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Chapter 1

Atomic Structure and
B-splines

1.1 Introduction

In its general form the problem of the determination of the eigenstates of
a many-electron atom with atomic number Z is impossible without dras-
tic, physically justified approximations. Present day quantum mechanical
theory offers the machinery and the mathematical formulation for the sys-
tematic and rigorous analysis of phenomena occurring at the atomic level.
The calculation and understanding of atomic observables are simplified con-
siderably through a sequence of approximations. The task of finding suitable
approximations for the problem at hand is by itself part of the art, guided
by physical intuition as well as experience. The definitive criterion for the
succes, of a method, is the comparison with experimental observations. Al-
though, from the point of view of physics, many methods have been sug-
gested and implemented succesfully, the computational part of each method
will be in continous in development taking the full advantage of evolution
of the modern computer hard- and software.

1.2 Many-Electron Atomic Systems

Since the basic constituents of the nucleus (neutron and proton) are much
heavier than the electron (ratio ~ 1073) and the volume occupied by the
nucleus is much smaller than that of the electronic cloud (ratio ~ 1077%),
considered the nucleus of the atom can be considered infinitely massive and
motionless. Interacting with the orbital electrons through a static Coulomb
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potential (~ Ze?/r?). The nucleus has a finite volume, in size and shape,
intimately connected with its charge distribution. The static Coulombic
approximation of the nucleus-electrons interaction is adequate only for light
atoms where the electron velocities are low (~ Zac < ¢), with a being
the fine stucture constant (~ 1/137). In this limit the radiation part of
the interaction is neglected. For the same reasons, we also approximate the
electron-electron interaction with the static Coulomb part (~ €?/r;;), where
r;; is the distance between the i-th and j-th electron.

For an N-electron atom, the Hamiltonian is written as’:

N N
H = Zhi(ri)+Zg(ri,rj), (1.1)

<J

where h;(r;) = T'(pi) — Z/r; is the one-particle Hamiltonian operator for the
motion of a single electron in the field of a nucleus of charge 7, located at the
origin of the coordinate system and T(p;) is the kinetic energy operator?,

2 .
N ) Pi/2, Schrodinger
Tip:) = { ca;p; + fic?, Dirac (1.2)

where p; is the momentum of the i-electron and «j, 3; are operators con-
nected with the spin of the i-electron (see equation (1.8)). The two-particle
operator ¢(r;,r;) represents the interaction energy of a pair of electrons,
which reads:

RN R VEsY Schrédinger
g(r27r]) - { 1/T2] _I_ B(:[_Z'7:[_‘74)7 Di]fa,(j (13)

with B(r;,r;) being the Breit interaction representing the spin-spin in-
teraction between two electrons [68]. The Dirac Hamiltonian hp(r) =
cap + (3¢ — Z/r through a perturbation expansion of a? leads to the

!Note that in general Z # N except for the case of neutral atoms.

In nonrelativistic quantum mechanics, the notion of the potential is introduced in order
to represent the interaction between the particles. This allows the use of the potential
in conjunction with the Schrodinger equation. On the other hand, in the relativistic
quantum theory the number of particles is not conserved, and interactions arise from
the exchange of quanta. Therefore, a consistent relativistic theory of the atomic structure
requires the formalism of second quantization. However, an effective potential representing
the interactions, can be constructed by taking the Fourier transform of the lowest-order
interaction matrix elements (page 258 [68]). In that sense, the present Hamiltonian should
be understood as a model Hamiltonian, sufficient for most purposes in relativistic atomic
stucture calculations.
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Schrodinger Hamiltonian hg(r) = p%/2 — Z/r plus the relativistic correc-
tions in first order of a?.

Z Z
hp —¢* — hs + a? T—315—p4/4— sz(l/r) + O(a?). (1.4)

The Schrédinger Hamiltonian therefore neglects terms of the order® ~ a?7*
such as, the spin-orbit interaction Vi, = a?(Z/r®)ls, the mass correction
V= —a?p*/4 and the Darwin interaction Vy; = —a2ZV?%(1/r)/4.
One-electron Schrodinger Equation. Concentrating now to the non-
relativistic equation, Hsd(r) = ¢¢(r), where Hs = p?/2 + U(r) and noting
that it represents the motion of an electron in a central field, the eigenstates
¢(r) (omitting the subscript ¢) are written in terms of spherical harmonics,

Sutmn (¥) = 1 Pat()Yin (8, 9)(1m,). (15)

where Y}, are the spherical harmonics as defined in [69], thus satisfying
the eigenvalue equations 12V}, = (I + 1)Y},,, .Y}, = mY}, and the or-
thonormality condition [ dQ,Y;* Yi,» = 8;6,ms. The spin-1/2 eigenfunc-
tions o, satisfy the eigenvalue equations, S?c(m;) = (3/4)c(ms) and
S.0(ms) = mso(ms). The radial functions P,;, which satisfy the boundary
conditions P, (r — 0,00) — 0, and the energy eigenvalues ¢,,; are the un-
known quantities to be determined. Indexing by n should be understood as
involving discrete and continuous energy eigenvalues of the equation. Since
Hs =p?/2+U(r)=r19%(r)/0r*—12/2r? + U(r) the Schrodinger equation
leads to the following radial equation for the P;(r) functions :

_d*P, N (U(T) N RA(1+ 1)

dr 72

) P[(T) = 81P[(7‘). (1.6)

One-electron Dirac Equation. The ficld-free Dirac Hamiltonian is of
the type:

Hp = cap + fme® + U(r) (1.7)
where the a, § matrices are defined by:
0 o 1 0
0 TR NS R

30ther first-order terms of o, scaling as a®Z®, come from the two-particle Dirac
operator gp(ri,r;) = 1/ri; + B(ri,x;) [35]
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and o is the 2 X 2 Pauli matrix and 1 the diagonal matrix. Since we are deal-
ing with isolated atoms the static potential ’seen’ by the electron has spheri-
cal symmetry and is t a function therefore only of the distance of the electron
from the nucleus. The potential U(r) is of the type U(r) = —Ze*/r + V(r),
with —Ze?/r being the nuclear potential and V(r) the ’screening’ poten-
tial which is either a model potential or a Dirac-Fock potential determined
self-consistenly.
The time-independent Dirac equation is written as:

Hpvp(r) = E¢g(r), (1.9)

where g (r), I are the eigenfunctions and the respective eigenenergies. Note
that  the wavefunction ¢g(r) is a four-component vector
Yt = (VF, 5, 05,97 = (zbj[l, ng) The Hamiltonian Hp commutes with
the total angular momentum defined by j = 14 s with 1 being the orbital
angular momentum and s the spin of the electron. The Hamiltonian of the
atom commutes also with the z-component of j. It is then possible to write
the eigenfunction in a j? form as :

o= L[ Gk, (@)
Yo, (8) = 7 l Fo (ot (F) ] o

where X, are the 2 X 2 spinors defined in terms of the Glebsch-Gordan
coefficients and the spherical Harmonics. The quantum numbers £ and m;
have their origin to the eigenvalue equations of the operators X = —2Is — 1
and J,. The quantum number k is the relativistic analog of the [ quantum
number in the classification of the states in the Schrodinger approximation.
Knowledge of £ is therefore equivalent to knowledge of the quantum nubers
3,1 of the j?,1? operators.

Keeping in mind the above relations, and with the help of the orthonor-
mality condition [ dQTszJ Xkim) = Opkt 0m, the 3-D Dirac equation can be
reduced to an one-dimensional radial eigenvalue equation, from the solution
of which, we can determine the radial wavefunctions and the corresponding
eigenenergies:

ho(ryud(r) = eu(r) u- l G(r) ] (1.11)

with ¢ = F — mc? the 'transformed’ energy and hp given by:

hp(r) = o " (_% ' é)

= 1.12
fe (% + é) —2me? 4+ U(r) (1.12)
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The above radial equations including the boundary conditions for the G(r), F/(r)
at the points » = 0 and r = oo and the orthonormality condition,
Jo o dr [Grp(r)Gk(r) + Fop(r) Fg(r)] = 6,y are solved numerically for the
determination of the radial functions G(r), (7).

Central field approximation®. One of the most succesful methods for
the solution of the eigenvalue equation H ¥(ry,rq,..ry) = F ¥(ry,re,..ry)
is the central field approximation originally proposed by Hartree and Slater.
This is based on an independent particle model, where each electron moves
in an effective potential representing the attractive nuclear potential and the

repulsive interaction originating from the remaining N-1 electrons. Hamil-
tonian (1.1) is written as :

N
H = Ho+H,=> H(r)+H,

N N 7 N
= ) + U+ X =000 = 7] + Daery) (113
Ho H,

At this stage, H(r;) = T(p;) + U(r;) is the one-electron Hamiltonian which
stands for the independent motion of the electron in the “screened” poten-
tial U(r) originating from nucleus-e and (N — 1)e — e interactions. The
Hamiltonian H is written as a sum of the central field Hamiltonian Hg and
the “perturbative” H,. The Hamiltonian H, is treated as a perturbation
since (H,) < (Hp). Neglecting, the perturbative term H, we must solve
the eigenvalue equation Hg ¥ (ry,ra,...,rN) = Foi(ry,re,....,ry). The so-
lution of that eigenvalue equation, 1(ry,rz,...,ry), should be determined
in combination with the Pauli exclusion principle. According to this prin-
ciple the wavefunction of a system consisting of identical fermion particles
(electrons in the present case) changes sign after the mutual commutation
of any pair of electrons (spatial and spin) coordinates, ¥ (rq,..,r;,...x;...) =
—(ry,...,r;,...ri...). The simplest wavefunction satisfying this principle is
the Slater determinant given by:

Qbs(rlv:r?v"'r]\f) = A¢(r17r27"'rN)
¢a(r1)7 ¢ﬁ(r1)7 .. 7¢U(r1)
1 ¢a(r2)7 ¢ﬁ(r2)7 --,le,(l'z) 7 (114)

Palrn), @p(rn), ... ou(rN)

where, the states ¢(r) are solutions of the one-electron eigenvalue equa-
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tion, H(r;)¢(r;) = e;f(r;). A is the antisymmetrization operator and
s = (a,f,...,v). Each of the a,f,...,v specifies the quantum numbers®
describing the one-electron orbitals.

Defining the total angular momentum of the N-electron atomic system
asL =31, => r; X py, it is straightforward to prove that the Hamiltonian
Hy commutes with L and L?. Also, since Hy does not contain any spin-
operators, it commutes with S and S2, where S = 3 s; is the total spin of the
atomic system. At the same time, the obvious Hamiltonian invariance under
the replacement r — —r suggests that the eigenstates have a well defined
parity II, the eigenvalue of the parity operator P. From the above discussion,
it follows that in general the eigenstates of the Hamiltonian Hy labelled
as |FILL S My Mg) can be determined as simultaneous eigenstates of the
H,P,L2 S% L., S. operators with eigenvalues I, (—1)2”, L(L+1),5(5+
1), My, Mg correspondigly, where /; is the angular quantum number of the
1-electron.

The wavefunction 1, (Slater determinant) is an eigenfunction of the
operators Hy, L., 5. but not in general an eigenstate of the operators L2, S2.
These functions are constructed by taking a suitable linear combination of
Slater determinants 15, summing up over all magnetic quantum numbers
[9] my,, ms, for i =1,2,..N.

er = N Clmimy) o, (1.15)

allmy,me

where A = (LSMpMg). A more detailed description of such a construction
is presented in later sections, concerned with the description of two-electron
atoms. The following sections present some theoretical approaches we have
followed for the description of the atomic systems in combination with the
finite basis method and the B-splines technique [23].

1.3 Schrodinger Equation and B-splines method.

Although the method we use has been presented in detail in [43, 9, 73] for
various atoms like H,H™ He etc.., for completeness and later reference we
describe here the essentials of the method and emphasize specific subtle
points in order to make clear the underlying physics clear.

Finite basis method. In this paragraph, we give a brief presentation
of the finite basis method and its connection with the variatonal technique

®For the Schrédinger Hamiltonian these numbers are the (n,1,mi;, m.) while for the
Dirac Hamiltonian are the (n,j,1,m;) = (n, k, m;).
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for the non-relativistic case. As a starting point consider the Hamiltonian
H ., the spectrum of which we are seeking to approximate. Consider also
the wavefunctions (") = va cgn)fi, with 7 = 1,2...N as the candidate
eigenstates of H, in terms of an orthonormal set of functions f;,¢ = 1,2...N.
The eigenvalue equation is H1, = e,1, where n represents both bound
(¢, £ 0) and continuum (&, > 0) solutions. The spectrum of H contains
an infinitely number of bound states and a denumerable number of infinite
extended in space states. Inserting the expansion for 1, in the eigenvalue

(n),

equation for H, we obtain for the unknown coefficients c;

N
=1

where H;; = (fi|H|f;). We have used the property (f;|f;) = 6;; for f;. The
gain of the finite basis method is the transformation of the eigenvalue equa-
tion to a matrix eigenvalue problem through an approximation of the real
Hamiltonian // with its “finite” matrix representation (/;;). The accuracy
of the method is intimately connected with the “size” of the basis in the
sense that,

N
1 S [y i V= (1.17)
=1

Diagonalization of the matrix (H;;) in equation (1.16), results to N eigen-
vectors ¢™ . n = 1,2...N with the corresponding eigenvalues E™ . Each of
these eigenvectors gives rise to a variatonal state through the relation (™) =
va cgn)fi. The eigenvalues E(, according to the Hylleraas-Undheim the-
orem [42], are upper bounds to the first N exact eigenvalues of H (¢, <
EM p = 1,2....N). The equality is satisfied when N approaches infinity.
As the final result of the above procedure, we have at hand a set of states
(" n =1,2...N which approximate the first N-exact eigenstates of H and
the corresponding N energies (upper bound of the first N exact eigenener-
gies®).

The transformation of the infinite spectrum of H into a discretized
pseudospectrum has as a consequence the transformation of the contin-

uum integrals to a summation over the discrete states and energies i.e.
[dEY*Hy =%, 1* Hi,. This discrete representation of integrals has been

®In the relativistic limit, the Hamiltonian of the system is the Dirac operator Hp
(equation (1.7)) and a generalization of the Hylleraas-Undheim is necessary [27]. This
complication has its origin to the unbound nature of the spectrum of Hp from below

(en — Fo00).
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studied and understood [67] throughout the years and calculations relevant
to this technique have proved to give very accurate results, depending on
the choice of the basis-set (L?-expansions, STO, GTO, B-splines,Sturmian)
and its size(~ N).

Action principle and SE in a box. One of the basic assumptions is
that the atom is considered confined inside a sphere (“box”) of radius R,
with the boundary conditions at » = 0 and r = R instead of » = oco. There-
fore the incorporation of the boundary conditions in the formalism should
be achieved through a systematic procedure. We work with the action (S)
of an electron inside a central potential U(r), where applying the variatonal
principle 6§ = 0, under certain constraints (i.e.6F(0) = 6 F;(0) = 0) we ob-
tain the differential equation for the radial wavefunction P;(r) functions. In
quantum mechanics it is well-known that the time-dependent equation for
the wavefunction of a quantum-mechanical system ¥(r,?) can be derived,
independently from the specific form of the Hamiltonian, through the Lan-
gragian formalism. To be more specific, the Langragian £ of the system in
the state ¥ is defined to be the quantity:

L[¥] = ¥(i9, — H)¥ (1.18)

with H the energy operator being the sum of kinetic and potential operators.
Requiring the action S[¥] = [ dtd®rL[¥] of the system to have an extremum
(68[¥] = 0), we obtain the usual time-dependent Shrodinger equation. The
above definitions are valid in general. In the case where the state function
¥ has only one component however, as in the non-relativistic limit, the
Langragian is defined in analogy as £[¥] = U*(¢hd; — H)V. For the time-
independent case, the action of the system in the state i can be written
as [46], S[¢] = [PrL[Y] = (¥|(e — H)|1b). Here, we assume as H the
Schrédinger Hamiltonian of an electron moving in a central potential U(r)
and ¢ the corresponding energy eigenvalue. The 1(r) wavefunction is written
as 771 P(1)Y},, (8, ©) and the action is expressed now as :

S = /d3r¢*(r) [g - (_;—mvﬁ + U(r))] (x). (1.19)

Expanding the operator V2 in spherical coordinates (r,6,¢) and using the
equation L?Y},, = K2l (I + 1)Y},, in combination with the orthonormality of
the spherical harmonics we get (i|¢) = fOR drP?(r). Combining all of the
above, we obtain for the action:

sty = 3 {5 () + [rore B mor-arteo)
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S [BR)FI(R) ~ R(0)F/(0)] (1.20)

where P/(r) = dP(r)/dr. The last term of the right-hand-side (RHS) of
equation (1.20) is the surface term which represents the effect of the finite-
ness of the space on the wavefunctions. Note here the mathematical meaning
of the eigenvalue ¢; which plays the role of Langrage multiplier, in order to
ensure the physical requirement of normalization. The variation of the ac-
tion under small variation of the undetermined yet Pi(r) is the following

6S[P] = %/OR dr{—% + [U(r)—l— W] P;(r)—glPl(r)}
_ %[6P;(R)P,’(R)—6P;(0)PI’(0)]. (1.21)

From the variatonal principle for the S with the constraints 6 Pj(0) = 6 Pj(R) =
0 we obtain the radial Schrédinger equation for the P/s:

2 2
l—@ + (U(r) + wjl)) Pl(r)] = o/ Pi(r). (1.22)
dr r
ns | Analytical B-splines
1 |-0.5 -0.49999999999401
2 |-0.125 -0.125
3 | -0.05555555555556 | -0.055555555555557
4 | -0.03125 -0.03125
5 | -0.02 -0.02
6 | -0.01388888888889 | -0.013888888888887
7 |-0.01020408163265 | -0.010204081566722
8 | -0.00782125 -0.0078123810887326
9 | -0.00617283950617 | -0.0061572727152837
10 | -0.005 -0.004760808277328
11 | -0.004132231204096 | -0.0031194774936659
12 | -0.003472222222222 | -0.0011044353071858

Table 1.1: Energies of the ns states of the Hydrogen, obtained with the
Schodinger Hamiltonian Hg analytically and computationally. The B-
splines parameter are, k = 9, n = 200, R = 200q.u. and linear grid.
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3s

2s

Exponential grid N =50 k=9

1s

R : infinity R =50a.u. R =100 a.u.

Figure 1.1: The finite-basis spectrum obtained for the Hydrogen for two
different boxes. For box radius R = 50a.u. the bound states of the spectrum
are five, while for R = 100¢.u. (with the number of B-splines fixed) the
bound states increase to seven. The last members of the bound spectrum
fail to represent the Rydberg states for this choice of the B-spline parameters.

B-splines method We expand the radial function in a set of B-splines”
of total number n and order k, defined inside the interval [0, R] from which
we have excluded the first By and the last B-spline B,, in order to ensure
the boundary condition at the interval edges (F;(0) = P(R) = 0).

LIOEDY D Bi(r). (1.23)

Variatonal principle 6§ = 0 is equivalent to the equations dS/d¢; = 0,1 =
1,2,..n — 1 which in matrix form leads to a (n — 2 X n — 2) symmetric

"For a summary of B-splines definition and properties see the relevant appendix at the
end of this chapter
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generalized eigenvalue equation:

A7D = 6 Be 50 = (DD, (1.24)

s €y
The elements of matrices A, B are calculated through the finite integrals :

R . . 2
| {%dﬁl 4 Bi(r) [U(r) Tallha ”] By(r). }

r2

R
B = ; drB;(r)B;(r).

Solution of equation (1.24) gives n — 2 vectors #!) which through equation
(1.23) correspond to the eigenstates of the system. Simultaneously, n — 2
eigenenergies are obtained. A finite number of states (n;) with energies
eni < 0 represent bound states of the atomic system. The positive energy
solutions ¢ > 0 corresponds to the continuum states exhibiting an oscillatory
behavior at large r. The number of the bound states depends strongly on
the box size and this number increases with increasing box radius, while the
true spectrum corresponds to limg_.., n, — oo. The bound solutions just
below the threshold ¢ = 0, does not correspond to any of the true bound
states of the atomic system. This is due to the large space extension of these
states (although bound), thus making the boundary effects dominant, with
the consequence of making the spectrum at this energy range not reliable.
The numerical representation of high Rydberg states using this method, in
general demands large box radius. In figure 1.1 the finite-basis spectrum is
plotted for Hydrogen for two different boxes. For box radius R = 50a.u.
the bound states of the spectrum are five, while for R = 100¢.u. (with
the number of B-splines fixed) the bound states increases to seven. The
last members of the bound spectrum fail to represent the Rydberg states
for this choice of the B-spline parameters but correspond to pseudostates
which, however, do contain the necessary oscillator strength.

Integration and diagonalization with B-splines. B-spline functions
are piecewise polynomials, depending on the knot distribution. When in-
tegration is needed for a calculation, full advantage of their properties is
taken. Integrals involving wavefunctions, lead to integrals containing only
B-spline polynomials. Integrals of the type M(a,b,q) = fOR P.(r)q(r)Py(r),
through an expansion of the type (1.23) can be written as:

M(a,b,q) = ch‘l)c;b)Mﬁ(q) (1.25)
2,]]_%1
M) = [ BB (1.26)
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In the general case, the quantity ¢(r) is considered to be a differential op-
erator. The most frequent types of ¢(r) are: ¢(r) = 1,r,1/r,d/dr,d*/dr?.
As an illustration of the technical details arising in the integration process
of B-splines, the special case ¢(r) = 1 is considered. Then the integral
(B:|B;) = fOR B;(r)B;(r) needs to be calculated. Half of the calculation
is avoided when the property B;(r)B;(r) = B;(r)B;(r) is used. When,
|t — 7| > k the integral vanishes automatically because of the local na-
ture of the B-spline polynomials. The relevant B-splines do not overlap.
When |i — j| < k, the integration over the interval is reduced to an in-
tegration over an interval of the order r(¢;4x) — 7(¢;). Finally, this inter-
val is separated to k intervals r(#;41) — 7(¢;),7 = 1,2,..k, where a k-order
Gaussian integration [67] takes place. Improvement of the efficiency of the
code is possible, when a uniform knot sequence is used. For this case B-
splines keep their form constant over the interval [0, R]. In other words,
the integrals (B;|B;) = (Biyr|B;+k) are equal. From the B-splines prop-
erties, one can verify the relations (B;|BY) = (B/|B;) = —(B{|B}) and
(Bi|B}) = —(B{|Bj). If ¢(r) is a polynomial up to the order 2k — 1, then
the integrals calculated with kth order Gaussian quadrature are exact. Ob-
viously, when ¢(r) contains negative powers of r (i.e. 1/r) the integrals are
approximations of the exact value with a degree of accuracy depending on
the order k of the Gaussian quadrature used. Improvement of the necessary
code for the diagonalization, necessary for the solution of the eigenvalue
equation (1.24), can be achieved. The origin of these improvements derives
again from the localization of the B-splines polynomials. The matrices A, B
involved have the banded stucture of figure 1.2. Ordinary matrices A, B
demand a ~ (n — 2) X (n — 2) disc space storage and ~ n® computing time.
Because of the banded structure and symmetry of the matrices A, B, meth-
ods requiring ~ k x (n — 2) disc space storage and ~ k x n? computing time
can be implemented.

For i # 1,n and ¢(r) a function of r, the relations (B{|B}) = —(B}!|B})
and (B;|q|B;) = (Bj|¢q|B;), are true hold which means that the resulting
A, B matrices are symmetric®.

Continuum states and normalization. In atomic quantum theory,
bound states are normalized to unity while the continuum eigenstates are
energy normalizable.

(daldw) = { N 5(;6“_[”66)‘ (1.27)

8Note that, inclusion of the last B-spline (boundary conditions where, P,(R) # 0) has
the effect of leading to non-hermitian matrices.
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n-2 k

n-2

Figure 1.2: Ordinary matrices A, B demand a ~ (n — 2) X (n — 2) storage
of disc space and ~ n® computing time is needed. Because of the banded
structure of the matrices A, B, methods requiring ~ k£ X (n — 2) storage of

2

disc space and ~ n° computing time can be implemented.

