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Abstract

Recent e�orts towards performance and power optimization in large-scale Data
Centers have brought the use of Microservers in the forefront. Compared to tra-
ditional architectures, Microservers consist of smaller, less power-hungry Compute
Units (CUs) compared to traditional architectures. The key concept is that by
integrating such smaller CUs in high numbers, the resulting many-core system can
achieve high multi-threaded performance, while maintaining a low power pro�le.
In such an environment, expensive resources must be shared among CUs, since it
is costly and impractical to dedicate one to each CU. However, the management of
these resources requires to implement sharing mechanisms in the Operating System
(OS) and the software stack.

In this work, we investigated and implemented OS and user space software
mechanisms that are necessary for the deployment of ARM-based CUs in such
large-scale systems. We address the sharing of remote resources by fully exploiting
the underlying hardware features, such as Remote Direct Memory Access (DMA)
and Remote Load/Store. In particular, we have implemented software mechanisms
to (1) enable access to remote memory and (2) allow usage of a shared virtualized
10 Gbps Network Interface Card (NIC) by several CUs simultaneously.

Remote memory access is implemented in three di�erent ways: (1) As an ex-
tension of the local DRAM of the CUs, (2) As a remote Swap Device, and (3) as
an I/O character device accessed directly from user space. We demonstrate that
remote memory can be used e�ectively without performance penalty in a system
running a full OS.

The sharing of a virtualized 10Gbps NIC is achieved by a kernel network driver,
that we have implemented, which enables utilization of the customized hardware
as a standard Ethernet Device. This allows legacy applications that use Berkeley
Sockets to run unmodi�ed. The network driver makes use of scatter-gather DMA
for fast zero-copy packet transmission and reception and operates in Full-Duplex
mode by using two independent DMA channels. Additionally, it supports Interrupt
Coalescing and management of the MAC and PHY hardware blocks using the
Management Data Input/Output (MDIO) interface.

In conclusion, this work shows that we can indeed utilize a system built upon
ARM-based CUs that were not originally designed to operate in such an envi-
ronment, by the sharing of remote and shared resources by the Linux OS and
its user space environment. We expect this work to become even more relevant
with upcoming 64-bit ARM-based platforms, targeting large-scale servers for Data
Centers.





Περίληψη

Οι πρόσφατες προσπάθειες για βελτιστοποίηση της απόδοσης αλλά και της κα-

τανάλωσης ισχύος των μεγάλης κλίμακας Δατα ἓντερς έφερε τους λεγόμενους Μι-

ςροσερvερς στο προσκήνιο, οι οποίοι αποτελούνται από μικρότερης κατανάλωσης Υ-

πολογιστικές Μονάδες (ΥΜ) συγκρινόμενοι με τις παραδοσιακές αρχιτεκτονικές. Η

κεντρική ιδέα είναι ότι χρησιμοποιώντας μεγάλο αριθμό από τέτοιες ΥΜ μπορούμε

να κατασκευάσουμε μία πολυπύρηνη μηχανή που θα έχει υψηλή απόδοση στις πολυ-

νηματικές εφαρμογές και παράλληλα θα έχει χαμηλή ε νεργειακή κατανάλωση. Σε

τέτοιες μηχανές, οι ακριβοί πόροι αναγκαστικά διαμοιράζονται μεταξύ των ΥΜ, κα-

θώς δεν γίνεται να αποδοθούν πόροι για κάθε ΥΜ ξεχωριστά. Ωστόσο, η διαμοίραση

των πόρων αυτών απαιτεί την υλοποίηση κατάλληλων μηχανισμών στο Λειτουργικό

Σύστημα (ΛΣ) και γενικότερα στο επίπεδο του λογισμικού.

Σε αυτήν την εργασία, ερευνήσαμε και υλοποιήσαμε μηχανισμούς στο ΛΣ και

στο επίπεδο διεργασιών, οι οποίοι είναι απαραίτητοι για την χρησιμοποίηση ΥΜ βα-

σισμένων σε αρχιτεκτονικές ARM σε μεγάλης κλίμακας συστήματα. Υλοποιήσαμε
την διαμοίραση πόρων δύο ειδών, χρησιμοποιώντας τους διαθέσιμους μηχανισμούς

του υλικού, όπως η Remote Load/Store και Remote Load/Store. Συγκεκριμένα,
υλοποιήσαμε μηχανισμούς για την απομακρυσμένη προσπέλαση μνήμης και την χρη-

σιμοποίηση μιας κοινής και virtualized 10 Gbps διεπαφής δικτύου η οποία μπορεί να
χρησιμοποιείται από πολλές ΨΜ ταυτόχρονα.

Η χρησιμοποίηση της απομακρυσμένη μνήμης υλοποιήθηκε με τους εξής ακόλου-

θους τρόπους: (1) Σαν επέκταση της τοπικής DRAM μίας ΥΜ, (2) Σαν απομα-

κρυσμένη συσκευή για Swap, και (3) Σαν απομακρυσμένη συσκευή χαρακτήρων που
χρησιμοποιείται απευθείας από τις διεργασίες. Δείχνουμε ότι η χρήση της απομακρυ-

σμένης μνήμης σε ένα σύστημα με ΛΣ δεν επιφέρει μείωση της απόδοσης.

Η από κοινού χρήση της διεπαφής δικτύου 10 Gbps επιτυγχάνεται με ένα οδηγό
στο ΛΣ, τον οποίο υλοποιήσαμε και ο οποίος επιτρέπει στο ΛΣ να βλέπει την διεπα-

φή αυτή σαν κλασσική διεπαφή Ethernet. Αυτό είναι απαραίτητο για να μπορούν να
τρέξουν διεργασίες που χρησιμοποιούν τα Berkeley Sockets, χωρίς να χρειάζεται να
τροποποιηθούν. Ο οδηγός χρησιμοποιεί Scatter/Gather DMA για γρήγορη και zero-
copy μετάδοση και παραλαβή πακέτων και λειτουργεί σε Full-Duplex χρησιμοποιώντας
δύο ξεχωριστά κανάλια της DMA μηχανής. Επιπλέον, υποστηρίζει μηχανισμούς In-
terrupt Coalescing και μπορεί να διαχειριστεί τα MAC και PHY μέρη του υλικού
μέσω του πρωτοκόλλου Management Data Input/Output (MDIO).
Η εργασία αυτή δείχνει ότι πράγματι μπορούμε να φτιάξουμε ένα σύστημα βασι-

σμένο σε ΥΜ αρχιτεκτονικής ARM, οι οποίες δεν είναι σχεδιασμένες να λειτουργούν
σε ένα τέτοιο σύστημα. Πιστεύουμε ότι αυτή η εργασία θα γίνει ακόμα πιο σημα-

ντική στο μέλλον, καθώς νέες 64-μπιτες πλατφόρμες ARM εμφανίζονται, οι οποίες
στοχεύουν να χρησιμοποιηθούν σε μεγάλης κλίμακας Data Centers.
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Chapter 1

Introduction

Research in Computer Science and especially in the Data Center domain, has
started to include energy consumption as a performance �gure of merit. An im-
portant amount of the total budget accounts for the energy consumption of the
data center that includes power consumption of the cooling infrastructure and the
servers themselves (OPEX 1 ) and also the construction and installation of those
subsystems (CAPEX 2) as well (Figures 1.1 and 1.2). So, it is essential to quantify
and measure that cost and also �nd new methods and technologies for its reduction
as well. As a result, computer scientists and processor architects started talking
about performance of CPUs per Watt, and from now on every evaluation of a
system includes such �gures of merit that address energy consumption.

Therefore, growing amount of research e�ort in the Computer Architecture
domain investigates new technologies that can reduce energy consumption costs,
while preserving system performance compared to older or modern energy hungry
systems. New processor architectures started to appear, demanding a large portion
of the Data Center and High Performance Computing market, for example ARM
processors, new RAM and Flash technologies. As shown in Figure 1.3 a rise of
microserver units in the data center domain is expected, as more and more of those
systems are produced and purchased. While these technologies were in the past
mainly used in applications where energy consumption is a crucial factor, such as
Embedded Systems, Cell Phones, Sensors, Controllers, etc, the latest breeds of
these technologies start being used in large scale systems like Data Centers and
HPC, without su�ering from performance loss compared to traditional technologies
(Intel x86, x64).

The key concept is that smaller and less-energy hungry processors can be assem-
bled in large numbers in the same amount of space that traditional processors re-
quire and achieve the same performance. Each of those compute units is inferior in
terms of performance compared to traditional processors. However, the aggregate

1Operating Expense: ongoing cost for running a product, business, or system.
2Capital Expenditures: are used by a company to acquire or upgrade physical assets such as

equipment, property, or industrial buildings.

3



4 CHAPTER 1. INTRODUCTION

system performance of the system remains similar to the traditional systems, due
to the larger number of cores. As a result, they must fully exploit multi-threaded
and scalable workloads, as they cannot achieve sing-threaded performance. Thus,
scalability is of great importance, when designing and implementing such a system,
both in hardware and software levels. The hardware implementation must utilize
a hierarchical organization of the whole system, partitioning groups of cores into
same packages, server blades, etc and connecting them together with an appropri-
ate hierarchical network. Similarly, the system software stack must fully utilize the
underlying hardware mechanisms and allow common workloads to run on those sys-
tems transparently. Scalability is also of great importance in the system software
implementation as well.

Due to the large number of cores in such a system - and the physical packaging
- placement and management of resources (especially I/O) becomes a great concern
and challenge for hardware and software designers, as resources cannot be dedicated
to every compute node. It is very expensive and infeasible in terms of IC and PCB
packaging to place such resources for each compute node. Instead, expensive and
high-performance resources are distributed among groups of compute nodes. The
correct management and secure sharing of these resources is of great signi�cance
and as a result e�cient hardware and software mechanisms are required.

Except from sharing expensive I/O devices, even the main memory (DRAM)
placement can become an issue when designing the physical packages of such sys-
tems and as a result, one may not be able to place enough DRAM memory for
each compute node. In order not to su�er from performance loss, it is preferable to
also share components such as the main memory as well, instead of using shared
storage devices.

A big portion of the resource sharing problems burdens the system software,
that means the Operating System and the User Space environment. It must si-
multaneously allow unmodi�ed workloads to run in such systems and fully exploit
and manage the underlying hardware features in a secure way. Unfortunately,
the progress of software development and the software that exists in the wild is
very poor for such systems, especially for those that consist of ARM processors,
compared to that available for the traditional x86 systems. Currently, software de-
velopment e�orts for ARM architectures target the deployment of such processors
in mobile and embedded devices. Systems software for ARM processors targeting
large-scale Data Centers or HPC is still in its infancy.

A Discrete Prototype hardware platform that was constructed for the Eu-
roserver Project and is explained in Chapter 3 was used for the development and
evaluation of the software mechanisms that deal with remote memory usage and
sharing of a virtualized 10 Gbps Network Interface Card (NIC). The prototype
consists of platforms with ARM processors, several FPGAs and interconnection
circuits and will be explained in detail in a following chapter.



1.1. CONTRIBUTIONS 5

1.1 Contributions

In this work, we designed and developed Operating System and User Space mech-
anisms, that are essential for the deployment of ARM processors in a large scale
modern Data Center. These mechanisms address the use of local and remote re-
sources in a many-core ARM system, which may not be in the same integrated
chip and they even may not be connected by a network that allows coherency. As
a result, these Mechanisms must work well in processors that belong to di�erent
Coherence Islands (CIs - not connected by a coherent network) or Compute Nodes
(CNs).

Special research e�ort has been dedicated to the usage of remote RAM memory
in a variety of ways and also for the secure use of a shared virtualized network
interface by a group of Compute Nodes as well. For remote memory in particular,
we implemented three mechanisms for its e�cient usage, depicted in the list below
as items (1), (2) and (3). The �rst (1) mechanism deals with the extension of
the available physical memory that the Operating System sees, consisting of Local
RAM and segments of other Compute Nodes' RAM. With the second (2) way,
remote memory is used as a swap device, used by the Operating System only when
the local RAM is full. These two methods, require the OS to do all the management
of physical memory, leaving user space applications una�ected since they do not
sense the presence of remote memory, so they do not need to modify their API calls.
The last way (3), addresses the usage of remote memory by user space applications
explicitly. The applications must be developed or modi�ed for that purpose and
can access remote memory either via Load/Store instructions, RDMA operations
of I/O system calls.

Finally, I implemented a Linux kernel driver (4) that allows sharing of a high-
speed network interface 10 Gbps optical NIC, that is virtualized and shared among
the nodes. Sharing of a network interface is important for web services, where
many Compute Nodes have the same entry/exit point to the Internet.

List of contributions:

1. Remote memory as main memory extension

2. Remote memory as swap device

3. Remote memory as an I/O character device

4. Linux network driver for a virtualized 10 Gbps Network Interface

The rest of this work is organized as follows: In Chapter 2 we explore related
work that exists in the �elds of Remote Memory and Network Interface sharing,
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in Chapter 3 we describe the hardware testbed (Discrete Prototype) upon which
the software mechanisms are implemented. In Chapter 4 we describe the usage
of remote memory in a full system with Operating System and evaluate our im-
plementation with some micro-benchmarks in Chapter 5. Next, in Chapter 6 we
describe the sharing of the 10 Gbps NIC and the implementation of the network
driver for the Linux kernel and we present an evaluation of network performance.
Finally, we conclude in Chapter 7.

Figure 1.1: Data Center costs breakdown. Source: James Hamilton, Amazon Web
Services
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Figure 1.2: Data Center power draws. Source: IMEX Research

Figure 1.3: Worldwide microserver shipment forecast (Thousands of Units).
Source: IHS iSuppli Research, February 2013
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Chapter 2

Related Work

2.1 Remote Memory

As large-scale parallel and distributed systems evolve, e�cient hardware and soft-
ware mechanisms for using physical memory are investigated. Since more and
more processors are deployed in the same Integrated Chip [26] [34], the placement
of DRAM memory modules becomes an issue. It is simply unfeasible to dedicate
a large amount of DRAM arrays to each core or processor. Furthermore, the ever
increasing number of compute nodes in a large-scale distributed system or a NOW
(Network of Workstations) makes the sharing of even the physical memory of the
nodes unavoidable, especially for large-scale workloads. There are plenty of re-
mote memory implementations that exists, but the great majority of those address
the traditional x86 architectures. Additionally, the Operating Systems support
for these architectures is huge compared to the new ARM processors. Our work,
di�ers mainly on that remote memory utilization is implemented for the ARM ar-
chitecture using custom hardware interconnection. There is poor systems software
support for ARM architecture and is even poorer when addressing the use of such
processors in the Microserver or Data-Center domain. That is a result of the past
application target of the ARM microprocessors that are embedded and mobile de-
vices, which consist of a limited number of cores and do not run the workloads that
are found in data centers.

In [21] and [30] the authors implemented a remote memory swap device over
traditional Ethernet network in a Network of Workstations. The swap device re-
sides in the remote workstation's physical memory as a ramdisk device and is used
when the local physical memory is getting full. The network that connects the
nodes in this distributed system must be fast enough in order to bene�t from the
remote swap over the network, compared to the usage of the hard disk. Our remote
swap mechanism does not use traditional Ethernet network, but it rather uses our
custom interconnect that has a uni�ed address space utilizing Physical Address
Translation as described later. However, we also implemented a similar mechanism
using the Network Block Device (nbd) [6] for remote swapping to compare its per-

9
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formance with our approach. In [31] the authors use a similar approach for remote
swapping, as the previous work described. They implement remote swap over tra-
ditional Ethernet or In�niBand network in traditional 64 bit Intel architectures
with 64 bit Operating System. Authors of [33] also implement on-demand remote
swapping over an ATM network in a cluster that runs a Data Mining workload.

The FaRM system described in [19], uses uni�ed physical address space for
compute nodes in a cluster and utilizes RDMA to Read/Write to remote memory.
However, they created a programming model (API) for applications to use, thus
running commonly available applications without modifying their source code is
unfeasible. In [29] the authors address the usage of remote memory in the Data
Center domain, where physical memory blades are added to the racks and used
as remote swap devices. The memory modules in those racks can be accessed
by all compute nodes' OS and user space processes transparently, with the use
of custom hardware subsystems. In the same domain of Data Centers, authors
in [40] implement an optimized runtime system, speci�cally for Phoenix, that is a
MapReduce runtime. The runtime automatically manages concurrency and locality
in a cluster with shared memory.

