII deactivation, can be compared to a medieval town with crammed houses and
narrow intertwined alleys as it consists of more conserved genes of complex directionality with
tighter intergenic spaces. Telomeric regions resemble the ’suburban lanscape’ of a modern city
characterized by "younger" genes, sparsely positioned in a co-directional operon-like manner,
enriched in the up-regulated clusters.

The emergence of co-regulated gene clusters which have distinct functional roles and oc-
cupy distinct genomic ’niches’, implies the existence of a spatial preferences that may shape the
organization of gene neighbourhoods, in such a way to enable the optimization of the cell’s bal-
ance between homeostasis and stress response. Based on that specific idea, we currently wish
to explore if such a notion applies widely to the Saccharomyces cerevisiae genome by studying
the clustering of various gene categories and their overlaps across the chromosomes at a linear
level.

8



Chapter 1. Introduction 1.3. Aims and Objectives

1.3 | Aims and Objectives
Building on previous work of our lab (Tsochatzidou et al. (2017)), we currently study the topo-
logical and functional genomic compartmentalization of the Saccharomyces cerevisiae genome
at the linear chromosomal level. Our main objective was to create an in-house algorithm that
could be easily applied on any genomic categorization, aiming to identify cases of positional
clustering across the yeast’s genome and finally to delineate such regions at coordinate level.
By applying this algorithm to many functional gene categorizations regarding transcriptional
regulation, transcriptional variability, conservation level, gene origin and gene functionality
we would gain insight in the extensive positional clustering of the yeast genome. The subse-
quent examination of the relationships between significantly overlapping sub-clusters would
help us reveal underlying relationships between various clustered gene categories. Besides
clustering, the algorithm would evaluate chromosomal preferences or avoidance tendencies
of the input gene categories as well. The major advantage of this approach is that it is easily
applicable in any genomic categorization, which in combination with the variety of available
data on yeast, will give us a full picture of the level of clustering in its genome. The novel
step is that, by delineating the positionally clustered genes into coordinate level, we are able
to evaluate significant overlaps between all the categories examined, enabling us to study the
principles governing the organization of the linear genome at a greater level.

9



2

Materials & Methods

2.1 | Information on the data used in this analysis

2.1.1 | Gene-coordinates at a linear level
An annotation file of the Saccharomyces cerevisiae genome sacCer2, (June 2008 assembly) as pro-
vided by the University of California Santa Cruz (http://genome.ucsc.edu) was used in this
analysis. Mitochondrial genes were removed leaving a total of 7071 genes. Intergenic distances
were calculated on the basis of transcript-coordinates of genes. Different coordinates were
used only for the meta-assemblages analysis (mentioned below) taken from the paper itself
and reported by Saccharomyces cerevisiae database (https://www.yeastgenome.org/, source:
SGD_features.tab).

2.1.2 | Gene-coordinates at a three-dimensional level
The three-dimensional model of the S. cerevisiae genome was obtained by Duan et al. (2010).
Michalis Georgoulopoulos during his master thesis resampled the aforementioned model at
gene resolution by linearly interpolating the model’s control points to approximate the cen-
ter base pair of each gene (see full procedure here: https://github.com/mgeorgoulopoulos/
ScerSeg). In more detail, the center base pair of each gene is found between two successive
control points (assuming their uniform distribution on chromosomes) of the source model. A
weighted average of these two points is assigned as the position of the gene in space. This
dataset includes a total of 6496 genes.
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2.1.3 | Transcription-factor binding
Three datasets containing transcription factor potential binding sites were used in this anal-
ysis. As described by Harbison et al. (2004), a genome-wide location analysis (chIP on chip)
in 12 different environmental conditions with conservation criteria and previous knowledge
were used to re-discover the binding specificities of 102 DNA-binding transcriptional regu-
lators of Saccharomyces cerevisiae through the utilisation of six different motif discovery algo-
rithms (Figure 2.1). These new specificities were then mapped on the yeast genome. Strin-
gent binding and conservation criteria were used to create a transcriptional regulatory code.
Variants of the map constructed with different binding and conservation thresholds were also
made available. In this analysis we used a map of all potential interactions, thus constructed
with lower-confidence information as provided by the University of California Santa Cruz
or UCSC (Available on: https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=1198681503_

0zToND2yJmhuG2Cf7zBOkiKBvJuG&hgta_doSchemaDb=sacCer2&hgta_doSchemaTable=transRegCode).
For each of these interacting regions the overlapping SacCer2 promoters were found (minus 300
and plus 100 base-pairs around the promoter). The final dataset contains 102 transcriptional
regulators and 6026 gene promoters with which they have potential interactions (excluding
the tRNA genes). 768 gene promoters were found with no available interactions ("no-signal"
genes), possibly not overlapping with any regulator’s motif or with any probe used in the chip.
It is important to note that this map was created on the basis of regulators binding in multiple
growth conditions.

MacIsaac et al. (2006) compiled a refined version of the above regulatory code by using
two improved motif-discovery algorithms, thus enriching the existing interaction map. Again,
different versions of the refined regulatory map were generated with loose or stringent cri-
teria for binding and/or conservation available from: http://fraenkel-nsf.csbi.mit.edu/

improved_map/. In the current analysis, two versions were used. The more relaxed version,
with no conservation or binding criteria, contained potential interactions between 121 factors
and 5693 gene promoters (without the tRNA genes). The second and more stringent version
contained sites conserved across at least 3 out of 4 yeast sensu stricto species, and bound at p
< 1E-3 in the location analysis of Harbison et al. (2004). This included 117 factors versus 1985
gene promoters. A factor is considered to have an interaction with a gene if there are bound
instances for that factor in the intergenic region upstream a given gene.
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Figure 2.1: The procedure followed by Harbison et al. (2004) to discover the binding-site speci-
ficities for yeast transcriptional regulators. a, A combination of genome-wide location analysis
(chIP on chip) to determine cis-regulatory sequences with phylogenetically conservation and
previously published evidence was used to locate the potential binding-sites of many transcrip-
tion factors in yeast. b, Some of the resulting factor specificities that were either rediscovered or
newly discovered are shown. The total height of the column is proportional to the information
content of the position, and the individual letters have a height proportional to the product of
their frequency and the information content.

2.1.4 | Positional frequencymatrices of transcription factors’ bindingmo-
tifs

The positional frequency matrices (PFM)s of Saccharomyces cerevisiae factors were obtained
from the Jaspar database (Sandelin et al. (2004)), available at: https://jaspar.genereg.net/
download/data/2022/CORE/JASPAR2022_CORE_fungi_redundant_pfms_jaspar.txt. Those were
used to calculate the corresponding position specific scoring matrices (PSSM) with which the
yeast genome was scanned in order to locate potential binding regions of transcription fac-
tors. Regions achieving the 66.6% of the max PSSM score per factor were further filtered by
discarding those with scores lower than the 5% top scoring motifs per factor. Finally, from
the aforementioned filtered regions, only those overlapping with the promoter regions used in
Harbison et al. (2004) were kept. The information content for each factor was also calculated
as the amount of uncertainty per motif position normalized by motif size. More specifically
on the basis of the positional weight matrices, an entropy-based metric was calculated as the
difference between the maximum entropy (expected nucleotide frequency across the genome)
and the observed entropy (observed nucleotide frequency per motif position). This can be
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mathematically explained as:
I = Hmax − Hobserved

where I is the information content and H is the entropy calculated as:

Σ4
i P[i]log(P[i])

with P[i] being the frequency of each of the four nucleotides in the specific motif position. The
final information content is calculated as the sum of I across the motif’s positions divided by
the length of the motif.

2.1.5 | Genome-wide protein meta-assemblages
Protein meta-assemblages were obtained from Rossi et al. (2021). Rossi et al. (2021) performed
ChIP-exo to map genome-wide binding in yeast with high accuracy. Each meta-assemblage
describes a population-based consensus of composite target co-localization on the genome re-
flecting different regulatory patterns. As meta-assemblages are based on cell populations, their
member targets tend to bind the same genomic locations, although not necessarily at the same
time. In this analysis, 40 meta-assemblages were used containing 371 factors and encompassing
a total of 6472 unique genes. A gene can be part of more than one meta-assemblage. Depicted
in Figure 2.2 are the functional categories describing most of the meta-assemblages used in this
analysis, accompanied by the name of the factors that make up each meta-assemblage. The
miscellaneous meta-assemblages refer to binding events that were either rare or highly iso-
lated, thus do not represent a combination of co-localized factors on the genome. As these data
are based on the sacCer3 assembly of the yeast genome and contain a number of non-coding
elements we decided to do further analysis on the same gene pool as with the transcription
factors before by using the sacCer2 assembly. As a result, the total number of gene-targets of
the meta-assemblages was decreased to 6000 unique genes.

2.1.6 | Various gene classes
In all, 1091 essential (the rest are labeled as non_essential) genes of S. cerevisiae were obtained
from a genome-scale functional profiling (Dow et al. (2002)). In addition, 1073 TATA (the rest
are labeled as TATAless) genes were obtained from a concise data set, which was formed by
taking into account the location and conservation of a TATA consensus in the gene’s upstream
region and the gene’s sensitivity to TATA binding proteins (Basehoar et al. (2004)). 1018 small-
scale duplicates (SSD) and 1092 whole-genome duplicates (WGD) were obtained from Fares
et al. (2013) identified by performing all-against-all BLAST-searches using BLASTP. 373 genes
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Figure 2.2: A pie-chart derived from Rossi et al. (2021) showing the general GO-terms related
to most of the meta-assemblages (outer ring). Listed are also the common names of the assayed
factors grouped on the basis of the related GO-terms and meta-assemblages.

expressed with high frequency (high_freq_epxr) and 495 genes expressed with low frequency
(low_freq_expr) were obtained from the SPELL database (https://spell.yeastgenome.org/).

2.1.7 | Evolutionary origin of genes
The origin taxa of the S. cerevisiae genes were kindly provided by Nikos Vakirlis. These were
determined by performing BLASTP searches on all the available RefSeq Fungi proteomes with
an E-value cutoff of 1E-3. Finally, the origins of the S. cerevisiae genes were defined by tracing
the most recent common ancestor of species that shared a homologue. Table 2.1 depicts the dis-
tribution of genes across the evolutionary taxa. The taxa are ordered on the basis of decreasing
evolutionary "age".
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Origin Number of genes
Fungi 4525

Ascomycota 295
Saccharomycetales 378

Saccharomycetaceae 226
Saccharomyces 101

Saccharomyces cerevisiae 563

Table 2.1: The number of genes across the evolutionary origin categories, ordered on decreasing
"age".

2.1.8 | Gene-ontology terms
The S. cerevisiae genes with their corresponding gene-ontology terms were obtained from the
Saccharomyces Genome Database or SGD (http://www.yeast-genome.org). The total number
of genes was equal to 7127 and the GO-terms were equal to 5899. Genes can be matched to
more than one GO-term. In this analysis only 1460 GO-terms with more than 5 genes each
were used.