Thus, bound states have the dimension ~ 1/vwvolume while continuum
states have the dimension ~ 1/,/energy. In a finite basis method, the
entire spectrum is represented by a discretized one inside a box of radius
R, with normalization to unity for both negative and positive energy eigen-
functions. Although for the bound solutions ¢ < 0 no problem arises about
their normalization and physical meaning, for the positive energy solutions
it is not evident what they represent. The spectral decomposition of the
true Hamiltonian is given by:

1= Y [6)Eulenl + [ dEI6(ENE(S(E)! (1:28)

The finite representation of the H operator, H is writen as:

H="3 ) Edl+ Y ) Bl - (1.29)

E;<0 E;>0

The numerical evaluation of the continuum integral is approximated as

JdE|Q(E)E(P(E)| = Y, wi|o(F;)) Ei(o(F;)|, where w; is the weight of the
equivalent quadrature. Requiring the operator H to be the finite repre-
sentation of the Hamiltonian H leads to the equality, >~ g 5¢ [xi) Fi{xi| =
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Hydrogen
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1.0 T
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0.0 10.0 20.0
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Figure 1.3: B-spline expansion of the 2s radial function of Hydrogen for two
different knot sequences.

Yo wi|d(F)YEi(o(E;)|, with the result of,

B(E:) = S\(Fy) (1:30)
wZ

The physical meaning of the calculated positive-energy wavefunctions x(£;)
within the basis-set framework is now clear: The positive-energy solutions
X(£;) (normalized in unity), when divided by the weight w; which allows
integration over the continuum, represent the actual continuum Coulomb
function, of energy F;, inside the box. The determination of the correct
weight of the equivalent quadrature for the evaluation of the integrals is not
a-priori known. A thorough analysis of that subject has been discussed by
Reinhardt [67].

One of the consequences of the adoption of boundary conditions at finite
radius has to do with the spacing of consecutive energy eigenvalues. The
density of states p( /) instead of the ¢-function form takes now finite values,
p(E;) = 2/(E; — E;41). Choosing as w; = \/p(F;) for the normalization of
the discrete positive-energy states we obtain, (¢;|¢;) = p(£) Ropo S(E—FE).
The limit of that normalization when R — oo goes to §-function as it should.
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Hydrogen
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Figure 1.4: B-spline expansion of the 2p radial function of Hydrogen for two
different knot sequences.

For typical atomic potentials where (lim,_o(r*U(r)) — 0) and
(lim, oo (rU(r)) — —Zeys), the energy spectrum includes a discrete part
of negative energy bound states, and a continuum of positive energy states.
The asymptotic behavior of these states satisfy the relation [78]:

Csﬂ‘H—l r—0
¢kl - { Asle—x/—str7 (131)

7 — 00
for the bound states and

Ckﬂ‘l‘l'l, r—0
(bkl - { Ap sin(qﬁnl(r) + kyr + 6kl)7 r — 00 (1'32)
for the continuum states, where ¢ = k?/2. In the above relation, ¢x(r) =
(Zess/knt)n(2kR) — In /24 T (I +1 — i) where Z.s; is the effective nuclear
charge, I'(2) is the Gamma function and §; is the scattering phase shift which
carries information about the distortion potential
(U(r)=[l(I + 1)/2r? — Z.55/7]) “seen” by the outgoing electron. It is worth-
while to note here that for attractive potentials, the phase shift ¢; has an
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Figure 1.5: Phase shifts of continuum states in H™ corresponding to single
ionization with total angular momentum S.P,D and F. Note the smallness
of the P,D F channels phase shifts comparing to that of the S-channel.

negative-energy extension to region (below the ionization threshold) exten-
sion related to the quantum defect p,; = 6,;/7. The quantum defect g,
is defined through the negative-energy eigenvalues as ¢, = —(Zcs5)?/2(n —
ttn)?. In practice, because of the boundary conditions P;(R) = 0, only the
continuum states of the system with momentum #ik,; = /2¢,; (in order to
satisfy the relation kR4 (Z/ K.u)in(2k R)—In /24 6.+ 6 = pr,p=1,2...)
are obtained.

For the higher continuum states, where the scattering phase shift is ex-
pected to be small, the term kR dominates (kR = pr), thus giving rise to
the square discretization of continuum (£ = k?/2 = p*r?/2R?). Methods
exist for the determination of the scattering phase shift[8, 12, 9]. In the
next section, we present such a calculation for the case of a singly ionized
two-electron continuum state. In figures 1.3, 1.4, we have shown the radial
part of the hydrogen bound states 2s,2p. In the same figures, we also plot
the B-splines on which the radial functions are expanded. The phase shifts
for the continuum states with total angular momentum I = 0,1,2,3 are
shown in figure 1.5. The phase shift of the channel 5 is considerably differ-
ent from zero, exhibiting a strong non-plane-wave behavior up to a rather
large photoelectron energy range. As expected, the value of the phase shift
decreases with the energy of the outgoing electron.

Grid selection Particular attention should be given to the numerical

radial grid selection, since its specification is critical for the reliability of the
calculations. The radial function, because of the singularity at the origin,
changes rapidly for r — 0. In order to describe this behavior accurately,
a dense grid is needed for the region near the nucleus (small r). On the
other hand, a good representation of the continuum (which extends up to
R) requires a dense number of grid points (knots) even for large values of
r. In principle, there are many kinds of grids, but in practice some are used
more often than others, depending on the context. We have used three types
of grids, a linear-like, an exponential-like and a sine-like :
Linear-like grid:

ri=H-(i—1), H= (1.33)

Sine-like grid:
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Knot sequence
R=50au., k=9,N=50
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tI

Figure 1.6: Knots distribution for three types of grid. Linear,sine and
exponential-like distributions are plotted.

H = Rsin [g (m)p] H = %};H (1.34)

Exponential grid:

— [e(i—l)/n _ 1] 7 H =y 1)}/2 - (1.35)
eli— n __

The variable ¢ takes the integer values ¢ = 1,2,..n — k 4+ 2 for all grid
types. Specification of the sine-like grid is made through the position of
the first knot point. In figure 1.6 the knot sequence of the three types of
grid are plotted.The other B-splines parameters have the values £ = 9, R =
50a.u.,n = 50. Depending on the problem we are interested in, the selection
of the grid type may be is essential for the results. For example, if we aim at
for a very accurate determination of the ground state of an atomic system,
an exponential grid around the nucleus is probably the most appropriate.
Obviously, the reason for this is the dense sequence of knot points near the
origin, where the ground state is expected to have non-vanishing values (see
Fig.1.3). Another example, is the calculation of the two-photon ionization
cross section (3.2) or the static polarizability of a bound state (equation
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5.14). For such calculations it is important to have a good description of
the continuum states since the entire spectrum of states is needed. Then, a
linear knot sequence (with respect to kr ~ r/\) is suitable. In order to keep
constant the number of knots inside an interval of size A for all continuum
states (characterized by the momentum 7k), one has to take into account
the variation of A\ while increasing the energy (~ hik). Fischer and Idrees
have used a composite grid [32] where near the nucleus, the knot points
are distribuded exponentially while the outer region a linear distribution is
used. Decleva et all [24] in a careful study of the Helium ground state have
used a parametrized grid which they optimize in a systematic manner. In
the same work, a quantitative comparison between different grid selections,
has been made.

Of equal importance, for the reliability of the calculation, is the box size
R in combination with the total number of B-splines. Calculation of the
energies of bound states is possible even in a small box, but for Rydberg or
continuum states (which extend to large r) a large box is necessary. The
number of B-splines set is chosen so that a reasonable density of grid points
is obtained. Stability of the results with respect to the magnitude of R is a
criterion for the convergence of the calculations. Note that it is necessary
to have the same basis-set for all calculations, otherwise orthonormality be-
tween eigenstates which originating from different basis-sets is not satisfied.

1.4 Dirac equation and B-splines method

Assumming that we consider the boundaries of space at infinite distance
from the atom, the equations for the Dirac radial functions G(r), F(r) are
given by equations (1.11,1.12). As in the analogous non-relativistic problem
we obtain a different set of equations, for finite boundaries, using the concept
of action.

The use of the finite basis method in the Dirac equation (DE) has certain
problems that do not appear in the case of the SE. The main reason is that
the spectrum of the DE is not bound from below (the negative eigenenergies
decrease indefinitely to —oo (see figure 1.7), thus making the variatonal
method inappropriate for relativistic calculations.

Boundary conditions. Solution of the DE of a particle in a repul-
sive potential leads to the Klein paradox [68](1930) when the potential has
strength of the order ~ 2mc?. The electron, belonging initially to the pos-
itive continuum (¢ > 0), because of the tunneling effect, jumps to a de-

generate state which belongs to the negative continuum region of the space
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Schrodinger spectrum Dirac spectrum

Figure 1.7: The finite-basis spectrum obtained as solution of the Dirac rel-
ativistic equation for one-electron atoms.

such that relation ¢ < U(r) — 2mc? is satisfied, with the unphysical result of
a non-decaying wavefunction at infinite distance (oscillatory wavefunction).
The strong confinement of the electron in a box leads to the opposite result.
This means that we cannot put as a boundary condition (R, 6,¢) = 0,
because it is equivalent to an infinitely high (U(R) = oo) potential at this
point. In order to avoid this problem, we follow the MIT-bag model [28]
which makes the cavity wall an infinitely steep scalar potential gradient,
equivalent to assumming the mass of electron infinite outside the box. The
resulting boundary condition for » = R reads:

(1= iy7) ¥(r)l,_p = 0 (1.36)

which, noticing that OFXkm,; = WXkm and OFXkm,; = X—km > and expanding
the ¢(r) as in equation (1.10) gives for the radial components G(R) = F(R).
Action principle and boundary conditions. The action of a parti-
cle moving in a central potential U(r) is given by S[¢)] = (¥|(¢ — Hp)|v¥),
with ¢ being the four-component wavefunction.
Our objective is to derive the radial differential equations for G(r), F(r),
for an atom inside a box of radius R. We need to separate the Hamiltonian
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Hp in a radial part and a part containing only angle variables. Defining as
a, = af and p, = —ih(0/9r 4+ 1/r) the radial parts of the a and p opera-
tors, we write :

ap = a, (pT—I—ZUL—I_h) hk = (oL + ) (1.37)
r

0 —1 0 ¢
aT_[Z. 0], aT_[Z. 0]. (1.38)
With the above relations, we rewrite the Hamiltonian of the system, as

Hp = ca,p, + i(he/r)a, BK + fme? — U(r), and for the action § we obtain:
SWl = [ il (€~ Ho)un,

me=UG) (L2 kg
_ —hC/d3r¢nka (ai +h§+ 1) ( _QMT) ]%kmj

fic

E [ drly, bun,.

From the orthonormalization condition of the angular part of the ankm]
wavefunction, fdQTszJ Xi'm! = Okkt Ommr, we find

J
fd3r¢nkm Vnkm; = fOR dr(G?, + F2%)), and finally, after some algebra, we

have for the action, in terms of the radial functions G(r), F'(r) :

S[G,F] = %/OR dr {hCGnk (% — ;) Fop — ek, (% + ;) Gk
+ U [G2(r) + 3 ()] - 2me* PR (r) }
_ %/OR dr [G24(r) + F2(r)]. (1.39)

where ¢ = E — mc?.

the role of a Langrage multiplier, ensuring the normalization of the radial

As in the non-relativistic case, the quantity ¢ plays

wavefunctions. Now by varying the unknown functions G, F' we obtain the
variation in action 6§ :

08 08 [0S\ 08 08 [0S
651G F] = 8—F<SF—|—8(_§)6<8F)—|—%6G—|—8( )6<8G)

ad
/()Rdrhc{[(% - E) (1) + U(r)Go(r) — ank] 6 Fon(r)
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_ [(% + ;) Gon(r) + (2me® = U (r)) Fui(r) — ank(r)] 6Gnk}

+ = [Gar(r)6Fup(r) — Fur(r)6Goar(r))E .

NN

From the above equations, we obtain the radial eigenvalue equation (1.11) by
stipulating 6S = 0 under the variation of ¢, F’ with the constraint éG(R) =
6G(0) = 6F(R) = 6F(0) = 0. Following this method, the resulting equation
will lead to unphysical solutions for the radial functions G/(r), F'(r), because
of the boundary conditions®.

In order to ensure G(R) = F(R), the boundary conditions adopted from

the MIT-bug model, we add to the action a boundary term, §;, given by:

c/2,if k<0 2
0/2, ifhso ) Cnl(0)

(1.40)
Note here the difference between the formulas for £ > 0 and k£ < 0, which is
connected with the appeareance of spurious states in the spectrum!® of Ap
for £ > 0. Including the variation of this term with respect to variation of

G/(r), F'(r) we obtain for the total variation of the action on the surface:

8 = [G2(R) = FA(R)] = SGni(0)Fui(0) + (

8 = 5 Gak(R) = Fp(RBC(R) + 6 u4(R)]
G0 FA(0) ( 225,ififkk<>oo ) o (0)8G 1 (0). (1.41)

At this point, the arbitrary addition of the boundary term §; is becoming
more obvious. Since, asking for variations of § without constraints in varia-
tions 6G/(r), 6 F(r) we have 6S = 0 only when G(R) = F(R) and G(0) = 0!,
which are the boundary conditions being satisfied.

We should emphasize the crucial difference in the way we stipulate the
boundary conditions between the relativistic and the non-relativistic Hamil-
tonian. For the non-relativistic Hamiltonian, where the radial functions

°This problem is connected with the Klein paradox, appearing when a particle is
trapped in an attractive potential of height Vo ~ mc?.

109 hurious states are states that are not physical and their appearance is an inherent
problem of the finite basis method. [27]

"1n the non-relativistic limit of G(r), F(r) this condition leads to the correct behavior
for the corresponding radial function.
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Figure 1.8: The large components of the Dirac 1s, 2s states of the Hydrogen
are plotted. In the same figure the 1s radial function obtained from the
Schrédinger equation is plotted.

Py(r) should satisfy P(R) = P,(0) = 0, we work with the radial equations
corresponding to an infinite box and we expand the P(r) in a basis set
which does not include the first and the last member, ensuring that way the
vanishing of the radial functions at the boundaries. On the other hand, in
the relativistic Hamiltonian, we are imposing the boundary conditions via
the addition by hand’ of a surface term in the action, which is chosen so
that the radial functions G/(r), F'(r) satisfy the specific boundary conditions.
Within this approach we do not remove any member of the B-spline set.

B-spline method. Detailed presentation and application of the method
has been given by Johnson and Sapirstein in a pioneering paper [43] and in
a recent review [73].

The basic idea is the same as in the non-relativistic case, which is the
confinement of the atom in a sphere (box) of radius R. This has the effect of
the finiteness of the number of the bound states (for R — oo this number is
infinite) and the dicretization of the continuum spectrum, while the number

of the continuum states remains infinite. For a central potential U(r), the
states are written as in equation (1.10) with the unknown radial equations
G, F satisfying G(R) = F(R). We try to represent the infinite spectrum
of solutions for this problem. through a finite spectrum (pseudospectrum)
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Hydrogen
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Figure 1.9: The small components of the Dirac 1s,2s states of the Hydrogen
are plotted. Note the Za ~ 1072 ratio of the amplitudes between the small
and large component (see Fig. 1.8).

just expanding the radial functions in a finite basis set, which in the present
case is the B-splines set. The equations to be solved, are derived using the
action, which as we have already discussed has the advantage of introducing
the boundary condition into the radial equations in a systematical manner.

Expanding therefore the radial equations in a B-spline set of order £,
total number N, defined in a region [0, R] as:

G =X B0) B0 =Y B0, (1
n=1 n=1
we obtain the 2N x 2N generalized eigenvalue equation, from 05/0p; =
0,05/0¢; =0 :
Au) = e Bt b = (Rt 6 dR), (1.43)
where the A, B matrices are given by:
M(U) he (M(£) - M(%))

A= —e (MGE+M(E)  —22M (1) + M(U)

+ A (1.44)
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Wn,
nsy/y | Analytical B-splines
1 -0.50000665656957 -0.5000066565997
2 -0.12500208019145 -0.12500208018833
3 -0.055556295171932 | -0.05555629517705
4 -0.031250338036512 | -0.031250338031454
5 -0.020000181052151 | -0.020000181060167
6 -0.01388899674244 -0.013888996751446
7 -0.010204150879325 | -0.010204150944494
8 -0.0078124283017605 | -0.0078125471281836
9 -0.0061573131021036 | -0.0061728729874227
10 -0.0047608935306592 | -0.0050000246263673
11 -0.0031196540796009 | -0.0041322500461132
12 -0.0011047159880257 | -0.0034722366697655

Table 1.2: Energies of the ns states of the Hydrogen, obtained with the Dirac
Hamiltonian Hp analytically and computationally. The B-splines parameter
are, k = 9, n = 200, R = 200a.u. and linear grid.

and

(1.45)

and where the elements of the matrix M are given by (equation 1.26)
Mi;(q) = JF Bi(r)g(r)B;(r). The elements of the “boundary” matrix A’
are derived straightforward by from the equations 0.5;/9p; = 0,095/0¢; = 0.

The solution of the above system gives N states with ¢ > 0 (positive
states) and N states with ¢ < 0 (negative states). Figure 1.7 gives schemati-
cally the spectrum obtained after the diagonalization. The first bound states
of the pseudospectrum approach (from above) the corresponding states of
the real spectrum, with accuracy depending mainly on the radius R and
the total number N of the B-splines set. As in the non-relativistic case, the
higher the bound state is the more innacurate is its representation. In figure
1.8 the small and large components of the 1s,2s radial functions are plotted.

Finite-size nucleus. The hydrogenic Dirac wavefunctions for j = 1/2
diverges near the origin » — 0, in contrast to those of the hydrogenic
Schrédinger wavefunctions, which remains finite for [ = 0. Although the
divergence is quite weak, it becomes more serious when Z increases. For
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Wn,
ns Hg Hp
1 | -0.49999999999401 -0.5000066565997
2 |-0.125 -0.12500208018833
3 | -0.055555555555557 | -0.05555629517705
4 | -0.03125 -0.031250338031454
5 |-0.02 -0.020000181060167
6 | -0.013888888888887 | -0.013888996751446
7 | -0.010204081566722 | -0.010204150944494
8 | -0.0078123810887326 | -0.0078125471281836
9 | -0.0061572727152837 | -0.0061728729874227
10 | -0.004760808277328 | -0.0050000246263673
11 | -0.0031194774936659 | -0.0041322500461132
12 | -0.0011044353071858 | -0.0034722366697655

Table 1.3: Energies of the ns states of the Hydrogen, obtained with the
Dirac Hamiltonian Hp and the Schrédinger Hamiltonian. The B-splines
parameter are, k = 9, n = 200, R = 200¢.u. and linear grid.

Za > 137 the formation of the j = 1/2 states is impossible. The wavefunc-
tion inside a heavy nucleus (with finite extension) is rather different from
that of a point-like charge. To avoid this problem, one should take into
account the finite charge distribution of the nucleus, which in principle, is
not well-known. A uniform distribution'? gives for the potential the form,

Un(r)z{ -]

u(ry r>r.,

0<r<r, (1.46)

where r. corresponds to the nuclear charge extension, and its specific value
depends on the atomic system.

1.5 One-electron atoms: Model potential method

Consider an atomic system (atom or ion) consisting of a spherically symmet-
ric core with N, electrons plus a number of (N,) of outer electrons (valence

12 Another, more sophisticated charge distribution for the nucleus is the Fermi distribu-
tion p(r) =ro/1 4+ exp((r — R)/r.). Details of that form can be found in [44].



1.5 One-electron atoms: Model potential method 28

electrons). When N, = 1, we call this atomic system the “one-electron”
system and when N, = 2 the “two-electron” system, respectively.

The basic idea of the model potential method is to approximate the
SE depending on the N.+ N, electron coordinates with a SE for the va-
lence electron(s) coordinates thus reducing the number of the independent
variables. The model SE will contain the core-valence electron interaction
through an effective potential U(r), known as model potential. Although
the core-valence interaction term is in general a complicated function of the
electron position (r), in the asymptotic region (r. < r) a simple analytical
formula can be derived [53]. The quantity r. is an estimation of the core
extension.

Long-range formula of model potential. The exact many-electron

Hamiltonian is written as H = H. + T + V., where H. depends on the
core-electrons’ coordinates, 7(%) = SNV p?/2m represents the kinetic energy
operator of the valence electrons and V,, denotes the core-valence interaction
term. Since we are interested in the long-range behaviour of the V., term, we
are able to make an approximation reducing the problem to an alternative
form. Consider a model potential U(r) with the valence Hamiltonian given
by H® = T() 4 U, having as eigenvalues the Rydberg energies Eg of the
exact Hamiltonian :

Hu¢v = (Tv + U)¢v = ER¢U (1'47)

Using a projection-operator method [53] simple asymptotic formulas are de-
rived, where for the simplest cases of one- and two- electron atomic systems
(neglecting dynamical terms) are given by :

One-electron atomic system:

Two-electron atomic system:

Un(r) = ——

T12
1 1 ag (1 1 a —6b1<1 1)
- (Z-=N)|l—+=— )=+ ) - L — =+ =
( )<7‘1+7‘2) 2 (ril—l_r%) 2 r?—l_rg
aq PN -8
- —=P 0 .
7‘%7‘% (1T2)+ (T )
aq

= L ) 4 Ui(r) — 2P ). (1.49)

T12 7‘17‘2
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In the above relations a4, a, are the dipole and quadrapole core polarizabili-
ties and by is the dynamical dipole polarizability of the core, playing the role
of a correction to a4 because of the delayed response of the core to the mo-
tion of the valence electron (equation 5.14). Finally, P;(x) is the first-order
Legendre polynomial. The term that contains the Legendre polynomial is
called “dielectric” term.

Corrections of U(r). Since formulas (1.48,1.49) have been derived as
asymptotic limits of the core-valence interaction terms, certain modifications
should be introduced to make them more reliable at the short-range limit.
Since all terms of the above formulae are strongly singular at the origin,
cut-off functions W(r/r.) are introduced. The r, parameter is varied, in
a semi-empirical method, in order to reproduce experimental data (usually
the first lower energy eigenvalues). It is necessary to emphasize the possible
eigenvalue solutions of the model potential method. The lower eigensolu-
tions correspond to occupied (by the core electrons) states, thus violating
the Pauli exclusion principle. Considering, therefore the allowed valence
electron states, we should exclude from the spectrum of H, the first n-lower
eigenstates with n being the principal number of the highest occupied core
state. For example, in the case of Caesium (Cs, Z=55), an one-electron
atom according to our terminology, the electron configuration is of the type
[...5d'°] 6s. Thus, solving the model potential Hamiltonian for this atom,
whatever is the explicit form of U(r), from the spectrum we obtain, we have
to exclude the first 4 states. At this point, it might be useful to make a point
regarding, the similar in spirit pseudopotential method. In this method, the
orthogonality property of the core-valence electron states (required as men-
tioned by the Pauli exclusion principle) is taken into account from the very
begining by introducing an additional repulsive short-range term into the
potential U(r) . In the pseudopotential approach therefore all solutions
(eigenstates) correspond to allowed valence states and consequently there is
no need to exclude part of them. This is the main distinction between a
model potential and a pseudopotential approach.

Until now, we have adopted a “frozen” core in the sense that the exis-
tence of the outer electron(s), or equivalently the dynamics of the valence
electron(s), does not have any influence on the core-electrons. This allows
of the use the ground state of an isolated core (the core without the outer
electron(s)). Although in many situations this is a good approximation,
there are certain cases where this approach is inadequate and an additional
modification (taking into account the the influence of the valence electron
on the core state) must be introduced. In many cases this modifications is
implemented through the addition of a term known as “core-polarization”.




