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Abstract

Weak gravitational lensing, the distortion of images of high-redshift galaxies due to foreground
matter structures on large scales, is one of the most promising tools of cosmology to probe the
dark sector of the Universe. Using the patterns of lensing distortions derived from galaxy shapes,
maps of the underlying matter distribution can be obtained. Such maps contain a wealth of in-
formation about the distribution of dark matter on large scales, and the origin of the accelerated
expansion of the Universe. The aim of this thesis is to study and compare various state-of-the-
art map-making methods, namely Kaiser-Squires, Wiener filter, Sparse Recovery and MCALens.
In addition, those techniques were applied to the CFIS (Canada-France Imaging Survey) part of
the UNIONS (Ultraviolet Near-Infrared Optical Northern Sky) galaxy survey, an ongoing large
imaging survey ideally suited for weak lensing. To date CFIS has covered 4 300 deg2 in the North-
ern hemisphere in multiple optical bands from various telescopes in Hawaii. The observed data
are an integral part of the imaging survey obtained by the European satellite mission Euclid, to
be launched in 2023, and these weak-lensing maps will be valuable for subsequent cosmological
analyses. Finally, this work further applies peak counting to one of the generated mass maps and,
by comparing with simulations, provides constraints on the cosmological parameters, Ωm (matter
density parameter), As (primordial power spectrum), andMν (sum of neutrino masses).
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Introduction

Weak gravitational lensing is a powerful tool inmodern cosmology. It is a phenomenon that subtly
distorts the images of distant galaxies due to the bending of light by the gravitational effects of
intervening matter. It allows us to explore the Universe’s dark sector, where it can assist to find
the answers to some of the most significant questions in cosmology.

The mechanism underlying weak lensing is deeply rooted in the fundamentals of general rel-
ativity. It relies on the simple principle that gravity can bend light, just as it influences physical
objects. However, observing and measuring these minute distortions is a task that challenges us
with immense technical difficulties and requires innovative methodologies and techniques.

Interpreting these distortions or shears provides a means to estimate the distribution of matter
between the observer and the distant galaxies. This indirect probe into the large-scale structure
of the Universe can unveil the distribution of dark matter, a significant but elusive component of
the Universe. Dark matter cannot be detected directly, as it doesn’t interact with light or other
electromagnetic radiation, but its gravitational effects can be observed, andweak lensing provides
one such observational method.

The Universe’s large-scale structure, the distribution of dark matter, and the nature of dark
energy are interconnected aspects of a cosmological model. Therefore, insights into one can enrich
our understanding of the others, providing us a more comprehensive picture of the Universe.
Techniques such asmassmapping and peak counting are part of this investigative process, helping
us translate observational data into knowledge about the Universe.

The remainder of the thesis is organized as follows: In Chapter 1, we provide a background
on weak lensing, covering light propagation in the Universe, shear and convergence, projected
overdensity, the lensing power spectrum, the estimation of shear from galaxies, E- and B-modes,
and the relationship between shear and convergence. Chapter 2 delves into various mass map-
ping methods, their theories, and implementations. It examines the Kaiser-Squires reconstruc-
tion, Wiener Filtering, Sparse Recovery techniques, andMCALens in detail. Chapter 3 applies the
discussed mapping methods to real data from the UNIONS/CFIS survey. It involves the recon-
struction of mass maps using these techniques and the subsequent application of weak lensing
peak counts to one of the resulting maps. This analysis allows for cosmological inference, provid-
ing constraints on the aforementioned cosmological parameters.
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Chapter 1

Weak Lensing Background

This chapter seeks to lay the groundwork for understanding weak gravitational lensing, an impor-
tant astrophysical phenomenon. We begin by discussing light propagation in the Universe, and
how the gravitational field of large-scale structures alters its trajectory, resulting in lensing effects.
This sets the stage for the exploration of key quantities in weak lensing: shear and convergence.
These quantities encode valuable information about the distribution of matter in the Universe.
Following this, we delve into techniques for estimating shear from galaxies, while also introduc-
ing E- and B-modes, the two components of this field. Lastly, we discuss the relationship between
shear and convergence, creating a solid foundation for the mass mapping methods explored in
subsequent chapters.

1.1 Light propagation in the Universe

The propagation of light in the universe is affected by the gravitational influence ofmassive objects
along its path. When light passes near a massive object, its trajectory is deflected, leading to phe-
nomena such as gravitational lensing. In the GR formalism, light propagates along null geodesics
in curved spacetime, as described by the geodesic equation

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 (1.1)

where λ is the affine parameter along the geodesic, xµ are the spacetime coordinates, and Γµ
αβ are

the Christoffel symbols associated with the spacetime metric gµν . The null geodesic condition is
given by:

gµν
dxµ

dλ

dxν

dλ
= 0 (1.2)

Let us consider two light rays, one being the fiducial ray and the other a nearby, arbitrary ray.
Both light rays propagate through the spacetime, experiencing the gravitational effects of mass-
energy distribution along their paths. The phenomenon of gravitational lensing can be understood
as the change in the physical separation between these two rays as they propagate through the
curved spacetime.

Let xµ(λ) and xµ(λ)+ξµ(λ) be the spacetime coordinates of the fiducial light ray and the nearby
ray, respectively. The separation vector ξµ(λ) describes the physical distance between the two rays
at each point along their paths, and it can be shown to satisfy the geodesic deviation equation:

d2ξµ

dλ2
= −Rµ

αβν

dxα

dλ
ξβ

dxν

dλ
(1.3)
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where Rµ
αβν is the Riemann curvature tensor. It is useful to define the optical tidal matrix as

T µ
β = −Rµ

αβν

dxα

dλ

dxν

dλ
(1.4)

It describes the effect of tidal forces on the separation vector ξα between neighboring geodesics.
Using this, the geodesic deviation equation can then be rewritten as

d2ξµ

dλ2
= T µ

β ξβ (1.5)

illustrating how the optical tidal matrix acts on the separation vector to describe the change in
separation between neighboring light rays due to tidal forces.

Adopting the notation of [3] that is more suitable for our purposes, the geodesic that the fidu-
cial light ray follows is denoted by γµfid(λ) (we choose the parameter λ so that it arrives to the
observer at λ = 0), and the nearby ray is denoted by γµ(λ,θ), where θ is a 2-dimensional vector
describing the angular separation of the two rays on the sky θ = (θ1, θ2). The separation vector
ξµ(λ,θ) is then given by

ξµ(λ,θ) = γµ(λ,θ)− γµfid(λ) (1.6)
We are particularly interested in the perpendicular components of this separation vector, as they
describe the distortion of the bundle of light rays. To focus on these components, we project the 4-
vector ξµ(λ,θ) onto a 2D plane tangent to the sphere of observer-visible directions and orthogonal
to the light ray. We can then define ξ1 and ξ2 as the components of ξµ(λ,θ)within the orthogonal
basis of this plane, creating the vector ξ(λ,θ) = (ξ1, ξ2). This vector of course adheres to the
geodesic deviation equation, which in this notation takes the form:

d2ξ(λ,θ)

dλ2
= T (λ) ξ(λ,θ) (1.7)

In order to express the tidalmatrix T in terms of thematter distribution in the universe, we need
to assume a homogeneous universe described by the FLRWmetric, whichmodels the isotropic and
homogeneous distribution of matter on large scales. In the presence of local density fluctuations
on scales much smaller than the Hubble length, the spacetime metric can be expressed as a super-
position of the FLRWmetric and a comoving Newtonian metric characterizing these local density
fluctuations:

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 +

(
1− 2Φ

c2

)
a(t)2

(
dχ2 + fK(χ)2dΩ2

) (1.8)

where Φ is the Newtonian potential, a(t) is the scale factor, fK(χ) is the comoving distance func-
tion, and dΩ2 is the metric on the unit sphere.

In the weak field limit, where the gravitational potential Φ is much smaller than the speed of
light squared (|Φ| ≪ c2), the tidal matrix can be expressed as a sum of a background contribution
term, T bg, and a clump contribution term, T cl

Tij =
(
T bg

)
ij
+
(
T cl

)
ij

(1.9)

The background contribution term, T bg, arises from the FLRWmetric and describes the isotropic
and homogeneous expansion of the universe. The clump contribution term, T cl, is associatedwith
the comoving Newtonian metric and captures the effects of local density fluctuations.

In the weak perturbation limit, we can derive explicit expressions for the background and
clump contributions to the tidal matrix. For the background contribution term, T bg, we find:

(
T bg

)
ij
= −4πG

c2
ρ0(1 + z)5δij (1.10)
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where ρ0 is the present-day mean matter density of the universe, G is the gravitational constant,
and z is the redshift. For the clump contribution term, T i

j
(C), we obtain:

(
T cl

)
ij
= − (1 + z)2

c2
(
2∂i∂jΦ+ δij∂

2
ijΦ

) (1.11)

where Φ is the weak, quasi-static, Newtonian gravitational potential, and ∂i = ∂
∂ξi

, and ∂2ij =
∂2

∂ξi∂ξj
.

It is important to note that the background contribution term is proportional to the identity
matrix, leading to a uniform stretching or compression of the light bundle in all directions. In
the context of gravitational lensing, this term mainly contributes to the overall redshift of light
due to the expansion of the Universe. On the other hand, the clump contribution term contains
non-zero off-diagonal terms, which account for the local density fluctuations and their associated
gravitational potential. These off-diagonal terms imply that the local inhomogeneities affect the
propagation of light bundles in a non-uniform and anisotropic manner. In the context of gravi-
tational lensing, these local inhomogeneities lead to the bending and distortion of light bundles,
resulting in the formation of arcs, multiple images, or other lensing phenomena such as magnifi-
cation and shear, which will be discussed in more detail in the following sections.

If we define the comoving separation vector x = (x1, x2) ≡ ξ/a and the comoving transverse gradi-
ent ∇⊥ ≡ (∂/∂x1, ∂/∂x2), and use the expressions (1.10), (1.11) contributions to the tidal matrix,
the geodesic deviation equation (1.7) can be written in comoving coordinates χ as:

d2x

dχ2
(χ) +Kx(χ) = − 2

c2

(
∇⊥Φ(x, χ)−∇⊥Φ(0, χ)

)
(1.12)

whereK is the spatial curvature of the universe. Together with the boundary conditions

x(χ = 0) = 0 and dx

dχ
(χ = 0) = θ (1.13)

which arise from the definition of ξ, and therefore x, the geodesic deviation equation (1.12) has
the solution:

x(χ) = fK(χ)θ − 2

c2

∫ χ

0

fK (χ− χ′)
[
∇⊥Φ

(
x (χ′) , χ′)−∇⊥Φ

(
0, χ′)]dχ′ (1.14)

where the potential Φ is integrated along the perturbed light path x(χ′). If we work under the
so-called Born approximation, i.e. we assume that the perturbation of the light ray is small and the
potential on the perturbed light path is approximately the same as the on the unperturbed ray,
fK(χ′)θ, (1.14) becomes:

x(χ) = fK(χ)θ − 2

c2

∫ χ

0

fK (χ− χ′)
[
∇⊥Φ

(
fK (χ′) , χ′)−∇⊥Φ

(
0, χ′)]dχ′ (1.15)

The Born approximation has been shown [8] to be remarkably accurate for any weak lensing sur-
vey, including full sky surveys and thus it will be assumed throughout this work.

If we introduce the angular separation vector β(θ, χ) = x(χ)/fK(χ) which is the separation
seen by an observer when there is no gravitational lensing along the way, we can derive the lensing
equation dividing (1.15) by the radial comoving distance fK :

β = θ −α(θ) (1.16)
where α is the deflection angle – the difference between the apparent angle θ and the true angular
position of the source β, given by:

α(θ, χ) = θ − β(θ, χ) =
2

c2

∫ χ

0

fK (χ− χ′)

fK(χ)

[
∇⊥Φ

(
fK (χ′) , χ′)−∇⊥Φ

(
0, χ′)]dχ′ (1.17)

Equation (1.17) is usually the one that we refer to as the lens equation under the Born approximation.
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1.2 Shear and convergence

In the previous section we derived the lens equation (1.16), and now, in order to to quantify the
weak lensing effect in terms of local quantities, we will have to linearize the lens equation. We
can do this by expanding the lens equation in a Taylor series around θ and keeping only the first-
order terms. The resulting linear mapping between the lensed (or "image") coordinates θ and the
unlensed (or "source") coordinates β is described by the amplification matrix, which is defined as
the Jacobian of the lens mapping A ≡ ∂β/∂θ, with elements given explicitly by:

Aij(θ, χ) =
∂βi
∂θj

= δij −
∂αi(θ)

∂θj

= δij −
2

c2

∫ χ

0

dχ′ fK(χ− χ′)fK(χ′)

fK(χ)

∂2

∂xi∂xj
Φ
(
fK(χ′)θ, χ′) (1.18)

The second term in (1.17) vanishes as it is independent of θ.

