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Iepiinwn

Me v avoakdAvy”n TG TEXVOAOYING VEAG YEVIAS, O GLYYPOVOG KOGLOG TNG Proteyvoloyiog TAEoV
umopet vo, aAANAOVYNOEL EKATOVTASES YIAAOESG YOVIOIX 1] Kot OLOKANPO TO YOVIOI®UA GE GUVTOUO
YPOVIKO OIoTNUa Kot pe younAd kootoc. Emiong, umopel va eotidoel otnv Yoptoypaenon
TAPOAAAYOV/UETOANAEEWY OV eVOEYOUEVMG Vo €yovv KLPL. PBlOAOYIK) onuacio yo v
(QLGLOAOYIKN AEITOLPYi TOV KVTTAPOL. TETO10VL EidOVG amoteAéopata, AomdV, ExOVV LEYAAN 1Y
Y ™ ddyveon g vosov, TV TPoOyveoT, T BEpamEVTIKN amdPAcT] Kol TV TopoKolovdnon
acOevov. AVTA 1 EXAVACTATIKN TEYVOAOYIKT dLVOTOTNTO TNG LOlIKNG TOPAAANANG aAAnAovyiag
TPOCPEPEL VEEG EVKUPTES Y10 EEATOMKEVUEVT 10TPIKT akPIPEinG, 0oTOG0 dnpovpyel Kot pia véo
HEYAAN TPOKANOT TTOV aPOPA TV VIEPTANODPA SEOOUEVOV.

AVOADTIKOTEPO, Ol YOVIOIOUOTIKEG HEAETEG ONUOVPYOVV TEPACTIEG TOGOTNTES OEOOUEVMV, TOL
ouyva mephapupdvovy yIladeg yovidin oe moArlomAd deiypato. O EVIOTIGUOC TOL KATOAANAOL
VTOGLVOLOL TV YOVIdIWV TTOL givor TO GYXETIKOL e TNV PLOAOYIKN KOTAGTOOT) TOL HEAETOTOL KO
v dlakpiorn g eivorl amapoitnToc. Xto TAAIcLo 0VTHG TNG LEAETNG ECTIAGOUE GTNV KATOAANAN
EMAOYN YOPOUKTNPLOTIKOV GE OEOOUEVA YOVIOLOKNG EKPPOOTG oL oyeTilovtal pe Tov Kapkivo.
YXlomomnke m onovpyion evog adyopiBuov emdoyng yopoxtmpiotikov (dcor-OMP) mov
arotelel pa mapardoyn tov adyopifuov y-OMP. Eniong, aloloyndnke n amdd0061 100 6€ GYéon
ue Tov mpokatoxd tov, y-OMP. Ot 600 avtoi adydpiBuot eivor pa mapaiiayr tov Orthogonal
Matching Pursuit (OMP) ov ypnowonoteiton evpéwg oty ene&epyooia onpatog (Chen, Billings,
& Luo, 1989; Davis, Mallat, & Zhang, 1994) kot éxovv mpocaprootel €101KG Yo aviAvon
OEJOUEVMV YOVISIOKNG EKQPAOTG.

AéEeig-kle1dnd: Xvoyétion andoraons, Emidoyn yopaxtypiotikov, Aedouéva éxkppaons yovidion, adyopibuog y-OMP,
aAyopiBuog dcor-OMP, Teyvoloyio pukpoovaroryicv, Alinlovyia exouevng yevias (NGS), Muyyaviky uabnon, Kopmoin
ROC, AUC (Ilepioyn karw amo v koumoAn).
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Abstract

The advent of next-generation technologies revolutionized the field of biotechnology, allowing
scientists to sequence hundreds of thousands of genes or an entire gene in a short amount of time.
It can also focus on mapping variants/mutations that may have biological signaling implications
for normal cell function. As a result, these findings have significant implications for illness
diagnosis, prognosis, therapy decisions, and patient monitoring. This groundbreaking
technological possibility of massively parallel sequencing opens up new opportunities for
precision medicine, but it also introduces a new challenge: data overload.

First and foremost, genomics examines massive volumes of data, frequently including hundreds
of genes in numerous samples. Identifying the proper selection of genes for identifying biological
states is critical to understanding the underlying biological mechanisms. In this study, we looked
at the most appropriate feature selection in cancer-related gene expression data. We developed a
feature selection method (dcor-OMP), a version of the y-OMP algorithm. The performance
compared to the y-OMP precursor was also assessed. Both of these methods are variations on the
Orthogonal Matching Pursuit (OMP), which is widely used in signal processing (Chen, Billings,
& Luo, 1989; Davis, Mallat, & Zhang, 1994), and have been specially customized for gene
expression analysis.

Keywords: Distance Correlation, Feature Selection, Gene Expression Data, y-OMP Algorithm, dcor-OMP
Algorithm, Microarray Technology, Next-generation Sequencing (NGS), Machine Learning, ROC Curve, AUC
(Area Under the Curve).
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Chapter 1 Introduction

1.1. Understanding Cancer

Cancer has been understood since ancient times, as evidenced by fossilized bone tumors, Egyptian
mummies, and old texts. The oldest description, from approximately 3000 BC in Egypt, references
breast cancers that were treated with cauterization. Hippocrates later developed the name "cancer"
in reference to tumors' crab-like appearance. During the Renaissance, scientific approaches
enhanced cancer research, resulting in important advances in oncology. The nineteenth century
witnessed more advancement with microscopes, allowing extensive analysis and assisting cancer
surgery (American Cancer Society, 2021).

The word "cancer” or "(malignant) neoplasms" refers to a category of illnesses that originate at the
cellular level. Cancer is a hereditary condition characterized by uncontrolled cell growth. Under
normal conditions, somatic cells proliferate and multiply in a controlled way; nonetheless, cells
can become aberrant and continue to expand. These aberrant cells can aggregate to create a tumor.
If this uncontrolled growth is not immediately halted, it might spread, a situation known as
metastasis, which can lead to serious clinical problems or even death (NCI, 2021). Cancer may
afflict practically every bodily component and take several forms (Martel et al., 2020). Cancer is
classified into five primary types: carcinoma, sarcoma, leukemia, lymphoma, and myeloma. Each
cancer kind is unique, having its own genesis, symptoms, and treatment options (NCI, 2017).

Today, cancer is a major global health issue and one of the leading causes of death worldwide. In
2022, nearly 20 million new cancer cases were diagnosed, and there were approximately 9.7
million deaths attributed to cancer. Projections indicate that by 2040, these numbers will
significantly increase, with new cancer cases expected to reach 29.9 million annually and cancer-
related deaths anticipated to rise to 15.3 million per year. Generally, the highest cancer rates are
observed in countries with high life expectancy, education levels, and standards of living.
However, certain cancers, such as cervical cancer, exhibit higher incidence rates in countries where
these measures are comparatively lower (Cancer Statistics - NCI, 2022). Lung cancer is the most
prevalent cancer globally, with 2.5 million new cases, representing 12.4% of all new cancer cases.
Following lung cancer, female breast cancer is the second most common, with 2.3 million cases,
accounting for 11.6% of the total. Colorectal cancer ranks third with 1.9 million cases (9.6%),
followed by prostate cancer with 1.5 million cases (7.3%), and stomach cancer with 970,000 cases
(4.9%) (IARC, 2022).
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1.2.  The Genetic Background of Cancer

Cancer is caused by DNA alterations that develop as a result of either random mistakes during
genome replication or carcinogens. Individual mutations are usually insufficient to induce
cancer; but, the accumulation of genetic mutations in genes that govern cell growth and division
can convert healthy cells into malignant ones. These mutations can be hereditary (genetic
mutations inherited from parents) or acquired (mutations acquired during a person’s lifetime due
to environmental influences such as radiation or carcinogenic substances). The overwhelming
majority of cancers occur randomly as a result of this process over time (The Genetics of Cancer,
2015). A variety of genetic changes have been related to the development of cancer. A DNA
mutation, also known as a genetic variant, is a sort of modification that causes alterations to the
DNA sequence. Some mutations only affect one nucleotide, hence a single nucleotide in DNA
may be missing or replaced by another. These are referred to as point mutations. For example,
roughly 5% of cancer patients have a point mutation in the KRAS gene, altering the nucleotide G
to A, resulting in the development of an aberrant KRAS protein that causes uncontrolled cell
proliferation. (Consortium et al., 2017; Guyon and Elisseeff, 2003). Genetic changes that cause
cancer can also occur through rearrangements, deletions, or duplications of large segments of
DNA, known as chromosomal rearrangements. For instance, chronic myeloid leukemia is often
caused by a chromosomal rearrangement that joins the BCR gene with the ABL gene, creating
the BCR-ABL protein that leads to uncontrolled cell growth (Hasty and Montagna, 2014). Some
carcinogenic DNA changes occur outside of genes, in areas that act like "on" or "off" switches
for nearby genes. Additionally, epigenetic changes, which are reversible and do not alter the
DNA code but affect how DNA is packaged, can also cause cancer. Environmental factors such
as cigarette smoke and the Epstein-Barr virus can induce both genetic and epigenetic changes
(Abumsimir, Al-Qaisi and Kasmi, 2022).