1.5 One-electron atoms: Model potential method 30

Rubidium (z=37)
(potential, n, k, R, grid) = (Green, 200, 9, 300a.u., exp.)
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Figure 1.10: The large radial component of the three lower states of Rb.

As expected, the name originates from the polarization of the core-electrons
by the influence of the outer-electron. Usually this term gives rise to an
angular momentum dependent potential ({-dependent), with [ the orbital
angular quantum number of the outer electron(s). The [-dependence com-
plicates somewhat the calculation of certain atomic properties.

H~ : model potentials. We have used two different kinds of model po-
tentials for the negative hydrogen. The simplest one is the so-called Yukawa
potential U(r) = pexp(—Ar)/r. In order to derive the ground state of H~,
as accurately as possible, the choice p = 1.1 and A = 1 is necessary. This
model potential has been used by many authors for the study of the photode-
tachment properties of H~ [77, 22, 15]. Using k = 9, R = 300a.u.,n = 200
and linear grid, we find for the ground state energy F, = —0.52775a.u,
measured from the double ionization threshold. In Figure 1.12 we plot the
radial part of the ground state wavefunction of H~. Note the large extension
of the “outer” electron r ~ 10a.u. in contrast to that of the homonuclear

7 = 1 hydrogen r ~ 0.5a.u.. This is reasonable since the “inner” electron
screens the nucleus, thus making the effective charge “seen” by the “outer
“ electron less than Z = 1. The outer electron is therefore expected to be
loosely bound, as the small ionization energy and the large radial extension
imply.  Another, more sophisticated potential, has also been used, intro-
duced by Laughlin and Chu [52] in their study of multiphoton detachment of
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Caesium (Z =55)
(potential, n, k, R, grid) = (Green, 250, 9, 350a.u., exp.)
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Figure 1.11: The large radial component of the three lower states of Cs.

H~, within lowest-order perturbation theory (LOPT). This model potential
reads:

1\ _,. aq T
Ul(r) = — (1 —|— ;) € - ﬁWG(T_C) ‘I’ UI(T) 9 (150)
w(r) = (co + e+ 027‘2) e P, (1.51)

where ay = 9/2 is the static polarizability of the core (hydrogen). The func-
tion W;(z) = 1 — exp(—2') and the quantity r. are the cut-off parameters
The parameters r., ¢, ¢1, €2, 3 are choosen so as to produce the negative hy-
drogen ground state energy and the low-energy phase shifts, simultaneously,
as accurately as possible. The parameters are presented in table 1.5. This
type of model potential takes into acount the polarization of the core, due
to the outer electron. Furthermore this polarization is [-dependent. This
complicates somewhat, the calculation of the transition matrix elements.
For more details see the next section. For k£ = 9, R = 300a.u.,n = 200 and
linear grid the ground state energy obtained is F/, = —0.5277a.u. measured
from the double ionization threshold.

Finally in figure 1.12 we plot the Yukawa and Laughlin-Chu model po-
tentials. Note the similarity of the Yukawa potential with that of Laughlin
and Chu for { > 1.

Cs, Rb : model potentials. Two types of model potentials have been
used for the study of Caesium (Z = 55) and Rubidium (7 = 37). These
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Table 1.4: Energies of Cs and Rb from various model potential and HF

potential.

(n, k, R, grid) = (100, 9, 50a.u., expon.)

Caesium, Z/ = 55, Hp

—wpji(au)!

State

Tietz

Green

Exp.?

HF?

681/2

0.143 424

0.143 088

0.143 10

0.127 37

6p1/2
6p3/2

0.092 474
0.088 918

0.092 231
0.089 148

0.092 17
0.089 64

0.085 62
0.083 79

781/2

0.058 265

0.059 011

0.058 65

0.055 19

7P1/2
7P3/2

0.043 784
0.042 698

0.044 239
0.043 228

0.043 93
0.043 10

0.042 02
0.041 37

Rubidium

9

7 =37, Hp

—wpjit(a)

State

Tietz

Green

Exp.

HF

581/2

0.154 143

0.153 477

0.153 51

0.139 29

5p1/2
5p3/2

0.095 565
0.093 984

0.096 146
0.094 801

0.096 19
0.095 11

0.090 82
0.089 99

681/2

0.061 401

0.062 150

0.061 77

0.058 70

681/2
683/2

0.045 047
0.044 563

0.045 703
0.045 261

0.045 45
0.045 10

0.043 89
0.032 44

“Compared with the table I of reference [44].

"[59]

potentials have been used previously by Jonhson et al [44] in order to inves-
tigate P-violating electric dipole matrix elements in heavy alkali-like atoms,
Rb,Cs,Au and Th. The specific forms of those potentials read:

Tietz:

00 =3 [t ] (152
Green: o P N
U(r)_—; [1—|—H(€T/d_1)+1]e (1.53)

where H = d(Z — 1)'/3. The parameters involved in these potentials are
chosen as in the reference [44]. In table 1.4 we present the energies of the
lower states of Cs and Rb obtained for various model potentials. In the same
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Negative Hydrogen Negative Hydrogen
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Figure 1.12: Ground state of negative hydrogen obtained by the Yukawa
model potential.

H~ : Laughlin potential , Hg
1=0]|45|4.0]5.3321766 | -5.254 3795 | 0.420086 | 1.4
[>1]45|4.0]-2.3020310 | 2.2276939 | -0.2776939 | 1.4

Table 1.5: Laughlin model potential parameters for the negative hydrogen.

table, we also present the Hartree-Fock (HF) results, for direct comparison.
The B-splines parameters for these calculations are n = 100,k = 9, R =
50a.u. and an exponential-like grid has been used.

1.6 Radial dipole matrix elements

In photoionization studies the accurate determination of the dipole matrix
elements (¢,|D|¢;) and the eigenenergies F,, Fy, for each pair of the eigen-
functions ¢,(r), ¢p(r), are of essential importance. For one-electron atoms,
the dipole operator is D = —:V = p, where p is the momentum opera-
tor of the valence electron. Elementary operator algebra gives the relation
(¢a|P|Pr) = i(wy — wi){Pa|r|Ps), thus providing an equivalent form for the
dipole matrix elements.

Schrodinger equation. In the non-relativistic case, the states are char-
acterized by (n, [, m;, ms). Taking the explicit form of the ¢(r) and perform-

ing the angular momentum algebra we obtain the following relation for the
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Hydrogen, Z =1, Hg

Ml(lsv np)

M,(1s,np)

@oo«]cncn.-l;wm»—ng

1.29026620195449e+00
5.16689242613434e-01
3.04583803889118e-01
2.08703916132692e-01
1.55135444380143e-01
1.21419631093697e-01
9.85139728054122e-02
8.36039866656059e-02
8.37676356568420e-02

1.29026620195549e4-00
5.16689242613670e-01
3.04583803889207e-01
2.08703916132757e-01
1.55135444380167e-01
1.21419631093733e-01
9.85139728054480e-02
8.36039866656444e-02
8.37676356569791e-02

Table 1.6: Non-relativistic dipole radial matrix elements in the length and
velocity form from the ground state of Hydrogen to the first 9 states of
the np symmetry. The B-splines parameter used for the calculation are
k =9,n =200, R = 200a.u. and linear grid. Compared with the table (1.7).

radial part of the matrix elements,

/ drr Po(r)Py(r / dr P, [ —|—lb]Pb()

where, wyp = w, —wyp and l, = [, + 1. Using the notation of the previous

1.54
= (1.54)

section for radial integrals, the same relation is written as, M(a,b;r) =
M (a,b;d/dr + lp/r)/wes. The first form of dipole radial matrix elements
Mi(a,b) = M(a,b;r) is called the “length” form, while the second form
M,(a,b) = M(a,b;d/dr 4+ l;/7) is the “velocity” form. Another equivalent
form, the “acceleration” form can be derived as M, = (Z/wa) M (a,b; 1/r?).

When exact eigenfunctions are used, the above equality is valid in all
cases. In atomic structure calculations, this property is used for the eval-
uation of the quality of the wavefunctions and energies. Both forms are
calculated and the results are compared. In numerical studies, the wave-
functions are approximations, either because of the model Hamiltonian used
for the calculations or because of the finite representation of the numbers
in a computer. Therefore for all cases we should have M; =~ M,. Note here,
that M; = M, does not guarante reliable wavefunctions and energies. The
functions ¢(r) = r,d/dr 4+ 1/r,1/r? inside the three forms of the integrals,
emphasize different regions of r inside the box. The length form ¢ (r) = r
emphasizes large values of r while the velocity form ¢,(r) = d/dr + [/r
weights intermediate regions. If we have calculated the wavefunctions with
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greatest accuracy at intermediate regions of r, then the best results for the
radial matrix elements will be obtained through the velocity form. The 1/r?
term in the accelerator form emphasizes small values of r, which demands
the accurate knowledge of the wavefunctions near the nucleus. For many-
electron atoms, such a calculation is difficult, thus making use of this form
inconvenient!'3. Turning now to the present numerical approach it should be

Hydrogen, 7 = 1, Hp
np1/2 My(1s, np;/2) M, (1s, npy s) AMy, /M,
1 1.29026380654502e4-00 | 1.29026165971940e+00 | 1.66e-06
2 5.16681353450675e-01 5.16682882349402e-01 2.96e-06
3 3.04577547214437e-01 3.04578941278759e-01 4.58e-06
4 2.08699050414195e-01 2.08700161925750e-01 5.33e-06
5 1.55131562913682e-01 1.55132452237668e-01 5.73e-06
6 1.21416452948795e-01 1.21417178776176e-01 5.98e-06
7 9.85113016007058e-02 | 9.85119061839450e-02 6.14e-06
8 8.36010689889997e-02 | 8.36015912653121e-02 6.25e-06
9 8.37628281312041e-02 | 8.37633591445413e-02 6.34e-06
nps/2 My(1s, nps/s) M, (1s, np3/s) AMy, /M,
1 1.29024109639367e400 | 1.29024109640016e+00 | 5.03e-12
2 5.16682700078259e-01 5.16682700102513e-01 4.69e-11
3 3.04580320234872e-01 3.04580320242094e-01 2.37e-11
4 2.08701587659982e-01 2.08701587663778e-01 1.82e-11
5 1.55133717259505e-01 1.55133717260954e-01 9.34e-12
6 1.21418272006356e-01 1.21418272007822e-01 1.21e-11
7 9.85128523989615e-02 | 9.85128523997500e-02 8.00e-12
8 8.36025009813833e-02 | 8.36025009812263e-02 1.88e-12
9 8.37645038783856e-02 | 8.37645038821564e-02 4.50e-11

Table 1.7: Relativistic dipole radial matrix elements in the length and ve-
locity form from the ground state of Hydrogen to the first 10 states of the
P1/2 P32 symmetries. The B-splines parameter used for the calculation are
k= 9,n =200, R = 200a.u. and linear grid. Compared with table (1.6).

13For single-photon double-ionization of a two-electron atom, however, the acceleration
form is of particular usefulness. The reason is that double ejection with one-photon is
impossible without the inter-electronic interaction 1/712 [49]. Then, not only the initial
but also the final states are strongly correlated but the final also. And since correlation
takes place when electrons are close to the nucleus the usefulness of the acceleration form

becomes obvious. It gives the best results compared to the velocity and lentgh form.
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emphasized that when evaluating the relevant integrals it should be taken
into account that we represent the continuum states as discrete. When at
least one of the states belongs to the positive-energy finite basis spectrum
then the integrals are box-size dependent. Furthemore, because of the differ-
ent normalization between bound and continuum states, integrals involving
BB, BC and CC states are not directly comparable, unless the normalization
factor for the positive-energy finite-basis states is taken into account.

Dirac equation. In the relativistic case the states ¢, ¢, given by the
equation (1.10) are characterized by the quantum numbers (n, j,{,m;) =
(n,k,m;). They decompose into the large and small component (smaller
by the factor ~ (Za)?). The relativistic dipole operator now is of the form
D = —ca, where « is given by equation (1.8) . After carrying out the angular
momentum algebra, the radial part of the matrix element (¢,|D|¢) in the
“velocity” and the length form is:

Mi(a,b)

/OR drr [Ga(r)Go(r) + Fo(r)Fy(r)] (1.55)
1

R

M,(a,b) = " / dr[(ky — ko + 1)Go(r)Fu(r) 4+ (ky — ko — 1)Gy(r) Fo(r)]
ab JO

In order to investigate the reliability of the calculations we compare with

experimental oscillator strengths, which are available in the literature. The

partial and the multiplet oscillator strentghs of a transition between states

a = (n,l),b=(n,l+ 1) for one-electron atoms are given by:

2w 1
lj [4+15) = =——|M(nlj:nl+15)? 1.56
f(nlj — nl +1j) 3 4].(J.Jrl)l (nlj;nl + 1j)| (1.56)
: : 2w 2j+3 : : )
[ [+15+1) = ==L " I Mnljnl+15+1 1.57
f(nlj —nl+1j+1) 34(]._|_1)| (nljsnl+ 15+ 1)|° (1.57)
2w [+1 9
[ [+1) = =1~ ‘M(nl:nl+1 1.58
Sl = nl41) = Zoomes Ml £ P (158)

Note that f(nlj — nl + 154+ 1)/f(nlj — nl+ 15) = j(25 + 3)|M(nlj;nl +
15 + 1)|?/| M (nlj; nl+ 15)|?>. When the spin-orbit coupling is not significant
|M(nlj;nl+15+1)|? ~ |[M(nlj;nl+15)|% and the value of the ratio is close
to 2 for j =1/2. Any deviation from that value implies strong spin-orbit
coupling influence in the formation of the wavefunction of the state. The
extreme example of such transitions is the Cs atom. The correct treatment
of such atoms demands the incorporation of the core polarization due to the
valence electron [62]. Introduction of the polarization term in the central
potential, however, introduces a correction in the dipole matrix elements. In
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table 1.8, we present partial and multiplet oscillator strengths for Rubidium
using the Green model potential. Core polarization effects are not taken into
account. Sufficient agreement is found with the experimental data. This
means that polarization of the core is not a strong effect in Rubidium in
contrast with the Caesium. Similar calculations in Caesium (not presented
here) give only qualitative agreement with the experimental data.

Table 1.8: Green model potential oscillator strengths for Rubidium. Core
polarization effects are not taken into account.For all transitions the agree-
ment of length - velocity forms is excellent.

Rubidium, 7 = 37, Hp

fl(551/2 — nP1/2) fl(551/2 — nP3/2) P = f3/2/f1/2 fi(5s — np)
np | Green' | Exp.? Green' | Exp? Green | Exp. | Green Exp.
5 |3.69(-1) | 3.32(-1) | 7.50(-1) | 6.68(-1) | 2.03 2.01 | 1.12 1.00
6 | 5.81(-3) | 3.73(-3) | 1.53(-2) | 9.54(-3) | 2.64 2.56 | 2.11(-2) | 1.33(-2)
7 1.02(-3) | 4.87(-4) | 3.03(-3) | 1.48(-3) | 2.98 3.04 | 4.05(-3) | 1.97(-3)
8 |3.47(-4) | 1.38(-4) | 1.11(-3) | 4.68(-4) | 3.19 3.39 | 1.45(-3) | 6.06(-4)
9 1.61(-4) | 5.22(-5) | 5.35(-4) | 1.97(-4) | 3.33 3.77 | 6.95(-4) | 2.49(-4)
10 | 8.83(-5) | 2.61(-5) | 3.03(-4) | 1.08(-4) | 3.43 4.14 | 3.91(-4) | 1.34(-4)
11 | 5.42(-5) | 1.46(-5) | 1.89(-4) | 6.38(-5) | 3.49 4.37 | 2.44(-4) | 7.84(-5)
12 | 3.59(-5) | 9.00(-6) | 1.27(-4) | 4.09(-5) | 3.54 4.54 | 1.63(-4) | 4.99(-5)
13 | 2.51(-5) | 5.82(-6) | 8.99(-5) | 2.86(-5) | 3.58 4.91 | 1.15(-4) | 3.44(-5)
14 | 1.93(-5) | 3.97(-6) | 7.00(-5) | 2.00(-5) | 3.62 5.04 | 8.93(-5) | 2.40(-5)

“Calculations can be compared with the Table 2 of reference [58].

'[76)

Core-polarization and [-dependent model potentials. For model
potentials which include the core-polarization term, every one-body operator
should be modified, in order to take into account the contribution of the
dipole moment induced by the core polarization [53].The general form of
the length dipole operator now is D = r + G(r). Furthermore, for an
l-dependent model potential the relation, (¢.|p|¢s) = wap{Pa|r|Ps) is no
longer valid, making thus the values of the velocity and the length form
unequal. For the length form, the corrected dipole-operator is given by [62]:

G(r) = —i—jwzg(ri)r, (1.59)

where, Ws(z) = 1 — exp(—2?) is a cut-off function, with the parameter r,
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Figure 1.13: One-photon cross sections for the negative hydrogen, calculated
with different potentials.

determining its radial extension and a4 the static polarizability of the core.
Provided that the calculated wavefunctions are correct asymptotically, the
appropriate dipole operator is that of the length form, given by equation
(1.59).

1.7 Two-electron atomic systems : CI method

Configuration Interaction (CI). The Hamiltonian of a two-electron atomic
system is written as :

1
[t — 1o

H = Ho(r1)+H0(r2)+ (160)
where Hy = p?/2m + U(r). The central potential U(r) is determined either
through an Hartree-Fock procedure [6] or modelled by a model potential.
The simplest two-electron systems are the Negative Hydrogen (H~) and
Helium (He), where the total number of electrons are two. For these systems,
U(r) is pure Coulombic potential, allowing thus Hy to be written as Hy =
p/2m — Ze*[r (Z = 1 for H~ and Z = 2 for He).

The eigenstates of isolated atomic systems can be written as simultane-
ous eigenfunctions of the L2, 8% L., 5., operators. Solutions of the Hamil-
tonian H are hydrogenic orbitals of the type (1.5). The Slater determinant
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m,m’ . . X
¢nl,n'l' is given by:

Gt (T1,72) (1.61)

\/i ¢nlm(r2)7 ¢n'l’m’(r2)

In the above notation, we consider m = (my, ms) the magnetic quantum

i ¢nlm(r1)7 ¢n’l’m’(r1) ‘

number of orbital angular momentum and spin. The two-electron orbitals
are constructed as a sum over all magnetic quantum numbers:

A () = > (=) 2L + 1)(25 + 1))

all m
[ L 1/2 1/2 8§ !
( my myp =My, ) ( m, m, —Ms ) ¢nl,n/1/(1‘1,r2) (1.62)

The eigenvalue equation to be solved is H® = F®. Expanding the states ®
on the two-electron orbitals:

QQ(E) = Z C??(E)(nhn/l/)\:[jgl,n’l’(rler) 9 (163)

nl,n'l’

and inserting in the eigenvalue equation, we are to a matrix diagonalization
problem which gives the unknown coefficients C' 7’3( E)(nl ,n'l"). The quantity
|C7{}(E)(nl, n'l')|? gives the contribution of the configuration (nl,n'l’) in the
state (I)Q(E)' Diagonalization gives N. states, where N, is the total number
of configurations (nl,n'l'). This procedure is repeated for different sets of
quantum numbers S, L, My, Mg. A detailed discussion for the diagonaliza-
tion of the Hy matrix has been given by Chang [9]. The most intricate part
of the relevant codes, developed by Tang X., Chang T-N and co-workers,
concerns the computation of the configuration matrix elements 1/74.
The eigenstates (I)Q(E) = ®,,1 0, satisfy the eigenvalue equation:

H®,p, = Enp® 0. (1.64)

When F < 0, ®, 1, represents a bound state of energy F, indexed by the
integer n = n(F), while £ < 0 corresponds to a continnum states of the
system. In two-electron atomic systems, the continnum has a more complex
meaning, in comparison with that of a one-electron atom since there are
various types of continuum, depending on the state of the residual ion or
atom. One category of continnua is obtained when one of the electrons re-
mains bound to the nucleus (in the ground state or an excited) and the other
electron moves away the nucleus region. The other category of continuua
corresponds to both electrons being ionized (double ionization).
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Figure 1.14: The influence of the CI in the states of the Negative Hydrogen
is sketched.

Autoionizing states: Position (F,) and widths (T';). An important
feature of the structure of two-electron atomic systems, such as He, H~
and the alkaline earths, is the existence of the so-called autoionizing states.
These states corresponds to doubly excited states with energy above at least
the first ionization threshold (see figure 1.14). Ignoring, the term 1/r;4, the
two-electron orbital ¥y, 2, = |252p) has total energy larger than the lowest-
energy orbital [1sep). The term 1/r;2 introduces the so-called configuration
interaction (CI) between the doubly-excited orbital |2s2p) and the entire
continnum |1sep), leading thus to a strongly, energy-dependent continuum
structure. In the CI spirit, the physical state of the system is a superpo-
sition over the discrete state |2s2p), the continuum |1sep) and any other
configuration that gives rise to the ! P two-electron continuum (restricted
by selection rules).

252p' P) = C(252p)|252p) + > C(e)|1sep) + ... (1.65)
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Figure 1.15: Scattering phase shift of the |2s2p' P) autoionizing state of
negative hydrogen

Therefore the atom initially excited in the |2s2p) state decays irreversibly to
the |1sep) continuum through the interaction 1/r;2. This decay, which is a
radiationless process is called “autoionization”. The decay rate I', is related
to the matrix element (2s2p|1/r13|1sep). Notice that, an additional effect
of the 1/ry2 interaction is the energy shift of the state |2s2p) [30], which
however, depends on the basis.

The autoionizing structure, embedded in the continuum is manifested in
various atomic quantities, such as the scattering phase shifts of the states
around the structure [78], the probability density pq,, for the |1sep) channel
[10] (Fig.1.16), and the electric dipole transition cross section [30]. (Fig.
3.1). The scattering phase shift §;(k), changes rapidly by 7 for continuum
energies below and above the autoionizing resonance. In photoionization
studies the cross section of the process, multiphoton or not, often exhibits
an asyminetric peak around the autoionizating structure. Accurate deter-
mination of the width I'; and the energy position F, of the “isolated ”
autoionizing state!? through the scattering phase shift can be done by fit-

4The term “isolated” means no other autoinizing state exists within an energy range
of the order of the width I', of the state.
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Figure 1.16: Probability density of the |1sep' P) open channel of negative
hydrogen.

ting the calculated '® or measured data'® with a function of the type [12],
§(E) =Y i—p9aiE' +tan""(T/2(E, — E)). After the diagonalization of the
maftrix, corresponding to the total Hamiltonian H, we have in hand the
eigenenergies F, 5 and the corresponding eigenstates ®,;. However, deter-
mination of the phase shifts 67,(%,;) requires maching between the state
representing the open channel and its asymptotic form sin(¢(r) + é1,) (see
equation 1.32). A technical complication arises with the fitting function,
since the denominator diverges when F = F,,.

An alternative approach employed from Chang [10] fits the probability
density pisp of the singly excited ionized channel. The advantage of fitting
the probability density pis, instead of the phase shift is that the necessary
data (which are the coefficients C; ;) are available from the diagonaliza-
tion of H{. Also, because of the symmetric nature of the variation of pys,, it
is fitted easily by a Lorentzian function.

In figure 1.15, we plot the scattering phase shift as a function of the

15In practice, with our method, we obtain the necessary resolution in energy by choosing
large box radius, for a dense discretazion of the continuum and varying it (the box radius
R) slightly.

'$For narrow resonances, the experimental energy resolution is inadequate for the de-
tection of the resonance. Therefore, widths are in general more readily available from
theoretical calculation than experiment data.
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Figure 1.17: Fits of the probability density and the its inverse function with
a Lorentzian type function.

photoelectron energy around the first resonance (denoted by |2s2p)) of the
|2snp) autoionizing series, belonging to the !P continuum of H~. Higher
in energy, there is another narrower and weaker autoionizing state. (Fig.
3.2). In figure 1.17 we plot a function analogous to 1/p1,, and we fit the
calculated data with a Lorentzian function :

A r,/2
F)= — .
A=t 2+ (7
The results of fitting gives for the width'", T, = 1.28 107 %¢.u and for the
position F, = 0.7479 Ry, which are in very good agreement with other the-

(1.66)

oretical and experimental results.