It is now useful to define a new quantity ψ(θ, χ), called the lensing potential, which is related to
the projected gravitational potential Φ by:

ψ(θ, χ) =
2

c2

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ)fK(χ′)
Φ
(
fK(χ′)θ, χ′). (1.19)

This quantity allows us to recast equation (1.18) in terms of derivatives with respect to the angular
coordinates θ, which are more convenient to work with:

Aij = δij − ∂i∂jψ, (1.20)

where ∂i ≡ ∂/∂θi. Moreover, this definition of the lensing potential allows us to write the deflec-
tion angle in this weak lensing regime as a gradient,

α(θ) = ∇ψ(θ)., (1.21)

where ∇ ≡ (∂/∂θ1, ∂/∂θ2) is the gradient operator in 2D taken in terms of θ.

The above analysis can now provide somemore physical insight into those quantities. Since, as
we said, the amplificationmatrix provides amapping from the lensed to the unlensed coordinates,
we can see that the Kronecker delta δij in (1.20) represents the identity mapping, which describes
the case of no lensing, while the term ∂i∂jψ is a correction to this identity mapping due to the
presence of the lensing potential, and it is a measure of the distortion of the image due to the
lensing potential. Therefore, we can say that the lensing potential ψ is a two-dimensional scalar
function that captures the cumulative gravitational influence of the intervening mass distribution
along the line of sight between the observer and the background sources, and it can be thought of
as a weighted projection of the three-dimensional gravitational potential onto the celestial sphere.
As such, the lensing potential encapsulates the overall deflection effect on the light rays, providing
a description of the trajectory of light rays as they traverse through the gravitational potential wells
of the intervening matter.

We can furthermake our understanding of the amplificationmatrixAmore intuitive byparametriz-
ing it as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (1.22)

where (γ1, γ2) are the two components of the spin-two field named shear γ and the scalar field κ
named convergence.

This way, the convergence is defined as

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ, (1.23)
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and the two shear components

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ, γ2 = ∂1∂2 ψ. (1.24)

Using this parametrizationwe can split the amplificationmatrix into a traceless symmetric part
and a trace part:

A =

(
1− κ 0
0 1− κ

)
−

(
γ1 γ2
γ2 −γ1

)
. (1.25)

The trace of the amplification matrix represents the convergence, while the trace-free part repre-
sents the shear. This helps us see that the convergence and shear parameters have clear physical
meanings: the convergence represents the isotropic scaling (radial stretching or compression) of
a lensed image, while the shear describes the anisotropic stretching (tangential distortion) of the
image.

This parametrization allows us to relate the properties of the amplification matrix directly to
the underlying mass distribution and lensing potential. By decomposing the amplification matrix
into the convergence and shear components, we can separately study the effects of mass distribu-
tion along the line of sight (convergence) and the orientation-dependent stretching (shear). This
separation is useful for analyzing the properties of the lensing system and understanding the dif-
ferent contributions to the observed image distortions. The effects of shear and convergence on a
circular source are illustrated in Figure 1.1.

Figure 1.1: Illustration of the effects of convergence and shear on a circular source. The source
image is S and the lensed image is I. The convergence κ causes an isotropic scaling of the image,
and its effect is shown in red, while the shear γ causes an anisotropic stretching of the image, and
its effect is shown in blue. The norm |γ| of the shear determines the flatness of the ellipse and the
angle φ determines the orientation of the ellipse. Image taken from [9].

It is convenient to represent the shear as a complex quantity γ = γ1+ iγ2 = |γ| exp(2iφ), where
γ1 and γ2 are the two real components of the shear, and φ is the polar angle between the two shear
components. This representation of the shear highlights its rotational properties. The lensing
effect induces an anisotropic stretching of the image, accompanied by a change in the image’s
orientation, and the argument of the complex shear, 2φ = arg(γ) = arctan(γ2/γ1), describes this
change in orientation. The complex shear transforms as a spin-2 quantity, such that a rotation of
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the coordinate system by an angle α yields a change in the complex shear by an angle of 2α:

γ′ = γe2iα. (1.26)

where γ′ represents the transformed shear in the rotated coordinate system. This can also be seen
in Figure 1.2, where the shear ellipse is rotated around π.
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2

Figure 1.2: Illustration of the shear effect on the circular object at (γ1, γ2) = (0, 0). Each ellipse is a
sheared version of this object. The amplitude of |γ| of the complex shear remains constant, while
the angle φ changes. As φ goes through the range [0, 2π], the ellipse is rotated by π. Image taken
from [4].

In the context of weak gravitational lensing, the observable quantity of interest is the distortion
in the shapes of background galaxies caused by the intervening mass distribution. This distor-
tion is primarily characterized by the shear, γ. However the convergence, κ, which represents the
isotropic magnification of the source, also affects the observed galaxy shapes. This makes measur-
ing the shear directly from galaxy images problematic, since both shear and convergence impact
the observed image. To account for this effect, we introduce the concept of reduced shear, denoted
as g.

The reduced shear, g, is defined as:
g =

γ

1− κ
, (1.27)

It has the same spin-2 transformation properties as the shear γ, and it represents the actual observ-
able distortion in the shapes of background galaxies, incorporating the combined effects of both
shear and convergence. In the weak lensing regime, where both κ and γ are much smaller than 1,
the shear γ is a good approximation of the reduced shear g to first order.

1.3 Projected overdensity

The cosmic convergence κ introduced in the previous section bears a significant meaning in the
context of cosmological lensing. We have derived this quantity as a direct consequence of the
lensing potential ψ and the derivatives thereof. But it is also valuable to study its association with
the underlying cosmology, particularly the mass distribution in the universe.
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Starting from the expression for the convergence κ as given by

κ(θ, χ) =
1

2
∇2ψ(θ, χ) =

1

c2

∫ χ

0

dχ′ fK(χ− χ′)

fK(χ) fK(χ′)
∇2Φ (fK(χ′)θ, χ′) , (1.28)

we see that it represents the cumulative effect of the lensing potential along the line of sight, where
Φ is the gravitational potential, θ is the position on the sky, and χ is the comoving radial distance.
This integral is essentially a projection of the three-dimensional gravitational potential along the
line of sight onto the two-dimensional sky. Moreover, we can notice that this equation is actually
a 2D Poisson equation, where the gravitational potential Φ is the source term.

We can replace the 2DLaplacian in equation 1.28with the 3DLaplacian, since it is reasonable to
assume that the extra term ∂2Φ/∂χ′2 vanisheswhen integrated over the line of sight, as the positive
and negative contributions cancel out to a good approximation, under homogeneity arguments.
However the Poisson equation is

∇2Φ = 4πGa2 ρ̄ δ, (1.29)
where the∇2 is the 3D Laplacian,G is the gravitational constant, a is the scale factor, ρ̄ is the mean
matter density of the universe and δ is the fractional overdensity of matter, defined as

δ(x, χ) =
ρ(x, χ)− ρ̄(χ)

ρ̄(χ)
. (1.30)

and so by using equation 1.29 we can rewrite equation 1.28 as

κ(θ, χ) =
4πG

c2

∫ χ

0

dχ′ fK(χ− χ′) fK(χ′)

fK(χ)
a2(χ′) ρ̄(χ′) δ (fK(χ′)θ, χ′) , (1.31)

Now, since as we know from cosmology that ρ(a) ∝ a−3 and the formula for critical density is
ρc,0 = 3H2

0/8πG, we can rewrite the above equation as

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′

a(χ′)

fK(χ− χ′) fK(χ′)

fK(χ)
δ (fK(χ′)θ, χ′) , (1.32)

where Ωm is the matter density parameter and H0 is the Hubble constant. This equation shows
clearly that the convergence κ is a projection of the matter density along comoving coordinates,
weighted by factors depending on the geometry of the universe between the observer and the
source. For a universe with flat geometry, the weight function, characterized by (χ − χ′)χ′, has a
parabolic form, peaking at χ′ = χ/2. This indicates that mass distributions located approximately
halfway towards the source exert the strongest influence in causing lensing distortions.

We can derive themean convergence from amultitude of source galaxies by applying the prob-
ability distribution of the galaxy sample in comoving distance, n(χ)dχ, as a weight to the afore-
mentioned expression (the n(χ) function gives information about how far away the galaxies are
from us). This leads to:

κ(θ) =

χlim∫
0

dχn(χ)κ(θ, χ) (1.33)

where the integration is performed up to the limiting comoving distance, χlim, of the galaxy set
under consideration. This gives us the expression

κ(θ⃗) =
3H2

0Ωm

2c2

χlim∫
0

dχ

a(χ)
q(χ)fK(χ) δ(fK(χ)θ, χ). (1.34)

where the so-called lensing efficiency, q, is defined by:

q(χ) =

χlim∫
χ

dχ′ n(χ′)
fK(χ′ − χ)

fK(χ′)
, (1.35)
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This function represents the cumulative lensing effect at a distance χ due to the distribution of
background galaxies. Hence, convergence serves as a linear measure of line of sight projection of
the total matter density (for the population of all observed galaxies), taking into account both the
geometric attributes of the universe, indicated by distance ratios, and the source galaxy distribu-
tion, n(χ)dχ.

In practice, for the source galaxy distribution we normally use the redshift distribution of the
galaxies, n(z)dz, which is related to the comoving distance distribution by n(z)dz = n(χ)dχ. This
distribution is usually derived using photometric redshifts or photo-z.

Inherently, both shear and convergence have zero expectation values, given that ⟨δ⟩ = 0, and
hence the first non-zero statistical measure of the κ and γ distribution are their second moments.
Also, in the above expressions, the distribution of the source galaxies is assumed to be isotropic,
and thus independent of the direction of the line of sight. This in general is a good approximation
when far away from galaxy clusters, however in their vicinity this is no longer true, due to the
proximity between source galaxies, or between them and the lenses [11, 10, 12].

1.4 The lensing power spectrum

The expression (1.34) shows us the relation between the convergence and the matter overden-
sity field. The first non-trivial statistical measure of the convergence is the two-point correlation
function (2PCF) ⟨κ(θ′)κ(θ′ + θ)⟩, where θ′ and θ′ + θ are two points on the sky separated by an
angle θ and ⟨·⟩ denotes the average over all angular positions θ′. If we, following the cosmological
principle, assume that the density field δ in (1.34) is homogeneous and isotropic on large scales,
the convergence field κ will also be homogeneous and isotropic. This means that the 2PCF will
only depend on the separation θ between the two points, and not on their absolute positions. The
convergence 2PCF is related to the convergence power spectrum Pκ(ℓ) by a Fourier transform:

⟨κ̃(ℓ)κ̃∗(ℓ′)⟩ = (2π)2δD(ℓ− ℓ′)Pκ(ℓ), (1.36)

where δD is the Dirac delta function and κ̃(ℓ) is the Fourier transform of κ(θ):

κ̃(ℓ) =

∫
d2θ κ(θ) eiℓ·θ, (1.37)

with ℓ = (ℓ1, ℓ2) being a 2D wave vector, conjugate of θ and ℓ = |ℓ| =
√
ℓ21 + ℓ22. Again, the

power spectrum depends only on the modulus of the wave vector ℓ, and not on its direction, as a
consequence of the cosmological principle.

We should note that since we used the Fourier transform to derive the expression (1.36), we
implicitly used the so-called flat-sky approximation [41], which implies that the sky is locally flat,
and lies on a two-dimensional plane. This approximation is valid for small angular scales, sowhen
we are studying small patches on the sky, but not for large angular scales, where the curvature of
the sky must be taken into account. In this case, the power spectrum is calculated using spherical
harmonics, instead of Fourier transforms.

The convergence power spectrum is a fundamental statistical tool used to analyze the spatial
distribution of matter in the universe. It characterizes the amplitude of fluctuations at each spatial
frequency, providing crucial information about the large-scale structure of the universe and the
cosmological parameters. As we will show is Section 1.7, the shear is related to the convergence
by a simple expression in Fourier space,

γ̃(ℓ) = e2iβκ̃(ℓ), (1.38)

where β is the position angle of the wave vector ℓ. This means that the shear power spectrum is
equal to the convergence power spectrum Pγ(ℓ) = Pκ(ℓ).
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We can calculate an explicit expression for the convergence power spectrum, depending on the
matter power spectrum (the power spectrum of the matter overdensity field Pδ(ℓ)), by taking the
square of Equation (1.34) in Fourier space, and then inserting the result into Equation (1.36). The
result is:

Pκ(ℓ) =

(
3H2

0Ωm

2c2

)∫ χlim

0

dχ
q2(χ)

a2(χ)
Pδ

(
ℓ

fK(χ)
, χ

)
, (1.39)

In deriving this expression, besides the flat-sky approximation, it was also assumed that correla-
tions along the line of sight are negligible, so considered only the modes that lie in the plane of
the sky were considered (this is called the Limber approximation, [38, 39, 40]).Moreover, the small
angle approximation was used, so the first order Taylor expansions of the trigonometric functions
were implemented, and the absence of galaxy clustering was assumed.

