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Abstract

Static binary code analysis and reverse engineering are crucial oper­

ations for malware analysis, binary­level software protections, debugging,

and patching, among many other tasks. Faster binary code analysis tools

are necessary for tasks such as analyzing the multitude of new malware

samples gathered every day. Binary code disassembly is a core function­

ality of such tools which has not received enough attention from a perfor­

mance perspective. In this paper we introduce GPU­Disasm, a GPU­based

disassembly framework for x86 code that takes advantage of graphics pro­

cessors to achieve efficient large­scale analysis of binary executables. We

describe in detail various optimizations and design decisions for achiev­

ing both inter­parallelism, to disassemble multiple binaries in parallel, as

well as intra­parallelism, to decode multiple instructions of the same binary

in parallel. The results of our experimental evaluation in terms of perfor­

mance and power consumption demonstrate that GPU­Disasm is twice as

fast than a CPU disassembler for linear disassembly and 4.4 times faster for

exhaustive disassembly, with power consumption comparable to CPU­only

implementations.

Thesis supervisor: Prof. Evangelos Markatos





Περίληψη

Η στατική ανάλυση και η αποσυµπίληση του δυαδικού κώδικα είναι απα-

ϱαίτητες λειτουργίες που χρησιµοποιούνται, µεταξύ άλλων, για την ανάλυση

κακόβουλου λογισµικού, για τους µηχανισµούς προστασίας προγραµµάτων

σε δυαδικό επίπεδο και για τον εντοπισµό και την επιδιόρθωση σφαλµάτων.

Η χρήση γρηγορότερων εργαλίων ανάλυσης δυαδικού κώδικα είναι αναγκαία

για την εκπόνιση εργασιών, όπως την ανάλυσης πλήθους νέων κακόβουλων

λογισµικών τα οποία συγκεντρώνονται κάθε µερα. Η ανάλυση του δυαδικού

κώδικα είναι η κύρια λειτουργικότητα των εργαλείων αυτών, η οποία και δεν

έχει λάβει τη πρέπουσα προσοχή από τη σκοπιά της επίδοσης. Σε αυτή την

εργασία, παρουσιάζουµε το GPU­Disasm, έναν ανακατασκευαστή υλοποιη-

µένο στη κάρτα γραφικών, για τον x86 κώδικα ο οποίος εκµεταλεύεται τους

επεξεργαστές της κάρτας γραφικών, για να πετύχει αποδοτικότερη ανάλυση ε-

κτελέσιµων προγραµµάτων σε µεγάλη κλίµακα. Περιγράφουµε µε λεπτοµέρια

τις διάφορες ϐελτιώσεις και σχεδιαστηκές επιλογές που χρειάστηκαν, για να

επιτευχθούν τόσο ο εξο-παραλληλισµός, για την ανακαταστκευή πολλαπλών

εκτελέσιµων προγραµµάτων, όσο και ο ενδο-παραλληλισµός για την παράλ-

ληλη αποκωδικοποίηση των εντολών ενός εκτελέσιµου. Τα αποτελέσµατα των

πειραµάτων µας από τη σκοπιά της επίδοσης και της κατανάλωσης, δείχνουν

ότι το GPU­Disasm είναι δύο ϕορές πιο γρήγορο από την έκδοση που είναι

ϐασισµένη στον επεξεργαστή, για τη γραµµική ανακατασκευή και 4.4 ϕορές

πιο γρήγορο για την εξαντλητική ανακατασκευή, µε συγκρίσιµη κατανάλωση

ενέργειας σε σχέση µε την υλοποίση στον επεξεργαστή.

Επόπτης Μεταπτυχιακής Εργασίας : Ευάγγελος Μαρκάτος
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1
Introduction

Code disassemblers are typically used to translate byte code to assembly

language, as a first step in understanding the functionality of binaries when

source code is not available. Besides software debugging and reverse engi­

neering, disassemblers are widely used by security experts to analyze and

understand the behaviour of malicious programs [1,2], or to find software

bugs and vulnerabilities in closed­source applications. Moreover, code dis­

assembly forms the basis of various add­on software protection techniques,

such as control­flow integrity [3] and code randomization [4].

Nowadays malwares use sophisticated techniques to pack the malicious

code and even recognize the existence of virtual environments in order to

avoid detection from dynamic analysis tools. Even though, Static analy­

sis (Disassembly) is still in good use and we can apply heuristics to de­

tect such malwares. In 2012 Branco et al published a paper­report [5]

of such packed malwares and try to group them in families depending on

the techniques they use to obfuscate the malicious code (Anti­Debugging,

Anti­Disassembly and Anti­VM Technologies). For each group they propose

instruction sequences that can be found in these malwares that are consid­

ered evidence for the packing techniques and can be only found by statically

disassembling the binaries.

Most previous efforts in the area have primarily focused on improving

the accuracy of code disassembly [3,6,7]. Besides increasing the accuracy

of code disassembly, little work has been performed on improving the speed

of the actual disassembly process. As the number of binary programs that

need to be analyzed is growing rapidly, improving the performance of code

disassembly is vital for coping with the ever increasing demand. For in­

stance, mobile application repositories contain thousands of applications

3



4 CHAPTER 1. INTRODUCTION

that have to be analyzed for malicious activity [8]. To make matters worse,

most of these applications are updated quite frequently, resulting in large

financial and time costs for binary analysis workloads. At the same time,

antivirus and security intelligence vendors need to analyze a multitude of

malware samples gathered every day from publicly available malware scan­

ning services and deployed malware scanners. CISCO’s annual report of

2014 [9] mentions that one of the top concerns of today’s Chief Information

Security Officers (CISO) is that "must make decisions on how to manage

information safely with the finite budget and time they are alloted".

