Software Simulation of Active Attacks on

Cryptographic Systems

E.P. Antoniadis, A.G. Voyiatzis
D.N. Serpanos and A. Traganitis

Technical Report
CSD-TR-2001-01

March 11, 2001

Software Simulation of Active Attacks on Cryptographic

Systems*

E.P. Antoniadis, A.G. Voyiatzis, D.N. Serpanos’and A. Traganitis
Department of Computer Science
University of Crete

Technical Report: CSD-TR-2001-01

March 11, 2001

Abstract

Cryptographic devices are susceptible to a wide range of attacks, which render them
insecure despite their use of strong cryptographic algorithms. Active attacks, which intro-
duce hardware faults (transient or permanent), have been proposed recently and constitute
a significant class of attacks. Although they have been analyzed theoretically, they have
not been studied either through simulation or in practical implementations.

In this report, we present a simulation study of active attacks. We describe a flexible,
scalable software simulation environment, which has been developed for the analysis and
evaluation of proposed active attacks as well as for the development of practical methods
for their implementation. We present results of the simulation of attacks proposed in the
literature, and introduce enhancements and variations that can lead to efficient, practical
attacks.

1 Introduction

The successful deployment of a large number of advanced telecommunication and Internet
services requires the use of subsystems and devices that enable secure transactions. This is
especially important to consumer services, where large numbers of consumers may receive
services simultaneously, over public networks. The increasing need for secure transactions has

lead to the introduction of hardware devices that perform cryptographic operations, in order

*This work has been partially supported by a Grant from Telcordia Technologies (formerly Bellcore).
f Contact: D.N. Serpanos, Dept. of Computer Science, Univ. of Crete, P.O. Box 1470, GR-71110 Heraklion,

Crete, Greece. E-mail: serpanos@csd.uoc.gr

to establish the identity of the holder, to encrypt sensitive data —typically stored on the device
itself—, to implement access authorization, etc. Smartcards constitute a significant category
of such hardware devices, and their adoption for general use has led to the development of
standards, which allow third party development of technologies and services [10].

The security of hardware devices is based mainly on the use of cryptographic algorithms.
Cryptographic algorithms can be divided in two main categories: secret algorithms and public
algorithms. The algorithms of the first category are kept unknown, e.g., the Eurochip algo-
rithms, assuming that the lack of knowledge leads to the infeasibility of their cryptanalysis,
and thus guarantees the security of the algorithm. The second category includes algorithms
that are publicly known, e.g., DES, RSA, etc. Their security is based on the computational
hardness of the underlying mathematical problem that should be solved in order to break the
algorithm. It is generally believed that the second category contains more secure algorithms,
due to the fact that they have withstood years of cryptanalysis; for example, RSA has been
crypt-analyzed for twenty years, without any success [5]. In general, well-known public algo-
rithms, such as DES, RSA, DSS, etc., have been proven secure and have been used in many
commercial and military systems. Due to their implementation simplicity, it is feasible to
embed them in devices with limited memory and processing power, such as smartcards.

Although public cryptographic algorithms have been proven mathematically secure up to
date, their implementation in a system may not lead to a secure system. This is due to
“leakage” of information of the physical system, which may compromise the overall security of
the system. This was demonstrated first with the introduction of an attack on cryptographic
devices —and especially smartcards— based on timing analysis of cryptographic operations [12].
The attack was based on the fact that a processor instruction has variable delay, depending
on the values of the operands involved. This variation can leak enough information in order to
decide what the instructions’ inputs are, and thus recover sensitive information (the secret key
or the plaintext message). This work initiated a large number of efforts for cryptanalysis of
algorithms executed on hardware devices, and resulted in a new class of attacks, described also
by the term side channel cryptanalysis [11]. The results of these attacks are quite successful,
but up to date they constitute only certificational weaknesses of the algorithms, i.e. they are
sound weaknesses in theory, but it is very difficult or even impossible to implement them in a
real environment.

