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Περίληψη 

Με την ανακάλυψη της τεχνολογίας νέας γενιάς, ο σύγχρονος κόσμος της βιοτεχνολογίας πλέον 

μπορεί να αλληλουχήσει εκατοντάδες χιλιάδες γονίδια ή και ολόκληρο το γονιδίωμα σε σύντομο 

χρονικό διάστημα και με χαμηλό κόστος. Επίσης, μπορεί να εστιάσει στην χαρτογράφηση 

παραλλαγών/μεταλλάξεων που ενδεχομένως να έχουν κύρια βιολογική σημασία για την 

φυσιολογική λειτουργία του κυττάρου. Τέτοιου είδους αποτελέσματα, λοιπόν, έχουν μεγάλη ισχύ 

για τη διάγνωση της νόσου, την πρόγνωση, τη θεραπευτική απόφαση και την παρακολούθηση 

ασθενών. Αυτή η επαναστατική τεχνολογική δυνατότητα της μαζικής παράλληλης αλληλουχίας 

προσφέρει νέες ευκαιρίες για εξατομικευμένη ιατρική ακριβείας, ωστόσο δημιουργεί και μια νέα 

μεγάλη πρόκληση που αφορά την υπερπληθώρα δεδομένων. 

Αναλυτικότερα, οι γονιδιωματικές μελέτες δημιουργούν τεράστιες ποσότητες δεδομένων, που 

συχνά περιλαμβάνουν χιλιάδες γονίδια σε πολλαπλά δείγματα. Ο εντοπισμός του κατάλληλου 

υποσυνόλου των γονιδίων που είναι πιο σχετικοί με την βιολογική καταστασή που μελέταται και 

την δίακριση της είναι απαραίτητος. Στα πλαίσια αυτής της μελέτης εστιάσαμε στην κατάλληλη 

επιλογή χαρακτηριστικών σε δεδομένα γονιδιακής έκφρασης που σχετίζονται με τον καρκίνο. 

Υλοποιήθηκε η δημιουργία ενός αλγορίθμου επιλογής χαρακτηριστικών (dcor-OMP) που 

αποτελεί μια παραλλαγή του αλγορίθμου γ-OMP. Επίσης, αξιολογήθηκε η απόδοσή του σε σχέση 

με τον προκάτοχό του, γ-OMP. Οι δύο αυτοί αλγόριθμοι είναι μια παραλλαγή του Orthogonal 

Matching Pursuit (OMP) που χρησιμοποιείται ευρέως στην επεξεργασία σήματος (Chen, Billings, 

& Luo, 1989; Davis, Mallat, & Zhang, 1994) και έχουν προσαρμοστεί ειδικά για ανάλυση 

δεδομένων γονιδιακής έκφρασης. 

 

Λέξεις-κλειδιά: Συσχέτιση απόστασης, Επιλογή χαρακτηριστικών, Δεδομένα έκφρασης γονιδίου, αλγόριθμος γ-OMP, 

αλγόριθμος dcor-OMP, Τεχνολογία μικροσυστοιχιών, Αλληλουχία επόμενης γενιάς (NGS), Μηχανική μάθηση, Καμπύλη 

ROC, AUC (Περιοχή κάτω από την καμπύλη). 
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Abstract 

The advent of next-generation technologies revolutionized the field of biotechnology, allowing 

scientists to sequence hundreds of thousands of genes or an entire gene in a short amount of time. 

It can also focus on mapping variants/mutations that may have biological signaling implications 

for normal cell function. As a result, these findings have significant implications for illness 

diagnosis, prognosis, therapy decisions, and patient monitoring. This groundbreaking 

technological possibility of massively parallel sequencing opens up new opportunities for 

precision medicine, but it also introduces a new challenge: data overload. 

First and foremost, genomics examines massive volumes of data, frequently including hundreds 

of genes in numerous samples. Identifying the proper selection of genes for identifying biological 

states is critical to understanding the underlying biological mechanisms. In this study, we looked 

at the most appropriate feature selection in cancer-related gene expression data. We developed a 

feature selection method (dcor-OMP), a version of the γ-OMP algorithm. The performance 

compared to the γ-OMP precursor was also assessed. Both of these methods are variations on the 

Orthogonal Matching Pursuit (OMP), which is widely used in signal processing (Chen, Billings, 

& Luo, 1989; Davis, Mallat, & Zhang, 1994), and have been specially customized for gene 

expression analysis.  

 

Keywords: Distance Correlation, Feature Selection, Gene Expression Data, γ-OMP Algorithm, dcor-OMP 

Algorithm, Microarray Technology, Next-generation Sequencing (NGS), Machine Learning, ROC Curve, AUC 

(Area Under the Curve). 
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Chapter 1 Introduction 

 

1.1. Understanding Cancer 

 

Cancer has been understood since ancient times, as evidenced by fossilized bone tumors, Egyptian 

mummies, and old texts. The oldest description, from approximately 3000 BC in Egypt, references 

breast cancers that were treated with cauterization. Hippocrates later developed the name "cancer" 

in reference to tumors' crab-like appearance. During the Renaissance, scientific approaches 

enhanced cancer research, resulting in important advances in oncology. The nineteenth century 

witnessed more advancement with microscopes, allowing extensive analysis and assisting cancer 

surgery (American Cancer Society, 2021). 

The word "cancer" or "(malignant) neoplasms" refers to a category of illnesses that originate at the 

cellular level. Cancer is a hereditary condition characterized by uncontrolled cell growth. Under 

normal conditions, somatic cells proliferate and multiply in a controlled way; nonetheless, cells 

can become aberrant and continue to expand. These aberrant cells can aggregate to create a tumor. 

If this uncontrolled growth is not immediately halted, it might spread, a situation known as 

metastasis, which can lead to serious clinical problems or even death (NCI, 2021). Cancer may 

afflict practically every bodily component and take several forms (Martel et al., 2020). Cancer is 

classified into five primary types: carcinoma, sarcoma, leukemia, lymphoma, and myeloma. Each 

cancer kind is unique, having its own genesis, symptoms, and treatment options (NCI, 2017). 

Today, cancer is a major global health issue and one of the leading causes of death worldwide. In 

2022, nearly 20 million new cancer cases were diagnosed, and there were approximately 9.7 

million deaths attributed to cancer. Projections indicate that by 2040, these numbers will 

significantly increase, with new cancer cases expected to reach 29.9 million annually and cancer-

related deaths anticipated to rise to 15.3 million per year. Generally, the highest cancer rates are 

observed in countries with high life expectancy, education levels, and standards of living. 

However, certain cancers, such as cervical cancer, exhibit higher incidence rates in countries where 

these measures are comparatively lower (Cancer Statistics - NCI, 2022). Lung cancer is the most 

prevalent cancer globally, with 2.5 million new cases, representing 12.4% of all new cancer cases. 

Following lung cancer, female breast cancer is the second most common, with 2.3 million cases, 

accounting for 11.6% of the total. Colorectal cancer ranks third with 1.9 million cases (9.6%), 

followed by prostate cancer with 1.5 million cases (7.3%), and stomach cancer with 970,000 cases 

(4.9%) (IARC, 2022). 
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1.2. The Genetic Background of Cancer 

 

Cancer is caused by DNA alterations that develop as a result of either random mistakes during 

genome replication or carcinogens. Individual mutations are usually insufficient to induce 

cancer; but, the accumulation of genetic mutations in genes that govern cell growth and division 

can convert healthy cells into malignant ones. These mutations can be hereditary (genetic 

mutations inherited from parents) or acquired (mutations acquired during a person's lifetime due 

to environmental influences such as radiation or carcinogenic substances). The overwhelming 

majority of cancers occur randomly as a result of this process over time (The Genetics of Cancer, 

2015). A variety of genetic changes have been related to the development of cancer. A DNA 

mutation, also known as a genetic variant, is a sort of modification that causes alterations to the 

DNA sequence. Some mutations only affect one nucleotide, hence a single nucleotide in DNA 

may be missing or replaced by another. These are referred to as point mutations. For example, 

roughly 5% of cancer patients have a point mutation in the KRAS gene, altering the nucleotide G 

to A, resulting in the development of an aberrant KRAS protein that causes uncontrolled cell 

proliferation. (Consortium et al., 2017; Guyon and Elisseeff, 2003). Genetic changes that cause 

cancer can also occur through rearrangements, deletions, or duplications of large segments of 

DNA, known as chromosomal rearrangements. For instance, chronic myeloid leukemia is often 

caused by a chromosomal rearrangement that joins the BCR gene with the ABL gene, creating 

the BCR-ABL protein that leads to uncontrolled cell growth (Hasty and Montagna, 2014). Some 

carcinogenic DNA changes occur outside of genes, in areas that act like "on" or "off" switches 

for nearby genes. Additionally, epigenetic changes, which are reversible and do not alter the 

DNA code but affect how DNA is packaged, can also cause cancer. Environmental factors such 

as cigarette smoke and the Epstein-Barr virus can induce both genetic and epigenetic changes 

(Abumsimir, Al-Qaisi and Kasmi, 2022). 