1.1 Contribution

In this work, we focus on improving the performance of code disassembly

and propose to offload the disassembly process on graphics processing units

(GPUs). We have designed and implemented GPU­Disasm, a GPU­based dis­

assembly engine for x86 code that takes advantage of the hundreds of cores

and the high­speed memory interfaces that modern GPU architectures offer,

to achieve efficient large­scale analysis of binary executables. GPU­Disasm

achieves both inter­parallelism, by disassembling many different binaries

in parallel, as well as intra­parallelism, by decoding multiple instructions

of the same binary in parallel. We discuss in detail the challenges we faced

for achieving high code disassembly throughput.

GPU­Disasm can be the basis for building sophisticated analysis tools

that rely on instruction decoding and code disassembly. We chose to focus

on the x86 instruction set architecture for several reasons. First, x86 and

x86­64 are the most commonly used CISC architectures. Second, building

a disassembler for a CISC architecture poses more challenges compared

to RISC, due to much larger set of instructions and the complexity of the

instruction decoding process. Third, it is easier to apply the proposed GPU­

based design decisions to a RISC code disassembler than the other way

around.

We have experimentally evaluated GPU­Disasm in terms of performance

and power consumption with a large set of Linux executables. The results

of our evaluation demonstrate that GPU­Disasm is twice as fast compared

to a CPU disassembler for linear disassembly, and 4.4 times faster for ex­

haustive disassembly, with power consumption comparable to CPU­only

implementations.

In summary, the main contributions of this paper are:

1. We present the first (to our knowledge) GPU­based code disassem­

bly framework, aiming to improve the performance of the instruction

decoding process.
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2. We present techniques that exploit the GPU memory hierarchy for op­

timizing the read and write throughput of the decoding process. Such

memory optimizations can be applied in tools with similar memory

I/O operations.

3. We evaluate and compare our GPU­based disassembly library with a

CPU­based approach in terms of performance, cost, and power con­

sumption.
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2
Background

2.1 General Purpose Computing on GPUs (GPGPU)

While GPUs are traditionally used for computer graphics, they can also

be used for general­purpose computation. Due to the massive parallelism

they offer, they can achieve significant performance boosts to certain types

of computation. GPUs typically contain hundreds (or even thousands) of

streaming cores, organized in multiple stream multiprocessors (SM). GPU

Threads are divided in groups of 32, called warps, with each core hosting

one warp. Each warp executes the same block of code, meaning that the

threads within a warp do not execute independently, but all of them run

the same instruction concurrently. Consequently, code containing control

flow statements that lead to different threads following divergent execution

paths, cannot fully utilize the available cores. When some threads within

a warp diverge, because a branch follows a different path than the rest of

them (branch divergence), they are stalled. Consequently, the tasks that

can truly benefit from the massively parallel execution of GPUs are the

ones that do not exhibit branch divergence. Among many domains, GPUs

have been used in scientific computing [10], cracking passwords [11], ma­

chine learning [12], and network traffic processing [13–15]. In table 2.1

we demonstrate the performance gained on several GPU­based implemen­

tations compared to the CPU approaches. We are obligated to mention

that, the performance of a GPU­based approach is not always obvious. It

really independents on the behavior of the algorithm and the GPUs that we

experiment on.

7
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Project Name Description Performance gained on GPU

(times faster)

GPU­Disasm x86 Disassembler 2 Linear, 4.4 Exhaustive

GNORT Network intrusion

detection

2 (compared to vanilla)

GASPP Stateful Processing

framework

2.3 packet processing (com­

pared to vanilla)

MIDeA Network intrusion

detection

3.5 ­ 4.5

Table 2.1: Performance evaluation of GPU­based tools.

2.1.1 GPU memory model

GPUs have a distinct memory model Fig. 2.1. Each multiprocessor has a

set of 64K registers, which are the fastest GPU memory component. Reg­

isters are assigned to threads and are privately scoped. The scheduler is

responsible for ensuring that register values are saved and restored during

context switches of threads. Each multiprocessor has its own Level 1 (L1)

cache and shared memory, which are shared by all the threads running on

it, and are part of the same physical memory component. This allows for

choosing at run time (before spawning the GPU threads) how to distribute

memory between cache and shared memory. The L1 cache is organized in

data cache lines of 128 bytes [16]. Shared memory is as fast as L1 cache

but is programmable, which means that it can be statically allocated and

used in GPGPU programs.

GPUs also include global memory, which is equivalent to the host’s RAM.

It is the slowest memory interface, but has the largest capacity. Global

memory is available to all SMs and data from the host to the device and vice

versa can be transfered only through this part of memory. Interestingly,

global memory also hosts local memory, which is used by threads to spill

data when they run out of registers or shared memory. Finally, global

memory also includes constant memory, a region where programs can keep

read­only data, allowing for fast access when threads use the same location

repeatedly.