Side channel attacks can be categorized in two main categories: passive attacks and ac-
tive attacks. In the first category, the attacker measures certain characteristics of the device
(smartcard), and extracts vital information that renders the system insecure. Such measure-
ments include time variations [12] and power consumption [13]. The difficulty in implementing
such attacks is due to the inability to obtain precise measurements associated with specific
operations. The problem is especially acute in multipurpose devices, where multiple different

operations are implemented. We refer to this problem as the time isolation problem, i.e. the

problem of identifying the exact time instant when a specific measurement has to be made.

Active attacks [3] [4] [6] introduce transient faults causing an undetectable change of the
intermediate results of a cryptographic operation, which in turn help the attacker to solve the
underlying mathematical problem in realistic time. Typically, the underlying mathematical
problems are NP-hard and, in theory, the transient faults provide enough information to
reduce the complexity of the problem to polynomial time (typically of order less than 3).
Although technology to introduce transient faults is available [1] [2], currently, we do not
have the ability to introduce such faults exactly in time and space in hardware systems. This
means that we still need to solve the time isolation problem as well as an analogous location
isolation problem, i.e. to identify the specific storage element or gate, where the fault should
be introduced. Considering these two problems, it seems that such attacks have a higher
probability of success in limited environments, in terms of memory and processing power,
than in more general, multipurpose devices.

The soundness of some passive attacks has been proven. The attack using measurements
of power consumption has been successfully simulated in an appropriate environment [7], and
implemented successfully [9] [15]. Additional passive attacks using electro-magnetic radiation
measurements, etc. are under investigation [9].

In regard to active attacks, it remains an open question if and under what conditions
they can be implemented. In our project we perform a feasibility study of active attacks.
Our efforts are directed in two main directions. First, we have developed a flexible, scalable
software simulation environment, in order to verify the soundness of the attacks and to develop
and evaluate methods for their practical implementation. Second, we have developed an
experimental environment where we hold a series of experiments to analyze and evaluate the
behavior of a processing environment that executes cryptographic operations under extreme
environmental conditions and hazards.

In this report, we describe the results of our first direction, the development of a simulation
environment, the verification of the soundness of the transient fault attacks, and the analysis
and evaluation of alternatives for their implementation. For our purposes, we have developed
a simulator for a smartcard performing cryptographic operations and for a smartcard reader,
which introduces hardware faults. We present the results of the evaluation of the effectiveness
of the attacks described in [6] and [3]. The metrics we have used include time needed to perform
a successful attack and computational complexity of the process to break the cryptosystem after
a successful attack.

The report is organized as follows. Section 2 presents the architecture of the software
simulation environment developed for the evaluation. Section 3 describes the implementation
of the environment, while Section 4 describes the implementation of the attacks and the results
of our evaluations. Section 5 summarizes our conclusions and gives some directions for further

work.

2 Software Simulator Architecture

The software simulation environment has been developed to simulate active attacks in cryp-

tosystems using a range of public cryptographic algorithms and to evaluate their efficiency.

Communication Link

Communication
Protocol

! i - Schnorr 1S Attacker |
Schnorr ! 3 RSA Verifier
Identification) ! i
Scheme ! |
‘ RSA/CRT Attacker
! 1 RSA/Mont Attack 1
! Smart Card Emulator (SCE) | ! |

Communication
Protocol

Fiat-Shamir
Identification Scheme

Smart Card Reader/Attacker

Figure 1: System Architecture

The simulator architecture is depicted in Figure 1. The system contains two components:
the SmartCard Emulator (SCE) and the Smartcard Reader/Attacker. Each component (pro-
cess) consists of a core module, which executes the necessary protocols for interprocess com-
munication, and the cryptographic modules, which perform the appropriate cryptographic
operations using the algorithms we analyze.

The SmartCard Emulator emulates a smartcard which may be used for secure transactions,
while the Smartcard Reader/Attacker represents an external device, which is used as part of
an attack that targets to obtain secret information from the smartcard, specifically to obtain
a key used for cryptographic computations. As an example, the Smartcard Reader/Attacker
can be a man-in-the-middle subsystem between a smartcard and a service provider, which, if
successful in its attack, can obtain services impersonating the smartcard. Clearly, this is not
the only way the attack can be exploited in a real system. Furthermore, it should be noted that,
a transient fault attack requires two different processes, one that introduces the transient faults
in the smartcard and one that behaves as the Smartcard Reader/Attacker. In our system, the
SmartCard Emulator introduces the transient faults, while the Reader/Attacker performs the
calculations necessary to retrieve the key(s).