Electron correlation. In the CI procedure, the description of a two-
electron atomic system (i.e. H™ ,He and alkaline earths (K,Mg,..)), as men-
tioned earlier, begins with the construction of a set of basis functions (\Ilglm,l,),

eigenstates of the total angular momentum and spin. These basis functions
are properly antisymmetrized products of one-electron functions

(Pnim (r1), Privms(r2)), containing the dependence on the electron’s coordi-
nates, in a separated form. Although, a certain amount of electron correla-
tion has been included in the two-electron function, because of its antisym-
metrized nature, in general it is not accurate since treats the two electrons

"Note that h/)T. = h/2.56 10 Ry = h/3.48 10 %V ~ 10~ sec
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in a separate manner. This formulation, assumes that each of the electrons
moves separately, in one-electron orbitals with no other interaction between
them, except the exchange interaction. The existence of the Coulomb in-
teraction term 1/ry9, in the Hamiltonian, however, forces the electrons to
move to a distance somewhat larger than the zeroth order wavefunction
(\IIQI o), would predict. Thus, in most cases the incorporation of the con-
ﬁguI”ation interaction (CI) term is critical for a sufficient description of a
two-electron wavefunction. In general, the contribution of this term to the
total energy of the atom is much smaller than the contribution due to the
zeroth-order wavefunction. Nevertheless, as experience shows, this inter-
action changes drastically the atomic structure and the properties of the
interaction a two-electron atomic system with electromagnetic (EM) fields,
in comparison with those of a one-electron atom. If the zeroth-order two-
electron orbital wavefunctions are |a), |b) then the configuration interaction
modifies these orbitals as follows:

|¢a) = |a) Z {alt/rialb) (1.67)

Wy — Wh

For most atomic systems, not all of the terms of the sum are significant in
magnitude and only a finite number of terms is sufficient for the convergence
of the sum. Note that, even if the matrix element is quite small, the relevant
term can contribute significantly in the sum if w, ~ wy, corresponding to
nearly degenerate configurations.

The extreme example of a strongly correlated system, is the negative hy-
drogen (H™), where its formation is imposible without the electron-electron
(e-e) interaction. Although, from an academic point of view, including an
infinite number of the proper configurations (nl, n’l’) the two-electron wave-
function is exact, in practice the convergence of the CI series is very slow.
This is the main drawback of the CI method, due to the initial selection of
separation of the electrons’ coordinates. On the other hand, the most im-
portant advantage of the CI approach over other methods!® is its simplicity
and its straightforward application to a many-electron atomic system and
time-dependent SE.

Because of the limited memory space disc and computing time, spe-
cial attention should be given to the selection of the involved two-electron
configurations (nl,n'l’) for the construction of the basis set. From angular

'2Other common methods for treating two-electron atomic systems are the complex-
coordinate rotational method, the pseudostate close-coupling method, the R-matrix the-
ory, the hyperspherical-coordinate method the model potential etc.
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momentum and parity conservation arguments, CI is non-vanishing for the
configurations |a), |b), when :

1. |a),|b), belongs to the same total angular momentum,

2. For LS-coupling!? (ignoring spin-orbit coupling) [a),|b), have the
same total spin and total angular momentum.

3. |a),|b), have the same parity given by (—1)%t%,

There are also some qualitative criteria, which one can follow for the
optimum choice of the configurations. The quantity which gives the strength
of CI between two configurations |a), |b), is the matrix element (a|1/713|b),
which leads to an integration of the one-electron orbitals over the entire
space.

The angular distibution of the one-electron wavefunctions (determined
by the partial angular momentum [,!’) is an important parameter for the
value of the overlapping integrals. Consider, for instance, the configuration
|2p?) which leads to the symmetries S,! D P. The correlation energy for
the state 1.9 is larger in comparison with the other symmetries because the
p-electrons are “closest” in distance ({ri2)1s < (riz)is,(r12)15). Also, the
correlation energy of the configuration |2p?) is larger than |2s2p) where the
relevant overlapping functions do not “match”.

The principal number n is another parameter for the estimation of the
overlapping integral. Bound-bound (BB) configurations are expected to
have much larger values than bound-continuum (BC) and continuum-continuum
(CC) configurations. This happens because the relevant functions have their
maxima at different regions of space. However, it is possible a CI to have
significant value when the configurations involved have very small energy
difference (nearly degenerate configurations).

Finally, the choice of the basis is not unrelated to the atomic system
under consideration. For example, for Helium the ratio of the correlation
energy?’ to the “exact” energy (F.orr/Fepact) of the ground state is about
0.014 while in H™ is about 0.08 [31]. Note here, that the central potential
of atomic systems increases proportional to Z, while the configuration in-
teraction matrix element (a|1/r12|b) is independent of Z. As expected, this
ratio decreases rapidly for the heavier elements, since the atomic charge 7
increases. This suggests a very slow convergence for the accurate determi-

19Tf spin-orbit coupling is taken into account ~ LS introduces an aditional CI between
the configurations. This spin-orbit CI couples configurations, with different J = L+S, M,
as well as n, n'.

20The correlation energy, in the CI context, is defined as the difference between the
energy of the zeroth-order two-electron wavefunction and the “exact” value, F.orr =

Ee.ract - E0~
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nation of the ground state of H™ in comparison other two-electron atomic
systems; And this is the case. The ground state of negative hydrogen is a
strongly correlated state (as mentioned, its existence is imposible without
the 1/715 e-e interaction) and its converged calculation demands even the
inclusion of CC configurations, except the BB and BC configurations. A
very careful analysis of the importance of the CC configurations in the for-
mation of the |1s2.1.5¢) and |2p®.1 P?) states of negative hydrogen?! has been
presented by Chang and Wang [84]. They have found among other things
that the CC configurations contribute about 15% to the ground state energy
of the H™.

Within the method we use, photoionization studies, where the inclusion
of the continuum states is inevitable for the correct treatment of the atom-
field interaction, lead to the choice of large box radius, thus making the
procedure much more demanding than simple calculations of bound state
properties. For a radius box of about R = 1000 a.u., even with the inclusion
of about 2.000 configurations, the calculated ground state energy differs
by about 16% from that calculated by Pekeris?? [63]. Improvement of the
ground state energy is achieved by increasing either the total number of
the configurations involved or the highest partial angular momentum [, /.
The convergence of the ground state energy for such large boxes, however,
is extremely slow. Adoption of an appreciably smaller box i.e. R ~ 20a.u.
gives easily a very accurate energy for the ground state of H™.

Checking the results A calculation has converged, when upon varying
(usually increasing) the basis-set no further change of the calculated quantity
takes place. Such parameters are, within the CI method, the total number
of configurations and the highest partial angular momentum. For the B-
splines approach, more specifically, such parameters can be the box radius,
the order and the number of B-splines or the knot distribution.

A very useful atomic quantity is the oscilator strength f of a dipole
transition from an initial state a(>*T'L,) to an other state b(***1L;). For
the LS-coupling approximation these f-values are defined as [9]:

2\ lal (e + 1) [B)]?
Ji= JABSSS (1.68)
2 [al(Vi+Va)[b)

v = ) 1.69
f 3AFE 2L, +1 ( )

21 A similar study has been conducted by Charlotte Fischer for the H™, He, Lit ground
states.

22He used variatonal wavefunctions containing explicitly the interparticle coordinates
(or Hylerraas coordinates) in the two-electron wavefunction, treating thus in a very direct
way the correlation between the two electrons.
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Figure 1.18: B-splines polynomials. Parameters are given in the figure.

with AF = E, — F, in au. . The f;, f, quantities are the length and
velocity forms, respectively. If the wavefunctions are exact, these values will
be equal?3.

1.8 Appendix: B-splines, summary

For the construction of a B-splines basis set, the specification of a knot
sequence t;,t;y1 > t; inside an interval [a, b] is needed. Then the B-splines
of order-k are defined through a recursive procedure:

, _J 1 i <o <ty
Bia(w) = { 0, otherwise (1.70)
and
Bip(o) = —— B(@) 4 — L g0, (1T1)
ip(x) = —B; — B, _1(z). .
P e — T i

From the above definitions, we see that the i-Bspline of order-£ is a polyno-
mial of order k& — 1, non-vanishing only for points inside the interval [¢;, ¢;1%].

23 There is an important exception to that rule when the wavefunctions are calculated
by an [-dependent model potential. See relevant discussion in the section that deals with
the model potential.
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It is possible to define a knot sequence, allowing multiplicitly of the knot
points. For our purposes the end points have k-multiplicitly which means
(ty=ty=..=tp,=0)and (tp = tnp1 = ... = topr = 0 ).

In Figure 1.18 we plot the B-splines for n = 25,k = 14,0 = 0,b = 50
and linear knot distribution.



Chapter 2

Atoms and E/M fields

2.1 Classical theory of radiation

Maxwell-Lorentz E/M field theory. In the presence of the charge den-
sity p(r,?) and the corresponding current density j(r,t) = p(r,¢)v, where
v is the velocity of the charge density, the generated electromagnetic(E/M)
field is described by two vector fields, namely the electric E(r,?) and the
magnetic field B(r,?), interrelated through the M-L equations:

1
VE = 4:7Tp N VXE= —E&gB, (21)

1 4
VB=0 , VXB:—E@E—I—%j. (2.2)

An additional basic equation can be derived from the M-L equations, the
continuity equation for the charge-current density: Vj+ d:p = 0. Given the
E/M field (E,B), the motion of a point-like electric charge, p = eé(r — r;)
is determined via the Lorentz EM force, F, = ¢ (E + v x B), acting on it.
In the non-relativistic limit (low particle velocities) the equation of motion
will be the third Newton law, mr = F, .

A very convenient alternative description for the E/M field is possible
through the introduction of two potentials, the vector A(r,t) and the scalar
®(r,t) potentials related with the electric and magnetic field components
with:

E=-Vo - %A, B=VxA. (2.3)

The differential equations which the E/M potentias satisfy VZA —c=20,, A +
V (VA + c719,®) = (47/c)j , VZ® — ¢ '3, VA = 47p are derived from the

M-L equations and equations (2.3). It is important to note that given the

49
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potentials A, ® we can determine the electric and the magnetic field using
(2.3), but the opposite is not possible. It is obvious from these equations
that also the potentials (A + Vx(r,t),® + ¢~ 1d;x(r,t)) can produce the
same (E, B), with x(r, ) being an arbritary function. The specific choice of
the arbitrary function y is called gauge selection and utilizing this freedom
it is possible, depending on the physical context we work in, to make the
relevant equations more convenient to use. The invariance of the E/M field
under the transformation:

1
A — A+ Vx(r, 1), o — P+ Eatx(r,t) (2.4)

is called gauge invariance of the E/M field. The most important gauges
in use are the so-called Lorentz and Coulomb(or radiation) gauge. Since
the Coulomb gauge is more convenient for problems that involve the long-
distance part of the E/M field (the radiation part), the quantum theory of
radiation is developed mainly in this gauge.

Radiation gauge or transverse gauge. In this gauge, we require the
vector potential A to be transverse with respect to the propagation direction
of the E/M wave V - A = 0. E/M potential then satisfy the following
equations:

10 1 47,
V2ZA — S T Eéwq) = i VZA = —4mp (2.5)

Notice that the second equation is the familiar Poisson equation.

2.2 Short laser pulses

For fields involving a large number of photons, in a more or less coherent
state,the classical description is used as developed in the previous section.
We can, therefore, write for a linearly polarized field generated by a laser,
ignoring phase fluctuations:

1 : 1 :
E(t) = 55(1&)6“"” + 55*(t)e—“%f, (2.6)

where the variaton of £(¢) with respect to time is very small during times of
the order ~ 1/w (|£(t)| < w|&(1)]). Representing the electric field this way,
it follows that this field is not strictly monochromatic but consists of a band
around the central frequency wy,, extended over a range (Fourier bandwidth)
of the order Aw ~ 77, where 77, is the duration of the pulse.
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sin’ pulse, T =1300 a.u., sin’ pulse, T =1300 a.u.,
w=005au.,E,= 10’7a.u.‘ cycles =10 w=005au.,E= 10’Za.u., cycles =10
T

— E®
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E(t) , A(t)
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Figure 2.1: Electric and vector potential of a sin? pulse.

The concept of the duration for a laser pulse is a critical parameter for
E/M processes (multiphoton or not) which is necessary to take into account
for the analysis of either theoretical or experimental data. Two examples of
this kind (where the duration of the pulse plays a chief role in the explanation
of the experimental results) are the resonance fluoresence for weak field (
see pages 53-57 of reference [68]) and the above threshold ionization (ATTI)
of atomic systems in strong laser fields.  Briefly, in fluorensence the decay
of an excited state, of natural width I' in a two level system (TLS) leads
to coherent or incoherent radiation depending on the broadband (I' < Aw)
or narrowband (Aw < T') excitation. Here with the term “coherent” we
mean that the emitted pulse has the same shape as the primary field. Many
different envelopes can be adopted for the realization of the laser pulses,
although for practical reasons, from the computational point of view two
forms are in common use, namely, the Gaussian and the sin? form.

E(t) = WD’ _ 5P <i<5T gaussian (2.7)

e
o~~~

o~
p——

i
sin? = 0<t<T, sin? (2.8)

The sin? pulse is used, mainly because of the strict finiteness of the pulse
inside the interval [0, T'], while the gaussian pulse, has in principle an infinite
extent. Note that, results from different pulses are comparable, when the
E/M energy transferred to the atomic system is the same, From elemenatry
analysis, it is verified that, when the duration of a square pulse is 7', the
duration of the sin? pulse should be 27 and the duration of the gaussian
pulse 0.67".
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2.3 Schrodinger Equation of atoms in E/M fields

The Hamiltonian of charged particles, in the non-relativistic limit (low rela-

tive to ¢ velocities, small interaction volume ~ ) is given by the relation:

p?

H, . =
art : 2m;

+ U, (2.9)

where p; is the momentum of the particle-i and U, represents the static E/M
interaction between nucleus -electrons and electron-electrons. For an atomic
system subject to an external E/M field (A.(r,?), $.(r,?)), the new hamil-
tonian of the total system (atom + field) is obtained through the minimal
substitution, (H — H + e® and p — p — (e¢/c)A.)):

[ A, i1
H = }i:p (6/2% D) L4 ed(en 1) + Ha (2.10)
= Ho+ Y | ——piA(ri 1) + e t)| + 0
- aT : mcpz r;, 22 r;, R

The Coulomb gauge is chosen, with zero scalar potential (VA = & = 0 ) for
reasons explained in the previous chapter. We have also used implicitly the
property that in this gauge pA = Ap. With Hpg, we denote the Hamiltonian
of the E/M field, but dealing with strong laser fields it is not necessary to
quantize the laser field. In the dipole approximation, the terms Hg and A?
involve only field observables having thus no effect to atomic parameters.
This allows to us to ignore these terms. The case of one-active electron is
now assumed, since in the present section the primary interest is on aspects
of the interaction term between atom and field. We write, therefore the total
Hamiltonian as H = H,; + H; + Hp, with H; = —(e/mc)pA.((r),t)) with
the vector potential being represented by A, = éAge!(Fr—wt) 4 gx Ageilkrtwt),

Longwavelength or dipole approximation. For optical frequencies
(~ 10%sec™! ~ €V the corresponding wavelength (A) will be much larger
than the atomic radius (2rag/A = kag < 1), with ag being the Bohr
radius. The spatial extent of the E/M field for a region of the order of
the atomic radius (R,, ~ nZag) is practically constant. Expanding the
term €’X* we keep only the first term since (kr < 1) which is equivalent to
the substitution Ae(r,t) — Ae(0,?), with the center of mass for the atom
located at the origin of the axes.

It is worthwhile to note here that within this approximation, we have for
the magnetic field, B. = V X A¢(0,t) = 0 which implies that phenomena
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concerning magnetic effects are neglected. This approximation is, never-
theless, well justified since for optical frequencies magnetic interactions are
a? ~ 10~* times smaller than the electric ones. Therefore, the following

relations holds for the E/M field :
A(t) = éAo(t)cos(wt), (2.11)
1
E(t) = —--0A, B=0. (2.12)
¢

We assume the general case of a non-monochromatic field in the sense that
we have a time-dependent pulse (Fourier limited bandwidth).

Velocity gauge. At this point (after making the dipole approximation),
we are able to reduce further the expression for the atom-field hamiltonian
H. The quantities (¢2/2mc)A? and Hr = [ d°rE?/47 does not include any
atomic operator, and in combination with the assumption that the external
field is so strong that its state is not changed by the interaction with the
atom, it is possible to ignore them since they represent a constant term of
the total hamiltonian. More formally, making the unitary transformation,
¢ — T, and H — THT! with T = ewp(—zifch fodt'A? + %HRt) we have
for the atom-field hamiltonian, H = H,. + H; with the interaction term,
known as velocity-gauge interaction form, being;:

€
H; = —%pA(t) (2.13)
Length gauge. Another expression, equivalent to the velocity-gauge in-
teraction, within the dipole approximation, and with respect to the observ-
able quantities, but with different computational properties, is the so-called
length-gauge interaction term introduced by Pauli-Zieneu'. Having in mind
equation (2.11), assume a gauge transformation x(r,t) = —rA(0, t) with the
results (easily verified through equations) (2.4), A = 0 and ® = rE(¢). For
the length gauge the interaction term takes the form:

oy = —rE(1). (2.14)

2.4 Dirac Equation of atoms in E/M fields

Assuming elementary familiarity with the Dirac Equation (DE), as presented
in the textbook of Sakurai [68], we shall derive the hamiltonian of an atom
with one active electron (one-electron atom) of charge ¢ = —e, subject to a

! Pauli-Zieneu,1931
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static, central Coulomb potential (representing the average field ’seen’ from
the nucleus and the other electrons) and to an external E/M field. Again,
considering strong fields we assume E/M fields in their classical form. As
in the Schrédinger equation, we assume nucleus infinitely heavy, motionless
and point-like, although the last approximation is no longer valid for heavy
atoms. The incorporation of finite volume of the nucleus charge distribution
can be introduced at a later step.

The natural procedure for deriving the Hamiltonian form of charged
particle subject to classical E/M fields is to start from the covariant form of
the DE. Adopting, for the time being, the four-dimensional space of special
relativity (Mincofski space), where its with coordinates are defined as, 2* =
(29, 21, 2%, 23) = (ct,r) we have for the DE:

[yu(p" + A%) — ] v(x) = 0, (2.15)

where A*(z) = (®(x)/c¢, A(x)) is the four-dimensional E/M potential in-
cluding all the E/M fields and p* = id/dz" = (9/0(ct), V), is the four-
dimensional momentum of the electron. With v,,u = 1,2,3,4 we denote
4 X 4 matrices satisfying the conditions {v,, 7.} = 7,7 + 747w = 29,0, With
gu,, matrix having only four non-vanishing elements goo = —g11 = —g22 =
—g33 = 1. Multiplying equation (2.15) by ¢vo we obtain the Hamitonian
form of the DE :

i%¢(x) = {calp + cA(2)] - e®(x) + fmc? | ¥(x) (2.16)

where «, 3 are matrices defined by equation (1.8). The E/M field can be
separated as A = A. + A. = (@, + ., A, + A,) where the first part A.
represents the nucleus-electron and electron-electron average potential and
A, the external E/M field in Coulomb gauge (VA, = &, = 0). The A.
field ignores magnetic effects, and it is legitimate to choose A(z) = 0. The
static field satisfiying the Poisson equation V2®(z) = —p(r)/eo, with p the
classical nucleus charge distribution, influenced by the electrons surrounding
the nucleus. From the above we are led to the final form of the Hamiltonian:

i%lb(r,t) { [cap + Bmec* + Uc(r)] — eaAe(r,t)} P(r,t) (2.17)
= [Hp+ Hi()]¥(r,1), (2.18)

with Hp the free-field Dirac Hamiltonian, H; = —eaA¢(r, ) the interaction
between the electron and the external E/M field? and U.(r) = —e®.(r).

2Note here the similarity of the interaction term with that of the non-relativistic Limit,
—eaA 5P —epA/c
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2.5 Time Dependent Dirac Equation, (TDDE)

The basic idea of the method is similar in spirit to that for the non-relativistic
limit (TDSE). The TDDE is given by the equation :0;¥(r,t) = (Hp +
Hp)¥(r,t), with Hp the free-field Dirac hamiltonian, and H; = —eaAe(r, 1)
the interaction with the classical external field in Coulomb gauge. We ex-
pand ¥(r,?) in the basis of the eigenstates of the field-free Hamiltonian Hp,

\I/(r,t) = Z bnkmj(t)¢nkmj(r)- (2.19)

nkm

The quantum numbers take the values n = £1,+2...+ N, kb = £1,£2...
and m; = £1/2. The negative sign for the quantum number n corresponds
to negative energy state and the positive sign to positive energy states.
Substituting equation (2.19) in the TDDE we obtain a system of coupled
first order differential equations of the unknown coefficients bnkm] (1) :

.d
Zabnkmj = Z]; [Enkm] 6nn’ 6kk’ 6m]m; - Vnkm] ,n’k’m; (t)] bn’k’mgv
n ?

|bn:1,k:—1,m]:ﬂ:1/2(t = 0)|2 =1

The initial condition for the coeeficient is of the form,

brkm,; (0) = G Ok, Omymj, » Where oo is the initial state of the atomis
system for time ¢ = 0. The matrix element V,,, ,n’k’m;(t) represent transi-
tions between Dirac states and their calculation for the general case has been
developed in a previous section. Introducing, however, the dipole approx-
imation (kr < 1) for the external field and assuming linear polarization,
the TD equations simplify further, since the possible paths for the differ-
ent initial states with respect to the magnetic quantum number m; = +1/2
decouple and become independent of each other. We can proceed, by consid-
ering the magnetic number m; fixed during the process, and in addition the
final results independent of the initial value of m;, since either the eigenen-
ergies or the interaction matrix elements are independent of the m;. We
are also able to exclude the negative energy states (restricting n to positive
values only), which is a well justified approximation since their effects are
significant for photon energies equal the rest mass of electron (~ mc?). We
rewrite therefore the relevant equations as following:

T(r, 1) =D bur(t)ur(r) (2.20)
nk
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and

d
Z%bnk = Z [Enk 6nn/ 6kk’ - Vnk,n’k’] bn’k’v (221)
n'k’!

b=t k=—1(t = 0)* = 1,

with n = 1,2..N , k = £1,£2,.... and m; is considered to the fixed value
1/2 or —1/2.

An additional simplification of the TTDE equations concerning the quan-
tum number £ comes from the selection rules for dipole transitions. For one
photon transition within the dipole approximation and for linearly polar-
ized light the change of the quantum number can be such that the relation
|6k| = 1,2k holds true.

An alternative representation for the TTDE (2.24), making more evident
its similarity with the corresponding TDSE equation is the following:

d k>0
i%bnk - Z [Enk 6nn' 6kk' - Vnk,n’k’] bt (2.22)
n'! k'
k<0
+ Z [Enk 6nn/ 6kk/ — Vnk,n’k’] bn’k’7 (223)

!
J

b=t k=—1(1 = 0)]* = 1.

' '
n' k' \m

In practice, the maximum value for the quantum number & is a criterion of
the convergence of the solutions, depending, strongly, on the peak intensity

of the field.