2.1.9 | Distances from Telomeres/Centromeres
Centromere and telomere coordinates were obtained from SGD (http://www.yeast-genome.
org). Distances from the centromeres were scaled in the following way; the closest distance
to the corresponding centromere was calculated for each gene and then divided over the size
of the region spanning the centromere and the edge of the chromosomal arm in which the
gene was lying. In this way, all distances were rescaled in a range from 0 (overlapping the cen-
tromere) to 1 (lying at the edge of the chromosomal arm). The same scaling was also performed
for the distances from telomeres. Since telomeres are of very restricted size in the yeast genome,
the edge of the corresponding chromosomal arm was used instead of the actual telomere coor-
dinates.

2.1.10 | Transcriptional variability and Conservation score
We obtained normalized expression data from a compendium of 2400 experimental condi-
tions from the SPELL database Hibbs et al. (2007). In order to assess expression variability,
we calculated the standard deviation of gene expression levels for each gene across all condi-
tions and then normalized it across genes with the use of a z-score. Sequence conservation was
determined using phastCons scores for S. cerevisiae (Siepel et al. (2005)) as calculated on the ba-
sis of multiple genome alignments against six Saccharomyces species (Saccharomyces paradoxus,
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Saccharomyces mikatae, Saccharomyces kudriavzevii, Saccharomyces bayanus, Saccharomyces castelli,
Saccharomyces kluyveri)

2.2 | Linear-positional clustering
To test whether a group of genes (given as input) shows higher linear-positional clustering
at a chromosome level than expected by chance, the observed average intergenic distances of
consecutive genes, per chromosome, were compared to those obtained from 1000 permutation
tests. In more detail, in each permutation, the order of genes in the dataframe was shuffled and
the matching number of input genes per chromosome were kept. As an example, if the input
consists of 30 genes positioned on chromosome I and 70 genes on chromosome IV, during each
permutation test, 30 random genes of chromosome I and 70 of the chromosome IV are extracted
to be further used. For each chromosome of the analysis a z-score and a p-value evaluating the
significance of the difference between the observed and expected average distances is calcu-
lated. To achieve that, the average of intergenic distances between consecutive genes of the
input is computed for each chromosome separately. From the corresponding random datasets,
the randomly pulled genes are ordered according to their coordinates (consecutive) and the
same property is calculated resulting in 1000 average intergenic distances for each chromo-
some of the analysis. In cases in which the intergenic distances per chromosome were more
than 4 then distances higher than the 95% percentile were discarded, both for the observed
and the random cases. This step minimizes the effect of outlier distances. Z-scores are finally
calculated for each chromosome of the input, as the difference between the observed average
of intergenic distances (χ) and the average of the 1000 random average intergenic distances (μ)
divided by the standard deviation of the 1000 random averages (σ). Correspondingly, p-values
are computed as the fraction of times the random average intergenic distances are equal to or
more extreme than the observed average intergenic distance per chromosome. Significant cases
of absolute z-scores higher than 1.96 with at least 5 genes per chromosome are kept in the end.
Each step of the procedure is explained in greater detail below:

1. Working on the observed intergenic distances:

■ A dataframe containing the gene names and their corresponding chromosomes is
inserted as input. The genes should be part of the distance matrices that were com-
puted in a previous step.

■ Calculate and store the number of genes per chromosome (chromosomal profile).
This information will be used to calculate a tendency of preference/avoidance for
specific-chromosome positioning.
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■ Genes of the input per chromosome are sorted based on their linear order and then
are divided into groups of consecutive two genes. For each pair of pseudo-consecutive
genes (because not all genes are included in the input) the corresponding intergenic
distance is traced back in the corresponding distance matrix. The top 5% of inter-
genic distances is discarded (only in cases with at least 5 genes) and the average is
computed and stored in a dataframe accompanied by the corresponding chromo-
some.

2. Working on the expected intergenic distances

■ For each permutation (1000 in total) the order of all the yeast genes is shuffled. For
the chromosomal preference test, the matching number of random genes as in the
input is used to create a random chromosomal profile. The procedure following
refers only to the linear-positional clustering test. For each chromosome a number
of random genes matching the one of the original dataset is used. The procedure is
then identical to the one mentioned above for the observed intergenic distances. As
a result there are 1000 random average intergenic distances for each chromosome
included in the analysis.

3. Evaluating the linear-clustering:

■ For every chromosome a z-score is calculated as the difference between the observed
average intergenic distance and the average of the 1000 random average intergenic
distances divided by the standard deviation of the 1000 random averages. P-values
are calculated as the fraction of times the expected average distances are equal to or
more extreme than the observed average intergenic distance per chromosome.

■ Results of absolute z-scores equal to or higher than the value 1.96 are labeled as
statistically significant. Significant cases with less than 6 genes per chromosome are
discarded.

4. Evaluating the chromosomal preference/avoidance

■ For each chromosome a p-value is calculated as the fraction of times the number
of random genes per chromosome is equal to or more extreme than the observed
number of genes per corresponding chromosome.

5. Making of Sub-clusters:

■ For each significant case (either negative or positive z-score) genes are divided into
sub-clusters on the corresponding chromosomes on the basis of their intergenic dis-
tances. Each intergenic distance is subtracted from the average and divided by the
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stadard deviation of all intergenic distances of the specific group of genes on the
chromosome. Genes separated by a distance greater or equal to the one correspond-
ing to 2 stardard deviations from the mean are split into separate sub-clusters other-
wise merged into the same sub-cluster.

■ A density property is calculated for each sub-cluster as the number of genes in the
sub-cluster divided by the total number of genes in the chromosomal region with
the same coordinates.

6. Final output:

■ A dataframe with all the resulting z-scores and p-values of the linear-positional clus-
tering test.

■ A dataframe with only the significant z-scores of the linear-positional clustering test.

■ A dataframe containing the chromosomal preference/avoidance results.

■ A dataframe with the coordinates, genes and density of each sub-cluster.

Figure 2.3: A graphical example of the procedure followed in order to evaluate the linear-
clustering and the preference/avoidance at chromosomal level. Shown above is a toy example
of 8 genes (red blocks) positioned on a single chromosome (gray large block). Their intergenic
distances (curved lines) and their number per chromosome are the metrics computed against
1000 random permutations resulting in the calculation of p-values and z-scores. Distances
higher than the top 5% are excluded (yellow PAC-MAN) only in cases in which the input genes
are at least five.
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Figure 2.4: A graphical example of the procedure followed in order to divide the positionally-
clustered genes in sub-clusters spanning across the chromosome. Genes are divided based on
a distance threshold corresponding to 2Z otherwise merged in the same sub-cluster. Isolated
genes on the chromosome are excluded (yellow PAC-MAN). Different colours indicate distinct
sub-clusters.

2.2.1 | Computation of intergenic distances
To make the main algorithm time-efficient, a dictionary of sixteen matrices (one for each chro-
mosome) was created containing the intergenic distances between all genes. The distance be-
tween two genes was calculated as the difference between the “start” coordinate of the second,
in linear order, gene and the “end” coordinate of the first, in linear order, gene. The direction
of transcription was not considered in this analysis. When two genes were overlapping their
distance was set to zero. The resulting symmetric matrices with zeros in the diagonal were
stored in a dictionary, saved as a PKL file and loaded in the main algorithm when needed.

2.2.2 | Estimation of Statistical Significance
To estimate the statistical significance of the properties described in this analysis, z-scores and
p-values were computed against 1000 permutation tests. In each permutation test, there was a
random selection of a gene subset which resulted in the creation of random distributions. In the
case of chromosomal preference, the null hypothesis is that genes are equally distributed across
chromosomes, while in terms of linear clustering the null hypothesis states that the intergenic
distances will not differ significantly regardless of which genes are chosen. The p-values were
computed as the fraction of values produced in N permutations that were, in each case, equal
to or more extreme (greater or smaller) than the observed value. Z-scores were also calculated
as the number of standard deviations (resulting from the random distribution) the observed
average value was away from the average of N permutations.
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2.2.3 | Chromosomal preference/avoidance
To test whether a group of genes (given as input) shows specific chromosomal preference (or
avoidance) more often than expected by chance, the observed number of genes per chromo-
some were compared to the expected ones, resulting from 1000 permutation tests. More specif-
ically, in each permutation, the order of genes was shuffled. Afterwards, the matching number
of total genes as in the input were extracted from the shuffled dataset and their distribution
across chromosomes was stored in a dataframe. Finally, p-values were computed, for each
chromosome, as the fraction of times the observed number of genes was equal or more ex-
treme (greater or smaller) than the one produced in N permutations of the original gene list.

2.3 | Overlap analysis between different sub-clusters
To test for significant overlaps between sub-clusters of positionally clustered genes of differ-
ent gene categories, we used a procedure described in Andreadis et al. (2014). This algorithm
computes a ratio by dividing the observed overlap of two clusters by their expected overlap
as if they were two independent variables, using their coordinates. Statistical evaluation is
accomplished by permutation tests, in which one of the two input’s coordinates gets shuffled
and the same procedure as before is followed. Finally, p-values are computed as the fraction
of times the observed enrichment (or depletion) were more extreme (higher or lower) than
the expected ones. In the current analysis, this approach was used to test the overlaps be-
tween the sub-clusters of all the combinations of the different categories yielding clustering
results across chromosomes. Only significant overlaps (pvalue<=0.05) were further analyzed.
It should be noted that, in order to get a manageable number of results, from the transcription
factors datasets, only the Harbison et al. (2004)’s was used in this analysis. Networks were
created with Cytoscape (https://cytoscape.org/).
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Figure 2.5: A flow chart depicting the order and the relationships of the most important proce-
dures of this analysis. The green boxes indicate the data used so far as input to the algorithm.

2.4 | Polar coordinates and radial positioning of positionally
clustered genes

To evaluate a potential preference/avoidance in the radial positioning of the positionally clus-
tered genes, we divided the genome into three categories based on the genes’ distance from a
centromeric pole. According to Duan et al. (2010) three-dimensional model, the yeast genome
acquires a Rabl configuration in the nucleus, in which the centromeres are accumulated in
the spindle pole body of the nucleus with arms extending to the telomeres abutting the nu-
clear envelope. In our coordinate system the centromeric pole was used as a theoretical center
on which the polar coordinates of genes were based. More specifically, 135 genes positioned
near the centromeres (in the two-dimensional space) were chosen to represent this centromeric
pole. These genes were chosen based on a distance threshold corresponding to the mean minus
1.65 standard deviations from the centromeres. Finally, the three-dimensional coordinates of
this centromeric pole were defined as the average x, y and z of those 135 genes as provided
by Michalis Georgoulopoulos (https://github.com/mgeorgoulopoulos/ScerSeg). The rest of
the genes were divided into three categories based on their euclidean distance from the cen-
tromeric pole. For each chromosome separately, the genes corresponding to the bottom 25%
distances were labeled as central, the genes corresponding to the top 25% were labeled as pe-
ripheral and the ones corresponding to the middle 50% as intermediate. The resulting radial
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categories are shown in Figure 2.6.
Finally, an enrichment analysis was conducted for all the positionally clustered genes in

each one of the three radial groups. This was accomplished by dividing the observed fre-
quency of positionally clustered genes in each radial category by their expected frequency in
the whole genome. Only genes included in the three-dimensional dataset provided by Michalis
Georgoulopoulos were used in this analysis, so the number of genes used for the enrichment
computations were slightly different from the actual number of positionally clustered genes.
To statistically evaluate the resulting enrichments, permutation tests were conducted. In each
permutation the positionally clustered genes were substituted with random ones coming from
the same pool of genes while keeping their number per chromosome the same. For example, to
test the preferential positioning of the 100 positionally clustered targets of a transcription factor
X, 100 genes were randomly drawn from the initial subset of total targets in the corresponding
dataset while keeping the number of genes per chromosome the same. Genes of chromosome
XII were excluded from this analysis because of its special conformation forming the nucleolus.