There are several transactions that are typically implemented in a complete service pro-

vision environment. For the purposes of our analyses, we use two transactions/applications:

the smartcard identification process and authentication. In the identification transaction,
we consider that a service provider tries to identify the smartcard. This is typical, because
in all systems, services are offered only to “legal” clients (smartcards). In authentication,
we consider an application, where the smartcard signs a message for the service provider to
authenticate.

The simulation system is implemented on an IBM-compatible PC running Windows 98SE,
using Java [20] as the programming language and TCP /IP sockets for interprocess communi-

cation. The selection of Java was made for several reasons:

1. it offers great flexibility regarding arithmetic with large numbers, such as the ones in-

volved in cryptographic algorithms;

2. it offers portability, i.e. the ability to execute both processes for the Emulator and the

Reader/Attacker on a wide range of platforms;

3. it provides performance comparable to that of C++ for our application, and in some

cases, Java is significantly more efficient, when heavy network usage is needed.

4. it offers the Java Card API [22] which will be used in the Java-Card [21], a smart
card which will run entirely in Java. It is our intention to extend the experiments on

Java-Cards, when they become available.

3 Software Simulator Implementation

The simulator has been designed as a set of two entities, the SmartCard Emulator and the
Smartcard Reader/Attacker. The partitioning in these two entities was directed by the ab-
straction of the attack model: the cryptographic system is one entity, where faults are in-
troduced, while the attacker is a separate entity, which observes the results of the system
(faulty or not) and attempts to break the system using that information. In our efforts,
we separated these two entities in order to have a flexible platform in which faults can be
inserted independently of the observer of the results. Although this approach seems unneces-
sary in the analysis of this specific report, the system constitutes a flexible environment for
experimentation (development and evaluation) of additional attacks.

The flexibility of the system originates also from the modular design of the system’s en-
tities. The modular design enables the use of alternative cryptographic algorithms for secure
communication between the two entities (e.g., RSA, DES, etc.). This modularity allows the
development of additional encryption modules that implement new algorithms of interest. In
the following, we describe the modular design of the SCE and the Reader/Attacker.

3.1 SmartCard Emulator (SCE)
The Smartcard Emulator (SCE) is a software component, divided into five Java classes:

SmartCardEmulator.class

RSACRT .class

RSAMontgomery.class

FiatShamirIS.class

SchnorrIS.class

SmartCardEmulator is the basic class that acts as the SCE. It supports three cryptographic
schemes: the RSA encryption and verification algorithm [16], the Fiat-Shamir identification
scheme [8], and the Schnorr identification scheme [18], through use of the appropriate class.
RSA is supported for two implementations, one using the Chinese Remainder Theorem (CRT)
and one using Montgomery arithmetic.

When SmartCardEmulator is started, it requires 4 arguments: bit_length, certainty, t and
port_num. The first two arguments are used for the generation of necessary prime numbers,
as described in detail below, while the third argument is the “t” parameter required in the
Fiat-Shamir identification scheme, and the fourth argument indicates the port to which the
emulator’s socket should be bound to. If the emulator is started with inappropriate parame-
ters, then it exits with a typical usage alarm message.

If the command line parameters are correct, then the emulator initializes the four algo-
rithms and binds to a socket at port port_num to listen for incoming connections. If any of
the algorithms does not initialize properly or the port port_num is not available, the SCE
exits printing the corresponding error message. Upon successful initialization, the SCE runs

an endless loop which accepts a connection, serves it and closes it.