In [23] the authors investigate and optimize remote memory accessing using the
MPI3 [22] runtime system and utilizing RDMA operations, in a modern large-scale
cluster.

There are many implementations that utilize RDMA either with special APIs
or transparently, in order to increase performance of communication between work-
stations. Their target application is either remote memory, remote resource access
or general intra-cluster communication. They are implemented above commonly
used network interconnects, such as Ethernet, In�niBand, etc, or they use custom
hardware. All of these systems target traditional x86/x64 architectures with the
corresponding commonly available operating systems Linux/Windows.

Virtual Interface Architecture (VIA) [16] is an abstract model of a user-level
zero-copy network, utilizing RDMA, and is the basis for In�niBand, iWARP and
RoCE. RoCE or RDMA over Converged Ethernet [25] a network protocol that al-
lows remote direct memory access (RDMA) over an Ethernet network and iWARP
[5] is a computer networking protocol that implements RDMA for e�cient data
transfer over Internet Protocol networks. The Sockets Direct Protocol (SDP) [10]
maintained by OpenFabrics Alliance, is a transport-agnostic protocol to support
stream sockets over Remote Direct Memory Access (RDMA) network fabrics. Au-
thors in [18] have implemented the SDP Protocol in the Microsoft Windows Oper-
ating System.

2.2 Shared Network Interface

Because the current trend in cloud computing is overcommitment of resources using
multiple Virtual Machines, great amount of e�orts has been spent investigating
virtualization of resources, especially storage and sharing of those resources among
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several Virtual Machines. Sharing of resources is also an important issue in data
centers where large numbers of compute units must necessarily share expensive
peripherals.

The most common virtualization and sharing of the same physical resource is
SR-IOV [8], that is a protocol speci�cation for both hardware and software and
targets the PCI and PCI Express devices' virtualization. SR-IOV is device inde-
pendent as long as the device connects to a PCI/PCIe bus and supports Virtual
Functions. Network interface sharing can be achieved as speci�ed in [28], where
each Virtual Machine sees a dedicated network interface using the Intel VT-d sub-
system. OpenStack [7] also support virtualization of Network Interfaces using
SR-IOV as described in [11].

Virtio [35] is a popular software mechanism for virtualized I/O resources among
multiple virtual machines and is current used by the KVM virtual machine hyper-
visor.

Authors in [20] and [15] investigate hardware mechanisms for enabling Network
on Chip (NoC) interface sharing among multiple processor cores, that belong to
the same coherence island (CPU), with special attention to fault tolerance issues.
Network on Chip optimization for ARM platforms is done in [36], where the authors
implement a Network Interface above the ARM AXI protocol and support di�erent
network topologies.
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Chapter 3

Discrete Prototype

The implementation of a small-scale system by the Computer Architecture and
VLSI Laboratory in ICS, FORTH for the Euroserver Project, is a proof of concept
that we can, indeed, build a microserver consisting of ARM processors. In this
Discrete Prototype, several mechanisms were implemented both in hardware and
software, which are essential for a microserver. The term Discrete Prototype is
derived from the fact that the system consists of parts that are available in the
market today, without the need of custom Integrated Chips

To this moment, two generations of Discrete Prototypes have been constructed.
Remote memory usage was implemented and tested in Generation 1 Prototype,
while sharing of the virtualized network interface was implemented in Generation
2. In the near future, all hardware features and software mechanisms will be
employed in the Generation 2 Prototype.

3.1 Discrete Prototype Generation 1

Figure 3.1 depicts a Generation 1 Discrete Prototype block diagram and in Figure
3.2 the actual system is shown. It consists of two Compute Nodes, connected
together back-to-back with a custom interconnect. Zedboards assume the role of
Compute Nodes in this prototype. Furthermore, each Zedboard is also a Coherence
Island, since there is not any coherent interconnection between the boards. Thus,
in our prototype the terms Compute Node and Coherence Island mean the same
thing and can be used interchangeably. Avnet Zedboards [2] are populated with a
Xilinx Zynq 7000 SoC that contains a dual core ARM Cortex A-9 processor and
a ZC020 FPGA that runs at 100 MHz. The FPGA implements all the essential
hardware mechanisms, such as the interconnection between the two Zedboards,
physical address translation for remote access and some other features that help
the software that runs in each Zedboard. ARM Cortex A-9 CPUs run at 667
MHz and have 512 MB of DRAM. They allow external communication with other
hardware modules or co-processors by the use of master ports GP0 and GP1,
ACP (Accelerator Coherence Port) and HP (High Performance) slave ports [13].

13
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Figure 3.1: Generation 1 Prototype using two Zedboards

Additionally, the CPU chiplet contains an Interrupt Controller, the GIC (Global
Interrupt Controller) [38] that handles all interrupt requests and disseminates them
to the appropriate core.

The FPGA of each Zedboard contains a block that implements the interconnec-
tion logic, connecting the two Compute Nodes that enables remote memory access.
Furthermore several essential and useful peripherals such as DMA and Mailbox are
implemented. The interconnection logic uses 4 ports of the ARM processor, which
are available in the Zynq 7000 SoC chip and is compliant to the AXI protocol
(Advanced Extensible Interface) [14]. Its also contains submodules for the in-
terconnection of the two Zedboards with an FMC-to-MC cable that consists of 16
LVDS pairs. Figure 3.3 gives a detailed view of the connections of several FPGA
blocks with the ARM processor inside each Zedboard.

The Chip2Chip FPGA block, which is seen in Figure 3.3, is the logic that allows
us to pass AXI Requests through the FMC-to-FMC cable to the other Zedboard
using LVDS (Low Voltage Di�erential Signal) signaling. We will not go into further
details of this circuit in this work.

The Direct Memory Access engine we use for data transfers between the two
memories is the Xilinx Central DMA or CDMA [37]. It can operate in a sim-
ple mode, transferring a large chunk of continuous data or in scatter-gather mode,
which allows transfers of multiple chunks of data, residing in di�erent parts of mem-
ory. Remote DMA or RDMA operations in our prototype are very e�cient, since
the DMA engine understands the AXI protocol and creates requests of interleaved
AXI Read/Write bursts.

Mailbox is a hardware mechanism that allows transmission of small messages
from one Zedboard to the other and the creation of a remote interrupt upon trans-
mission completion.
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Figure 3.2: Physical View of the Gen.1 Prototype

Figure 3.3: Detailed Hardware Blocks & Protocols Diagram of Gen.1 Prototype

A remote memory access �ow and the hardware components that are involved
are seen in Figure 3.1 and Figure 3.3 in more detail. GP0 and GP1 master ports of
the ARM processor produce AXI requests when a the processor issues a Load/Store
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to a remote physical address. ACP and HP slave ports, receive external AXI
Requests that end up as Read/Writes in the physical memory. Figure 3.4 shows a
typical connection of two modules (i.e. CPU and DSP processor) using the AXI
protocol. Each AXI Operation consists of a Request from the master module and
a Response from the slave module. For example, a Store instruction to a remote
memory address (DRAM of the other Compute Node) that is issued by the ARM
processor in our prototype, is passed through our interconnection as an AXI Read
Request. The other node's ARM processor (in speci�c the Snoop Control Unit or
the DRAM controller subsystem) responds back with an AXI Response with the
corresponding data or error status.

Figure 3.4: The AXI Protocol. Source: ARM RealView ESL API v2.0 Developer's
Guide

ACP and HP slave ports of a remote Compute Node can both be used for
accessing remote memory. When the ACP port is used, the AXI requests pass
through the cache coherence system (Snoop Control Unit) of the ARM processor,
while HP port allows AXI requests to reach the DRAM controller directly.

Hardware Block Details

In Figure 3.3 the various hardware blocks involved for the interconnection of the
two Compute Nodes are shown. The �ow of a remote Load/Store is the following:
The initiating processor produces an AXI 3 32 bit request at GP0 master port. It
must be converted to AXI 4 64 bit protocol via the AXI interconnect FPGA block.
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The request then passes throigh some smaller interconnects and a bridge that is
used for AXI Request ID conversion and reaches the axi2axi block that drives the
15 LVDS pairs of the FMC-to-FMC cable. Once the request passes that block it
is outside of the Compute Node 0. When it reaches Compute Node 1 through the
cable it passes the axi2axi and then undergoes an AXI protocol conversion again.
It is converted from AXI 4 64 bit request (than was produces in the FPGA of
Compute Node 0) to an AXI 3 64 bit request. because the ACP slave port of the
processor works only with 64 bit AXI 3 requests.

The AXI response signals for that request go all the way back to Compute Node
0 than initiated the AXI request (signals BVALID for read and WVALID for write
requests, as shown in Figure 3.4).

3.1.1 Physical Address Translation

The Physical Address Translation FPGA block, allows us to to map segments of
DRAM memory of Compute Node 1 to Compute Node 0 physical address space
and vice versa. Each mapped segment is accessible by the ARM processor as a
valid physical memory range.

We can use either ACP or HP ports to access the memory of Compute Node 1
from Compute Node 0. This Physical Address Translation block is con�gurable at
FPGA circuit synthesis time and any required memory mapping can be created.
However there is an limitation in the ARM Cortex-A9, that prohibits mappings
into physical addresses below 0x40000000. The ARM processor does not produce
AXI requests in the GP slave ports, when the processor issues Load/Stores in
physical addresses lower than 0x40000000. As a result, we can only create physical
memory mappings in the range above that limit.

Figure 3.5 depicts the process of accessing the higher 256 MByte of DRAM
memory of Compute Node 1 from Compute Node 0, using the Physical Address
Translation through the ACP port. Compute Node 1's memory segment is mapped
at physical address range 0x40000000 - 0x5FFFFFFF of Compute Node 0. When
the processor of Compute Node 0 issues a Load/Store instruction at a physical
address inside this mapped range, an AXI Request is generated by that processor's
subsystem at comes out of the GP port GP port. Then the request passes through
our Physical Address Translation block and converts it to a new AXI Request
targeting the memory of Compute Node 1, with the appropriate new destination
physical addresses that is valid in the physical address range inside Compute Node
1. In Figure 3.5, address 0x50000000 of Compute Node 0 is translated to address
0x10000000 of Compute Node 1. That translation is necessary, in order physical
addresses to be valid and understandable by both nodes.
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Figure 3.5: Physical address translation.

3.2 Discrete Prototype Generation 2

Discrete Prototype Generation 2, consists of 4 to 8 Compute Nodes, connected
together with a custom interconnection network through a central main board.
This time, the discrete Compute Nodes are the Microzed boards [1] connected into
a HiTech Global main board, with a custom PCB designed by FORTH. Microzeds
are populated with Xilinx Zynq-7000 SoC, which consists of an ARM Cortex-A9
dual core processor, 1 GByte of DRAM and a ZC7020 FPGA. HiTech Global main
board contains a Xilinx Virtex-7 FPGA and a 10 Gbps Network Interface (or NIC)
along with its optical transceiver. Figure 3.6 shows a hardware block diagram of
the Gen. 2 prototype with 4 Compute Nodes (Microzeds) and Figure 3.7 shows a
photograph of the actual prototype with 8 Microzeds connected.

The FPGA of the main board implements the 10 Gbps MAC Layer associ-
ated with the physical Network Interface. The 10 Gbps NIC is shared and
accessible by all Compute Nodes connected to the main board.

The custom interconnection network consists of hardware blocks that reside in
the FPGAs of each Microzeds and the main board, utilizing dedicated LDVS pairs
for each Microzed. The multiplexing of tra�c from/to di�erent Microzeds is done
in the main board. Load/Stores or DMA operations end up as AXI Read/Write
Requests as described in Section 3.1. Furthermore, Physical Address Translation
is implemented in the main board, to allow connected Compute Nodes to access
peripherals that reside in the main board. Physical Address Translation is done
the same way as in Section 3.1.

The Xilinx AXI DMA engine is used by each Microzed to transmit and receive
Layer 2 Ethernet frames to/from the 10Gbps MAC in the main board. This DMA
engine di�ers from the CDMA engine described in Section 3.1, because it does not



3.2. DISCRETE PROTOTYPE GENERATION 2 19

Figure 3.6: Gen.2 Prototype Hardware Block Diagram
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Figure 3.7: Physical View of the Gen.2 Prototype

transfer data from memory address to memory address. Xilinx AXI DMA does not
accept destination memory address as an argument because the destination is not
a memory controller, but a custom hardware module. Furthermore, it consists of
two independent Data Movers - one for transmission and one for reception. The
separation of TX/RX paths enables Full-Duplex data transfers when using the AXI
DMA engine.

3.3 Hardware Virtualization

It is an essential prerequisite for the Network Interface to be virtualized in order
the connected Compute Nodes to share it and transmit/receive packets properly.
In our Discrete Prototype the NIC is virtualized by hardware assistance, in the
following way: each Compute Node connected to the main board has a dedicated
pair of TX/RX FIFOs that store Ethernet Frames that are transmitted/received
from/to that node, as shown in Figure 3.6. A TX scheduler implemented in the
central FPGA consumes the TX FIFOs in a round-robin fashion 1. Finally, The
TX scheduler passes the consumed frames to the 10 Gbps MAC. In a similar way,
when frames arrive to the 10 Gbps MAC it pushes them into the appropriate RX
FIFO according to the Destination MAC address �eld of the Ethernet header of
each frame. Because of the round-robin scheduling algorithm, the nodes share the
available bandwidth of the NIC evenly.

1Future work in the Euroserver project includes implementing a Quality-of-Service mechanism
in the TX and RX paths
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It is essential that nodes have di�erent MAC addresses, that are known to the
10 Gbps MAC in order to di�erentiate network tra�c between di�erent nodes.
Furthermore, di�erent MAC addresses allow a remote end point to distinguish the
Compute Nodes.

The con�guration registers of the MAC are not virtualized2. This means that
a change in the MAC settings by a Compute Node, will have a global e�ect in the
system, a�ecting all connected Compute Nodes.

2In the same fashion the PCI/PCIe device virtualization in x86/x64 architectures works.
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Chapter 4

Remote Memory

Remote memory usage is very important for microserver environments, where each
Compute Node has limited local physical memory (RAM). Workloads that maintain
a large set of their Working Set in memory, in order not to su�er from I/O latency,
will experience issues in a system that has limited amount of physical memory. If
the physical memory is not large enough to hold this Working Set, the I/O issue
rises again, since the Working Set will be swapped into a storage device. As a result,
remote memory usage to overcome this problem of limited local RAM is essential.
Workloads like these are very common in Data Centers, like Data Analytics.

We would like to use remote memory segment from other Compute Nodes, when
they do not need them, instead of using a slow storage device. Essential condition
to gain bene�t from remote memory usage is that the latency and throughput that
applications will experience using this remote memory will be far better than using
a storage device. In the following subsections, we describe how we utilized remote
memory in a full system with Operating System and User Space environment.

4.1 Page Borrowing & Caching Policy

With the aforementioned we end up with the term Remote Page Borrowing, mean-
ing that a Compute Node can borrow a memory page (or frame) from another
Compute Node to expand its available physical memory. Since page borrowing
occurs between di�erent Coherence Islands, we must prede�ne its way of op-
eration in order to avoid driving the system to inconsistency. Recall that di�erent
Coherence Islands are not connected with any network or bus that allows coherency
between processors.

Two are the secure ways of implementing Page Borrowing:

1. Remote page can be cached only in the caches of the user Compute Node.
(Figure 4.1).

2. Remote page can be cached in the owner Compute Node.(Figure 4.2).

23
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Figure 4.1: User Cached Page Borrowing

Figure 4.2: Owner Cached Page Borrowing

The advantages of the 1st way are emerged when a Compute Node needs to
borrow a page from another Compute Node the time the second does not use it. In
the scenario where we have only one page user Compute Node which uses almost
the same data most of its lifetime, the 1st way increases latency and throughput,
since every access to the borrowed page is done to its local cache. Only the �rst
access will pass through the interconnection to the remote memory to access the
remote page and bring it to the user's cache. Figure 4.1 depicts an operation, where
Compute Node 0 accesses a remote page (Step 1) residing the DRAM of Compute
Node 1 via the interconnection network, brings it to its cache system (Step 2) and
�nally the subsequent accesses are done to its local cache (Step 3).