A Level 2 (L2) cache is shared between all SMs and has a larger capacity

than L1. Every read/write from and to the global memory passes through

the L2 cache. A GPU multiprocessor can fetch 128 byte lines. The driver

keeps this alignment in global memory and in cache lines to achieve in­

creased throughput for read and write operations. The maximum transfer

throughput to global memory is 180 GB/s.

There are two frameworks commonly used to program GPUs for general
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Figure 2.1: GPU memory model
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purpose computations, both using C API extensions. The first is CUDA [17],

a programming framework developed by NVIDIA (which we use in this work),

and the second is OpenCl [18], which is a generic framework for program­

ming co­processors with general purpose computational capabilities.

2.2 x86 architecture

The x86 and x86-64 architectures are probably the most widely used CISC
(Complex Instruction­Set Computing) architectures [19]. Their instruction

sets are rich and complex, and most importantly they support instructions

of varying length. Instruction lengths range from just one byte (i.e., in­

structions comprising just an opcode) to 15 bytes. The format of an x86
instructions is depicted in Figure 2.2 and is described bellow.

Figure 2.2: x86 Instruction format.

• Prefix Bytes: These prefixes bytes are before the instruction opcode

and are dived in two groups: Instruction Prefixes which is 1­4 bytes

and the REX Prefix which is 1 byte. Both of them are optional and their

purpose is to give to the instruction an extended functionality. For

example we can add REP prefix (Repeat String Operation Prefix) that

is used from instructions that apply string modifications, or the LOCK

that is used for atomic operations between threads, or for overriding

the default segments of the instruction, or for overriding the operand

size and the address size.

• Opcode: The next byte is the actual opcode that defines the instruc­

tion . The opcode is one byte in size but in some cases there is a

second byte which is used as a prefix extension. However, it is not

the general case and so we will not go on further details. Since the x86

has a large number of instructions, there are very few bytes that they

do not match an instruction. In many cases opcodes corresponds to

specific operations to registers that are not mentioned directly on the

operands section of the instruction but rather implicitly.

• ModR/M: This byte defines the registers that the memory operation

is applied to and the addressing mode (relative, direct etc.). The byte

is divided into 3 fields: the Mod (2 bits) whose value determines how
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the next two fields are going to be decoded, the Reg field (3 bits) that

corresponds to the register that the operation is going to apply and

finally the R/M (3 bits) that indicates a register or it can indicate the

presence the upcoming Bytes (SIB and immediate values.)

• SIB: (Scale Index Base) This byte determines the addressing mode on

the array [Base + (Index * Scale)]. Where base is the array pointer,

index corresponds to the position to be accessed and scale the size of

the data (1, 2, 4, 8) Bytes.

• Displacement & Immediate: If an instruction uses constant values

then these bytes are needed. Both displacement and immediate sizes

varies between 1, 2 and 4 bytes. The Displacement is used as an

offset on top of the register base. The Immediate is used as constant

value operand and as relative target to branch instructions.

Due to the extensive instruction set and the variable size if its instruc­

tions, it is very easy for disassemblers to be confused, decoding arbitrary

bytes as instructions [20], e.g., because data may be interleaved with in­

structions, or because the beginning of a block of instructions is not cor­

rectly identified.

2.3 Code Disassemblers

There are two widely used code disassembly techniques, linear and recursive

disassembly [21]. In linear disassembly, a segment of bytes is disassembled

by decoding instructions from the beginning of the of the segment until the

end is reached. Linear disassembly typically does not apply any heuris­

tics to distinguish between code and data, and consequently, it is easy to

get ‘‘confused’’ and produce erroneous results. For example, compilers emit

data and patching bytes for function alignment, which a linear disassembler

decodes as instructions, along with the actual code. Thus, when disassem­

bling the whole text segment of a binary, the output of linear disassembly

is likely to contain erroneous parts that correspond to embedded data and

alignment byte Binaries may also contain unreachable functions that are in­

cluded during compilation, e.g., due to the static linkage of libraries, which

will also be included in the output of linear disassembly.

Recursive disassemblers use a different approach that eliminates the

erroneous assembly produced by linear disassembly, but with its own dis­

advantages. The decoding process starts from an address out of a set of

entry points (exported functions, entry points) and linearly disassembles

the byte code. Whenever the disassembler encounters control flow instruc­

tions, it adds all targets to the set of entry points. The disassembly process

stops when it finds indirect (computed) branches which cannot be followed
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statically. The process continues recursively by decoding from a new target

out of the set of entry points. They main drawback of recursive disassem­

bly is that it cannot reach code segments that are accessible only through

indirect control flow transfer instructions.



3
Architecture

In this section, we describe the overall architecture of our system. Our

aim is to design a GPU­based disassembly engine that is able to process

a large number of binaries in parallel. The key factors for achieving good

performance are: (i) exploit the massively parallel computation features of

the GPU, (ii) optimize PCIe transfers and pipeline all components for keeping

the hardware utilized at all times, and (iii) design optimization heuristics for

exploiting further capabilities of the hardware.