It is generally accepted that driver gene mutations initiate the development of cancer. The most 

characteristic cases of such genes belong to two main categories: proto-oncogenes, which mutate 

into oncogenes leading to the development of cancer cells, and tumor suppressor genes, which, 

when inactivated, cause uncontrolled cell proliferation and consequently cancer development 

(Dressler et al., 2022). Oncogenes are mutated forms of genes that cause normal cells to grow 

excessively and transform into cancer cells. These mutations involve specific genes within the cell 

known as proto-oncogenes (proto-oncogenes are denoted with the prefix “c”). Proto-oncogenes 

normally control how often a cell will divide and the degree to which it will differentiate. Proto-

oncogenes, such as Ras, transcribe into products like growth factors, receptors, transcription 

factors, and signaling enzymes for cellular proliferation. Gain-of-function mutations in proto-

oncogenes, resulting in dominant oncogenes that differ from their proto-oncogenes or are 

overexpressed, occur through point mutations, localized duplication, or chromosomal 

translocation. Consequently, when an oncogene mutates, it becomes permanently “stimulated,” 

causing the cell to divide very quickly, leading to cancer. This disrupts the normal activity of a cell 

and can lead to uncontrolled cell division and ultimately to cancer cells (Nourbakhsh et al., 2024). 
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Tumor suppressor genes are normal genes whose primary function is to inhibit cell division. This 

inhibition helps in repairing DNA errors and regulating cell apoptosis. When these genes are lost 

or under expressed, it leads to uncontrolled cell division, which can eventually result in cancer. To 

date, around 30 tumor suppressor genes have been identified, including well-known examples such 

as p53, BRCA1, BRCA2, APC, and RB1. These genes play crucial roles in maintaining cellular 

integrity and preventing the formation of malignant tumors, thereby acting as essential safeguards 

against cancer development. The loss or under expression of these genes leads to uncontrolled cell 

division, which can ultimately result in the development of cancer (Tang et al., 2021).  A major 

difference between oncogenes and tumor suppressor genes is that oncogenes result from the 

activation of proto-oncogenes, whereas tumor suppressor genes lead to cancer when they are 

inactivated. Another key distinction is that the majority of oncogenes originate from mutations in 

normal cells (proto-oncogenes) acquired during an individual's lifetime, known as acquired 

mutations, while abnormalities or disruptions in tumor suppressor genes can be inherited from 

one's parents (Dressler et al., 2022). 

 

1.3. Oncogenes  

 

Over the past forty years, scientific investigations have unequivocally shown the significance of 

oncogenes in human cancer. Numerous attempts have been made to comprehend the causal 

function of activated oncogenes in the formation of cancer since it was discovered that these genes 

are present in human tumors (Der et al., 1982; Goldfarb et al., 1982; Parada et al., 1982; Pulciani 

et al., 1982; Santos et al., 1982; Shih and Weinberg, 1982). Nevertheless, all of this research has 

demonstrated that oncogene expression is necessary for both the onset and progression of cancer, 

maintaining oncogenes as the primary targets for anti-cancer therapy. In genetically engineered 

mouse models, oncogenic expression is driven by tissue-specific promoters, resulting in high 

frequency tumors that regress when the inducing stimulus is turned off (Chin et al, 1999; Huettner 

et al, 2000; Boxer et al, 2004). This suggests that oncogenes are the Achilles' heel of cancers 

(Weinstein, 2002). This current concept of cancer is consistent with the fact that, in human tumors, 

all cancerous cells, regardless of cellular heterogeneity within the tumor, carry the same beginning 

oncogenic genetic abnormalities. Since the temporary silencing of the several separate tumor 

inducing oncogenes can induce cancer remission in these model systems, these data appear to 

suggest a homogeneous method of action for oncogenes inside cancer cells overall. Sadly, though, 

the treatments based on this cancer model are unable to completely eradicate human tumors. These 

clinical observations imply that oncogene-induced carcinogenesis in humans may not be reversible 

by means of the specific inactivation of the gene defect(s) that cause cancer to occur. What are the 

processes of tumor relapse, nevertheless, by which tumors change to become independent of 

oncogenes? (Vicente‐Dueñas et al., 2013) 

These therapeutic failures cannot be explained just by the presence of cancer stem cells (CSCs) or 

the recognized cellular plasticity of tumors. Indeed, both factors imply that a genetically 
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homogeneous tumoral population can look phenotypically heterogeneous due to the presence of 

cells in various stages of development (Hanahan and Weinberg, 2011). The failure of targeted 

therapies in humans may indicate that oncogenes behave differently across cancer cells. This could 

explain why cancer cells respond differently to anti-oncogene therapy based on their stage. Recent 

in vivo genetic data has indicated that human oncogenes can transform early stem/precursor cells 

into specific differentiated tumor cell fates, although they are not necessary within malignant cells. 

These findings not only highlight a previously unknown role for human oncogenes, but also 

support a previously unmodeled carcinogenesis process in which the malignant phenotype is 

already programmed at the stem cell stage (Vicente‐Dueñas et al., 2013). 

 

1.4. Microarray technology 

 

Microarray is a recent advance in cancer research (Kim, Kang and Park, 2004) aiding 

pharmacological treatments for various diseases, including oral lesions. It allows the analysis of 

large sets of new and previously recorded samples and can detect specific tumor markers. 

Microarray technology enables simultaneous genotyping of thousands of loci, facilitating 

association and linkage studies to identify chromosomal regions associated with disease. It can 

detect chromosomal abnormalities in cancer, such as segments of allelic imbalance defined by loss 

of heterozygosity (Gilad et al., 2000). Comparative genome-wide DNA hybridization helps 

identify amplified or deleted chromosomal regions, useful in cases such as oral cancer (Lilenbaum 

et al., 2001). Gene microarray technology allows tens of thousands of DNA sequences to be 

deposited onto a small surface, usually a glass slide, known as a 'chip'. These DNA fragments are 

systematically arranged so that the identity of each fragment is determined by its position. The 

chip is then bathed with DNA or RNA isolated from a study sample (such as cells or tissue). 

Complementary base pairing between the sample and the chip-immobilized fragments produces 

light via fluorescence that can be detected using a specialized machine. Microarray technology can 

be used for various purposes in research and clinical studies, such as measuring gene expression 

and detecting specific DNA sequences ((National Human Genome Research Institute, , 2024). 

There are two main types of microarrays: gene expression microarrays and tissue microarrays 

(TMAs). 

In contrast to techniques such as Northern blot and RT-PCR, which test only a few genes per 

experiment, microarray technology allows the simultaneous examination of many genes without 

bias from gene preselection (The Genetics of Cancer, 2015). In recent years, the scientific 

community has heavily utilized microarray technology, generating vast amounts of gene 

expression data. This data is scattered and not easily accessible. To address this, the National 

Center for Biotechnology Information (NCBI) created the Gene Expression Omnibus (GEO), a 

data storage facility that compiles gene expression data from various sources. This repository will 

serve as the input for our algorithm (PREMIER Biosoft, 2024). 

The flowchart below (Figure 1) explains the process of comparing gene expression between 

normal and cancer cells using cDNA microarray technology. It starts with collecting cell samples 

(a), growing them in culture (b), and isolating mRNA from both normal and cancer cells (c). The 
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mRNA is then converted to cDNA, with normal cell cDNA labeled with green fluorescent probes 

and cancer cell cDNA with red fluorescent probes (d). These labeled cDNAs are hybridized to a 

microarray with oligo sequences and scanned to detect fluorescence (e). The colors indicate gene 

expression: gray means not present, yellow indicates presence in both cell types, green shows 

expression in normal cells only, and red indicates expression in cancer cells only (f). 

 

 

Figure 1. Microarray Technique flow chart 

 

 

1.5. RNA-Seq (RNA Sequencing) 

 

RNA sequencing (RNA-Seq) is among the most advanced and powerful technologies applied to 

study gene expression and genome function. RNA-Seq allows in-depth analysis of the RNA 

content within a biological sample with high-throughput NGS methods, which permits exact 

quantification and sequencing of RNA molecules. Major areas of improvement for RNA-Seq over 

classical approaches are the level at which it details a high-resolution snapshot of the 

transcriptome; it can describe the set of active genes and their levels in different conditions and 

time points (Wang, Gerstein, and Snyder, 2009). This technology can also identify previously 

unknown genes and transcripts, expanding our understanding of the genome (Mortazavi et al., 

2008). In addition, RNA-Seq can detect alternative splicing events and post-transcriptional 
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modifications that are very important in understanding gene regulation and protein diversity. This 

kind of technology identifies gene fusions, mutations, and single nucleotide polymorphisms often 

coupled with diseases, reflecting further the versatility and importance of this technology. 

Mortazavi et al., 2008. That way, researchers can further compare gene expression profiles across 

different conditions, treatments, or time points, providing insight into the dynamic nature of the 

transcriptome. The other steps in the workflow of RNA-Seq are few but are of high importance. 

First, it begins with the isolation of RNA from biological samples, ensuring that it is of good 

quality and integrity. The isolated RNA is reverse-transcribed to complementary DNA (cDNA) by 

reverse transcriptase (RT) (Stark, Grzelak, and Hadfield, 2019). The cDNA is subsequently 

sequenced with high-throughput NGS technology, which produces massive amounts of sequence 

data (Ozsolak and Milos, 2011). Finally, bioinformatics tools are employed to analyze the 

sequencing results, such as mapping reads to a reference genome and predicting gene expression 

levels. RNA-Seq has changed genomics research by introducing a powerful and versatile approach 

for investigating the transcriptome. It enables researchers to analyze gene expression profiles, 

identify new transcripts, and decipher complex regulatory networks in unprecedented detail 

(Conesa et al., 2016). RNA-Seq, one of genomics' most advanced and effective tools, is still 

pushing research into gene expression and genome function. Its ability to provide comprehensive 

and precise data makes it an indispensable tool in modern biological research. 

 

1.6. Next-generation Sequencing (NGS) 

 

The introduction of Next-generation Sequencing (NGS), also known as High-throughput 

Sequencing (HTS), and Whole Genome Sequencing (WGS) technologies in genomics has 

revolutionized biological research by enabling the collection of massive amounts of genomic data 

in an unprecedented manner (Xuan et al., 2013). These technologies have transformed the field of 

genomics, providing rapid, scalable, and high-throughput sequencing capabilities. This data, 

derived from the genome and transcriptome, offers insights into the genetic makeup and gene 

expression patterns of organisms (Grafiati, 2021). 

NGS has significantly advanced various fields, including personalized medicine, genetic diseases, 

clinical diagnostics, and microbiology. It has supplanted traditional sequencing methods by 

enabling the analysis of millions or even billions of sequences, offering a comprehensive view of 

the genetic landscape (Grafiati, 2021). The analysis of NGS data involves identifying genomic 

variations, studying gene expression, and understanding spatio-temporal dependencies within the 

data. Additionally, the development of computational methods for NGS data analysis is crucial to 

ensure accurate interpretation and extraction of meaningful biological information from the vast 

datasets (Eisele and Kappelmann-Fenzl, 2021). Integrating NGS data into research and clinical 

practice has opened new possibilities for understanding complex biological systems and 

developing innovative diagnostic and therapeutic strategies. These technological breakthroughs 

have allowed scientists to explore the molecular landscape of species, gaining vital insights into 



15 | Page 
 

their genetic makeup, disease causes, and evolutionary linkages (Mohammadi et al., 2023). 