2.6 Appendix: pA versus -tE gauge
In the velocity gauge we have for the TDSE,
0
gt () = (Har + 1Y) 4 (1), (2.24)
t
with H}/ = —¢ 'pA being the interaction term and ¥V the state of the

system. Making the gauge transformation x(r,?) = —rA(¢) we have for the
transformed TDSE,

i%¢L(r,t) = (Har + HE) $5(x,1), (2.25)
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through H{J = —rE the interaction term and the state ¢ of the system in
the length gauge. The two wavefunctions are connected with the relation,

QbL(r,t) — erex(r ¢V(r 1)
= e RTAMYY (). (2.26)

In both cases, the 'pure’ atomic operator H,, has the same form H,, =
p2/2m + V.(r). In the length gauge H,, represents the energy operator of
the system, defined as the sum of the kinetic and potential energies of the
particles constituting the system (in the present case we assume one parti-
cle). In the velocity gauge, however, that is no longer true. In other words,
within the velocity gauge, the solution of the eigenvalue problem for the
H,; does not give, the eigenstates or the eigenenergies of the unperturbed
system. At the same time the hamiltonian that governs the time-evolution
of the interacting system is the operator H,, + H}/ in velocity gauge and
H,, + H} in the length gauge.

For the solution of the TDSE, we initially solve the unperturbed problem,
H o 0ni(r) = 1n(r), as we have already discussed, and then we expand the
time-dependent wavefunction ¥(r,?) in terms of the unperturbed eigenstates
¥pi(r) in order to substitute them to the TDSE. The relevant equations are
the following:

Length gauge:

vh(r.t) = Zb Otu(x (2.27)
bu(t), = <¢nz|‘1’ (r, 1)) (2.28)
jbn,, = > [gnmm,é”, - <nz|HIL|n’z’>] bE, (2.29)

nl

Velocity gauge:

¥V(r,t) = Zb ()b (x (2.30)
b(l), = <¢nz|l‘1’ (r, 1)) (2.31)
jbn,, = 3" [entbumrbur — (il HY [0'1)] ), (2.32)

nl

At first sight, a question arises at this point. It is an axiom of quantum
theory that the observable quantities (experimentally measured quantities),
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are gauge independent and this is valid for the probabilities |{t,;|¥(r,))|%.
It follows, that using either equations (2.29) or equations (2.32), the final
results must be identical (ignoring computational rounding or truncated
basis set errors). From the previous equations this is not obvious, since
we know that for the matrix elements of the interaction term, the relation
(a|HY|b) = (wr/(wa—ws){a| HE|b) holds, where a, b are arbitrary eigenstates
of the H,, operator, while at the same time we keep ¢,,; the same. We expect
therefore that in general the amplitudes b;(¢) and b%,(¢) will be different.
And this is indeed the case, as we shall see. Combining the expressions for
the amplitudes b",(t) and b%,(¢) we obtain:

by = <¢nz|€_”“(”|‘l’v(r 1)

(2 () + () 3 TR v gy
m#£1l
- bmwnnz%‘(”w ). (23

m#£1l

For the above relations, we have used the expansion e~ = 1 — (ikr + ...).
From the last relation, it is obvious that the coefficients b;/l and bﬁl are
different for every finite time ¢ and therefore the same is true for their
absolute squares, |bY;|? and [b%|2. If this is the case, why are the calculated
observables such as ionization yields, photoelectron energy spectra (PES)
and photoelectron angular distributions (PADs) (given by absolute squares
of bﬁl and b;/l the same no matter which gauge we use for our calculations?
The key idea is the initial condition for the external E/M field, its finite
duration and the fact that the observables are calculated after the end of
the pulse (f — oo). We use pulses such that the relation, lim; 4., A(t) =
7E(0) = 0 is valid which guarantees that the initial conditions for both
gauges are the same and the E/M field vanishes® for ¢ — co. At the same
time, we need the coefficients for times after the end of the pulse (in practice
for times much longer than the full width half maximum (FWHM) of the
pulse) and noticing that rA(t — oco) — 0 it follows that
<¢nl| Y oml £ﬂys,ﬂmhﬂv(r,1f)> — 0. Therefore, for the amplitudes bZ; and

b ; the following relation *, holds
lim bhy(t) = lim bY (1) (2.34)

3This is not true for square pulses with sudden switching-on.

*The same can be viewed more quickly, noticing that, lim; . 4o ‘IJL(I‘, t)y =
) jerA() .
Im; . qoo ™" ‘IJV( t)=1-lim; 4 ‘IJV(I', t)
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In practice, the vector potential needs to satisfy the boundary conditions,
A(t1) = A(tz) = 0, with #; and ¢, any finite time, with respect to time for
the results to be independent on the gauge used.

Note that, although the final amplitudes are the same, their time evo-
lution is completely different with important practical consequences for the
computation. It is well known that time-dependent calculations converge
faster in the velocity gauge than in the length gauge [46, 90, 18].



Chapter 3

One, two and three-photon

LOPT of H™

3.1 Introduction

It has been known [4, 50, 60] for quite some time now that multiphoton
ionization of atoms with radiation elliptically polarized can lead to photo-
electron angular distributions (PAD) lacking the usual four-fold symmetry
found under linearly or circularly polarized radiation. This effect is present
in the fundamental description of the process in perturbation theory and
has been identified to be connected to the non-zero value of the phase shift
of the final continuum state. Formally the phase shift leads to a complex
multiphoton transition amplitude which in turn combined with the elliptic-
ity parameter produces terms which, depending on the values of the other
parameters (such as radial matrix elements), can lead in general to a more
or less asymmetric PAD. From the structure of the resulting expressions it
is evident that if the phase shifts of all partial waves were zero (correspond-
ing to plane waves) the asymmetry would disappear. The continuum state
resulting from electron detachment of a negative ion might be thought of
as coming as close to a plane wave as one can expect in a real system with
a bound initial state. This aspect has been investigated experimentally by
Blondel and collaborators who have produced extensive results on PAD’s
including elliptical polarization which has not shown any significant asym-
metry. Is it because of a near plane wave character of the final state?

ATT adds a further aspect to this question. A multiphoton transition ampli-
tude involving absorptions within the continuum, as ATT does, is by necessity
complex because of the presence of poles within the continuum. This led

60
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Lambropoulos and Tang [50] sometime ago, to the assertion that the asym-
metry should be present in ATI even if all phase shifts were zero, which has
to be understood as the limit to plane waves. As we shall see later on, that
assertion was overenthousiastic and the actual situation is subtler. It was
nevertheless that question in fact that motivated Blondel and collaborators
to search for that asymmetry in negative ions including ATI in one case. It
is against this background that we undertook the present work in negative
Hydrogen.

Our chief objective was to explore in a quantitative setting the question of
the asymmetry including ATI. Negative Hydrogen being a two-electron sys-
tem poses serious demands on the calculations of multiphoton transitions
as illustrated by previous work [65, 64, 56, 12, 82, 72, 25] on aspects of this
system. Our approach has evolved as a side product of our work on the non-
perturbative solution of the time-dependent Schrédinger equation for two-
electron atoms in strong laser fields [90, 89, 91, 17], with the atomic structure
handled in terms of L? discretized bases constructed as linear combinations
of B-splines [73, 43]. The calculation of ATT through a discretized basis also
requires the appropriate handling as has been discussed elsewhere[16], where
a new versatile method applicable to any discretized basis has been shown
to provide accurate results within perturbation theory, which is the case of
interest here. Through a combination of the above techniques, we have been
in the position to obtain results on 2 and 3-photon ionization including ATI
over an extensive energy range which by a happy coincidence also covers the
range of experimental data reported most recently by Zhao et al [92]. We
have at the same time examined PAD’s for polarization of varying degree
of ellipticity and ,as discussed in the following sections, the asymmetry is
in general present depending of course on the degree of ellipticity and the
wavelength of the radiation, as expected to be the case. One of the chief
advantages of and motivation for studies in negative hydrogen is its funda-
mental significance as a negative ion and at the same time a very special
two-electron system combined with the possibility of performing accurate
ab-initio calculations. Atomic units are used throughout this work.

3.2 Photoelectron Angular Distributions

The transition probability per unit time within lowest non-vanishing order
of perturbation theory for non resonant N photon ionization can be written
as :

Wi = enrV, (3.1)
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where & is the total angle-integrated generalized cross section given by:

N

Gn = %wg/dﬁk M2 (3.2)
with a being the fine structure constant, k the wave vector of the outgoing
photoelectron related to its energy by Ejy = k?/2, the integration is over all
angles of propagation of the photoelectron and the symbols f, ¢ denote the
final and initial state, respectively.

The dependence of the angular distribution of the photoelectrons on the
atomic structure and the polarization é of the field is now contained in the

quantity M J(f]gv) defined by:

M(N): i <f|Dé|VN—1><V1|Dé|g> 7 (3‘3)
7o oy h [wg + (N = Dwp —wyy ] lwg +wr — wy]

where D is the atomic dipole moment operator that can be expressed either
in the length (D = —r) or in the velocity gauge (D = —V/wy). The sum-
mations are carried out over all possible intermediate states including the
discrete and continuous parts of the atomic spectrum. The generalization
of equation (3.3) to ATI of order N + R, where N photons are needed to
ionize the atom plus R extra photons which are absorbed in the continuum,
involves the presence of poles in the integral. In that case, equation (3.3)
requires the removal of the poles from the real axis through quantities e;
and taking their limits to zero[34].

Although spin-orbit coupling plays no role in this work, we have chosen, for
the sake of completeness of the formalism to exhibit the spin variable mg
in the final state of the photoelectron and the core. Alternatively, we could
have written all equations without reference to spin. In general, in order to
calculate the photoelectron angular distribution for a process that leaves the
residual core in a state characterized by [., m. and m,, quantum numbers,
the continuum states are expanded as:

| fieimeim.. i koms >= > dle™0ypr (k) (SLJ My, |S MsLMy)
Jf,l,m

><(SCSSMS|5cmscsm5)(lclLML|lcmclm)|SLJfMJf >, (3.4)

where J; are the allowed angular momenta and /, m, m, the associated par-
tial waves for the outgoing photoelectron. The explicit presence of the core
states, as we already discussed, is here important only when one wants to
calculate photoelectron angular distributions. The angles in the spherical
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harmonic specify the direction of propagation k of the photoelectron. These
angles are in reference to a Cartesian system of coordinates whose z-axis
is taken along é for linearly polarized light and along the photon propaga-
tion vector for elliptically or circularly polarized light. In the present case,
the polarization vector is written as & = (1 + 5?)~Y/2(% + inj) where the
ellipticity parameter 7 varies from 1 to -1. Substituting the above state
representation into equation (3.3) and carrying out the angular momentum
algebra we obtain [82]:

- L S+l-l.—Mj;, —-Ms—M
M( )(lcvmcvmsmk msvn Z Zl Zél e g ; .

Jf,l,m

XYy, (k) DY () [(275 + 1)(2L + 1)(28 + 1))/

« S L Jy Se 8 S . 1 L (3.5)
Ms My —M;y ms, m —Mp m. m =My |’ )
Here Df]];f) is given from equation (3.3) with the difference that the final
state is of the form [SLJy M, >

;!: Sl“fjujf“: e|l/N > "<V1|Dé|g> (36)
14 9
N—1

= Dor = wyy, ] fwg Hwrn —wy ]

The differential cross section for N-photon ionization is given by:

don (1. % n)

— N N T - )2
PTs) _27r(27ra) Z |M( )(lcvmcvmscvkvmmn” ” (37)

MM, Ms

from which integrating over all angles we obtain the N-photon generalized
cross section as:

oy =2r(27a)V 3 |DE (). (3.8)
Jy

The exact dependence on the photoelectron angles and the ellipticity n of
the quantity M}g), for N = 2,3, are given by equations (3.11,3.15). Given
the initial and final ion state, equation (3.5) contains all the necessary in-
formation to calculate angular distributions since |M (V)2 is proportional to

(N)

do’n/dQ. The unknown quantities are the D Jg for each ionization channel.
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3.3 Two- and Three-Photon Transition rates

Here we present the explicit dependence on the ellipticity of the light of
the two- and three-photon total transition rates. The following formulas
apply to ionization or detachment from an atomic system having angular
momentum L = 0 in its ground state. For a two-photon transition the
amplitude given by equation (3.5) is :

M(z)(n) = 3(17\{5772) {(1 —n*) (245 — Ap) + 34p [(1 — n*)cos?dy,

—(1 4 1) 5in?8), cos2¢y — i 21 sin>0), 5in2q§k]} , (3.9)

where the quantities Ag, Ap are complex in general and given by :

RpoF pki
A= I# i=5,D, (3.10)

5
Wy —Wyp — WL

The R’s are reduced matrix elements [20] and the subscript i refers to the
final value of the angular momentum for each channel. Here the intermediate
states, denoted by v, should be understood as belonging to the discrete and
continuum spectrum of symmetry P. The relation between ellipticity » and
the polarization vector of the field has already been defined in the main text.
The angular variables (8, ¢x) determine the direction of the photoelectron
in the final state. Integrating the quantity | M (3)(n)|?
obtain the total cross section through equations (3.1) and (3.2) :

r®(n) 167° 1- 2\ 1+4n+ 0!
= 5 AP +4 =" L 14512 . (3.11
27T(27TO[I)2 45 1 _I_ 772 | S| —I_ (1 _I_ 772)2 | D| ( )

over these angles, we

For the three-photon transition, the amplitude is:

MO = e if)?ﬂ? sinby x (3.12)
{(1 — 772) [Qp + %(5 cos*0;, — 1)] (cosdy + i msingy)
—  Qp sin?0; [(1 + 31?) cos3¢y, + i (3 4+ %) sin 3¢k)]} ’

with Qp, QF :

_ 5Asp+4App
N 15 ’

Qp = 22 (3.13)

Qp 2
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and Agp, App, Apr defined through integrals of reduced matrix elements
over discrete and continuum states :

P e ln pkL
A — Rl{fs RZ?,PI Rl/2712/1
Ly, Ly = ) (3'14)
= 47 (wg —wi p —wr)(wy — w1, — 2wr)

where Iy = 5. D and L, = P, F. From the quantity |M(3)(77)|2, performing
the integral over the angles, we obtain for the total three-photon transition

rate :

T 1672 1—n2\° 14802 + 1t
W __ [175( 77) |QP|2+1927(1J:7 277 Qr[* ]| -

2r(2ral)® 525 1+ 72 n?)
(3.15)

3.4 Atomic basis

The computational procedure used here has been presented in detail in a
series of articles [84, 13, 9]. Briefly, we use one-electron hydrogenic orbitals:

(bnlmms(r) = Miflm(ev(b)g(ms) . (3'16)

r

The radial functions P,;(r) satisfy the equation:

1d> 1 11(+1
_( B) ) Pnl(r):Eannl(T)7 (317)

2dr?2 r 2 7

with F,; being the eigenvalue. The FP,; functions with negative or positive
eigenvalues are expanded on a set of B-splines of order k£ and total number
n defined in the finite interval [0, R]. Two-electron orbital states with to-
tal angular momentum 7, are constructed in the LS coupling of two-electron
configuration space \Ifgflhmb(rl,rz) = Allys1losg LM SMs) Ry 1, 1o, (71, 72),
where A represents the antisymmetrization operator. The two-electron en-
ergy eigenfunctions are written in the form [11]:

‘I’E(LE)(IH, r)= > Cg(LE)(nlh, naly) UN o1, (r1,72) (3.18)
(n1l1,n2l2)
where CE(LE)(nlll, n2ly) is the eigenvector of the atomic Hamiltonian matrix

for the nth energy eigenvalue. Here |C§(:E)(nlll,nzlz)|2 is the probability

density for the configuration (nql1,n2n2) in the nth energy eigenstate. For
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E >0, @g(LE represents discretized continuum states. In the present case,
the order of B-splines is £ = 9 with » = 150 and R = 150a.u..The knot
sequence that we use is sine-like used first by Tang and Chang[84] for calcu-
lations of multiphoton processes. In that reference, one can find the details
of the method we have used to calculate the phase shifts for each channel
L=0.,1,2,3 needed for the PAD’s. In order to calculate the summations over
intermediate states in the ATI case, we use the recently developed extrapola-
tion method whose details can be found in [16]. Because of the discretization
of the continuum, the detachment rates and phase shifts are calculated for
discrete energies. Consequently, these rates and phase shifts in general do
not coincide for different channels. For the energy region that we examine,
the smoothness and density of data points are sufficient to use a cybic spline
interpolation in order to obtain data for intermediate energies. The value
of the ground state differs by about 14% from that calculated by Pekeris
[63]. To obtain a better ground state energy, we would have to include a
large number of states within each series of configurations associated with
each excited ’inner’ electron. Calculations of ATI by a discretized basis
requires a sufficiently dense spacing of continuum states which must also
extend high in energy. In order to have continuum wavefunctions, as well
as the correlated ground state simultaneously, our primary criterion was
the agreement between velocity and length gauge for the calculated dipole
maftrix elements. With much more effort, the ground state energy could be
improved,but would not have a significant effect on the quantities of interest
in this work.

3.5 One-Photon Detachment

In figure (3.1) we plot the one-photon detachment cross section from the
ground state as a function of the photoelectron energy, given by the relation:

r) = 2x(2ra)|D(y=0)|1, (3.19)
D(n=0) = (1s*'S|er|2sep ' P). (3.20)

In this figure, is evident the abrupt rising of the cross section for photoelec-
tron energies near to zero in accordance with the Wigner threshold law,

o~ H12, (3.21)

This particular behavior for negative ions originates from the absence of a
long range Coulomb potential for the outgoing photoelectron. The detach-
ment rate, takes its maximum for photoelectron energy at about 0.28¢V
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Negative Hydrogen
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Figure 3.1: Photodetachment rate in a.u. for one-photon ionization.

which is very close to the ionization potential of H~. For higher energies,
below the second ionization threshold, the detachment rate decreases gradu-
ally. Just below the second ionization threshold the doubly excited states of
H~ embedded in ! P continuum give rise to resonances of the cross section.
In figure 3.2 are presented two of those resonances. We have obtained this
resolution in energy, varying slightly the radius of the box R.

These resonances are the first two members of an infinite series of au-
toionizing states converging (exponentially in energy) to the second ioniza-
tion threshold [33]. Within the CI terminology we denote the first resonance
as |2s2p L P) since this specific two-electronic configuration orbital dominates
over the others. Many theoretical calculations and experiments have been
done for the determination of the autoionizing parameters of the first two
autoionizing states [12, 10, 41, 19, 54, 85, 55| Fewer are the works for the
second autoionizing state. Only recently calculations have presented [85, 55]
The first resonance situated 10.92¢V above the ground state of the system
has been studied experimentally by MacArthur [57] and the Aarhus group
[2]. The last group (at the present days seems to be the only active on
H~ experiments [2, 1, 80]) has succeeded to detect also the second reso-
nance which is narrower and much weaker than the first (by a factor 20).
If relativistic and radiative effects are taken into account, then gives rise to
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Figure 3.2: Photodetachment rate in a.u. for one-photon ionization.

the energy splitting of the hydrogenic levels with the same principal quan-
tum number. This splitting has the consequence to limit the number of the
formed autodetaching states from infinite to three [55].

The shape of the resonances is explained invoking the Fano formalism
for cross section behavior around autoionizing states[30]. Briefly, the asym-
metric peaks follows the Fano profile formula:

(+2?  __(E-E.)

@)= =77 (3.22)

According to Fano theory, the three resonance parameters, namely the res-
onance energy F, — F. the autoionizing width I' and the shape parameter ¢
are sufficient to describe in a quantitatively the deviation of the cross sec-
tion from its background (og). The cross section takes its maximum value
Omaz = 0p(1+q?) at energy F,,., = E,+¢l'/2 and its minimum value ¢ = 0
at energy F,.;, = E, — qT'/2. The g-value measures the strength of the in-
terference between transitions from the initial bound state to the respective
bound and continuum components of the final wave function. Experimen-
talists use the Fano formula for fitting their data, in order to calculate the
parameters of the autoionizing state. It should be noted here, that the asym-
metry in the cross section of the photoionization process is derived from the
expression (3.20) through the form of the eigenfunctions. Asymmetry for



3.6 Two-Photon Detachment 69

Table 3.1: Resonances energies, widths and g-values are presented for the
two autoionizining states of the ' P symmetry.

‘ | —Eu(a.u.) | 10° x To(au) | ¢
Present 0.126 05 1.28 -17.12
Lindroth et all 0.126 050 9 1.36 -17
Venuti and Decleva? 0.126 049 581 | 1.3369 -16.475
Lindroth? 0.126 05 1.25 -17.1
Chang * 0.126 049 1.47
Cortes and Martin® 0.126 049 1.19 -15.865
Andersen et al (Exp.)® | 0.126 275 5 0.7<T,<22| -30<g<-10
Present 0.125 011 5 ) -11.7
Lindroth et all 0.125036 5 | 0.073 -11
Venuti and Decleva? 0.125 035 391 | 0.072313 -11.726
Lindroth® 0.125 04 < 0.08 -12.7
Cortes and Martin® 0.125 035 0.0625 -11.632
Andersen et al® (Exp) | 0.126 276

this case is inherent in the involved two-electron wavefunctions, the initial
bound state and the final wavefunction with energies around the resonance
energy I,.

There is an upper limit about the amplitude of the external E/M field so
that Fano theory to be applicable, connected with the relative strength of
the configuration interaction 1/715 ~ T to that of the electric dipole coupling
of the atomic states. The situation for strong E/M fields is entirely different
since the transition is not describable in terms of a simple rate [51, 49].

3.6 Two-Photon Detachment

We consider absorption of two photons from the ground state of negative
Hydrogen in the photoelectron energy region (0—0.15a.u.). From the dipole
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selection rules, the number of independent channels are two, with final total
angular momenta I = 0,2 (i.e. 1.5 and ' D). The resulting H atom for these
energies remains in its ground state and so we also have J; = 0,2. In Fig.3.3,
we show, for linearly polarized light, the partial photodetachment rates I'(.9')
and I'(D) where I' is the intensity-independent rate in a.u. defined by:

(i) = 20(2r0)2DP (= 0212 i=85.D (3.23)

Our calculations are in good agreement with those of Hugo Van der Hart
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Figure 3.3: Photodetachment partial rates in a.u. for two photon ionization.
Energy region covers ionization with and without ATI, which begins at pho-
toelectron energy 0.0277 a.u. (indicated by the arrow). Note that la.u. of
energy is 27.112ev, while la.u. of rate is 2.41 x 10717571,

[25] in the case without ATI. The same holds true for the calculations that
Proulx and Shakeshaft [65, 64] have performed for two photon ionization for
a wide photon energy region. Calculations of cross sections for two-photon
above threshold detachment of negative Hydrogen have also performed by
Sanchez et al [72] for a different photon energy region. Very recently, in ex-
perimental work [92] in negative Hydrogen with ATT at photoelectron energy
about 0.058a.u. the branching ratio of the S and D partial waves has been
measured. For this particular energy, the reported data show branching by
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90% + 10% into the D wave,an observation that is in excellent agreement
with our calculations,which predict 89%. Furthermore, the agreement be-
tween our theoretical values with the experimantal ones suggests that for
laser intensities at least up to 3 x 10'°W/cm? the interaction between the
negative Hydrogen and the laser field can be described well by perturbation
theory.