It is generally accepted that driver gene mutations initiate the development of cancer. The most
characteristic cases of such genes belong to two main categories: proto-oncogenes, which mutate
into oncogenes leading to the development of cancer cells, and tumor suppressor genes, which,
when inactivated, cause uncontrolled cell proliferation and consequently cancer development
(Dressler et al., 2022). Oncogenes are mutated forms of genes that cause normal cells to grow
excessively and transform into cancer cells. These mutations involve specific genes within the cell
known as proto-oncogenes (proto-oncogenes are denoted with the prefix “c”). Proto-oncogenes
normally control how often a cell will divide and the degree to which it will differentiate. Proto-
oncogenes, such as Ras, transcribe into products like growth factors, receptors, transcription
factors, and signaling enzymes for cellular proliferation. Gain-of-function mutations in proto-
oncogenes, resulting in dominant oncogenes that differ from their proto-oncogenes or are
overexpressed, occur through point mutations, localized duplication, or chromosomal
translocation. Consequently, when an oncogene mutates, it becomes permanently “stimulated,”
causing the cell to divide very quickly, leading to cancer. This disrupts the normal activity of a cell
and can lead to uncontrolled cell division and ultimately to cancer cells (Nourbakhsh et al., 2024).
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Tumor suppressor genes are normal genes whose primary function is to inhibit cell division. This
inhibition helps in repairing DNA errors and regulating cell apoptosis. When these genes are lost
or under expressed, it leads to uncontrolled cell division, which can eventually result in cancer. To
date, around 30 tumor suppressor genes have been identified, including well-known examples such
as p53, BRCA1, BRCA2, APC, and RB1. These genes play crucial roles in maintaining cellular
integrity and preventing the formation of malignant tumors, thereby acting as essential safeguards
against cancer development. The loss or under expression of these genes leads to uncontrolled cell
division, which can ultimately result in the development of cancer (Tang et al., 2021). A major
difference between oncogenes and tumor suppressor genes is that oncogenes result from the
activation of proto-oncogenes, whereas tumor suppressor genes lead to cancer when they are
inactivated. Another key distinction is that the majority of oncogenes originate from mutations in
normal cells (proto-oncogenes) acquired during an individual's lifetime, known as acquired
mutations, while abnormalities or disruptions in tumor suppressor genes can be inherited from
one's parents (Dressler et al., 2022).

1.3. Oncogenes

Over the past forty years, scientific investigations have unequivocally shown the significance of
oncogenes in human cancer. Numerous attempts have been made to comprehend the causal
function of activated oncogenes in the formation of cancer since it was discovered that these genes
are present in human tumors (Der et al., 1982; Goldfarb et al., 1982; Parada et al., 1982; Pulciani
et al., 1982; Santos et al., 1982; Shih and Weinberg, 1982). Nevertheless, all of this research has
demonstrated that oncogene expression is necessary for both the onset and progression of cancer,
maintaining oncogenes as the primary targets for anti-cancer therapy. In genetically engineered
mouse models, oncogenic expression is driven by tissue-specific promoters, resulting in high
frequency tumors that regress when the inducing stimulus is turned off (Chin et al, 1999; Huettner
et al, 2000; Boxer et al, 2004). This suggests that oncogenes are the Achilles' heel of cancers
(Weinstein, 2002). This current concept of cancer is consistent with the fact that, in human tumors,
all cancerous cells, regardless of cellular heterogeneity within the tumor, carry the same beginning
oncogenic genetic abnormalities. Since the temporary silencing of the several separate tumor
inducing oncogenes can induce cancer remission in these model systems, these data appear to
suggest a homogeneous method of action for oncogenes inside cancer cells overall. Sadly, though,
the treatments based on this cancer model are unable to completely eradicate human tumors. These
clinical observations imply that oncogene-induced carcinogenesis in humans may not be reversible
by means of the specific inactivation of the gene defect(s) that cause cancer to occur. What are the
processes of tumor relapse, nevertheless, by which tumors change to become independent of
oncogenes? (Vicente-Dueiias et al., 2013)

These therapeutic failures cannot be explained just by the presence of cancer stem cells (CSCs) or
the recognized cellular plasticity of tumors. Indeed, both factors imply that a genetically
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homogeneous tumoral population can look phenotypically heterogeneous due to the presence of
cells in various stages of development (Hanahan and Weinberg, 2011). The failure of targeted
therapies in humans may indicate that oncogenes behave differently across cancer cells. This could
explain why cancer cells respond differently to anti-oncogene therapy based on their stage. Recent
in vivo genetic data has indicated that human oncogenes can transform early stem/precursor cells
into specific differentiated tumor cell fates, although they are not necessary within malignant cells.
These findings not only highlight a previously unknown role for human oncogenes, but also
support a previously unmodeled carcinogenesis process in which the malignant phenotype is
already programmed at the stem cell stage (Vicente-Dueiias et al., 2013).

1.4.  Microarray technology

Microarray is a recent advance in cancer research (Kim, Kang and Park, 2004) aiding
pharmacological treatments for various diseases, including oral lesions. It allows the analysis of
large sets of new and previously recorded samples and can detect specific tumor markers.
Microarray technology enables simultaneous genotyping of thousands of loci, facilitating
association and linkage studies to identify chromosomal regions associated with disease. It can
detect chromosomal abnormalities in cancer, such as segments of allelic imbalance defined by loss
of heterozygosity (Gilad et al., 2000). Comparative genome-wide DNA hybridization helps
identify amplified or deleted chromosomal regions, useful in cases such as oral cancer (Lilenbaum
et al., 2001). Gene microarray technology allows tens of thousands of DNA sequences to be
deposited onto a small surface, usually a glass slide, known as a 'chip’. These DNA fragments are
systematically arranged so that the identity of each fragment is determined by its position. The
chip is then bathed with DNA or RNA isolated from a study sample (such as cells or tissue).
Complementary base pairing between the sample and the chip-immobilized fragments produces
light via fluorescence that can be detected using a specialized machine. Microarray technology can
be used for various purposes in research and clinical studies, such as measuring gene expression
and detecting specific DNA sequences ((National Human Genome Research Institute, , 2024).
There are two main types of microarrays: gene expression microarrays and tissue microarrays
(TMAS).

In contrast to techniques such as Northern blot and RT-PCR, which test only a few genes per
experiment, microarray technology allows the simultaneous examination of many genes without
bias from gene preselection (The Genetics of Cancer, 2015). In recent years, the scientific
community has heavily utilized microarray technology, generating vast amounts of gene
expression data. This data is scattered and not easily accessible. To address this, the National
Center for Biotechnology Information (NCBI) created the Gene Expression Omnibus (GEO), a
data storage facility that compiles gene expression data from various sources. This repository will
serve as the input for our algorithm (PREMIER Biosoft, 2024).

The flowchart below (Figure 1) explains the process of comparing gene expression between
normal and cancer cells using cDNA microarray technology. It starts with collecting cell samples
(a), growing them in culture (b), and isolating mMRNA from both normal and cancer cells (c). The
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MRNA is then converted to cDNA, with normal cell cDNA labeled with green fluorescent probes
and cancer cell cDNA with red fluorescent probes (d). These labeled cDNAs are hybridized to a
microarray with oligo sequences and scanned to detect fluorescence (e). The colors indicate gene
expression: gray means not present, yellow indicates presence in both cell types, green shows
expression in normal cells only, and red indicates expression in cancer cells only ().

Normal (@ % T“/(; Cancer
Cell Cell Samples () ”’C‘,\f Coll
mt significant: \
(<)

(B % @ Cell Culture (b) | ®% % @,
@ (L N ) @ <) /1 . Not present in cells
i | i | O Presentin both cells
mRNA RNA Isolation (c) mRNA Significant:
‘ ‘ . In normal cells only
cDNA Reverse cDNA

Transcription (@ @ n disease cells only
AN AN Labeling AV AN
Green Fluorescent Probes Red Fluorescent Probes

Hybridise @ @ @ @ Scan
cDNA probes to @ @ @ @

oligo sequences

on microarray @ @ @ @ ®©

Figure 1. Microarray Technique flow chart

1.5. RNA-Seq (RNA Sequencing)

RNA sequencing (RNA-Seq) is among the most advanced and powerful technologies applied to
study gene expression and genome function. RNA-Seq allows in-depth analysis of the RNA
content within a biological sample with high-throughput NGS methods, which permits exact
quantification and sequencing of RNA molecules. Major areas of improvement for RNA-Seq over
classical approaches are the level at which it details a high-resolution snapshot of the
transcriptome; it can describe the set of active genes and their levels in different conditions and
time points (Wang, Gerstein, and Snyder, 2009). This technology can also identify previously
unknown genes and transcripts, expanding our understanding of the genome (Mortazavi et al.,
2008). In addition, RNA-Seq can detect alternative splicing events and post-transcriptional
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modifications that are very important in understanding gene regulation and protein diversity. This
kind of technology identifies gene fusions, mutations, and single nucleotide polymorphisms often
coupled with diseases, reflecting further the versatility and importance of this technology.
Mortazavi et al., 2008. That way, researchers can further compare gene expression profiles across
different conditions, treatments, or time points, providing insight into the dynamic nature of the
transcriptome. The other steps in the workflow of RNA-Seq are few but are of high importance.
First, it begins with the isolation of RNA from biological samples, ensuring that it is of good
quality and integrity. The isolated RNA is reverse-transcribed to complementary DNA (cDNA) by
reverse transcriptase (RT) (Stark, Grzelak, and Hadfield, 2019). The cDNA is subsequently
sequenced with high-throughput NGS technology, which produces massive amounts of sequence
data (Ozsolak and Milos, 2011). Finally, bioinformatics tools are employed to analyze the
sequencing results, such as mapping reads to a reference genome and predicting gene expression
levels. RNA-Seq has changed genomics research by introducing a powerful and versatile approach
for investigating the transcriptome. It enables researchers to analyze gene expression profiles,
identify new transcripts, and decipher complex regulatory networks in unprecedented detail
(Conesa et al., 2016). RNA-Seq, one of genomics' most advanced and effective tools, is still
pushing research into gene expression and genome function. Its ability to provide comprehensive
and precise data makes it an indispensable tool in modern biological research.