The basic operations of our approach include: (i) Pre­processing: loading

of the binaries from disk to properly aligned buffers of the host’s memory

space, (ii) Host­to­device: transfer of the input data buffers to the memory

space of the GPU, (iii) Disassembly: the actual parallel code disassembly

of the inputs on the GPU, and storage of the decoded instructions into

pre­allocated output data buffers, (iv) Device­to­host: transfer of the output

buffers to the host’s memory space, and finally (v) Post­processing: deliv­

ery of the disassembled output and initialization of the pointers to the next

chunk of bytes of each binary, if any, that will be fed to the GPU for dis­

assembly. Once processing of all binaries has completed, input buffers are

loaded with the next binaries to be analyzed.

3.1 Transferring Input Binaries to the GPU

The operation to consider is how input binary files will be transferred from

the host to the memory space of the GPU. The simplest approach would

be to transfer each binary file directly to the GPU for processing. However,

due to the overhead associated with data transfer operations to and from

13
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the GPU, grouping many small transfers into a larger one achieves much

better performance than performing each transfer separately. Thus, we

have chosen to copy the binary files to the GPU in batches. In addition, the

input file buffer is allocated as a special type of memory, called page­locked

or ‘‘pinned down’’ memory, in order to prevent it from being swapped out

to secondary storage. The copy from page­locked memory to the GPU is

performed using DMA, without occupying the CPU. This allows for higher

data transfer throughput compared to the use of pageable memory, e.g.,

using traditional memory allocation functions such as malloc().

3.2 Disassembling x86 Code on the GPU

3.2.1 Instruction Decoding and Linear Disassembly.

Linear disassembly blindly decodes a given sequence of bytes from the be­

ginning to the end without applying any further heuristics or logic. Initially,

the GPU decoder dispatches the instruction prefixes (if present), which al­

ways come before the opcode of x86 instructions. Afterwards, the decoder

dispatches the next byte of the instruction which is the actual opcode we

are interested in. The decoder shifts the opcode bytes to bring them in a

form that it can easily use them as an index for a look­up table. After de­

coding the opcode, we determine if the instruction has operands or not, by

decoding the ModR/M byte. The operands can be registers or immediate

values. If the operands are registers, they can be either implicit, as part of

the instruction, or explicit, defined by the following bytes. If the instruction

uses indexed addressing, then the next decoded byte corresponds to the

SIB (Scale Index Base) which determines the addressing mode of the array.

Lastly, the disassembler decodes the displacement and immediate bytes.

The disassembly process can fail while decoding an instruction. De­

pending on the failure reason, the disassembler handles it in a different

way. When more bytes than available are expected based on the last de­

coded opcode, the instruction decoding process stops and an appropriate

error is reported. When invalid instructions are encountered, the disas­

sembler marks them and continues the decoding process from the following

byte.

Each GPU thread is assigned to disassemble a single chunk of an input

binary at a time. Consequently, the total GPU kernel execution time is equal

to the time of the slowest (last finished) thread. Note that the overall perfor­

mance would drop in case some threads remained under­utilized, i.e., they

were assigned smaller workloads. To avoid this, we assign fixed­sized input

buffers (chunks) to all threads, which minimizes the possibility of having

idle threads. However, as all input binaries do not have the same size,

some imbalance unavoidably happens as the processing of smaller input
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files completes. Our current prototype does not handle such imbalances,

but their effect can be minimized by selecting input file batches based on

file sizes, so that each batch includes files of similar sizes.

Having fixed size chunks leads to more complex data splitting, when

a binary may not fit inside the buffer all at once. Therefore, we have to

divide the binary in several chunks and perform the disassembly process on

batches. Due to the nature of the x86 instruction set (Section 2.2) we have

to carefully choose the starting point of the next chunk of bytes for decoding,

otherwise any split instructions will generate incorrect disassembly.

3.2.2 Exhaustive Disassembly

We have also implemented an exhaustive disassembly mode, which ap­

plies linear disassembly by starting from each and every byte of the input,

i.e., by decoding all possible (valid) instructions contained in the input.

Further analysis of the output can be then performed to identify function

boarders, basic blocks, and even obfuscated code constructs. For instance,

Bao et al. [22] use exhaustive disassembly to generate all possible outputs,

and then apply machine learning techniques to find instruction sequences

that correspond to function entry and exit points. Other approaches [2,6]

disassemble the same regions of a binary from different indexes and ap­

ply heuristics to identify basic blocks and reconstruct the the control flow

graph.

For exhaustive disassembly, we transfer the input buffer to the GPU

memory space and spawn as many threads as the bytes of the binary.

Each thread starts the decoding of the same input from a different index.

Although each thread decodes only one instruction, this approach is effec­

tive in quickly extracting all possible instructions contained in the input.

3.3 Transferring the Results to the Host

After an instruction is decoded, the corresponding data is stored in the

GPU memory. As storing extensive data for all decoded instructions from

all threads can easily deplete the memory capacity, we chose to save only

basic information about each decoded instruction, which though is enough

for further analysis. Specifically, we store the relative address of the in­

struction within the input file, its opcode, the group to which it belongs

(e.g., indirect control flow transfer, arithmetic operation, and so on), and

all explicit operands such as registers and immediate values. The above

extracted information can fully describe each decoded instruction, and can

be easily used for further static analysis, compared to more verbose storing

of raw fields, such as ModR/M bits. Information such as implicit operands

and the size of the instruction mnemonic can be easily extracted from the
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stored metadata. For example, the size of the instruction can be calculated

from the distance between the relative addresses of the current and the next

instruction.