Turning now to our results, we see that the dominant contribution comes
from the D symmetry. We also note the threshold behavior where the dom-
inant channel is the channel with the lowest angular momentum, due to the
Wigner law. Also we note that a rise in the detachment rate for the partial
wave, that corresponds to the lowest angular momentum , occurs when the
photoelectron reaches an energy of about 0.028 ¢.u.. The agreement between
length and velocity gauge remains satisfactory throughout the energy region
under consideration. The difference is within the thickness of the line of the
graphs. Using equation (3.5), after the interpolation in energies and phase
shifts for the channels S and D (Fig.1.5), we produce angular distributions
for different photon energies and various values of the ellipticity parameter
7 (Fig.3.4). These graphs reveal a gradually increasing asymmetry on angle
f, as the absolute value of the ellipticity parameter increases. The value
1 = 0 corresponds to linear polarization where it is well established that the
angular distributions have four-fold symmetry. The asymmetry can in prin-
ciple always be present for elliptical polarization, independently of whether
we have excess photon absorption or not A brief argument as to why that
happens is the following. The structure of the angular dependence of the
outgoing photoelectron in the case of elliptical polarization for a fixed ¢ and
for arbitrary number of absorbed photons will be of the type [60]:

M = 3 a2 (3.24)
m
where all the non-vanishing terms have either even or odd m. The am-
plitudes a,, are integrals over the intermediate states involving the reduced
radial elements. From the above formula, we are led to fourfold symmetry
when the amplitudes are real. The amplitudes in a multiphoton process
are complex for two reasons [50]. First, because in the continuum, in the
absence of spin which for this argument is unimportant, the wave functions
of photoelectrons can be written as [48]:

00 {
Fer)y=4n>" 3 e Bk, r) Y, (0. 8)Yin, (0. 1) . (3.25)

(=0m;=-1
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Figure 3.4: Two-photon detachment angular distributions as functions
of ¢ of photoelectrons for kinetic energies £, = 0.006,0.053,0.077,
0.011,0.062,0.104 a.u. and for various values of the ellipticity parameter
(starting from the inner graphs) n = 0.0,0.18,0.36, 0.54,0.70,0.90. For vi-
sual facility, the azimuthal angular dependence distribution is on the po-
larization plane(d; = 7/2) and the polar plots have been expanded with
increasing ellipticity. This does not imply increasing rate with ellipticity.

where 6;(k) are the phase shifts due to the potential of the atom and G (k, r)
are real radial functions. Therefore the complex amplitude here is due to
the existence of phase shifts. The second reason has to do with the case
in which we have an excess photon absorption(ATI). The presence of the
poles at certain energies in the integrals a,,, introduces an imaginary part at
these energies. Thus even when we have no ATI, in the elliptical case, the
asymmetry in angular distributions can appear because of the phase shifts.
In the present case, the existence of the asymmetry when we do not have
ATI suggests that the state of the outgoing photoelectron is not a plane
wave. Now regarding the ATI case, it can be proven (see appendix) that
in the perturbation theory regime and the plane wave approximation, un-
der the assumption that there are no other bound states except the ground
one, the fourfold symmetry is conserved. A different argument by M.Crance
[21], assuming plane waves for the photoelectron, leads to the same conclu-



3.6 Two-Photon Detachment 73

sion. Finally we present the total detachment rate (Fig.3.5) as a function of
the ellipticity n of the light for selected photoelectron energies. From this
graph it is apparent that when the dominant partial wave corresponds to the
lower angular momentum (here the S wave) there is a large decrease for the
transition rate with increasing ellipticity of the light; i.e. going from linear
toward circular. That is what is expected in general, since the number of
possible paths that end up to the final state, for a multiphoton process, is
the maximum one when the light is linearly polarized. But when the domi-
nant partial wave corresponds to higher angular momentum (here D wave)
it is possible to observe a different behavior for the transition rate ,namely
its increase with increasing ellipticity of the light. But there is an upper
limit for this increase I'(y = 1)/T'(n = 0) — 1.5 when Ag/Ap — 0, as is
known [47],which is easily obtained if one considers the two limiting cases
7 = 0 (linear light) and = 1 (circular light) in the corresponding formulae
(3.15,3.15).
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Figure 3.5: Total two-photon detachment rate as a function of the ellip-
ticity 7 of the light for four photoelectron energies. Photoelectron energies
correspond to ATI and no-ATI cases.
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3.7 Three-Photon Detachment

Here we calculate partial photodetachment rates (3.26) and angular distri-
butions for elliptically polarized light, for the case of three photon ionization
in the energy region where it is possible to have one and two excess photon
absorptions.

T®)(i) = 20(2ra)’|DP (= 0)2 1 i=P, F, (3.26)

Now the angular momentum of the final states can be L = 1,3 and again we
consider the case where the resulting H atom remains in its ground state.
The order of the process now is higher than for the two photon case and we
need to enlarge the atomic basis in order to preserve the reliability of the
calculations. The reason for this is that the extrapolation method [16] we
use demands a sufficiently high density of states in the energy region where
the poles occur. The suitable density of states depends also on the photon
energy, independently of the order of the process. Consequently we enlarge
the box radius to 250a.u. and at the same time we improve the quality of
the B-splines set taking £ = 11, N = 202 and a knot sequence that is dense
in the energy region close to the nucleus and decreases nearly linearly far
away from the nucleus. The value of the ground state that we obtain differs
from that of Pekeris as much as in the two photon case. In Fig.3.6, we
show partial photodetachment rates for the symmetries L=1,3. Again the
dominant contribution to the detachment rate near the threshold, comes
from the partial wave with the lower angular momentum as expected from
Wigner’s law.

At this point, it is perhaps useful to discuss a feature of N-photon de-
tachment,namely the rise of the rate at every photoelectron energy where
a threshold is crossed. This is a general effect that should happen for all
negative ions in the ATI case, at energies which can be determined given the
electron affinity, the order of the process and the number of the excess pho-
tons. The number of such rises is exactly NV, the order of the overall process.
The reason for this is again the Wigner threshold law and occurs every time
the number of excess photons in ATT increases. The rise is present for each
channel, but the Wigner law leads to a sharper rise for the channel with the
lowest angular momentum. If the electron affinity is £, the order of the
process N, and the number of the excess photons R, then the photoelectron
energies £, at which one should expect rises for the detachment rates (if
there is no other reason for this, such as autoionizing states) are given by
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Figure 3.6: Photodetachment partial rates in a.u. for three photon ioniza-
tion. Energy region covers ionization with and without ATI, which begins
at 0.0139 a.u. (arrow) while the ATT involving two photons begins at 0.0554
a.u. (second arrow).

the formula:

g,k

pf——,  R=0,1,2.N—1. 3.27
; INTR (3.27)

Therefore, for the two- and three-photon detachment rates and for the en-
ergy region that we consider, since there is no structured continuum, the
rises occur at the expected energies and they are completely predictable as
we can see from the corresponding figures (Fig.3.3 and 3.6).

E®=9, EV=E;, N=2, (3.28)

E®=9, EMN=E;/2,  EP=2E,  N=3. (3.29)

Now, regarding how large these rises are for a given photoelectron energy.it
depends on the number of the excess photons needed to reach this energy.
Increasing this number, we should expect a tendency for the rises to be
less sharp, since the order of the process is increased. The above analysis
is compatible with the observation of Proulx and Shakeshaft [64] in their
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investigation of the two- and three-photon detachment rates of negative hy-
drogen. In the case of three-photon detachment, they found a rise of the
detachment rate due completely to a rise in the partial wave corresponding
to the lowest angular momentum I = 1 at a photoelectron energy where
the two-photon detachment threshold is located, but not in the two-photon
case. That is correct if one examines the total two- or three-photon rates,
as Proulx and Shakeshaft did. Since the L = 2 wave in the two-photon
case overwhelms the I = 0 (see Fig. 3.3), the rise is masked in the total
two-photon rate. On the contrary the I, = 1 and L = 3 contributions at
the position of the rise are comparable in the three-photon case (see Fig.
3.6), which makes the rise discernible even when the total rate is examined.
We have chosen to emphasize the partial wave features, since these thresh-
old effects are intimately connected with the angular momentum. Also, we
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Figure 3.7: Total three-photon detachment rate as a function of the ellip-
ticity 7 of the light for four photoelectron energies. Photoelectron energies
correspond to ATI and no-ATI cases.

present total detachment rates (Fig.3.7) as a function of the ellipticity of
the light. Behavior, similar to that of the two-photon case, is observed for
the three-photon transition rate for selected photoelectron energies. Angu-
lar distributions for different energies and various ellipticities are shown in
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Figure 3.8: Three-photon detachment angular distributions as functions of
¢ of photoelectrons for kinetic energies I, = 0.006,0.036, 0.078,0.191 a.u.
and for various values of the ellipticity parameter as in the two-photon case.
For visual facility, the azimuthal angular dependence distribution is on the
polarization plane(8; = 7/2) and the polar plots have been expanded with
increasing ellipticity. This does not imply increasing rate with ellipticity.

Fig.3.8. Here again the asymmetry is observable and increases gradually
with increasing ellipticity of the light. Note also the energies of the photo-
electrons corresponding to ATI with one (£, = 0.01018,0.0532a.u. ) and
two excess (£, = 0.0617a.u. ) photons.

3.8 Asymmetry parameters

Multiphoton detachment or ionization in the majority of the experiments is
performed using linearly polarized light. Beyond the one-photon ionization
(detachment) the quantitative analysis of the PADs uses Yang’s formulae
[87]. For an N-photon detachment from a spherically symmetric atomic
system by linearly polarized light, the PAD reads:

don  6n al
0 = i [1 + pZ::lﬁszzp(cos 0)] ) (3.30)
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Figure 3.9: Calculated asymmetry parameters of 2-photon ionization. Ex-
perimental data are also presented.

where 6 is the angle of the detection with respect to the photon polarization,
Py,(2) is the Legendre polynomial of 2p-order and & is the cross section of
the process. The parameters [3;, are known in the bibliography as “asym-
metry parameters”. The name has its origin in the fact that the parameters
B2, give rise to deviation of PADs from spherical symmetry, which corre-
sponds to when 33, = 0,p = 1,2...N as equation (3.30) predicts. In general,
asymmetry parameters are complicated functions of the possible excitation
amplitudes, the frequency of the light and the phase shift of the outgoing
electron. An example of such calculations was presented by Zernik [88] who
discussed the two-photon ionization of the atomic Hydrogen. To be more
specific, for the two- and three-photon ionization (detachment) equation
(3.30) is written as:

Two-Photon :
2 5475 6
g, = 2.5XTv5Wacosdsp (3.31)
7 14+ Q2
18 1
_ I 3.32
o= R (3.3

with Q being Q, = T'?)(9)/TA)(D) and T (), T?)(D) the partial two-
photon transition rates given by equation (3.23) and relation (3.11) for = 0.
The quantity 6sp denotes the phase shift difference between the partial
waves 5, D, namely, 6sp = 65 — 0p.
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Three-Photon :

1 14 1.5Q5—4.5\/3Q3/7 cosépr

s 2 70, (3.33)
_ 63 1-—(22/3V21)/Q3 cosépp
b= o5 110 (3.34)
4 1
Po = 3377 0, (3.35)

where, Q3 = T®)(P)/TG)(F) and T®)(P),TG)(F) are the partial three-
photon transition rates given by equation 3.15 and relation (3.26) for n =
0. As in the two-photon case, we have dpp = 6p — . In figures 3.9,
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Figure 3.10: Asymmetry parameters for 3-photon ionization of negative
hydrogen.

we present results of calculations for the asymmetry parameters of two-
photon detachment. Until recently no experimental work on H ~ had been
reported, with data on PAD’s. In a recent experiment, Praestergaad et
al have reported asymmetry parameters of the two-photon detachment for
two photon energies w = 0.63eV and w = 0.75¢V [80]. The reported data
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are presented for comparison in the relevant figures. In response to that
experiment, Sdnchez et al, in a refinement of a previous work [70], have
calculated these asymmetry parameters as a function of the photon energy
[71]. Their results are also in good agreement with the reported experimental
values. There is an excellent agreement between their calculations and ours,
especially for photon energies below the first ionization threshold. For this
photon energy region, the parameters 35, 34 are very sensitive to the quantity
()2, which gives the ratio between the S and D wave. From figure 3.9 we
see that the asymmetry parameters tends to the value o — 1.9. At the
same time we notice that for the phase shift we have ésp — 0 for high
photoelectron energy (see Fig. 1.5). Therefore from the equation (3.32) for
the 84, we obtain () — 0.3 and for 3, we get §5 — 3. In addition, in figure
3.10 we present asymmetry parameters of the three-photon detachment as
function of the photon energy. There is an evident strong variation of the
B2, 34 with the quantity ()5, which gives the ratio between the P, F’ wave.
Noticing from figures 3.6 and 1.5 that asymptotically, ()5 — 1 and épp — 0,
we obtain from equation (3.35), that 3 — —0.3, 54 — —0.8, g — 0.06.

3.9 Conclusion

As far as the photoelectron angular distributions are concerned,we have
shown that elliptical polarization will in principle lead to the breakdown
of the fourfold symmetry as is the case with neutral atoms. Of course the
degree of asymmetry will depend on the ellipticity parameter as well as the
wavelength and absence of the asymmetry at some wavelength does not im-
ply its non existence. Although our results have been obtained for a case of
an Sy initial state leading to an Sy residual core, the effect should, if any-
thing, be even more pronounced in more general cases. We have in addition
shown that, in the case of a single bound state, the absence of non-zero phase
shifts in the continuum states (plane waves) preserves the fourfold asymme-
try even in the presence of ATI. This modifies the validity of an assertion
made by Lambropoulos and Tang in an earlier paper [50]. Finally we have
provided results for phase shifts and rates into the channels of final states
which are in excellent agreement with recent experimental data [92], as well
as for the results for 3-photon detachment which may be of use in extensions
of the relevant ATI experiments. This work at the same time served as an
example of the versatility of the techniques we have employed which can be
readily extended to provide answers even in the non-perturbative regime,
when related experimental data become available; as has been shown in the
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case of two electron atoms [90, 89, 91].

3.10 Appendix : ATI of negative ions in the plane-
wave approximation.

In this appendix, we prove that for systems without bound states other than
the ground state, in the plane wave approximation and in the perturbation
theory regime, angular distributions preserve the fourfold symmetry in the
elliptical polarization case. In order to discuss a case from which the gen-
eralization to N-photon is straightforward, we consider two excess photons.
We also consider photon energy such that one-photon detachment is allowed,
which does not mean that this procedure is not applicable for more general
situations. The crucial point is that there are no sums over discrete states,
since they are absent, but only integrals containing Dirac delta functions.
In this case, generalization of equation (3.3) reads as:

M‘](t-‘1g+2) — ].lm i <f|De|l/2><l/2|De|l/1><l/1|De|g> . (336)

(e1,62)—0 (wg + 2w, — Wy, +1€2)(wy + wr, —wy, + i€q)

vive

Now the poles are at the positions k7 /2 = w; = wy+w,k3/2 = wy = w,+2wy,
When one-photon ionization is allowed using the well known identity,

1 1 .
lim - = P(E) —ind(x), (3.37)

the relation (3.36) is written as:

(142) _ kf|De|V2 (v2|Dé|ry) (11| Dé|g)
My B Pz —wy, (w2 — wy,)
vive vy V2
. <kf|Dé|kz><kz|Dé|k1><k1|Dé|g> (3.38)
- i7r<kf|Dé|kz>P$<k2|De|V1><V1|De|g>
1

W1 — <'ulll

k;|Dé Délk
- m<k1|Dé|g>P$/< 7| D&|vy)(v2| DE| 1>‘
2

Wy — <"“}112

In the plane wave approximation, the continuum wavefunctions are written
as:

Ju(r = (r|k) = ﬁeik”- (3.39)



3.10 Appendix : ATI of negative ions in the plane-wave
approximation. 82

Using the velocity gauge, it can be shown easily that the dipole matrix
element between two continuum states leads to the Dirac delta-function,
namely,

(k|Dé|q) = ké 6(k — q). (3.40)

Thus from the above relation we have:
(kf|Délky) = kréd(ky —k2) =0, (3.41)

since kaf/Z =wy + 3wy, and ky — kg = 2wr/(ks + k1) # 0. Finally we have:

(kf|Délk2) 0,
(ks|Defks) (ke Delks) = (ks)” 8(ks — ko) (ks — k)

The sum-integral,

b

P $<kf|Dé|V2><V2|Dé|k1>
2

Wy — <"“}112

can be separated into a sum over bound states and an integral that contains
only the continuum. The integral vanishes because of equation (3.41) and
only the sum over the intermediate bound states remains. This sum makes
the amplitudes of equation (3.24) complex and therefore reduces the four-
fold symmetry of angular distributions to two-fold symmetry. Under the
assumption that the negative ion has no intermediate bound states, the
final expression is :

(ky|Dé|ks)(k;|Dékq)(k:|Dé|g)

(wl — Wk )(W2 - wk2)

M = p / Plyd®ky

Since the matrix elements are delta functions, it is easy to calculate the
integral and therefore we have:

ék
wfy = B g epg
. L

Noticing that kaf/Z = wy + 3wy, and using the relations:

(kj|éDlg) = ek®,(ky),
cosp + 1nsing

itz

we obtain for the angular distributions the formula:

ek; = Fkysind

(wg + 3w, )

1—|—2
My F = @t s

T 1@, (kys)|*(sinby)°(cos’dy + nsin’¢y)®,
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where ®,(k) is the Fourier transform of the ground state. From the above
formula, the four-fold symmetry of the PAD for elliptic polarization is ev-
ident. Under the same assumptions, it is possible to generalize the above
formula to N-photon ionization, with the result:

w, + Newp )V |®,(k)|? ) )
N Bty oo o)
— 1) 7

M3 =



Chapter 4

One-photon Core Excitation

of H™

4.1 Introduction

Assume a two-electron atom subject to an E/M field, with photon energy so
that one-photon ionization is allowed, while the core remains in its ground
state. . If the initial two-electron stateis |g) = |1s* 1.5) then one-photon ion-
ization, within the dipole approximation, leaves the system in |c) = |1sep! P)
two-electron state, with ¢ = &2 /2 the kinetic energy of the outgoing electron.
For 'weak’ fields, the photoelectron energy spectrum (PES) after the end of
the pulse has a Lorentzian peak in photoelctron energy ¢ = w + F,, where
E, is the ground-state energy. For stronger laser fields, above-threshold
ionization (ATT) make its appearance and the well-established ATI-peaks
structure of the PES is developed [?]. This picture is valid, whenever the
final continuum state has a smooth dependence on energy, otherwise the
existence of autoionizing states (AIS) complicates the spectrum to a degree
depending mainly on the intensity of the light [30, 51]. For smooth continua,
strong modification of the PES is possible, if the photon energy approaches
the energy separation between two bound states of the core [36]. Assum-
ming photon energy resonant with a core transition energy, the modification
of the PES is dependent mainly on the intensity of the pulse, and in a sec-
ondary way, on the duration and the shape of the pulse. For instance, in the
case of the negative hydrogen, for single-electron ionization, the remaining
core is the hydrogen, and the core transition could be the 1s-2p transition,
with energy wp = 0.375 a.u. 10.2eV. The absorption of a second photon,
when the atomic system is in the state |1se! P) can leave the system in the

84
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states |1s(c +w)stS), |1s(e +w)d D), |(n1/e1)pead! D), |e1) = |2pe’ptS) and
le2) = |2pe’p' D). Provided that, the photon energy is far from any core
resonance the dominant channels are the first three states which gives rise
to the ATI structure of the PES. However, when the photon energy is close
to any core resonance the dominant channels are the last two, which repre-
sents, in a simplified terminology, the excitation of the ’inner’ electron, thus
leaving the outgoing electron with kinetic energy modified by the detuning
A = w—wp, namely, ¢/ = ¢+ A. Note that, in exact resonance the outgoing
electron occupies the same kinetic energy. Assuming, small detuning for the
field, it is legitimate to ignore the first two channels, concentrating on the
channels representing core excitation.

Although, the transitions |1s(e+w)p' P) — [2pe’plS) and |1s(e+w)pt P) —
|2pe’p! D) are transitions between continuum states (CC transitions), their
nature and strength is determined mainly by the bound-bound one-electron
dipole transition (BB transition) of the core, |H(1s)) — |H(2p)). For
a more quantitative discussion let denote the strengths of the transitions
lg) — le),|e) — |ea),|e) — |ea) by Ty, 4, Qs respectively. Depending on
the relative magnitude of that strengths in combination with the intensity
and the duration of the pulse, a drastic change of the single lorentzian peak
is possible. Suppose, that T'y, 771 > Qq, with T the duration of the pulse
(22 has the same order of magnitude with £2;) then no signifigant change
happens even at exact resonance (w = wpg). For the intensities we use
(Ip < 10'W/cm?), the Rabi frequencies are much larger than the decay
rate of the ground state! Ty, Q1,03 > T,. This is an interesting result
since, the resonant transition 1s — 2p is saturated, thus giving rise to a non-
linear depedence on the intensity even for weak-fields. In other words, for
w ~ 0.375 a.u. the ionization rate of the ground state is not a simple func-
tion of the first power of intensity, even for weak fields, an assumption valid
within LOPT. Then, a step beyond the LOPT is necessary for the correct
treatment of the process. The net effect of that saturation (with increasing
the intensity) is the splitting of the Lorentzian peak of the PES in a doublet,
with features depending on the parameters of the problem, either atomic or
of the pulse. This phenomenon is closely related with the AC-stark splitting
of two bound states coupled with an E/M field [29].

Until now, we considered continua which are have smooth energy depen-
dence. Coupling, between continua with structure, complicates the spectrum
considerably. The existence of an AIS, introduces another one parameter
in the underlying physics, namely the autoionizing width of the AIS, T',.

'Note that [y ~ I , while Q ~ I'/2,
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In principle, one can imagine situations where complexity is increased due
either to the atom under question or the pulse characteristics.

The doublet of the PES. was first predicted by Grobe and Eberly [36]. In
a one-dimensional model negative ion, produced by the soft-core potential
V(z) = —1/v/1+ 22, they solve numerically the TDSE using a sin? pulse.
In a subsequent paper, Grobe and Haan [37], present results of a model neu-
tral atoms with the ground state decaying to a structured continuum (|c)),
modelled by a transition around an AIS. In response to those predictions,
Walker et al [86], made the first observation of that ac-Stark splitting of
the PES in experiment on Ca. In a series of papers Hanson, Zhang and
Lambropoulos [38, 39, 40] present quantitative results in Ca, with excellent
agreement with the experiment performed by Walker. The photon energy
used in that experiment, is near resonance with an ionic core state and also
with an atomic resonance, which complicate the problem. They produce
the two-electron states with a CI approach, extending thus the existing the-
oretical predictions for more realistic situations. They do produce a more
complicated PES due to the involved structured continua as well as to the
additional (except the ionic resonance) atomic resonance.

The subject of the present work is to investigate the PES in H~, when
the photon energy is near or on resonance with the 1s < 2p hydrogenic
transition. In general, the effect in the PES under this strongly driven tran-
sition depends on the specific atomic parameters, the pulse parameters and
the interplay between them. Quantitative results, are obtained by numerical
integration of the TDSE in the subspace of states, selected by first-order en-
ergy conservation of the transitions. The method is known as essential state
approximation (ESA), assumes the rotating wave approximation (RWA) for
the transitions, thus excluding it from a strictly non-perturbative approach
of the atom-E/M field interactions [49]. On the other hand, within the lim-
ited basis set the E/M coupling is treated exactly, thus allowing AC-stark
shifts and decay rates to the continuum (obtained perturbatively) of the
states to be included in the model.