Figure 2.6: Genes in the three-dimensional space divided into three categories based on their
euclidean distance from the centromeric pole (inside the green region). Genes near the cen-
tromeric pole are labeled as central (green), genes further from the centromeric pole are labeled
as peripheral (blue) while the genes in the middle are labeled as intermediate (orange).
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(a) Centromere quantiles (b) TRnoise quantiles

Figure 2.7: Genes are divided into eight equisized groups (quantiles) based on the normalized
distances from the centromeres 2.7a or on their transcriptional variability 2.7b. Each colour de-
picts a different quantile with black corresponding to genes positioned close to the centromeres
or to genes with very low transcriptional variability and brown corresponding to the ones fur-
ther from the centromeres or to the ones with the highest transcriptional variability.

2.5 | Enrichment analysis in various segments
To test the potential positional and functional tendencies of various gene categories, we divided
the genome into eight proportionally sized groups (quantiles) based on the distribution of gene
distances from the Telomeres/Centromeres (Figure 2.7a) or on the transcriptional variability
distribution (Figure 2.7b). Each one of those eight quantiles in each case consisted of genes
with low to high transcriptional variabilty or of genes positioned very close to the centromeres
to the ones positioned very close to the chromosomal edges. These eight quantiles were used
in an enrichment analysis of various gene categories in which the observed frequency of the
gene category in the quantile is divided by the expected one in the genome. 1000 permutation
tests were conducted for the statistical evaluation of the enrichments. A similar procedure was
followed to compute enrichments of various gene categories in the chromosomes.
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Results

3.1 | Compartmentalization of the yeast genome
In this section we describe some findings regarding the positional preferences of various gene
categories. We have widely conducted enrichment analysis on segments of the genome made
on the basis of centromere distances or transcriptional variability. This methodology is de-
scribed in materials and methods and gives us insight into the yeast genome organization.

3.1.1 | Various gene categories in yeast show chromosomal preferences
By using a variety of available gene categorizations made on the basis of their regulation and
their functional aspects, as described in materials and methods, we followed an enrichment
analysis approach (materials and methods) in order to observe potential positional preferences.
Starting this analysis from a chromosomal level, we have computed, for each chromosome, an
enrichment as the observed frequency of a gene group over its expected frequency in the whole
genome. Depicted in the Figure 3.1 is a heatmap showing the hierarchical clustering of the
resulting enrichment values of the various genomic categories (in the rows) across the sixteen
chromosomes (in the columns).

Based on the resulting dendrogram at the top of the heatmap, chrI has the most distinct
enrichment pattern among all chromosomes. Supported by statistical evidence, through per-
mutation tests (results not shown), chrI is significantly enriched in TATA genes (enrichment
approximates 2, pvalue<=0.01) and in the evolutionary origin category "S. cerevisiae" (enrich-
ment approximates 1.4, pvalue=0.02) while is depleted in the Fungi (enrichment approximates
0.7, pvalue<=0.01) and in the essential genes (enrichment approximates 0.56, pvalue=0.01).
Similar points can be made for other chromosomes as well. The chrVI owns the most extreme
under-enrichment of the "S. cerevisiae" origin category. On the other hand there are chromo-
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somes sharing very similar patterns across the gene categories, like chromosomes XIV and XVI
or like chromosomes VII and X. The "saccharomyces" origin category, which is the category with
the lowest sample size (approximates 100 genes), owns the most turbulent pattern across chro-
mosomes, mostly found in specific chromosomes while depleted from the rest of them.
Κeeping in mind that finite size effects and small gene set sizes are likely to affect every

enrichment analysis, this simple approach provides us with insight into the genome organi-
zation across chromosomes. Based on the results above, chromosomes seem to have slightly
different enrichment patterns between one another, across general gene categories, which is
a process affected by evolutionary mechanisms and purely random processes. Nevertheless
it is an interesting assumption that each chromosome is a distinct niche for different genomic
categorizations potentially related to specific functionalities.

3.1.2 | Various gene categories have positional preferences in specific
regions of the chromosomes

In order to study this time the positioning of the genomic categorizations used in the previous
section in intrachromosomal level, we divided the chromosomes into eight equisized groups
of genes (or else quantiles) on the basis of the genes’ distances from the centromeres ending
up with a chromosomal segmentation as depicted in Figure 2.7a. In this figure, black indicates
the segments being very close to the centromeres while brown indicates genes positioned close
to the telomeres. It is easily observed that this method of segmentation is not symmetric as it
follows the positioning of the centromere on each chromosome.

By following the same approach as before, we found preferences of various gene categories
to be positioned at specific distances around the centromeres. Some of the significant (eval-
uated through permutation tests) enrichments across different quantiles are shown in Table
3.1. It is observed that the only category found enriched near the centromeres are the essential
genes while also being significantly depleted near the telomeres. TATA genes, which are pri-
marily stress related genes (Basehoar et al. (2004); Huisinga and Pugh (2004)), are enriched near
the telomeres, a finding that agrees with previous works in the field (Basehoar et al. (2004)).
Similarly, the evolutionary "younger" genes of the S. cerevisiae origin category are significantly
enriched in regions near the telomeres while the opposite is true for the "older" genes of the
Fungi origin.

This genomic compartmentalization agrees with and is described in previous work of our
lab (Tsochatzidou et al. (2017)). In addition, we found that small scale duplicates are signifi-
cantly enriched in regions near the chromosomal edges while they are depleted near the cen-
tromeres. On the contrary, the whole genome duplicates are enriched in gene groups relatively
closer to the centromeres while being depleted near the telomeres. Finally, genes that are ex-
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Figure 3.1: A heatmap that shows the enrichment values of various gene categories (rows),
hierarchically clustered across the chromosomes (columns). Red indicates higher enrichment
values than blue colour.

pressed in high frequency show a contradictory behaviour as although being enriched in re-
gions closer to telomeres they are also depleted in a group of genes very close to the previous
one but a "step" closer to the centromeres.

In the same manner, by dividing the genome into eight quantiles this time on the basis of the
genes’ trascriptional variability as shown in Figure 2.7b, we have found a tendency of genes

26



Chapter 3. Results 3.1. Compartmentalization of the yeast genome

Gene category quantile enrichment value pvalue
Essential 0 1.18 0.008
Essential 7 0.57 <0.001

TATA 6 0.84 0.02
TATA 7 1.25 <0.001

High freq expr 5 0.75 0.034
High freq expr 6 1.24 0.04

WGD 4 1.21 0.001
WGD 7 0.69 <0.001

SSD 2 0.81 0.005
SSD 7 1.39 <0.001

Fungi 7 0.85 0.022
S. cerevisiae 7 1.13 0.014

Table 3.1: The statistically significant enrichment values of various gene categories across seg-
ments (quantiles) positioned around the centromeres, at increasing distance. 0 indicates the
group of genes positioned near the centromere while 7 indicates gene positioned near the
telomeres.

of high transcriptional variability (seventh quantile) to be positioned closer to the telomeres
than the centromeres (pvalue=0.001) while genes of lower variability tend to be depleted in the
same regions (results not shown).

Based on the results above, specific group of genes characterized by different regulatory
environments and different functionalities, seem to prefer distinct positioning in the chro-
mosomes with some of them occupying the telomeric regions while others the centromeric.
This compartmentalization reflects their correlation with specific functions and is governed by
evolutionary mechanisms. We observe significant enrichments around the telomeres of gene
groups reflecting stress responses, recent origin and more variable expression across different
conditions. Essential genes occupy regions closer to the centromeres and avoid telomeric ones
(Batada and Hurst (2007)) securing a more stable regulatory environment.

Finally, we observed a segregation in the positioning of the small scale duplicates (SSDs)
and the whole genome duplicates (WGDs). SSDs seem to prefer to be positioned closer to the
telomeres while the opposite is true for the WGDs. This segregation may reflect their functional
differences as described by Fares et al. (2013). Based on their research , SSDs are more likely to
form new functions (neo-functionalization) while WGDs are linked to the sub-functionalization
of the ancestral functions. We assume that the telomeric environment is more likely to give
birth to new functions as it is also enriched in younger genes.

3.1.3 | Transcription variability across various gene categories
Aiming to study the transcriptional variability across the same gene categories, we have seg-
mented the genome into eight equisized groups (quantiles) on the basis of the transcriptional
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variability of genes, as depicted in Figure 2.7b. Again black colour indicates low transcrip-
tional variability while brown indicates high values of variability. These quantiles do not have
profound positional preferences but as mentioned in the previous section we have detected a
tendency of genes with high transcriptional variability to be closer to the telomeric regions.
By conducting the same type of enrichment analysis, we computed the enrichment values of
the various gene categories across the transcriptional variability quantiles and evaluated them
through permutation tests. Depicted in the Figure 3.2 are the enrichment values of the gene
categories (rows) across the eight quantiles (columns) which are ordered in increasing tran-
scriptional variability.

Firstly, we observed that extreme enrichments cannot be detected in the majority of the
categories except for the genes with high expression frequency. This category is significantly
enriched (enrichment approximates 2.4, pvalue<0.001) only in the quantile with the highest
transcriptional variability while being depleted almost in the rest of the quantiles which ,in
some cases, is also statistically significant (results not shown). This implies that genes with high
expression frequency tend to have variable expression patterns across different conditions in
yeast. This observation may be explained if one takes into account that highly expressed genes
are qualified as such under only a certain subset of fast growth conditions.

We observe similar patterns between categories like the WGDs and the TATA genes. These
show an increasing enrichment as the transcriptional variability increases, reaching an enrich-
ment of around 1.3 and 1.4 respectively, being statistically significant in both cases (pvalue<0.001).
A similar tendency can be observed for the SSDs although the enrichment gradient across quan-
tiles is milder and there is no statistical significance. On the contrary, categories like the essen-
tial genes follow the opposite trend as they show higher enrichments in quantiles of low vari-
ability which decrease as the variability increases. Essential genes are significantly enriched,
based on the permutation tests, in both the first and the second quantiles (enrichment approx-
imates 1.2, pvalues=0.017 and 0.024).

Through the analysis of this whole section, we have gained knowledge on positional and
functional preferences of some general gene categories of the yeast genome. In the next section,
we hope to provide results that give us interesting insight in the organization of the yeast
genome as we focus on the detailed studying of the potential clustering of genes in the linear
level, covering a wide range of data regarding the transcriptional regulation, the conservation,
the transcriptional variability, the origin of genes and their functionalities.
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Figure 3.2: A heatmap that shows the enrichment values of various gene categories (rows)
in the eight equisized transcriptional variability quantiles (columns), hierarchically clustered
across the quantiles (dendrogram). Red indicates higher enrichment values than blue colour.
Zero to seven indicates increasing transcriptional variability.
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3.2 | Linear-positional clustering analysis
Based on previous studies of our lab (Tsochatzidou et al. (2017)), topoisomerase pertrurbation
in yeast causes the emergence of either up- or down-regulated gene clusters. These clusters
were shown to be co-expressed and to possess strong functional and positional preferences,
organized in a compartmentalized manner that emerged as a response to stressing conditions.
It is in our interest to unveil such cases of genome organization in the linear level by studying
the clustering of many gene categorizations across the chromosomes. We hypothesize that if
there is such an underlying organization in the yeast genome for many different gene groups,
this would enable the cell to regulate each time, in response to different conditions, the appro-
priate "blocks" of clustered genes across the genome, in the same manner as in topoisomerase
pertrurbation.