The decoded instructions are stored in a pre­allocated array with enough

space for all instructions of the input. As shown in Figure 5.3 (discussed

in more detail in Section 5.1.3), only less than 20% of the encountered

instructions on average are a single­byte long, so the number of decoded

instructions in typically much smaller than the size of the input in bytes.

Consequently, we safely set the number of slots in the array as half the size

of the input buffer in bytes.

The GPU disassembly engine saves the decoded instructions on GPU

memory and transfers them back to the host for further analysis. After the

device to host transfer has completed, the system evaluates the extracted

information as part of a post­process phase. This includes checks for er­

rors due to any misconfiguration of the GPU threads, and for each thread,

whether there are pending bytes for disassembly for the current input bi­

nary being processed. Then, the pointer for the next chunk to be processed

is set according to the last successfully decoded instruction, so that the

disassembly process is not corrupted. If a thread has finished disassem­

bling an input binary, the pointer is set to NULL so that a new binary will

be assigned to it, after the processing of the whole batch is completed.

3.4 Pipeline

After optimizing the basic operations, we have to design the overall archi­

tecture in such a way that will keep every hardware component utilized.

The GPGPU API supports running computations using streams. Thus, we

can parallelize data transfers with the disassembly process and eliminate

idle time for the PCIe bus and the GPU multiprocessors. We use double

buffers for both input and output, so that when the GPU processes a buffer,

the system can transfer the output data and fill the next input buffers with

new binaries for disassembly. With the proper usage of streams, we can

keep the CPU, the PCIe bus, and the GPU utilized concurrently at all times.

The GPU can handle the synchronization of GPU operations internally.

However, before the host proceeds with output analysis, it needs to syn­

chronize the GPU operations. The host is unable to know if the device has

finished processing until the driver receives a signal from the GPU that

denotes completion. Ideally, we would like to keep the GPU utilized with­

out blocking for synchronization. The architecture can be designed so that

synchronization is kept to a minimum, just for one of the operations. By

placing all input values (binaries, sizes, memory addresses) and all output

data into a single buffer, as described above, requires invoking the syn­

chronization process only after the copy of the output from device to host,
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eliminating in this way any intermediate serialization points.
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4
Optimization

4.1 Access to Global Memory

Due to the linear nature of the disassembly process, we enforce both reads

and writes to the input and output buffers to be performed only once for

each decoded instruction. As mentioned, the instruction sizes of the x86
ISA vary significantly, ranging between 1 and 15 bytes. According to the

alignment property that GPUs follow for the memory accesses, different

sequences of instructions with different sizes may result in misaligned ac­

cesses, consequently resulting in degraded memory access throughput.

We describe the improvement of the reading process in Section 4.3.

Regarding the improving the write throughput of the disassembly output to

global memory, GPU best practices [23] propose that data structures on the

GPU should be placed as structs of arrays. In most cases, this results in

improved data throughput from global memory. However, in our case we

observed lower performance due to the drop of the writing throughput back

to global memory. We tackled this issue and achieved a better throughput

by having a struct with the decoded information per instruction, instead of

separate arrays for each field.

4.2 Constant Memory

A crucial part of the disassembler are the look­up tables with the decoding

information that are hardcoded in the instruction decoder. These tables are

used as dispatchers for the decoding process. They hold information about

each instruction, such as the opcode, whether there are operands and how

19
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many to expect, the type of the instruction, the group of the architecture ex­

tension of an instruction, and so on. The look­up tables are constants and

shared through all threads. Therefore, we can use the constant memory of

the GPU in order to have fast access to these tables. The constant mem­

ory though is limited in size, and the look­up tables can easily exceed the

available memory. To strike a balance between performance and accuracy,

we measured the most used tables and placed them to the GPU constant

memory, and kept the more rarely used tables in the (slower) global de­

vice memory. Furthermore, global variables such as function pointers that

are being assigned by the initialization process, are placed to the shared

memory of each multiprocessor, which can be initialized at run time.

4.3 Access to L2 cache

Read and write data accesses pass through the L2 cache, which is a shared

memory interface for all multiprocessors as the global memory. The L2

cache memory is n­associative [24], which means that data lines are placed

depending on the least significant bits of the accessed address. When as­

signing large input buffers to each thread, memory divergence increases,

and consequently, line collisions inside the L2 cache occur more frequently

as well. On the other hand, having small input buffers will result in under­

utilization of the GPU threads, and an overall drop in performance.

Taking in consideration this trade­off, we sought a solution that com­

bines the benefits of both approaches. Each read access to the global mem­

ory from a multiprocessor fetches a 128­byte line of data. Consequently,

we chose to divide large buffers into smaller ones (as shown in Figure 4.1)

with a size aligned to the access line of the GPU, and place them within

the larger buffer in such a way that threads access the buffer as a group.

We evaluated buffer sizes of 16, 32 and 64 bytes, and the results of our

experiments showed that beyond 32 bytes, the L2 hit ratio from the L1

cache dropped due to line collisions (Table 4.1). For every 32 bytes of the

input buffer, we place in the first 16 bytes the previous 16 decoded bytes,

and in the following 16 bytes the new bytes that have to be decoded. The

repeated bytes are needed for correcting the decoding alignment, in case of

out­of­bounds errors of a previous disassembly. In that case, we continue

the decoding process from the byte where the previous disassembly stopped

at, until the end of the 32 bytes. Furthermore, this optimization forces the

disassembler to make fixed read accesses to global memory, which achieves

better throughput.