4.2 Formulation

We consider the negative hydrogen in its ground state (1s)* !9, in the pres-
ence of a monochromatic field of frequency w and N photons in the initial
state. The states involved are the following :

l9) = [H™(15)* 1S3 N) = [(1s)” '95 N)

ey = |H(1s)+e ;N —1)=|lsep 'P;N — 1)
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Figure 4.1: Negative Hydrogen core excitation scheme.

le1) [H(2p)+ e s N = 2) = [2pep 155 N — 2)

le2) = [H(2p)+e ;N —2) = [2pep 'D; N — 2) (4.1)

Representation of the states (atom 4 field) in this way implies the quantized
form of the E/M field. The energies of the above states are given by the

relations:
E, = E(H (15)*'9)+ Nhw
E. = FE(H(1s)4+ e+ (N —1)hw

E: = E. =F.,=E(H(2p)+ e+ (N —2)hw (4.2)

The photon energy of the field is sufficient to ionize the negative hydrogen
from its ground state exciting one of the electrons in the (! P) continuum
with kinetic energy ¢.. For photon energies near resonance with that of the
hydrogen atomic transition 1s — 2p (fiw = 10.2eV) the core state (Hydrogen
ground state( H (1s)), absorbs one more photon and brings into play the
excited (H(2p)) core state. It is important to note here that the second
electron remains with the same kinetic energy as in the first continuum
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(denoted by |¢)). The two continua correspond to different core states.
After the second photon absorption, the atomic state can be found either
with total angular momentum L = 0 (15) or L = 2 (!D). These states
(atom + field) are denoted by |c1) and |cz) respectively. Notice also that
these states are degenerate, thus having the same energy (denoted by Ez).
The Hamiltonian of the system is H = Hy + Hr + D = Hg + D where
H,4 and Hp are the field-free atomic hamiltonian and the free E/M field
respectively. Operator D is the interaction between the atom and the field
in the dipole approximation. In this approximation and in the rotating wave
approximation (RWA) H4 and D are written as:

Ho

Elo)gl+ [ decBe el + Y [ deEoleded  (43)

1=1,2

D::/ﬁﬂMWWHD@MM]

+ Z /d€ci [DCCi |C><Cl| + Dcic |Cz><c|] (4.4)

1=1,2

In the above subspace the most general form of the state of the system in
time ¢t will be of the form :

() = U(Olg)+ [declogle) + Y [dec Uiyl (49)

1=1,2

Finally, we should note that the populations in the continuua satisfy the
orthonormality condition,

Uan@F + [delUyF + Y [delloy0F =1 (40)

1=1,2

Our intention is to determine the time evolution of the state () through
the amplitudes Uyy(t),a = g, ¢, ¢y, ¢, which will allow us to find the popu-
lation of the ground state (yield) and the population in each of the continua
involved as a function of the photoelectron energy (PES). The dynamics of
the system are governed by the TDSE which reads:

W0:|(1)) = [Ho + DO 9(1)),  [9(t = 0)) = |g). (4.7)

Inserting equation (4.5) into equation (4.7) we obtain a system of first order
integro-differential equations for the amplitudes of the state vector U,(t),a =
g,¢,¢1,¢2, The coupling of the ground state with the continuum |¢) D,
and the coupling of the continuum |¢) with the continua |c¢1) (D, ) and
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|c2) (Dee, ) complicates the problem considerably since the time evolution of
each amplitude depends on the time evolution of an infinite number of states
(the continuum states). In first approximation under certain conditions, the
problem is solved analytically when the couplings D are assumed to be of
constant magnitude, as in the case of a square pulse.

In general, the classical limit of a multimode quantized field linearly
polarized, is of the type (ignoring phase fluctuations):

1 . 1 .
E(t) = SEo(1)e! + SE5(1)e™" (4.8)

Accordingly, the classical limit of the dipole operator D is written as D =
—rE(t). The purpose of the present chapter is two-fold. We are interested
in solving the problem with constant amplitude radiation field for the real
negative hydrogen. Whether this is possible is proven to depend on the in-
tensity and the photon energy of the pulse. Especially the most interesting
effect of that interaction is when the photon energy equals the hydrogen
core transition. Then in the PES instead of a single peak a doublet appears,
as AC-stark splitting due to the strong core transition. Furthermore, the
solution of the problem using time-dependent amplitudes of the laser pulses
is examined and a direct comparison of the calculated quantities (mainly
PES) with that of the square pulse is made. In order to reach the first tar-
get (square pulse) we have to remove the integrals from the time-dependent
equations for the amplitudes U(¢). In other words, we have to eliminate
the continua from the equations. This is done, more conveniently, in the
energy-space instead the time-domain, using the resolvent operator formal-
ism as developed in [34, 48]. However, this approach is applicable directly
in time-independent hamiltonians. Quantization of the E/M field leads to
such hamiltonians as in our case. This is the reason we have choosen the
quantized form of the E/M field for square pulses. Square pulse, means
single mode quantized laser field, where conservation of the energy selects
in a natural way the atomic states that are essential for the dynamics of
the system. Note that, this selection is equivalent with the rotating wave
approximation (RWA) when we use the classical form of the E/M field. The
amplitude equations, after the elimination of the continuum, are used for the
analytical solution of the problem. However, this final form is usefull for the
examination of the problem for a general pulse shape as well. Transforming
back to the time-domain we obtain a simplified system of equations for the
amplitudes U(?). Then direct numerical propagation is possible, allowing us
to extract information for more practical situations.

Atomic Basis The two-electron states of H~ are calculated through
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the CI method in combination with the B-spline technique, as presented at
the last section (Two-electron atoms) of the first chapter. After obtaining
the two-electron eigenstates states and the corresponding eigenergies the
necessary dipole matrix elements |15 1.5) — |1sep! P) are calculated. The
dipole matrix elements have an energy dependence (either photon or photo-
electron energy) as presented in figure 3.1. The B-splines basis set and the
two-electron configuration states used for the calculations, are the same as

discussed in the chapter dealing with -one.two and three-photon transitions
in ™.

4.3 Square pulse

The resolvent operator is defined by, (2 — Hy — D)G(z) = 1, with z being
a complex number. If the evolution operator of the system is U(t), ¥(t) =
U(t)y(t = 0) = U(t)|g). Then the matrix elements of U(¢) are obtained as
the inverse Laplace transform of G/(z).

1 +oo
Uyg(t) = ——— lim dzGo(z + in) (4.9)

21 n—0t J_o

We need, the matrix elements® G, G.,G.,,G.,. Writing (z — Hy — D) -1 -
G(2)]g) = |g) and multiplying the right side with the states (g|, (¢|, {c1], {¢2]
we obtain for the amplitudes Gy, G, G, G, in the Laplace-space the fol-
lowing system of algebraic equations:

(Z - EQ)GQ - /d€c/Dgc/Gc/ =1

DGyt (- BNGe- X [degD Gy = 0

1=1,2

- / desD, Gy + (s~ E)Go = 0
- / desD, Gyt (5= Ey)Gey = 0 (4.10)
We introduce now the following approximations:
/ deyD Gy = DeeGe = Q(1GL(2)

/dgc,pqc,c;c, = DG = ()G (2),  i=1,2 (4.11)

For simplifiying the notation we write, {(a|G(2)|g) = Ga(z) = Gag(2).
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where 4,5 are the Rabi frequency of the two-electron CC transitions

|c) < |e1), |e2) defined by (4.25). Detailed discussion of that approximation

is presented in a subsection (CC matrix elements) of the present section.
Substituting (4.11) in (4.10) and solving for G, G, G, G, We get:

1
Gg(Z) - Z—Eg_Ig(Z)
B (Z— Eg)ch
O T R Er A) - (@l 4 ) )
D¢ Dey
Gcl(Z) = (Z_EC)(Z—EC—I—AC)—(|91|2+|92|2) Gg(Z)
Gule) = Dol i)

(2 = Ee)(z = Ec+ Ac) = ([]* +[2[?)

With A, = E, — E,, I,

(-) are given by:
| Degl(2 — Ex)

Mﬂ:/ﬁ%%J@V—&+AJ—WMLHmm

(4.12)

The continuum is now represented by the integral /,(2), which under certain
conditions leads to well-known decay rate and energy shift of a few degree of
freedom system (here the atomic ground state) coupled to an infinite degree
of freedom system (the atomic continuum states). These conditions depend
on the atomic system under consideration in combination with the pulse
parameters. For photon energies near the 1s — 2p hydrogenic transition and
for pulse intensities I < 3 x 10'3 (see discussion at the end of this section)
we can safely approximate [,(z) as:

T

I, = Sg—i?g, (4.13)
| Dyel?

S, = P de.—2—, 4.14

g / € Eg _Ec ( )

Ty, = 27|Dy(E. = E, + fw)|?. (4.15)

Sy represents the shift of the ground state energy £ due to its interaction
with the continuum and T'; the decay rate of the ground state to the contin-
uum |c). Substituting S, ', and taking now the inverse Laplace-transform
(equation 4.9) for the amplitudes Go(z), G, (2), Gy (%) We can calculate the
amplitudes Uy,(t), Uey(t), Ue, 4(1), Ucyy(t). The photoelectron energy spec-
trum (PES) is defined as the population of the continuum in the long-time
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limit (in practice at the end of the pulse) given by:
S(e) = Tim [[Usg(ees D + [Uey gee, ) + |Usy (e D]

t—00
0 [14+ () 1+ (o)

= 2 (4.16)
8T8 () +(5)° 0 pi(e) +(5)
with,
Q2 = A’4+Q2=A%+4|D.?,
|Dc5|2 = |DCC2|2‘|’|D001|27

pe = (E.—E:)/2—E, £Q./2
A, = E.—F;
Ey = Ey+5(1),

From elementary analysis of equation (4.17), two peaks are expected, de-
pending on the photon frequency and the laser intensity, at the positions

determined from the equations ug(e.) = —A./2 — A+ Q./2+ € = 0.
Therefore the position and the height of these peaks are :
1 Qo Qo )2
hy = P14 4.17
= 27rrg(9c) l * (QJAC (410
o= A2+ A FQ /2 (4.18)

where A" = S, +w+ Eé — E[H (1s)]. It is evident that we have an assymetric
doublet where the relative position along the energy axis depends on the sign
of A, and the distance from each other is a function only of 2. which is a
measure of the strength of the core transition controlled by from the pulse
parameters via photon frequency and intensity.

CC Matrix Elements In this paragraph we calculate the matrix ele-
ments D, , D..,, which represent transitions between two-electron states,

Deey(t) = (Lsep 'P| D(t)[2pep ' 5)
De,(t) = (1sep'P|D(t)|2peptS). (4.19)

Assuming the electric field linearly polarized, along the z-axis, the dipole
operator D is written as:

D= —(1'1 + I'z)E(t) =-F (2’1 + 2’2) ) (420)
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The dipole matrix elements in equation (4.19) differ only in the total angular
momentum (consequently in the angular part of the corresponding integral)
and therefore it is possible to find a relation between them. Beacause of the
similarity in the calculation of the above matrix elements we consider first
the calculation of the D.., = (c|D|c1) matrix element.

The two-electron states ®(E,' P) = [1sep ' P) , ®(E+w,' 5) = |2pep 1 5)
, ®(F + w,'D) = |2pep D), are eigenstates of the hamiltonian
H = Ho(r1)+Ho(rz)+1/|r1—r2| (eq. 1.60), expanded (in principle) as an in-
finite sum of two-electron configuration orbitals (eq. 1.62), ¥(E,! P), U(FE +
w,'9), ¥(E 4w, D) (eq. 1.63),

S(EP) = /deC(1sgp1P)\If(1sgp1P)

+ Z C(nlll,nzl%P)\I/(nlll,nzl%P)

nyly,maly

For energies F where the correlation interaction is insignificant the state
®(E.! P) is approximated sufficient well by the dominant two-electron con-
figuration at the same energy. The two-electron continuum P of H~, has
its first AIS |2s2p! P) in position F = 10.277eV (with the hydrogen ground
state energy as the zero of the energy axis) and width T';, ~ 107% a.u. . On
the other hand the transition |[1s? 1S) — |2pep ! P) brings the system to an
energy F = F, +w ~ 9.46eV. At this energy the CI of the ! P continuum is
neglilible, thus allowing us to make the approximation,

$(E,'P)~ ¥(1s(e = E, +w)p'P). (4.21)

Provided that, we deal with transitions sufficiently far from any continuum
structure of the ! P, such as the 2s2p! P)AIS, the above approximation is
quite valid. This condition is dependent on the intensity of the E/M field and
its duration. The range of that paramaters will be discussed in more detail
in a paragraph at the end of this section. For the same reasons, the other two
states ®(F + w,! 9), ®(F + w,! D), are approximated by the corresponding
two-electron configuration states ¥(2ps = E + w,' 9), ¥(2pe = £ + w,! D).
Therefore the two-electron states |c), |c1), |c2) are written as a sum of Slater
determinants of one-electron orbitals of the type (1.62), namely:

|1s* 19) = oo, (4.22)
[Lsep 15) = % (11 — P10+ Y1-1] , (4.23)
[1sep 'D) = : [¢11 + 210 + P1-1] (4.24)

S

6
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where Qbmh,mb are the Slater determinants of the states
|(n1/e1)la, 81, mu,, Mg, ; (na/e2)lz, sa,my,, ms,). The one-orbital states are
the hydrogenic bound and continuum states, ¢1,(r), @op(r), Pep(r), dory(r)
given by:

¢15(r) = Rls(r) Y00(07¢)7

Pap(r) = Rap(r) Y10(0, ).

The asymptotic form of the continuum one-electron states is:

sin(kr — 7/2 — 67(¢))

Pep(r) = Rep(r) Yio(6,0) = Yio(6, 9) ,

sin(kr — 7/2 — 67(e"))

Perp(r) = Rerp(r) Yio(6,0) = Yio(6,9)
with ¢ = k%/2 and 6} (¢) the kinetic energy and the phase shift of the outgoing
electron. The upperscript ¢ = 5, D of the phase shifts implies the different
potential ’experienced’ by the outgoing electron due to the different angular
configuration of the two-electron state.

Since it is now clear what the two-electron states represent we proceed
to the calculation of the dipole matrix elements, which is straightforward
though tedius, starting with the D, .

Deey = (c|==zn1E@)|er) + (c| — 22 E(t)|e1) = ..... =
4
= _\/ﬁ [<¢15|Z|¢2p><¢6p|¢6’p> + <¢ls|¢2p><¢6p|2|¢s’p>] E(t)

4

V12

since it is obvious that, (¢5|¢2,) = 0. Somewhat more tricky, is the evalu-
ation of the (¢.p|¢.r,) product.

<¢15|Z|¢2p><¢sp|¢s’p> E(t),

(o) = [ dx0(0)60y(x) = [ drr?R(r)R.(r)
= 8(c — ') cos(87(e) — 67 (¢)).

For the H~ the phase shifts corresponding to the involved photoelectron
kinetic energies (~ 0.37a.u.) are neglilible for both channels S or D (see
figure 1.5). Finally we obtain (¢.,|¢.1,) = 6(e—¢’), thus giving for the matrix
element D.. (1) = _J%<¢15|Z|¢2p>6(5 — ¢)E(t). We have (¢15]z|¢2,) =
—d//3, where d = 1.29 au. is the radial dipole matrix element of the
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hydrogenic 1s — 2p transition. Noting now that the calculation of the other
matrix element D.., is similar with that of D,.,, we obtain finally, for the
two-electron dipole matrix elements:

2
V3
D, (t) = & dE(t)é(s — &") = Qa(t)6(e — ') (4.25)
V3
The strength of the transition into the continua |c;) and |e3) is 22/ =
1./(2). Using equations (4.25) the approximations (4.11) are quite obvious.
Intensity dependence of I';, 5,, Q. For the given transition wr = 0.375
a.u. we have Iy = 27| D(e = wr + E,)|%, Sy = —(E%(t)/4)a,(wr), for the
decay rate and the shift of the ground state. The quantity a,(w) is the
dynamic dipole polarizability, defined by the relation (5.13). In first ap-
proximation, a(wgr) ~ —10 as someone can be see from figure 5.4). On
the other handHaving obtained the one-photon two-electron dipole matrix
element (see figure ?77), and using equations (4.25) we find,

D (t) = dE(t)o(c —&') = Qi()é(e — &)

T, ~ 0.00123I,, S, ~ 0.46],
Q = 0.86V7, Q= 1.21V7, (4.26)

which are useful, for estimations of the relevant magnitude of the quantities.
It is evident now, that for the intensities we use (Ip < 10"W/cm?) the Rabi
frequency of the core-couplings is much larger than the decay rate of the
ground state I'y, . > I';. From the same relations, we can see that the
ac-Stark shift is much less compared than the ground state energy F, and
the photon energy.

Approximations and pulse parameters range. The validity of both
approximations, (4.15) and (4.11) depends on the pulse characteristics, such
as the photon energy, intensity and duration. Given that we deal with the
core excitation of H~, we have for the photon energy w = 0.375u. . The
interaction of the ground state with the continuum |1sep' P) is represented
now, effectively, by the integral I,(2) (eq.4.12). In the absence of the core-
resonant transition 1 = Q, = 0, this integral reduces to the well-known
intgral form [ de.|D,.|*/(z — E.), where making the pole approximation
gives the normal shift and decay rate of the ground state, because of its
interaction with the continuum. The core-resonant coupling with the other
two continua |2peplS), |2pep! D), modifies accordingly the shift and the de-
cay rate. The relevant algebra and formulas have been presented in detail
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by Hanson et al [40]. As indicated in that work, provided that the coupling
strengths are, in first approximation, constant over a range of the order of
the Rabi frequencies 24, {25, then the shift and the decay rate of the ground
state are given by relations (4.15). This means, that the results are not
expected to be reliable if the peaks of the PES approach thresholds or AIS.
Since the photon energy is w = 0.375u. we normally have (weak fields) a
Lorentzian peak at the position ¢ = 0.3473. Increasing the intensity, the
doublet starts to appear with peak separation equal to the Rabi frequency
Q.. Around this region the dipole matrix elements have a smooth depen-
dence on energy (very small negative derivative, see figure (?7), while the
first structure occurs very close to the n = 2 first excitation threshold of
hydrogen, at the position ¢ ~ 0.375 a.u. We must ensure that the intensities
we use give Rabi frequencies restricted by the inequality, 2. < 2F,. Using
equations (4.26) we obtain for the peak intensity of the pulse:

Iy < 10M*W/em?. (4.27)

On the other hand, for finite duration pulses the Fourier bandwidth should
be less than F, = 0.0277 a.u., namely Aw < F,. Noting that Aw ~ T,
with T being roughly the duration of the pulse, we obtain

T > 1fs. (4.28)

Using pulses, which satisfy the above conditions, approximation (4.11) is well
justified, since for the involved energy region the two-electron continuum
states have negliglible correlation interaction.

4.4 General pulse shape

Until now we had made the assumption of constant amplitude E/M field. We
are going to study the same problem by using more realistic laser pulses, such
as having a gaussian or sin? shape. The resolvent operator method is still
valid, if someone imagine application of that method in consecutive time-
intervals, where the hamiltonian can be considered as constant. However, we
will follow another way for treating the problem for finite-duration pulses.
From equations (4.12) through the inverse Laplace transform we get the
time-dependent equations for G (1), G.(t), G¢, (1), Ge,(1):

dU, Ty (1)

i dtgg = |E;+ 5,(t)—1 g2 Ugg

AU,

1 g = Ecch + Dccl . Uclg + DCC2 . UC29 + DCQ : UQQ

dt
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.dU.
7/7157 = EEUc1g+Dc1c'ch
dd.
! dt2 = LUyt Deye - Ugy

The quantities in the above equations are dependent on photoelectron energy
€. and the time ¢ namely, I' = T'(¢), 5, = 54(t), Doy = Deylec,t), Uy =
Ueg(eert) Unig = Unyy(ecs) Usgg = Uy ).

The resolvent operator, here is used first for the treatment of the constant
laser pulse and secondly for the elimination of the continuum, in a consistent
way. The time-dependent differential equations are free from integrals over
the continuum states, since only the decay rate I'y and the energy shift 5,
are included. The pulses we use have the form as given by equation (4.8)
with the amplitude time-dependent either of gaussian or sin? form (eq.2.8).
In order to compare our results with different pulse shapes we choose in the
duration of the pulses, so that the total E/M energy given to the atomic
system as the same. If the duration of the square pulse is T', the duration
of the sin? pulse is 27" and the duration of the gaussian pulse is 0.67. As
we shall see below, for those pulses the results does not differ significantly.

H™ Core Excitation
square pulse , T=48fs, I, = 3.51x10” W/em’

3e-04 ‘ : : :
—— | 2pep 'S >
---------- | 2pep 'D >
o =0.375a.u.
2-04 - .
w
S = 0.37 a.u.
©
le-04 ®=0365a.. 7
0e+00 f WD A N - -~
0.28 0.3 0.32 0.34 0.36 0.38

Photoelectron energy (a.u.)

Figure 4.2: Partial PES of the excited core states as a function of the photon
energy. The pulse used is of constant amplitude.
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4.5 PES of H™ near Core Resonance

In figure 4.3 we plot the PES for various photon energies for the three pulses
used. Starting with w = 0.365 a.u. we note an asymmetric peak of the PES.
It is more obvious for w = 0.37 a.u. . The lower peak is due mainly to
the excited core states |2peplS),|2pep' D), and the higher peak is due to
the ground core state [1s? 15) (see figure 4.4). The structure of the PES is
quite similar for all three-different in shape pulses, although the phenomena
are more pronounced for the square pulse, due to the constant value of
its amplitude. An example of such of phenomenon is the assymetric peak,
mentioned before. Exactly on resonance the doublet makes its appearance,
although not strongly. For the specific duration, the intensity of the light
is not sufficient for the strong manifestation of the doublet. Finally, note
the symmetry of the PES structure between the symmetric ( regarding the
resonant energy wr) photon energies w = (0.365—0.385)a.u. and w = (0.37—
0.38)a.u..

In figures 4.4 and 4.2, we present partial PES where the population of
the system in the ground and excited core state can be determined. For
off resonance, photon energies the ground core states is highly populated
in the expected photoelectron energy ¢ = w 4+ F,. However, there is an
appreciable population of the excited states in photoelectron energy ¢ =
w+ E; — (wp —w) = 2w+ E; — wpr. In reality this peak is the lower-energy
member of a doublet peak, occuring in the population of the excited states,
the other peak being located at the energy € = w 4 F,, thus overhelmed by
the population of the ground state. The peaks are sharper in the case of the
square pulse, though the structure is evident for the other shapes as well.
As the photon energy approaches the core resonant energy the symmetric
doublet begins to dissapear (figure 4.2), while on resonance we have one peak
for the core-excited states. At the same time the population in the ground-
core state decreases (to the benefit of those of the core-excited state) where
on resonance they are of comparable magnitude (figure 4.4). Note that the
core-excited state, belonging to the ' D two-electron continuum has larger
population than of that belonging to the 'S two-electron continuum, as
expected.

In figures 4.5 we plot the PES as a function of the peak intensity of
the pulse, for the gaussian and the sin? pulses. The development of the
doublet from the single Lorentzian to the doublet of peaks is presented.
The doublet peak structure begins to make its appearance for intensities at
about ~ 3 x 102W/cm?, while for intensities up to ~ 9 x 1012W/em? a
strong symmetric doublet exists. No significant difference, due to the shape
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of the pulses, exists in the PES.

Next, we present PES as a function of the duration of the pulses. Results
for the square and the sin? pulses are plotted (figures 4.6). The sharpness of
the peaks with increasing the duration T is evident due to the corresponding
sharpness of the Fourier bandwith (Aw ~ T~1). However, a difference exists
between the two pulses. The asymmetry of the peaks in the PES changes.

Finally, in figure 4.7, PES for pulses that differ only in shape is presented.
Since the transferred E/M energy is the same for all pulses, the spectrum is
very similar for all cases.
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H Core Excitation
Square pulse,, T=24fs, I, = 3.51x10" W/em®
T

— o =0.365au.
- o =037au.
o =0.375au.
1603 - —— o =0.38au.
—-- o =0385au.
w
S
o
=]
5e-04 - B
=
0e+00 RUPERLYNEEIA
0.32 0.34 0.36 0.38
Photoelectron energy (a.u.)
H™ Core Excitation
sin® pulse, T=48fs, I = 3.51x10" W/cm®
T T 1
— o =0.365au.
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1603 - —— o =038au.
—-- o =0385au.
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Photoelectron energy (a.u.)
H™ Core Excitation
gaussian pulse, T=14.5fs, I, = 3.51x10" W/em”
T T 1
— o =0.365au.
- o =037au.
o =0.375au.
1603 - —— o =038au.
—-- o =0385au.
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Figure 4.3: PES for various photon energies and for the three used pulses,
square, sin? and gaussian
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H™ Core Excitation
square pulse , T = 48 fs, I, = 3.51x10" W/em®

T
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H" Core Excitation
square pulse , T = 48 fs, I, = 3.51x10" W/em®
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| 1sep P>
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®w=0.37au

dP/de
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0.36 0.38
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Photoelectron energy (a.u.)

H Core Excitation
gaussian pulse ,  =0.375, T=14.5fs, | = 3.51x10" Wicm®
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dP/de

le-04 -

1

06400 : 4
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Photoelectron energy (a.u.)