This section starts by describing the results of the linear-positional clustering analysis on
various gene categorizations. As mentioned before, our main goal was to evaluate the poten-
tial clustering of various gene groups in the linear level which would give us insight on the
principles governing the organization of the yeast genome. For that reason we came up with
a method in which we evaluate the proximity of genes on the chromosomes by comparing
the actual intergenic distances to randomized ones through permutation tests (materials and
methods). The following subsections correspond to the analysis done on each one of the gene
categorizations that we used. These include data on the transcriptional regulation, on the evo-
lutionary origin, on the transcriptional variability, on the conservation and on the functionality
of genes (see materials and methods).

3.2.1 | Transcriptional regulation
This section provides analysis done on data regarding the transcriptional regulation in yeast.
We were interested in studying the potential clustering of the gene-targets of various transcrip-
tion factors. To achieve that, we used three datasets containing potential binding profiles of at
least 102 trascription factors in yeast which are described thoroughly in materials and methods
section (Harbison et al. (2004); MacIsaac et al. (2006)).

Figure 3.3 depicts the numbers of potential gene-targets for all the trasncription factors in
the three different datasets used in this analysis. It is easily observed that the number of inter-
actions in the first two datasets (Figure 3.3a,3.3b) are extremely high, with some transcription
factors (e.g DIG1, SPT23) binding to more the the two thirds of the yeast genome. These two
datasets contain interactions of both high and low confident levels which explains the high
number of potential interactions. On the contrary, the third dataset (Figure 3.3c), which is
based on the most stringent binding and conservation criteria, contains the fewer interactions
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(a) Total gene-targets Harbison dataset

(b) Total gene-targets Macisaac dataset on loose-criteria

(c) Total gene-targets Macisaac dataset on stringent-criteria

Figure 3.3: The total number of potential gene-targets for each trascription factor corresponding
to the three different datasets used in this analysis.

with REB1 reaching the maximum number being equal to 222. Thus, a threshold, limiting the
number of total targets, was used to exclude cases of extreme binding that would probably
falsely lead in extreme clustering. It was decided that transcription factors with more than 500
potential gene-targets were not furtherly analysed. The initial and final numbers of transcrip-
tion factors per dataset are shown in Table 3.2

Dataset Final number of TFs Initial number of TFs
Harbison et al 50 102

Macisaac et al loose criteria 34 121
Macisaac et al stringent criteria 117 117

Table 3.2: The initial and final numbers of the transcription factors across the three datasets
used in the clustering analysis after excluding those with more than 500 potential gene-targets.

Supplementary to the above, shown in the Figure 3.4 is the normalized information content
of all transcription factors’ binding motifs (in y axis, PFMs provided by the Jaspar database:
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materials and methods) against the number of potential interactions (x axis), based on the Har-
bison et al. (2004) dataset. We expect transcription factors with a low number of potential
gene-targets to have a higher information content binding motif and the opposite for those hav-
ing a high number of potential gene-targets. Indeed, the Spearman correlation (https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html) between those two
variables suggests a significant inverse relationship with a rho=-0.21 (p-value=0.045).

Figure 3.4: Depicted in the y axis is the normalized information content based on the binding
motif (as provided by the Jaspar database) of each transcription factor versus the number of
potential gene-targets (as provided by the Harbison et al. (2004) dataset) depicted in the x axis.

3.2.1.1 | Potential targets of transcription factors are linearly clustered on specific chro-
mosomes

As mentioned in materials and methods, a z-score, evaluating the clustering of the input genes,
is computed for each chromosome. A z-score lower than or equal to -1.96 indicates significant
clustering on a specific chromosome. Depicted in Figure 3.5 are the significant z-scores (in
the cells of the heatmap) resulting from the clustering analysis done on the potential binding
profiles of transcription factors (rows), coming from the three aforementioned datasets, against
the chromosomes (columns).

As the three datasets consist of different interactions among transcription factors and genes,
they yield different results. The first thing that we observed is that most of the transcription
factors yielding results have clustered gene-targets in a restricted number of specific chromo-
somes. The transcription factors that correspond to extended clustering across chromosomes
are expected to bind to a higher number of potential gene-targets. Depicted in Table 3.3 are the
percentages of TFs that yielded clustering results in at least one chromosome across the three
datasets. This percentage is lower in the most stringent dataset because of the lower number
of potential interactions between TFs and genes. Nevertheless, these results show that, on our
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significance level, the 34% to 66% of the transcription factors that we used in each analysis own
positionally clustered gene-targets in at least one chromosome.

Dataset Percentage of TFs with clustered targets in at least one chr
Harbison et al 66%

Macisaac et al loose criteria 64.7%
Macisaac et al stringent criteria 34.2%

Table 3.3: The percentage of transcription factors that yielded clustering results across the three
datasets in at least one chromosome.

Some of the functional categories represented in the results are related to the regulation of
the cell cycle (MBP1, SWI6, SWI4), to the regulation of the methionine biosynthesis (MET31-
MET32), to stress responses (CAD1, MSN2), to the regulation of iron and copper (AFT2, MAC1)
and to the regulation of mating and pseudohyphal growth (DIG1, STE12). Info on transcrip-
tion factors were manually retrieved from the Saccharomyces Genome Database or SGD (https:
//www.yeastgenome.org/). Transcription factors yielding results in similar chromosomal pat-
terns are not necessarily functionally correlated except for some cases in which transcription
factors have almost identical binding patterns. Such examples are the YAP3-YAP5-YAP6-ARR1
group of TFs and MET31-MET32, both cases coming from the Harbison et al. (2004) dataset
yielding a jaccard-index among their binding profiles higher than 95%. Cases of transcription
factors with significantly overlapping clustering results are described in greater detail in the
next chapters (see Overlap analysis). Only MCM1 yielded clustering results across the three
datasets, with its targets clustered on chrXIII.

Depicted in Table 3.4 are some of the most significant results (p-value<=0.005) of the chro-
mosomal preference/avoidance results on the Harbison et al. (2004) dataset covering transcrip-
tion factors that yielded clustering results in at least one chromosome. Fourteen transcrip-
tion factors out of the 33 that yielded clustering results have significant chromosomal prefer-
ence/avoidance tendencies. Based on those, the chromosomal preference do not coincide with
the clustering results but it is possible that upon a less stringent statistical threshold we could
detect mild correlations. On the contrary, such correlations can be easily detected in the results
regarding the MacIsaac et al. (2006) stringent dataset (results not shown) but the sample size
of genes-targets across chromosomes is significantly lower providing a less credible statistical
analysis.

Based on the results so far, we detected many cases of various transcription factors whose
potential gene-targets are positioned closer to each other than we would expect by chance.
The transcription factors yielding such results represent many functional categories related to
growth, cell-cycle and nutrient usage. Positional clustering is observed in specific chromo-
somes, depending on the factor, and do not seem to be highly correlated with the tendency
of factors to prefer specific chromosomes over others, at least in one of the datasets that we
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(a) Harbison dataset
(b) Macisaac dataset on loose
criteria

(c) Macisaac dataset on strigent
criteria

Figure 3.5: Depicted in these heatmaps are the resulting z-scores (in the cells of the heatmap)
from the clustering analysis done on the potential targets of transcription factors across the
three different datasets as described above. Shown in the rows are the transcription factors
while the columns correspond to the chromosomes. Darker colours indicate a lower Z-score
increasing in statistical significance.
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TF Chromosome Preference/Avoidance Observed Expected P-value
YAP1 chrXVI preferred 54 35 0.002
YAP1 chrXII avoided 27 41 0.005
YAP6 chrXV avoided 40 23 <=0.001

RLM1 chrXII avoided 5 15 <=0.001
ARR1 chrXV avoided 23 40 0.001
SUT1 chrIII avoided 4 12 0.001
CBF1 chrVII avoided 10 22 0.003
CBF1 chrX preferred 26 14 0.002

GCR1 chrVII avoided 13 25 0.001
TYE7 chrV preferred 29 17 0.004

MAC1 chrXI preferred 26 15 0.005
SIG1 chrX preferred 41 27 0.005

GAL4 chrXVI preferred 25 13 0.001
UGA3 chrIII preferred 8 2 0.005

MET31 chrXI preferred 31 19 0.004
CAD1 chrXVI preferred 46 30 0.004
CAD1 chrXII avoided 22 34 0.004

Table 3.4: The chromosomal preference/avoidance results on Harbison et al. (2004) dataset.
Here are shown only the results corresponding a p-value lower than or equal to 0.005 across
TFs that yielded clustering results in at least one chromosome. If the expected number of gene-
targets is higher than the observed one, then the chromosome is labeled as avoided.

checked based on a specific statistical threshold.
These results agree with previous work in the field done by Janga et al. (2008) in which they

have shown that transcription factors have clustered gene-targets on specific chromosomes.
They have also shown that transcription factors own chromosomal preferences and in more
detail that some of them prefer to regulate targets on specific chromosomal regions. We have
also conducted a similar analysis, although in the three dimensional level as described in (ma-
terials and methods). We tried to study potential tendencies of transcription factors to have
positionally-clustered targets in specific chromosomal regions (central, intermediate, periph-
eral), through an enrichment analysis, but we did not get extensive results. Depicted in Table
3.5 are some of those results corresponding to the positionally-clustered genes of the Harbison
et al. (2004) dataset.
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TF Polar region Enrichment Number of genes P-value
TYE7 peripheral 0.53 8 0.029
TYE7 intermediate 1.37 41 0.004

RIM101 central 2.39 9 0.005
SIG1 intermediate 1.18 65 0.019
SIG1 central 0.68 19 0.020

RTG3 peripheral 1.81 15 0.003
RTG3 central 0.12 1 0.002

MET31-32 intermediate 1.44 23 0.011
OPI1 peripheral 1.49 18 0.032

Table 3.5: The preference results of positionally-clustered gene-targets of transcription factors
across three chromosomal regions (central, intermediate, peripheral). The significance level
correspond to a p-value less than or equal to 0.05.

3.2.1.2 | Gene-targets of factors that co-localize on the genome are extensively clus-
tered across chromosomes

Additionally to the above analysis on gene-targets of transcription factors in yeast, we have
also used a recently published dataset published by Rossi et al. (2021). As described in mate-
rial and methods, this dataset consists of forty clusters of factors created on the basis of their
co-localization on the genome (except for the ’ISO’ meta-assemblages). Rossi et al. (2021) re-
fer to these categorizations as meta-assemblages and each one of those represent a different
regulatory architecture on the genome. In the current analysis we have retrieved the gene-
targets of each factor (detected by chip-exo sequencing) of the initial dataset and merged them
on the basis of factors being part of the same meta-assemblage. Gene-targets may participate
to more than one meta-assemblage. It should be highlighted that genes grouped in the same
meta-assemblage are not necessarily targets of all factors participating in that meta-assemblage.
Following the same method as with transcription factors, we excluded meta-assemblages with
more than 800 total gene-targets resulting with twenty five meta-assemblages.