However, the exponential expansion of NGS data poses significant challenges in extracting 

valuable knowledge from these enormous datasets (Dash et al., 2019). Machine learning, a subset 

of artificial intelligence, has emerged as a potent tool to address this difficulty by providing 

algorithms and methodologies for rapidly analyzing, interpreting, and extracting important 

information from biological NGS data (Yang et al., 2020). 

In 2001, the completion of the human genome sequencing project marked a transformative 

milestone in scientific achievement, propelled by researchers using the Sanger DNA sequencing 

method (Lander et al., 2001). Despite this accomplishment, the high costs and throughput 

limitations hindered the widespread application of DNA sequencing, especially in sequencing 

individuals' genomes. The initial estimate for sequencing the first human genome ranged from half 

to one billion dollars. Following the public release of the "completed" human genome (Nature, 

2005), the National Human Genome Research Institute (NHGRI) invested $70 million in a DNA 

sequencing technology initiative aiming for a $1,000 human genome within a decade (Schloss, 

2008). This commitment spurred significant advancements in HTS technologies, with platforms 

like Illumina, Ion Torrent, and PacBio emerging as pioneers, revolutionizing the landscape of 

molecular biology by facilitating rapid, cost-effective, and efficient sequencing of large volumes 

of genetic material. 

HTS has overcome the limitations of the traditional Sanger sequencing method, which, despite 

reducing per-base costs by the end of the Human Genome Project, required a five-order magnitude 

reduction to reach the ambitious $1,000 genome threshold. Today, the cost of sequencing a genome 

(without interpretation) has dipped below $2,000, significantly closing this gap (Reuter, Spacek, 

and Snyder, 2015). HTS's innovative advantage lies not only in its affordability but also in its 

practicality for gene expression analysis and the detection of genetic diseases. This technology has 

enabled researchers to generate extensive datasets, fostering a more comprehensive understanding 

of genomic and transcriptional signatures across various diseases and developmental stages. 

Within HTS technologies, whole exome sequencing has become instrumental in detecting new 

variants and mutations. RNA-Seq, an abbreviation for RNA sequencing, is a prominent technique 

utilizing NGS to provide profound insights into the presence and quantity of RNA in biological 

samples, thereby unraveling the continuously changing cellular transcriptome. The synergy of 

HTS technologies and bioinformatics tools has ushered in a new era of scientific inquiry, enabling 

researchers to delve into the intricate mechanisms behind gene expression profiles in healthy and 

diseased states. RNA-Seq extends beyond merely measuring gene expression levels to include the 

identification of novel transcripts, splice variants, and other non-coding RNAs. By leveraging 

NGS, RNA-Seq facilitates the generation of comprehensive snapshots of gene expression, 

regulatory networks, and diverse cellular activities within a given sample. Its high-throughput 

nature allows for the comparison of expression levels between different samples, facilitating the 

identification of differentially expressed genes or transcripts. RNA-Seq emerges as an 
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indispensable tool, not only for studying gene expression but also for unraveling the complexities 

of gene regulation and identifying novel transcripts and splice variants with profound implications 

for scientific and medical research (International Human Genome Sequencing Consortium, 2004; 

Reuter, Spacek, and Snyder, 2015) 

 

1.7. Gene expression data 

 

The rapid advancement in genomics has flooded biology with extensive information, ranging from 

genome sequences to high-throughput functional data, prompting a shift in focus towards 

understanding global biological mechanisms. Platforms like gene expression profiling and 

proteomics, especially utilizing high-density microarrays, have become pivotal in unraveling 

complex genetic puzzles (Bowtell, 1999). Despite the benefits, managing and extracting 

meaningful insights from the vast data pose significant challenges. Global efforts, such as the 

European Bioinformatics Institute's microarray database, aim to address these challenges by 

establishing common standards and large, publicly accessible gene expression databases. 

Simultaneously, the field is evolving towards more statistically robust methods, including 

predicting disease membership and modeling biological variables through gene expression data 

analysis (Dopazo et al., 2001). 

Gene expression data is often structured as a gene expression matrix, with columns representing 

samples or experiments and rows representing expression vectors for the genes queried by the 

microarray (Ravindran and Gunavathi, 2023).  

Measure the level of mRNA transcription of protein-coding genes in a cell. The mRNA mix 

utilized in gene expression assays comes from biomaterials (samples) such tissues and cell lines. 

A microarray is often constructed to detect hundreds of unique target sequences linked with these 

genes using hybridization. The given measurements are only significant if something is known 

about the samples, target sequences, and genes. The primary purpose of gene expression data 

management is to combine expression data with sample and gene annotations, allowing users to 

explore, analyze, and understand expression data. A gene expression data management system 

usually integrates data from three different data sets: sample annotations, gene annotations, and 

gene expression measurements (Markowitz et al., 2003). Below (Figure 2), is provided an 

overview which include the most widely used gene expression detection techniques for cancer 

tissue samples, beginning with tumor tissue.  
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Figure 2. Overview of the gene expression detection assays for cancer tissue sample by 

(Narrandes and Xu, 2018). (a) TMA (Tissue Microarray) can be used to evaluate hundreds of 

samples utilizing FISH. (b) FISH can be used to localize and quantify hybridization intensity in a 

single sample. (c) RNA is taken from the sample and examined using NanoString, which measures 

hybridization in 50-500 genes. (d) The RNA is subsequently transformed to cDNA for qRT-PCR, 

which measures 1-50 genes using reaction cycles. Furthermore, (e) cDNA fragments are employed 

in microarray analysis to detect 1,000-25,000 genes. Finally, (f) a cDNA library is generated for 

RNA-seq, allowing for a comprehensive investigation of the entire transcriptome through 

transcript quantification. 

. 
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Chapter 2 Machine Learning and Feature Selection 

 

2.1. Machine learning (ML) 

 

Machine learning technologies enable researchers to reveal hidden associations, identify 

biomarkers, classify samples, and generate predictions with high accuracy and efficiency by 

harnessing the inherent patterns and structures within the data (Marcos-Zambrano et al., 2021). 

Machine learning is a branch of artificial intelligence that enables computers to learn from data 

and improve their performance without explicit programming. Machine learning can be used for 

various purposes, such as data analysis, pattern recognition, natural language processing, computer 

vision, robotics, and more. There are different types of machines learning techniques, depending 

on how the data is used and what kind of output is expected (Mahesh, 2019). On the first hand, 

Supervised learning involves training a model with labeled data, that is, data that has a known 

output or target variable. The model learns to map the input data to the output data and can then 

make predictions for new data. Examples of supervised learning algorithms are linear regression, 

classification, decision trees, and neural networks. Unsupervised learning on the other hand 

involves finding hidden patterns or structures in unlabeled data, that is, data that has no predefined 

output or target variable. The model learns to group or cluster the data based on some similarity 

or difference criteria and can then discover new insights or features from the data. Examples of 

unsupervised learning algorithms are clustering, dimensionality reduction, and word embedding. 

Moreover, Reinforcement learning involves learning from trial and error by interacting with an 

environment and receiving feedback or rewards for the actions taken. The model learns to optimize 

its behavior based on a goal or policy and can then adapt to changing situations or challenges. 

Examples of reinforcement learning algorithms are Q-learning, deep Q-networks, and policy 

gradients. Finally, Deep learning uses multiple layers of artificial neural networks to learn complex 

and nonlinear relationships between input and output data.  

Deep learning can be applied to any type of machine learning technique, such as 

supervised, unsupervised, or reinforcement learning. Examples of deep learning applications are 

image recognition, natural language generation, speech synthesis, and generative adversarial 

networks (Mahesh, 2019; Ray, 2019). Machine learning is a rapidly evolving field that has many 

applications and challenges in various domains. Nevertheless, we will focus on the combination 

of machine learning techniques and biological NGS data that provide several significant benefits. 

First, it enables the discovery of complicated genomic variants and structural rearrangements that 

conventional approaches may overlook. Furthermore, machine learning allows for the detection of 

minor expression patterns and regulatory processes, which aids in the comprehension of gene 

regulation networks and disease pathways (Kalinin et al., 2018). In addition, machine learning 
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algorithms may incorporate data from a variety of sources, including genomics, transcriptomics, 

and proteomics, allowing for a more comprehensive and holistic perspective of biological systems 

(Zitnik et al., 2019). However, the appropriate application of machine learning in the processing 

of biological NGS data raises several issues and concerns (Yang et al., 2020). These include the 

preprocessing and normalization of raw sequencing data, feature selection, handling high-

dimensional datasets, addressing issues of class imbalance, ensuring model interpretability, and 

dealing with the ethical aspects of using sensitive genetic data. Thus, a preprocessing step is 

critical, since it plays a key role in improving analysis through the use of a technique known as 

Feature selection (FS).  

 

2.2. Feature selection (FS) 

 

2.2.1. What is FS? 
 

FS refers to the process of selecting relevant features and at the same time rejecting irrelevant 

features from a dataset. It aids in the reduction of data complexity and dimensionality by 

reducing redundant and unimportant information, enabling the model to focus on the most 

important features (Ang et al., 2016). Combining pattern recognition algorithms with FS 

techniques has proven essential in many applications, as many of them were not initially 

intended to handle vast amounts of irrelevant information (Liu and Motoda, 2012; Guyon and 

Elisseeff, 2003).  

There are several reasons that make FS an important tool, but the main ones are as follows, the 

first reason is that FS prevents overfitting and enhances model performance by increasing its 

accuracy, that is, prediction performance in supervised classification and improved cluster 

detection in clustering. The second reason why FS is chosen is because it provides faster and 

more affordable models by saving training time and reducing overfitting. The last reason is that 

FS obtains a better understanding of the underlying processes and trends that generated the data 

by identifying irrelevant features (Saeys, Inza and Larrañaga, 2007). For bioinformatics 

applications, FS methods must scale up to tens or even hundreds of thousands of features while 

maintaining good quality. Moreover, they must possess sufficient generality to manage 

continuous, censored time-to-event, multi-class, and binary outcomes. Furthermore, even if 

features are frequently simply continuous, an FS algorithm should include discrete characteristics 

as well to take clinical or other genetic factors into account (Tsagris et al., 2022). 
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2.2.2. FS methods 
 

In the realm of ML, selecting the most relevant features for a classification model is crucial 

for enhancing performance and efficiency. For this reason, three basic strategies have been 

developed. FS strategies in the context of classification can be divided into three groups based on 

how they integrate the feature selection search with the model construction: filter methods, 

wrapper methods, and embedding methods (Yang et al., 2020).  