0.38

Figure 4.4: Partial PES, indicating the population in the ground and the
excited states. Note the doublet in the PES of the excited states. This
doublet dissapears on resonance.
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Figure 4.5: The development of the double structure of the PES as a function
of the peak intensity of the pulse. The data are plotted for the sin? and
gaussian pulse.
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Figure 4.6: PES as a function of the duration of the pulses.
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Chapter 5

TDSE of H™ in a strong laser
field

5.1 Introduction

As a two-electron system the negative hydrogen ion (H ™) is rather unique
in that its very existence as a bound system relies on strong electron cor-
relation. It has thus served as a prototype in many studies of traditional
single-photon absorption and continues attracting interest in that context
[7, 5, 54, 85]. Naturally, it has also received attention in the context of
ionization (detachment) under strong laser fields, as its behavior sheds light
on subtle aspects not easily accessible in other two-electron systems such as
Helium or the alkaline earths [56, 15, 66, 64, 26, 72, 75, 71]. Its low binding
energy (~ 0.754eV), vis a vis the photon energy of available lasers, poses spe-
cial difficulties in the experimental exploration of multiphoton processes and
ATT (above threshold ionization) which has required particular inventiveness
on the part of those who have conducted such studies [81, 92, 2, 1, 80], most
notably Bryant and collaborators [81, 92] and references therein. Note that
the frequency tuning in that series of experiments has been achieved through
the Doppler shift of radiation from a C'O; laser relative to a fast H~ beam.
Interestingly, the most recent of their results [92] have made possible the
measurement of the ratio of the 5 to the D partial wave in two-photon de-
tachment at photon energy in the range of 1.165eV, in good agreement with
theory [61, 83, 45].

Until now the interpretation of the relevant experimental data has proven
successful within LOPT (Lowest-order perturbation theory) and sometime
even on the basis of single-electron model. Yet the question of its behavior

105



5.2 Time Dependent Schrodinger Equation 106

under conditions requiring the non-perturbative solution of the TD (time-
dependent) Schrédinger equation remains practically open. A beginning in
that direction is represented by the very recent results of Scrinzi and Piraux
[75], using an extension of their technique reported in an earlier paper [74],
which, however, has not included photoelectron energy spectra and ATI.
It is our purpose in this paper to report results obtained through a TD
non-perturbative theory based on a fully correlated two-electron model pro-
viding complete information on the behavior of the system including ATI.
To the best of our knowledge, this represents the first glimpse of ATI in H~
beyond the single-electron model and in a photon frequency range that has
been examined experimentally, albeit at intensities corresponding to the per-
turbative regime. Some of our results, such as ionization yields as a function
of laser power, offer the possibility of comparison with analogous results ob-
tained by means of different techniques [56, 64, 26, 61], in addition to those
of Scrinzi and Piraux, providing thus an assessment of the present state of
understanding of this basic problem in strong field interactions beyond the
single active electron approximation.

5.2 Time Dependent Schrodinger Equation

The time-dependent Schrodinger equation (TDSE) for a two-electron system
in an external laser field is written as (in atomic units),

iaﬂb(rla ra, t) = [HO + V(t)] 1&(1‘1, ra, t) (5'1)

with Hg the free-field atomic hamiltonian and V' the time-dependent inter-
action between the system and the laser field. In the velocity gauge, the
interaction operator is

1

C

V(1) (P14 p2) A(1), (5.2)
with py,p2 being the momenta of the two electrons and A the vector
potential which is connected with the electric field through the relation
E = —¢'9;A. In our calculations, we assume laser fields linearly polar-
ized along the z-axis for which,

A(t) = e, Ap f(t) sinwt, (5.3)

where f(t) = sin?(xt/T) is the pulse envelope of duration 7. The basic idea
and the formal details of the construction of the two-electron states (with
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total angular momentum L) can be found in [9, 11]. In brief, we use one-
electron hydrogenic orbitals, ¢, jmm. (v) = 171 Py (r)Y,, (8, d)o(m;), with the
radial functions P,;(r) satisfying the well known radial eigenvalue equation.
The P,; functions with negative or positive eigenvalues are expanded on a
set of B-splines of order k and total number N defined in the finite interval
[0, R]. The two-electron energy eigenfunctions of the system are then written
in the form [11],

SL SL SL
ol (rre) = Y Colgy(nal,naly) s o, (r1,12), (5.4)
nili,nals
where \I/;ffh nol, are the two-electron orbitals, of total angular momentum

L, constructed in the LS coupling of two-electron configuration space. Here
|C§(LE)(nlll, naly)|? is the probability density for the configuration (n1ly, nals)
in the nth energy eigenstate belonging to the symmetry SL. For F > 0,

@g(LE) represent the discrete continuum states. The two-electrons eigen-

functions @g(LE) = &, satisfy the eigenvalue equation and the boundary

conditions,

Ho®urm(ri,re), = FEor®urm(ri,rs) (5.5)
®,10(0,0) =2, (R, r2) = @,0m(r1,R)=0. (5.6)

Yet the nature of this system requires particular care as outlined below. In
order to construct the one-electron radial eigenfunctions P,;, a box of radius
R = 1000q.u. with 992 B-splines of order £ = 9 has been used. The two-
electron basis functions \Ilgfhmlz\, (r1,r2) are constructed in terms of about
2000 configurations (nql1, naly) for the symmetry L = 0 and about 1500 for
each of the other symmetries up to L = 8.

Although, the matrix elements involved in our time-dependent calcula-
tions are in the velocity gauge, we have also calculated them in the length
gauge in order to check the completeness of our two-electron basis. The basis
we have chosen describes very well the continuum eigenstates but not very
accurately the energy of the ground state. The value it yields for the ground
state differs from that calculated by Pekeris [63] by about 16%. In princi-
ple, it is possible to improve, the strongly correlated ground state energy
further by including many more configurations, which in practice means a
larger computational effort, which would not alter our basic results in any
significant way. It should be noted that we do obtain a much more accurate
value, namely F, = —0.0277 a.u., for the ground state energy if we use a
much smaller box radius, namely R = 20 a.u. . This illustrates an inevitable
conflict of requirements for an accurate ground state energy as opposed to
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a box sufficiently large to accommodate excitation high into the continuum,
a conflict that is inherent in strong field non-perturbative theory. Assum-
ing the negative ion to be initially in its ground state with the field being
linearly polarized along the z-axis, we need consider only the M = 0 singlet
states (5 = 0). Expanding, the time-dependent wavefunction, in the basis

functions @g(LE) as,

¢(r17r27t) = anL(t) (I)E(LE)(rlerL (57)
n,L

and substituting in the TDSE we obtain a system of coupled first order
differential equations for the unknown coefficients b,,7,(¢):

d
i%me = Z (EnL 5nn/ 6LL' — VnL,n'L'(t))bn'L" (5.8)
n' L'

with the initial condition, |b,=1,z=0(f = 0)|* = 1. Truncation of this system
of equations (or equivalently the necessary number of states <I>§(LE)), depends
on the specific structure of the atom or ion, the pulse characteristics (peak
intensity, photon frequency, pulse duration) and finally the particular ob-
servable to be calculated, namely, ionization probability (Yield), photoelec-
tron energy spectrum (PES), angular distributions (PAD) of photoelectrons
or harmonic intensities.

The total number of coupled equations was about 250, corresponding to
the total number of two-electron states, of which the higher 30 or so cor-
responded to double-electron excitation. This selection, does not include
the double-ionization continuum, since its inclusion did not change the re-
sults. This is reasonable, because of the high-order process, in combination
with the shortness of the pulse, which is needed to get significant popu-
lation to those states. Therefore increasing the total number of states to
about 400, the results had remained unchanged. We have also investigated
the time-dependence of the population of the states involved during the
time-evolution of the process. Roughly, the ratio of the population of the
doubly-excited states to the population of the lower-energy states (single-
ionization without core-excitation) was about 107°. In practice, neither the
doubly-excited states nor the doubly-ionized states could have any signifi-
cant influence on the yields. However, they might have some slight influence
on the PES but this is insignificant for the pulse lengths we have used.

In the B-splines technique the density of states is determined by the
radius of the “box”, R. We have tested the convergence of the results,
with respect to the density of states by increasing the radius of the “box”.
Between R = 1000, 1250, 1500 a.u. no appreciable change has been found.
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5.3 Yield and PES of H~-

In the present study for the pulses we use, photon frequency (w ~ (0.5 —
2)eV), duration ~ (10 — 40)fs and peak intensity (I < 10W/cm?) the
selected states do not need to include the double continuum. Propagating
in time equation (5.8) until the end of the pulse, we are able to calculate,
the ionization probability (P), the PES (5) and the PAD (A) through the
relations,

Pt =) = > |bpam®), (5.9)
L,n(E>0)
S(Emt - OO) = Z |bL,n(E)(t)|27 (510)
Lin(E=E,)

A0, E,t— o) ~ | > (=) e tv/20 + 1 PL(0)br, u(my(1)]?, (5.11)
L=0

respectively. Here 6y is the scattering phase shift of the continuum eigen-
function and Pr(6) is the Legendre polynomial of order L.

slope ~1.01

—> slope~1.91

lonization Yield
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o——o »=0.04au.
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Figure 5.1: Ionization yields for photon energies w = 0.02 a.u. (0.54 V)
and w = 0.04 a.u. (1.17 V). Pulse duration 10 optical cycles and R = 1000
a.u..
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Tonization yields and photoelectron energy spectra have been calculated
for three photon frequencies and for various pulse durations.

In Fig.5.1, ionization yields, as a function of the peak intensity (/o) of
the pulses, are presented for photon energies w = 1.1 eV (0.04 a.u.) and
w = 0.54 eV (0.02 a.u.). The behavior of the yields in the low intensity
limit, follows the LOPT as it should. Thus for w = 1.1 €V the yield is pro-
portional to the peak intensity (yield ~ Ip) in accordance with LOPT for
the rate (W) of one-photon detachment (W; = &1/, with & being the usual
one-photon cross section). In an analogous fashion, the yield for w = 0.54
eV has the expected intensity dependence (~ I}?), since for this photon fre-
quency the lowest-order photodetachment channel (and the dominant one),
within LOPT corresponds to two-photon absorption. The slight deviations
of the yields, from the LOPT power dependence with increasing intensity
(611 for w = 1.1 €V and &zlg for w = 0.54 eV | where &5 is the general-
ized two-photon cross section), are connected with the breakdown of LOPT
due to ac-stark shifts, higher-order interaction terms and the finiteness of
the pulse durations. Note that, for the smaller photon energy w = 0.54 eV,
the deviation from the LOPT prediction is larger from that corresponding to
w = 1.1 eV, which means that the non-perturbative behavior appears sooner
as the intensity of the field increases and/or the photon frequency decreases.
This is compatible with the dependence of the ponderomotive potential (U),)
on the field parameters (~ Iy/w?). The abrupt decrease of the slope of the
yield for w = 0.54 eV, at the intensity ~ 2 x 1012W/cm?, is due to this effect
(the shifting of the ionization continuum by the ponderomotive potential),
as the two-photon channel closes. Finally, the gradual decrease of the slope
for each of the photon frequencies implies that saturation of the process has
set in.

Turning now to the PES (Fig.5.2) we note the presence of ATI peaks
(and their dependence on the peak intensity) as expected from formal the-
ory. For w = 1.1 eV (Fig. 5.2) and peak intensity (~ 1.9 x 10"'W/cm?),
we find the normal decrease of the consecutive ATI peaks, with increasing
photoelectron energy, in agreement with LOPT predictions, which suggests
that non-perturbative phenomena are not significant at this intensity. For
the higher intensities (In ~ 9.6 X 1011W/cm? and Iy ~ 1.9 x 10'2W/cm?),
on the other hand, strong field non-perturbative behavior sets in and is
manifested through the rise of the height of the first ATI peak, which ap-
proaches the height of the detachment peak. (For the higher intensity the
two peaks are equal in height). We have also performed our calculations,
for w = 0.82 €V with pulse duration and shape such that direct compari-
son to be possible with the very recent calculations by Scrinzi and Piraux
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Figure 5.2: Intensity dependence of ATI spectrum for w = 0.04 a.u.(1.1 V)
Pulse duration 10 optical cycles and R = 1000 a.u. . The relevant intensities
(starting from the lower graph) are 107%,5 x 107% and 107° a.u. .

[75]. In addition, we have spanned in our calculations a broader range of
intensities extending from the perturbative regime (~ 10'°W/cm?) up to
(~ 10W/ecm?). In Fig.5.3 we present our results together with those of
Scrinzi and Piraux, transformed in log-log plot. For peak intensities in the
range of (7 — 16) x 10"W/cm?, their results are in good agreement with
ours. There is, however, an appreciable discrepancy, which increases with
the duration of the pulse, for higher intensities. Their calculations, in com-
parison to ours, predict lower ionization yield for all cases, a discrepancy
that increases with increasing the peak intensity. Note that the power de-
pendence of our yield in the low intensity limit is proportional to the field
intensity (yield ~ I') with high accuracy. Although, the one-photon channel
closes for intensities at about ~ 1012W/em? no appreciable bend appears to
the yield curves. The gradual change of slope is mainly due to saturation
which seems to mask whatever effect the channel closing might have.

This behavior also reflects a disagreement with the results of Scrinzi and
Piraux, without at this stage having a definitive reason to argue in favor
of one or the other, or for that matter the results based on R-matrix Flo-
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Figure 5.3: Ionization yields for photon energy w = 0.03 a.u. (0.82 eV)
for various pulse durations. The numbers indicated inside the legend frame
show the duration of the pulses in optical cycles. R = 1000 a.u. . Related
results, taken from [75], are also plotted for comparison.

quet [66, 26] with which direct comparison is a bit problematic due to the
time-independent nature of that method. One encouraging aspect of our
results is the correcteness of the slopes in Fig. 5.1 and Fig. 5.3. We return
now to PES for various peak intensities in one graph (Fig. 5.4), illustrating
the dynamical rise of the height of the ATI peaks and their energy shifting,
with increasing the intensity. The substructure on the side of the ATI peaks
particularly evident at one intensity must correspond to the interference
between photoelectron signal amplitude of equal energy generated symmet-
rically before and after the peak of the pulse. This effect was first predicted
in a model calculation some time ago [3] and it has since been noticed in
quantitative calculation in atomic hydrogen [17] as well at helium [90]. Its
magnitude depends on an intricate interplay between intensity and pulse du-
ration and it would require quite high photoelectron energy resolution to be
detectable. In any case, its appearance in the PES of H™ provides a rather
clear cut documentation, since in atoms there is always the possibility of
additional complications due to structures originating from excited atomic
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states which are totally absent here.

dP/de(L/a.u.)
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Photoelectron Energy (a.u.)

Figure 5.4: Intensity dependence of ATI spectrum for w = 0.03 a.u.(0.82eV).
Pulse duration 16 optical cycles and R = 1000 a.u. The relevant intensities
(starting from the lower graph) are 0.427 x 1076,0.57 x 107° and 1.14 x 107°

a.u. .

An unusual feature appears in the spectra for the photon energy w = 1.1
eV, in the form of a splitting in the last peak for each intensity (Fig. 5.2).
With increasing intensity it gradually disappears, while the energy separa-
tion of the two subpeaks is practically independent of the peak intensity.
After detailed testing, we attribute it to the steep rise of the s — p tran-
sition matrix element as a function of energy (due to Wigner’s threshold
law [85]), in combination with the rise and fall of the pulse which is tracked
by the ponderomotive potential. Specifically, for w = 1.1 eV the photon
energy reaches the low energy wing of the s — p wave transition matrix
element. As the pulse rises in time, the ponderomotive potential pushes
the peak of the transition away which results to a drop of the detachment
rate. If the pulse rises sufficiently fast, its intensity eventually more than
makes up for the decreasing matrix element and the signal increases again
up to the point where the pulse reaches its peak. A minimum is reached in
between. The photoelectron energy shape is of course retraced as the pulse
falls. The magnitude and hence the visibility of the effect depends on how
steeply the matrix element changes with energy, in relation to how sharply
the pulse rises (falls) in time. It appears at the higher order photoelectron
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Figure 5.5: Population of the partial waves.

peaks because there the signal rises (falls) faster due to the higher order of
non-linearity. Consistently with this picture, its magnitude decreases with
increasing the peak intensity (at constant pulse duration) or increasing the
pulse duration (at constant peak intensity); at least for the pulse-shape we
have considered. It is more pronounced (in the overall signal) at peaks of
odd order because its origin is connected with the s — p-wave transition,
but is present in the signal of all partial waves to a lesser degree, as it should.
Finally, it should be totally absent for photon energies corresponding to a
smoothly varying energy range of the matrix element; and it is. It must be
stressed that the effect is very different from the one predicted in [3] some
years ago.

5.4 Strong atom-field interaction features

Yield, PES and ionization rates. Perturbation theory gives the ioniza-
tion rate of a N-photon process as a product of the cross section 6 and the
Nth power of the intensity of the field (see equation 3.1), WWN) = g1V,
However, this relation is valid when no significant amount of ionization or
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Figure 5.6: Ionization yield versus photon frequency.

excitation takes place during the rise of the pulse. Calculations of “weak”-
field ionization which assume the intensity of the pulse constant (square
pulse) are in good agreement with most of the available experimental data.
On the other hand, non-perturbative time-dependent methods have inherent
in their formalism the time-dependence nature of the laser field and a direct
comparison with strong-field experiments (where the laser field has a pulsed
shape) is possible. Nevertheless, in the limit of low intensities the results of
the time-dependent methods, should be comparable with results obtained
by perturbative approaches.

Defining an effective time 7.V corresponding to the duration of the laser
pulse, a direct comparison is possible for the probability of ionization. From
the rate ionization W), according to perturbation theory and for finite-
time pulses we obtain the probability of N-photon ionization Py, [48, 14]:

[ dton(1/w)N

Py=1-c¢ (5.12)

The intensity dependence of a laser pulse is modelled as I(t) = f(¢)ly, with
f(t) the “profile” of the pulse with maximum value the unity and I, being the
peak intensity of the pulse. Defining the effective time 7V of the process as
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Iy = 0.54 x 107 a.u., cycles =10
w (aw.) | P (eq.5.11) | Pi(eq.5.12) | P2 (eq.5.12) | Py + P
0.03 0.0014 0.00134 0.00083 0.00217
0.04 0.00198 0.00188 0.00019 0.00207

Table 5.1: Perturbative and TDSE results for w = 0.03,0.04 a.u. are
compared.

N = [°_dtfN(t), the probability of ionization, using equation (?7), reads:
Py =1—cap [—&N(Io/w)TSN] This formula is directly comparable with the
ionization yield, obtained by the non-perturbative time-dependent methods
in the low intensity limit. From the perturbative calculations, presented in a
previous section, (see figures 3.3 3.6) we compute the relevant one- two and
three-photon cross sections. In table (5.4) we present results obtained by
the TDSE and LOPT method. Finally, for lower intensities, it is expected
the rise of the nth-ATI peak to follow the perturbative predictions, namely
nth-ATI peak ~ [,n = 1,2,... In Fig.5.7, for photon energy fiw = 0.82eV
we plot this rising with the peak intensity for the first three ATI-peaks of
the process. No surprises happen since the results gives, 1st-ATI peak ~ [}
2nd-ATI peak ~ [}-? and 3rd-ATI peak ~ I2°.

Pulse duration effects. Shortness of the laser pulse is essential, for the
production strong fields (notice that I = AF/ASAt). Furthemore, short
pulses give rise to new experimental approaches for the study of laser-atom
dynamics.

An electron, ionized by a short laser pulse, is not accelerated by the
ponderomotive potential since the field vanishes before the electron escapes
from the focal region. Therefore the PES is not overwhelmed from this
ponderomotive acceleration, thus detecting experimentally as photoelectron

energy the energy at the instant of ionization. Therefore, an experiment with
short laser pulses demonstrates the intensity dependence of the ionization
probability in a direct way, making comparison with theoretical calculations
straightforward.. It is well known, that a finite in time laser pulse is consti-
tuted by an infinite number of frequency modes of magnitude determined
through the Fourier transform of the field. Roughly, the widths of £(¢) and
FE(w) are governed by the relation AtAw ~ 1/27. In the PES, this band-
width nature of the field appears as a broadening (of order Aw ) of the ATI
peaks. For field strictly monochromatic the ATI peaks in the PES have a
delta-function peak at the energies equal an integer multiple of the photon
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Figure 5.7: Intensity dependence of ATI peaks.

energy minus the binding energy (ignoring AC-Stark shifts and enhanced
intermediated resonances which complicates the spectrum). In Fig.5.8 we
present such calculations involving pulses that differs only in the duration
time. It is obvious, the connection of the pulse duration (or equivalently the
frequency bandwidth) of the pulse with the broadening of the ATT peaks.
Notice also, the relevant position of the background signal (ionization yield)
thus tending to the delta-function behavior of the PES. We also see, that
the higher in height ATI peak corresponds to the longer pulse. This is rea-
sonable, since the offered E/M energy is increased with increasing the pulse
duration.

A C-Stark shift and channel closing. For weak fields, making a per-
turbative expansion of the binding energy gives [26]:

Ey(w,1) = E,(0) - EQT(O) [a(w) + %] (5.13)

where a(w) is the dynamic polarizability!. The interaction of the field with

!The dynamic polarizability of an atomic state [n) in an electric field of amplitude £
is obtained by a(w,n) = —%asn/aE, where S, is the level shift of the atomic states due
to its interaction with the field [79].



5.4 Strong atom-field interaction features 118

H : R=1000a.u.,N=992 , k=9
sin’, 1 = 3.8x10"° Wicm’, ©=0.82eV
10 : :

100 cycles=8 i
: - cycles = 16
cycles = 32

Photoelectron energy (eV)

Figure 5.8: ATI peaks and pulse duration.

the atom, shifts the unperturbed energy of the atomic states. The first-
order correction is constituted by two terms, the AC-Stark shift 5, and the
ponderomotive potential £, = F2/4w?. In general, the AC-Stark shift of an
atomic state |n) interacting with a field of amplitude Ey is given by [49]:
E {nler|i)|?
5= By = o, S0

_ 42
“in w

(5.14)

The ponderomotive shift is obtained as the limit of the 5, (w > w,,), which
is valid for high Rydberg states. For low frequencies the ponderomotive shift
is the dominant one. In Fig.5.4 we present the dynamic polarizability of H~
as a function of the photon energy. This intensity-dependent shift (which is
also signature of a non-perturbative behavior process) gives rise to an inter-
esting phenomenon, namely, the “channel closure”. Consider an ionization
process with minimum number of required photons N, when the atom is
unperturbed. Then, neglecting the AC-Stark shift, the first ATI peak is at
photoelectron energy E. = Nfuw — E,(0). The ionization threshold, when
the atom interacts with the field, moves upward. Eventually, with increas-
ing intensity the ionization threshold will exceed the quantity N7iw, thus
making ionization by a N-photon process impossible. The critical intensity
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Figure 5.9: Dynamic polarizability.

1., where the N-photon channel closes, is given by the equation:

I - 4Eg(O) — Nlhw
a(w) + -%

w

(5.15)

5.5 Yukawa model potential and TDSE

This section is devoted to the minimal presentation of some results as a side
part of the main project. We present the figures without a detail discussion
on them. PES and yields have obtained with a model potential method.
The potential used is the well-know Yukawa potential, mentioned in the first
chapter of this Thesis. Figures are self-explanatory, since they include all
the necessary information. A direct comparison of the The basic phenomena
of non-perturbative process are also apparent in those figures.
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Conclusion

In summary, we have an elaborate picture of the strong-field behavior of
a fundamental and rather unique two-electron system. Our results are very
much within the scope of recent experimental activity [92, 80] providing at
the same time predictions for the next phase of such experimental studies
that could for the first time address the strong-field behavior of this system.
The comparison of our results with other studies, on some aspects that have
also been addressed by other authors, and the existence of non-trivial differ-
ences between different theoretical predictions point to a certain theoretical
maturing of the problem, which in coordination with proven experimental
possibilities may for the first time provide the stage for truly quantitative
insights into one of the most elusive and yet very fundamental settings of
strong field atomic behavior.
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