Dataset Average number of gene-targets Average number of significant z-scores
Harbison et al 312 2.42

Macisaac et al Stringent 75 2.3
Macisaac et al Loose 207 2.45

Rossi et al 455 7.13

Table 3.6: The average number of gene-targets and the average number of significant z-scores
across chromosomes across the four datasets analyzed in the current section.

Depicted in the Figure 3.6 are the results of positionally-clustered targets per meta-assemblage.
The cells of this heatmap represent the z-scores evaluating the positional clustering of gene-
targets per chromosome (rows) across the meta-assemblages (columns). The first observation
that immediately stems from this figure, when compared to the previous results of the Figure
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Figure 3.6: Depicted in this heatmap are the resulting z-scores (cells of the heatmap) from the
linear clustering analysis done on targets of various factors that co-localize on the genome,
derived from the meta-assemblages analysis by Rossi et al. (2021). Shown in the rows are
the chromosomes while the columns correspond to distinct regulatory architecture categories
(meta-assemblages). Darker colours indicate a lower z-score increased in statistical signifi-
cance.

3.5, is that there is extensive clustering across many chromosomes for the majority of the meta-
assemblages. To interpret these results we have to take into consideration the differences in
sample sizes, as depicted in Table 3.6, between the datasets. Based on the information shown
in the table, the dataset of meta-assemblages correspond to the higher average sample-size
which may lead to an increase in the positional-clustering results compared to the other three
datasets. Thus, it would be false to make a direct comparison between the different analyses.
On the other hand, we cannot abolish the possibility that targets of a single transcription factor
are less likely to be positionally clustered across many chromosomes while targets of factors
that generally co-localize in the same genomic regions tend to cluster across many chromo-
somes.

Depicted in Figure 3.7 is the correlation between the number of genes corresponding to each
meta-assemblage versus the number of significant clustering cases across the chromosomes.
The Pearson correlation between these two variables is equal to 0.48 and corresponds to a p-
value equal to 0.023 indicating that the higher the number of genes the higher the resulting
clustering results. Focusing on the figure we took an interest in the meta-assemblages that
deviate from this correlation. The most striking case, which is the "CEN" meta-assemblage acts
as a positive control for our methodology. This group consists of twelve factors responsible
for proper chromosomal segregation during cell division (Rossi et al. (2021)). The gene-targets
of these factors are expected to be enriched in regions around the centromeres which explains
the extreme clustering across almost all the chromosomes and confirms that our algorithm
efficiently detects clustering (Figure 3.8). On the other hand the "ISO" meta-assemblages are
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Figure 3.7: Depicted in this scatterplot is the relationship between the number of genes per
meta-assemblage (x axis) against the resulting significant clustering cases across the chromo-
somes (y axis). The pearson correlation between these two variables is equal to 0.48 corre-
sponding to a p-value equal to 0.023.

the groups not based on factor co-localization, acting as a negative control to our hypothesis.
We observe that the clustering results that this group yields are not less than other groups
with the similar number of genes implying that the absence of co-localization of factors does
not necessarily correlate with lower clustering of gene-targets, unless there is another bias in
that specific group as it consists of factors that mostly bind unique sites in the genome and
thus did not cluster with other datasets. "ORC", "THO" and "MDT" yield the less extensive
results related to their number of total genes. These categories represent factors related to the
origin of replication complexes, to mRNA processing respectively and to the core mediator
complex (Rossi et al. (2021)). Finally, "POL3" along with "TFBII/C" meta-assemblages consist
of 18 factors regulators of tRNA transcription both yielding extensive clustering results across
many chromosomes. Depicted in Figure 2.2 are the functional categories (GO-terms) describing
most of the meta-assemblages used in this analysis.

Based on the above analysis, although we detected extensive clustering across the meta-
assemblages that we checked, we can not clearly attribute this clustering to the co-localization
of factors partitioning the meta-assemblages. As these data are topologically biased regard-
ing the co-localization of many factors on the genome they may also "hide", in some cases, a
topological bias regarding their gene-targets as well, like the "CEN" case. Meta-assemblages
are related to specific pathways and functions leading us to assume that their gene-targets as
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well may be functionally related. This increases the chances of them being clustered across the
genome based on previous studies as well (Lee and Sonnhammer (2003); Tiirikka et al. (2014)).
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Figure 3.8: The resulting sub-clusters coming from the clustering analysis on the "CEN" meta-
assemblage as provided by Rossi et al. (2021). The different colours indicate different sub-
clusters. Those are clearly correlated with the centromere positioning as indicated in blue.

3.2.2 | General genomic categorizations
3.2.2.1 | Extensive clustering of essential yeast genes

Shown in the current section is the clustering analysis done on various gene categorizations
described in material and methods. Depicted in Figure 3.9 are the cases of significant clustering
across chromosomes for these gene groups which are indicated below each sub-figure. As
described in materials and methods, in the last step of our in-house algorithm, the positionally-
clustered genes are divided into sub-clusters based on an intergenic distance threshold. These
sub-clusters are indicated with different colours in the aforementioned figure.
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Figure 3.9: The resulting sub-clusters of positionally-clustered genes distributed across the six-
teen chromosomes for various genomic categorizations. Depicted with the different colours are
the genes divided into different sub-clusters while the label below each sub-figure indicates the
corresponding gene group. Depicted only in 3.9c is a case of a significantly high z-score imply-
ing greater intergenic distances than expected by chance.

All these categories shown in this figure have positionally-clustered genes except for the
genes with high expression frequency (high freq expr) which resulted with a rare but signif-
icantly high z-score, implying higher intergenic distances than expected by chance on chro-
mosome seven. Such results are also found in other cases described in the next sections. The
first observation is made on the essential genes which are clustered on the majority of chro-
mosomes, a result supported by previous works in the field (Kamath et al. (2003); Pál and
Hurst (2003)). Whole genome duplicates follow that trend while the rest of the categories show
restricted results detected in specific chromosomes. Additionally, depicted in Table 3.7 and
Figure 3.10 are the percentages of clustered genes per category and the density of the resulting
sub-clusters calculated as the number of genes in the sub-cluster divided by the total number
of genes enclosed in the same coordinates. This result suggests that functional categorizations
tend to be more clustered than genes with common expression programs.
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Gene class Percentage of positionally-clustered genes
Essential 0.834

TATA 0.159
High freq expr 0.096
Low freq expr 0.214

WGD 0.488
SSD 0.205

Table 3.7: The percentage of the resulting positionally-clustered genes (except for high freq
expr category) for each gene group given as input to the algorithm.

Figure 3.10: The density of the resulting sub-clusters coming from the algorithm when applied
to the genomic categorization shown below each barplot.

Depicted in Table 3.8 are the significant results of the preference/avoidance testing done
on the same gene groups, as provided by our algorithm. Most of the significant results cor-
respond to the essential genes containing both avoided and preferred chromosomes which
match the enrichments shown in previous sections (Figure 3.1). Thus, positionally-clustered
essential genes are observed also on avoided chromosomes (except for chrIII). We also observe
that positionally-clustered essential genes on the other two "avoided" chromosomes (chrI and
chrVIII) are less in number and thus are concentrated in a smaller part of the chromosome.
TATA genes seem to prefer chrI and chrII which again match the results shown in Figure 3.1
while the positionally-clustered results coincide with at least one preferred chromosome (chrII).
Generally we observe that the preference/avoidance results do not predict the positionally-
clustered cases across the chromosomes.

Finally, based on the analysis described in material and methods, we have computed en-
richment values of the positionally-clustered genes for each category, in three segments of the
genome (peripheral, central, intermediate) made on the basis of the genes’ three-dimensional
distances from a centromere pole as depicted in Figure 2.6. The only results supported by sta-
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Gene class Chromosome Preference/Avoidance Observed Expected P-value
Essential chrI avoided 11 19 0.02
Essential chrIII avoided 14 30 0.001
Essential chrVIII avoided 40 52 0.035
Essential chrIV preferred 161 136 0.011
Essential chrXI preferred 69 56 0.035
Essential chrXIV preferred 86 70 0.018

TATA chrI preferred 38 19 <=0.001
TATA chrII preferred 94 72 0.003
TATA chrXV avoided 72 97 0.002

SSD chrXIII avoided 64 78 0.032
WGD chrXI preferred 72 56 0.013

Table 3.8: Some significant preference/avoidance results as provided by our algorithm across
the various genomic categorizations. P-value<=0.05

tistical significance was on the TATA genes. In more detail, positionally-clustered TATA genes
are enriched in "central" chromosomal regions (enrichment=1.47, pvalue<=0.001) and depleted
in the "peripheral" chromosomal regions (enrichment=0.58, pvalue<=0.001). These results sug-
gest that clustered TATA genes are detected on two chromosomes (chrII, chrXIV) and seem to
be mostly found closer to the centromeres which is contrary to the general preference of the
TATA genes to be closer to telomeric regions, as described above.

3.2.2.2 | Genes of different evolutionary origins are not positionally-clustered across
chromosomes

Moving on with the results, we have conducted the same analysis on genes grouped on the
basis of their evolutionary origin, as described in material and methods. The abundant "Fungi"
category, which contains more than 4000 genes, was excluded from this analysis. Depicted
in Figure 3.11 are the results coming from the clustering analysis conducted on the rest of
the origin groups. None of the groups except for the Saccharomyces category, yield significantly
negative z-scores implying no significant clustering for genes grouped on the basis of their evo-
lutionary origin. The single clustering case of the Saccharomyces category, correspond to seven
genes positioned on chromosome five (chrV) yielding a z-score equal to -2.11 (pvalue=0.018).
On the contrary, the Saccharomyces cerevisiae category yielded a positive z-score, equal to 2.8
(pvalue<=0.001), implying a sparse positioning of the 70 genes of that category on chrIV.

Finally, depicted in Table 3.9 are some of the most significant results regarding the pref-
erence/avoidance chromosomal tendencies of the origin groups. We observe that most of the
significant results correspond to cases of chromosomal avoidance which may partly explain
the absence of significant clustering across chromosomes.
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Figure 3.11: The results of the clustering analysis on the evolutionary origin categories.
Positionally-clustered genes are detected only for the Saccharomyces category (on chrV). The
Saccharomyces category yielded a significant positive z-score (equal to 2.8) on chrIV. The differ-
ent colours indicate distinct sub-clusters.

Origin Chromosome Preference/Avoidance Observed Expected P-value
Fungi chrI avoided 57 81 <=0.001
Fungi chrIV preferred 602 565 0.005

Ascomycota chrXII avoided 17 26 0.027
Saccharomycetales chrVIII avoided 7 17 0.001

Saccharomyces cerevisiae chrI preferred 18 9 0.009
Saccharomyces cerevisiae chrVI avoided 3 11 0.002
Saccharomyces cerevisiae chrXV avoided 38 49 0.038

Table 3.9: Some of the most significant preference/avoidance results as provided by our algo-
rithm across the origin categories. P-value<=0.05.