1.6. Next-generation Sequencing (NGS)

The introduction of Next-generation Sequencing (NGS), also known as High-throughput
Sequencing (HTS), and Whole Genome Sequencing (WGS) technologies in genomics has
revolutionized biological research by enabling the collection of massive amounts of genomic data
in an unprecedented manner (Xuan et al., 2013). These technologies have transformed the field of
genomics, providing rapid, scalable, and high-throughput sequencing capabilities. This data,
derived from the genome and transcriptome, offers insights into the genetic makeup and gene
expression patterns of organisms (Grafiati, 2021).

NGS has significantly advanced various fields, including personalized medicine, genetic diseases,
clinical diagnostics, and microbiology. It has supplanted traditional sequencing methods by
enabling the analysis of millions or even billions of sequences, offering a comprehensive view of
the genetic landscape (Grafiati, 2021). The analysis of NGS data involves identifying genomic
variations, studying gene expression, and understanding spatio-temporal dependencies within the
data. Additionally, the development of computational methods for NGS data analysis is crucial to
ensure accurate interpretation and extraction of meaningful biological information from the vast
datasets (Eisele and Kappelmann-Fenzl, 2021). Integrating NGS data into research and clinical
practice has opened new possibilities for understanding complex biological systems and
developing innovative diagnostic and therapeutic strategies. These technological breakthroughs
have allowed scientists to explore the molecular landscape of species, gaining vital insights into
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their genetic makeup, disease causes, and evolutionary linkages (Mohammadi et al., 2023).
However, the exponential expansion of NGS data poses significant challenges in extracting
valuable knowledge from these enormous datasets (Dash et al., 2019). Machine learning, a subset
of artificial intelligence, has emerged as a potent tool to address this difficulty by providing
algorithms and methodologies for rapidly analyzing, interpreting, and extracting important
information from biological NGS data (Yang et al., 2020).

In 2001, the completion of the human genome sequencing project marked a transformative
milestone in scientific achievement, propelled by researchers using the Sanger DNA sequencing
method (Lander et al., 2001). Despite this accomplishment, the high costs and throughput
limitations hindered the widespread application of DNA sequencing, especially in sequencing
individuals' genomes. The initial estimate for sequencing the first human genome ranged from half
to one billion dollars. Following the public release of the "completed" human genome (Nature,
2005), the National Human Genome Research Institute (NHGRI) invested $70 million in a DNA
sequencing technology initiative aiming for a $1,000 human genome within a decade (Schloss,
2008). This commitment spurred significant advancements in HTS technologies, with platforms
like Illumina, lon Torrent, and PacBio emerging as pioneers, revolutionizing the landscape of
molecular biology by facilitating rapid, cost-effective, and efficient sequencing of large volumes
of genetic material.

HTS has overcome the limitations of the traditional Sanger sequencing method, which, despite
reducing per-base costs by the end of the Human Genome Project, required a five-order magnitude
reduction to reach the ambitious $1,000 genome threshold. Today, the cost of sequencing a genome
(without interpretation) has dipped below $2,000, significantly closing this gap (Reuter, Spacek,
and Snyder, 2015). HTS's innovative advantage lies not only in its affordability but also in its
practicality for gene expression analysis and the detection of genetic diseases. This technology has
enabled researchers to generate extensive datasets, fostering a more comprehensive understanding
of genomic and transcriptional signatures across various diseases and developmental stages.

Within HTS technologies, whole exome sequencing has become instrumental in detecting new
variants and mutations. RNA-Seq, an abbreviation for RNA sequencing, is a prominent technique
utilizing NGS to provide profound insights into the presence and quantity of RNA in biological
samples, thereby unraveling the continuously changing cellular transcriptome. The synergy of
HTS technologies and bioinformatics tools has ushered in a new era of scientific inquiry, enabling
researchers to delve into the intricate mechanisms behind gene expression profiles in healthy and
diseased states. RNA-Seq extends beyond merely measuring gene expression levels to include the
identification of novel transcripts, splice variants, and other non-coding RNAs. By leveraging
NGS, RNA-Seq facilitates the generation of comprehensive snapshots of gene expression,
regulatory networks, and diverse cellular activities within a given sample. Its high-throughput
nature allows for the comparison of expression levels between different samples, facilitating the
identification of differentially expressed genes or transcripts. RNA-Seq emerges as an
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indispensable tool, not only for studying gene expression but also for unraveling the complexities
of gene regulation and identifying novel transcripts and splice variants with profound implications
for scientific and medical research (International Human Genome Sequencing Consortium, 2004;
Reuter, Spacek, and Snyder, 2015)

1.7. Gene expression data

The rapid advancement in genomics has flooded biology with extensive information, ranging from
genome sequences to high-throughput functional data, prompting a shift in focus towards
understanding global biological mechanisms. Platforms like gene expression profiling and
proteomics, especially utilizing high-density microarrays, have become pivotal in unraveling
complex genetic puzzles (Bowtell, 1999). Despite the benefits, managing and extracting
meaningful insights from the vast data pose significant challenges. Global efforts, such as the
European Bioinformatics Institute's microarray database, aim to address these challenges by
establishing common standards and large, publicly accessible gene expression databases.
Simultaneously, the field is evolving towards more statistically robust methods, including
predicting disease membership and modeling biological variables through gene expression data
analysis (Dopazo et al., 2001).

Gene expression data is often structured as a gene expression matrix, with columns representing
samples or experiments and rows representing expression vectors for the genes queried by the
microarray (Ravindran and Gunavathi, 2023).

Measure the level of mRNA transcription of protein-coding genes in a cell. The mRNA mix
utilized in gene expression assays comes from biomaterials (samples) such tissues and cell lines.
A microarray is often constructed to detect hundreds of unique target sequences linked with these
genes using hybridization. The given measurements are only significant if something is known
about the samples, target sequences, and genes. The primary purpose of gene expression data
management is to combine expression data with sample and gene annotations, allowing users to
explore, analyze, and understand expression data. A gene expression data management system
usually integrates data from three different data sets: sample annotations, gene annotations, and
gene expression measurements (Markowitz et al., 2003). Below (Figure 2), is provided an
overview which include the most widely used gene expression detection techniques for cancer
tissue samples, beginning with tumor tissue.
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Figure 2. Overview of the gene expression detection assays for cancer tissue sample by
(Narrandes and Xu, 2018). (a) TMA (Tissue Microarray) can be used to evaluate hundreds of
samples utilizing FISH. (b) FISH can be used to localize and quantify hybridization intensity in a
single sample. (c) RNA is taken from the sample and examined using NanoString, which measures
hybridization in 50-500 genes. (d) The RNA is subsequently transformed to cDNA for gRT-PCR,
which measures 1-50 genes using reaction cycles. Furthermore, () cDNA fragments are employed
in microarray analysis to detect 1,000-25,000 genes. Finally, (f) a cDNA library is generated for
RNA-seq, allowing for a comprehensive investigation of the entire transcriptome through

transcript quantification.
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Chapter 2 Machine Learning and Feature Selection

2.1. Machine learning (ML)

Machine learning technologies enable researchers to reveal hidden associations, identify
biomarkers, classify samples, and generate predictions with high accuracy and efficiency by
harnessing the inherent patterns and structures within the data (Marcos-Zambrano et al., 2021).
Machine learning is a branch of artificial intelligence that enables computers to learn from data
and improve their performance without explicit programming. Machine learning can be used for
various purposes, such as data analysis, pattern recognition, natural language processing, computer
vision, robotics, and more. There are different types of machines learning techniques, depending
on how the data is used and what kind of output is expected (Mahesh, 2019). On the first hand,
Supervised learning involves training a model with labeled data, that is, data that has a known
output or target variable. The model learns to map the input data to the output data and can then
make predictions for new data. Examples of supervised learning algorithms are linear regression,
classification, decision trees, and neural networks. Unsupervised learning on the other hand
involves finding hidden patterns or structures in unlabeled data, that is, data that has no predefined
output or target variable. The model learns to group or cluster the data based on some similarity
or difference criteria and can then discover new insights or features from the data. Examples of
unsupervised learning algorithms are clustering, dimensionality reduction, and word embedding.
Moreover, Reinforcement learning involves learning from trial and error by interacting with an
environment and receiving feedback or rewards for the actions taken. The model learns to optimize
its behavior based on a goal or policy and can then adapt to changing situations or challenges.
Examples of reinforcement learning algorithms are Q-learning, deep Q-networks, and policy
gradients. Finally, Deep learning uses multiple layers of artificial neural networks to learn complex
and nonlinear relationships between input and output data.

Deep learning can be applied to any type of machine learning technique, such as
supervised, unsupervised, or reinforcement learning. Examples of deep learning applications are
image recognition, natural language generation, speech synthesis, and generative adversarial
networks (Mahesh, 2019; Ray, 2019). Machine learning is a rapidly evolving field that has many
applications and challenges in various domains. Nevertheless, we will focus on the combination
of machine learning techniques and biological NGS data that provide several significant benefits.
First, it enables the discovery of complicated genomic variants and structural rearrangements that
conventional approaches may overlook. Furthermore, machine learning allows for the detection of
minor expression patterns and regulatory processes, which aids in the comprehension of gene
regulation networks and disease pathways (Kalinin et al., 2018). In addition, machine learning
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algorithms may incorporate data from a variety of sources, including genomics, transcriptomics,
and proteomics, allowing for a more comprehensive and holistic perspective of biological systems
(Zitnik et al., 2019). However, the appropriate application of machine learning in the processing
of biological NGS data raises several issues and concerns (Yang et al., 2020). These include the
preprocessing and normalization of raw sequencing data, feature selection, handling high-
dimensional datasets, addressing issues of class imbalance, ensuring model interpretability, and
dealing with the ethical aspects of using sensitive genetic data. Thus, a preprocessing step is
critical, since it plays a key role in improving analysis through the use of a technique known as
Feature selection (FS).