The 2nd way addresses occasions where we want a page to be shared simul-
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taneously by the two Compute Nodes. Then, it surely is more fair to keep that
page into the cache of the owner. It is fair, when the two Compute Nodes, need
that page for the same amount of time. The remote user will inevitably experience
the latency of remote access through the interconnection network. Accesses from
the remote user must not bring that shared page into the remote user's cache, so
he must use that page as 'uncached'. In Figure 4.2, Compute Node accesses a
shared page that resides in its local DRAM (Step 1) and brings it in its own cache.
Then, Compute Node 0 accesses the shared page copy through the interconnection
network to the remote cache system via the ARM ACP Port, without bringing the
page to its cache (Step 3). Finally, Compute Node 0 accesses again the shared page
from its local cache, because the cached copy is not dirty (Step 4).

There is another way of implementing sharing of a memory page that uses the
ARM HP port. Accesses that pass through the HP port bypass the cache coherence
system and talk directly to the DRAM controller. Although, both Compute Nodes
can use the shared page as 'uncached' by accessing it directly from a DRAM, they
will not bene�t from the performance the cache systems can give. In this work,
we focus only on 1st way of Remote Page Borrowing.

4.2 Remote Memory and the Operating System

In a modern microserver system, a full Operating System and user space environ-
ment is needed. Thus, it is essential to explore the ways we can utilize remote
physical memory, without compromising security or require a huge software devel-
opment e�ort by the user space application programmer. Remote physical memory
utilization in an environment like this can be utilized in three di�erent ways. They
di�er in the way the Operating System and the user space applications see and
manage the available remote physical memory.

1. Use of remote physical memory as an extension of the available physical
memory, seen by the Operating System.(Section 4.3

2. Use of remote physical memory as a swap device, managed by the Operating
System.

3. Use of remote physical memory as an I/O character device. With the use of
a kernel driver, the remote memory access and management is done by the
user space applications or a user space runtime system.

Any software application (OS, user space program, or bare metal program)
that runs in a processor can access memory in two ways. Either with Load/Store
instructions or with DMA operations. I/O Read/Write system calls by a user-space
application also end up as Load/Store instructions or DMA operations implemented
by the low level kernel drive, which manages these system calls for a speci�c device.

In our system each Compute Node runs its own Operating System that is a
Linux kernel 3.6.0 as provided by Digilent, Inc. We use the higher 256 MByte of
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Compute Node 0
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Space
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0xF0000000
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Local DRAM
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Interconnection

& Translation
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Figure 4.3: Memory Mappings in a Sparse Memory Model, as it is used in our
system. Physical address space of Compute Node 0 at the left and Node 1's at the
right. The arrows show the memory mapping and the port used (ACP or HP).
HEX numbers at the left of each memory space show the start address of each
segment.(Note: Mappings for I/O peripherals is not shown.)
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Addresses Translated Ad-
dresses

Destination
Node

Destination
Port

0x50000000 -
0x5FFFFFFF

0x00000000 -
0x1FFFFFFF

Node 1 ACP

0x60000000 -
0x6FFFFFFF

0x00000000 -
0x1FFFFFFF

Node 1 HP

0xF0000000 -
0xFFFFFFFF

0x10000000 -
0x1FFFFFFF

Node 0 ACP

Table 4.1: Physical Memory Mapping and Translation

Compute Node 1's DRAM as remote memory for Compute Node 0. The lower
256 MByte of Compute Node 1 are dedicated to its software only. Using the
available ACP and HP ports we have several memory mappings available for use
by the software as seen in Figure 4.3 and Table 4.1. Address ranges 0x50000000
- 0x5FFFFFFF and 0x60000000 - 0x6FFFFFFF target the same 256 MByte of
Compute Node 1's DRAM, while address range 0xF0000000 - 0xFFFFFFF target
the higher 256 MByte of Compute Node 0's own DRAM.

4.3 Remote Memory as Main Memory Extension

We can use a remote physical memory segment as an extension of the local physical
memory of a Compute Node and include it in the set of physical memory that is
available to the Operating System. This means that the kernel structures that de-
scribe the physical memory (table memmap), will also include the remote physical
memory segment. This remote memory will also be fragmented to physical page
frames as well, just like the 'normal' local physical memory. These physical page
frames are available to store virtual pages belonging to user space applications and
also the kernel itself as well.

Figure 4.4 depicts the correlation of virtual pages to physical frames with the
use of page tables. In the left side the linear virtual address space of a user space
application is shown. Available physical memory is shown in the right sight of the
picture, along with its valid physical address ranges. Virtual to physical address
translation, as we know, is achieved by the use of multilevel page tables, which it
the case of ARM have two levels - Page Directory and Page Table. The address
of the Page Directory resides in a register and changes each time a context switch
is occurred. Using this register, Page Walk process can be done in order to �nd
the corresponding physical address of a virtual one, when such a mapping does not
exist in the Translation Look-aside Bu�er (TLB).
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Figure 4.4: Remote Memory as Main Memory Extension

4.3.1 De�ning Remote Memory

In order the Operating System to view the remote physical address range, we
must describe it in the appropriate Device Tree segment. The Device Tree is
a binary �le, used by the Linux kernel in ARM architectures and describes the
memory and I/O peripherals of the speci�c board. It is the equivalent of BIOS
in x86 architectures. The Device Tree �le is loaded by the u-boot (boot loader for
ARM), then given as an argument to the Linux kernel. In our case, we had to
add a segment in the device tree of Compute Node 0 that describes the physical
address range that corresponds to Compute Node 1 physical memory (through the
underlying hardware physical address translation).

memory@00000000 {

reg = <0x0 0x20000000 >;

device_type = "memory";

};

memory@50000000 {

reg = <0x50000000 0x10000000 >;

device_type = "memory";

};

Listing 4.1: Device Tree memory segments. Remote memory through ACP
port.

Listing 4.1 shows the device tree segments that describe the available physi-
cal memory. The �rst segment describes 512 MByte of local DRAM that start
at physical address 0x00000000 with length 0x20000000. The latter describes
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remote physical memory that start at physical address 0x50000000 with length
0x10000000, resulting in 256 MByte of Compute Node 1's DRAM. Note that the
address 0x50000000, makes use of the ACP port as described in Table 4.1.

We can instead map the same remote memory segment using the HP port, by
adding the device memory shown in Listing 4.2.

memory@00000000 {

reg = <0x0 0x20000000 >;

device_type = "memory";

};

memory@60000000 {

reg = <0x60000000 0x10000000 >;

device_type = "memory";

};

Listing 4.2: Device Tree memory segments. Remote memory through HP port.

Using remote physical memory, borrowed from Compute Node 1, as an exten-
sion of physical memory for Compute Node 0, the Linux Operating System that we
run at that node sees 768 MByte of total available physical memory. By running
the free utility, we can con�rm that. Listing 4.3 shows the output of the utility.

root@zedboard0 :~# free

total used free shared buffers cached

Mem: 775168 129752 645416 0 10556 59600

-/+ buffers/cache: 59596 715572

Swap: 0 0 0

Listing 4.3: free command in Compute Node 0 to view available physical mem-
ory.

We observe that the available physical memory is larger 512 MByte (of local
DRAM), almost 768 MByte. There are some MBytes reserved by the Operating
System, to maintain memory resident chunks of its own code and data structures.
Those, reserved MBytes are at the beginning of the physical memory, almost always
starting at physical address 0x8000 for ARM architectures. Of course, this reserved
memory segment is not available for user space applications and also it cannot be
swapped to a storage device as well. We can also view the physical address ranges
that are valid, we can read the special /proc/iomem �le. The output in our system
is the following (Listing 4.4.)

root@zedboard0 :~# cat /proc/iomem

00000000 -1 fffffff : System RAM

00008000 -00429 b8f : Kernel code

00450000 -0049 f66f : Kernel data

50000000 -5 fffffff : System RAM

e0001000 -e0001ffe : xuartps

e0002000 -e0002fff : /axi@0/ps7 -usb@e0002000

e0002000 -e0002fff : e0002000.ps7 -usb

e000a000 -e000afff : e000a000.ps7 -gpio

e000d000 -e000dfff : e000d000.ps7 -qspi

e0100000 -e0100fff : mmc0

f8000000 -f8000fff : xslcr

f8003000 -f8003fff : pl330
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f8007000 -f8007fff : xdevcfg

Listing 4.4: Valid physical memory ranges seen by Linux in Compute Node 0.

The output of the special �le shows that physical address ranges 0x00000000
- 0x1FFFFFFF and 0x50000000 - 0x5FFFFFFF are labeled as System RAM and
are available for applications. Physical memory segments that are reserved by
the Operating System are shown as the ranges 0x00008000 - 0x00429B8F and
0x00450000 - 0x0049F66F. The rest of the ranges are I/O peripheral mappings.

By running the same utilities in Compute Node 1, we can see the following
results (Listings 4.5 and 4.6):

root@zedboard1 :~# free

total used free shared buffers cached

Mem: 254828 65760 189068 0 6948 34052

-/+ buffers/cache: 24760 230068

Swap: 0 0 0

Listing 4.5: free command in Compute Node 1 to view available physical mem-
ory.

root@zedboard1 :~# cat /proc/iomem

00000000 -0 fffffff : System RAM

00008000 -00480323 : Kernel code

004aa000 -004 fcfcf : Kernel data

e0001000 -e0001ffe : xuartps

e0002000 -e0002fff : /axi@0/ps7 -usb@e0002000

e0002000 -e0002fff : e0002000.ps7 -usb

e000a000 -e000afff : e000a000.ps7 -gpio

e000d000 -e000dfff : e000d000.ps7 -qspi

e0100000 -e0100fff : mmc0

f8000000 -f8000fff : xslcr

f8003000 -f8003fff : pl330

f8007000 -f8007fff : xdevcfg

Listing 4.6: Valid physical memory ranges seen by Linux in Compute Node 1.

Compute Node 1 has only the lower 256 MByte of its DRAM available to
its Operating System. That memory resides into address range 0x00000000 -
0x0FFFFFFF as Listing 4.6 shows.

4.3.2 Accessing Remote Memory from User Space

With the way of remote memory usage, detailed in this Section, user space processes
do not have direct access to the remote memory. Ultimately, they do not know
that remote memory exists, like they do not know about physical memory in
general. They get only virtual addresses to virtual pages that the Operating System
has set up and manages on their behalf. The main way, user space processes can
dynamically request memory is the usage of the malloc() library function, which
ends up calling system calls and requesting space from the Operating System. Only
the Operating System, sets the page tables up for each user space process. As a
result, the usage of a virtual page by a user space process can either be in local or
remote physical memory, without the process knowing where it resides.
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The main advantage in such an environment is that user space processes do not
need to by modi�ed or from the start developed for that purpose, using a special
library and API. That way, we can run all processes we can run in a traditional
environment, this time with additional remote physical memory.

To con�rm that we indeed can get memory space larger than the 512 MByte
of local DRAM for a user space process, we developed a program that uses the
malloc() library function and requests large memory from the Operating System,
sliced in several smaller chunks of various sizes. Since the Operating System,
implements memory allocation for processes' request in a lazy way, called lazy
allocation, we must ensure that the process indeed got the memory size it requested
and given a positive response from the Operating System. To con�rm that, we
access all the requested pages. Running this utility we can almost allocate and
access the whole physical memory that is available. We know that we accessed the
physical memory, because we do not have any swap device enabled. Furthermore,
as shown in Listing 4.7, running the free command during the operation of our
utility we can see that a very large portion of the physical memory is in use and
�nally that we do not have any swap device enabled.

total used free shared buffers cached

Mem: 775168 764116 11052 0 4760 19860

-/+ buffers/cache: 739496 35672

Swap: 0 0 0

Listing 4.7: Available physical memory during large allocation test.

In speci�c, we observe that 764116 KByte from the total available 775168 KByte
are used.

4.3.3 Sparse Memory Model

As mentioned before, the ARM processor (as populated with the Xilinx Zynq 7000
SoC) does not allow AXI Requests to be produced on the GP0 and GP1 ports for
physical addresses lower than 0x40000000. As a result, we cannot map a remote
physical memory segment into a Compute Node's physical address space lower than
this limit. Thus, the set of physical addresses, in a Compute Node with remote
memory, that is available, contains an unused and invalid physical address range
- that is not mapped anywhere. That kind of physical memory model is called
Sparse Memory .

In our Discrete Prototype, as shown in Figure 4.4 and 4.3, an unmapped phys-
ical address range exists at 0x20000000 to 0x4FFFFFFF, creating an unused seg-
ment of 768 MByte. The next usable address range is 0x50000000 to 0x5FFFFFFF
which is mapped to the higher 256 MByte of DRAM of Compute Node 1, through
ACP port. Using HP port we map again the higher 256 MByte of Compute Node
1, to range 0x60000000 - 0x6FFFFFFF of Compute Node 0. A large 2 GByte seg-
ment follows, that contains unmapped segment and mappings of the board's I/O
peripherals. Finally, we mapped the higher 256 MByte of DRAM of Compute Node
0, so it can access its own DRAM segment through HP port, instead of the normal
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way that occurs inside the CPU chip. That segment is mapped at 0xF0000000 to
0xFFFFFFFF.

Depending on what segment of Compute Node 1 we want to use from Node
0, an unused segment of di�erent size is produced in the physical address space
of Compute Node 0. In general, physical address space of Compute Node 0 and
mappings depend on which segment of remote memory we want to use and the also
con�guration of the physical address translation block that resides in the FPGA
as well.

4.4 Remote Memory as Swap Device

Another way of utilizing remote physical memory, is its usage as a remote swap
device. In this case, it is only used when local physical memory is full.
Using remote physical memory this way means that the remote range will not be
split into physical frames available for hosting processes' pages. It is seen as an
I/O device by the Operating System and is managed by the OS threads that do
page swapping and the appropriate block drivers.

Access to the swap device is occurred only when a swapper kernel thread decides
to store an unused physical memory frame, or when a page fault occurs and the
Operating System must bring the stored physical frame back to memory. Figure
4.5 depicts the page fault procedure.

Figure 4.5: Page fault and physical frame recovery
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In the �gure, the processor issues a Load/Store instruction to a virtual address
of a page that does not have a corresponding physical frame present in the physical
memory. A page fault exception is raised, generating a trap. The Operating
System, �nds the corresponding physical frame from the swap device and brings
it to a free physical memory frame. If there is not any free frame in the physical
memory, the Operating System, will swap the least used physical frame.

4.4.1 Ramdisk Driver

In order to use physical memory of Compute Node 1 as a remote swap device in
Compute Node 0, we developed a kernel driver that creates a ramdisk for exactly
that physical address range. The ramdisk is represented by a block device entry
in the /dev directory of the Linux, namely /dev/krama. When a read or write is
occurred on this device, our driver is invoked and services that request. Note that
the device can be used for many di�erent application except for swapping. For
example, one can use that ramdisk device and our driver to create an EXT4 �le
system. In our work, we use the driver and the device as a swap device.

The driver's main component is an array of struct page structures that describe
the physical page frames the driver is responsible of. Reading and writing from/to
those physical page frames is done by a function called kram_make_request that is
invoked every time a read or write operation is done upon the /dev/krama device
entry. The function completes a read or write operation by reading data from the
appropriate physical addresses and returning them back to the caller, or by writing
the given data to the appropriate physical address.

Since we use physical pages that are not allocated by a kernel allocator, we
must ensure that these pages are accessible by the kernel source code macros and
helper functions. In order to achieve this, we must add those remote pages to
the kernels physical memory tables, but reserve them for usage only by our swap
driver. We modi�ed the kernel source code and added a reservation segment during
boot time. In the arch/arm/mm/init.c �le we added the following code segment
in the arm_memblock_init() function.

memblock_reserve (0x60000000 , 0x10000000 );

Listing 4.8: Reserve physical memory for exclusive usage.