3.1.1 Communication protocol

The system entities (processes) communicate using TCP/IP sockets and a protocol, which
implements either the identification or the authentication application mentioned previously.
Upon a successful connection, the client (attacker) transmits to the server two parameters:
the algorithm to use for encryption and a parameter indicating whether there should be a
transient error introduced. Both parameters are passed as strings, with the second string hav-
ing the values true or false. Depending on the requested algorithm, the appropriate exchange
of information is implemented. The specific exchange of messages for each algorithm is shown
in Figure 2. Every box in the figure represents the transmission of a string. Continued dots
(...) represent a series of transmissions of the same type, i.e. in the Fiat-Shamir identification

scheme, if t = 4, then the transmitted messages are uy, ug, us, uq4.

time

IS

fii!

S

)

receive data

Figure 2: SCE - client communication protocol

Server j [Client j
‘ RSA H Fiat-Shamir H Schnorr ‘ ‘ RSA H Fiat-Shamir H Schnorr ‘
I R S | | | |
I O || | | |
L T || | | |
w2 | | |
. | | o
I

3.1.2 Error generation

The SCE introduces transient faults upon request. A request for a fault in the cryptographic
calculations is indicated by setting the second parameter of the SCE communication protocol
true. The SCE introduces a fault on the appropriate quantity, using the appropriate fault
model for the specific experiment and choosing its position with a uniform distribution. The
uniform distribution is implemented using the java.util.random function of the Java Develop-
ment Kit [23], with a 48-bit seed (the default constructor uses the current time as seed, but

there is a constructor that accepts a user seed, if that is desirable).

3.1.3 Cryptographic operations

We have developed in-house implementations for the four cryptographic algorithms of interest

for two main reasons:

e to obtain experience in developing efficient components for these widely used crypto-

graphic algorithms;

e to evaluate the use of Java for cryptographic algorithm implementation. The wide
deployment of Java justifies the study of its internal mechanisms for cryptographic op-

erations.

One of the most important and interesting problems in the development of cryptographic
systems and the implementation of cryptographic algorithms is the security of the required el-
ements: the random numbers and the prime numbers. In the Java Development Kit 1.2, which
we have used, random and prime number generators are built in the java.math. BigInteger pack-
age. In regard to random numbers, we use the java.security.Secure Random routine, which pro-
vides cryptographically strong random numbers by using well-known Pseudo-Random Number
Generators (PRGNs). For prime numbers, we use the Biglnteger(bit_length, certainty, ran-
dom) constructor, which produces a prime number with bit_length bits and which is composite
with probability P, where P < 1/ gcertainty “The bit_length and certainty parameters for prime
number construction are the first two parameters in the command line, when starting execu-
tion of the SCE. Both of them can be arbitrarily long; longer (larger) certainty means greater
probability that the constructed number is prime, with the side-effect of a slower running

program, as more tests are performed.

3.1.4 RSA with Chinese Remainder Theorem

One of the algorithms that can be executed by the SCE is the RSA algorithm using the
Chinese Remainder Theorem (CRT) for exponentiation. The application used is to prove the
identity of the SCE in the following fashion. The SCE computes £ = M® mod N, where M

is a known message, and upon successful connection to the Reader/Attacker, it transmits 3

pieces of information: the public exponent e, the public modulo IV, and the original message
M. So, it is possible for the connected party (Reader/Attacker) to verify the identity of the
SCE by comparing M and E¢ mod N.

In RSA with CRT, the modular exponentiation is efficiently implemented using the Chinese
Remainder Theorem. The performed calculation is described here for completeness.

Let p, g be two secret prime numbers, s the secret exponent, e the public exponent, and N
the public modulo of RSA. Also, let By = M?®™°d (=1 mod p and Ey = M*™d (@~ mod ¢.
Then,

E = M*mod N = (Fyq(q¢! mod p) + Fyp(p ' mod ¢)) mod N

1 1

So, if one knows ¢~ mod ¢, then one needs to compute four products, a sum,

1

mod p and p—

and a modular reduction in order to obtain the desired result. The computation of ¢~
1

mod p
and p~' mod ¢ costs O(loglogn) [19], where n is the bit length of N; however, it can be
performed in advance. Thus, the total cost of modular exponentiation using the Chinese
Remainder Theorem is O(1).