4.4. DATA TO GPU REGISTERS 21

Figure 4.1: Input reading from GPU global memory. L2 Cache Optimization.

4.4 Data to GPU Registers

We take advantage of the GPU registers to store statically allocated data

that is frequently used by the decoder. Typically, instruction operands

are dynamically allocated for each instruction, due to the fact that the

number of operands am x86 instruction uses is not known in advance. We

changed the list of operands to a static array, which eventually the compiler

keeps in registers. As mentioned earlier, operands may be either explicit or

implicit. Due to memory capacity limitations, we decided to keep in registers

only the explicit operands (three or less). Implicit operands depend on the

instruction opcode, and therefore can be easily inferred.

Keeping operands into registers instead of shared memory is preferable

because the latter would affect the L1 cache of each multiprocessor, which

corresponds to the same hardware, and therefore would drop the read ac­

cess throughput of the input binaries. Also, the shared memory would have

to be divided according to the number of threads for each multiprocessor,

imposing an upper­bound on the number of threads that could be spawn
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Cache Hit Rate in L2

Buffer optimized size Average Cache Hit Rate %

No Optimization 40.46

16 Bytes 58.70

32 Bytes 53.65

64 Bytes 45.26

Table 4.1: Disassembly of 2 Byte instructions. Average hit rate at L2 cache

for all read requests from L1 cache.

due to the size of temporary list of operands for each thread.

Another use of registers is related to improving the read throughput of

the input buffers. Traditionally, read requests pass from global memory

through the L2 cache, and finally the data are fetched to the L1 cache of

the corresponding multiprocessor. In order to avoid reading from the L1

cache, or even worse to overwrite the cache line where decoded bytes are

stored, we save the 32 byte lines into a uint4_t statically declared array,

which is translated at compile time in register storage. Although excessive

use of registers can result in register spilling to local memory, any incurred

latencies can be hidden by spawning more threads. Our experiments show

that stall instructions due to local data accesses are rare.



5
Evaluation

In order to evaluate our GPU­based disassembler, we create a corpus of

32,768 binaries from the /usr/bin/ directory of a vanilla Ubuntu 12.04

installation, allowing duplicates to reach the desired set size. The sizes of

the binaries vary between 30 KB and 40 KB. Our testbed consists of a PC

equipped with an Intel i7­3770 CPU at 3.40GHz and 8 GB of RAM, and an

NVIDIA GeForce GTX 770 GPU with 1536 cores and 4 GB of memory.

5.1 Performance analysis

The performance evaluation examines both the system as a whole, as well

as its sub­parts (e.g., the decoding engine and data transfers). We also test

existing CPU­only disassemblers for comparison. We report the throughput

of the disassembly process as the number of assembly lines (or decoded

instructions) produced per second. As the size of instructions in x86 ISA

varies, it would be misleading to measure the number of bytes processed

per time.

5.1.1 Performance analysis of open­source disassemblers

As a first step, we evaluate several popular open­source linear disassem­

blers to estimate the throughput of conventional CPU­based disassemblers.

In order to eliminate any I/O overhead, we redirect the output of the tools

to /dev/null. Figure 5.1 depicts the average disassembly rate for various

disassemblers in thousands of assembly lines (KLines) per second, when

utilizing a single CPU thread. The faster disassembler is Udis86, which

23
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Figure 5.1: Performance evaluation of several open source linear Disassem­

blers

achieves a throughput of 2142.2 KLines/sec and the slower is the objdump

utility, which processes 423.664 KLines/sec. The differences in through­

put are mostly due to the data produced for disassembled instruction; the

more information generated by a disassembler, the lower its throughput.

For instance, some tools record only the opcodes and the corresponding

operands for each instruction, while others include information such as its

instruction group, relative virtual addresses, etc.

5.1.2 Data Transfer costs

In this experiment, we measure the data transfer rate between CPU and GPU

over PCIe for different block sizes of data. Figure 5.2 shows the results in

GB/sec including standard error bars for transferring data from host to GPU

memory and vice versa. The maximum theoretical transport bandwidth for

PCIe 3.0 is 16 GB/s, however, in this experiment the maximum achieved

rate is 12 GB/s, when transferring blocks of 16 MB.
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Figure 5.2: PCIe 3.0 Transfer Throughput.

5.1.3 GPU Instruction­Decoding Performance

In this section, we evaluate the decoding performance of the GPU, excluding

any data transfers, and pre­ and post­processing occurring on the CPU

(e.g., opening files and preparing data exchanges). In this experiment, we

use three different inputs: (i) linear disassembly of synthetic binaries, (ii)

linear disassembly of binaries corpus, and (iii) exhaustive disassembly of a

subset of the corpus.

Synthetic Binaries

In this experiment, we aim to evaluate our various optimizations and the

effect of instruction­size. First, we generate buffers including 2­byte in­

structions, which is the most common instruction length (about 38.54% in

our dataset, see Fig. 5.3), and measure how the buffer size used in decoding

affects the L2 cache hit rate, when using 4096 threads. Table 4.1 shows

that the optimal buffer size is 16 bytes. Table 5.1 shows the performance

gained in accessing global memory by each of the optimizations described

in Sec. 4.