The convergence power spectrum is a fundamental statistical tool used to analyze the spatial
distribution of matter in the universe. It characterizes the amplitude of fluctuations at each spa-
tial frequency, providing crucial information about the large-scale structure of the universe and
the cosmological parameters. For weak gravitational lensing, the power spectrum is particularly
important because it encodes information about both the distribution of matter (dark and visible)
and the geometry of the universe.

1.5 Estimating shear from galaxies

The physical quantity that we measure from galaxy observations is the ellipticity ϵobs of galaxies,
which is a combination of the intrinsic ellipticity ϵs of the source galaxy and the shear. A crucial
challenge in weak gravitational lensing studies lies in deciphering the actual cosmic shear signal
from those observed ellipticities.

In general, the intrinsic ellipticity can be defined as a function of the parameters of the ellipse:

ϵs =
a− b

a+ b
e2iϕ, (1.40)

where a and b are the semi-major and semi-minor axes of the galaxy, and ϕ is the angle between
the major axis and the x-axis of the image. With this definition, it can be shown (see [13]) that the
way shear modifies the intrinsic ellipticity to the observed one is given by:

ϵobs =
ϵs + g

1 + g∗ϵs
, (1.41)

for |g| ≤ 1, where g∗ = g1 − ig2 is the complex conjugate of the reduced shear g = g1 + ig2.

In the weak lensing regime (|g| ≪ 1), the shear is small, and thus we can expand the above
expression to first order in g, to get:

ϵobs ≈ ϵs + g ≈ ϵs + γ. (1.42)

However, this equation still contains two unknowns, the intrinsic ellipticity ϵs and the shear g,
and thus we cannot directly infer the shear of a galaxy from its observed ellipticity. Nevertheless,
we can still use the above equation to infer shears of a galaxies, by averaging over a large num-
ber of galaxies, and assuming that their intrinsic ellipticity is randomly distributed, without any
preferred orientation, and thus its average is zero. So, when using galaxy ellipticities from wide
studies, we can write ⟨ϵs⟩ ≈ 0, and get

⟨ϵobs⟩ ≈ g ≈ γ. (1.43)

where we have also assumed that the shear is the same for all of of the galaxies in the region in
study (and that there are no systematics in the shape measurement). So, to put it simply, intrinsic
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galaxy ellipticities are statistically random,meaning that the ellipticities of a large number of galax-
ies would average to zero. On the other hand, gravitational shear introduces a small but coherent
distortion to the shapes of galaxies, generating patterns in the ellipticities that are not randomly
distributed, but rather are correlated over small angular scales. This way, Equation (1.43) allows
us to isolate the shear from the observed ellipticities of a large number of galaxies.

The variance of the observed ellipticity is expressed using equation (1.42) as σ2(ϵobs) = σ2(ϵs)+
σ2(γ), where σ2(γ) is the variance of the shear and σ2(ϵs) is the variance of the intrinsic ellipticity,
often referred to as the shape noise. Of the two terms, the shape noise is usually the dominant one,
and so this noise determines the number of galaxies,N , needed to be observed in order to obtain
a certain level of accuracy in the shear measurement. The accuracy of the shear measurement
is usually expressed in terms of the Signal-to-Noise Ratio (SNR), S/N , which is defined in this
case as the ratio of the shear times the square root of the number of galaxies, divided by the shape
noise, S/N = γ N1/2/σ(ϵs). For typical distortions induced by the large scale structure of the order
γ ∼ 0.03, and typical shape noise of the order σ(ϵ) ∼ 0.3, we get S/N ∼ 0.1N1/2, which means
that for a SNR above unity, we need to observe at least N ∼ 100 galaxies.

1.6 E- and B-modes

The definitions of the convergence and shear fields, in equations (1.23), (1.24) impose conditions
on the forms of the two shear components, γ1 and γ2. In particular, the convergence field is a
scalar field, and its gradient is curl-free, so if we define a vector field u = ∇κ, then ∇ × u = 0.
This condition can be expressed in terms of the components of u as ∂1u2 = ∂2u1, which, using the
definition of u, can be written as ∂1∂2κ = ∂2∂1κ. Substituting the expressions for κ, γ1, γ2 and ψ,
one can obtain second-derivative constraints on the components of the shear field.

We therefore would expect that the observed shear field satisfies those conditions. However,
in real-life observations, the vector field u isn’t purely a gradient field and does contain a non-zero
curl component. This provides a natural way to decompose the shear field into two components,
the E-mode and B-mode, analogous to the polarization states of an electromagnetic field. The E-
mode is the component of the shear field that satisfies those conditions, while the B-mode is the
component that does not. Similarly, the corresponding convergence field can be decomposed into
E- and B-mode components, κE, κB, which are given by∇2κE = ∇u and∇2κB = ∇× u.

However, in practice, several factors can contribute to a non-zero B-mode signal. Some of these
are associated with systematic errors in the observations or the data analysis pipeline. Examples
of potential sources of such systematics include inaccurate PSF correction, misalignment of the
telescope, or errors in the shape measurement process. Since these systematics can mimic a curl-
like pattern in the shear field, they can generate a spurious B-mode signal.

There are also physical processes that can induce a B-mode component. These include post-
Born corrections (higher-order lensing effects), lens-lens coupling, intrinsic alignments of galax-
ies, and gravitational lensing around massive objects like galaxy clusters where the weak lensing
approximation may not hold.

There are several potential sources of the B-mode component. Some of these are associated
with systematic errors in the observations or the data analysis pipeline. Examples of potential
sources of such systematics include inaccurate PSF correction, misalignment of the telescope, bi-
ases in selecting lens galaxies, or errors in the shapemeasurement process. Since these systematics
can mimic a curl-like pattern in the shear field, they can generate a spurious B-mode signal. There
are also physical processes that can induce a B-mode component. These include post-Born cor-
rections (higher-order lensing effects in (1.15), or in equations like (1.27)), lens-lens coupling,
intrinsic alignments of galaxies (the effect of intrinsic galaxy ellipticities not being randomly dis-
tributed, but rather have a preferred orientation), and gravitational lensing aroundmassive objects
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like galaxy clusters where the weak lensing approximation may not hold.

The amplitude of the B-mode is usually significantly smaller compared to the E-mode, typically
found to be at the percent level relative to the E-mode. To this day, cosmic shear surveys lack the
statistical precision to detect these B-modes reliably, and so far B-mode detections have been used
primarily for data quality assessment, under the presumption that image and data analysis errors
are the only significant B-mode contributor.

1.7 Relation between shear and convergence

So far, we have demonstrated howwe can estimate shear from observing galaxy ellipticities. How-
ever, sometimes it is more convenient to work with the convergence field. As we have mentioned,
the convergence has the effect of isotropically magnifying the image of a source galaxy, and so one
way to estimate the convergence is to directly measure the magnification of the source galaxy im-
ages. This method however has a lot of challenges, and it is out of the scope of this thesis. Instead,
we will focus on a different, indirect method of estimating the convergence, by reconstructing it
from the shear field.

The definitions of the convergence and shear fields through the lensing potential, as shown in
(1.23), (1.24) show that those two quantities are not independent. If we Fourier transform these
two expressions, we get:

κ̃(k) =
k21 + k22

2
ψ̃(k), (1.44)

γ̃1(k) =
k21 − k22

2
ψ̃(k), γ̃2(k) = k1k2 ψ̃(k). (1.45)

where κ̃, γ̃1, γ̃2 are the Fourier transforms of the convergence and shear components, respectively,
and ψ̃ is the Fourier transform of the lensing potential. Also, the 2D wave vector k = (k1, k2) is
the Fourier dual of θ. From these we see directly that

γ̃(k) = γ̃1 + iγ̃2 =
k21 − k22 + 2ik1k2

2
ψ̃(k) =

(k1 + ik2)
2

2
ψ̃(k), (1.46)

and thus
γ̃(k) =

(k1 + ik2)
2

k2
κ̃(k) = e2iβ κ̃(k), (1.47)

where k =
√
k21 + k22 and β = arctan(k2/k1) is the polar angle of the complex k.

Inverting this relation, we get

κ̃(k) =

(
k21 − k22

)
k2

γ̃1(k) +
2k1k2
k2

γ̃2(k). (1.48)

This estimator of convergencewas first proposed beKaiser and Squires [14] and is called theKaiser-
Squires (KS) estimator. It is important to note that this expression is undefined for k1 = k2 = 0,
which is the zero mode of the Fourier transform, and thus the estimator cannot be used to recover
a constant convergence field, meaning that we can only recover the convergence up to a constant.
This is called the mass sheet degeneracy. The equivalent expression for the estimator (1.48) in real
space is given by the integral:

κ(θ) =
1

π

∫
R2

d2θ′ D∗(θ − θ′)γ(θ′) + κ0, (1.49)

where the convolution kernel D is just π times the Fourier transform of the KS estimator in (1.48)
and D∗ is its complex conjugate. The extra κ0 is an arbitrary constant (due to the mass sheet
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degeneracy). This way, the convergence can be estimated by convolving the shear field with the
kernel D, which means that the relation between the two is linear.

There are however a few issues that make the application of this simple formula on the shear
to obtain the convergence non-trivial. First, as was mentioned from the beginning by Kaiser and
Squires [14], the substitution of the integral in (1.49) with a discrete sum over galaxies results in
infinite noise in the convergence field. This happens because the sampled uncorrelated intrinsic
ellipticities of galaxies introduce a white spectrum noise and consequently make (1.49) diverge at
high frequency. To cure this problem, some form of smoothing is required, which will inevitably
lead to a loss of information, i.e. decreased resolution and correlated noise. Moreover, since the
integral in (1.49) is over an infinite area, when we apply it to a finite field of view, we need to
modify the algorithm in order to account for the boundaries, to avoid edge effects. Also, of course,
without any additional information, the mass sheet degeneracy cannot be lifted, and thus the
convergence field will only be recovered up to a constant. Finally, the KS estimator is defined in
terms of the shear γ, but as we discussed previously, in practice we only have access to the reduced
shear g, which is related to the shear by (1.27). When we are well within the weak lensing regime
(where we can approximate g ≈ γ), which is the case when we are mapping at large scales, this is
not an issue. However, on small scales, e.g. close to galaxy clusters, where the shear is large, this
approximation is not valid, we cannot use the reduced shear as a proxy for the shear.

Despite the aforementioned challenges, mass maps derived from weak gravitational lensing
data offer several advantages over studying the shear field directly. Firstly, convergence maps are
more intuitive and visually insightful compared to shear fields, as they provide a direct and un-
ambiguous spatial representation of the matter distribution along the line of sight. This visual
representation lends itself well to an intuitive understanding of the large scale structure of the
universe, as well as to comparisons with maps of other tracers of the matter distribution, such as
galaxy surveys, X-ray maps or the Sunyaev-Zel’dovich effect. Moreover, when studying higher-
order correlations, which provide a measure of the statistical properties of a field that go beyond
simple two-point correlations (such as power spectra), convergencemaps present a more straight-
forward and accessible path compared to shear fields. Higher-order correlations encompass infor-
mation about the non-Gaussian nature of the field, which is especially relevant for weak lensing
studies because the nonlinear evolution of cosmic structures and the lensing effect itself intro-
duces non-Gaussianities in the cosmic shear and convergence fields. In this context, convergence
reconstructions are very helpful, usually providing the κ field directly in the Fourier space, which
makes the calculation of higher-order correlations much simpler.

Over the years, a range of other mass mapping methods were developed, based on different
approaches, such as sparsity, wavelets, or machine learning. Each of these methods has its own
advantages and disadvantages, and the choice of which one to use depends on the specific ap-
plication. In the next section of this thesis, we will introduce and analyze in detail some of these
methods.
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Chapter 2

Mass mapping methods

At the end of the previous section, we showedhow the convergence field can be reconstructed from
the shear field, with the Kaiser-Squires estimator (1.48). However, as mentioned, this estimator
is not the only way to obtain the convergence from the shear, and in fact, there are several other
massmappingmethods that have been developed in the field ofweak gravitational lensing. In this
section, we will introduce and study in detail some of these methods, and we will discuss their
advantages and disadvantages. We will start with a more thorough analysis of the Kaiser-Squires
estimator, and then we will move on to more sophisticated methods, namely the Wiener filter, the
sparsity-based method, and the MCALens.