The code for the transient fault generation is inserted between the computation of £y and
E5. If a fault should be generated, then it is introduced in E;, so that the wrong value of £}

is used in the computation of E. The fault is a flipping of a single bit.

3.1.5 RSA with Montgomery Arithmetic

y=M
z=1
for (k=0; k < n; k++)
if (slk] ==1)
z = zxy mod N
y = y*y mod N
end-for

return z

Figure 3: RSA with Montgomery Arithmetic

This algorithm is the same as RSA with CRT, except that it uses “Montgomery Arith-
metic” for the computation of the modular exponentiation. The computation of £ = M® mod
N is implemented with the algorithm shown in Figure 3. In the algorithm description, n is
the bit length of the secret exponent s, and s[k] denotes the k-th bit of s.

The code for fault generation is inserted in the for-loop of the algorithm, just before the

test of s[k]. A fault flips a single bit in s.

10

3.1.6 Fiat-Shamir Identification Scheme

The Fiat-Shamir Identification Scheme [8] is the most complex from the four implemented
schemes. Its security is based on the hardness to compute square roots over Zn. We describe
the scheme briefly (a detailed presentation appears in [8]).

The SCE accepts from the command line parameters the value of ¢ ~the 3-rd parameter—'
and picks two prime numbers p and ¢. Then, it finds a set of invertible items s1, s3, ..., s; mod
N, where N = p* ¢q. In the system, each s; is a prime number (not equal to p or ¢, which
ensures that is invertible over Zy). The public key of the SCE consists of ¢, N, and the set
U= {uj|u;= s?mod N, i= 1,..., t}.

Whenever SCE has to be identified, it executes the following protocol. First, it picks a ran-
dom number 7 and transmits the number 72 mod N. Then, it receives a set S C {1,2,...,t}.
Upon reception, SCE computes and transmits y = r[[;cqs; mod N. The client establishes
the identity of the SCE by confirming that y? mod N is equal to 72 [I;c5ui mod N.

Faults are introduced in r, where a fault is a single bit flip. A fault is introduced while
waiting for the reception of the subset S. This choice takes advantage of the end-to-end
message transmission latency, which allows enough time for an attacker to introduce a fault in

a realistic environment. However, an attacker must choose the position of the fault carefully.

3.1.7 Schnorr Identification Scheme

The Schnorr Identification Scheme is very efficient for environments, where the party that
proves its identity has limited processing power, while the verifying party has significantly more
power. Considering realistic environments, the scheme is well suited for use with smartcards.

The security of the scheme is based on the hardness to compute discrete logarithms over
Zy, where p is prime. Its functionality is based on the challenge-response model. We describe
the scheme briefly (a detailed presentation appears in [18]). The SCE finds a prime number
p with a known factorization of ¢(p), and a generator g of Z;. Then it picks a random
number s and publishes g, p and y = ¢° mod p, as shown in Figure 2. In order to prove its
identity, it picks a random number 7, it computes z = ¢" mod p and transmits z to the client
(verifier). When challenged by the verifier, SCE receives a challenge number ¢ and responds
with u = (r+sxt). Then, the client (verifier) can verify the identity of the SCE by computing
and comparing ¢ = (¢" * ') mod p and v = ¢g* mod p.

In our experiments, we use p = 2 * q; * go + 1, where ¢, ¢s are two prime numbers, each
with length half the bit_length?. The generator ¢ is computed with sequential search of the

candidates, as described in [17].

'Tn the original paper it is suggested that the two parties agree on t; however, the SCE has the option to
agree on a t, and for this reason we choose a single ¢ in our implementation.
2p is tested for primality and re-calculated, if it fails the test. The Java test has probability of failure equal

to ()77, where certainty is the parameter mentioned earlier.

11

Faults are introduced while waiting for the challenge ¢ by the verifier. Similarly to the

previous cases, a fault is a single bit flip in 7.