3.2.3 | Transcriptional variability and Conservation quantiles
3.2.3.1 | Gene groups of different transcriptional variability or conservation levels are

positionally-clustered across specific chromosomes

We have also performed analysis on data regarding the transcriptional variability and conser-
vation of genes, as described in material and methods. To achieve this analysis, as mentioned
before, we have divided the genes into eight equisized groups or quantiles on the basis of their
transcription variability or conservation scores. We were interested in studying the positional
clustering of gene groups varying in their conservation scores or transcriptional variability.
Shown in the Figures 3.12a, 3.12b are the resulting transcriptional variability and conservation
quantiles respectively, each one indicated with a different colour. Both transcriptional vari-
ability and conservation increases as the number-indicator of the quantile increases, ranging
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(a) Transciptional variability quantiles (b) Conservation scores quantiles

(c) Clustering across Transcriptional vari-
ability quantiles

(d) Clustering across conservation quan-
tiles

Figure 3.12: Depicted in 3.12a and 3.12b is the distribution of the transcriptional variability
and conservation quantiles across the chromosomes, indicated with different colours. Shown
in 3.12c and 3.12d are the significant z-scores coming from the clustering analysis conducted
on the quantiles of both datasets. The increasing number in the x-axis indicate quantiles of
increasing transcriptional variability (left) and conservation respectively (right). Depicted in
the cells of these heatmaps are the z-scores (darker colours indicate lower z-scores) across the
chromosomes (y-axis).

from zero to seven. Each transcriptional variability quantile comprised 833 genes while each
conservation quantile consisted of approximately 778 genes.

Depicted in the Figures 3.12c, 3.12d are the significant clustering results depicted as z-scores
in a hierarchically clustered heatmap across the chromosomes (y axis) and the quantiles (x axis)
for both datasets. In both cases the results are restricted in a small number of eight to nine chro-
mosomes and the majority of the quantiles yield results in one to two chromosomes. Focusing
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(a) Transciptional variability - first quan-
tile

(b) Transciptional variability - eighth
quantile

(c) Conservation - first quantile (d) Conservation - eighth quantile

Figure 3.13: The distribution of the resulting sub-clusters of the positionally-clustered genes
across the chromosomes for the first and the last transcriptional variability (up) and conserva-
tion quantiles (down). Each sub-cluster is indicated in different colours.

on the transcriptional variability results we observe that the most extensive results, across four
chromosomes, correspond to the genes of the most extreme quantiles (zero and seven). We also
observe that the clustering of those two quantiles, of the lowest and highest variability, coin-
cide in the same two chromosomes (chrV, chrXII) and that most clustering results across the
quantiles are accumulated in chrV. Accordingly, in the right, we observe that all conservation
quantiles yielded clustering results across eight chromosomes. Clustering is more restricted
in this case at most across two chromosomes. An overlap of clustering across chromosomes
between consecutive quantiles is observed.

Depicted in Figure 3.13 are the resulting sub-clusters of the clustering detected in the first
and last quantile of both transcriptional variability and conservation data, as provided by our
algorithm, indicated in distinct colours. We observe that genes with low transcriptional vari-
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(a) Transciptional variability - chromosomal
preference/avoidance

(b) Transciptional variability - polar prefer-
ence/avoidance

(c) Conservation - chromosomal prefer-
ence/avoidance (d) Conservation - polar preference/avoidance

Figure 3.14: Four tables indicating the chromosomal preference/avoidance results (left) and the
enrichment analysis across the polar segments of the genome (right) for both transcriptional
variability and conservation quantiles. The significance level corresponds to a p-value equal to
or less than 0.05. In figures 3.14a and 3.14c the first column corresponds to the chromosomes,
the second and the third to the observed and expected number of genes per chromosome, the
fourth to the p-values and the final column corresponds to the quantiles. In figures 3.14b and
3.14d the first column indicates the quantiles, the second the polar segments, the third the
number of genes of the quantile positioned in that segment, the fourth the enrichment values
and the last column corresponds to the p-values.

ability are not divided into many different sub-clusters implying that the distances between
consecutive genes are close to the average intergenic distance of that gene group in each chro-
mosome.

Finally, shown in Figure 3.14 are the results of the chromosomal preference/avoidance tests
(left) and the results on the enrichment analysis done across three polar segments of the yeast
genome (right) for both the transcriptional variability and conservation quantiles. Based on
Figure 3.14a we observe that the clustering results corresponding to the first transcriptional
variability quantile (zero) are detected on two chromosomes that this group of genes generally
avoids as the expected genes on those chromosomes (chrIX and chrV) are significantly more
than the observed ones. On the other hand the last quantile (seven) seems to prefer the chrV on
which its’ genes are positionally-clustered as well. Although the two extreme quantiles (zero
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and seven) both yield clustering results on chrV, the first avoids that chromosome while the
second prefers it. We do not detect any other correlation between the preference/avoidance
tests and the clustering results across the rest of the quantiles. Based on Figure 3.14c we ob-
serve extensive preference/avoidance results for the conservation quantiles, especially for the
intermediate ones, but there is no correlation with the clustering results across chromosomes.

The enrichment analysis on polar segments is described in material and methods. In a nut-
shell, through this procedure we study the positional preferences of the resulting positionally-
clustered genes across three segments of the genome (central, peripheral and intermediate).
This is achieved by calculating enrichment values of the positionally-clustered genes across
the three segments and by evaluating them trough permutation tests. The corresponding
significant results of the current analysis are shown in Figures 3.14b and 3.14d. Based on
3.14b, positionally-clustered genes of the lower transcriptional variability quantiles are en-
riched in the intermediate (zero quantile) and central segments (zero,two,three quantiles) while
the positionally-clustered genes of the highest trascriptional variability are enriched in the in-
termediate regions but depleted in the central ones. Similarly, the clustered genes of the lowest
conservation (zero quantile) are enriched in the peripheral regions but are not found in the
central ones, as shown in 3.14d. Generally, as the conservation increases the clustered genes
are found mostly in the intermediate and central regions except for the fifth quantile whose
clustered genes are enriched in the peripheral segments.

3.2.4 | Gene-ontology terms
3.2.4.1 | Some Gene-ontology terms are positionally-clustered across specific chromo-

somes

The last gene categories that we studied in the current analysis are genes grouped on the basis
of their corresponding GO-terms. Despite the high number of the GO-terms (5899), the corre-
sponding genes are around 7000. The average number of genes embraced by a gene-ontology
is equal to 8.05 genes, while the maximum number of genes in a gene-ontology is equal to 1305
and the minimum is equal to 1. Out of these 5899 terms only 1460 correspond to more than 5
genes, which are the GO-terms used in the analysis below. Based on Table 3.10 only the 3.6%
of the 1460 GO-terms yielded clustering results in at least one chromosome, which is a rather
low percentage. This can be attributed to the low numbers of genes across the 1460 GO-terms.
Supporting this, the computed average number of genes that correspond to the 53 GO-terms
yielding clustering results is equal to 207.

Depicted in Figure 3.15 are the resulting z-scores indicating clustering (left) or sparsity of
genes (right) across chromosomes (columns) and GO-terms (rows). Shown are the z-scores
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Number of significant z-scores Number of GO-terms Percentage over total GO-terms
80 < 0 53 3.6%
11 > 0 6 0.7%

Table 3.10: The number of significant z-scores (either positive or negative) across the chro-
mosomes corresponding to a number of unique GO-terms. Shown in the third column is the
percentage of GO-terms yielding results over the total number of GO-terms checked.

(a) Negative z-scores (b) Positive z-scores

Figure 3.15: The resulting z-scores coming from the clustering analysis across GO-terms (rows)
and chromosomes (columns). Shown in the left are the negative z-scores (<=-1.96) that indi-
cate positional clustering while shown in the right are the positive z-scores (>=1.96) indicating
higher than expected intergenic distances.

with an absolute value higher than or equal to the significance threshold 1.96. Focusing on
the clustering cases shown in the left, we observe that most of the GO-terms yield results on a
specific subset of chromosomes. The extensive clustering is detected mainly in abundant GO-
terms like the "nucleus" and "cytoplasm" terms which both contain more than 1000 genes each.
We also observe a tendency of clustered cases across GO-terms to be positioned on chrXV ad
chrIV (10 clustering cases on each chromosome). These clustering findings are supported by
previous work in the field (Tiirikka et al. (2014)).

Strangely but interestingly enough, two GO-terms with more than 1000 genes each, yield
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(e) NA_NA - Sparse position-
ing

chrI

chrII

chrIII

chrIV

chrV

chrVI

chrVII

chrVIII

chrIX

chrX

chrXI

chrXII

chrXIII

chrXIV

chrXV

chrXVI

chrM

The Saccer2 genome −− GO:0016021_integral component of membrane

(f) "Integral component of the
membrane" - Sparse position-
ing

Figure 3.16: The sub-clusters coming from the clustering analysis done on genes grouped on
the basis of the corresponding gene-ontology term. Indicated below each sub-figure is the
corresponding GO-term along with whether the genes are positionally clustered (z-scores<=-
1.96) or sparsely positioned (z-score>=1.96) across the chromosomes.

significant high z-scores indicating a more sparse positioning of genes than expected by chance
(figure 3.15b). In more detail, the category NA_NA consists of 1239 genes that are not related
to any gene ontology term and thus not related to a common functionality. Due to the high
number of genes we would expect some clustering results or no significant results at all. On
the contrary we observe an extensive sparse positioning of those genes across six chromosomes
implying the existence of a positional bias.

In the same page, the GO-term "integral component of the membrane" which is the most
abundant category with 1305 genes, yield a positive z-score (equal to 2.58) implying again a
sparse positioning of those genes on chromosome chrXVI. It is noteworthy that, as mentioned
before, the evolutionary gene category S. cerevisiae yields also a positive z-score on chrIV, im-
plying a sparse positioning of 70 "new" genes on that chromosome. We also know (it is also
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mentioned in supplementary),by doing a functional analysis on the origin categories, that the
evolutionary "young" genes (Saccharomyces and S. cerevisiae) are enriched in the gene ontology
term "integral component of the membrane" implying that those three categories share genes.
Despite them yielding positive z-scores on different chromosomes, these results show a bias
of genes related to integral components of the membrane to not cluster (or to be distantly po-
sitioned) across the genome with evolutionary newer genes following that tendency as they
"acquire" such functionalities. Or else new genes may emerge from regions that tend to give
birth to such functionalities and are found scattered across the genome. This notion is inspired
and supported by ongoing work done by Aimilios Tassios and Nikos Vakirlis and by previous
work in the field (Vakirlis et al. (2020)) in which they showed that emerging yeast orfs tend
to form putative transmembrane domains potentially emerging from non-coding intergenic
regions that upon hypothetical expression show a strong tendency for creating putative trans-
membrane domains. Finally, depicted in Figure 3.16 are the sub-clusters of some GO-terms
across the chromosomes as provided by our algorithm.

3.3 | Overlap analysis between sub-clusters of different gene-
categories

In the final step of our methodology, as shown in Figure 2.5, an overlap analysis between all
resulting sub-clusters is conducted. Aiming to identify significant overlap between the sub-
clusters of different genomic categories we follow a procedure described in material and meth-
ods. Until now, by applying this algorithm on many genomic categorizations, we gained in-
sight into the extensive positional clustering of the yeast genome. At this point, by examining
the significantly overlapping sub-clusters, we hope to reveal underlying relationships between
various gene categories that tend to cluster in the same regions. The combinations of different
gene categories tested were approximately 19300 but only 1062 of those were statistical sig-
nificant (pvalue<=0.05) corresponding to cases of significant overlap between the sub-clusters
of categories. In order to examine the resulting relationships, we depicted the results through
networks in which each node represents a gene category and each edge a significant overlap
between two nodes. To have manageable networks, we divided the results based on the ge-
nomic categorizations while we also used different significant levels (either a pvalue<=0.05 or a
pvalue<=0.01). In each sub-section below we elaborate on the resulting networks correspond-
ing to each genomic category.