2.1 Kaiser-Squires reconstruction

The first mass mapping method that we will study is the Kaiser-Squires (hereafter KS), which
we already introduced in Section 1.7. Developed by Nick Kaiser and Gwyneth Squires in 1993
[14], and further improved in [25, 26, 13, 27], this method is a direct linear inversion based on
smoothingwith a fixed kernel (direct deconvolution). The core of the KS reconstruction technique
is the estimator (1.48), that we already derived in Section 2.1. Here, we will study this method in
more detail, and show how it is implemented in practice.

2.1.1 Theory

As we have already seen, convergence and shear are related by the following equation in Fourier
space:

γ̃(k) =
(k1 + ik2)

2

k2
κ̃(k) =

k21 − k22 + 2ik1k2
k2

κ̃(k). (2.1)

This can be written as the element-wise multiplication

γ̃(k) =
1

π
D̃(k)κ̃(k), (2.2)

where D̃(k) is the Fourier transform of the kernel D(θ):

D(θ) = − 1

(θ1 − iθ2)2
, D̃(k) = π

(k21 − k22 + 2ik1k2)

k2
, (2.3)
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and of course θ1, θ2 are the components of the angular position θ, and k1, k2 are the components
of the wave vector k. Using D̃D̃∗ = π2, we can inverse this relation to obtain

κ̃(k) =
1

π
γ̃(k)D̃∗(k), (k ̸= 0), (2.4)

which is the equivalent of (1.48) in this notation.

The respective real-space expressions are

γ(θ) =
1

π

∫
R2

d2θ′ D(θ − θ′)κ(θ′), (2.5)

and
κ(θ) =

1

π

∫
R2

d2θ′ D∗(θ − θ′)γ(θ′) + κ0. (2.6)

with the latter already introduced in section 1.7.

We can also notice that those relations produce a complex convergence field. In fact, the real
part of this reconstructed convergence is the E-mode component, while the imaginary part is the
B-mode component.

2.1.2 Implementation

For a practical implementation of this analytical method, we need to discretize the integrals in
the real-space expressions, and take into account some statistical uncertainties associated with the
real-world data. Doing that for Equation (2.5), and adopting matrix notation, we may write for
the observed shear field γ:

γ = Aκ+ n, (2.7)
whereA is the convolution matrix (we may say that it is the discrete version of equation (2.5), so
it corresponds to the linear transformation from ideal κ-field to ideal γ-field), κ is the underlying
convergence field, and n is the noise vector due to the shape noise (see Section 1.5), whose ele-
ments can either correspond to the individual shear measurements or to measurements binned
into angular pixels (in the latter case, n is just the average noise in the pixel) [31]. In this way,
Equation (2.5) is expressed as a linear model for the vector γ whose elements are the complex
shear measurements binned into angular pixels in a two-dimensional image format.

The matrix A can be decomposed in Fourier space as A = FPF∗, where F is the discrete
Fourier transform matrix, and P is the diagonal matrix that represents the operator 1

π D̃(k), i.e. in
the absence of noise,

γ̃ = Pκ̃ =

(
k21 − k22
k2

+ i
2k1k2
k2

)
κ̃. (2.8)

where κ̃ = Fκ [30].

An important detail is that the KS inversion, when applied in real space, involves computa-
tions with matrices A and A† that are not diagonal, due to the discretization of the smooth shear
into a bounded region making the property AA† = I not exact. This would result into the inver-
sion requiring a greater computational time, and that is why the KS reconstruction is normally
implemented within Fourier space, where those matrices are diagonal.

As already mentioned at the end of Section 1.7, one of the caveats of this method is that the
generated shear is notably smaller than the noise associated with galaxy shapes, and there exist
regions in the sky devoid of galaxies usable for our purposes. These factors, namely the noise
from galaxy shapes and the irregular distribution of background galaxies, introduce uncertainties
in this otherwise noisy reconstruction process. A potential solution to reduce shape noise per pixel
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and avoid vacant pixels is to aggregate the shear measurements into larger pixels. However, this
approach compromises the information at smaller scales and is unable to address issues related
to survey masks or borders.

What is typically done to reduce the noise is to apply a smoothing filter to the reconstructed
convergence map. This act of smoothing however has its trade-offs as well. While it does success-
fully dampen noise, it also has the potential to blur out or diminish structures on smaller scales,
and suppress the peaks in the convergence. Most commonly, smoothing is done by convolving
the map with a Gaussian kernel, whose standard deviation σsmooth is a free parameter that can be
chosen. This parameter essentially dictates the extent of smoothing – a larger σsmooth results in
more smoothing, and conversely, a smaller σsmooth results in less.

The choice of the Gaussian kernel is popular for several reasons. Generally, the Gaussian func-
tion has the unique property of being separable, which means that a 2D Gaussian can be written
as a product of two 1D Gaussians. This drastically simplifies the convolution operation, particu-
larly for higher-dimensional data. Moreover, the Gaussian function assigns higher weights to the
points closer to the center of the kernel and less weight to the points farther away, which allows
it to preserve the local features of the image while smoothing out noise, while also ensuring that
the boundaries of structures are not significantly distorted during the smoothing process. Finally,
the Fourier transform of a Gaussian function is also a Gaussian, which simplifies the analysis in
the frequency domain.

Despite its limitations, the KSmethod of mass reconstruction has proven itself to be a very use-
ful tool in weak lensing cosmology. One of its most appealing attributes is the straightforwardness
of its implementation; the method is not only easy to understand but also computationally inex-
pensive, making it accessible to a wide variety of applications. Furthermore, the Kaiser-Squires
method is also local, implying that the estimated convergence at a point only depends on the shear
at that point and its immediate neighbours, making it less prone to large-scale systematic effects.
Importantly, thismethod doesn’t require any assumptions about the underlyingmass distribution,
offering an unbiased lensing potential when the Born approximation holds.

2.2 Wiener Filtering

TheWiener filter, named after the American mathematician Norbert Wiener, who introduced it in
1949 [42], is a method of estimating a signal from noisy data. It is a linear filter that minimizes the
mean squared error between the estimated and the true signal, given prior knowledge of the signal
and noise statistics. In the context of weak lensing, the Wiener filter can provide a statistically
optimal reconstruction of the convergence field.

So let us see in detail how the Wiener filter works in our case. We start with the expression of
the mass mapping problem in the form of the linear problem in Equation (2.7), assuming that the
noise n uncorrelated. Then, the Wiener filter reconstruction of the convergence field is given by
the linear equation

κW = Wγ, (2.9)
whereW is the Wiener filter matrix, given by

W = SκA
† [ASκA

† +N
]−1

. (2.10)

Here, Sκ and N are respectively the covariance matrices of the convergence and the noise, which
are predefined in this problem, and given by Sκ = ⟨κκ†⟩ and N = ⟨nn†⟩. The covariance matrix
Sκ encapsulates our prior knowledge about the convergence field’s statistical structure, indicating
how elements in the field co-vary, while the noise covariance matrix N describes the statistical
structure of the noise. Assumed to be uncorrelated,N’s diagonal elements represent the variance
of the noise in each measurement, reflecting the precision of our measurements.
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TheWiener filter provides a linear minimum variance solution, meaning that the Wiener filter
matrix W reduces the variance of the error between the true convergence field and the recon-
structed one to a minimum. This error variance is quantified as:

⟨(κ− κW )
†
(κ− κW )⟩. (2.11)

which from Equation (2.9) is given by

⟨(κ−Wγ)
†
(κ−Wγ)⟩ (2.12)

This variance term essentially quantifies the average squared difference between our estimated
convergence field, κW , and the true convergence field, κ, providing a measure of how far off our
estimates can be, on average, from the true values. This error encapsulates both the bias, which
is systematic discrepancies between our estimated and true convergence fields, and the scatter,
which represents the random fluctuations around this bias. As such, the variance serves as a
fundamental indicator of the accuracy of our estimates. By minimizing this variance (given the
statistical properties of the signal and the noise), the Wiener filter optimizes the balance between
reducing noise (improving precision) andminimizing bias (improving accuracy), thus providing
the best possible estimate of the convergence field.

A different way of looking at the Wiener filter is from the Bayesian perspective. In this view,
the mass-mapping problem is treated as a statistical inference problem, where the goal is to infer
the most probable value of the convergence field given the observed shear data. In other words,
we are seeking to compute the posterior probability distribution of the convergence field, which
is given by Bayes’ theorem as

p(κ|γ) = p(γ|κ)p(κ)
p(γ)

. (2.13)

Here, p(κ|γ) is the posterior probability distribution of the convergence field given the shear data,
p(γ|κ) is the likelihood function, which is the probability of observing the shear data given the
true convergence field, p(κ) is the prior probability distribution of the convergence field (which
encodes our precedent knowledge of the convergence field, before observing any data), and p(γ)
is the evidence, which is the probability of observing the shear data.

For theWiener filter, we assume that the prior probability distribution of the convergence field
is Gaussian, with zero mean and covariance matrix Sκ

p(κ) = p(κ|Sκ) =
1√

2π detSκ

exp

[
−1

2
κ†S−1

κ κ

]
. (2.14)

which represents the belief that the realization of κ is a realization of a Gaussian random field
κ ∼ N (0,Sκ). Moreover, we assume that the noise in the shear measurements is uncorrelated and
also Gaussian ∼ N (0,N), which means that the likelihood function, sharing the noise properties,
will also be Gaussian

p(γ|κ) = 1√
2π detN

exp

[
−1

2
(γ −Aκ)†N−1(γ −Aκ)

]
. (2.15)

where it is assumed that the covariance matrix of the noise N is known. Having the expressions
for the prior and the likelihood, (2.14), (2.15), we can now apply Bayes’ theorem (2.13) to compute
the posterior probability distribution of the convergence field, which is given by

p(κ|γ,Sκ) ∝
1√

2π detSκ

1√
2π detN

exp

[
−1

2
κ†S−1

κ κ− 1

2
(γ −Aκ)†N−1(γ −Aκ)

]
(2.16)

In the above expressions we see quadratic forms of the form κ†S−1
κ κ and (γ −Aκ)†N−1(γ −

Aκ). These forms represent the variances and covariances of the convergence field and the noise,
respectively, as weighted by the inverse covariance matrices. These quadratic forms are linked to
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the concept of "distance" in the space of the variables under consideration. For instance, the term
(γ −Aκ)†N−1(γ −Aκ) essentially represents a weighted distance between the data vector γ and
its estimated version Aκ, with the weighting given by the inverse noise covariance matrix. This
captures how much our estimated signal deviates from the observed data. Similarly, κ†S−1

κ κ can
be viewed as a measure of the "length" of the vector κ in a space where the scale is determined by
the covariance matrix Sκ.

We now want to find the realization of the convergence field that maximizes the posterior
probability distribution 2.16, called the maximum a posteriori (MAP) estimate of the convergence
field. This value of κ would be our best guess of the convergence field, given the observed shear
data. In this case, it is convenient to work with the logarithm of the posterior distribution instead,
since maximizing the logarithm of the posterior is equivalent to maximizing the posterior itself
(the logarithm is a monotonic function). The log-posterior is given by

log p(κ|γ,Sκ) = −1

2
κ†S−1

κ κ− 1

2
(γ −Aκ)†N−1(γ −Aκ) + const. (2.17)

and the MAP estimator is then written as

κG = argmax
κ

{p(κ|γ,Sκ)} = argmax
κ

{log p(κ|γ,Sκ)}

∝ argmin
κ

{
κ†S−1

κ κ+ (γ −Aκ)†N−1(γ −Aκ)
}
. (2.18)

where the subscript G denotes that we are finding the Gaussian realization of the convergence
field. This, using the view of the quadratic forms that we described previously, can be rewritten
using the notation for the square of the norm of a vector in a space defined by a covariance matrix
Σ, denoted || · ||2Σ

κG = argmin
κ

{
||κ||2

S−1
κ

+ ||γ −Aκ||2N−1

}
, (2.19)

where || · ||S−1
κ

and || · ||N−1 are the norms induced by the matrices S−1
κ andN−1, respectively. This

minimization problem can be easily solved by setting the derivative of the expression inside the
curly brackets with respect to κ equal to zero, which bears the result that theminimum is achieved
at κG = Wγ, where W is exactly the Wiener filter, as we defined it in (2.10). We see therefore
that the Wiener filter is the MAP estimator of the convergence field, in the case where the prior
and the likelihood are Gaussian.

In general, the assumption of a Gaussian prior is very common in cosmology, relying on on
arguments such as the central limit theorem and the principle of maximum entropy. In the case
of the convergence field, the assumption of a Gaussian prior is physically motivated for the large
scales, where Gaussianity persists from the early Universe. However, on smaller scales, the con-
vergence field is expected to be non-Gaussian, due to the non-linear structure formation, which
results in the formation of halos and filaments in the late Universe. Thus, whenwe deal with small
scales, or we make the reconstruction of convergence to infer cosmological parameters from the
non-Gaussian component of the density field, and the Wiener filter may not be the optimal mass
mapping method.