Now, that this physical address range is reserved by the kernel for the driver, we
use the code shown in Listing 4.9 to get the structures (struct page) that describe
the corresponding physical page frames. Constant PHYS_BASE_ADDR is the
starting address of the remote DRAM segment that we want to use as swap. In
our default setup it is 0x60000000, that is the address of the higher 256 MByte of
Compute Node 1's DRAM, using the HP port. Variable pages is the number of
physical page frames the driver must use as swap space and is given as an argument
to the driver upon the loading (insmod). Kernel macro __phys_to_pfn() gets the
page frame number of a physical address by looking into the kernel's mem_map
table and macro pfn_valid() checks if a given page frame number is a valid one. If
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the remote physical memory segment was not reserved as mentioned before, this
function call would have indicated the given page frame numbers as invalid. Finally,
we make use of the pfn_to_page() macro that gets the corresponding struct page
for a given page frame number. That way, the memory table of the driver is �lled
with valid physical page frame descriptions.

for(i=0; offset =0; i<pages; i++; offset += PAGE_SIZE)

{

pf_no = __phys_to_pfn(PHYS_BASE_ADDR+offset );

if (! pfn_valid(pf_no))

{

return -ENOMEM;

}

memory[i] = pfn_to_page(pf_no);

if (memory[i] == NULL)

{

return -ENOMEM;

}

}

Listing 4.9: Get page frames for a physical address range.

Note that for using the remote memory segment as swap we must describe it
in the device tree the same way as described in Section 4.3.1 and shown in Listing
4.2. This is essential, so we can reserve those physical page frames at kernel boot
time.

When Linux boots at Compute Node 0, running the free utility, will show that
the availably physical memory is 512 MBytes, since the remote 256 MBytes of
DRAM have been reserved at boot time.

total used free shared buffers cached

Mem: 513024 125992 387032 0 10928 56984

-/+ buffers/cache: 58080 454944

Swap: 0 0 0

Listing 4.10: Available physical memory before swap driver loading.

We can load the driver by using the series of commands (that require root
privileges) shown in Listing 4.11.

$> insmod ./ kram_main.ko pages =256

$> mkswap /dev/krama

$> swapon /dev/krama

Listing 4.11: Load remote swap driver.

The �rst command loads the driver into the kernel. The argument pages in-
structs the driver to use 256 MBytes of the remote memory as swap device. The
command mkswap creates a swap �le system in the /dev/krama device. Finally,
the swapon command enables the usage of the /dev/krama device as swap.

After enabling the swap, running the free utility again shows the available
memory for the system (Listing 4.12).

total used free shared buffers cached

Mem: 513012 127040 385972 0 10864 57200



4.5. USER SPACE AND SWAP 35

-/+ buffers/cache: 58976 454036

Swap: 262140 0 262140

Listing 4.12: Available memory when swap driver is loaded.

We observe that the physical memory is still 512 MBytes, but this time we have
additional 256 MBytes of swap as shown in the Swap line Listing 4.12.

4.4.2 Driver with DMA

We also implemented the remote swap driver utilizing the DMA engine for Remote
DMA data transfers instead of memory copying with Loaf/Store instructions. The
function of the driver that services read/write requests to the /dev/krama device
initiates DMA transfers using the simple mode of the DMA engine. Simple DMA
mode requires the data to be transfered to be serialized in memory. Swap driver
utilizing DMA operations increases data transfer throughput as shown in the eval-
uation Sections 5.2.6 and 5.2.7.

4.5 User Space and Swap

User space processes only know about their virtual memory space and nothing
else. Thus, they do not know about the existence of a swap device. Only the OS
knows and manages it. When the physical memory (DRAM) is insu�cient it starts
storing pages from di�erent processes into the swap (swapping).

Running the memory allocator application, as we shown in Section 4.3.2 we can
con�rm that the swap is indeed used by the OS, when a process requests memory
larger than the available physical DRAM. Running the free utility at a moment
during the allocator operation we can con�rm that the swap is used. Listing 4.13
shows that almost all physical memory is used and furthermore that a large part
of the swap device is used.

total used free shared buffers cached

Mem: 513012 501852 11160 0 68 2248

-/+ buffers/cache: 499536 13476

Swap: 262140 136564 125576

Listing 4.13: Using the swap device

4.6 Explicit Access of Remote Memory

It is possible for user space processes to access physical memory explicitly, using
some underlying kernel features. Linux kernel provides a set of special device
�les in /dev directory. The /dev/mem special �le in particular, gives access to
physical address space (physical RAM and I/O peripherals) the Operating System
can seen to user space processes. Using that special �le a process can Read/Write
from/to physical addresses using either I/O system calls read()/write(), just like
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�le operations or use the mmap() function to map a physical address range to
its virtual memory space. In detail, calling mmap() upon /dev/mem, ends up
requesting from the Operating System to set up the process's page tables and add
mapping of physical frames to virtual pages of that process. As detailed below, an
example of mmap() call as used in our applications is shown.

memfd = open("/dev/mem", O_RDWR | O_SYNC );

mem = mmap(0, mapsize , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

phys_addr & ~MAP_MASK );

Argument mapsize is the size in Bytes that we request to mmap and it always
is a multiple of page size. Argument PROT_READ | PROT_WRITE de�nes the
permissions for the mapped pages. MAP_SHARED argument tags the mapped
pages as shareable among processes. We use it in our experiments to tag the
mapped page as uncached , in order to measure latency and throughput of the
remote physical memory itself. The last argument is the �le descriptor of /de-
v/mem, which is page aligned using the & MAP_MASK bitwise operation. The
mmap() function returns a pointer to the base address of the �rst virtual page that
corresponds to the requested physical address range. If the mmap() is successful,
the process can read or write any byte of the physical memory with Load/Store
instructions. For example:

1. Load: a = mem[i];

2. Store: mem[i] = a;

4.7 Explicit Remote DMA Operations

Similar to explicitly physical memory access is the procedure of explicitly initiating
DMA operations from user space processes. The DMA register space is memory
mapped into some physical address range and therefore can be accessed using the
same methods described in Section 4.6. A process can initiate a DMA transfer by
de�ning the physical memory source and destination addresses, the size and some
control �ags. Those, are given as arguments to the DMA engine, by writing their
values in the appropriate DMA registers. For example Listing 4.14 shows a DMA
transfer initiated by a user space process that has used mmap() on /dev/mem to
obtain access to the DMA registers.

#define dma_write(base_addr , reg_offset , value) \

*( unsigned int *)( base_addr + reg_offset) = (( unsigned int)data);

#define dma_read(base_addr , reg_offset) \

*( unsigned int *)( base_addr + reg_offset );

memfd = open("/dev/mem", O_RDWR | O_SYNC );

dma_virt = mmap(0, mapsize , PROT_READ | PROT_WRITE , MAP_SHARED , memfd ,

dma_phys_addr & ~MAP_MASK );

dma_write(dma_virt , CTRL_REG_OFFSET , INIT_VALUE );

dma_write(dma_virt , SRC_REG_OFFSET , SRC_PHYS_ADDR );

dma_write(dma_virt , DST_REG_OFFSET , DST_PHYS_ADDR );
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dma_write(dma_virt , SIZE_REG_OFFSET , SIZE);

do{

pollbit = dma_read(dma_virt , STATUS_REG_OFFSET );

pollbit &= 0x00000007;

}while(pollbit != 0x02);

Listing 4.14: User space DMA transfer.

When the size register is written the DMA engine starts the transfer. The
process waits for the DMA transfer to complete by polling the status register of the
DMA engine. The macros dma_write() and dma_read() are used for convenience.

4.8 Remote Memory as I/O Device

The last way of "viewing" remote memory in a full system with Operating Sys-
tem and user space environment, as mentioned Section 4.2 is as an I/O character
device. Using similar methods as in the mechanisms for explicit memory access
from user space described in Section 4.6 we implemented a kernel driver that man-
ages an character device. That character device is created in the /dev directory of
the Linux �le system and represents the remote memory available in the system
(/dev/remotemem). Our driver implements a set of functions that service read-
/write requests to the /dev/remotemem character device �le. It also implements
the mmap() function for usage of remote memory as described in Section 4.6.

That way a user space process can access the remote memory through the
/dev/remotemem device �le either as a �le using the read/write system calls or via
direct Load/Store instructions using the mmap() function.

4.9 Operating System with Non-Uniform Memory Ac-
cess (NUMA)

We described three ways of remote memory "viewing" and usage by the Operating
System and the user space environment. The �rst one, described in Section 4.3 is
the most convenient one, from the perspective of user space processes. It also is the
better way, from a performance aspect, since there is not any I/O driver invoked
when remote memory is accessed. However, using remote memory that way (as a
main memory extension) can reduce performance, because the Operating System
(and of course the user space environment) does not know which segments of its
physical memory are local and which are remote. Thus, management of user
space code and data from the OS can result in data or code placement in
remote memory, even though there is available local memory. This is of
course an idiot way of using remote memory. We want the Operating System to use
remote physical memory only when the local physical memory is getting full, just
like in Section 4.5 but without the swapping subsystem in between. In other words
we want the Operating System to be aware of the underlying hardware topology.
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This type of Operating System implementation is called Non-Uniform Memory
Access aware Operating System or NUMA aware. Many NUMA systems
employ hardware support and special NUMA Operating System implementations.
x86 architectures provide hardware support and most Operating Systems for that
architecture are NUMA aware. The main feature of a NUMA aware Operating
System that we want in our Prototype is the use of Distance Vectors, that
are latency metrics for di�erent physical memory segments. That way, when the
Buddy Algorithm of the Linux Operating System is invoked to doe physical page
frame placement and replacement knows about the topology of the underlying
memory system and uses the most e�cient way to place/replace memory page
frames. As a result, local physical memory is always used when it contains free
page frames and remote memory is only used when the local memory is getting
full.

The Linux implementation for NUMA platforms, partitions both CPU cores
and physical memory segments into di�erent groups or NUMA nodes. Figure
4.6 shows an example of NUMA platform, where for each 2 CPU cores there is a
dedicated DRAM segment. Of course all course can access all available DRAM
segments, but accessing segments that are not "local" to them will su�er from
greater latency.

Core

Memory

Core

L1 L1

L2

Core

Memory

Core

L1 L1

L2

Figure 4.6: A simple NUMA platform.

The Linux operating system for such platforms has di�erent physical memory
description structures than the default �at memory model. It organizes memory
segments into node structures, that describe a numa node. A node structure con-
tains array of physical memory frame structs. Consequently, when the kernel needs
to allocate a physical page frame it always considers memory frames that belong
to the numa node the request came from �rstly. For more details on how physical
memory is managed in a NUMA aware Linux kernel refer to [4].
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4.10 Deadlock Scenario

In this work we have described using remote memory in several ways. However,
all those ways require Compute Node 0 to use remote memory from the other
and Compute Node 1 to use only its remaining DRAM memory. We cannot use
remote memory by both Compute Nodes at the same time, using the ACP port.
During remote memory implementations, our team discovered that a deadlock is
in the processor occurred when trying to use remote memory from both Compute
Nodes. The hardware team of the laboratory traced that problem and found out
that it occurs when two AXI Write Requests with di�erent destinations arrive in
the processor Snoop Control Unit, through the ACP port. Because using remote
memory in both Compute Nodes requires the issue of AXI Write requests by both
nodes' processors the deadlock is unavoidable. As a result, we cannot use remote
memory from both Compute Nodes simultaneously.

To create the deadlock situation, we implemented a bare-metal application that
creates AXI Write Requests to speci�ed remote memory addresses using Store
instructions. One instance of the application runs on Compute Node 0's processor
and the other one at Compute Node 1's processor. Compute Node 0 application
runs a loop Store instructions to remote memory (that is the memory of Compute
Node 1). When application at Compute Node 1 starts the same procedure, the
�rst Store instruction that is issued creates the deadlock in the whole system. The
same happens, the other way, when Compute Node 1 starts �rst and Compute
Node 0 later.
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Chapter 5

Remote Memory Evaluation

We implemented some micro-benchmarks both in bare-metal and Linux process
forms, to measure latency and throughput achieved when using remote memory.
We implemented both forms (bare-metal and Linux process) to con�rm that run-
ning a full system with Operating System and User Space environment does not
negatively impact the performance seen by processes.

All experiments were done in the Discrete Prototype described in Section 3.1.
The two Compute Nodes (Zedboards) are connected with a high speed FMC-to-
FMC cable that consists of 15 LVDS pairs and the interconnection logic is imple-
mented in the FPGAs of each board. The FPGA runs at 100 MHz and the digital
logic allows transfers of 64 bits each clock cycle. As a result, the maximum through-
put that the interconnection circuit can achieve is 6.4 Gbps. Keep in mind that
this data rate does not take into account the processor to FPGA interconnection
(ACP/HP and GP ports) latencies.

5.1 Bare Metal Evaluation

5.1.1 Latency

Running a bare metal application at Compute Node 0, we can access remote mem-
ory of Compute Node 1, either with Store/Load instructions or with DMA opera-
tions and we can measure latency and throughput.

It is important to measure the latency of a simple Read or Write operation
for one word (4 Byte). With a basic setup we can measure the Round Trip Time
for such an operation. That word must not be cached anywhere, in order to
measure the latency of the interconnection network itself.

A single Load or Store instruction to a remote memory region produces an AXI
Read or Write request and its corresponding response from the remote processor.
Thus, a single Load or Store to an uncached remote segment su�ers the Round
Trip latency of the interconnection network.

We created an application that does a large number of Stores/Loads to the
same memory address and then calculate the time it takes for a pair of Store/Load

41
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instructions to complete by dividing the total time to the number of iterations. In
our Discrete Prototype we measured

1450 nsec for a Store/Load pair to complete

Thus the AXI Request Round Trip Time is about 725 nsec. The pair of
the instructions produce 2 AXI Requests: one Write AXI Request and one Read
AXI Request. Although the latency seems quite large, it is measured in the Discrete
Prototype in which the interconnection logic is implemented in the FPGAs that
run with a slow clock of 100 MHz.

Many of the FPGA clock cycles are spent to the axi2axi blocks that handle the
LDVS pairs of the FMC-to-FMC cable as described in Section 3.1. When 8 LVDS
pairs are utilized this subcircuit consumes almost 39 to 40 clock cycles. The rest
33-34 clock cycles are spent in the essential AXI protocol conversion blocks and
the processor's memory-to-ACP port and memory-to-GP port subsystems.

Logic Analyzer

The measurement is in accordance with the results seen using a Logic Analyzer
(Xilinx ChipScope). With a Logic Analyzer we can see an AXI Read or Write
Request and their corresponding responses, determining the FPGA clock cycles it
took to complete. (FPGA clock runs at 100 MHz). The Logic Analyzer logic probes
(ChipScore FPGA blocks) are put inside the FPGA logic in the Zedboard that is
the initiator of the experiment (Compute Node 0). In particular they are inserted
at the point the GP ports of ARM processor connects to the interconnection logic.
Each time an AXI Request is produced to the GP port by the processor the probe
captures it. The logic probes connect to the Logic Analyzer software of a PC via
the JTAG port of the boards.

We can measure the FPGA clock cycles needed for an AXI Read Request to
complete by measuring the time di�erence between the signals ARVALID (Read
Address Valid) and RVALID (Read Valid). In a similar fashion, we check the
signals AWVALID (Write Address Valid) and BVALID (Write Valid).

Figures 5.1 and 5.2 show screen shots of the Logic Analyzer software for the
AXI Read and Write Requests. The vertical cursors mark the activation of the
aforementioned AXI signals. The AXI Read Request takes 73 clock cycles to com-
plete, while the AXI Write Request takes 65. As a result a pair of a Load and Store
instructions needs 138 clock cycles to complete. The 145 clock cycles we obtained
from software experiments contain the additional overhead of the GP and remote
ACP ports latency that cannot be measured with the Logic Analyzer.
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Figure 5.1: AXI Read Request latency in Logic Analyzer
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Figure 5.2: AXI Write Request latency in Logic Analyzer
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5.1.2 Data Transfer Throughput

We also measured the throughput achieved for data transfers from local to remote
memory and vice versa, with a bare-metal application that uses a loop of Load/S-
tore instructions to copy 100 MBytes of data (the application does many iterations
of that copying to amortize the measurements). We used the memcpy() function
that is included in the bare metal libraries that come with the Xilinx SDK suite.
Using either ACP or HP ports we made some experiments and the results shown
in Table 5.1.