3.3.1 | General genomic categorizations
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3.3.1.1 | Opposing tendencies between WGDs and SSDs

Depicted in Figure 3.17 is the resulting network representing the significant overlaps (edges)
between the sub-clusters of general genomic categorizations (blue nodes) as described above.
Depicted in this figure are only the significant relationships observed between specific genomic
categories (e.g WGD, SSD, TATA etc), which are represented as "central" nodes in the sub-
networks, and all the other gene groups analyzed in the previous sections (e.g TFs, conserva-
tion, transcriptional variability etc.). These networks could be weighted based on the level of
significance of each edge but in this study we analyze those relationships is a simpler manner.

Figure 3.17: A network in which blue nodes represent the genomic categories and edges repre-
sent significant overlaps (pvalue<=0.05) between categories. The central nodes in this network
are categories like "SSD", "WGD","TATA" etc. and form 45 significant overlaps with other cate-
gories.

The clustered TATA genes overlap with the clustered potential targets of factors like YAP3-
5-6, ARR1 (activator of the basic leucine zipper (bZIP) family), PDR1 (pleiotropic drug re-
sponse) and UGA3 (activator of GABA genes). TATA also overlap with two GO-terms, related
to the mitochondrial intermembrane space and the replication fork complex, and with the clus-
ters of an intermediate transcriptional variability quantile (Trnoise 3). Genes expressed in low
frequency overlap mainly with some GO-terms related to histone acetylation or Ribosome and
with highly conserved gene clusters (phCons 6). WGDs overlap with a plethora of categories.
We observe that they overlap mainly with clusters of low conservation gene-groups (phCons
0-3), with GO-terms that are related to Golgi membrane, vesicle transport, rRNA Processing,
mRNA splicing etc. and transcription factors like CBF1, RDS1 and TYE7. On the contrary,
clustered SSDs overlap with clusters of genes that are generally highly conserved (phCons
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5,7) and with clusters of genes characterized by the lowest transcriptional variability (TRnoise
0). They also overlap with some basic GO-terms related to DNA binding, protein binding,
transcriptional regulation and cell cycle as well as with the RTG3 transcription factor. At this
significance level we do not observe significant overlap related to the essential genes.

3.3.2 | Conservation and transcriptional variability quantiles
3.3.2.1 | Common tendencies between clusters of low conservation and high transcrip-

tional variability

Depicted in Figure 3.18 are the resulting networks regarding only the first and the last con-
servation (3.18a) and transcriptional variability (3.18b) quantiles (zero and seven quantiles).
Based on Figure 3.18a, we observe a lot of GO-terms related to the membranes and the Golgi to
significantly overlap with the low conservation clustered quantile, along with clusters of genes
of the highest transcriptional variability and the WGDs. MET31 and MET32 (regulation of the
methionine biosynthetic genes) overlap significantly with both the lowest and the highest con-
servation quantiles. Finally clusters of the highest conservation overlap with SSDs as already
mentioned above, with MET31-32 and two GO-terms related to the regulation of transcription
and nucleic acid binding.

Focusing on Figure 3.18b we observe that the clusters of the lowest transcriptional variabil-
ity quantile overlap with SSDs and some basic GO-terms related to protein binding, nucleus
and cytoplasm as well as with the factor RIM101 which is involved in the adaptation to alkaline
conditions (as reported in SGD). On the other hand, the sub-clusters of the highest transcrip-
tional variability overlap with gene clusters of GO-terms related to the Golgi membrane, the
cellular bud neck and the mitochondrial intermembrane space as well as with low conservation
gene clusters (phCons 0, 2), with the Saccharomyces origin category and the positionally clus-
tered targets of PDR1 and STB4. PDR1 is involved in the pleiotropic drug response while STB4
is suggested to regulate the expression of genes encoding transporters (as reported in SGD).

In general, we observe common tendencies between the clusters of the lowest transcrip-
tional variability and the highest conservation quantiles and between the lowest conservation
and the highest transcriptional variability. The clustering of lowly conserved genes together
with the clustering of membrane-related GO-terms reminds us of the relationship mentioned
before, between the evolutionary younger genes and the potential transmembrane domains
(mentioned above). The common clustering between low conservation and high transcrip-
tional variability implies the existence of regions (or a single region) hosting clusters of evolu-
tionary younger genes or very specialized genes present only in the yeast that intermingle with
clusters of genes with highly variable expression patterns across different conditions.
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(a) Conservation quantiles

(b) Transcriptional variability quantiles

Figure 3.18: Networks in which blue nodes represent the genomic categories and edges rep-
resent the significant overlaps (pvalue<=0.05) between categories. Shown in 3.18a, as central
nodes, are the first and last conservation quantiles while in 3.18b are the first and last transcrip-
tional variability quantiles.

3.3.3 | Gene-ontology terms
3.3.3.1 | Membrane related GO-terms overlap with less conserved and more transcrip-

tionally variable clusters

Depicted in Figure 3.19 are the resulting networks embracing the GO-terms’ sub-clusters that
significantly overlap (pvalue<=0.01) with other categories. Focusing on the wider network
(up), we observe relationships that are pretty much already mentioned in the previous sections.
Generally, GO-terms related to the membrane (e.g endoplasmic reticulum membrane, trans-
membrane transport, Golgi membrane) overlap with sub-clusters of lower conservation along
with clusters of high transcriptional variability and the WGDs. On the other hand GO-terms
related to basic processes like the cell cycle, DNA binding, tRNA modification, ribosome and
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nucleoplasm overlap with clusters of more conserved genes. Unexpectedly the sub-clusters
of RDS1, a factor involved in conferring resistance to cycloheximide (based on SGD), overlap
with the GO-terms related to the cell cycle and GTPase activity.

Moving on to the networks in the middle, we observe a small network in the right em-
bracing the GO-terms related to the nucleolus and the response to oxidative stress. Both the
GO-terms overlap with regions of high transcriptional variability and the factor YDR026C or
else NSI1 which is involved in the silencing of ribosomal DNA (based on SGD). Also the GO-
term involved in response to stress overlaps with the targets of CAD1, a factor that is involved
in stress responses, iron metabolism and pleiotropic drug resistance (based on SGD).

Based on the last small networks (down), GO-terms related to splicing, vesicle transport
and endoplasmic reticulum overlap with lowly conserved gene clusters (phCons 1). The term
cellular bud neck overlaps both with gene clusters of relatively low transcriptional variability
(trNoise 1, 3) and with the highest variability quantile, as mentioned above (trNoise 7). The
GO-term metal ion binding overlaps with the targets of both TYE7 and MSN2, with the first
being involved in the activation of glycolytic genes and the latter being involved in various
stress responses, based on SGD.
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Figure 3.19: Networks in which blue nodes represent the genomic categories and edges rep-
resent the significant overlaps (pvalue<=0.01) between categories. The central nodes in this
sub-networks are the GO-terms.
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3.3.4 | Transcription factors
Finally, we study some of the relationships of transcription factors with the other categories.
Depicted in Figure 3.20 are the resulting networks representing the significant overlaps (pvalue<=0.01)
of the transcription factors with the rest of the categories. Some of those relationships have al-
ready been described in the previous sections. Focusing on the first network (up) we observe
that the clustered targets of the YAP5-6-3, ARR1 and PDR1 significantly overlap across the
chromosomes which is expected as these factors have common potential targets. CAD1, which
was mentioned before, overlaps with clusters of high transcriptional variability (trNoise 4, 6),
with the GO-term "response to oxidative stress" and with the factor YAP1, which is also in-
volved in the oxidative stress tolerance based on the SGD. Finally OPI1, a regulator of a variety
of genes, significantly overlaps with many other categories. In more detail, OPI1’s clustered
targets overlap with the clustered targets of the GCR1, a factor generally involved in glycolysis
, and the targets of FHL1, a regulator of ribosomal protein transcription. OPI1 overlaps also
with highly conserved gene clusters (phCons 6).

Going on to the next sub-network (middle), we observe, as already mentioned, that MET31-
32 along with NDD1 overlapping with gene clusters of low gene conservation. STB5 which is a
factor involved in multidrug resistance and stress response overlaps with genes of intermediate
conservation and low transcriptional variability. On the other hand, RDS1 overlaps with four
GO-terms involved in the endoplasmic reticulum membrane, the cell cycle, the GTPase and
the nucleoplasm along with the lowest conservation gene clusters. RDS1 is a factor with a
restricted known role of conferring resistance to specific drugs.
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Figure 3.20: Networks in which blue nodes represent the genomic categories and edges rep-
resent the significant overlaps (pvalue<=0.01) between categories. The central nodes in this
sub-networks are the transcription factors as provided by Harbison et al. (2004)
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Supplementary results

4.1 | "No-signal" genes in the Harbison et al dataset

4.1.1 | "No-signal" genes have specific positional and functional prefer-
ences potentially due to their high content in dubious elements

As described in materials and methods section one of the main datasets used in this analysis
corresponds to a regulatory map which consists of the potential binding profiles of 102 tran-
scription factors in yeast (Harbison et al. (2004)). 6026 gene promoter regions potentially inter-
act with at least one transcription factor, based on this map. 768 gene promoters were found
with no available interactions (no-signal genes), possibly not overlapping with any regulator’s
motif or with any probe used in the chip experiment.

Being curious about the 768 no-signal genes we studied more aspects about them, observ-
ing that they contain a high number of dubious ORFs, having both positional and functional
preferences. Depicted in Figure 4.1a is a heatmap showing the enrichment of the no-signal
genes and the rest of the genes in different evolutionary gene categories (materials and meth-
ods). Keeping in mind that the Fungi category indicates genes of the "oldest" origin and the
"Saccharomyces cerevisiae" genes of the "younger" origin, it is easily observed that the no-signal
genes are highly enriched in young genes which was also found to be statistically significant
(pvalue<=0.01), through permutation tests. It is important to note that out of the 768 no-signal
genes, we owned origin information for only the 377 genes possibly leaving out the dubius
orfs. Out of those 377 no-signal genes, 150 genes are of the S. cerevisiae origin, significantly en-
riched (pvalue = 1.66E-026) in the GO-term "integral component of membrane" with 57 genes
corresponding to the intersection, as provided by the gprofiler, (Raudvere et al. (2019)).