Also, we should mention that all existing mass mapping methods can be viewed from the
Bayesian perspective, as amaximum a posteriori estimator of the convergence field. The difference
between themethods liesmostly in the choice of the prior distribution of the convergence field and
the specific algorithm implemented for the recovery of a point estimate of the convergence field.

2.2.1 Implementation

The implementation of the Wiener filter requires the evaluation of the matrix W, which contains
the covariance matrix of the signal (convergence field) Sκ and the covariance matrix of the noise
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N. However, as we see in (2.10), the calculation ofW requires the inversion of a a combined signal
and noise covariance matrix, which as we will see, is not trivial.

Since for this method we assume that the convergence field is a Gaussian random field, its co-
variance matrix Sκ = ⟨κκ†⟩ is diagonal in Fourier space (the different modes are uncorrelated).
So we can express the covariance matrix of the convergence field as Sκ = F†CκF, where F is the
Fourier transformmatrix andCκ is a diagonal matrix. But, as we know, the elements of the covari-
ance matrix in Fourier space Cκ, for a Gaussian random field, are equal to the theoretical power
spectrum of the convergence field Pκ(ℓ) (see Section 1.4). This is a very useful property, because
the power spectrum of the convergence field is a quantity that can be analytically calculated from
cosmological models.

In a perfect world, where the noise is stationary (i.e., it has the same statistical properties at all
locations), the noise covariance matrix would be diagonal in Fourier space as well, with diagonal
elements equal to the power spectrum of the noise Pn(ℓ), which would simplify the problem sig-
nificantly, as the Wiener filter could be implemented straightforwardly in Fourier space with the
filter solution given by

κ̃G = W̃γ̃, (2.20)
with

W̃ =
Pκ

Pκ + Pn
(2.21)

However, in practice, the noise in this type of data is not stationary. It may depend on the number
of shear measurements contributing to each pixel of the shear field, leading to a noise covariance
matrix that is diagonal in pixel space, not Fourier space. This is a serious problem, because the
signal and noise covariances grow quadratically with the size of the dataset and become too large
to be stored and processed as dense matrices. This would be possible to overcome if the signal
and noise covariances were structured matrices, e.g. when there are sets of bases where both Sκ

and N are sparse or diagonal, but as we said, such bases for Sκ and N are incompatible.

This incompatibility of bases makes the implementation of the Wiener filter more challenging,
as one either has tomake an oversimplified assumption that the noise is stationary (which is incor-
rect), or deal with the computationally expensive and numerically challenging task of inverting a
large, dense matrix. To bypass such an inversion of dense matrices, there has been proposed an al-
gorithm [43], where an additional messenger field is introduced, to mediate between the different
preferred bases in which signal and noise properties can be specified most conveniently (in this
case those are the pixel and Fourier spaces). Using this messenger field, the algorithm iteratively
builds up the reconstruction of the signal, converging to the Wiener filter solution. Here however,
we will use a slightly different iterative method to circumvent the inversion of the matrices.

Themethodwewill use is based onproximal calculus and is known as Forward-Backward (FB)
Proximal Iterative Wiener Filtering, initially proposed by Bobin et al. [44] for Cosmic Microwave
Background (CMB) spherical map denoising, and it utilizes the fact that the signal and noise
covariancematrices are diagonal in Fourier andpixel space, respectively. To showhow thismethod
works, we first have to decompose theWiener filter optimization problem (2.19) into two separate
terms, f1(κ) and f2(κ), which are both quadratic forms:

f1(κ) =∥ γ −Aκ ∥2N, f2(κ) =∥ κ ∥2Sκ
. (2.22)

Aiming to solve this minimization problem, the Forward-Backward method utilizes an iterative
fixed point algorithm, employing proximal operators in each step. In simple terms, an iterative
fixed point algorithm is a method used to solve problems by repeatedly applying a function until
we find a point that does not change under this function. This point, known as the fixed point,
often represents an optimal solution to the problem we are trying to solve. The general form of
the iterative process is given by:

κk+1 = proxµf2
{
κk
G +∇f1(κ

k
G)

}
, (2.23)
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where the superscript k denotes the iteration number, κk
G is the estimate of the convergence field

at the k-th iteration, ∇f1(κ
k
G) is the gradient of the first term of the minimization problem (2.22)

at the k-th iteration, and proxµf2 is the proximal operator of the second term of the minimization
problem (2.22) at the k-th iteration. In general, the proximal operator of a function f at a point x,
denoted as proxf(x), is defined as the solution to the following minimization problem:

proxf(x) = argmin
y

{
f(y) +

1

2
∥ x− y ∥2

}
. (2.24)

In other words the proximal operator of f at x is the point y that minimizes the sum of f(y) and the
squared Euclidean distance between y and x, scaled by 1/2, and so it provides a way to update x
in the direction that most decreases f , while also taking into account the distance from the current
point x. In our case,

proxµf2
{
κk
G +∇f1(κ

k
G)

}
= argmin

κ

{
f2(κ)−

(
κk
G +∇f1(κ

k
G)

)
∥2
}
. (2.25)

The parameter µ is a constant that acts as a step size for the updates. This approach converges
when

µ <
2

∥ A†N−1A ∥2
(2.26)

Here, µ is chosen to be the smallest eigenvalue of the noise covariance matrix µ = min {N}, so it
gives an indication of the smallest variance in the noise across all directions in the data space. This
means that the step size is linked to the noise level in the data: the lower the noise, the larger the
step size and potentially the faster the convergence.

Each iteration of this Wiener-filtering algorithm consists of a Forward and a Backward step:

1. Forward step: This phase involves the computation of an auxiliary variable t as follows:

t = κn + 2µA†N−1(γ −Aκn), (2.27)

where κn is the current estimate for the convergence field. The residual, (γ−Aκn), is calcu-
lated by comparing the observed shear fieldwith its prediction based on the current estimate
of the convergence field. This residual is back-projected to the convergence field’s space via
the operation ATN−1. The resulting value is then added to the present convergence field
estimate, resulting in the auxiliary variable t.

2. Backward step: In this phase, the updated estimate of the convergence field is calculated as
follows:

κn+1 = F†
[
Pκ (Pη +Pκ)

−1
]
Ft, (2.28)

Here, t is transformed into the Fourier space via the Fourier transform operator F. The
Fourier coefficients are then multiplied element-wise by the ratio of diagonal matrix formed
from the convergence power spectrum Pκ and the sum of Pκ and the matrix Pη = 2µI,
where I is the identity matrix. This ratio acts as a frequency-dependent filter. Afterward,
the inverse Fourier transform is applied to return to the pixel domain.

The iteration is initiated by setting κ0 = 0 and the algorithm iterates between these Forward
and Backward steps until a convergence criterion is met. The ratio Pκ

Pη+Pκ
is similar to the Fourier

domain representation of the Wiener filter (see (2.21)), if the noise were stationary. Here, since
the noise is not stationary, Pη is a diagonal matrix with its elements being twice the minimum of
the N, thus estimating the "baseline" noise level. We can now see how this algorithm sidesteps
any requirement for large-scale matrix inversions. Both N, used in Eq.(2.27), and Pκ, used in
Eq.(2.28), are diagonal matrices, so we are only using the signal and noise covariance matrices in
the Fourier and pixel domains, respectively, where they are diagonal.
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Despite its proficiency in recovering the Gaussian component of the convergence field, the
standard Wiener filtering approach is sub-optimal in extracting non-Gaussian information from
the data. As a result, structures such as peak-like formations in the convergence field might be
suppressed. This has led to the development of alternative methods based on sparse recovery
techniques.

2.3 Sparse recovery techniques

2.3.1 Theory

Signal decomposition is a fundamental practice in signal processing where a signal is represented
or transformed into another domain, known as a "dictionary" (which we will denote here as Φ).
Such a representation of a signal x in a dictionaryΦ is denoted as α, and is given by the following
equation:

x = Φα. (2.29)
In this context, we can understand a dictionary as a collection of basis functions that provides an
alternative, and often more convenient, representation of the signal. Commonly utilized dictio-
naries include transformations like Fourier or wavelet transforms.

A sparse prior is an assumption we place on our signal, suggesting that the signal’s decompo-
sition in the chosen dictionary, α, will contain many zeros, thus making it "sparse". In the world
around us, we often encounter sparse signals. Take a cosine function, for example. While this
function may appear complex in the time domain, its transformation in the Fourier domain is
quite simple, having only two non-zero coefficients that denote the cosine function’s frequency.

However, most signals encountered in real-world applications are not strictly sparse when
transformed. Instead, these signals are typically "compressible", meaning that while they do not
contain many exact zeros, they possess a considerable number of coefficients that are near zero.
When these coefficients are ordered by magnitude, their decay pattern tends to be exponential,
closely resembling a Laplace distribution. In practical terms, this allows us to simplify these sig-
nals by disregarding coefficients close to zero, resulting in a sparse-like representation.

Now, consider the task of solving a typical linear inverse problem, where the equation y =
Ax + n describes our situation. In this equation, y is our observed data, A is the forward model
of our system, x represents the true underlying signal we aim to recover, and n is the noise that
contaminates our observations.

A commonmethod to estimate the true signal x is by utilizing an optimization algorithm called
LASSO (Least Absolute Shrinkage and Selection Operator). The LASSO problem is expressed as:

argmin
α

∥ y −AΦα ∥22 +λ ∥ α ∥1 , (2.30)

The variable λ in this equation is a regularization parameter (a Lagrange multiplier) that balances
between fidelity to the observed data (first term) and promoting sparsity in the solution (sec-
ond term). The first term, a χ2 minimization, embodies the fidelity of the reconstruction to the
observed data. It measures the discrepancy between the observed data y and the signal recon-
structed from the sparse coefficients, AΦα. This term aims to minimize the squared differences
between the observations and the reconstruction, effectively treating them as residuals. However,
this simplistic approach assumes uniform or constant noise across all observations.

In many real-world scenarios, as we mentioned in previous sections, the noise is heteroscedas-
tic, i.e. it varies across the data. Whendealingwith heteroscedastic noise, each residual contributes
unequally to the overall sum, and the variance of the noise becomes an important consideration.
We can accommodate for this variability by weighting the residuals according to their respective
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noise variances, thereby ensuring that residuals with high noise variance (or low reliability) con-
tribute less to the overall sum than those with low noise variance (or high reliability).

As such, we can adjust the χ2 term to account for this non-uniformity in the noise, transform-
ing it into a weighted sum of squared residuals, with the weight being determined by the noise
variance. When the noise variance is incorporated in this way, the parameter λ, which balances
fidelity to data and sparsity, can then be interpreted as the signal-to-noise ratio in the transformed
domain.

Regarding the regularization term in (2.30), ∥ α ∥1, it employs the ℓ1 norm instead of the more
common Euclidean (or ℓ2) norm. The ℓ1 norm of a vector is simply the sum of the absolute values
of its elements:

∥ α ∥1=
∑
i

|αi| . (2.31)

The choice of the ℓ1 norm here is not arbitrary. It is particularly conducive to promoting sparsity
in the solution. While the ℓ2 norm tends to distribute the error equally among all elements of α,
leading to many small but non-zero coefficients, the ℓ1 norm is less forgiving. It forces more coef-
ficients to shrink to zero, thus encouraging a sparser representation of the signal in the dictionary
space.

Determining the best value for λ is typically a practical process, conducted through realistic
simulations of both the data and the true signal, with the aim of maximizing a chosen success
metric. This selection process can be compared to the choice of a theoretical power spectrum for
the Wiener filter or the selection of a smoothing scale for the Kaiser-Squires method.

Finally, it is worth noting that sparse recovery methods are inherently non-linear. As such,
deriving their properties analytically can be challenging. Furthermore, they are not always for-
mulated within a Bayesian framework, unlike methods such as the Wiener filter, which explicitly
maximizes a known analytic posterior, assuming Gaussian noise and signal with known covari-
ances. Yet, this does not prevent us from estimating the uncertainty of the sparse reconstruction.
Noise properties of the data can be propagated through techniques like bootstrapping or Monte
Carlo simulations to make frequentist estimates of the error associated with the sparse reconstruc-
tion.

2.3.2 Implementation: The GLIMPSE algorithm

In mass reconstruction using sparsity, the specific dictionary we adopt should be dictated by the
underlying patterns present in the signal we aim to rebuild. The dictionary that is implemented
for weak lensing mass map reconstruction is that of the wavelet transform. The wavelet transform
is a powerful tool that has been used in many applications, including image compression, denois-
ing, and feature extraction. It decomposes a signal into a set of wavelet functions – waveforms of
effectively limited duration that have an average value of zero. These functions are localized in
both frequency and spatial domains, contrasting Fourier transforms that extend infinitely.