Direction Destination
Port

MB/s Gbps

1 Local Read - Remote Write ACP 110 0.88

2 Local Read - Remote Write HP 112 0.90

3 Remote Read - Local Write ACP 45 0.36

4 Remote Read - Local Write HP 40 0.32

Table 5.1: Data transfer throughput (for bare-metal application).

Column Direction shows the data transfer direction and Destination Port men-
tions the ARM slave port used for that data transfer. The last two columns shows
the result for the data transfer in MBytes/sec and Gbps. Experiments 1 and 2,
read from local physical memory and write to the remote memory - the �rst using
the ACP and the latter the HP port. The last two experiments read from the
remote physical memory and write to the local memory - experiment (3) through
ACP and (4) through HP port.

Note that data transfers that copy data word-by-word or byte-by-byte, do not
require the AXI Requests for each word or byte to be completed. Instead, the
hardware produces multiple interleaved AXI Requests, since it is allowed by the
AXI protocol.

5.1.3 DMA Throughput

Besides data transfers using Load/Store instructions, we can utilize DMA opera-
tions to the mapped remote physical memory segment (RDMA operations). The
RDMA is a Data Mover, which transfers the content of a physical memory segment
to another. Four kinds of data transfers can be performed with RDMA:

1. From local to remote

2. From remote to local

3. From local to local

4. From remote to remote
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There is an FPGA block that implements the Xilinx CDMA in each Zedboard
(Compute Node). It resides outside of the CPU cores, thus it has to create 2 AXI
requests for the transfer of a single word (or Byte). It produces an AXI Read
Request for reading the data from the source physical address and an AXI Write
Request to write those data to the destination physical address. The DMA engine
utilizes several techniques to improve performance, such as multiple interleaved
AXI Requests, Read/Write bursts, etc.

Using a bare metal application that handles the DMA engine and executes 1
million iterations of 8 MByte DMA transfers (8 MBytes is the largest data size the
CDMA can handle), we measured the throughput achieved for data transfers in
various directions and di�erent source and destination port utilizations (ACP or
HP).

Results are shown in Table 5.2. Columns Source and Source Port show the port
used for reading data, while columns Destination and Destination Port mentioned
the port used for writing data. The last two columns show the measured throughput
in MByte/sec and Gbps for each data transfer.

Source Source
Port

Destination Destination
Port

MB/s Gbps

1 Local ACP Remote ACP 310 2.48

2 Local ACP Remote HP 305 2.44

3 Local HP Remote ACP 610 4.48

4 Local HP Remote HP 507 4.06

5 Remote ACP Local ACP 264 2.11

6 Local ACP Local ACP 263 2.10

7 Local HP Local HP 716 5.73

Table 5.2: DMA data transfer throughput (for bare-metal application).

We observe that when using the HP Port for reading, the throughput almost
doubles. It is reasonable, since use of the HP port bypasses the cache coherency
system of the ARM processor.
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5.2 Linux Microbenchmarks

Section 4.6 describes a method by which a Linux user space process can explicitly
access physical memory. We used that method to implement microbenchmarks as
user space processes to measure remote memory latency and throughput for data
transfers. Furthermore, we used the method described in Section 4.7 to measure
throughput for RDMA data transfers, from the Linux user space.

5.2.1 Latency

We measured the latency for a sing read/write of one word (4 Bytes) which belongs
to a remote memory page and the throughput achieved for data transfers from the
local physical memory to the remote and vice versa. The latency for a Load/Store
pair of one word of the remote memory is
1450 nsec or 725 nsec per read or write operation.
The results are the same to the measurements acquired by the bare
metal application. As a result, we observe that we can use remote memory
without penalty in a full Linux environment.

5.2.2 Data Transfer Throughput

Furthermore, we measured throughput achieved for data transfers in various direc-
tions. From local to remote physical memory, remote to local and local to local.
The experiment is identical to that in Section 5.1. The results are shown in Table
5.3.

Direction Destination
Port

MB/s Gbps

1 Local Read - Remote Write ACP 110 0.88

2 Local Read - Remote Write HP 112 0.89

3 Remote Read - Local Write ACP 45 0.36

4 Remote Read - Local Write HP 40 0.32

Table 5.3: Data transfer throughput using Load/Store instructions.

As we can see in Figure 5.3, throughput achieved with Load/Store instructions
is relatively small compared to Local to Local memory data transfers inside the
processor. However, the throughput achieved is still far better than data transfers
from/to I/O storage devices.

In Figure 5.3 we see than transferring data from remote to local memory gives a
maximum throughput of 45 MByte/sec. (If the ARM processor had no read bu�ers
so that no outstanding AXI read requests could exist, then the maximum throughput
that could be achieved would be 5.2 MByte/sec.) Writing data from local to remote
memory gives a higher throughput of 110 MByte/sec.
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Figure 5.3: Data transfer throughput using Load/Store instructions.

5.2.3 Local Memory Throughput

For completeness of the benchmarks we include an evaluation of the local DRAM
and create a machine pro�le for the Compute Nodes. Since Zedboards contain a
DDR3 DRAM memory module clocked at 553 MHz utilizing a 32 bit rambus, the
maximum theoretical data rate the memory can handle is

(Clock Frequency) x (Bus Width) = 533 MHz x 32 bit = 15.89 Gbps or 2033
MB/sec.

This is the maximum raw data rate the DRAM can handle. Of course, the Read
or Write bandwidth di�ers when the Load/Stores refer to sequential or random
memory addresses. The data transfer throughput, achieved by an application when
copying a bu�er to another one, is even smaller because it consists of pairs of
Load/Store instructions per word. Table 5.4 shows throughputs measures when
using di�erent bu�er copying methods. Methods (1) and (2) use the default library
functions memcpy() and bcopy() and achieve high throughputs of 7.6 and 5.5 Gbps
respectively. Methods (3), (4), (5) and (6) use for loops that copy 4 Byte words
using Load/Store instructions. Method (3) copies one word per loop iteration,
while methods (4), (5) and (6) implement unrolled loops that copy 4, 8 and 32
words per loop iteration.

We observe that performance of remote memory in our Discrete Prototype is
comparable to the performance of local DRAM.
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Methods MB/sec Gbps

1 memcpy() 950 7.6

2 bcopy() 687.5 5.5

3 loop() 250 2

4 Unrolled loop() x4 650 5.2

5 Unrolled loop() x8 762.5 6.1

6 Unrolled loop() x32 937.5 7.5

Table 5.4: Data transfer throughput using Load/Store instructions (for Local
DRAM)

5.2.4 DMA Throughput

We made the same experiments as in Subsection 5.1.3 plus some more measure-
ments to include all possible data transfer directions and port con�gurations in
our prototype, when using DMA operations. We also made those measurements
to con�rm that a system with a full Linux environment does not have a negative
impact on DMA performance.

The Xilinx CDMA engine that is used in these experiments is set up by a user
space process using the method described in Section 4.7. Although this method
should be disabled in a �nal product, it is very useful for debugging and evaluation
purposes in the development process.

The process executes 1 million iterations of 8 MByte DMA transfers, just as
the bare metal application described in Section 5.1.3.

The results of all possible DMA con�gurations are shown in Table 5.5.

The �rst four lines address data transfers from local to remote node, with all
port con�gurations (reading from local DRAM and writing to remote DRAM).
Lines 5 to 8 address remote to local data transfers (Reading from remote DRAM
and writing to local DRAM). Lines 9 to 12 the transfer throughput when the
DMA is used on local DRAM only and �nally, the last four lines (13 to 16) show
throughput for DMA transfers from remote DRAM to remote DRAM again (also
called 3rd party DMA). In Figure 5.4 the results seen in 5.5 are visualized in a
graph plot, where the horizontal axis describes the data transfer direction and
port con�guration and the vertical axis shows the DMA throughput achieved. We
observe that DMA transfers, especially for large data sizes, are far more bene�cial
than simple Load/Store operations. As a result, it is better to use DMA operations
for large data sizes when possible.

We con�rm that having a full environment with Operating System and user
space applications does not have a negative impact on performance of DMA. We
also, observe that in general, when reading through the ACP port (regardless if
the source is the local or remote DRAM) the performance is decreased compared
to transfers that read through the HP port.

The Discrete Prototype and the CDMA engine gives the software engineer and
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Source Source
Port

Destination Destination
Port

MB/s Gbps

1 Local ACP Remote ACP 310 2.48

2 Local ACP Remote HP 305 2.44

3 Local HP Remote ACP 610 4.48

4 Local HP Remote HP 507 4.06

5 Remote ACP Local ACP 264 2.11

6 Remote ACP Local HP 280 2.24

7 Remote HP Local ACP 280 2.24

8 Remote HP Local HP 701 5.60

9 Local ACP Local ACP 250 2.00

10 Local ACP Local HP 241 1.92

11 Local HP Local ACP 715 5.72

12 Local HP Local HP 716 5.73

13 Remote ACP Remote ACP 213 1.70

14 Remote ACP Remote HP 230 1.84

15 Remote HP Remote ACP 605 4.84

16 Remote HP Remote HP 501 4.00

Table 5.5: DMA data transfer throughput

the systems designer many available options to choose from. Depending on the
memory allocation policy (which node uses what part of DRAM) and the type of
memory coherency needed, one can use the appropriate con�guration to maximize

Figure 5.4: DMA data transfer throughput
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performance.

5.2.5 DMA Throughput vs. Data Size

In this section we examine the impact that di�erent sizes have upon throughput
of DMA transfers.

In Figure 5.5 a graph of DMA transfer throughput against di�erent transfer
sizes is plotted. The DMA source and destination correspond to Line 3 of Table
5.5, where the source is Local DRAM through the HP port and the destination is
the remote DRAM through the ACP port. As seen in the plot, there is little bene�t
to be gained when using DMA operations for small transfer sizes. The performance
is decreased due to DMA setup time and the fact that one cannot fully utilize the
DMA features, such as large bursts, etc. As a result, the throughput of small
data DMA transfers is comparable to throughput achieved with Load/Store data
transfers for the same size, so one can use Load/Stores instead. The critical transfer
size is 512 Bytes, which is the �rst transfer size that DMA operations start to gain
greater throughput than Load/Stores. As seen in Figure 5.5, DMA data transfer
throughput for 512 Bytes is 122 MByte/sec. The Load/Store upper throughput
limit when writing to remote memory via HP or ACP ports is 110 MByte/sec as
seen in 5.3. So, for smaller data sizes one can use Load/Store instructions instead
of DMA operations.

In Figure 5.6 a DMA transfer of the opposite direction, is shown. The DMA
engine reads data from the remote DRAM through the ACP and writes them to the
local DRAM through the HP port. As mentioned in Table 5.5 of Section 5.2.4, the
upper limit for DMA throughput using this direction and port con�guration is 280
MByte/sec, that is reached only for transfers utilizing large data sizes. For small
data sizes, 4 up to 128 Bytes, data transfers using Load/Store instructions will give
better results in terms of throughput, because as seen in Figure 5.3 Load/Store data
transfers in this con�guration can achieve 45 MByte/sec throughput.

In Figure 5.6 a DMA transfer of the opposite direction, is shown. The DMA
engine reads data from the remote DRAM through the ACP and writes them to the
local DRAM through the HP port. As mentioned in Table 5.5 of Section 5.2.4, the
upper limit for DMA throughput using this direction and port con�guration is 280
MByte/sec, that is reached only for transfers utilizing large data sizes. For small
data sizes, 4 up to 128 Bytes, data transfers using Load/Store instructions will give
better results in terms of throughput, because as seen in Figure 5.3 Load/Store data
transfers in this con�guration can achieve 45 MByte/sec throughput.

5.2.6 Remote Swap I/O Throughput

Viewing remote memory as a remote swap device, as described in Section 4.5
requires the I/O driver stack of the Linux kernel to intervene for each read() or
write() from/to that device. First of all, we measured the I/O throughput the swap
device can achieve using the standard dd utility. We ran dd for di�erent block sizes
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Figure 5.5: DMA data transfer throughput vs. data size (Local to Remote)

Figure 5.6: DMA data transfer throughput vs data size (Remote to Local)

and the results are shown in Figures 5.7 and 5.8. Figure 5.7 shows that the I/O
throughput reaches the limit of Local to Remote memory data transfer throughput,
110 MByte/sec or 0.88 Gbps, as measured by the bare-metal application in Section
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5.1.2 Table 5.1. Di�erent block sizes have a negligible impact on I/O throughput.
In a similar fashion, as depicted in Figure 5.8, the I/O Read throughput achieved,
also reaches the data transfer throughput limit that is 45 MByte/sec or 0.36 Gbps.
Block size does not a�ect the I/O throughput. We observe that the intervention
of the I/O software stack does not reduce data transfer throughput compared to
pure Load/Store data transfers, since it reaches the throughput limits seen by the
bare-metal micro-benchmark described in Section 5.1.2.

5.2.7 Remote Swap I/O Throughput with DMA

We measured I/O throughput achieved using the remote swap device, when it is
implemented utilizing DMA transfers instead of Load/Store data copying. We
used the same utility, dd as in the previous Section. The Write and Read data
transfer throughputs with DMA operations reach the DMA throughput limit, seen
by bare-metal DMA operations, described in Section 5.1.3.

5.2.8 Swap Devices Comparison

As shown in Figures 5.7 and 5.8, we compared di�erent devices used for swapping.
In those Figures, the Gray line represents throughput achieved when using remote
swap over Ethernet with the Network Block Device (nbd). The orange line shows
throughput for a swap partition that resides in the SD card that contains the Linux
kernel and the Ubuntu 12.04 root �le system.

We implemented remote swap over Ethernet using the nbd in the following way.
Using the native 1 Gbps Ethernet interface of the Zedboard platform, we connected
the node with a PC with a Linux OS back-to-back, using a cross Ethernet cable.
The swap partition on the PC resides in main memory (ramdisk), in order not
to su�er from hard disk throughput limitations. Using the nbd driver we created
a block device in the Compute Node's Linux. The client driver is invoked when
read()/write() occur at that device and sends those requests over the Ethernet to
the PC, where the server side of the nbd accesses the swap ramdisk and services
the requests. Results shown in Figures 5.7 and 5.8, show that our implementation
achieves double data transfer throughput for Write requests for all block sizes. For
Read throughput, block size has a huge impact on the nbd throughput, resulting
in a better performance than our implementation for large block sizes. However, at
the most important block size, that is 4K - the size of a page, our implementation
achieves 3 times greater throughput. In general, TCP throughput achieved using
the native 1 Gbps Ethernet interface is limited to 450 Mbps Half-Duplex, as we
measured in similar experiments using the iperf utility.

Using a swap partition in the SD card, we measuredWrite data transfer through-
put at 50 Mbps and Read throughput from 50 to 100 Mbps depending on the block
size. We observe, that the swap I/O throughput is limited by the SD card device
I/O throughput, that is much smaller than throughput achieved in our implemen-
tation.
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Figure 5.7: Swap write I/O throughput
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Figure 5.8: Swap read I/O throughput
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Chapter 6

Shared Network Interface

In a microserver environment where many Compute Nodes are assembled to build
a large system, it is unfeasible to dedicate I/O resources to each node, �rstly be-
cause they are expensive and second because these resources cannot �t in the same
chiplet. Thus, it is essential for expensive resources to be shared among Compute
Nodes. The same happens with fast network interfaces that allow communication
with the external world. (It is a common case for data centers to have a common
entry/exit point to/from the Internet. All nodes inside the data center share that
point, which also acts as a network router and many times as a load balancer. )

In our system we have a shared 10 Gbps NIC that follows the Ethernet protocol
and is used as a common entry/exit point for all compute nodes connected to
the main board. As mentioned in Section 3.3 it is virtualized by the hardware,
providing dedicated TX/RX FIFOs for each Compute Node. Writing and reading
to/from the shared NIC is done by the use of AXI DMA [39] that uses our custom
interconnect.

6.1 Network Driver

We implemented a Linux kernel network driver [17] that allows the Operating Sys-
tem and the user space processes to view the 10Gbps NIC as a standard Ethernet
device. That way, processes have an entry/exit point to the world outside the Dis-
crete Prototype, without any need for modi�cation or use of a special API. Using
Berkeley Sockets [3], processes can use the TCP/IP protocol and also all protocols
supported by Layer 2 Ethernet to communicate with the outside world.