2.2. Feature selection (FS)

2.2.1. What is FS?

FS refers to the process of selecting relevant features and at the same time rejecting irrelevant
features from a dataset. It aids in the reduction of data complexity and dimensionality by
reducing redundant and unimportant information, enabling the model to focus on the most
important features (Ang et al., 2016). Combining pattern recognition algorithms with FS
techniques has proven essential in many applications, as many of them were not initially
intended to handle vast amounts of irrelevant information (Liu and Motoda, 2012; Guyon and
Elisseeff, 2003).

There are several reasons that make FS an important tool, but the main ones are as follows, the
first reason is that FS prevents overfitting and enhances model performance by increasing its
accuracy, that is, prediction performance in supervised classification and improved cluster
detection in clustering. The second reason why FS is chosen is because it provides faster and
more affordable models by saving training time and reducing overfitting. The last reason is that
FS obtains a better understanding of the underlying processes and trends that generated the data
by identifying irrelevant features (Saeys, Inza and Larranaga, 2007). For bioinformatics
applications, FS methods must scale up to tens or even hundreds of thousands of features while
maintaining good quality. Moreover, they must possess sufficient generality to manage
continuous, censored time-to-event, multi-class, and binary outcomes. Furthermore, even if
features are frequently simply continuous, an FS algorithm should include discrete characteristics
as well to take clinical or other genetic factors into account (Tsagris et al., 2022).
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2.2.2. FS methods

In the realm of ML, selecting the most relevant features for a classification model is crucial
for enhancing performance and efficiency. For this reason, three basic strategies have been
developed. FS strategies in the context of classification can be divided into three groups based on
how they integrate the feature selection search with the model construction: filter methods,
wrapper methods, and embedding methods (Yang et al., 2020).

Filter techniques, which rely on heuristic scores and statistics, operate independently of ML
algorithms. By figuring out the association between each feature and the target variable, features
are chosen using this strategy. Integrated techniques: The learning algorithms that are employed
to train the model serve as the foundation for these techniques. By being familiar with the feature
weights, it is utilized to choose features throughout the training phase (Danasingh, Balamurugan
and Epiphany, 2016). The main criterion for FS by ordering in filter methods is the application of
variable ranking approaches. Because ranking systems are straightforward and have demonstrated
strong results in real-world applications, they are widely employed. The variables are scored using
a suitable ranking criterion, and variables that fall below the threshold are eliminated. Since
ranking methods are used to exclude less important factors before categorization, they are filter
methods (Chandrashekar and Sahin, 2014). Features are chosen using statistical measurements in
the Filter technique. One benefit of this approach is that it requires less computational time because
it selects the features as a pre-processing step, independent of the learning algorithm. A few of
the most used statistical metrics for determining the significance of the features are variance
threshold, information gain, chi-square test, Fisher score, and correlation coefficient. The Filter
approach removes unnecessary columns from the models and identifies unimportant properties
using the chosen measure. It provides the choice to isolate particular measures that improve a
model. After the feature scores are calculated, the columns are ranked. However, the Filter
approach has a few drawbacks, such as the potential for bias towards specific classes and the
potential inability to detect non-linear connections between features. In addition, it takes a lot of
time and might be challenging to use with big datasets (Saeys, Inza and Larrafiaga, 2007;
Venkatesh and Anuradha, 2019).

Conversely, the best subset of features is chosen utilizing Wrapper technigues, which
employ various search tactics. This approach is predicated on assessing the correctness of the
model using various feature combinations (Danasingh, Balamurugan and Epiphany, 2016). In
addition, Wrapper technique evaluates the variable subset using the predictor's performance as the
objective function and the predictor as a black box. Since evaluating subsets becomes an NP-hard
job, suboptimal subsets are identified by utilizing search algorithms which choose a subset
heuristically. Finding a subset of variables that maximizes the objective function the classification
performance can be done using a variety of search strategies (Chandrashekar and Sahin, 2014).
The Wrapper approach views feature set selection as a search problem, where many combinations
are created, assessed, and contrasted with one another. Iteratively employing the subset of features,
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the algorithm is trained. To assess a set of features and provide model performance ratings, a
predictive model is utilized. The classifier determines how well the Wrapper technique performs.
The classifier's output determines which subset of features is optimal. Because of its repeated
procedure, the Wrapper technique is computationally intensive and therefore unsuitable for huge
datasets. It can also take a lot of time and is prone to overfitting (Chandrashekar and Sahin, 2014;
Venkatesh and Anuradha, 2019).

Lastly, the FS algorithm is incorporated into the learning algorithm in Embedded
techniques, incorporating the benefits of both Filter and Wrapper methods by taking feature
interaction and low computational cost into account. These techniques handle data quickly, much
like the filter method, but they also have higher accuracy. The decision tree algorithm is the most
widely used Embedded approach. This algorithm divides the data using a tree structure after
beginning with all features. The resulting class is located at the leaf node of the tree. The most
significant feature is chosen first, and then it is divided into two or more sub-trees according to
that feature. Next, each feature is assessed using the Gini index or information gain. The best
feature is then chosen for the following split after each feature is assessed using the information
gain or Gini index (Saeys, Inza and Larrafiaga, 2007; Venkatesh and Anuradha, 2019). Therefore,
the goal of embedded techniques is to minimize the amount of time needed to compute the
reclassification of various subsets, which is accomplished by wrapper methods. The primary
strategy is to include feature selection in the training procedure (Pudil et al., 1995; Alsberg et al.,
1998; Chuang et al., 2008).

2.2.3. FS evaluation

To evaluate how efficient an FS method and algorithm are, data must be run through it and the
performance measured. This can be accomplished by comparing the algorithm's output to baseline
performance, such as a classification accuracy score or a regression score (Tsagris et al., 2022).
The FS literature is extensive, but in this work, we only concentrate on the most well-known
algorithms that scale to the quantity of data and can generalize to a variety of outcomes and
features. In terms of selection, the majority of these high-dimensional algorithms are greedy. We
specifically concentrate on the Orthogonal Matching Pursuit (OMP) algorithm, which is widely
recognized in the literature on signal processing (Shi et al., 2019). OMP, is a widely used FS
technique due to its computational efficiency and ease of use (Shi et al., 2015). Because the next
picked feature depends on the residual that is orthogonal to the previously selected feature, OMP,
which was first used to choose features for binary-class classification, prefers to select only one
among correlated features (Pati, Rezaiifar and Krishnaprasad, 1993).
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2.3. Literature Review on FS in Gene Expression Data

FS in gene expression data is crucial for enhancing cancer detection and prognosis by reducing
data dimensionality and improving model accuracy. Recent studies have proposed various
methods to tackle this challenge. For instance, a study utilized SVMSMOTE for oversampling,
followed by dimension reduction and classifier-based feature ranking, revealing that different
feature selection methods significantly impact model performance, achieving up to 94.3%
accuracy in classification tasks (Petinrin et al., 2023). Additionally, a graph theory-based feature
selection approach used mutual information to construct undirected graphs, achieving robust
classification results across various genetic datasets. The Ensemble Feature Selection (EFSmarker)
method identified twelve critical biomarkers for breast cancer by integrating multiple filter
techniques. This method proved effective in early cancer detection, improving classification
accuracy to 96.2% (Li et al., 2023).

Another number of innovative techniques have been put forth recently in order to tackle his
challenge, including the Max-Relevance-Max-Distance (MRMD) method by (Zou et al. 2005),
which chooses features with strong correlation with the labeled and lowest redundancy features
subset, and the minimum-Redundancy-Maximum-Relevancy (MRMR) method by (Peng et al.
2011), which chooses features using mutual information as a proxy for computing relevance and
redundancy among features.

In addition to that, in high-dimensional data studies, particularly in gene function enrichment
analysis, cancer biomarker discovery, and drug targeting identification in precision medicine,
feature selection techniques are becoming increasingly important. A novel approach to predict
TATA-binding proteins using feature selection and dimensionality reduction strategy was recently
proposed by Zou (2016). Classifiers were developed to predict tumor originating sites after putting
forth innovative selection procedures to find highly tissue-specific CpG sites (Tang et al. 2017).

OMP has been explored extensively for feature selection in gene expression. For example, a study
demonstrated the application of a generalized OMP algorithm for feature selection, showing its
scalability and effectiveness in handling high-dimensional data, achieving an accuracy
improvement of 12% over traditional methods (Wang & Ye, 2013). Another research applied OMP
in a minimum redundancy feature selection context, achieving notable improvements in
classifying microarray gene expression data, with accuracy rates reaching 93% (Sun & Qian,
2018).

Matched-Pairs Feature Selection (MPFS) techniques and approaches for bioinformatics research
abound. It has been possible for several researchers to incorporate paired data which fall into three
categories into their algorithms (Liang et al., 2018). In order to increase model predictive accuracy,
a classification strategy is frequently used after the test statistic ranks pertinent characteristics by
evaluating significant levels using the original and modified paired t-test. These kinds of
approaches can yield preliminary feature selection results, but they are quite time-consuming.
Second, a modeling technique that is frequently employed in Matched case-control design
(MCCD) investigations to find features strongly linked with case-control status is conditional
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logistic regression (CLR). When possible, correlations exist, CLR takes into account how
attributes interact with one another to produce superior selection outcomes (BRESLOW et al., 1978).

In Alzheimer’s disease research, a hybrid gene selection pipeline combined filter, wrapper, and
unsupervised methods, leading to improved classification using deep learning techniques,
achieving classification accuracy of 89.4% (Liu et al., 2023).by Another approach integrated
XGBoost and multi-objective optimization, resulting in higher accuracy for colon cancer gene
expression data, achieving an average accuracy of 95.1% across multiple datasets (Deng et al.,
2021). Further studies emphasized hybrid evolutionary approaches, such as integrating Particle
Swarm Optimization and Correlation-based FS, which demonstrated enhanced performance in
cancer classification tasks, achieving an accuracy improvement of 10-15% over baseline models
(Jain et al., 2023). An innovative hybrid FS technique using a micro—Genetic Algorithm on
microarray gene expression data significantly improved classification accuracy, reaching up to
91.8% and reducing complexity by 20% (Pragadeesh et al., 2019). Lastly, a comprehensive survey
on hybrid FS methods highlighted the integration of bio-inspired metaheuristic and wrapper
methods for better classification of breast cancer, showcasing significant advancements in FS
techniques, with improvements in accuracy by up to 13% (Naeem et al., 2022).