As mentioned in section 2.2, the size of an x86 instruction can be be­

tween 1­15 bytes. Figure 5.3 shows the cumulative distribution function

(CDF) of instruction sizes in the binaries used in the evaluation. In order

to understand how binaries containing a mix of instructions with different
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Optimization MLines/Second performance Gained %

No Optimization 52.05 ­

Improve Cache Hits 65.51 +25.85 %

Structs of Arrays 43.85 ­15.75 %

Table 5.1: Access To Global Optimizations Performance. (Disassembly 2

byte instructions.)

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
er

ce
nt

ag
e 

%

Instruction in Bytes

Figure 5.3: CDF of the x86 Instructions sizes found on GNU Binutils.

sizes will affect performance, we decode files containing instructions with

different sizes, with each file containing only a single length of instructions.

We also compare decoding throughput by running our decoder both on the

CPU and GPU, and try different numbers of threads on the GPU. We again

use 4096 threads in the GPU, as we found that is is optimal in the synthetic

binaries scenario. Table 5.2 lists the results of this experiment.

Linear Disassembly of Binaries

In this experiment, we evaluate the GPU performance on disassembling the

binaries in our corpus. This is likely to be the common use case of our

prototype on large scale binary analysis. Each thread is assigned a differ­

ent binary for disassembling. In Figure 5.4, we plot the speedup gained

when offloading the disassembling process to the GPU. We evaluate several
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Instruction

Size

MLines/Second

CPU

Performance

Droped CPU %

MLines/Second

GPU

Performance

Droped GPU %

1 35.90 ­ 100.91 ­

2 14.12 60.6 66.67 33.93

4 12.63 64.81 59.53 41.00

8 9.96 72.25 46.32 54.09

Table 5.2: Performance Evaluation on different Instruction sizes.

configurations, i.e., bytes per thread and number of threads, in order to

find the best configuration. We can see that the GPU reaches maximum

performance on different number of threads (8192) than with the synthetic

binaries (4096). We also observe that the performance on different bina­

ries drops to 28.4 MLines/sec compared to decoding all 8­byte instructions

in the GPU (46.32 MLines/sec). This performance loss happens due to

the different memory stalls that occur to each thread at a given moment.

Threads decode different sizes of instructions when disassembling binaries,

as a consequence they do misaligned accesses to the global memory and the

cache misses increase. Still, by increasing the threads per multiprocessor

we can hide some of these stalls and therefore the disassembler scales up to

8,192 threads. From the other hand, just spawning threads is not enough

for hiding all the stalls. Spawning more threads arises more races to the

caches and more cache misses for the concurrent cache lines. Lastly, by

decoding different instructions, we slightly increase the branch divergence

that also creates stalls. As we can see in Figure 5.4 the GPU was ≈ 2 times

faster on the disassembly process than a relevant high­end CPU. Perfor­

mance stops scaling after 8192 threads which we can safely state that this

is the optimum configuration for the disassembly process.

Exhaustive Disassembly of Binaries

In this experiment we disassemble each binary starting from each byte in

order to find all possible instructions included in the binary. The evaluated

prototype is the one described in Section 3.2.2. We evaluate the proto­

type using several number of threads in order to find the optimal for this

case. The best performance is reached when we spawn 131,072 threads.

Therefore, the exhaustive prototype, shall perform better, if we disassemble

binaries of size bigger than the threads we spawn. In case the binary is

smaller than the optimal amount of threads we spawn as many threads

as the size of the binary. As we saw the disassemble performance differs

among different sizes of instructions. In order to be accurate, we exhaustive

disassemble a set of 101 binaries and evaluate the achieved performance.

In Table 5.3 we can see the results of the experiment described, on disas­

sembling binaries exhaustively. The average speedup we gained is 4.411

with a standard deviation of 0.928.



28 CHAPTER 5. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

512 1024 2048 4096 8192 16384

G
P

U
 S

pe
ed

up

Threads

512 Bytes per Thread
1024 Bytes per Thread
2048 Bytes per Thread
4096 Bytes per Thread
8192 Bytes per Thread

16384 Bytes per Thread

Figure 5.4: GPU­Disassembler speed up compared to the CPU on different

set ups. Comparing only the disassemble process without the transfers.

Exhaustive Disassemble Results

Description Speedup

Average 4.411

Standard Deviation 0.928

Maximum 7.122

Minimum 2.729

Table 5.3: Exhaustive Disassembling of binaries. GPU Speedup results

compared to the CPU.

5.2 Overall Performance

In this section, we evaluate our prototype in an end­to­end scenario. As

mentioned in Section 3, we use streams in order to pipeline the operations

and hide communication costs. We measure the time spent for each compo­

nent in isolation. For all subsequent experiments with use 8,192 threads,

as this configuration achieves the best performance, as we have shown in

Section 5.1.3. In Figure 5.5 we can see the raw times of the corresponding

components stacked in the order they execute in a given stream, pipelined

with the current disassembly process of the previous stream. When the
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Figure 5.5: The disassembly components of the GPU pipelined using

streams. Focused on 8192 Threads.

number of threads is lower than 1024 we can see that the bottleneck op­

eration is pre­processing. However, after 1024 bytes per thread we can

see that the disassembly component becomes the bottleneck of the whole

process. Therefore, pipelining does not reduce performance. In Table 5.4

we demonstrate the raw performance in MLines/sec of the GPU in several

threads with the size of the input buffer at 8192 bytes per thread.