Filter techniques, which rely on heuristic scores and statistics, operate independently of ML 

algorithms. By figuring out the association between each feature and the target variable, features 

are chosen using this strategy. Integrated techniques: The learning algorithms that are employed 

to train the model serve as the foundation for these techniques. By being familiar with the feature 

weights, it is utilized to choose features throughout the training phase (Danasingh, Balamurugan 

and Epiphany, 2016). The main criterion for FS by ordering in filter methods is the application of 

variable ranking approaches. Because ranking systems are straightforward and have demonstrated 

strong results in real-world applications, they are widely employed. The variables are scored using 

a suitable ranking criterion, and variables that fall below the threshold are eliminated. Since 

ranking methods are used to exclude less important factors before categorization, they are filter 

methods (Chandrashekar and Sahin, 2014). Features are chosen using statistical measurements in 

the Filter technique. One benefit of this approach is that it requires less computational time because 

it selects the features as a pre-processing step, independent of the learning algorithm.  A few of 

the most used statistical metrics for determining the significance of the features are variance 

threshold, information gain, chi-square test, Fisher score, and correlation coefficient. The Filter 

approach removes unnecessary columns from the models and identifies unimportant properties 

using the chosen measure. It provides the choice to isolate particular measures that improve a 

model. After the feature scores are calculated, the columns are ranked. However, the Filter 

approach has a few drawbacks, such as the potential for bias towards specific classes and the 

potential inability to detect non-linear connections between features. In addition, it takes a lot of 

time and might be challenging to use with big datasets (Saeys, Inza and Larrañaga, 2007; 

Venkatesh and Anuradha, 2019).  

Conversely, the best subset of features is chosen utilizing Wrapper techniques, which 

employ various search tactics. This approach is predicated on assessing the correctness of the 

model using various feature combinations (Danasingh, Balamurugan and Epiphany, 2016). In 

addition, Wrapper technique evaluates the variable subset using the predictor's performance as the 

objective function and the predictor as a black box. Since evaluating subsets becomes an NP-hard 

job, suboptimal subsets are identified by utilizing search algorithms which choose a subset 

heuristically. Finding a subset of variables that maximizes the objective function the classification 

performance can be done using a variety of search strategies (Chandrashekar and Sahin, 2014). 

The Wrapper approach views feature set selection as a search problem, where many combinations 

are created, assessed, and contrasted with one another. Iteratively employing the subset of features, 



21 | Page 
 

the algorithm is trained. To assess a set of features and provide model performance ratings, a 

predictive model is utilized. The classifier determines how well the Wrapper technique performs. 

The classifier's output determines which subset of features is optimal. Because of its repeated 

procedure, the Wrapper technique is computationally intensive and therefore unsuitable for huge 

datasets. It can also take a lot of time and is prone to overfitting (Chandrashekar and Sahin, 2014; 

Venkatesh and Anuradha, 2019). 

Lastly, the FS algorithm is incorporated into the learning algorithm in Embedded 

techniques, incorporating the benefits of both Filter and Wrapper methods by taking feature 

interaction and low computational cost into account. These techniques handle data quickly, much 

like the filter method, but they also have higher accuracy. The decision tree algorithm is the most 

widely used Embedded approach. This algorithm divides the data using a tree structure after 

beginning with all features. The resulting class is located at the leaf node of the tree. The most 

significant feature is chosen first, and then it is divided into two or more sub-trees according to 

that feature. Next, each feature is assessed using the Gini index or information gain. The best 

feature is then chosen for the following split after each feature is assessed using the information 

gain or Gini index (Saeys, Inza and Larrañaga, 2007; Venkatesh and Anuradha, 2019). Therefore, 

the goal of embedded techniques is to minimize the amount of time needed to compute the 

reclassification of various subsets, which is accomplished by wrapper methods. The primary 

strategy is to include feature selection in the training procedure (Pudil et al., 1995; Alsberg et al., 

1998; Chuang et al., 2008).  

 

 

2.2.3. FS evaluation 
 

To evaluate how efficient an FS method and algorithm are, data must be run through it and the 

performance measured. This can be accomplished by comparing the algorithm's output to baseline 

performance, such as a classification accuracy score or a regression score (Tsagris et al., 2022). 

The FS literature is extensive, but in this work, we only concentrate on the most well-known 

algorithms that scale to the quantity of data and can generalize to a variety of outcomes and 

features. In terms of selection, the majority of these high-dimensional algorithms are greedy. We 

specifically concentrate on the Orthogonal Matching Pursuit (OMP) algorithm, which is widely 

recognized in the literature on signal processing (Shi et al., 2019). OMP, is a widely used FS 

technique due to its computational efficiency and ease of use (Shi et al., 2015). Because the next 

picked feature depends on the residual that is orthogonal to the previously selected feature, OMP, 

which was first used to choose features for binary-class classification, prefers to select only one 

among correlated features (Pati, Rezaiifar and Krishnaprasad, 1993). 
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2.3. Literature Review on FS in Gene Expression Data 

 

FS in gene expression data is crucial for enhancing cancer detection and prognosis by reducing 

data dimensionality and improving model accuracy. Recent studies have proposed various 

methods to tackle this challenge. For instance, a study utilized SVMSMOTE for oversampling, 

followed by dimension reduction and classifier-based feature ranking, revealing that different 

feature selection methods significantly impact model performance, achieving up to 94.3% 

accuracy in classification tasks (Petinrin et al., 2023). Additionally, a graph theory-based feature 

selection approach used mutual information to construct undirected graphs, achieving robust 

classification results across various genetic datasets. The Ensemble Feature Selection (EFSmarker) 

method identified twelve critical biomarkers for breast cancer by integrating multiple filter 

techniques. This method proved effective in early cancer detection, improving classification 

accuracy to 96.2% (Li et al., 2023).  

Another number of innovative techniques have been put forth recently in order to tackle his 

challenge, including the Max-Relevance-Max-Distance (MRMD) method by (Zou et al. 2005), 

which chooses features with strong correlation with the labeled and lowest redundancy features 

subset, and the minimum-Redundancy-Maximum-Relevancy (mRMR) method by (Peng et al. 

2011), which chooses features using mutual information as a proxy for computing relevance and 

redundancy among features. 

In addition to that, in high-dimensional data studies, particularly in gene function enrichment 

analysis, cancer biomarker discovery, and drug targeting identification in precision medicine, 

feature selection techniques are becoming increasingly important. A novel approach to predict 

TATA-binding proteins using feature selection and dimensionality reduction strategy was recently 

proposed by Zou (2016). Classifiers were developed to predict tumor originating sites after putting 

forth innovative selection procedures to find highly tissue-specific CpG sites (Tang et al. 2017). 

OMP has been explored extensively for feature selection in gene expression. For example, a study 

demonstrated the application of a generalized OMP algorithm for feature selection, showing its 

scalability and effectiveness in handling high-dimensional data, achieving an accuracy 

improvement of 12% over traditional methods (Wang & Ye, 2013). Another research applied OMP 

in a minimum redundancy feature selection context, achieving notable improvements in 

classifying microarray gene expression data, with accuracy rates reaching 93% (Sun & Qian, 

2018). 

Matched-Pairs Feature Selection (MPFS) techniques and approaches for bioinformatics research 

abound. It has been possible for several researchers to incorporate paired data which fall into three 

categories into their algorithms (Liang et al., 2018). In order to increase model predictive accuracy, 

a classification strategy is frequently used after the test statistic ranks pertinent characteristics by 

evaluating significant levels using the original and modified paired t-test. These kinds of 

approaches can yield preliminary feature selection results, but they are quite time-consuming. 

Second, a modeling technique that is frequently employed in Matched case-control design 

(MCCD) investigations to find features strongly linked with case-control status is conditional 
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logistic regression (CLR). When possible, correlations exist, CLR takes into account how 

attributes interact with one another to produce superior selection outcomes (BRESLOW et al., 1978). 

In Alzheimer’s disease research, a hybrid gene selection pipeline combined filter, wrapper, and 

unsupervised methods, leading to improved classification using deep learning techniques, 

achieving classification accuracy of 89.4% (Liu et al., 2023).by Another approach integrated 

XGBoost and multi-objective optimization, resulting in higher accuracy for colon cancer gene 

expression data, achieving an average accuracy of 95.1% across multiple datasets (Deng et al., 

2021). Further studies emphasized hybrid evolutionary approaches, such as integrating Particle 

Swarm Optimization and Correlation-based FS, which demonstrated enhanced performance in 

cancer classification tasks, achieving an accuracy improvement of 10-15% over baseline models 

(Jain et al., 2023). An innovative hybrid FS technique using a micro–Genetic Algorithm on 

microarray gene expression data significantly improved classification accuracy, reaching up to 

91.8% and reducing complexity by 20% (Pragadeesh et al., 2019). Lastly, a comprehensive survey 

on hybrid FS methods highlighted the integration of bio-inspired metaheuristic and wrapper 

methods for better classification of breast cancer, showcasing significant advancements in FS 

techniques, with improvements in accuracy by up to 13% (Naeem et al., 2022). 

In conclusion, the reviewed literature highlights the critical importance of FS in processing high-

dimensional gene expression data for cancer classification. Advanced techniques such as hybrid 

models, ensemble methods, and graph theory-based approaches have demonstrated significant 

improvements in accuracy, efficiency, and robustness. These methods effectively address common 

challenges such as class imbalance, data redundancy, and noise, thereby enhancing the predictive 

performance of machine learning models. This body of research aligns closely with the objectives 

of my thesis, which focuses on optimizing the γ-OMP algorithm for FS in gene expression data. 