In conclusion, the reviewed literature highlights the critical importance of FS in processing high-
dimensional gene expression data for cancer classification. Advanced techniques such as hybrid
models, ensemble methods, and graph theory-based approaches have demonstrated significant
improvements in accuracy, efficiency, and robustness. These methods effectively address common
challenges such as class imbalance, data redundancy, and noise, thereby enhancing the predictive
performance of machine learning models. This body of research aligns closely with the objectives
of my thesis, which focuses on optimizing the y-OMP algorithm for FS in gene expression data.
The insights gained from these studies reinforce the relevance of developing sophisticated feature
FS methods that can handle the complexity and high dimensionality of gene expression data. By
integrating and extending these advanced techniques, my research aims to contribute to more
accurate and efficient diagnostic tools for cancer, ultimately improving patient outcomes and
advancing the field of bioinformatics.

2.4. AUC-area under the curve

The area under the ROC (Receiver Operating Characteristic) curve, or simply AUC, is a method
widely used in statistics and ML for evaluating binary classifiers. It refers to the ROC curve, which
is a probability curve, and the AUC represents the degree or measure of separability. In other
words, it shows how well the model is capable of distinguishing between classes. The ROC curve
is plotted with the TPR (True Positive Rate) on the y-axis against the FPR (False Positive Rate)
on the x-axis at various threshold settings (Classification: ROC Curve and AUC, 2022).

e True Positive Rate (TPR): Also known as sensitivity or recall, it is the ratio of correctly
predicted positive observations to the actual positives.
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o False Positive Rate (FPR): It is the ratio of incorrectly predicted positive observations to
the actual negatives.
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The higher the AUC, the better the model is at making accurate predictions. AUC, or Area Under
the Curve, provides a comprehensive measure of a model's performance across all possible
classification thresholds. An AUC of 1 indicates a perfect model that correctly classifies all
positive and negative instances. This means that the model has an excellent ability to distinguish
between the two classes. An AUC between 0.5 and 1 suggests that the model performs better than
random guessing, indicating a decent level of predictive power. Conversely, an AUC of 0.5 means
that the model's performance is no better than random guessing, signifying no discriminatory
power. If the AUC is below 0.5, it implies that the model performs worse than random guessing,
effectively classifying instances in the opposite manner of what is desired. Thus, AUC is a crucial
metric for evaluating the effectiveness of a model and understanding its predictive capabilities.

TPR

>

FPR

Figure 3. ROC-AUC Classification Evaluation Metric (AUC ROC Curve in Machine Learning,
GeeksforGeeks ,2020)

Overall, AUC is a fundamental aspect of model evaluation in machine learning, contributing to
the development of robust and reliable classifiers. It is an important tool for researchers and
engineers to better understand the performance of their models and to choose the best models for
their needs. It enables a deeper understanding of model performance, facilitates decision-making,
and ultimately helps select the most appropriate models to address specific challenges and needs.
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2.5. Cross Validation

Cross-validation (CV) is a statistical technique for assessing and comparing learning algorithms
by splitting the data into two segments, one for training the model and the other for validating it.
In standard CV, the training and validation sets overlap in successive rounds to ensure that each
data point is used for validation at least once. The simplest form is k-fold CV, where the data is
divided into k subsets, and the model is trained and validated k times, each time using a different
subset as the validation set and the remaining k-1 subsets as the training set. Other forms of CV
are either variations of k-fold CV or involve multiple rounds of k-fold CV (Refaeilzadeh, Tang,
and Liu, 2016).

In biotechnology CV is a highly popular data resampling technique used to evaluate a predictive
model's generalization capability and to avoid overfitting. When constructing the final model for
predicting actual future cases, the learning function (or learning algorithm) is typically applied to
the entire training set. The purpose of CV during the model-building phase is to estimate how well
the final model will perform on new, unseen data (Berrar, 2019).

Proper and complete CV helps to avoid optimistic bias when estimating survival risk
discrimination for a survival risk model developed using the full data set (Simon et al., 2011). For
example, Molinaro (2005) compared different data resampling methods for high-dimensional data
sets, which are often encountered in bioinformatics. Their findings indicate that Leave-One-Out
CV (LOOCV), 10-fold CV, and the 0.632+ bootstrap method exhibit the smallest bias.

In summary, Simon (2011) believes that when properly implemented, CV methodology can be
highly effective for evaluating survival risk modeling and should be more widely adopted. It allows
for more efficient use of data in model development and validation compared to fixed sample
splitting. However, in data sets with few events, the survival risk models developed may be
suboptimal due to the limited data, and the cross-validated Kaplan—Meier curves of risk groups
and time-dependent ROC curves may be imprecise (Dobbin and Simon, 2007).
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Figure 4. Cross-Validation pipeline (Farheenshaukat, 2024)

The Figure above, (Figure 4) illustrates a comprehensive workflow for optimizing and evaluating
a machine learning model through CV. The process begins with defining the dataset and the set of
parameters to be tuned. The dataset is then split into two groups, the one contains the training data
and the other one the test data, ensuring that the model is evaluated on unseen data. The training
data is used in the CV process, where different combinations of the defined parameters are tested
to find the best performing set. This iterative process helps in identifying the optimal parameters
that enhance the model's performance. Once the best parameters are identified, the model is
retrained using the entire training dataset with these parameters. Finally, the retrained model is
evaluated on the test data to ensure its generalizability and effectiveness.
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2.6. Aim & objective

The aim of this study, titled "Optimization of the y-OMP Algorithm for Feature Selection
in Gene Expression Data," is to enhance the performance of the y-OMP algorithm by developing
a new algorithm called dcor-OMP. Both algorithms are a variant of the Orthogonal Matching
Pursuit (OMP) widely employed in signal processing (Chen, Billings, & Luo, 1989; Davis, Mallat,
& Zhang, 1994), and have been specifically tailored for gene expression data analysis.

Accurate FS in gene expression data is crucial for several reasons. First and foremost,
genomic studies generate vast amounts of data, often comprising thousands of genes across
multiple samples. Identifying the subset of genes that are most relevant for distinguishing
biological conditions (such as disease states or treatment responses) is essential for understanding
underlying biological mechanisms. Moreover, precise FS can significantly enhance the
development of diagnostic tools and predictive models. By isolating key genes associated with
specific outcomes, researchers can improve the accuracy of disease diagnosis, prognosis, and
treatment selection. This can lead to more personalized and effective medical interventions,
ultimately improving patient outcomes and healthcare efficiency. The dcor-OMP algorithm
represents a potential advancement in this field by refining the feature selection process, thereby
offering more reliable insights into gene interactions and regulatory networks. Through rigorous
comparison with its predecessor y-OMP, this study aims to validate dcor-OMP as a robust tool
capable of addressing the complexities inherent in gene expression data analysis.

Optimizing methods like y-OMP allows researchers to better use genetic information that
will lead to faster discoveries in molecular biology and healthcare. Finally, all of these
developments have the potential to change the way illnesses are understood, diagnosed, and
treated, which will bring us closer to customized and targeted healthcare solutions.
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Chapter 3 Material and methods

3.1. y-OMP

The y-OMP, which stands for generalized OMP and is pronounced as y-OMP, was
proposed by Tsagris et al in 2022. It is a FS algorithm based on the OMP algorithm. The y-OMP
is an extension of OMP designed to enhance its performance in specific applications, particularly
those involving high-dimensional data, such as gene expression data. This extension addresses the
limitations of the traditional OMP by allowing for the selection of groups of features rather than
individual features, which can significantly improve the algorithm's effectiveness, especially in
the presence of correlated features.

The y-OMP algorithm is versatile and can handle various types of outcomes and features,
including continuous, binary, nominal, ordinal, time-to-event, ratios, and measurements. This
versatility makes it suitable for a wide range of applications in computational biology and
bioinformatics, where data often come in different forms and structures. Moreover, the algorithm
can utilize different regression models, such as linear or logistic regression, and employ various
stopping criteria based on statistical measures. It also considers different types of residuals denoted
by Resid in lines 7 and 13 of the algorithm presented in Table 1 and correlations to select the most
relevant features for predictive analytics. The y-OMP is scalable, easy to implement, and
competitive in terms of predictive performance and computational efficiency, where traditional
methods might struggle with the sheer volume and complexity of the information.

The key innovation of the y-OMP is its ability to select a group of features that jointly
contribute to reducing the residual, rather than selecting features one by one. This approach is
particularly beneficial when there are groups of correlated features that together have a significant
impact on the outcome. By considering these groups, the y-OMP can more accurately capture the
underlying structure of the data. The algorithm is adaptive, determining the optimal group size at
each iteration, which enhances its flexibility and performance. Additionally, it includes several
optimizations to reduce computational complexity, making it more efficient for large datasets.
These optimizations ensure that the y-OMP can handle extensive datasets without compromising
on speed or accuracy.

The algorithm starts with an empty support set and the initial residual as the signal itself.
At each iteration, a group of features with the highest joint correlation with the residual is selected.
This group is then added to the support set, and the residual is updated by projecting the signal
onto the subspace spanned by the current support set. This iterative process continues until the
desired criteria are met, ensuring that the most relevant features are selected for the predictive
model. The y-OMP’s iterative nature and group selection strategy make it a powerful tool for
feature selection in high-dimensional spaces, providing robust and efficient solutions for complex
data analysis tasks.