Figure 6.1 shows the �ow chart of the send/receive operations initiated by user
space processes that use the Berkeley Socket API and the software and hardware
components involved. A socket send() library call ends up as a system call trap,
which gives control to the Operating System's network stack. (In Linux and Win-
dows the whole TCP/IP Layer stack is implemented entirely in kernel space.) Data
given by the process, are processed by each TCP/IP layer and �nally, the kernel
calls the drivers transmit function hard_start_xmit(). Finally, the driver that

57
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manages the underlying hardware initiates a DMA transfer to the network device.
The receive path is the other way around.

Process

Kernel TCP/IP stack

Socket API

Process

Socket API

Network Driver

AXI DMA

RX ChannelHardware

Software

Kernel Space

Software

User Space

Virtualized 10Gbps MAC

hard_start_xmit()netif_rx()

AXI DMA

TX Channel

send()recv()

interrupt

start DMA op

start DMA op write to MAC
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RX Ring TX Ring

Figure 6.1: Network tra�c send/recv �ow chart.
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Figure 6.2: sk_bu� structure.

Packet processing in the kernel is done with the use of the sk_bu� structure,
that is depicted in Figure 6.2. The sk_bu� contains pointers to various segments
of the packet for fast access.

As each layer takes control of the packet processing inside the kernel stack, it
uses the corresponding pointer from the sk_bu� structure to add/modify segments
of the packet. The common case is every layer to add its corresponding header and
some checksum. Payload is the segment of the packet that contains actual user
space application data.

6.1.1 Simple Operation

In the simplest mode of operation, a user space process calls the send() system call
stub with a pointer to a data bu�er as an argument. When the kernel is invoked
to handle the system call, the inet network layer of the kernel will copy the data
bu�er from the user space into a kernel space memory region and will also create an
sk_bu� structure to decribe that data. Then, the TCP layer will process the data
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and add its own TCP header and checksum in the packet. The IP layer will add its
header and header checksum in a similar way and �naly the Ethernet layer will add
its header to the packet. At this moment, the packet data must be marshallized, in
order to have each layer's header in the right order. As a result, the packet must be
copied again before it is passed to the network driver for processing and hardware
submission.

When the network driver takes control of the packet it submits it to the DMA
engine to pass it to the hardware MAC block. When the packet transmission is
completed the DMA engine raises an interrupt and the driver's interrupt handler
is invoked to clear and reset its internal structures.

The receive path works in a similar fashion. The DMA engine writes the in-
coming data to a prede�ned memory region and raises an interrupt. The network
driver's interrupt handler is then invoked, checks the packet and copies it to a new
kernel memory region that is given to the kernel network stack.

6.1.2 Scatter-Gather & Ring Descriptors

With the simple operation described in Section 6.1.2, the packet needs to be pro-
cessed before given to the driver's hard_start_xmit() function. As a result, the
packet is copied twice until it reaches the hardware and this can negatively a�ect
performance. Modern Operating Systems and network drivers operate in scatter-
gather mode, which allows a packet to be split in several fragments that reside in
di�erent pages in memory. If the network driver supports scatter-gather operation,
the kernel can give the fragmented packet directly to the driver without marshaling
its content �rst, resulting in zero-copy operation. The common case in scatter-
gather operation is the kernel network stack to have the headers of di�erent layers
in di�erent memory pages as the packet travels through the layer stack and the
layer headers are created. The sk_bu� structure allows fragmentation of packets,
because it includes pointers to the fragments of a packet. In Figure 6.3 an sk_bu�
structure describing a fragmented packet is shown.

Hardware and driver support is needed to enable scatter-gather operation of
the network stack. The hardware must be able to get those fragments from the
physical memory automatically, when given the appropriate arguments, marshal
the fragments and transmit them using the physical device (PHY). Further more
the driver must be implemented in a way that supports scatter-gather operation,
in order to accept fragmented packets and set up the hardware appropriately.

In our implementation, we used the AXI DMA hardware block to transmit
and receive data to/from the 10 Gbps MAC block. The AXI DMA resides in the
FPGA of the Compute Node, whereas the 10 Gbps MAC resides in the FPGA
of the central board. Refer to Section 3.2 for a description of Discrete Prototype
Generation 2. The DMA engine is con�gured to operate in scatter-gather mode.
It can accept a linked-list of descriptors, with a head and tail pointer. When given
as arguments in the DMA, the head and tail descriptors physical addresses and the
linked-list has been properly set up, then the DMA will start fetching all packet



6.1. NETWORK DRIVER 61

struct sk_buff

head

...

...

end shared info

packet

fragments

skb_frag_t

skb_frag_t

skb_frag_t

...

page

page

page

...

fragment

pointers

list

packet info

Figure 6.3: sk_bu� structure describing fragmented packet.

fragments by reading each descriptor in the linked-list. A descriptor, compatible
to the AXI DMA engine, as used in our design is shown in Figure 6.4. Each such
descriptor is 16 words = 64 Bytes large and contains several pointers and control
registers about packet fragments. As seen in the Picture, word next desc phys addr
is the physical address of the next descriptor and it is set up fr each descriptor
start up of the network stack by the driver to create a linked-list of descriptors.
Word frag phys addr is the physical address of the packet fragment. Word ctrl
is a DMA control register for that fragment and it usually contains the size of the
fragment and some additional tags. Word status is written by the DMA engine
and contains the error code upon transfer completion or abortion. Word app4 is a
DMA user �eld, not used by the hardware in our design. It is used by the driver
to keep the virtual address of the sk_bu� that describes a series of fragments
that comprise a packet. The rest of the words are not used by the software.

Note that the physical addresses stored in the fragment descriptors must be
DMA capable as described in the Linux kernel manual. The DMA engine must
be able to read/write from/to those addresses. Whenever a driver needs such a
physical address, it requests from the kernel by the use of the dma_map_single()
function.

The chain of descriptors can be implemented in many ways. We implemented
our driver with two circular bu�ers of descriptors, called the descriptors rings.
The transmit path has 64 such descriptors in its ring and the receive path has
128. Each descriptor in the ring is a structure the same as described in Figure 6.4.
Furthermore, we maintain a head and tail pointer for each ring, to keep track of
used and free descriptors. This implementation allows simultaneous access by
the hardware and the software to the descriptor rings and their corresponding
fragments in physical memory, without any issue. Simultaneous access can further
be described as simultaneous access of the external DMA engine and the CPU.



62 CHAPTER 6. SHARED NETWORK INTERFACE

next desc phys addr

reserved

frag phys addr

reserved

reserved

reserved

ctrl

status

app0

app1

app2

app3

app4

sw_id_offset

reserved

reserved

AXI DMA descriptor

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

0x20

0x24

0x28

0x2C

0x30

0x34

0x38

0x3C

Figure 6.4: AXI DMA descriptor.

6.1.3 Set Up

When the driver module is loaded by the kernel it sets up the descriptors for the
TX/RX path and con�gures the DMA engine. For the TX path, 64 descriptors of 64
Byte each are allocated next to each other, by the use of the dma_alloc_coherent()
function, that returns both the physical and the virtual address of the allocated
space. Their �eld, next desc phys addr is set up in such a way to create a circular
array (or bu�er), with the last descriptor pointing back to the �rst the array. The
RX descriptors ring is set up in a similar fashion. For the RX path we also need
to allocate additional space, in order the DMA to automatically put the incoming
frames. For each descriptor in the RX ring we also allocate a bu�er with size
equal to the network MTU, using the netdev_alloc_skb_ip_align() function, which
allocates and prepare that space for placement of an skb. The virtual address of the
allocated skbs are given to the �eld sw_id_o�set of their corresponding descriptors.
Finally, a DMA capable physical address is requested for each allocated skb, using
the dma_map_single() function. That physical address is stored in the frag phys
addr of the appropriate descriptor.

Finally, the DMA engine is initialized, given the TX/RX head pointers. The
RX DMA channel starts running and is ready to accept frames. The TX DMA
channel is waiting to transmit when its register for the tail pointer is written.



6.1. NETWORK DRIVER 63

6.1.4 Transmitting a Frame

When a whole or fragmented frame is ready to be sent by the network stack,
the kernel calls the driver's hard_start_xmit() function with the corresponding
sk_bu� pointer as an argument. This function must �nd of how many fragments
the packet is consisted and �nd equal number of free descriptors in the TX ring.
If there are available descriptors, it must set their �elds to point to the corre-
sponding fragments of the frame. Finally, it marks the �rst and last fragment of
the frame as START_OF_FRAME and END_OF_FRAME accordingly. If the
frame consists of only one fragment, its corresponding descriptor is marked with
both START_OF_FRAME and END_OF_FRAME. It updates the tail pointer
accordingly and writes it to the DMA TX TAIL register. Upon write, the DMA
starts fetching those descriptors and their corresponding for transmission.

When transmission of a frame is completed by the DMA engine, it will raise an
interrupt to the CPU. The driver's TX interrupt handler will run, check for DMA
errors for each transmitted descriptors' status �eld and �nally release all used
descriptors, by updating the head pointer. If an error has occurred, it will schedule
a task that will later reset the DMA engine and reinitialize the TX descriptors ring.
Flow chart of a transmit operation from the user space process to the hardware
and interrupt generation is shown in Figure 6.5.

In Figure 6.6 the descriptors ring with the pointers is depicted. head points
to the �rst descriptor of the fragment subset that is process by the DMA, while
tails points to the last. curr is DMA register that keeps track of the current
descriptor processed by the DMA and is updated automatically. The head pointer
is updated by the driver's transmit interrupt handler and tail is updated by the
hard_start_xmit() function. The following subsets of descriptors can exists in the
ring the same time:

1. head - curr: descriptors for fragments that have been transmitted by the
DMA, but not yet released by the driver.

2. curr - tail: descriptors for fragments that have been submitted to the DMA,
but not yet transmitted.

3. tail - head: free descriptors available for hard_start_xmit()

Function hard_start_xmit() takes the following steps when called by the kernel:

1. Finds how many fragments the frame (described by sk_bu� ) consists of.

2. Checks if there is an equal number of free descriptors in the TX ring.

3. Reads the tail pointer and starts setting up descriptors for each frame frag-
ment. In the frag phys addr �eld it sets the physical address of each fragment
obtained by dma_map_single(). Stores the size of the fragment in the ctrl
�eld and the virtual address of the sk_bu� in the app4 �eld, to remem-
ber the sk_bu� each fragment belongs to. For each descriptor completed
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Figure 6.5: TX �ow chart.

Figure 6.6: TX descriptors ring.
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it increases the tail pointer, always in a circular fashion. (tail %= NUM-
BER_OF_DESCRIPTORS ).

4. Marks the �rst descriptor of the frame as START_OF_FRAME and the last
one as END_OF_FRAME.

5. Starts the DMA transfer by writing the physical address of the new tail
descriptor to the appropriate DMA register. DMA starts operation automat-
ically upon write on this register.

6.1.5 Receiving a Frame

Once the RX descriptors ring, the appropriate bu�er space for new sk_bu� frames
has been allocated and set up, and the DMA RX channel has been con�gured,
the driver is ready to accept incoming frames. Driver is always accepting
incoming frames regardless of blocked user space processes waiting to
receive packets.

The reception of network data involves two independent paths, in order an
incoming packet to �nd its way up to the user space process. For a process to
receive data from network it must notify the kernel network stack that it is wait-
ing incoming data, by calling the recv() system call. The reception of data is a
synchronous operation from the user space perspective, meaning that the call of
recv() is a blocking one. In Figure 6.7 the events that occur in data reception and
the hardware and software components involved is shown, both from the process'
and the driver's perspective.

The 10Gbps MAC hardware block uses the DMA engine to write an incoming
frame to the prede�ned memory segments. When the DMA has �nished writing the
frame into memory it raises an interrupt that ends up to the execution of the driver's
receive interrupt handler. The descriptors in the RX ring are updated by the DMA
automatically when writing the frame into memory. The interrupt handles checks
the appropriate status DMA register for errors and gives the received frame to
the upper network stack in an sk_bu� format, using the netif_rx() function. It
releases the corresponding descriptors and allocates new sk_bu� space for each
descriptor, the same way as in set up process (Section 6.1.3). Note that the DMA
engine writes an incoming frame to a single bu�er space, using only one descriptor
for each frame. If errors have occurred during frame reception, the driver will
schedule a task to reset the DMA engine and reinitialize the RX descriptors ring
in the near future.

After the frame has been given to the kernel, the network stack does some pro-
cessing of the frame and checks if there are any processes waiting for packets with
that destination information. If there are such processes, it copies the received
packet payload to the process's user space bu�er and wakes up that process that
is blocked in the recv() system call.

There are not any frame copies occurred between the driver and the
kernel.
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Figure 6.8: RX descriptors ring.

Along with the descriptors ring, the driver maintains a head and a tail pointer
(Figure 6.8.) The �rst points to �rst descriptor written by the DMA engine, but
not yet processed by the receive interrupt handler. The later points to the last
free descriptor that can be used by the DMA engine. The DMA also maintains
a pointer that keeps track of the current descriptor the DMA is writing. Head
and tail pointers are updated by the driver's receive interrupt handles, when it is
invoked and their new values are given to the DMA.

Three descriptor subsets can exist in the ring during operation:

1. head - curr: descriptors recently written by the DMA, but not processed yet
by the driver's interrupt handler.

2. curr - tail: remaining free descriptors, submitted to the DMA for writing.

3. tail - head: descriptors written by the DMA that are being processed by the
interrupt handler.

In our implementation each descriptor represents a whole Ethernet frame, since
the DMA writes the received Ethernet frame non-fragmented in one memory bu�er,
as mentioned before. When the interrupt handler is invoked it does the following
operations:

1. Checks for errors reported by the DMA engine in the status register. If an
error has occurred, it schedules a task that will reset the DMA and reinitialize
the RX ring in the near future.

2. Reads the tail and head pointers and then reads all descriptors in that range.
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3. For each descriptor, it reads its status �eld for errors.

4. Marks the frame as CHECKSUM_UNNECESSARY, to tell the kernel not
to reevaluate the checksum.

5. Pushes the frame to the kernel network stack, by calling the netif_rx() func-
tion.

6. Allocates a new bu�er and sets it up as an sk_bu� space, using the net-
dev_alloc_skb_ip_align() function.

7. Increases the tail pointer.

8. Submits the physical address of tail descriptor to the DMA

6.1.6 Checksum O�oading

In the Linux Operating System it is required to have TCP and IP header check-
sum hardware support, in order to enable scatter-gather operation. The process of
calculating those checksum in the hardware is called Checksum O�oading. This
policy of the Linux Operating System, ensures that the scatter-gather operation
will not be slowed down by the calculation of TCP and IP header checksums in
the network stack. At this moment, FORTH is developing a TCP and IP header
checksum hardware block that will reside in the FPGA of the main board. We were
not able to use that block in this work. As a result, we had to �nd a work-around,
in order to enable scatter-gather operation and also have the kernel calculate the
TCP and IP header checksums as well. This was achieved by enabling two �ags,
that are con�icting according to the Linux network driver implementation guide-
lines. The �rst �ag enables the scatter-gather operation (tells the kernel that the
driver can handle fragmented frames) and the latter enables checksum calculation
in the kernel's network stack. There is not any issue, in the Linux 3.12.0 kernel
version by enabling both those �ags, but we are not sure if this applies for other
kernel versions. We will use the hardware checksum block in the near future. Seg-
mentation o�oading can further improve performance, because it allows the kernel
network stack to bypass many steps of the TCP layer that do checks and segment
the packet if necessary. TCP packet segmentation, is a costly process, because
the kernel must correctly split the packet into segments with appropriate headers,
sequence numbers, etc.

6.1.7 Interrupt Coalesce

Since interrupt handling by the Operating System is an expensive procedure, that
can increase CPU utilization when incoming/outgoing frame rate increases. When
the CPU utilization is high enough, packet drops occur and throughput is limited.
Modern network drivers and devices, support di�erent interrupt rates. For exam-
ple, a network device may raise interrupts upon the arrival of every 10 frames, as
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opposed to interrupt per frame arrival. This leads, to reduced interrupt service
time per number of frames and most importantly increased throughput, because
of the reduced CPU utilization for the same frame rate. This method is called
Interrupt Coalesce, because it groups events of many frame arrivals into a single
interrupt ([32], [27] and [41]). Of course, this comes at a cost of response latency
for both TX/RX paths. To mitigate this e�ect, hardware blocks employ a timer,
which raises an interrupt when it expires.