The insights gained from these studies reinforce the relevance of developing sophisticated feature 

FS methods that can handle the complexity and high dimensionality of gene expression data. By 

integrating and extending these advanced techniques, my research aims to contribute to more 

accurate and efficient diagnostic tools for cancer, ultimately improving patient outcomes and 

advancing the field of bioinformatics. 

 

 

2.4. AUC-area under the curve 

The area under the ROC (Receiver Operating Characteristic) curve, or simply AUC, is a method 

widely used in statistics and ML for evaluating binary classifiers. It refers to the ROC curve, which 

is a probability curve, and the AUC represents the degree or measure of separability. In other 

words, it shows how well the model is capable of distinguishing between classes. The ROC curve 

is plotted with the TPR (True Positive Rate) on the y-axis against the FPR (False Positive Rate) 

on the x-axis at various threshold settings (Classification: ROC Curve and AUC, 2022). 

● True Positive Rate (TPR): Also known as sensitivity or recall, it is the ratio of correctly 

predicted positive observations to the actual positives. 
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● False Positive Rate (FPR): It is the ratio of incorrectly predicted positive observations to 

the actual negatives. 
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The higher the AUC, the better the model is at making accurate predictions. AUC, or Area Under 

the Curve, provides a comprehensive measure of a model's performance across all possible 

classification thresholds. An AUC of 1 indicates a perfect model that correctly classifies all 

positive and negative instances. This means that the model has an excellent ability to distinguish 

between the two classes. An AUC between 0.5 and 1 suggests that the model performs better than 

random guessing, indicating a decent level of predictive power. Conversely, an AUC of 0.5 means 

that the model's performance is no better than random guessing, signifying no discriminatory 

power. If the AUC is below 0.5, it implies that the model performs worse than random guessing, 

effectively classifying instances in the opposite manner of what is desired. Thus, AUC is a crucial 

metric for evaluating the effectiveness of a model and understanding its predictive capabilities. 

 

Figure 3. ROC-AUC Classification Evaluation Metric (AUC ROC Curve in Machine Learning, 

GeeksforGeeks ,2020) 

Overall, AUC is a fundamental aspect of model evaluation in machine learning, contributing to 

the development of robust and reliable classifiers. It is an important tool for researchers and 

engineers to better understand the performance of their models and to choose the best models for 

their needs. It enables a deeper understanding of model performance, facilitates decision-making, 

and ultimately helps select the most appropriate models to address specific challenges and needs. 
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2.5. Cross Validation 

 

Cross-validation (CV) is a statistical technique for assessing and comparing learning algorithms 

by splitting the data into two segments, one for training the model and the other for validating it. 

In standard CV, the training and validation sets overlap in successive rounds to ensure that each 

data point is used for validation at least once. The simplest form is k-fold CV, where the data is 

divided into k subsets, and the model is trained and validated k times, each time using a different 

subset as the validation set and the remaining k-1 subsets as the training set. Other forms of CV 

are either variations of k-fold CV or involve multiple rounds of k-fold CV (Refaeilzadeh, Tang, 

and Liu, 2016). 

In biotechnology CV is a highly popular data resampling technique used to evaluate a predictive 

model's generalization capability and to avoid overfitting. When constructing the final model for 

predicting actual future cases, the learning function (or learning algorithm) is typically applied to 

the entire training set. The purpose of CV during the model-building phase is to estimate how well 

the final model will perform on new, unseen data (Berrar, 2019).  

Proper and complete CV helps to avoid optimistic bias when estimating survival risk 

discrimination for a survival risk model developed using the full data set (Simon et al., 2011). For 

example, Molinaro (2005) compared different data resampling methods for high-dimensional data 

sets, which are often encountered in bioinformatics. Their findings indicate that Leave-One-Out 

CV (LOOCV), 10-fold CV, and the 0.632+ bootstrap method exhibit the smallest bias. 

In summary, Simon (2011) believes that when properly implemented, CV methodology can be 

highly effective for evaluating survival risk modeling and should be more widely adopted. It allows 

for more efficient use of data in model development and validation compared to fixed sample 

splitting. However, in data sets with few events, the survival risk models developed may be 

suboptimal due to the limited data, and the cross-validated Kaplan–Meier curves of risk groups 

and time-dependent ROC curves may be imprecise (Dobbin and Simon, 2007). 
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Figure 4. Cross-Validation pipeline (Farheenshaukat, 2024) 

 

The Figure above, (Figure 4) illustrates a comprehensive workflow for optimizing and evaluating 

a machine learning model through CV. The process begins with defining the dataset and the set of 

parameters to be tuned. The dataset is then split into two groups, the one contains the training data 

and the other one the test data, ensuring that the model is evaluated on unseen data. The training 

data is used in the CV process, where different combinations of the defined parameters are tested 

to find the best performing set. This iterative process helps in identifying the optimal parameters 

that enhance the model's performance. Once the best parameters are identified, the model is 

retrained using the entire training dataset with these parameters. Finally, the retrained model is 

evaluated on the test data to ensure its generalizability and effectiveness.  

  

  



27 | Page 
 

2.6. Aim & objective 

 

The aim of this study, titled "Optimization of the γ-OMP Algorithm for Feature Selection 

in Gene Expression Data," is to enhance the performance of the γ-OMP algorithm by developing 

a new algorithm called dcor-OMP. Both algorithms are a variant of the Orthogonal Matching 

Pursuit (OMP) widely employed in signal processing (Chen, Billings, & Luo, 1989; Davis, Mallat, 

& Zhang, 1994), and have been specifically tailored for gene expression data analysis. 

 

Accurate FS in gene expression data is crucial for several reasons. First and foremost, 

genomic studies generate vast amounts of data, often comprising thousands of genes across 

multiple samples. Identifying the subset of genes that are most relevant for distinguishing 

biological conditions (such as disease states or treatment responses) is essential for understanding 

underlying biological mechanisms. Moreover, precise FS can significantly enhance the 

development of diagnostic tools and predictive models. By isolating key genes associated with 

specific outcomes, researchers can improve the accuracy of disease diagnosis, prognosis, and 

treatment selection. This can lead to more personalized and effective medical interventions, 

ultimately improving patient outcomes and healthcare efficiency. The dcor-OMP algorithm 

represents a potential advancement in this field by refining the feature selection process, thereby 

offering more reliable insights into gene interactions and regulatory networks. Through rigorous 

comparison with its predecessor γ-OMP, this study aims to validate dcor-OMP as a robust tool 

capable of addressing the complexities inherent in gene expression data analysis. 

 

Optimizing methods like γ-OMP allows researchers to better use genetic information that 

will lead to faster discoveries in molecular biology and healthcare. Finally, all of these 

developments have the potential to change the way illnesses are understood, diagnosed, and 

treated, which will bring us closer to customized and targeted healthcare solutions. 
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Chapter 3 Material and methods  

 

3.1. γ-OMP 

The γ-OMP, which stands for generalized OMP and is pronounced as γ-OMP, was 
proposed by Tsagris et al in 2022. It is a FS algorithm based on the OMP algorithm. The γ-OMP 
is an extension of OMP designed to enhance its performance in specific applications, particularly 
those involving high-dimensional data, such as gene expression data. This extension addresses the 

limitations of the traditional OMP by allowing for the selection of groups of features rather than 
individual features, which can significantly improve the algorithm's effectiveness, especially in 
the presence of correlated features. 

The γ-OMP algorithm is versatile and can handle various types of outcomes and features, 
including continuous, binary, nominal, ordinal, time-to-event, ratios, and measurements. This 
versatility makes it suitable for a wide range of applications in computational biology and 
bioinformatics, where data often come in different forms and structures. Moreover, the algorithm 
can utilize different regression models, such as linear or logistic regression, and employ various 
stopping criteria based on statistical measures. It also considers different types of residuals denoted 
by Resid in lines 7 and 13 of the algorithm presented in Table 1 and correlations to select the most 
relevant features for predictive analytics. The γ-OMP is scalable, easy to implement, and 
competitive in terms of predictive performance and computational efficiency, where traditional 
methods might struggle with the sheer volume and complexity of the information. 

The key innovation of the γ-OMP is its ability to select a group of features that jointly 

contribute to reducing the residual, rather than selecting features one by one. This approach is 
particularly beneficial when there are groups of correlated features that together have a significant 
impact on the outcome. By considering these groups, the γ-OMP can more accurately capture the 
underlying structure of the data. The algorithm is adaptive, determining the optimal group size at 
each iteration, which enhances its flexibility and performance. Additionally, it includes several 
optimizations to reduce computational complexity, making it more efficient for large datasets. 
These optimizations ensure that the γ-OMP can handle extensive datasets without compromising 
on speed or accuracy. 

The algorithm starts with an empty support set and the initial residual as the signal itself. 
At each iteration, a group of features with the highest joint correlation with the residual is selected. 
This group is then added to the support set, and the residual is updated by projecting the signal 
onto the subspace spanned by the current support set. This iterative process continues until the 
desired criteria are met, ensuring that the most relevant features are selected for the predictive 
model. The γ-OMP’s iterative nature and group selection strategy make it a powerful tool for 

feature selection in high-dimensional spaces, providing robust and efficient solutions for complex 
data analysis tasks. 

 

Initially, the algorithm requires input in the form of outcome values γ and a dataset X consisting 
of potential predictor features. Key functions such as f (model fitting), Resid (residual calculation), 
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Assoc (association measurement), and Stopping (stopping criterion) are also defined. The process 
begins by standardizing the data to ensure comparability, centering each feature and the outcome 
around zero and scaling them to unit norm. The selected features set S is initialized as empty, and 
initial residuals are set equal to the outcome values. The algorithm then iteratively selects features 
based on their association with the residuals, updating the current model and residuals with each 
iteration. Specifically, the feature with the highest association with the residuals is added to the set 
of selected features S, and a new model is fitted using these features. Residuals are recalculated as 

the difference between the actual outcome and the predicted outcome using the updated model. 
This process repeats, with the previous model M’ and the current model M being updated in each 
iteration, until the stopping criterion is met. At this point, the algorithm returns the set of selected 
features, which represent the most predictive features for the outcome.  