The wavelet functions can be dilated and translated. Scaling a wavelet involves stretching or
compressing it, which is analogous to examining the signal at various frequency bands. Transla-
tion, on the other hand, allows us to move our ’window’ along the signal, capturing the time or
spatial localization. Those proverties give multiresolution capabilities, which are key to capture
features at different scales and positions in the lensing signal.

In cosmological considerations, the dominant paradigm of cosmic structure evolution antici-
pates the creation of quasi-spherical clusters of gravitationally boundmatter, whichwe commonly
term as halos. Such spatial arrangements of matter in halos align well with the profiles of Navarro-
Frenk-White or Singular Isothermal Sphere, which exhibit spherical symmetry. To effectively cap-
ture such spherical forms, we require a dictionary that is inherently capable of accurately repre-
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senting them. A strong candidate for this purpose are the isotropic undecimated wavelets, and par-
ticularly the starlet wavelet, due to their ability to represent structures resembling the convergence
of a dark matter halo, which are usually positive and isotropic.

The application of a sparsity prior in the starlet basis in the GLIMPSE algorithm enforces a cos-
mological model that treats the matter field as a superposition of multiple spherically symmetric
dark matter halos. Although this model somewhat simplifies the intricate nature of the universe,
it forms a valid approximation within the non-linear domain of the standard structure formation
model. Nevertheless, it’s important to note that the GLIMPSE sparsity prior might not be entirely
effective for larger scales where the density field is expected to adhere to a Gaussian distribution.

The essence of the GLIMPSE algorithm revolves around solving the following optimization prob-
lem:

κ̂ = argmin
κ

∥∥∥N− 1
2

[
γ −T†PFκ

]∥∥∥2
2
+ λ

∥∥ωΦ†κ
∥∥
1
+ iIm(κ)=0 , (2.32)

Here,F stands for the Fourier transformationmatrix,T is theNon-uniformDiscrete Fourier Trans-
form1 (NDFT)matrix,P is the Fourier-basedmatrix associatedwith the Kaiser-Squires methodol-
ogy (see equation (2.8)), λ is a sparsity regularization parameter, ω is aweighting diagonalmatrix,
andΦ† is the adjoint operator of the wavelet transformation. The final iIm(·)=0, is an identity func-
tion which drives the imaginary part of κ to zero, thereby excluding B-modes [31].

Traditionally, to apply the Fourier transform to non-equispaced data, one would first have to
bin the data onto a regular grid, which amounts to a form of interpolation and can smooth out
or erase small-scale structures. By using the NDFT, this binning step is bypassed, and thus initial
term in (2.32) is able to perform Kaiser-Squires-like step without the need for binning the shear
data. This way all fine-scale details in the reconstruction are preserved.

Another important feature is that GLIMPSE uses as γ in (2.32) not the shear, but the reduced
shear, which makes its reconstructions more precise, especially in the regions where the approxi-
mation γ ≈ g starts to break down. Additionally, GLIMPSE offers an expansion feature that facili-
tates joint reconstruction involving the reduced shear and flexion.

Flexion is a third-order weak gravitational lensing effect, and involves the change in the lensing
shear across the image of a galaxy. It causes asymmetric distortions and is a measure of the rate
of change of the gravitational field. Including flexion in the reconstruction algorithm can improve
the sensitivity to small-scale mass structures, thus further refining the mass maps produced by
GLIMPSE.

Fundamentally, the application of a sparsity prior in the starlet space enforces a cosmological
model that regards the matter field as a combination of numerous spherically symmetric dark
matter halos. Although this doesn’t fully capture the true complexity of the universe, it does
provide a reasonable approximation for the non-linear regime of the standard model of structure
formation. It is this alignment with the nature of cosmic clustering, alongwith its unique sparsity-
enforcing property, that enables GLIMPSE to yield better results in reconstructing smaller-scale non-
Gaussian structures than amethod like theWiener filter, which assumesGaussianity. On the other
hand, theWiener filter ismore effective in reconstructing larger-scale structures, where the density
field is expected to adhere to a Gaussian distribution.

1a variant of the Fourier transform adapted to handle data that is not equally spaced
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2.4 MCALens

2.4.1 Theory

In Sections 2.2 and 2.3 we discussed two different approaches to the reconstruction of the conver-
gence field from the shear field. The first approach, the Wiener filter, is based on the assumption
that the convergence field is a Gaussian random field. This Gaussian model, while effective in re-
producing the large-scale characteristics of the convergence map, tends to downplay or even sup-
press the so-called peak structures — the highest densities regions in the map that hold valuable
information about the underlying matter distribution. In contrast, the second model capitalizes
on the concept of sparse recovery, treating the convergence map as compressible or "sparse" when
represented in thewavelet domain. This sparsemodel excels at retrieving detailed peak structures
but does not fare as well when it comes to capturing the Gaussian-like statistical properties that
emerge on larger scales.

Given the complementary nature of these two approaches, it is natural to try to combine them
into a single hybrid model that would be able to capture both the large-scale and small-scale fea-
tures of the convergence field. This was the motivation behind the development of the MCALens
algorithm [30], which we will now discuss in detail.

In the context of this method, the convergence field is modeled as the sum of two components:
a Gaussian component κG and a non-Gaussian component κNG. This can be written as:

κ = κG + κNG. (2.33)
TheGaussian component, κG, is assumed to be inherently non-sparse, obeyingGaussian statistics,
while the non-Gaussian component, κNG, is assumed to be sparse, or compressible in the wavelet
domain.

In order to achieve this, a strategy called Morphological Component Analysis (MCA) is em-
ployed. Originally proposed by Starck et al. in [54] and further elaborated in [53], MCA is a
method designed to separate two components mixed within a single signal or image, provided
these components have distinct morphological properties.

Although in general, the problem of separating two unknowns from one equation is ill-posed,
MCA is able to overcome this obstacle by exploiting the morphological differences between the
two components. This is achieved by applying different penalty functions, denoted by CG for
the Gaussian component andCNG for the non-Gaussian component. Thus, the objective becomes
minimizing:

min
κG,κNG

{
∥γ −A(κG + κNG)∥2N +CG(κG) +CNG(κNG)

}
. (2.34)

To achieve this minimization, MCA adopts an alternating scheme:

1. First, it estimates κG by assuming that κNG is known and minimizes:

min
κG

{
∥(γ −AκNG)−AκG∥2N +CG(κG)

}
. (2.35)

2. Then, it estimates κNG by assuming that κG is known and minimizes:

min
κNG

{
∥(γ −AκG)−AκNG∥2 N +CNG(κNG)

}
. (2.36)

This iterative approach, alternating between estimating the Gaussian and non-Gaussian com-
ponents, allows us to extract both components, capitalizing on their distinct morphologies to sepa-
rate them effectively. In the context of weak lensing mass mapping, this method stands to provide
a comprehensive and nuanced view of the convergence field.
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2.4.2 Implementation

Gaussian component

For the Gaussian component, the method uses the standard Wiener filter approach, i.e. it is as-
sumed that κG is a Gaussian random field, with noise covariance matrixN . This can be expressed
as:

CG(κG) = ∥κG∥2N . (2.37)
and the minimization problem in equation 2.35 can be solved implementing the proximal iterative
Wiener filtering, which we described in Section 2.2.1.

Non-Gaussian component

The primary distinctiveness of theMorphological Component Analysis (MCA)method lies in the
way itmodels the non-Gaussian component of the convergence field. Traditional sparsemodelling
would suggest implementing ℓ1 or ℓ0-norm regularization with a wavelet-based dictionary, as it
is done in the GLIMPSE algorithm (see Section 2.3.2). However, it has been shown [30] that this
approach faces practical challenges, mainly due to the closeness between large-scale wavelet coef-
ficients and low-frequency Fourier components, which complicates the process of distinguishing
them.

Tomitigate these challenges, an alternative approach has been implemented aswell. It involves
the estimation of a set of "active" wavelet coefficients, denoted as Ω. This set comprises the scales
and positions where wavelet coefficients exceed a certain threshold, which is typically set to be
between 3 and 5 times the noise standard deviation, at the respective scale and position.. The
detection of these significant wavelet coefficients is achieved by setting Ωj,x = 1 if a wavelet co-
efficient is detected at scale j and position x. If no significant coefficient is detected, Ωj,x is set to
zero. This approach is mathematically represented as:

Ωj,x =


1, if

∥∥∥(Φ†A†γ)j,x

∥∥∥ > λσj,x

0, otherwise
(2.38)

This can be interpreted as a mask in the wavelet domain, which is used to separate the large-
scale wavelet coefficients from the low-frequency Fourier components. With the wavelet mask Ω
estimated, the non-Gaussian component k is then estimated by the minimization scheme:

min
κNG

{
∥Ω⊙Φ† ((γ −AκG)−AκNG) ∥2 +CNG (κNG)

}
, (2.39)

where ⊙ denotes the Hadamard product, Φ is the wavelet matrix (as in the case of the sparse
recovery method), and CNG here is CNG = iR(κNG).

By using the mask Ω, the MCAlens method effectively changes the data fidelity term (which
represents the closeness of the obtained solution to the actual data) in the minimization function,
creating a deviation from the traditional MCA approach. While this deviation from the standard
form might seem unconventional, it brings an important advantage. That is, when Ω is fixed, the
algorithm behaves almost linearly, with only nonlinearity being the positivity constraint imposed
on the non-Gaussian component κNG. This linearity allows for the straightforward derivation of
an approximate error map by simply propagating noise and relaxing this positivity constraint (see
[30]).

The reason for the positivity constraint, is that it ensures that the reconstructed peaks in the
convergence map are positive, which corresponds well with the physical expectation. In methods
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that do not impose this constraint, peaks can be found to be negative as well, if they are located
in a region of the sky that is surrounded by a large void. An important thing to note here is
that here, since the peaks are captured by the non-Gaussian component, they will be positive by
construction in the component κNG. However, since the positivity constraint is only imposed on
this component, and not on the final convergence map κ = κG + κNG, κ can still exhibit negative
values at peak locations.

Finally, it’s important this approach doesn’t encode explicit prior auto-correlation for the non-
Gaussian signal, nor prior cross-correlation between the Gaussian and non-Gaussian components.
In reality, such correlations do exist, but their explicit inclusion in the prior would complicate the
model both theoretically and practically. However, such correlations are implicitly accounted for
in the final reconstruction, as they are inherently captured by the data.
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Chapter 3

Application to real data

CFIS is a component of the Ultra-violet Near-Infrared Optical Northern Survey (UNIONS) collab-
oration which aims at collecting photometric data for Euclid in particular.

3.1 CFIS

The Canada-France Imaging Survey (CFIS) is a key component of the broader Ultraviolet Near
Infrared Optical Northern Survey (UNIONS), and represents a substantial research effort aimed
at addressing fundamental questions in astronomy. These include the properties and behavior of
dark matter and dark energy, the evolution of cosmic structures ranging from individual galaxies
to vast clusters, and the assembly and development of the Milky Way. A critical requirement
for this scientific endeavor is the collection of uniform and comprehensive data across a range of
light wavelengths — specifically, the ultraviolet (u-band) and red (r-band) — which must cover
expansive portions of the sky.

Since its inception in 2017, CFIS has been successful in covering 4300 square degrees in the
northern hemisphere, and the plan is to expand this coverage to ∼ 5000 square degrees by 2025.
CFIS is uniquely capable of gathering this high-quality data due to its exceptional sensitivity in
the u-band and superb imaging capabilities in the r-band at the Canada France Hawaii Telescope
(CFHT). These capabilities make it an excellent tool for studying weak lensing.

Beyond its own scientific objectives, CFIS is also playing a crucial role in the Euclid space mis-
sion, a European Space Agency project that aims to investigate dark energy and dark matter by
mapping the expansion of the universe. CFIS supplies important data that allow for the calcu-
lation of photometric redshifts for the Euclid mission. In this regard, the survey parameters for
CFIS have been chosen specifically to provide complementary coverage to that of the Euclid mis-
sion. The optimal area for the CFIS’s r-band survey, which best supplements Euclid, comprises
the northern 5000 square degrees of the extragalactic sky.

Moreover, CFIS is designed to work alongside other large-scale imaging projects and spec-
troscopic surveys like the Sloan Digital Sky Survey (SDSS) and the Dark Energy Spectroscopic
Instrument (DESI). To this end, the CFIS survey aims to cover an area as large as the SDSS region.
The coverage plan for CFIS-u is extensive, focusing on regions away from the plane of our own
galaxy, while the primary science drivers for CFIS-r require data from the SDSS spectroscopy. The
chart in Figure 3.1 shows the sky coverage for CFIS relative to some of those key, complementary
surveys.