Our network driver and the underlying hardware blocks support interrupt coa-
lescing. The transmit and receive functions and interrupt handlers are implemented
in such a way, that can operate in all interrupt coalesce settings, from one interrupt
per frame to one interrupt per many frames. The AXI DMA engine we use, can
be con�gured to a required interrupt coalesce. The timer can also be con�gured.

6.1.8 ethtool Interface

Our network driver implements a set of functions and exports them to the user
space for usage by the ethtool utility. Supporting those features is a standard in
modern network drivers, since one can access and con�gure many settings of the
network device's MAC and PHY blocks and the network driver. Our implemen-
tation involves the access of the 10 Gbps MAC and PHY hardware blocks. The
custom underlying hardware interconnect with the Physical Address Translation
block, enables the software of a Compute Node to access the 10 Gbps MAC layer
that resides in the main board's FPGA, since it is mapped in to the node's physical
memory address space.

We implemented the following functions of the ethtool interface (Table 6.1:

Function Description

1 get_drvinfo() Reports driver and device information

2 get_link() Reports whether the physical link is up

3 get_ring_param() Shows TX and RX descriptor rings Sizes

4 get_regs_len() Gets bu�er length required for get_regs()

5 get_regs() Gets device registers

6 get_coalesce() Gets interrupt coalescing parameters.

Table 6.1: Implemented functions of the ethtool interface

6.1.9 MAC Con�guration

The network driver can access all registers of the MAC block, since they are mapped
on the physical address space of the Compute Nodes. Those registers keep the
MAC con�guration settings and also network statistics as well. MAC Con�guration
registers can be either writable or read only. Since the MAC register space is not
virtualized, modifying a writable con�guration register will a�ect all Compute
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Nodes that shared the network device. The con�guration registers of the network
device are shown in table 6.2.

Register Description

1 RCW0 RX con�guration word 0

2 RCW1 RX con�guration word 1

3 TCW TX con�guration word

4 FCC Flow control con�guration word

5 RSC Reconciliation sublayer con�guration
word

6 RXMTU RX MTU con�guration word

7 TXMTU TX MTU con�guration word

8 VR Device version register (Read only)

9 CR Capability register (Read only)

Table 6.2: 10Gbps MAC Con�guration Registers

Except the aforementioned con�guration registers, the MAC also contains a
large set of detailed statistics registers that keep track of all transmitted Ethernet
frames, errors, etc. It also keeps statistics about di�erent frame sizes.

procfs

To expose the MAC con�guration and statistics registers to the user space envi-
ronment, we used the Linux procfs �le system. For each MAC register the network
driver creates a procfs entry that can be either writable or non- writable. When a
user space process reads or write from/to that procfs entry (just like an ordinary
�le), the appropriate method of our network driver is called that either reads the
requested register from the MAC block and returns its value, or writes the register
with the data given by the process. All the procfs directories and �les for the MAC
registers are created upon driver loading.

6.1.10 Management Data Input/Output (MDIO) & XGMII

Management Data Input/Output (MDIO) is is a serial bus interface and protocol
(cite) that is used to transfer management information between the MAC and the
PHY hardware blocks in modern network devices. With our hardware, a software
on Compute Node, can access the registers of the network device that contain
the information of the MDIO. Our driver can access those registers and expose
them to the user space, in the procfs �le system (See subsection 6.1.9). One can
view information or con�gure the PHY hardware block by reading or writing the
appropriate bits of the according MDIO registers.
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XGMII

10 Gigabit Media Independent Interface (XGMII) is a standard de�ned in IEEE
802.3 ([24] for connecting full duplex 10 Gigabit Ethernet (10GbE) physical blocks
to each other and to other electronic devices on a printed circuit board. The XGMII
is exposed to the Compute Nodes in our Discrete Prototype, through the MDIO
interface, discussed in Section 6.1.10.

The network driver implements two methods for reading and writing to two
MDIO registers that result in reading or writing raw byte data from/to the PHY
block through the XGMII. Writing raw data to the PHY, results in actual physical
transmission over the 10Gbps optical cable. Those read/write methods are exposed
to the user space, through the procfs system and are useful for debugging of the
hardware prototype.

6.1.11 Network Statistics

During its operation, the network driver collects statistics about the IP and Eth-
ernet tra�c that passes through it. It also counts the dropped packets and the
transmission reception errors occurred. Update of those counters is done in the
transmit and receive functions and interrupt handlers.Those statistics can be ob-
tained by the standard Linux utility for IP networking: ifcon�g.

6.1.12 Device Tree

To load the network driver and map the DMA and MAC register space into phys-
ical memory the Operating System needs to know about them at boot time. In
ARM architectures the appropriate Device Tree �le must be used, that replaces
the function of BIOS in traditional x86 architectures. In our system, two device
tree entries must be added, in order the Linux kernel to load our driver and map
the hardware register spaces. The device tree segments are shown in Listing 6.1

axi -dma@82000000 {

eusrv -connected = <0x6 >;

compatible = "xlnx ,axi -dma -6.03.a";

interrupt -parent = <0x2 >;

interrupts = <0x0 0x1e 0x4 0x0 0x1d 0x4 >;

reg = <0x82000000 0x10000 >;

xlnx ,family = "zynq";

xlnx ,generic = <0x0 >;

linux ,phandle = <0x7 >;

phandle = <0x7 >;

};

eusrv -eth@41000000 {

eusrv -connected = <0x7 >;

compatible = "eusrv ,eusrv -ethernet -1.00.a";

device_type = "network";

interrupt -parent = <0x2 >;

local -mac -address = [00 00 1a 12 34 56];

reg = <0x41000000 0x10000 >;

linux ,phandle = <0x6 >;

phandle = <0x6 >;
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};

Listing 6.1: Device Tree memory segments for the Network Interface

The �rst entry named axi-dma@82000000 is the segment that describes the
AXI DMA block that resides in the FPGA of each compute node. Its member
�eld reg instructs our network driver to map the register space of the DMA into
physical memory region 0x82000000 - 0x82010000. The second entry, named eusrv-
eth@41000000, describes the MAC block that resides in the main board's FPGA.
Its �eld compatible, instructs the Linux kernel to load our network driver (the
driver has a same tag in its source code). Field local-mac-address, tells the network
driver to create a standard Ethernet interface in the Linux kernel with MAC address
00:00:1a:12:34:56. The �eld reg, instructs the driver to map the MAC register space
into physical memory region 0x41000000 - 0x41010000. Lastly, the �eld interrupt-
parent, de�nes that the interrupt controller responsible for interrupts generated
from the device is the Generic Interrupt Controller (GIC) of the Xilinx Zynq-7000
SoC.

The two device tree entries are linked together by the �elds phandle. This
results, by use of both devices by the network driver.

6.1.13 Zero Copy Anecdotes

As mentioned previously, scatter-gather operation allows socket bu�ers not to be
copied from the kernel to the driver. With the use of descriptors rings, hardware
and software can process the data simultaneous without problems. Although, this
operation is mentioned zero copy in the existing literature, it is not an absolute
zero-copy, since the whole procedure still contains a bu�er copy between user and
kernel space. It is essential to copy the bu�er that is given as an argument to
a socket send() from the process context to the kernel memory space. When the
system call trap is done, the kernel uses the function copy_from_user() to replicate
the bu�er given to a send() system call as an argument. One may wonder why is
that procedure necessary? Why does the kernel not simply pin the corresponding
user pages into memory in order to achieve absolute zero copy? Well, the necessity
of the replications comes from the uncertainty of the bu�ers lifetime. The kernel
cannot know beforehand if the bu�er used in a send() call will be not modi�ed
long enough, for the network transaction to be completed. A user space process
code might do the following:

send(sockfd , buff , size , flags);

memcpy(input_buff , buff , new_size );

In Listing 6.1.13 the process uses the bu�er bu� as a network data bu�er given
as an argument to the send() system call. When the process is unblocked from
the send() call it uses again the same bu�er to do something else. However, the
TCP/IP protocol stack of the kernel may need to dome some retransmissions of
data in the near future. No one can predict if that retransmission is going to
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happen or not. If it is essential to retransmit some data, what happens if
the bu�er used before has not been copied and was modi�ed as in the
example (Listing 6.1.13)?.

The aforementioned example shows why replication of network data bu�ers
from user space to kernel space is essential. However, there is a way to achieve
absolute zero copy that is suitable for optimized and carefully written ap-
plications, such as an Apache Web Server. The use of the send�le() system call
[9], forces the kernel network stack not to duplicate the user space bu�er. In-
stead it pins the corresponding user space pages into memory with the function
get_user_pages(). Thus, the bu�er data travel through the network stack to the
network device driver without a copy. This is the real zero copy operation. Note
that the Linux kernel must be con�gured to allow real zero copy when using the
send�le() system call. Otherwise, this system call behaves just like send().

In the same fashion, the Windows Operating Systems supports absolute zero
copy with the use of TransmitFile() function [12].
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6.2 Evaluation

The Generation 2 Discrete Prototype described in Section 3.2 and shown in Figure
3.6 has a theoretical throughput limit of 10Gbps. The interconnection circuit of
the 4 Compute Nodes to the main board and the custom PCB board can achieve
data rates higher than 10Gbps. The 10 Gbps NIC available bandwidth is the upper
limit the whole system can achieve.

Node 0

10Gbps NIC

CPU DMA

MAC

PC

Node 1

CPU DMA

Node 2

CPU DMA

Node 3

CPU DMA

PHY

i7

CPU

10Gbps

Optical Cable

High-Speed

Interconnect

Raw throughput: ~9.6Gbps 

10Gbps

NIC

Figure 6.9: Shared NIC evaluation setup.

The evaluation setup is shown in Figure 6.9 and comprises of our Discrete
Prototype connected to a PC with a 10Gbps capable optical cable. The PC consists
of a modern Intel i7 CPU with 8 GByte of DDR3 RAM and has a PCIe network
card that has an optical transceiver and is capable of 10Gbps. The Operating
System in the PC is Xubuntu Linux 14.04, with the o�cial drivers of the network
card installed.

6.2.1 Bare-Metal Throughput

To saturate the throughput limit of the 10Gbps NIC, we implemented a bare metal
application that runs in each Compute Node and uses the AXI DMA engines in
the nodes in scatter-gather con�guration. This mode, allows the AXI DMA to read
/write ring bu�ers without stopping its operation. When used for transmission it
reads whatever data it �nds in the ring and transmits them. Although, there is
no applicable usage of this type of DMA operation, it is useful to debug hardware
components by achieving the maximum throughput the DMA engine can reach.
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By running this experiment, we con�rmed that we can get very close to the
theoretical throughput limit, by achieving 9.8 Gbps total throughput when all
Compute Nodes generate tra�c. The throughput was equally shared between the
Compute Nodes, because of the round-robin TX scheduler of the MAC hardware
block. Each node achieves 2.2 Gbps throughput.

When only one node is active, the maximum throughput it can achieve is 3.2
Gbps. This time, the upper limit is the CPU. It cannot generate more packets per
unit of time. Tra�c from a single node cannot saturate the 10 Gbps link.

6.2.2 TCP Throughput

The most important evaluation is the throughput user space applications can
achieve using the TCP protocol, since it is the most common for network com-
munication. We measured the TCP throughput achieved by a user space process
in a full system with Operating System and user space environment in each node.
We used the iperf utility that is a standard tool used for measuring TCP and UDP
throughput in networks.

First of all we measured the maximum transmission throughput a node can
achieve. An iperf server is set up in the PC listening for incoming TCP connec-
tions. Then at a node we set up an iperf client that connects to the server and
transmits process payload using TCP sockets (STREAM). The maximum usable
TCP throughput achieved by each node is 960 Gbps, for large packet sizes that
are close to the Ethernet MTU size. During transmission, the CPU utilization was
always at 150% (as shown by the top utility, meaning that both CPU cores were
utilized.

In a similar way, we measured the maximum receive throughput a node can
achieve by setting up an iperf server in a node and an iperf client in the PC. The
result was 880 Mbps for packet sizes close to the Ethernet MTU. CPU utilization
was high (150%) in the receive process too.

Using the 4 nodes together, each one transmitting TCP packets, the aggregate
throughput seen at the 10 Gbps NIC is the sum of the individual throughputs
achieved by the nodes. As a result, the aggregate throughput is 4 x 880 Mbps =
3.52 Gbps. The sum of the individual throughputs is also con�rmed when the 4
nodes receive packets.

In Figure 6.10 the aggregated TCP throughput is shown by the red line. The
horizontal axis shows the number of nodes generating network tra�c and the ver-
tical axis is the aggregated throughput achieved in Gbps for that number of nodes.
We see, that when only one node is participating in network tra�c, the aggregated
throughput is 880 Mbps that is the maximum TCP throughput a single node can
obtain. When two nodes generate tra�c the aggregated throughput is 2 x 880 Mbps
= 1.76 Gbps and when three nodes generate tra�c the aggregated throughput is
3 x 880 Mbps = 2.64 Gbps. Finally, when four nodes generate network tra�c the
aggregated throughput is 4 x 880 Mbps = 3.52 Gbps. We can see that each time
a node is added in the experiment it adds its maximum TCP throughput to the
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Figure 6.10: Throughput for TCP and Raw Eth

aggregated throughput. Aggregated TCP throughput with 4 nodes is far from link
saturation ( 9.6 Gbps), due to high CPU utilization as described in the following
Section.

CPU Utilization

The CPU utilization is the main cause that user space process cannot
experience throughput close to the data rate seen by bare-metal applica-
tions that transmit/receive raw Ethernet packets. CPU utilization is very
high due to the TCP and IP header checksums calculations in the kernel TCP/IP
stack. In Section 6.1.6 we mentioned that we fooled the kernel to allow scatter-
gather operation and at the same time calculate the checksums for us, because we
do not have a TCP checksum o�oad engine yet.

We extracted the TCP checksum calculation function from the Linux kernel
sources and ran that code in a user space application to measure the CPU clock
cycles (or time) it takes to calculate one TCP checksum. The result is that for
Ethernet frames that are the size of the MTU, the TCP checksum calculation
accounts for more than 9000 CPU cycles (about 13 msec) per packet.
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Concurrent TCP Flows

The high CPU utilization puts a limit to the throughput achieved when using
TCP packets, so running the experiment with multiple concurrent TCP �ows does
not increase performance as it should. When we run 2 iperf client threads in a
node (as the number of cores) that transmitted packets to the PC the throughput
achieved was only 20 Mbps higher than that achieved with single-threaded iperf
client, resulting in CPU utilization of 200% (both cores fully utilized).

The same situation occurs when measuring reception throughput with 2 iperf
client threads running in the PC. The reception throughput seen in the node was
only 20 Mbps higher compared to the single-threaded experiment.

Interrupt Coalescing

Using interrupt coalescing that is supported by our driver implementation, as men-
tioned in Section 6.1.7, also does not improve performance, as it should, because of
the already high CPU utilization. We ran similar transmission and reception ex-
periments with di�erent coalescing settings and the throughput achieved is almost
the same as when interrupt coalescing is not set.

Full-Duplex Operation

When TCP transmission and TCP reception �ows are concurrent, the total through-
put (both TX and RX) achieved in the node is 880 Gbps (same as the TCP trans-
mission throughput). The throughput is almost equally split between the transmit
and receive �ows. Because of the high CPU utilization Full-Duplex operation does
not result in the sum of the transmission and reception throughputs.

6.2.3 Raw Ethernet Throughput

To con�rm that TCP throughput is limited by the high CPU utilization, cause
by checksum calculation, we ran raw Ethernet frame transmission and reception
benchmarks. We implemented a kernel module that is loaded in the nodes and the
PC. The module uses the Layer 2 packet transmission function dev_queue_xmit()
that is a pointer to our driver's hard_start_xmit() function. In order to send
raw Ethernet frames, we had to create the packets in the form of sk_bu� that is
described in Section 6.1. The module runs a loop transmitting a random Ethernet
frame.