Initially, the algorithm requires input in the form of outcome values y and a dataset X consisting
of potential predictor features. Key functions such as f (model fitting), Resid (residual calculation),
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Assoc (association measurement), and Stopping (stopping criterion) are also defined. The process
begins by standardizing the data to ensure comparability, centering each feature and the outcome
around zero and scaling them to unit norm. The selected features set S is initialized as empty, and
initial residuals are set equal to the outcome values. The algorithm then iteratively selects features
based on their association with the residuals, updating the current model and residuals with each
iteration. Specifically, the feature with the highest association with the residuals is added to the set
of selected features S, and a new model is fitted using these features. Residuals are recalculated as
the difference between the actual outcome and the predicted outcome using the updated model.
This process repeats, with the previous model M’ and the current model M being updated in each
iteration, until the stopping criterion is met. At this point, the algorithm returns the set of selected
features, which represent the most predictive features for the outcome.

Table 1. The y-OMP algorithm

1: Input: Outcome values y, dataset X

2: Hyper-Parameters: Functions
f, Resid, Assoc, Stopping

Output: A subset S C X of selected features.
S+

Initialize current model M + f(y, Xs)
Initialize previous model M + @

: Initialize residuals r  Resid(y, Xs, M)

. while Stopping(M, M',y, X) do

- Xo & argmax y, g Assoc(r, Xj)

10 S+ SU{X,}

1 MM

12: M + f (y, XS)

13 1< Resid(y, Xg, M)

14: end while

15: return S
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3.2. dcor-OMP

In this study we built a unique feature selection and model optimization strategy based on
distance correlation (dcor) within the OMP, which led up to our model named dcor-OMP. Our
model is organized around three primary functions: ‘dcor.omp’, ‘'dcor.omp.path’, and 'dcor.omp.cv'.
First, the 'dcor.omp' function is intended to perform iterative feature selection by choosing
predictors that have the maximum distance correlation with the response variable. This function
iteratively picks variables, standardizes the predictors, and uses k-nearest neighbors (k-NN)
regression to estimate the response and compute the AUC, essentially refining the model until a
defined tolerance level is satisfied. 'dcor.omp's strength is its capacity to handle high-dimensional
data while efficiently limiting down relevant features. Secondly, the ‘dcor.omp.path’ function
expands the capabilities of 'dcor.omp’ by generating a selection path over several tolerance levels.
This function is called 'dcor.omp’ with a variety of tolerance levels, capturing the advancement of
selected features and associated AUC values. This approach provides a full perspective of the
model's performance across various levels of stringency, allowing for a better-informed choice of
the ideal tolerance level. Finally, the ‘dcor.omp.cv' function incorporates cross-validation into the
feature selection process, resulting in a stronger evaluation of model performance. This function
divides the data into numerous folds and applies 'dcor.omp.path' to each training set before
evaluating the model on the validation set and computing the AUC for each tolerance level. The
CV method ensures that the chosen model generalizes effectively to previously unseen data,
allowing a reliable assessment of its predicted accuracy. These functions work together to create
an improved model and a better feature selection, which is especially useful for high-dimensional
data. They use the strength of distance correlation to find relevant features, k-NN regression for
flexible modeling, and CV to evaluate performance. This methodology improves both model
accuracy and interpretability, making it more efficient over its predecessor, y-OMP.

3.3. Pearson correlation

The Pearson correlation method is the most common method to use for numerical variables; it
assigns a value between -1 and 1, where 0 is no correlation, 1 is total positive correlation, and -1
is total negative correlation. This is interpreted as follows: a correlation value of 0.7 between two
variables such as “age” and “disease” would indicate that a significant and positive relationship
exists between the two. A positive correlation signifies that if variable “age” increases, then
“disease” will also increase, whereas if the value of the correlation is negative, then if “age”
increases, “disease” decreases (Faizi and Alvi, 2023).

As such, it is related to distributional assumptions. More specifically, the Pearson is assuming a
bivariate normal distribution, or a linear relationship between X and Y. According to Hahs-Vaughn
(2023), when linearity is broken, the Pearson correlation is not robust; in fact, it is "very not
robust... even a single aberrant point can alter r, the usual estimate of p, by a large amount." A
useful implication is that even a single outlier can obscure a connection. Apart from outliers, non-
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linearity, range restriction, residual magnitude, and rotating points are other data properties that
might impact the strength of the Pearson correlation. Strong nonlinear relationships can
nonetheless have a Pearson correlation coefficient of zero. Several alternatives to the Pearson have
been created as a result of these constraints; some of these alternatives are more reliable than
others. A large number of these substitute coefficients are listed in the section on nonparametric
correlations (Chen and Anderson, 2023; Hahs-Vaughn, 2023). The formula for calculating the
Pearson correlation coefficient is:

L TN
VX0 — D2E(y; — §)2

where x and y are the two variables being compared, X and ¥ are their respective means, and X
denotes the sum over all observations.

By applying the Pearson correlation, bioinformaticians were able to identify significant
relationships between genes. For instance, a positive correlation means that as the expression level
of one gene increase, the expression level of another gene also increases. Conversely, a negative
correlation means that as the expression level of one gene increase, the expression level of another
gene decreases. For instance, de Souto (2008) used the Pearson correlation method to analyze gene
expression data. This method is commonly used to measure the strength and direction of the linear
relationship between two numerical variables. For their analysis, they calculated the Pearson
correlation coefficients between the expression levels of different genes.

3.4. Energy distance, Distance covariance, Distance correlation

3.4.1. Energy distance

Energy distance is a measure of the difference between probability distributions. The term ‘energy’
is inspired by the concept of potential energy in a gravitational field, where potential energy is zero
when two objects are at the same point (the gravitational center) and increases with their
separation. This concept can be applied to data as follows: Let X and Y be independent random
vectors in RY with cumulative distribution functions (CDFs) F and G, respectively. Here, | . ||
denotes the Euclidean norm (length) of its argument, E represents the expected value, and a primed
random variable X' denotes an independent and identically distributed (iid) copy of X; similarly,
Y and Y" are iid (Székely and Rizzo, 2013; Rizzo and Székely, 2016). The squared energy distance
can be defined using the expected distances between these random vectors as:

D2 (F,G) = 2E||X = Y|| — E||X = X'|| — E||]Y = Y'|| =0

and the energy distance between distributions F and G is the square root of D? (F, G). It can be
demonstrated that the energy distance D (F, G) satisfies all the properties of a metric, specifically
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D (F, G) =0 if and only if F = G. Thus, energy distance provides a way to determine when
distributions are equal and offers a theoretical foundation for statistical inference and multivariate
analysis based on Euclidean distances. This review covers several key applications and
demonstrates their implementation (Rizzo and Székely, 2016).

An important use case for two samples involves testing the independence of random vectors. This
involves verifying if the joint distribution of X and Y equals the product of their individual
marginal distributions. Notably, the relevant statistics can be represented using a product-moment
expression that involves the double-centered distance matrices of the X and Y samples. These
distance-based statistics are similar to, but more comprehensive than, product-moment covariance
and correlation, leading to the terms distance covariance (dCov) and distance correlation (dCor)
which are defined below (Székely and Rizzo, 2012; Rizzo and Székely, 2016).

3.4.2. Distance covariance

The simplest formula for the distance covariance statistic is the square root of;

n

~

1 N
dCovz(x,y) = ﬁ z AUBU
i,1j=1

where A and B are the double-centered distance matrices for the X and Y samples, respectively,

with the subscript jj indicating the entry in the i" row and j* column. In the context of distance
covariance, the matrices A and B are double-centered distance matrices constructed from the
distance matrices of two sets of samples, X and Y. To create these matrices, we first compute the
pairwise distance matrices for the samples in X and Y. Next, we calculate the row means, column
means, and the overall mean of these distance matrices. Double centering involves adjusting each
element in the distance matrices by subtracting the corresponding row and column means and
adding the overall mean. This process results in the double-centered matrices A and B, which
isolate the variation in distances attributable to dependencies between the samples, thereby
removing the effects of their overall location.

Distance covariance has many applications across different fields such as biology. The idea of
distance covariance is expanded to assess the dependence between a covariate vector and a right-
censored survival endpoint (Edelmann, Welchowski and Benner, 2022). This is achieved by
creating an estimator based on an inverse-probability-of-censoring weighted U-statistic. The
consistency of this new estimator is demonstrated. A large simulation study reveals that the
distance covariance permutation tests perform well in detecting various complex associations. The
application of these permutation tests to a gene expression dataset from breast cancer patients
highlights its potential utility in biostatistical practice.
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3.4.3. Distance correlation

Distance correlation, on the other hand, is a measure of association between two random
variables that takes into account both linear and nonlinear relationships. It was introduced by
Székely, Rizzo and Bakirov (2007) as a way to overcome some of the limitations of traditional
correlation measures. The distance correlation between two random variables X and Y is defined
as:

dCov(x,y)

dCor(x,y) = Javar(odvar ()

Distance correlation ranges from 0 to 1, in contrast to Pearson correlation, which can range
from-1to 1. It is zero if and only if X and Y are independent. This measure also has the advantage
of being invariant to monotonic transformations of the variables, which allows it to identify
nonlinear connections that conventional correlation measures would overlook. Additionally, it is
symmetric, meaning that if and only if X and Y are independent, then dCor (X, Y) = dCor (Y, X)
and it is zero. The distance variance is simply the distance covariance of a variable with itself:

1 Ao
dVClTZ(X) = dCOUZ(X,X) = ﬁ Z ZAUAU

i=1 j=1

Similarly, for Y:

1 A A
- B..B

dVar?(Y) =d Cov?(Y,Y) = ijbij

n2
i=1 j=1
dVar(X) is the distance variance of X, which is equivalent to the distance covariance of X with
itself. as well as for Y where Var(Y) is the distance variance of Y, which is equivalent to the
distance covariance of Y with itself.