3.2 Reader/Attacker Emulator

The Reader/Attacker Emulator (or, simply Attacker) software component communicates with
the SCE through a TCP/IP network connection. It implements the communication protocol
shown in Figure 2 and performs the necessary cryptographic operations with any of the sup-

ported algorithms. The Attacker is implemented as a Java applet, and contains five classes:
e BellAttack.class: the applet interface;
o Attack_.RSA_CRT.class: implements the computations for the attack on RSA with CRT;

o Attack-RSA_Montgomery.class: implements the computations for the attack on RSA
with Montgomery;

o Attack_Fiat_Shamir_IS.class: implements the computations for the attack on Fiat-Shamir

identification scheme;

o Attack_Schnorr_IS.class: implements the computations for the attack on Schnorr’s iden-

tification scheme.

Figure 4 illustrates the Attacker interface®, where one can choose the host and port to connect
to (currently the only available SCE is on host selini.csd.uoc.gr, port 6666). The user can
choose one algorithm for cryptographic calculations and whether the SCE should introduce
a fault in the computations, through the corresponding check-box. The text-area acts as a

logging screen, giving information about the progress of the attack.

4 Attacks

4.1 Attack on RSA with CRT

The attack on RSA with CRT is the simplest to implement. When the user chooses the “error
generation” option, the SCE introduces an error, which is detected by the Attacker in the
following fashion.

The “correct” message that should be encrypted by the SCE is M= “100”. When the
Attacker receives the encrypted message F, it computes M,., = E° mod N and compares
M., with M. If they are different, then the attack is successful and one of the prime factors
of N is gcd(M — My.¢y, N). Due to the location of the introduced fault in the SCE, the output
is always p, the first prime factor of N.

3The Attacker Java applet is currently available at URL http://selini.csd.uoc.gr/sce/Attacker.html.

12

Figure 4: Attacker Interface

This attack is a variation of the attack originally proposed by Boneh et al. [6], in that
it breaks the system using only one transaction rather than two. This variation has been
proposed by A. Lenstra [14].

The average delay to calculate p and g on our platform is 1.3 sec (including connection
setup and protocol execution), when using 64-bit keys. For 512-bit keys, the delay is 1.8 sec

on average.

4.2 Attack on RSA with Montgomery Arithmetic

The attack on RSA with Montgomery Arithmetic (RSA-MA) has been implemented using the
theory presented by Boneh et al. [6] and Bao et al. [3]. Since the attacks described in the two
references are equivalent, we have designed the attack based on the description of Bao et al.,
because of its conciseness.

Our attack actually differs from the attacks in the literature in one major way. In the
proposed attacks, a number of transient faults in introduced (n in Boneh et al. and O(n) in
Bao et al.), and the secret key is recovered with a probability of success at least 0.5. In our
attack, we introduce a larger number of errors in order to recover the key in full.

The application used in this experiment is authentication: the SCE signs a well-known mes-

sage with its private key, and the Attacker verifies it by exponentiating the received message

13

with the public key of the SCE. The attack consists of a sequence of rounds of authentication.
In the first round, no transient fault is introduced, so that the Attacker receives the correctly

signed message (csm = m? mod N). From this message, the Attacker constructs two vectors,

m = (csm, csm?, csm?, . .. ,cst(nil)) and m_inv = {m[i]7',Vi =0,...,n — 1} over Zy, i.e.
mli] = m® mod N,Vi=0,...,n—1
and
m_inv[i] = m[i] ! mod N,Vi=0,...,n —1

In subsequent rounds, transient faults are introduced. Upon reception of a faulty signed
message, the Attacker constructs a ratio, which is the product of the received message and
the inverse of the correctly signed message csm. Then, the ratio is compared to m[i] and
m-inv[i]. If there is an ¢ such that ratio = mli], then the corresponding bit of the secret
exponent is 0. If there is an i such that ratio = m_inv[i], then the corresponding bit of the
secret exponent is 1.

In our attack, we introduce a larger number of errors in order to recover the key in full.
Given that the secret key has bit-length n and that we introduce faults which are uniformly
distributed among the n key bit locations, the expected number of introduced faults is n x H,,
in order to recover all n secret bits.