 

 

Table 1. The γ-OMP algorithm 
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3.2. dcor-OMP 

 

In this study we built a unique feature selection and model optimization strategy based on 

distance correlation (dcor) within the OMP, which led up to our model named dcor-OMP. Our 

model is organized around three primary functions: 'dcor.omp', 'dcor.omp.path', and 'dcor.omp.cv'. 

First, the 'dcor.omp' function is intended to perform iterative feature selection by choosing 

predictors that have the maximum distance correlation with the response variable. This function 

iteratively picks variables, standardizes the predictors, and uses k-nearest neighbors (k-NN) 

regression to estimate the response and compute the AUC, essentially refining the model until a 

defined tolerance level is satisfied. 'dcor.omp's strength is its capacity to handle high-dimensional 

data while efficiently limiting down relevant features. Secondly, the 'dcor.omp.path' function 

expands the capabilities of 'dcor.omp' by generating a selection path over several tolerance levels. 

This function is called 'dcor.omp' with a variety of tolerance levels, capturing the advancement of 

selected features and associated AUC values. This approach provides a full perspective of the 

model's performance across various levels of stringency, allowing for a better-informed choice of 

the ideal tolerance level. Finally, the 'dcor.omp.cv' function incorporates cross-validation into the 

feature selection process, resulting in a stronger evaluation of model performance. This function 

divides the data into numerous folds and applies 'dcor.omp.path' to each training set before 

evaluating the model on the validation set and computing the AUC for each tolerance level. The 

CV method ensures that the chosen model generalizes effectively to previously unseen data, 

allowing a reliable assessment of its predicted accuracy. These functions work together to create 

an improved model and a better feature selection, which is especially useful for high-dimensional 

data. They use the strength of distance correlation to find relevant features, k-NN regression for 

flexible modeling, and CV to evaluate performance. This methodology improves both model 

accuracy and interpretability, making it more efficient over its predecessor, γ-OMP. 

 

3.3. Pearson correlation 

The Pearson correlation method is the most common method to use for numerical variables; it 

assigns a value between -1 and 1, where 0 is no correlation, 1 is total positive correlation, and -1 

is total negative correlation. This is interpreted as follows: a correlation value of 0.7 between two 

variables such as “age” and “disease” would indicate that a significant and positive relationship 

exists between the two. A positive correlation signifies that if variable “age” increases, then 

“disease” will also increase, whereas if the value of the correlation is negative, then if “age” 

increases, “disease” decreases (Faizi and Alvi, 2023). 

As such, it is related to distributional assumptions. More specifically, the Pearson is assuming a 

bivariate normal distribution, or a linear relationship between X and Y. According to Hahs-Vaughn 

(2023), when linearity is broken, the Pearson correlation is not robust; in fact, it is "very not 

robust... even a single aberrant point can alter r, the usual estimate of ρ, by a large amount." A 

useful implication is that even a single outlier can obscure a connection. Apart from outliers, non-
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linearity, range restriction, residual magnitude, and rotating points are other data properties that 

might impact the strength of the Pearson correlation. Strong nonlinear relationships can 

nonetheless have a Pearson correlation coefficient of zero. Several alternatives to the Pearson have 

been created as a result of these constraints; some of these alternatives are more reliable than 

others. A large number of these substitute coefficients are listed in the section on nonparametric 

correlations (Chen and Anderson, 2023; Hahs-Vaughn, 2023). The formula for calculating the 

Pearson correlation coefficient is: 

𝑟 =
∑(𝑥𝑖 − 𝑥 )(𝑦𝑖 − ȳ)

√∑(𝑥𝑖 − 𝑥 )2𝛴(𝑦𝑖 − ȳ)2
 

where x and y are the two variables being compared, 𝑥  and ȳ are their respective means, and Σ 

denotes the sum over all observations. 

By applying the Pearson correlation, bioinformaticians were able to identify significant 

relationships between genes. For instance, a positive correlation means that as the expression level 

of one gene increase, the expression level of another gene also increases. Conversely, a negative 

correlation means that as the expression level of one gene increase, the expression level of another 

gene decreases. For instance, de Souto (2008) used the Pearson correlation method to analyze gene 

expression data. This method is commonly used to measure the strength and direction of the linear 

relationship between two numerical variables. For their analysis, they calculated the Pearson 

correlation coefficients between the expression levels of different genes. 

 

3.4. Energy distance, Distance covariance, Distance correlation 

 

3.4.1. Energy distance 
 

Energy distance is a measure of the difference between probability distributions. The term 'energy' 

is inspired by the concept of potential energy in a gravitational field, where potential energy is zero 

when two objects are at the same point (the gravitational center) and increases with their 

separation. This concept can be applied to data as follows: Let X and Y be independent random 

vectors in ℝd with cumulative distribution functions (CDFs) F and G, respectively. Here, || . || 

denotes the Euclidean norm (length) of its argument, E represents the expected value, and a primed 

random variable X' denotes an independent and identically distributed (iid) copy of X; similarly, 

Y and Y' are iid (Székely and Rizzo, 2013; Rizzo and Székely, 2016). The squared energy distance 

can be defined using the expected distances between these random vectors as: 

𝐷2 (𝐹, 𝐺)  =  2𝐸||𝑋 −  𝑌||  −  𝐸||𝑋 −  𝑋′||  −  𝐸||𝑌 −  𝑌′||  ≥ 0 

and the energy distance between distributions F and G is the square root of D2 (F, G). It can be 

demonstrated that the energy distance D (F, G) satisfies all the properties of a metric, specifically 
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D (F, G) = 0 if and only if F = G. Thus, energy distance provides a way to determine when 

distributions are equal and offers a theoretical foundation for statistical inference and multivariate 

analysis based on Euclidean distances. This review covers several key applications and 

demonstrates their implementation (Rizzo and Székely, 2016). 

An important use case for two samples involves testing the independence of random vectors. This 

involves verifying if the joint distribution of X and Y equals the product of their individual 

marginal distributions. Notably, the relevant statistics can be represented using a product-moment 

expression that involves the double-centered distance matrices of the X and Y samples. These 

distance-based statistics are similar to, but more comprehensive than, product-moment covariance 

and correlation, leading to the terms distance covariance (dCov) and distance correlation (dCor) 

which are defined below (Székely and Rizzo, 2012; Rizzo and Székely, 2016). 

 

3.4.2. Distance covariance 
 

The simplest formula for the distance covariance statistic is the square root of; 

𝑑𝐶𝑜𝑣.
2(𝑥, 𝑦) =

1

𝑛2
∑ .

𝑛

𝑖𝜆𝑗
=1

�̂�𝑖𝑗�̂�𝑖𝑗 

where Â and B̂ are the double-centered distance matrices for the X and Y samples, respectively, 

with the subscript ij indicating the entry in the ith row and jth column. In the context of distance 

covariance, the matrices �̂�. and �̂�. are double-centered distance matrices constructed from the 

distance matrices of two sets of samples, Χ and Υ. To create these matrices, we first compute the 

pairwise distance matrices for the samples in Χ and Υ. Next, we calculate the row means, column 

means, and the overall mean of these distance matrices. Double centering involves adjusting each 

element in the distance matrices by subtracting the corresponding row and column means and 

adding the overall mean. This process results in the double-centered matrices �̂� and �̂�, which  

isolate the variation in distances attributable to dependencies between the samples, thereby 

removing the effects of their overall location.  

Distance covariance has many applications across different fields such as biology. The idea of 

distance covariance is expanded to assess the dependence between a covariate vector and a right-

censored survival endpoint (Edelmann, Welchowski and Benner, 2022). This is achieved by 

creating an estimator based on an inverse-probability-of-censoring weighted U-statistic. The 

consistency of this new estimator is demonstrated. A large simulation study reveals that the 

distance covariance permutation tests perform well in detecting various complex associations. The 

application of these permutation tests to a gene expression dataset from breast cancer patients 

highlights its potential utility in biostatistical practice. 
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3.4.3. Distance correlation 
 

Distance correlation, on the other hand, is a measure of association between two random 

variables that takes into account both linear and nonlinear relationships. It was introduced by 

Székely, Rizzo and Bakirov (2007) as a way to overcome some of the limitations of traditional 

correlation measures. The distance correlation between two random variables X and Y is defined 

as: 

𝑑𝐶𝑜𝑟(𝑥, 𝑦) =
ⅆ𝐶𝑜𝑣(𝑥,𝑦) 

√ⅆ𝑉𝑎𝑟(𝑥)ⅆ𝑉𝑎𝑟(𝑦)
  

 

Distance correlation ranges from 0 to 1, in contrast to Pearson correlation, which can range 

from -1 to 1. It is zero if and only if X and Y are independent. This measure also has the advantage 

of being invariant to monotonic transformations of the variables, which allows it to identify 

nonlinear connections that conventional correlation measures would overlook. Additionally, it is 

symmetric, meaning that if and only if X and Y are independent, then dCor (X, Y) = dCor (Y, X) 

and it is zero. The distance variance is simply the distance covariance of a variable with itself: 

𝑑 𝑉𝑎𝑟2(𝑋) = 𝑑 𝐶𝑜𝑣2(𝑋, 𝑋) =
1

𝑛2
 ∑.

𝑖=1

∑�̂�𝑖𝑗�̂�𝑖𝑗
𝑗=1

 

 

Similarly, for Y: 

𝑑 𝑉𝑎𝑟2(𝑌) = 𝑑 𝐶𝑜𝑣2(𝑌, 𝑌) =
1

𝑛2
 ∑.

𝑖=1

∑�̂�𝑖𝑗�̂�𝑖𝑗
𝑗=1

 

dVar(X) is the distance variance of X, which is equivalent to the distance covariance of X with 

itself. as well as for Y where Var(Y) is the distance variance of Y, which is equivalent to the 

distance covariance of Y with itself. 