Distance correlation has the advantage of being invariant to monotonic transformations of
the variables, which allows it to identify nonlinear connections that conventional correlation
measures would overlook. Applications of distance correlation can be found in many domains,
such as genetics, machine learning, and statistics. It can be applied to high-dimensional data to
perform FS, assess the similarity across datasets, and find nonlinear correlations between variables
(Hou et al., 2022).
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3.5.  k-NN algorithm

k-NN algorithm is a supervised machine learning method used for classification and regression
problems (Dadi, 2024). As a nonparametric classification technique, k-NN makes no assumptions
about the underlying data distribution, making it renowned for its simplicity and efficiency. To
forecast the class of unlabeled data, a labeled training dataset with data points classified into
multiple classes is used. Thus, k-NN utilizes this labeled training data to categorize new data points
based on the majority class of their nearest neighbors, identified using Euclidean distance (Zhang
etal., 2018).

k-NN classification involves two main steps: the learning step, where a classifier is constructed
using the training data, and the assessment step, where the classifier is evaluated. The algorithm
classifies new unlabeled data by analyzing which classes the nearest neighbors belong to. The
value of 'k’ determines how many neighbors are considered in the classification process. When
encountering a new unlabeled data point, k-NN first identifies the k nearest neighbors based on
the Euclidean distance. The Euclidean distance can be calculated as follows: If two vectors x; and
x; are given, where x; = (X1, Xiz, Xi3) Xia» X5, ) Xip) AN Xj = (Xj1, Xj2, Xj3, Xja» Xjs, s Xjp)-

The difference between x; and x; is:

4
d(x; %) = Z (e =)
=1

It then classifies the new data point into the class that the majority of these neighbors belong to.
Factors affecting k-NN's performance include the value of 'k’, the distance metric used, and the
normalization of parameters. When 'k’ is set to 1, the data point is assigned to the class of its
nearest neighbor, resulting in zero error for training data but potential overfitting. To balance
accuracy and overfitting, a larger value of 'k’ is usually preferred, but the optimal choice depends
on the specific dataset and its characteristics (Taunk et al., 2019). The algorithm’s performance
heavily depends on the choice of 'k', the number of neighbors considered. k-NN requires storing
the entire training dataset and performs classification by calculating distances at prediction time,
making it computationally intensive but straightforward to implement. Additionally, the
computational cost of k-NN is relatively high because all calculations are performed during
classification rather than during the training phase. This characteristic makes it a "lazy learning”
algorithm, as it stores the training data without any processing until a prediction is required.
Consequently, the entire training dataset is needed during the testing phase since the algorithm
does not perform generalization (Taunk et al., 2019).
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Figure 5. lllustration of the k-Nearest Neighbors (k-NN) algorithm in action (Dadi, 2024)

Figure 5 illustrates the k-NN algorithm in action across three stages. In the first panel, (a), we see
a target point (purple) situated among two classes, represented by Class 1 (blue) and Class 2
(green). The middle panel, (b), demonstrates the process of finding the nearest neighbors of the
target point using Euclidean distance, with dashed lines connecting the target point to its neighbors.
Finally, the right panel, (c) shows the classification decision: the target point is classified based on
the majority class of its nearest neighbors, depicted within a dashed circle.

The k-NN algorithm is widely used in bioinformatics for tasks such as gene expression analysis,
protein function prediction, and disease classification. In a study by Dhawan, Selvaraja, and Duan
(2010), k-NN was applied to classify functional categories in microarray data, demonstrating its
effectiveness in handling biological datasets and providing reliable classification results. The study
achieved an average accuracy of 95% across various datasets. Additionally, Vengateshkumar,
Sanmugavel, and Raj (2019) emphasized the utility of k-NN in handling complex biological data,
achieving classification accuracies ranging from 85% to 92% depending on the dataset and
normalization techniques used. These studies underscore k-NN's value in bioinformatics for
accurately interpreting complex datasets and facilitating scientific discoveries, highlighting k-NN's
robustness and reliability in bioinformatics application.

3.6. OMP and its variants

In this last section of material and methods, we will highlight and focus on the main distinct
features between the OMP algorithm and its variants algorithms; y-OMP, and the newly developed
dcor-OMP. With The standard OMP algorithm serving as a baseline for the other two. These
distinct features are represented in Table 2 below, as the following; Correlation Type, Model type,
Stopping criterion, Target Type, and, Algorithm Complexity.

On the first hand, OMP, a greedy well-used algorithm popular for feature selection due to its
computational efficiency and fast execution. The OMP uses Pearson correlation in order to find
the best correlation between the gene expression and the cancer type, and it uses the linear
regression as the model type. The algorithm stops the computation based on the SSE, making it
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ideal for numerical targets. Because it is a simple algorithm the OMP has the fastest execution
between the three. On the other hand, y-OMP expands upon the traditional OMP, it is designed to
enhance its performance in specific applications, particularly those involving high-dimensional
non-linear data, such as gene expression data. The key point of y-OMP is that it can treat numerous
types of outcome variables employing various regression models by using any pairwise association
and supports various models, including non-/semi-/parametric ones, its stopping criteria is also
based on general criteria like log-likelihood or BIC making it the most flexible algorithm among
the three, allowing for a more divers options to detect a correlation between gene expression and
cancer type .The computational efficiency of y-OMP made it suitable for handling our data without
compromising performance for any target type. Finally, The dcor-OMP algorithm is formulated
based on the y-OMP algorithm that integrates both, the distance correlation and the k-NN methods
to improve feature selection. By using distance correlation, the dcor-OMP algorithm can identify
meaningful correlations between features in high-dimensional datasets, which is necessary in our
case, aiming in better model performance and interpretability. The use of k-NN aids in estimating
responses and computing residuals, improving the selection process. The dcor-OMP will stop
computing when the AUC stop improving. Although the dcor-OMP is the most computationally
intensive among the three due to distance calculations, and its dataset must be Binary/numerical
target, this combination of distinct features makes it a promising tool for analyzing gene expression
data surpassing the other two algorithms.

Table 2 Comparison of OMP and its Variants

OMP y-OMP dcor-OMP
COIEELE Pearsqn Any type of pairwise association Distance correlation
Type correlation
Linear Non-/Semi-/Parametric models
Model type . (Generalized Additive Models, k-NN
regression
kernel based)
. Sum of o - Area Under the Curve
i:?tp;?ilgg Residual General crlten;rlwc()log-llkellhood, (AUC) (when the AUC
Squares (SSE) stop improving)
Target Type Nut;nrzgtc 4 Any type of target Binary/numerical target
. . Computationally intensive
AL Sl Lt Computationally efficient due to distance

Complexit execution .
P Y calculations
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Chapter 4 Data analysis and results

4.1. GSE (gene expression data series)

GSE (gene expression data series) data refers to datasets from the Gene Expression
Omnibus (GEO), a public repository for high-throughput gene expression and other functional
genomics datasets. The GSE data typically includes gene expression profiles obtained from
microarray or RNA-seq experiments, which are extensively used in bioinformatics and
computational biology research.

Our database comprises 7 GSE datasets for cancer. All the following information was
sourced from BioDataome, an exceptional and comprehensive database developed by the
University of Crete. BioDataome contains an extensive collection of uniformly preprocessed and
annotated datasets, covering approximately 5,600 datasets and 260,000 samples related to around
500 diseases, including gene expression data, RNA-Seq, and DNA methylation data. The
annotation of these datasets with disease ontology terms facilitates large-scale experiments and
meta-analyses. From this significant database, we selected the necessary data for our thesis,
leveraging its rich capabilities for analyzing and processing biological data, thereby enhancing our
research with reliable and well-documented information. Our dataset is composed of 4 types of
cancers lung cancer, breast cancer, gastric cancer, and colorectal cancer. In order to reduce errors
and increase the performance of the model, the size of the sample for each dataset will be at least
100 samples.

GSE10780

The “GSE10780” dataset titled "Proliferative genes dominate malignancy-risk gene signature in
histologically-normal breast tissue,” is extracted from the Homo sapiens species. It includes 143
completely histologically-normal breast tissues, leading to the identification of a gene signature
associated with malignancy risk, potentially serving as a marker for subsequent breast cancer
development. The design involves RNA extraction from micro dissected frozen breast tissues for
gene array analysis.

GSE20465

The dataset “GSE20465”, titled "Her2/Neu breast cancer mouse model whole tissue
transcriptome” was generated from the species Mus musculus, a Her2-driven mouse model of
breast cancer, mirroring human breast cancer. Biospecimens from this mouse model are freely
available through a sample repository, eliminating the need for breeding animals and collecting
biospecimens for researchers testing biological hypotheses. Experimental design entails twelve
datasets, comprising 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray
analyses across various tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls
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were meticulously paired to prevent bias. Results show the identification of 18,880 unique
peptides, with 3,884 and 1,659 non-redundant protein groups in plasma and tissue datasets,
respectively. Notably, 61 protein groups overlap between cancer plasma and tissue.

GSE29272

The “GSE29272” dataset, titled “Affymetrix gene expression array data for cardiac and non-cardia
gastric cancer samples' ' is generated from the species of Homo sapiens. The GSE identifies
different and common dysregulated genes in cardiac and non-cardia gastric cancer in the two types
of gastric cancer. The design consists of cardiac and non-cardia gastric tumors and normal glands
and it consists of 268 samples 134 from the adjacent tissue normal glands 72 from the tumor tissue
non-cardia of gastric and 62 from tumor tissue cardia of gastric.