Based on the Figure 4.1b it is also observed that the no-signal genes are mostly found in the
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(a) Antiquity of no-signal genes
(b) Percentage of no-signal genes across chro-
mosomes

Figure 4.1: Depicted in 4.1a are the enrichment values of various evolutionary origin categories
(as provided by Niko Vakirlis) across the no-signal genes and the rest of the genes used in the
Harbison et al. (2004) dataset. Shown in 4.1b is the percentage of no-signal genes across the
chromosomes.

smaller and less gene-rich chromosomes like chrI, chrIII and chrVI and in chrXII which is the
one containing the rRNA genes also forming the nucleolus. Looking into the positional prefer-
ences of the no-signal genes with more detail, we found that they are positioned significantly
closer to the telomeres (pvalue=3.83e-14) and further from the centromeres (pvalue=4.23e-
22) while also being close to origin of replication sites (pvalue=4.60e-05) compared to the
rest of the genes. We checked if this specific positioning is a characteristic of the evolution-
ary younger genes of the "S. cerevisiae" origin in which no-signal genes are enriched to, but
we did not detect any significant positional tendency for this group of genes when we com-
pared it to the other origin categories. Nevertheless, in the previous sections we note that a
group of genes (quantile) positioned closer to telomeres are significantly enriched in younger
genes. In the same manner, we compared both the phCons values and the transcriptional vari-
ability of the no-signal genes to the rest of the genes and we found that the no-signal genes
have significantly lower phCons values (pvalue=3.51e-15) and higher transcriptional variabil-
ity (pvalue=2.32e-08). All those statistical comparisons were completed by using the non para-
metric Mann–Whitney test (https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.mannwhitneyu.html).

Based on the analysis above, we observe that there is a special group of genes not included
in the Harbison et al analysis. This may be due to the high percentage of dubious orfs or to
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the young genes existing in this group which may not own consolidated transcriptional regu-
lation mechanisms and thus are not included in the initial analysis. Nevertheless, these genes
seem to have specific positional and functional characteristics. They are close to the telomeres,
considered "recent" regarding their evolutionary age, thus being less conserved and they are
more varied in their expression. Also, they are preferably positioned on specific chromosomes
which are both smaller and less gene-rich. In the next subsection we tried to enlighten their
potential interactions with trascription factors by scanning the genome based on the factors’
position specific scoring matrices (PSSMs).

4.1.2 | "No-signal" genes are potentially regulated by a specific group of
transcription factors

In order to determine if there are potential binding motifs of transcription factors overlapping
with the promoters of the no-signal genes, we decided to create the positional specific scoring
matrices (PSSM) of factors as provided by the Jaspar database (Sandelin et al. (2004)) and scan
the whole yeast genome. This procedure is explained in more detail in materials and methods.
In a nutshell, by setting thresholds on the basis of the maximum PSSM score per factor, we
obtained regions highly matching the binding motifs of the transcription factors. Finally, out
of those regions we kept only those overlapping with the promoter regions (as provided by
Harbison et al) of the genes existing in the initial dataset. Depicted in Figure 4.2 is the number
of binding motifs overlapping with promoter regions of the no-signal genes (pink) and the rest
of the genes (green). These numbers may include cases of binding motifs of a single factor
found more than once in a promoter region. Based on our analysis, the number of potential
regulators between the no-signal genes and the rest of the genes do not significantly differ.

To find out if there are prevailing factors regarding the regulation of the no-signal genes
we conducted an enrichment analysis by which we obtained enrichment values of the vari-
ous transcription factors’ motifs, as provided by the Jaspar database, overlapping the no-signal
genes’ promoters or the rest of the genes’ promoters. These results are depicted in the heatmap
of the Figure 4.3. It is observed that there is a small fraction of transcription factors that their
binding motifs tend to be mostly found around the promoters of no-signal genes. After ver-
ifying that these high enrichments are supported by an adequate number of promoter, we
have also conducted statistical significance testing through random permutations (results not
shown) yielding a high number of significant enrichments, although this number is expected to
drop after multitest correction. Some of the transcription factors yielding a significantly high
enrichment score in the no-signal genes are the RSC30, a component of the RSC chromatin
remodelling complex, STB5, involved in oxidative stress response, FHL1, a transcriptional reg-
ulator of ribosomal proteins and finally STP3, a protein of unknown function. The informa-
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Figure 4.2: Depicted in these boxplots is the number of transcription factor motifs overlapping
with the promoters of the no-signal genes (pink) and the rest of the genes (green) as provided
by Harbison et al. (2004).

tion on those transcription factors were obtained from the Saccharomyces Cerevisiae Database
(http://www.yeast-genome.org).

In conclusion, our analysis showed that the no-signal genes are potentially regulated by
just as many transcription factors as the other genes, but it seems that there is a specific group
of factors whose binding motifs are highly enriched in those genes. A potential explanation
to this may be that the tendency of no-signal genes to be positioned close to telomeres may
correlate with the binding of factors that "prefer" to regulate genes positioned near the telom-
eres. As described by Janga et al. (2008), transcription factors seem to have both chromosomal
preferences and preferences on specific regions of the chromosomes.
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Figure 4.3: A heatmap that shows the enrichment values of transcription factors’ motifs over-
lapping with the no-signal genes’ promoters (left) and the rest of the genes’ promoters (right).
Red indicates higher enrichment values than blue colour.
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5

Conclusions & Discussion

Our results from the initial enrichment analysis conducted at intra-chromosomal level indicate
a topological and functional compartmentalization of the yeast genome that was in accordance
with Tsochatzidou et al. (2017). Centromeric regions seem to be enriched in essential func-
tions while, when moving closer to the telomeres, the ’landscape’ changes. Telomeric regions
are mostly enriched in evolutionary younger, TATA-regulated and transcriptionally variable
genes, while under-enriched in essential functions and ancient genes. This matches the ’pic-
ture’ described in Tsochatzidou et al. (2017), with telomeric regions being less conserved and
mostly related to stress responses and secondary functions expected to be transcriptionally
variable in different conditions. On the other hand, essential functions seem to strongly avoid
telomeric ones, as also noted in Batada and Hurst (2007). On the chromosomal level, we ob-
served that chromosomes have slightly different enrichment patterns across the same genomic
categories, with chrI, the smallest chromosome, being the most striking example, implying
that chromosomes may serve as distinct ’niches’ for different gene categories. We also report
on a topological segregation of the duplicate genes, as small scale duplicates (SSDs) are mostly
found near the telomeres, while avoiding the regions closer to the centromeres, with whole
genome duplicates (WGDs) having opposite tendencies. This division may reflect their dis-
tinct functional roles supported by the fact that SSDs are linked to neo-functionalization, while
WGDs are linked to the sub-functionalization of ancestral functions (Fares et al. (2013)).

In the second part of our analysis, we have shown that the yeast genome is extensively
clustered at the linear level. As described in Janga et al. (2008), we have also found that the
potential targets of transcription factors are positionally clustered in specific chromosomes,
although the chromosomal preferences of the factors do not correlate with the clustering. The
most extensive clustering was reported on the analysis done on the meta-assemblages (Rossi
et al. (2021)), each indicating a different regulatory architecture related to specific functions.
Although this dataset may ’hide’ positional biases, we assume that the co-localization of many
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functionally-related factors in similar genomic regions reflect a co-regulation of common gene-
targets that tend to be positioned closer to each other than compared to the gene-targets of a
single transcription factor. Many studies claim that functionally-related, co-expressed genes are
clustered in the genome (Cho et al. (1998); Lee and Sonnhammer (2003); Tiirikka et al. (2014)).

Essential genes are positionally clustered across almost all chromosomes, which agrees with
previous works in the field (Batada and Hurst (2007); Pál and Hurst (2003)). This group of
genes, which are potentially some of the most conserved genes, are found to be positionally
clustered from yeast (essential) to humans (housekeeping) (Lercher et al. (2002)), implying that
their clustering ensures their coordinated regulation. As described in Batada and Hurst (2007),
essential genes in yeast may cluster in regions of open chromatin to minimize the effect of
transcriptional bursting coming from the neighbouring genes. On the other hand, TATA genes
are found to be clustered across only two chromosomes, which may reflect their positional
preference near the less gene-dense telomeric regions (Basehoar et al. (2004)).

By testing the tendency of genes to cluster on the basis of transcriptional variability or
conservation level, we have found that they are clustered across these gradients. Interestingly,
we have detected more extensive clustering of genes with extreme transcriptional variability
(either low or high) with them also overlapping significantly in chromosomes V and XIII. This
implies that extreme values of transcriptional variability (either high or low) may constrain the
positioning of genes across the chromosomes. Out of the 1460 gene ontology terms examined,
only 3.6% were found to be positionally clustered across the chromosomes potentially due to
the low number of genes participating in each term. These results partly agree with previous
results (Lee and Sonnhammer (2003); Tiirikka et al. (2014)) in which they have shown that
functionally-related genes (GO-terms, KEGG) are found clustered across many chromosomes.

Interestingly enough, we have also got some results indicating sparse positioning of genes
(opposite of clustering). Based on our analysis, genes expressed in high frequency (high_freq_expr),
genes of Saccharomyces cerevisiae origin and some GO-terms including the ’integral component
of the membrane’ were some of the cases found to be significantly sparsely positioned across
some chromosomes. The most striking case is the extensive sparse positioning across six chro-
mosomes of genes that cannot be categorized in any known GO-term. This implies that the
genes of that category, potentially enriched in dubious orfs or pseudogenes, are positionally
biased in such a way that they are found further from each other than expected by chance,
although their number is not negligible. Nevertheless, the most interesting part is that two
linked categories, the GO-term ’integral component of the membrane’ and the evolutionary
younger genes, enriched in the aforementioned GO-term, are not only positionally-clustered
in any chromosome, but also tend to be sparsely positioned across the chromosomes. The
above results seem to support and at the same time be inspired by the observations described
in Vakirlis et al. (2020), in which it was claimed that emerging yeast orfs, potentially emerging

64



Chapter 5. Conclusions & Discussion

from non-coding intergenic regions, tend to form putative transmembrane domains.
The overlap analysis among the resulting sub-clusters revealed interesting relationships.

We observed unexpected tendencies for the clustered SSDs and WGDs, with the latter overlap-
ping with clusters with low gene conservation and with GO-terms related to Golgi-membrane,
rRNA processing or mRNA splicing. On the contrary, the SSDs overlap with clusters of highly
conserved genes, low transcriptional variability and with basic GO-terms, related to protein-
binding and the cell cycle, which do not match the general tendency of SSDs to be positioned
closer to the telomeres and to be linked to neo-functionalization (Fares et al. (2013)). Similarly,
the clustered WGDs were expected to overlap with conserved categories and ancient func-
tions. This implies that the clustered SSDs and WGDs may have opposite tendencies to the rest
of the genes in each category, but also seem to maintain their opposing relationship. We gen-
erally observed a correlation between the overlaps found for clusters of conserved and low in
transcriptional variability genes and between unconserved and highly variable gene clusters.
Considering this as the genomic background, various GO-terms related to the membrane and
the Golgi was found overlapping with the unconserved but highly variable clusters implying
a tendency of those functions to be positioned closer to the telomeres.

Aiming to build on previous results of our lab (Nikolaou (2018); Tsochatzidou et al. (2017)),
we decided to study the existence of an underlying genomic architecture in yeast that is founded
on the topological and functional compartmentalization of genes. The current analysis con-
ducted on various genomic categorizations, showed that the clustering of genes on the chromo-
somal level is commonly found in yeast, with some categories being more extensively clustered
than others. The overlaps between all the resulting sub-clusters indicate that there may be ge-
nomic regions that play the role of ’control hubs’ related to specific functionalities, while also
being specifically positioned in the genome in a way that would be interesting to be depicted
as an interactive map. Although improvements on the current methodology can always be
made, these results confirm previous observations made on the yeast genome architecture and
enrich our knowledge in the field. The secrets of the yeast genome’s underlying architecture
still remain to be studied.
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