This strategic coverage leads to a galaxy density of 7 galaxies per square arcminute, a figure
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Figure 3.1: Legend: the CFIS-r (red outline) and CFIS-u (blue outline) with respect to other sur-
veys on an equatorial projection of the entire sky. Points of interest are: galactic poles (NGP/SGP),
ecliptic poles (NEP/SEP), etc. The CFHT semester boundaries are indicated at the top (based on
the LST at midnight) as well as the areas that will be observed from the A and B semesters. This
Mercator projection illustrates well the RA pressure of the survey but does not respect the relative
areas vs. declination, areas near the equator being larger. For example, the CFIS-u total sky area
in blue is double of the CFIS-r outlined in red. Original image credit: T. Dwelly.

similar to that obtained in other surveys like the second Red-sequence Cluster Survey (RCS2), the
Kilo-Degree Survey (KiDS), and the Dark Energy Survey (DES). However, CFIS stands out by
covering a larger area than RCS2 and KiDS and providing better image quality than DES.

3.2 Data

3.2.1 Catalog

The shear catalog used in this work was built by Guintot et. al [34], from CFIS r-band data (with
average seeing of ∼ 0.65 arcsec). While the UNIONS survey will be composed of a number of
different bands, allowing for the calculation of photometric redshifts for all observed galaxies, at
the moment only r-band data has reached a sufficient area and depth. The catalog is composed of
Ngal = 40 151 119 galaxies, and covers an effective area of A = 1565 deg2. It is is divided into four
patches, referred to as P1 through P4, as shown in Fig. 3.2. The effective density in the catalog is
neff = 7.5 arcmin−2, and the corresponding shape noise is σSN = 0.28.

The catalog was derived from an effectively masked area of A = 1565 deg2, which includes the
shape measurements ofNgal = 40 151 119 galaxies. The data is divided into four sections, referred
to as P1 through P4, as shown in Fig. 3.2. To determine the effective density in the catalog, a
formula provided in a previous study [50] was used:

neff =
1

A

(∑Ngal

i=1 wi

)2

∑Ngal

i=1 w
2
i

(3.1)
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where wi is the weight of the i-th galaxy. The corresponding shape noise is derived from:

σ2
SN =

1

2

∑Ngal

i=1 w
2
i

(
e21,i + e22,i

)∑Ngal

i=1 w
2
i

(3.2)

where e1,i and e2,i are the components of the ellipticity of the i-th galaxy. The effective density
turns out to be neff = 6.76 gal arcmin−2, and the shape noise is σSN = 0.35. In the later analysis,
we focused on the P3 patch, which has an area of 249 deg2.

Figure 3.2: The four patches of the CFIS dataset that was used in this work. From left to right: P3,
P4, P1 and P2. For the final analysis only the P3 (red) patch, of 249 deg2, was employed. Credit
[34].

3.2.2 Calibration

The calibration of shears in the catalog was performed using a method called metacalibration, first
introduced in [51]. This approach calibrates shear measurements, by applying a small shear to
the images andmeasuring the response of the ellipticity. This way, it avoids creating a big number
of image simulations (which is done in the traditional calibration approach), which would be
computationally expensive.

The way this method works is by calculating the response matrix R of a shape measurement
algorithm, to a small shear g applied to the image. To get this response, we begin by considering
the weak lensing equation, used to calculate the mean shear g from the ellipticities of an observed
set of galaxies:

⟨eobsi ⟩ = (1 +mi)⟨gi⟩+ ci (3.3)
where eobsi is the i-th component of the observed ellipticity, gi is the i-th component of the mean
shear, mi is the multiplicative bias, and ci is the additive bias. The mean shear is calculated from
the observed ellipticities, using theweak lensing equation. Herewe are assuming that the intrinsic
ellipticity of galaxies, on average, nullifies.

This equation can be generalized to relate the observed ellipticity to the shear for a single galaxy
of intrinsic ellipticity einti :

eobsi = einti +

2∑
j=1

Rijgj + ci (3.4)
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where R is the response matrix, defined as:

Rij =
∂eobsi

∂gj
(3.5)

In order to calculate the response matrix numerically, we need to approximate the derivative
in Eq. 3.4, by replacing the derivatives with finite differences. We thus have:

Rij ≈
eobs,+i − eobs,−i

2∆gj
(3.6)

where eobs,+i and eobs,−i are the observed ellipticities of the galaxy, after applying a small shear
gj = ±∆gj to the image.

To impose an artificial shear on an image, we first have to remove the influence of its original
Point Spread Function (PSF) - this deconvolution and is done through division in the Fourier
domain. After deconvolution, an artificial shear is applied, and the image is then reconvolved
with a PSF larger than the original. This larger PSF helps smooth out artifacts produced during
the deconvolution process, which often arise due to noise in the images.

Next, a noise image (essentially a blank image of the same size as the original but filled with
noise) is created with the same variance as the original. This noise image also goes through de-
convolution, shearing, and reconvolution. The shearing applied to the noise image is a rotated
version, to counteract correlations introduced in the original image due to the shearing process.
The modified noise image is then applied to the actual image.

The method results in the creation of five images: four for calibration purposes and one for
measurement. The response (correction applied) consists of two parts: the shear response and
the selection response. The shear response corrects for the shear bias, including model bias and
noise bias. The selection response corrects for biases due to selection effects, like criteria based on
brightness or size of objects. To account for these effects, the selection process must be carried out
on parameters derived from the sheared images, referred to as the selection mask.

Shear and selection responses can be defined with the following equations:

1. Shear response:

⟨Rshear
ij ⟩ =

〈
gobs,+,j
i − gobs,−,j

i

2∆g

〉
(3.7)

where gobs,±,j
i is the observed shear of the galaxy image, when it is sheared by ±∆g in the j

direction. We take the mean value, because this measurement contains a lot of noise.
2. Selection response:

⟨Rselection
ij ⟩ =

⟨gobsi ⟩S+,j − ⟨gobsi ⟩S−,j

∆g
(3.8)

Here, ⟨gobsi ⟩S±,j is the average ellipticity measured on the image without any applied shear
but using the selection mask from the images with a small shear applied. Since the pa-
rameters we are selecting are correlated to the shear, different values for this are obtained
depending on the sheared image version we apply the cuts to, which results in a nonzero
selection response.

The mean response matrix is therefore given by:
⟨Rij⟩ = ⟨Rshear

ij ⟩+ ⟨Rselection
ij ⟩ (3.9)

This way, we calibrated the shears of the galaxies by applying the inverse of the mean response
matrix to the observed ellipticities, according to (3.4).
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3.3 Mass Map Reconstruction

Following the detailed description of each method provided in the Section 2, we implemented the
described algorithms to produce mass maps from the P3 patch of UNIONS/CFIS data. For the
purpose of this study, the Python package cosmostat which contains a variety of tools for weak
lensing mass mapping, was used.

For themethods that require a theoretical power spectrum(namelyWiener filter andMCALens),
we used the power spectrum estimated with the public MICE simulated galaxy catalog, con-
structed from a light cone N -body dark matter simulation [52]. This power spectrum was also
used for similar analyses, for data from the DES survey, and since our CFIS data is comparable to
DES in terms of depth and resolution, using this power spectrum is a reasonable choice.

3.3.1 Kaiser-Squires

First, to see a picture of our data, we plotted the galaxy number map, shown in Figure 3.3. The
map was created by counting the number of galaxies in each pixel of the image with a pixel size
of 1.5× 1.5 arcmin2. The resulting map shows the distribution of galaxies in the P3 patch, as well
as the masked area.
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Figure 3.3: Galaxy number map of the P3 patch of the CFIS survey. The masked area is shown in
black.

The first method implementedwas the standard Kaiser-Squires inversion algorithm. Since this
method is not computationally expensive, we were able to run it with higher resolution, using a
pixel size of 0.4 × 0.4 arcmin2. The resulting mass map (multiplied by the mask) is shown in
Figure 3.4. As expected, this map contains a lot of noise. To reduce the noise, we also ran the
Kaiser-Squires algorithm with a Gaussian smoothing scale of σ = 2, which resulted in the mass
map shown in Figure 3.5. We can see that the noise is reduced, but the features of the map are
also smoothed out. The choice of sigma=2 was based on a compromise between maintaining the
features of the mass map and minimizing noise.

For all the othermethods, we used a pixel size of 1.5×1.5 arcmin2, since, because of their higher
computational cost, they could not be run on a personal computer with higher resolution.

3.3.2 Wiener Filter

The next method we implemented was the Wiener filter. We used the proximal Wiener filter al-
gorithm, with 100 iterations. The resulting mass map is shown in Figure 3.6. We can see that the
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Figure 3.4: Mass map reconstructed with the Kaiser-Squires algorithm, with resolution of 0.4 ×
0.4 arcmin2.

noise is reduced, and the features of the map smoother. We can also observe that the mass map
is significantly "weaker" and more diffused compared to KS. This is an expected result, since the
Wiener filter is designed to suppress noise, and that comes at the cost of reducing the signal.

TheWiener filter was also implementedwith an inpainting feature, designed to handle areas of
the data setwhere informationmight be incomplete ormissing. The choice of inpaintingwasmade
in consideration of potential defects in data collection or subsequent processing, which may leave
gaps in the data. The resulting mass map is shown in Figure 3.7, in which we also have plotted
the contours of the masks with white lines. We can see that the inpainting feature was able to fill
in the masked area, and the resulting mass map is very similar to the one without inpainting, in
the unmasked region.

Whenwe run aWiener filtering (or any similar reconstructionmethod) on amap that contains
masked regions, we can end up with peculiar effects at the edges of the data. This is because the
reconstruction algorithm doesn’t "know" what to do with the masked regions. In the Fourier do-
main, the mask introduces discontinuities which propagate into the reconstructedmap and create
spurious correlations, a phenomenon often referred to as "edge effects". While inpainting does
generate an estimate of the convergence in the masked regions, it’s important to understand that
this is not the primary goal of the procedure, especially when the masked regions are large. The
data in these regions is essentially unknown, and the inpainting ismerely an educated guess based
on the surrounding regions. Instead, the main purpose of inpainting in this context is to create a
continuous, unmasked map that can be processed by the reconstruction algorithm without intro-
ducing edge effects. By filling in the masked regions in a way that is consistent with the observed
data, inpainting allows the reconstruction algorithm to operate smoothly across the entire map.

3.3.3 Sparse Recovery/GLIMPSE

The sparse recovery method was applied next, with 20 iterations, and using at first the value λ =
4 for the regularization parameter. This corresponds to a σ = 4 detection level on the wavelet
coefficients. The resulting mass map is shown in Figure 3.8. We can see that, as was expected it
recovers the peaks in the mass distribution, that correspond to the locations of dark matter halos,
much better than the other methods. However, on the other hand it does not provide a good
estimate of the mass distribution in the regions between the peaks.
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Figure 3.5: Mass map reconstructed with the Kaiser-Squires algorithm, with resolution of 0.4 ×
0.4 arcmin2 and Gaussian smoothing scale of σ = 2.

We also implemented this method with λ = 5, corresponding to a σ = 5 detection level on
the wavelet coefficients. For the number of iterations we chose again 20, since a larger number
of iterations was not possible due to the computational cost The resulting mass map is shown in
Figure 3.9. We can see that only the largest peaks are recovered, while the smaller ones are not,
since the threshold is set at a higher level.

3.3.4 MCAlens

Finally, theMCAlens technique was implemented using a detection level of the wavelet coefficient
at σ = 5. We used 15 iterations, since again, a larger number of iterations was not possible due
to the computational cost. The resulting mass map is shown in Figure 3.10. We can see that the
MCAlens method recovers the peaks in the mass distribution well, but it also provides a good
estimate of the mass distribution in the regions between the peaks, unlike the sparse recovery
method (especially if we compare to the one with the same detection level).

Each of the mass maps resulting from these algorithms was then studied and compared to
assess their relative merits. It is important to note that while these maps differ in detail and noise
levels due to the different underlying assumptions and methodologies of the techniques, all of
them offer valuable perspectives on the mass distribution.

Without a doubt, the most effective methods in capturing peak structures and intricate details
in the mass maps were those incorporating sparsity and non-Gaussianity in their models, namely
the sparse recovery and MCAlens methods. Despite their increased complexity, these techniques
provided a more precise and detailed reconstruction of the mass distribution.

In conclusion, this study showcased the utility and effectiveness of different mass mapping al-
gorithmswhen applied to the P3 patch of theUNIONS/CFIS data. The results highlight the impor-
tance of considering both the nature of the data and the specific aims of the study when choosing
the most suitable mass mapping technique. Future studies will aim to refine these methodologies
and explore additional techniques in pursuit of even more accurate mass map reconstructions.
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Figure 3.6: Mass map reconstructed with the proximal Wiener filter algorithm with 100 iterations
and resolution of 1.5× 1.5 arcmin2.