Distance correlation has the advantage of being invariant to monotonic transformations of 

the variables, which allows it to identify nonlinear connections that conventional correlation 

measures would overlook. Applications of distance correlation can be found in many domains, 

such as genetics, machine learning, and statistics. It can be applied to high-dimensional data to 

perform FS, assess the similarity across datasets, and find nonlinear correlations between variables 

(Hou et al., 2022).  
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3.5. k-NN algorithm 

 

k-NN algorithm is a supervised machine learning method used for classification and regression 

problems (Dadi, 2024). As a nonparametric classification technique, k-NN makes no assumptions 

about the underlying data distribution, making it renowned for its simplicity and efficiency. To 

forecast the class of unlabeled data, a labeled training dataset with data points classified into 

multiple classes is used. Thus, k-NN utilizes this labeled training data to categorize new data points 

based on the majority class of their nearest neighbors, identified using Euclidean distance (Zhang 

et al., 2018). 

k-NN classification involves two main steps: the learning step, where a classifier is constructed 

using the training data, and the assessment step, where the classifier is evaluated. The algorithm 

classifies new unlabeled data by analyzing which classes the nearest neighbors belong to. The 

value of 'k' determines how many neighbors are considered in the classification process. When 

encountering a new unlabeled data point, k-NN first identifies the k nearest neighbors based on 

the Euclidean distance. The Euclidean distance can be calculated as follows: If two vectors 𝑥𝑖 and 

𝑥𝑗  are given, where 𝑥𝑖 = (𝑥𝑖1,  𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4,  𝑥𝑖5, … , 𝑥𝑖𝑝) and 𝑥𝑗 = (𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3, 𝑥𝑗4, 𝑥𝑗5, … , 𝑥𝑗𝑝).  

The difference between 𝑥𝑖 and 𝑥𝑗 is: 

𝑑(𝑥𝑖, 𝑥𝑗) = √∑.

𝑝

𝑙=1

(𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2
 

It then classifies the new data point into the class that the majority of these neighbors belong to. 

Factors affecting k-NN's performance include the value of 'k', the distance metric used, and the 

normalization of parameters.  When 'k' is set to 1, the data point is assigned to the class of its 

nearest neighbor, resulting in zero error for training data but potential overfitting. To balance 

accuracy and overfitting, a larger value of 'k' is usually preferred, but the optimal choice depends 

on the specific dataset and its characteristics (Taunk et al., 2019). The algorithm’s performance 

heavily depends on the choice of 'k', the number of neighbors considered. k-NN requires storing 

the entire training dataset and performs classification by calculating distances at prediction time, 

making it computationally intensive but straightforward to implement. Additionally, the 

computational cost of k-NN is relatively high because all calculations are performed during 

classification rather than during the training phase. This characteristic makes it a "lazy learning" 

algorithm, as it stores the training data without any processing until a prediction is required. 

Consequently, the entire training dataset is needed during the testing phase since the algorithm 

does not perform generalization (Taunk et al., 2019).  
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Figure 5. Illustration of the k-Nearest Neighbors (k-NN) algorithm in action (Dadi, 2024) 

Figure 5 illustrates the k-NN algorithm in action across three stages. In the first panel, (a), we see 

a target point (purple) situated among two classes, represented by Class 1 (blue) and Class 2 

(green). The middle panel, (b), demonstrates the process of finding the nearest neighbors of the 

target point using Euclidean distance, with dashed lines connecting the target point to its neighbors. 

Finally, the right panel, (c) shows the classification decision: the target point is classified based on 

the majority class of its nearest neighbors, depicted within a dashed circle.  

The k-NN algorithm is widely used in bioinformatics for tasks such as gene expression analysis, 

protein function prediction, and disease classification. In a study by Dhawan, Selvaraja, and Duan 

(2010), k-NN was applied to classify functional categories in microarray data, demonstrating its 

effectiveness in handling biological datasets and providing reliable classification results. The study 

achieved an average accuracy of 95% across various datasets. Additionally, Vengateshkumar, 

Sanmugavel, and Raj (2019) emphasized the utility of k-NN in handling complex biological data, 

achieving classification accuracies ranging from 85% to 92% depending on the dataset and 

normalization techniques used. These studies underscore k-NN's value in bioinformatics for 

accurately interpreting complex datasets and facilitating scientific discoveries, highlighting k-NN's 

robustness and reliability in bioinformatics application. 

3.6. OMP and its variants 

In this last section of material and methods, we will highlight and focus on the main distinct 

features between the OMP algorithm and its variants algorithms; γ-OMP, and the newly developed 

dcor-OMP. With The standard OMP algorithm serving as a baseline for the other two. These 

distinct features are represented in Table 2 below, as the following; Correlation Type, Model type, 

Stopping criterion, Target Type, and, Algorithm Complexity. 

On the first hand, OMP, a greedy well-used algorithm popular for feature selection due to its 

computational efficiency and fast execution. The OMP uses Pearson correlation in order to find 

the best correlation between the gene expression and the cancer type, and it uses the linear 

regression as the model type. The algorithm stops the computation based on the SSE, making it 

(a) (b) (c) 
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ideal for numerical targets. Because it is a simple algorithm the OMP has the fastest execution 

between the three. On the other hand, γ-OMP expands upon the traditional OMP, it is designed to 

enhance its performance in specific applications, particularly those involving high-dimensional 

non-linear data, such as gene expression data. The key point of γ-OMP is that it can treat numerous 

types of outcome variables employing various regression models by using any pairwise association 

and supports various models, including non-/semi-/parametric ones, its stopping criteria is also 

based on general criteria like log-likelihood or BIC making it the most flexible algorithm among 

the three, allowing for a more divers options to detect a correlation between gene expression and 

cancer type .The computational efficiency of γ-OMP made it suitable for handling our data without 

compromising performance for any target type. Finally, The dcor-OMP algorithm is formulated 

based on the γ-OMP algorithm that integrates both, the distance correlation and the k-NN methods 

to improve feature selection. By using  distance correlation, the dcor-OMP algorithm can identify 

meaningful correlations between features in high-dimensional datasets, which is necessary in our 

case, aiming  in better model performance and interpretability. The use of k-NN aids in estimating 

responses and computing residuals,  improving the selection process. The dcor-OMP will stop 

computing when the AUC stop improving. Although the dcor-OMP is the most computationally 

intensive among the three due to distance calculations, and its dataset must be Binary/numerical 

target, this combination of distinct features makes it a promising tool for analyzing gene expression 

data surpassing the other two algorithms. 

Table 2 Comparison of OMP and its Variants 

 

 OMP γ-OMP dcor-OMP 

Correlation 

Type 

Pearson 

correlation 
Any type of pairwise association Distance correlation 

Model type 
Linear 

regression 

Non-/Semi-/Parametric models 

(Generalized Additive Models, 

kernel based) 

k-NN 

Stopping 

criterion 

Sum of 

Residual 

Squares (SSE) 

General criterion (log-likelihood, 

BIC) 

Area Under the Curve 

(AUC) (when the AUC 

stop improving) 

Target Type 
Numerical 

target 
Any type of target Binary/numerical target 

Algorithm 

Complexity 

Simple, faster 

execution 
Computationally efficient 

Computationally intensive 

due to distance 

calculations 
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Chapter 4 Data analysis and results 

 

4.1. GSE (gene expression data series) 

GSE (gene expression data series) data refers to datasets from the Gene Expression 

Omnibus (GEO), a public repository for high-throughput gene expression and other functional 

genomics datasets. The GSE data typically includes gene expression profiles obtained from 

microarray or RNA-seq experiments, which are extensively used in bioinformatics and 

computational biology research. 

Our database comprises 7 GSE datasets for cancer. All the following information was 

sourced from BioDataome, an exceptional and comprehensive database developed by the 

University of Crete. BioDataome contains an extensive collection of uniformly preprocessed and 

annotated datasets, covering approximately 5,600 datasets and 260,000 samples related to around 

500 diseases, including gene expression data, RNA-Seq, and DNA methylation data. The 

annotation of these datasets with disease ontology terms facilitates large-scale experiments and 

meta-analyses. From this significant database, we selected the necessary data for our thesis, 

leveraging its rich capabilities for analyzing and processing biological data, thereby enhancing our 

research with reliable and well-documented information. Our dataset is composed of 4 types of 

cancers lung cancer, breast cancer, gastric cancer, and colorectal cancer.  In order to reduce errors 

and increase the performance of the model, the size of the sample for each dataset will be at least 

100 samples. 

GSE10780 

 The “GSE10780” dataset titled "Proliferative genes dominate malignancy-risk gene signature in 

histologically-normal breast tissue," is extracted from the Homo sapiens species. It includes 143 

completely histologically-normal breast tissues, leading to the identification of a gene signature 

associated with malignancy risk, potentially serving as a marker for subsequent breast cancer 

development. The design involves RNA extraction from micro dissected frozen breast tissues for 

gene array analysis.  

 

GSE20465 

The dataset “GSE20465”, titled "Her2/Neu breast cancer mouse model whole tissue 

transcriptome" was generated from the species Mus musculus, a Her2-driven mouse model of 

breast cancer, mirroring human breast cancer. Biospecimens from this mouse model are freely 

available through a sample repository, eliminating the need for breeding animals and collecting 

biospecimens for researchers testing biological hypotheses. Experimental design entails twelve 

datasets, comprising 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray 

analyses across various tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls 
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were meticulously paired to prevent bias. Results show the identification of 18,880 unique 

peptides, with 3,884 and 1,659 non-redundant protein groups in plasma and tissue datasets, 

respectively. Notably, 61 protein groups overlap between cancer plasma and tissue. 

 

GSE29272 

The “GSE29272” dataset, titled “Affymetrix gene expression array data for cardiac and non-cardia 

gastric cancer samples' ' is generated from the species of Homo sapiens. The GSE identifies 

different and common dysregulated genes in cardiac and non-cardia gastric cancer in the two types 

of gastric cancer. The design consists of cardiac and non-cardia gastric tumors and normal glands 

and it consists of 268 samples 134 from the adjacent tissue normal glands 72 from the tumor tissue 

non-cardia of gastric and 62 from tumor tissue cardia of gastric. 