Clearly, there is a trade-off between the number of introduced faults and the probability
of successfully deriving the secret key. In our approach through, we provide improved per-
formance in a realistic system. The reason is that in the proposed attacks, a large number,
O(n3), of RSA encryptions is required to achieve 0.5 probability of success, while in our attack
no such encryptions are required. So, in a realistic environment, the processing of the extra
faults will be faster than the performance of the RSA computations. However, in our attack
there is a requirement for a larger number of introduced transient faults. The success in in-
troducing the increased number of transient faults is certain, because even the introduction
of n (or O(n)) faults assumes that a mechanism exists that introduces faults reliably in time
and in place (i.e., in the secret key); this mechanism can be used effectively for the remaining

faults as well.

Key length | Key bits found | Total number | Time per Total Time
(n) after of faults to Fault min/max/avg
nlogn faults | id complete key (sec) (minutes)
16 15-16 30-85 0.72 0:22/1:00/0:37
64 64 223-373 0.725 3:07/4:37/3:43

Table 1: Fault measurements for RSA-MA key identification

14

Table 1 summarizes the results of our experiments. The left column in the table represents
the bit length of the key, while the second column shows the number of key bits identified
after nlogn errors. The third column shows the actual number of faults that were necessary
to introduce in order to find the complete key.

The results of this analysis indicate that, one could optimize the attack, so that it does
not introduce faults after calculating (n — k) key bits, but use brute force instead. Such kinds
of optimizations are desirable, and can be made easily in any realistic system based on its

performance parameters.

4.3 Attack on Fiat-Shamir Identification Scheme

We implement the attack proposed by Boneh et al. [6]. We assume that the SCE does not
accept singleton sets, S. So, the Attacker must choose the S sets in such a way that the
characteristic vectors of the sets form a ¢ x ¢ full rank matrix over Zs. After constructing this
matrix, the Attacker initiates a series of executions of the protocol using all the characteristic
vectors consecutively. For example, if ¢ = 4, the transmitted subsets are: {1,4}, {2,4}, {3,4},
and {1,2,3}. After all responses to faults are collected, the Attacker computes the secret set
of s;. The underlying mathematical background and the exact computations performed are

the ones described in [6].

Size of N | t | Total Time | Estimated Attack
(sec) Time (sec)
512 4 23 10
512 8 37 14
512 16 63 18
512 32 142 40
512 48 225 58

Table 2: Performance measurements for the attack on Fiat-Shamir

Table 2 summarizes the execution time to perform a successful attack on Fiat-Shamir
identification scheme on our platform. The reported times correspond to the whole attack
process, including the connection and error generation phase as well as the secret parameter
computation phase. The estimated attack time is calculated by subtracting from the total time
the average delay for connection setup, error generation and secret parameter computation,

which have been measured autonomously.

15

4.4 Attack on Schnorr Identification Scheme

The attack is implemented as proposed by Boneh et al. [6]. For completeness, we decided to
not bound the number of errors to k£ = nlog4n, as proposed in the reference, but perform as
many errors as necessary to cover all bit positions of r. This fact changes the complexity of
the attack and thus, its running time. For the first phase, which is the collection of responses
with errors (due to faults), the complexity is O(nk), where k is the total number of errors.
This may give greater complexity than O(nlog4n), but the probability covering the secret
parameter with errors is 1.0 rather than 0.75 of the original attack. For the second phase,
the complexity is not affected, i.e. it remains O(n?) and the probability of success at 0.75.
Finally, the time complexity is bounded by the greater of O(nk) or O(n?) and the probability

of success is 0.75.

H Length of N ‘ Faults ‘ Attack Time (sec) H

16 17-26 51 (0:51 min)

32 71-108 | 131 (2:11 min)
64 169-276 | 225 (3:45 min)
128 832 846 (14:06 min)
256 1567 | 7295 (2:01:35 hours)

Table 3: Fault measurements for the attack on Schorr’s scheme

Table 3 summarizes the results of the experiments. The left column shows the bit-length

of N, while the right one shows the faults needed to identify the complete secret key.

5 Conclusions

We have presented an efficient and scalable simulation environment for the verification of
active attacks on cryptosystems. Using this environment, we verified and evaluated several
active attacks, analyzing such parameters as delay, implementation complexity, etc.