GSE31210

The dataset “GSE31210” titled "Gene expression data for pathological stage I-11 lung
adenocarcinomas" focuses on identifying genes up-regulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. To delineate molecular characteristics, 226
primary lung adenocarcinomas of pathological stage I-11 were examined for EGFR, KRAS, and
ALK mutations. Genome-wide expression profiling revealed genes up-regulated in ALK-mutated
lung adenocarcinomas and those lacking EGFR, KRAS, and ALK mutations. Among 174 up-
regulated genes specifically identified in 79 cases without EGFR and KRAS mutations, ALK was
noteworthy. These cases were further categorized into ALK-positive ADCs, Group A triple-
negative ADCs, and Group B triple-negative ADCs based on expression patterns of the 174 genes.
ALK-positive ADCs exhibited significant overexpression of 30 genes, including ALK and
GRIN2A. Group A triple-negative ADC cases demonstrated worse prognoses compared to cases
with EGFR, KRAS, or ALK mutations, and Group B triple-negative ADC cases. Nine genes,
including DEPDC1, were significantly up-regulated in Group A cases, critical for prognosis
prediction. These genes may aid in selecting patients for adjuvant chemotherapy post-surgical
resection of stage I-11 triple-negative ADCs and inform the development of molecular targeting
therapies for these patients. The overall design involved expression profiling of 226 lung
adenocarcinomas, including cases with EGFR mutation, KRAS mutation, EML4-ALK fusion, and
triple-negative cases.
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GSE35978

The dataset “GSE35978” titled "Expression data from the human cerebellum and parietal cortex
brain" comprises a SuperSeries consisting of several SubSeries. These SubSeries likely contain
detailed expression profiling data from specific experiments or conditions within the human
cerebellum and parietal cortex brain regions. The overall design of this SuperSeries refers to the
individual Series within it, providing a comprehensive exploration of gene expression patterns in
these brain regions. It used 312 samples from which 158 represents samples from the parietal
cortex and 131 from the cerebellum.

GSE41258

The following “GSE41258” dataset titled "Expression data from colorectal cancer patients" entails
a study conducted on patients diagnosed with colonic neoplasms at Memorial Sloan-Kettering
Cancer Center between 1992 and 2004. Biological specimens utilized in the study encompass
primary colon adenocarcinomas, adenomas, metastases, and corresponding normal mucosae. The
overall design comprises 390 expression arrays, from which 186 representing Primary Tumor, 53
Normal colon, 49 polyp, 47 liver Metastasis, 20 lung Metastasis, 13 normal liver, 12 cell line, 7
normal lung, and 2 Microadenoma.

GSEA44077

The dataset “GSE44077” titled "Gene expression profiling of the adjacent airway field
cancerization in early-stage NSCLC" focuses on characterizing the transcriptomic landscape of
adjacent airway field cancerization in non-small cell lung cancer (NSCLC), a phenomenon where
lung tumors and nearby normal tissues exhibit specific abnormalities relevant to lung cancer
development. The study aims to elucidate the molecular architecture of adjacent airway field
cancerization alongside tumors, providing deeper insights into lung cancer biology and
oncogenesis. Using the Affymetrix Human Gene 1.0 ST platform, the transcriptome of matched
NSCLC tumors, multiple normal airway epithelia at varying distances from tumors, and
uninvolved normal lung tissues were analyzed. The overall design involves analyzing the
transcriptomic profiles of adjacent airways to identify global differentially expressed cancerization
patterns and airway profiles potentially influenced by proximity to tumors. 226 samples were used
from which 96 samples belonged to airway samples from field cancerization cases, 65 normal lung
tissue, 56 NSCLC tissue, and 9 samples from lung carcinoid tissue.
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4.2. Result and Discussion

Our results consist of a comparison between the dcor-OMP and its predecessor, the y-OMP. To
achieve this, we start by calculating the ROC curve for each gene expression dataset and then
extract the AUC from it for each of the two models. The AUC determines the performance of the
model; the higher the AUC, the more accurate the model is in classifying the correlation of gene
expression to the cancer under investigation. We then compare the AUC for each gene expression
dataset and compute the mean AUC difference. A higher mean AUC difference indicates better
performance of the dcor-OMP compared to the y-OMP. we end up with a box plot graph as seen
in the figure below (figure 6).
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Figure 6 AUC mean difference boxplot

Figure 6, shows box plots comparing the mean difference of the Area Under the Curve (AUC) of
dcor-OMP and y-OMP for feature selection across seven datasets. The Y-axis shows the difference
in mean AUC between dcor-OMP and y-OMP across each dataset. Values above 0 show dcor-
OMP outperformed y-OMP. Values with 0 mean value imply equivalent performance. Values
below 0 suggest dcor-OMP performed poorer than y-OMP.

The horizontal lines within the boxes show the median difference in AUC, which is used to analyze
the distribution of differences. The median in the box plot was acquired by repeating the k fold
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CV 20 times for each the y-OMP and the dcor-OMP then doing the difference between the mean
AUC of each GSE dataset. The boxes include the highest and lower quartiles of the differences,
illustrating how the data is spread out or dispersed. Furthermore, the whiskers extend outward to
the nearest data points within an interquartile range (IQR) of the corresponding quartiles, thus
displaying the range of variability beyond the quartiles. Overall, this representation offers a
comprehensive view of the performance disparities between using dcor-OMP and y-OMP across
multiple datasets explained bellow;

In the box plot we can see that three of the seven datasets have a mean value above zero, whereas
the other four have values of zero and none below zero. The gene expression dataset "GSE35978"
named "Expression data from the human cerebellum and parietal cortex brain" had the greatest
mean value of 0.05 and the biggest IQR, indicating that the dcor-OMP outperformed the y-OMP
on this specific dataset. Overall, the dcor-OMP outperformed the y-OMP, since no dataset had a
value below zero. Outliers are situations in which performance departed dramatically from the
median. This might be owing to special properties of some samples in the datasets, which benefit
more or less from the model. The difference in performance among datasets can be due to the
differences in sample size, feature dimensionality, and noise levels, with datasets with greater
noise or fewer samples showing more substantial gains using sophisticated feature selection
methods like dcor-OMP. This shows that dcor-OMP may better capture complicated links and
interactions in the data than y-OMP. Moreover, dcor-OMP consistently outperforms y-OMP across
all datasets, demonstrating its dependability as a feature selection approach for heterogeneous gene
expression data.

Table 3. Information about the GSE Data and mean AUC difference

GSE Disease Sample size  Features Cases (%) Mean AUC
difference
GSE10780 breast cancer 226 33252 194 (85.84%) 0
GSE20465 breast cancer 250 45101 125 (50.00%) 0.018
GSE29272  gastric cancer 268 22283 134 (50.00%) 0.008
GSE31210 lung cancer 246 54675 226 (91.87%) 0
GSE44077 lung cancer 230 33252 190 (82.61%) 0
GSE35978  brain cancer 305 33297 205 (67.21%) 0.05
GSE41258 colorectal cancer 178 22283 48 (26.97%) 0
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Table 3 summaries our dataset, it displays for each GSE the type of cancer, its sample size, the
number of features, the number positive case in percentage, and finally, the AUC mean difference
between the y-OMP and the dcor-OMP. On the one hand, we can observe that sample size might
be connected with AUC mean difference. This suggests that the outperformance of the dcor-OMP
is due to sample size. As the sample size increase the mean AUC difference increase, starting from
a sample size of 250 until 305. On the second side, we can observe that the kind of sickness is not
strictly related to the model's performance. For example, all lung cancers have an AUC mean
difference of zero, but breast cancers have a mean AUC difference of 0 and 0.018. On the third
hand, we can see that the performance of the model might be linked to the % of cases within the
dataset, we can see from the table that the only difference of the AUC mean is when the % of
positive cases is 50% or close to it. Overall, the average AUC mean difference is 0.011 which
indicates that on average the dcor-OMP will have a better AUC of 0.011 than the y-OMP, therefore
performed better.
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Chapter 5 Conclusion

Our focuses on optimizing the y-OMP method for feature selection in gene expression data, a
crucial work in bioinformatics that improves cancer detection systems' accuracy and efficiency.
Our work improved the y-OMP method by integrating distance correlation to construct the dcor-
OMP model in addition with k-NN, which performed better with high-dimensional gene
expression data. The dcor-OMP performed better than its predecessor, y-OMP, in through
comparisons of seven cancer-related datasets, with higher mean AUC values across three datasets
and a better average mean difference of 0.11. This difference may be related to dcor-OMP's
capacity to better capture complex interactions and linkages in data, making it an effective feature
selection tool. Overall, this work is important because it has the potential to improve customized
treatment by offering more precise models for diagnosis and prognosis. The upgraded feature
selection approach, dcor-OMP not only detects critical genetic markers, but it also minimizes data
redundancy and noise, resulting in more accurate predictions. As a result, this technique has the
potential to greatly affect the development of tailored medicines while also improving patient
outcomes. Overall, when it comes to OMP, y-OMP, and dcor-OMP, OMP is straightforward, using
Pearson correlation to understand linear relationships, and it performs best with linear regression
models, making it quick and efficient for non-binary numerical data. It ends when the
improvements in model errors, as measured by residual sums, stop. y-OMP is more versatile and
compatible with many generalized models, from simple to complicated. It is designed for binary
datasets and uses more generalized stopping criteria, such as log-likelihood, which increases the
computational complexity. Finally, dcor-OMP is excellent at finding nonlinear interactions via
distance correlation and frequently use the k-NN technique. It is the most computationally
intensive, especially because it stops changing when no further increases in the AUC are detected,
making it ideal for binary datasets. Each strategy has various advantages depending on the
complexity and kind of data under consideration with dcor-OMP performing better than its
predecessor on the same dataset. To ensure the dcor-OMP algorithm's reliability and usability in
the future, it must be evaluated on a larger variety of datasets. We also expect that combining dcor-
OMP with other machine learning models can considerably improve its prediction value. Beyond
gene expression data, applying this method to other bioinformatics areas such as proteomics and
metabolomics might lead to exciting new prospects and benefits.
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