3.4 Weak Lensing Peak Counts

3.4.1 Weak Lensing Peaks

The traditional statistical methods used in weak lensing mainly focus on second-order statistics,
including the two-point correlation function and the power spectrum. Thesemethods are effective
at probing the Gaussian properties of the Large Scale Structure. Nevertheless, the non-Gaussian
features of the LSS, which arise due to the nonlinear evolution of structures on small scales and
low redshifts, can also provide a wealth of cosmological insights. Various higher-order statistics
have been proposed to unlock this non-Gaussian information, such as Minkowski functionals,
higher-order moments, the bispectrum, and weak lensing peak counts, among others.

In this part of the thesis, we will to study weak lensing peak counts in our recovered mass
maps of the P3 patch of the CFIS survey. Peaks in weak-lensing convergence maps are essentially
markers of overdense regions. They are defined as local maxima, i.e., a pixel that has a higher
value than all of its eight neighbors. The peak function, representing the number of peaks relative
to peak height or Signal-to-Noise Ratio (S/N), depends on the nonlinear and non-Gaussian part
of the LSS. This higher-order weak-lensing statistic can be employed to constrain cosmological pa-
rameters and, when combined with second-order shear statistics, can help remove parameter de-
generacies. Moreover, weak lensing peaks offer an indirect way of tracing dark matter halos: large
peaks correspond with massive halos, whereas lower-amplitude peaks typically indicate multiple
smaller halos along the line of sight. Additionally, lower amplitude peaks can be influenced by
mass outside dark matter halos or galaxy shape noise.

To create a complete theoretical prediction of peak counts is a current area, one approach is
to generate weak-lensing simulations densely sampled in cosmological parameter space, and use
interpolation of these simulations as a surrogate for prediction. These simulations have the ad-
vantage of being able to include the exact survey mask and shape noise. Here, we utilize the
MassiveNuS simulations to predict peak counts (see Section 3.4.3 for more details). By comparing
the peak counts of the CFIS P3 patch with the predictions from the MassiveNuS simulations, it is
possible to obtain constrains for some cosmological parameters. Thiswas done here implementing
the inference pipeline shear-pipe-peaks [17].
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Figure 3.7: Mass map reconstructed with the proximal Wiener filter algorithm with 100 iterations
and resolution of 1.5× 1.5 arcmin2, with inpainting.

3.4.2 Counting Peaks in CFIS Mass Maps

For the peak count analysis, weuse themassmapof theCFIS P3patch recoveredwith the smoothed
Kaiser Squires algorithm. Thismassmapwas chosen because it has the resolution of 0.4×0.4 arcmin2,
which is the required resolution for later comparison with the simulated mass maps. Moreover,
in order to match the size of the simulation convergence maps, which are 512 × 512 pixels, we –
following [20], where a similar analysis has been implemented, for an earlier version of the P3
catalog – make 12 cutouts of the CFIS mass map, each of size 512 × 512 pixels. We choose the
cutouts to be non-overlapping and to be away from the edges of the mass map, to avoid including
any edge effects. The P3 mass map with the cutouts in black boxes is shown in Figure 3.11.

We then counted the peaks in each of the 12 cutouts. To do this, we first created the respective
SNR map for each cutout. The SNR maps here are the noisy convergence maps, smoothed with a
Gaussian filter over the standard deviation of the noise. An example of the SNRmap for one of the
cutouts is shown in Figure 3.12. We identified the peaks as local maxima in the SNR maps, using
the lenspack package, and afterwards averaged the peak counts over the 12 cutouts. The his-
togram that we obtained is shown in Figure 3.13. For the histogram of each cutout we considered
30 bins, spaced evenly in the range SNR = [−2, 6].

3.4.3 Simulations

In order to generate estimates for the statistical parameters used for inferring cosmological pa-
rameters, we utilized the MassiveNuS simulation suite. This is a suite of cosmological N -body
simulations, which consist solely of dark matter and encompass a range of cosmological models,
including massive neutrinos with mass sum from 0 to 0.62 eV. The box size of these simulations is
512 Mpc h−1, encompassing 10243 particles of cold dark matter. The pixel size is 0.4 arcmin.

In these simulations, the values of the cosmological parameters fluctuate within set ranges:
Mν in [0, 0.62], Ωm in [0.18, 0.42], and As in [1.29, 2.91] × 10−9. Hence, we primarily focused on
constraining these three cosmological parameters, which are extensively represented by the sim-
ulations. Our primary focus was on setting bounds on these three cosmological variables, which
are well represented in the simulations. The effects of radiation on background expansion and the
role of massive neutrinos were incorporated, with neutrinos evolving in a perturbative manner
and their clustering resulting from the nonlinear evolution of dark matter.
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Figure 3.8: Mass map reconstructed with the sparse recovery algorithm with 20 iterations and
λ = 4. The resolution is 1.5× 1.5 arcmin2.
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Figure 3.9: Mass map reconstructed with the sparse recovery algorithm with 20 iterations and
λ = 5. The resolution is 1.5× 1.5 arcmin2.

The simulations adopt a flat universe model with a Hubble constant H0 = 70km s−1Mpc−1.
Additional fixed parameters include a primordial power-spectrum scalar index of ns = 0.97, a
baryon density of Ωb = 0.046, and a dark-energy equation of state of w = −1. We set a fiducial
cosmology to [Mν ,Ωm, 10

9×As] = [0.1, 0.3, 2.1]. The simulations provide data for 100 cosmologies,
each offering 10000 iterations generated by random rotation and shifting of the lensing potential
planes. Following [17, 20], we computed the peak counts for every cosmology from the simulated
mass maps, averaged over 10000 iterations for each model. A model with massless neutrinos
corresponding to [Mν ,Ωm, 10

9×As] = [0.0, 0.3, 2.1]was also included, and we utilized this model
to compute the covariance matrix.

In order to incorporate a shape noise that reproduces the noise of the CFIS data in the simula-
tions, we introduced Gaussian noise by calculating the overall dispersion of the ellipticity data σ2

e

and form it computing the noise per pixel as:

σ2
pix =

σ2
e

2ngalApix
(3.10)
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Figure 3.10: Mass map reconstructed with the MCAlens algorithm with 15 iterations and λ = 5.
The resolution is 1.5× 1.5 arcmin2.

where ngal is the number density of galaxies and Apix is the area of a pixel. We then added this
noise to the convergence maps from the simulations.

3.4.4 Cosmological inference

The result we obtained for the peak counts in the CFIS P3 patch can provide constraints on the
cosmological parameters Ωm (matter density parameter), As (primordial power spectrum) and
Mν (sum of neutrino masses). To do this, we implement the cosmological inference pipeline
shear-pipe-peaks [17].

The pipeline assumes a Gaussian likelihood

logL(θ) = 1

2
(d− µ(θ))TC−1(d− µ(θ)) (3.11)

where d is the data vector, µ(θ) is the model prediction, and C is the covariance matrix. For the
model, the pipeline employs the Gaussian Process Regressor that was trained on the 100 cosmo-
logical models from the MassiveNuS simulations. The data vector is the peak counts in the CFIS
P3 patch, using the variations of realizations from the benchmark model and thus assumed it to
be independent of parameters.

The pipeline then explores the posterior distribution, usingMarkov-Chain-Monte-Carlo (MCMC)
sampling. The sampler used in the pipeline is the emcee sampler with 120 walkers and 6500 steps,
sweeping the parameter space around the fiducial cosmology. The cosmological parameters vary
within the parameter space of the simulations across: Ωm ∈ [0.18, 0.42], As ∈ [1.29, 2.91], and
Mν ∈ [0.0, 0.62], as we described in Section 3.4.3.

The comparison of our peak counts with the predictions from the simulation results for the
different cosmological models by the pipeline, generated the constraints on the cosmological pa-
rameters that can be seen in Figure 3.14. The constraints are shown as with the 68% and 95.5%
confidence regions.

This result is close to the one obtained in [20]. Although it has unusual features from the cos-
mological point of view, our ultimate goal here was not to estimate the cosmological parameters,
but rather to demonstrate the potential of the peak counts on mass maps as a cosmological probe.
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Figure 3.11: The CFIS P3 mass map with the 12 cutouts in black boxes. The cutouts are non-
overlapping and away from the edges of the mass map.
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Figure 3.12: The SNR map for one of the cutouts.

The unusual features may have various sources, such as remaining biases in the data or systemat-
ics. It was shown in [20] that the final results for the constrains are sensitive to systematic effects
such as local calibration, metacalibration shear bias, baryonic feedback, the source galaxy redshift
estimate, intrinsic alignment, and cluster member dilution. Another possible source of the un-
usual features is that our catalog is small, so we expect that the constraints will improve with the
full CFIS data and even more with the full UNIONS dataset.
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Figure 3.14: The constraints on the cosmological parametersΩm,As, andMν from the peak counts
in theCFIS P3 patch. The 2D inner and outer contours show the 68% and 95.5% confidence regions.
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Chapter 4

Conclusions, ongoing work, and
future prospects

4.1 Conclusions

This work has presented a comprehensive investigation into the methods of weak gravitational
lensing, focusing on the comparison and application of different mass-mapping techniques. Our
study encompassed four key methods - the Kaiser-Squires technique, Wiener filter, Sparse Re-
covery, and MCALens, each offering unique insights into the weak lensing phenomenon and the
underlying dark matter structure of the Universe.

Our comparative analysis of these techniques revealed their individual strengths and weak-
nesses, providing valuable context for their future applications in cosmological studies. Each
method was applied to real data from the CFIS survey, leading to the generation of distinct mass
maps. The comparison between the maps and their underlying techniques has shed light on the
influence of the mapping method on the final result, an important factor in weak lensing studies.

Furthermore, the application of peak counting to one of the generated mass maps demon-
strated how this higher-order-statistics approach can be used to probe the cosmology of the Uni-
verse. Our comparison with simulations led to constraints on cosmological parameters such as
the matter density parameter (Ωm), the primordial power spectrum (As), and the sum of neu-
trino masses (Mν). This showcases the potential of weak lensing and specifically peak counting
in probing the cosmology of our Universe.

Looking ahead, this study underscores the importance of methodological choice in weak lens-
ing studies and the potential insights that can be gained from mass maps. As the field continues
to evolve, especially with the upcoming large imaging survey by the Euclidmission, these insights
will prove increasingly valuable in our pursuit to understand the nature of dark matter and the
origins of the accelerated expansion of the Universe.

4.2 Ongoing work and future prospects

The work presented in this thesis is just the first step for our future research direction in weak
lensing mass mapping and its utility in constraining cosmological parameters.

Apart of the ongoingwork involves incorporatingmachine learningmethods such as DeepMass
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and DeepPosterior, introduced in [16] and [15], respectively. Moreover, we areworking on trans-
ferring our code a high-performance computing cluster, which will allow us to make mass maps
of the CFIS data at the necessary resolution to conduct peak counts and carry out the cosmological
inference pipeline with all of our mass mapping techniques, not just the Kaiser-Squires method
used here. An important research question we aim to answer is whether different mass mapping
techniques can lead to different results for the cosmological constraints. This is a contentious topic
in the field, with some researchers arguing that the choice of mass mapping method does not im-
pact the final results.

Looking beyond the scope of this thesis, there are numerous exciting prospects that we plan to
explore in the near future. These include the following:

• Simulation Upgrades: An important priority is to update our simulations to Scinet Light-
Cone Simulations (SLICS). These simulations are tailored for weak lensing studies and offer
improvements over theMassiveNuS simulations used in this thesis. In particular, SLICS sim-
ulations include a number of features that better accommodate weak lensing analysis and
have been utilized in the KiDS and DES surveys.

• Spherical Mass Mapping: Another direction of advancement is the transition from "flat"
patch mapping to spherical mass mapping. This transition will provide a more accurate
representation of the large-scale structure of the Universe. Accomplishing this will necessi-
tate the upgrade to CosmoGrid simulations, which support this type of spherical analysis.

• Full Footprint Peak Counts: In the current study, peak counts were performed on a single
patch of the CFIS dataset (P3). Future work will encompass peak counts across the full
footprint of the survey, significantly expanding the scale of the analysis.

• Tomographic Data: We anticipate the availability of tomographic data from CFIS in the near
future. This will provide the redshifts of all galaxies in the survey, allowing us to perform
tomographic peak counts. The inclusion of this "time" information is vital for constraining
the cosmological parameter w (dark energy equation of state), offering a deeper insight into
the dynamics of our Universe.

These future developments will provide the opportunity to significantly refine our weak gravi-
tational lensing analysis techniques, and potentially yield important insights into the fundamental
nature of the Universe.
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