 

GSE31210 

The dataset “GSE31210” titled "Gene expression data for pathological stage I-II lung 

adenocarcinomas'' focuses on identifying genes up-regulated in ALK-positive and 

EGFR/KRAS/ALK-negative lung adenocarcinomas. To delineate molecular characteristics, 226 

primary lung adenocarcinomas of pathological stage I-II were examined for EGFR, KRAS, and 

ALK mutations. Genome-wide expression profiling revealed genes up-regulated in ALK-mutated 

lung adenocarcinomas and those lacking EGFR, KRAS, and ALK mutations. Among 174 up-

regulated genes specifically identified in 79 cases without EGFR and KRAS mutations, ALK was 

noteworthy. These cases were further categorized into ALK-positive ADCs, Group A triple-

negative ADCs, and Group B triple-negative ADCs based on expression patterns of the 174 genes. 

ALK-positive ADCs exhibited significant overexpression of 30 genes, including ALK and 

GRIN2A. Group A triple-negative ADC cases demonstrated worse prognoses compared to cases 

with EGFR, KRAS, or ALK mutations, and Group B triple-negative ADC cases. Nine genes, 

including DEPDC1, were significantly up-regulated in Group A cases, critical for prognosis 

prediction. These genes may aid in selecting patients for adjuvant chemotherapy post-surgical 

resection of stage I-II triple-negative ADCs and inform the development of molecular targeting 

therapies for these patients. The overall design involved expression profiling of 226 lung 

adenocarcinomas, including cases with EGFR mutation, KRAS mutation, EML4-ALK fusion, and 

triple-negative cases. 
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GSE35978 

The dataset “GSE35978” titled "Expression data from the human cerebellum and parietal cortex 

brain" comprises a SuperSeries consisting of several SubSeries. These SubSeries likely contain 

detailed expression profiling data from specific experiments or conditions within the human 

cerebellum and parietal cortex brain regions. The overall design of this SuperSeries refers to the 

individual Series within it, providing a comprehensive exploration of gene expression patterns in 

these brain regions. It used 312 samples from which 158 represents samples from the parietal 

cortex and 131 from the cerebellum. 

 

GSE41258 

The following “GSE41258” dataset titled "Expression data from colorectal cancer patients" entails 

a study conducted on patients diagnosed with colonic neoplasms at Memorial Sloan-Kettering 

Cancer Center between 1992 and 2004. Biological specimens utilized in the study encompass 

primary colon adenocarcinomas, adenomas, metastases, and corresponding normal mucosae. The 

overall design comprises 390 expression arrays, from which 186 representing Primary Tumor, 53 

Normal colon, 49 polyp, 47 liver Metastasis, 20 lung Metastasis, 13 normal liver, 12 cell line, 7 

normal lung, and 2 Microadenoma. 

 

GSE44077 

The dataset “GSE44077” titled "Gene expression profiling of the adjacent airway field 

cancerization in early-stage NSCLC" focuses on characterizing the transcriptomic landscape of 

adjacent airway field cancerization in non-small cell lung cancer (NSCLC), a phenomenon where 

lung tumors and nearby normal tissues exhibit specific abnormalities relevant to lung cancer 

development. The study aims to elucidate the molecular architecture of adjacent airway field 

cancerization alongside tumors, providing deeper insights into lung cancer biology and 

oncogenesis. Using the Affymetrix Human Gene 1.0 ST platform, the transcriptome of matched 

NSCLC tumors, multiple normal airway epithelia at varying distances from tumors, and 

uninvolved normal lung tissues were analyzed. The overall design involves analyzing the 

transcriptomic profiles of adjacent airways to identify global differentially expressed cancerization 

patterns and airway profiles potentially influenced by proximity to tumors. 226 samples were used 

from which 96 samples belonged to airway samples from field cancerization cases, 65 normal lung 

tissue, 56 NSCLC tissue, and 9 samples from lung carcinoid tissue.  
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4.2. Result and Discussion 

 

Our results consist of a comparison between the dcor-OMP and its predecessor, the γ-OMP. To 

achieve this, we start by calculating the ROC curve for each gene expression dataset and then 

extract the AUC from it for each of the two models. The AUC determines the performance of the 

model; the higher the AUC, the more accurate the model is in classifying the correlation of gene 

expression to the cancer under investigation. We then compare the AUC for each gene expression 

dataset and compute the mean AUC difference. A higher mean AUC difference indicates better 

performance of the dcor-OMP compared to the γ-OMP. we end up with a box plot graph as seen 

in the figure below (figure 6). 

 

Figure 6 AUC mean difference boxplot 

Figure 6, shows box plots comparing the mean difference of the Area Under the Curve (AUC) of 

dcor-OMP and γ-OMP for feature selection across seven datasets. The Y-axis shows the difference 

in mean AUC between dcor-OMP and γ-OMP across each dataset. Values above 0 show dcor-

OMP outperformed γ-OMP. Values with 0 mean value imply equivalent performance. Values 

below 0 suggest dcor-OMP performed poorer than γ-OMP. 

The horizontal lines within the boxes show the median difference in AUC, which is used to analyze 

the distribution of differences. The median in the box plot was acquired by repeating the k fold 
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CV 20 times for each the γ-OMP and the dcor-OMP then doing the difference between the mean 

AUC of each GSE dataset. The boxes include the highest and lower quartiles of the differences, 

illustrating how the data is spread out or dispersed. Furthermore, the whiskers extend outward to 

the nearest data points within an interquartile range (IQR) of the corresponding quartiles, thus 

displaying the range of variability beyond the quartiles. Overall, this representation offers a 

comprehensive view of the performance disparities between using dcor-OMP and γ-OMP across 

multiple datasets explained bellow; 

In the box plot we can see that three of the seven datasets have a mean value above zero, whereas 

the other four have values of zero and none below zero. The gene expression dataset "GSE35978" 

named "Expression data from the human cerebellum and parietal cortex brain" had the greatest 

mean value of 0.05 and the biggest IQR, indicating that the dcor-OMP outperformed the γ-OMP 

on this specific dataset. Overall, the dcor-OMP outperformed the γ-OMP, since no dataset had a 

value below zero. Outliers are situations in which performance departed dramatically from the 

median. This might be owing to special properties of some samples in the datasets, which benefit 

more or less from the model. The difference in performance among datasets can be due to the 

differences in sample size, feature dimensionality, and noise levels, with datasets with greater 

noise or fewer samples showing more substantial gains using sophisticated feature selection 

methods like dcor-OMP. This shows that dcor-OMP may better capture complicated links and 

interactions in the data than γ-OMP. Moreover, dcor-OMP consistently outperforms γ-OMP across 

all datasets, demonstrating its dependability as a feature selection approach for heterogeneous gene 

expression data.  

Table 3. Information about the GSE Data and mean AUC difference 

GSE Disease Sample size Features Cases (%) Mean AUC 

difference 

GSE10780 breast cancer 226 33252 194 (85.84%) 0 

GSE20465 breast cancer 250 45101 125 (50.00%) 0.018 

GSE29272 gastric cancer 268 22283 134 (50.00%) 0.008 

GSE31210 lung cancer 246 54675 226 (91.87%) 0 

GSE44077 lung cancer 230 33252 190 (82.61%) 0 

GSE35978 brain cancer 305 33297 205 (67.21%) 0.05 

GSE41258 colorectal cancer 178 22283 48 (26.97%) 0 
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Table 3 summaries our dataset, it displays for each GSE the type of cancer, its sample size, the 

number of features, the number positive case in percentage, and finally, the AUC mean difference 

between the γ-OMP and the dcor-OMP. On the one hand, we can observe that sample size might 

be connected with AUC mean difference. This suggests that the outperformance of the dcor-OMP 

is due to sample size. As the sample size increase the mean AUC difference increase, starting from 

a sample size of 250 until 305.  On the second side, we can observe that the kind of sickness is not 

strictly related to the model's performance. For example, all lung cancers have an AUC mean 

difference of zero, but breast cancers have a mean AUC difference of 0 and 0.018. On the third 

hand, we can see that the performance of the model might be linked to the % of cases within the 

dataset, we can see from the table that the only difference of the AUC mean is when the % of 

positive cases is 50% or close to it. Overall, the average AUC mean difference is 0.011 which 

indicates that on average the dcor-OMP will have a better AUC of 0.011 than the γ-OMP, therefore 

performed better. 
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Chapter 5 Conclusion 

 

Our focuses on optimizing the γ-OMP method for feature selection in gene expression data, a 

crucial work in bioinformatics that improves cancer detection systems' accuracy and efficiency. 

Our work improved the γ-OMP method by integrating distance correlation to construct the dcor-

OMP model in addition with k-NN, which performed better with high-dimensional gene 

expression data. The dcor-OMP performed better than its predecessor, γ-OMP, in through 

comparisons of seven cancer-related datasets, with higher mean AUC values across three datasets 

and a better average mean difference of 0.11. This difference may be related to dcor-OMP's 

capacity to better capture complex interactions and linkages in data, making it an effective feature 

selection tool. Overall, this work is important because it has the potential to improve customized 

treatment by offering more precise models for diagnosis and prognosis. The upgraded feature 

selection approach, dcor-OMP not only detects critical genetic markers, but it also minimizes data 

redundancy and noise, resulting in more accurate predictions. As a result, this technique has the 

potential to greatly affect the development of tailored medicines while also improving patient 

outcomes. Overall, when it comes to OMP, γ-OMP, and dcor-OMP, OMP is straightforward, using 

Pearson correlation to understand linear relationships, and it performs best with linear regression 

models, making it quick and efficient for non-binary numerical data. It ends when the 

improvements in model errors, as measured by residual sums, stop. γ-OMP is more versatile and 

compatible with many generalized models, from simple to complicated. It is designed for binary 

datasets and uses more generalized stopping criteria, such as log-likelihood, which increases the 

computational complexity. Finally, dcor-OMP is excellent at finding nonlinear interactions via 

distance correlation and frequently use the k-NN technique. It is the most computationally 

intensive, especially because it stops changing when no further increases in the AUC are detected, 

making it ideal for binary datasets. Each strategy has various advantages depending on the 

complexity and kind of data under consideration with dcor-OMP performing better than its 

predecessor on the same dataset. To ensure the dcor-OMP algorithm's reliability and usability in 

the future, it must be evaluated on a larger variety of datasets. We also expect that combining dcor-

OMP with other machine learning models can considerably improve its prediction value. Beyond 

gene expression data, applying this method to other bioinformatics areas such as proteomics and 

metabolomics might lead to exciting new prospects and benefits. 
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