The �rst experiment measures the transmission throughput achieved at the
nodes, so the raw frames module is loaded at the nodes. The PC runs the ethstats
utility that measures the incoming data and packet rate at a speci�c network inter-
face. The result was that the node achieved 3.0 Gbps of transmission throughput,
very close to the throughput seen by a bare-metal application.

In a similar way, we measured reception throughput at the nodes. This time,
the raw frames module is loaded in the PC and the ethstats utility is run in the
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node. The reception throughput is 2.8 Gbps.
The aforementioned experiments, con�rm that the high CPU utilization be-

cause of TCP and IP header checksum calculation is the dominant factor for
throughput limitation when using the TCP protocol.

When using the 4 nodes together, we can saturate the 10 Gbps link, achieving
almost 9.8 Gbps of raw Ethernet throughput as seen in Figure 6.10 by the blue
line. When only one node generates raw Ethernet tra�c it achives 3.2 Gbps of
throughput. When two nodes generate tra�c, the aggregated throughput seen
is 2 x 3.2 Gbps = 6.4 Gbps. When three nodes are connected the aggregated
throughout reaches the link saturation limit that is 3 x 3.2 Gbps = 9.6 Gbps. When
four nodes generate tra�c the aggregated throughput is still the link saturation
but the throughput per node is decreased, so each node gets the same portion of
the available data rate, due to the round-robin transmit scheduler in the FPGA.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work we showed that we can indeed deploy ARM architectures in larger-
scale designs, but implementing essential mechanisms in the software level. The
existing software support for ARM architectures, especially for many-core non-
SMP designs is very poor, so essential steps were taken towards running Operating
System e�ciently in such customized hardware designs.

Resource allocation between di�erent nodes, becomes a very important issue
in large-scale designs and this work is focused on exactly that problem. We im-
plemented Operating System and user space mechanisms for accessing and sharing
those resources and demonstrated how they are used in an e�cient way.

In particular, we implemented three di�erent mechanisms for utilizing remote
physical memory and we showed the pros and cons of each mechanisms addressing
both e�cient hardware mechanisms exploitation and software transparency. Fur-
thermore, we implemented a network device driver enabling the Operating System
and the processes that run on a node to access a shared and virtualized 10 Gbps
NIC. Processes can send/receive TCP, UDP or Raw Ethernet tra�c through the
shared NIC using the standard Berkeley Sockets API, thus they do not have to be
modi�ed.

This work is one of the �rst steps implemented for incorporating ARM architec-
tures in large-scale designs. We believe that this work will become more relevant
with the upcoming 64-bit ARM architectures which target large-scale servers in
the Data Center domain.

7.2 Future Work

Ongoing work, in the Euroserver Project, includes incorporating all mechanisms
implemented on Discrete Prototype Generation 1 to Discrete Prototype Generation
2. Using remote memory requires modifying the boot sequence of the Linux kernel,
to allow the Operating System to export or import shared physical pages.

79
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For remote memory usage mechanisms in particular, we will implement the
remote swap driver utilizing scatter-gather DMA. This will further increase data
transfer throughput.

Using the remote physical memory as an I/O character device gives us many
options for managing remote memory in the user space. We are exploring, user
space allocators that will manage that remote memory in behalf of the processes.
In speci�c, we are investigating a malloc() libc call interception mechanism that
will allow processes to run unmodi�ed, while memory allocation management will
reside in a user space runtime environment.

As mentioned in previous chapters, viewing remote physical memory as an
extension to the local DRAM raises some memory management issues, because
the Operating System running on the platforms is not NUMA-aware and does not
include memory distance vectors to add weights to the page replacement algorithm.
Thus, we investigated modifying the available ARM Cortex A9 Linux kernel to
support NUMA architectures and memory distance vectors. This work is still in
progress, until a new NUMA-aware kernel becomes available with the upcoming
64-bit ARM processors.
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Appendix A

Remote Memory Device Tree

The device tree for used in Compute Node 0 in Discrete Prototype Generation 1
is shown in Listing A.1. The higher 256 Mbytes of the DRAM of Compute Node
1 are used as remote memory for Compute Node 0, through the ACP port of the
ARM processor.

/ {

model = "Xillinux for Zedboard";

interrupt -parent = <0x1 >;

compatible = "xlnx ,zynq -zed";

#size -cells = <0x1 >;

#address -cells = <0x1 >;

axi@0 {

ranges;

compatible = "xlnx ,ps7 -axi -interconnect -1.00.a", "simple -bus";

#size -cells = <0x1 >;

#address -cells = <0x1 >;

zed_oled {

spi -sdin -gpio = <0x3 0x3c 0x0 >;

spi -sclk -gpio = <0x3 0x3b 0x0 >;

spi -speed -hz = <0x3d0900 >;

spi -bus -num = <0x2 >;

dc-gpio = <0x3 0x3a 0x0 >;

res -gpio = <0x3 0x39 0x0 >;

vdd -gpio = <0x3 0x38 0x0 >;

vbat -gpio = <0x3 0x37 0x0 >;

compatible = "dglnt ,pmodoled -gpio";

};

leds {

compatible = "gpio -leds";

mmc_led {

linux ,default -trigger = "mmc0";

gpios = <0x3 0x7 0x0 >;

label = "mmc_led";

};

};

swdt@f8005000 {

clock -frequency = <0x69f6bc7 >;

reg = <0xf8005000 0x100 >;
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compatible = "xlnx ,ps7 -wdt -1.00.a";

device_type = "watchdog";

};

xadc@f8007100 {

reg = <0xf8007100 0x20 >;

interrupts = <0x0 0x7 0x0 >;

compatible = "xlnx ,ps7 -xadc -1.00.a";

};

ps7 -usb@e0002000 {

reg = <0xe0002000 0x1000 >;

phy_type = "ulpi";

interrupts = <0x0 0x15 0x0 >;

interrupt -parent = <0x1 >;

dr_mode = "host";

compatible = "xlnx ,ps7 -usb -1.00.a";

};

serial@e0001000 {

xlnx ,uart -clk -freq -hz = <0x2faf080 >;

xlnx ,has -modem = <0x0 >;

reg = <0xe0001000 0x1000 >;

interrupts = <0x0 0x32 0x0 >;

interrupt -parent = <0x1 >;

current -speed = <115200>;

device_type = "serial";

compatible = "xlnx ,ps7 -uart -1.00.a", "xlnx ,xuartps";

clock = <0x2faf080 >;

};

ps7 -ttc@f8001000 {

reg = <0xf8001000 0x1000 >;

interrupts = <0x0 0xa 0x0 0x0 0xb 0x0 0x0 0xc 0x0 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -ttc -1.00.a";

clock -frequency -timer2 = <0x69f6bc8 >;

clock -frequency -timer1 = <0x69f6bc8 >;

clock -frequency -timer0 = <0x69f6bc8 >;

};

ps7 -sdio@e0100000 {

xlnx ,sdio -clk -freq -hz = <0x2faf080 >;

xlnx ,has -wp = <0x1 >;

xlnx ,has -power = <0x0 >;

xlnx ,has -cd = <0x1 >;

reg = <0xe0100000 0x1000 >;

interrupts = <0x0 0x18 0x0 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -sdio -1.00.a",

"xlnx ,ps7 -sdhci -1.00.a",

"generic -sdhci";

clock -frequency = <0x2faf080 >;

};

ps7 -scuwdt@f8f00620 {

reg = <0xf8f00620 0xe0 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -scuwdt -1.00.a";

clock -frequency = <0x13de4360 >;

};



89

ps7 -scutimer@f8f00600 {

reg = <0xf8f00600 0x20 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -scutimer -1.00.a";

clock -frequency = <0x13de4360 >;

};

ps7 -qspi -linear@fc000000 {

xlnx ,qspi -clk -freq -hz = <0xe4e1c0 >;

reg = <0xfc000000 0x1000000 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -qspi -linear -1.00.a";

};

ps7 -qspi@e000d000 {

xlnx ,qspi -mode = <0x0 >;

xlnx ,qspi -clk -freq -hz = <0xbebc200 >;

xlnx ,fb -clk = <0x1 >;

speed -hz = <0xbebc200 >;

reg = <0xe000d000 0x1000 >;

num -chip -select = <0x1 >;

is-dual = <0x0 >;

interrupts = <0x0 0x13 0x0 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -qspi -1.00.a";

bus -num = <0x0 >;

};

ps7 -iop -bus -config@e0200000 {

reg = <0xe0200000 0x1000 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -iop -bus -config -1.00.a";

};

ps7 -gpio@e000a000 {

phandle = <0x3 >;

linux ,phandle = <0x3 >;

xlnx ,mio -gpio -mask = <0xfe81 >;

xlnx ,emio -gpio -width = <0x38 >;

reg = <0xe000a000 0x1000 >;

interrupts = <0x0 0x14 0x0 >;

interrupt -parent = <0x1 >;

#gpio -cells = <0x2 >;

compatible = "xlnx ,ps7 -gpio -1.00.a";

};

eth@e000b000 {

xlnx ,slcr -div1 -10 Mbps = <0x32 >;

xlnx ,slcr -div1 -100 Mbps = <0x5 >;

xlnx ,slcr -div1 -1000 Mbps = <0x1 >;

xlnx ,slcr -div0 -10 Mbps = <0x8 >;

xlnx ,slcr -div0 -100 Mbps = <0x8 >;

xlnx ,slcr -div0 -1000 Mbps = <0x8 >;

xlnx ,ptp -enet -clock = <0x69f6bc7 >;

#size -cells = <0x0 >;

#address -cells = <0x1 >;

phy -handle = <0x2 >;

interrupt -parent = <0x1 >;

interrupts = <0x0 0x16 0x0 >;

reg = <0xe000b000 0x1000 >;

compatible = "xlnx ,ps7 -ethernet -1.00.a";
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mdio {

#size -cells = <0x0 >;

#address -cells = <0x1 >;

phy@0 {

phandle = <0x2 >;

linux ,phandle = <0x2 >;

marvell ,reg -init = <0x3 0x10 0xff00 0x1e

0x3 0x11 0xfff0 0xa >;

reg = <0x0 >;

device_type = "ethernet -phy";

compatible = "marvell ,88 e1510";

};

};

};

ps7 -dev -cfg@f8007000 {

reg = <0xf8007000 0x1000 >;

interrupts = <0x0 0x8 0x0 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -dev -cfg -1.00.a";

};

ps7 -ddrc@f8006000 {

xlnx ,has -ecc = <0x0 >;

reg = <0xf8006000 0x1000 >;

interrupt -parent = <0x1 >;

compatible = "xlnx ,ps7 -ddrc -1.00.a";

};

pl310 -controller@f8f02000 {

reg = <0xf8f02000 0x1000 >;

interrupts = <0x0 0x22 0x4 >;

compatible = "arm ,pl310 -cache";

cache -unified;

cache -level = <0x2 >;

arm ,tag -latency = <0x2 0x2 0x2 >;

arm ,data -latency = <0x3 0x2 0x2 >;

};

interrupt -controller@f8f01000 {

phandle = <0x1 >;

linux ,phandle = <0x1 >;

reg = <0xf8f01000 0x1000 0xf8f00100 0x100 >;

interrupt -controller;

compatible = "arm ,cortex -a9-gic";

#interrupt -cells = <0x3 >;

};

};

memory@00000000 {

reg = <0x0 0x20000000 >;

device_type = "memory";

};

memory@50000000 {

reg = <0x50000000 0x10000000 >;

device_type = "memory";

};

cpus {

#size -cells = <0x0 >;

#cdpus = <0x2 >;
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#address -cells = <0x1 >;

ps7_cortexa9_1@1 {

xlnx ,cpu -clk -freq -hz = <0x27bc86c0 >;

xlnx ,cpu -1x-clk -freq -hz = <0x69f6bcb >;

timebase -frequency = <0x13de4360 >;

reg = <0x1 >;

model = "ps7_cortexa9 ,1.00.a";

i-cache -size = <0x8000 >;

i-cache -line -size = <0x20 >;

device_type = "cpu";

d-cache -size = <0x8000 >;

d-cache -line -size = <0x20 >;

compatible = "xlnx ,ps7 -cortexa9 -1.00.a";

clock -frequency = <0x27bc86c0 >;

};

ps7_cortexa9_0@0 {

xlnx ,cpu -clk -freq -hz = <0x27bc86c0 >;

xlnx ,cpu -1x-clk -freq -hz = <0x69f6bcb >;

timebase -frequency = <0x13de4360 >;

reg = <0x0 >;

model = "ps7_cortexa9 ,1.00.a";

i-cache -size = <0x8000 >;

i-cache -line -size = <0x20 >;

device_type = "cpu";

d-cache -size = <0x8000 >;

d-cache -line -size = <0x20 >;

compatible = "xlnx ,ps7 -cortexa9 -1.00.a";

clock -frequency = <0x27bc86c0 >;

};

};

chosen {

bootargs = "consoleblank =0 console=ttyPS0 root=/dev/mmcblk0p2

                      rw rootwait earlyprintk bootmem_debug =1 memblock_debug =1";

linux ,stdout -path = "/axi@0/serial@e0001000";

};

};

Listing A.1: Device tree for remote memory.
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Appendix B

Bootable Media

The platforms that we use in our Discrete Prototype are the Avnet Zedboard for
Generation 1 and Avnet Microzed ZC020 for Generation 2, as described in Section
3. Both of these platforms, require a bootable media, con�gured approprietly, to
boot an Operating System and the user space environment. The primary bootable
media used is an SD card (SD card for Zedboard, MicroSD card for Microzed)
formatted with 2 partiotions in it.

1. FAT32 partition that contains all �les required to boot.

2. EXT4 partition that contains the root �le system (optional).

The FAT32 boot partition is essential and contains all the �les that are needed
for a full system (or a bare-metal) boot. Figure B.1 shows the �les that must be
present in the partition.

File fsbl.elf is the First Stage Boot Loader for the ARM processor required to
setup the processor and run a bare-metal application or an Operating System boot
loader. It is created with the Xilinx SDK suite and is a compilation of the following

hw_plat

bsp

Zynq FSBL

fsbl.elf

boot.bin

stream.bit

u-boot.elf

uImage

device-

tree.dtb

ramdisk.img

(Optional)

Figure B.1: Boot Parition of the SD card.
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libraries: hw_plat that is a hardware platform description and is generated by
importing the hardware description �le and FPGA con�guration bitstream from
the Xilinx Vivado toolchain. The bsp or Board Support Package is the library that
contains the API required for the speci�c platform, and is created by the Xilinx
SDK. Finally, the Zynq FSBL is the application that setups the ARM processor
and prepares it for a bare-metal application or an OS boot loader. Both three
software parts, are linked to a single executable in ELF format, called fsbl.elf.

File stream.bit is the FPGA con�guration (called bitstream) and is created by
the Xilinx Vivado toolchain.

File u-boot.elf is the Second Stage Boot Loader. It is the standard Linux
boot loader for ARM architectures.

All the aforementioned �les are packaged together into a single archive, called
boot.bin, using the bootgen utility that comes with the Xilinx Vivado suite. U-
boot can be compiled from the sources in a Linux machine using the ARM cross
compiler.

File uImage is the Linux kernel image in an uncompressed form. It is loaded
by the u-boot into physical memory and executed. It can be compiled from the
sources in a Linux environment using an ARM cross compiler and the appropriate
compile settings.

devicetree.dtb is the Device Tree in a compiled binary form. It is loaded into
physical memory by u-boot and is used by the kernel to load the appropriate
drivers.

Optional ramdisk.img �le is a root �le system image of a Linux distribution. In
our setupo, we do not use a ramdisk image. When used, it is loaded into physical
memory by the u-boot.

If a permanent root �le system is needed, the SD card must be formatted to
contain an additional partition in the EXT4 (or any Linux supported �lesystem)
format. In our setup, the rest of the SD card (7.8 GByte) is formatted as an EXT4
partition and contains the Linaro Ubuntu 12.04 �lesystem.

Selecting the permanent root �le system rather than the ramdisk image, the
Linux kernel boot arguments must contain the parameter shown in Listing B.1 that
speci�es that the root �le system is the second partition of the SD card.

root=/dev/mmcblk0p2

Listing B.1: Permanent rootfs.
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