Considering the goals of our project, we will continue work in two main directions:

1. extension of the software platform and evaluation of all active attacks that appear in

the literature;

2. development of practical methodologies to resolve the problems of time isolation and

location isolation.

In regard to the first direction, we plan to implement the active attacks on the ElGamal and

DES algorithms, using the methodologies that appear in [3] and [4], respectively. Furthermore,

16

we intend to extend our platform to include the JavaCard API using the ISO 7816 commu-

nication protocol, in order to identify possible system flaws and to evaluate the efficiency of

various attacks on that platform.

The platform gives us the ability to work in an additional direction: to collect statistics

in order to evaluate whether there is a relationship between fault positions and the results

of encryption. Such statistics may prove useful and enable more efficient or more practical

attacks.
References

[1] R. Anderson and M. Kuhn. Tamper Resistance - a Cautionary Note. In Proceedings of
the second USENIX Workshop on Electronic Commerce, pages 1-11, 1996.

[2] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistance Devices. In Security
Protocol Workshop 97, 1997.

[3] F. Bao, R. Deng, Y. Han, A.D. Narasimhalu, and T. Ngair. Breaking Public Key Cryp-
tosystems on Tamper Resistant Devices in the Presence of Transient Faults. In Security
Protocol Workshop 97, 1997.

[4] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In
Advances in Cryptology-Crypto 97 Proceedings, pages 513-525. Springer-Verlag, 1997.

[5] D. Boneh. Twenty Years of Attack on the RSA Cryptosystem. Notices of American
Mathematical Society, 46(2):203-213, 1999.

[6] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults. In Advances in Cryptology-EUROCRYPT 97 Proceedings, pages 37—
51. Springer-Verlag, 1997.

[7] J.-F. Dhem, F. Koeune, P.-A. Leroux, Mestré, J.-J. Quisquater, and J.-L. Willems. A
Practical Implementation of the Timing Attack. Technical Report CG-1998/1, UCL
Crypto Group, DICE, Université Catholique de Louvain, Belgium, 1998.

[8] U. Feige, A. Fiat, and A. Shamir. Zero Knowledge Proofs of Identity. In Proceedings of
19th annual symposium on theory of computing, pages 210-217. ACM, 1987.

[9] Cryptography Research Inc. http://www.cryptography.com/dpa/qa/index.html.

[10] ISO. Standards 7816. http://www.iso.ch/cate/d2957. html.
[11] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel Cryptanalysis of

Product Ciphers. Technical report, Counterpane Systems, 1998. available at URL

http://www.counterpane.com/.

17

[12]

[16]

[19]
[20]
[21]
[22]

[23]

P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and Other
Systems. In Advances in Cryptology-Crypto 96 Proceedings, pages 104-113. Springer-
Verlag, 1996.

P. Kocher, J. Jaffe, and J. Benjamin. Differential Power Analysis. In Advances in

Cryptology-Crypto 99 Proceedings, pages 388-397. Springer-Verlag, 1999.

A K. Lenstra. Memo on RSA Signature Generation in the Presense of Faults. Manuscript

available from author, arjen.lenstra@citicorp.com.

T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Investigations of Power Analysis Attacks
on Smartcards. In Proceedings of the USENIX Workshop on Smartcard Technology, pages
151-161, May 1999.

R.L. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. In Communications of the ACM, volume 21, pages 120—
126, 1978.

B. Schneier. Applied Cryptography, pages 253-254. John Wiley and Sons, Inc., 1996.

C. Schnorr. Efficient Signature Generation by Smart Cards. In Journal of Cryptology,
volume 4, pages 161-174, 1991.

D. Stinson. Cryptography, Theory and Practice, page 128. CRC Press, 1995.
SUN, Inc. Java Web Site. URL: http://www.javasoft.com/.
SUN, Inc. JavaCard. More information on www.javasoft.com.

SUN, Inc. JavaCard API. More information on www.javasoft.com.

SUN, Inc. JDK 1.2. URL: http://www.javasoft.com/jdk12/api/.

18