Threads Performance MLines/sec

512 3.096

1024 4.857

2048 9.335

4096 17.548

8192 28.053

16384 28.085

CPU performance: 13.933

Table 5.4: Disassemble different binaries. Overall Performance in

MLines/sec. (Focused on 8192 Bytes)
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5.2.1 Hybrid Model

We also evaluate the performance of utilizing all CPU cores and the GPU

to massively disassemble binaries. Despite the fact that the GPU is an

independent processing system, it still requires interaction with the CPU for

transferring data, spawning the GPU kernel for execution, etc. Therefore,

when we over­utilize the CPU with workload, we increase the probability of

having threads stalled due to context switching. At the evaluation process,

by overloading the CPU we experience an increase in the pre­ and post­

processing overhead and so, we wasted time by having idle the GPU and

decrease the overall performance. In order to evaluate properly the hybrid

model we assigned one CPU thread to the GPU processes (pre, post, GPU

invocation and interaction) and the rest for disassembly on the CPU. In

Figure 5.6 we can see the performance on different devices and the hybrid

model as described. The hybrid model achieved the performance of 37.336

MLines/sec which is 2.67 times faster than having only the CPU utilized

and 1.32 times faster than the GPU implementation. The divergence of the

hybrid model from the ideal performance is due to the assigned thread to

the GPU controlling processes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

CPU GPU Hybrid

M
Li

ne
s/

se
c

Ideal

Figure 5.6: The overall performance on CPU, GPU and on both processors.

Focused on 8192 Threads for the GPU.
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Figure 5.7: Power Consumption per decoded line.

5.3 Power Consumption and Cost

5.3.1 Power Consumption per line:

In this experiment we measure the power consumption of our prototype at

a given moment, with the components pipelined, when disassembling bina­

ries. For the comparison we define the metric Joules consumed per decoded

line. We evaluate the watts consuming per second and the performance of

the tool as defined in previous sections (Lines/sec). By dividing these val­

ues we come up with Joules consumed per decoded line (Joules/line). In

Figure 5.7 we demonstrate the power consumption efficiency for the GPU

and CPU in different threads. For the measurement of the power consump­

tion we used sensors that can measure the power consumption of the CPU,

the PCI bus, the RAM and peripherals. For each set up, we sum up the

power consumed at a given moment and then we calculate the power con­

sumed per decode line. Both of the devices perform similar in terms of

power consumption per decoded line. GPU consumes 8.34 µJ at the best

configuration for decoding an instruction.
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5.3.2 Lines per Dollar:

For our hardware setup, we have selected relatively high­end devices; for

the CPU we used an Intel(R) i7­3770 which costs around $305, and the

NVIDIA GTX 770 graphics card with similar cost at $396.1 2 These are the

prices at the time this work was published. The total system cost is around

$1120 with the current values of the components. Our prototype performs

with an overall cost of 23.36 KLines/$.

5.4 Accuracy

In this section, we evaluate the accuracy in the basic disassembly ap­

proaches described in section 2.3. We also implemented and evaluated

a static disassembly approach described in binCFI [3] for identifying func­

tions and basic blocks inside the text section while skipping patching bytes

used for alignment.

The identification process of the binCFI approach, is based on a first

pass which logs the erroneous assembly and control flow targets. There are

four types of errors that indicate a gap: Invalid opcodes which are bytes

that the disassembler fails to recognize as valid instructions of the x86.

Direct control flow transfers outside the text section, which are instructions

decoded successfully. Nevertheless, they are invalid from the perspective of

logical correctness and therefore, they also indicate incorrect disassembly.

Direct control flow transfer to the middle of an instruction, which indicates

incorrect disassembly of the control flow instruction or to the target. In

order to decide which of these two is the erroneous, we try to decode the

upcoming bytes. If we find disassembly errors, we mark the transfer/target

as an error.

After finding the errors, we use the control flow targets in order to find

the end of the gap. The control flow targets of the direct control flow in­

structions were extracted from first disassembly pass. Some of the indirect

control flow targets were extracted by taking advantage the relocation in­

formation section of the binary. We discover the beginning of the gap by

following back the assembly from the error, until the first unconditional

control flow transfer. Finally, we re­disassemble the binary avoiding the

gaps we identified in previous steps.

We use, as a ground­truth, the disassembly output of the IDA­pro with

the usage of Debug Symbols. We disassembled binaries and dll’s from the

Firefox project of Mozilla foundation, compiled with Visual Studio 2010.

1Cpu benchmarks: Intel core i7­3770 @ 3.40ghz. http://www.cpubenchmark.net/
2Videocard benchmarks: Geforce gtx 770. http://www.videocardbenchmark.

net/
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Executable name Linear Recursive binCFI

certutil.exe 92.182 98.105 98.537

crashinjectdll.dll 94.070 97.010 97.534

freebl3.dll 94.004 99.379 99.444

icuin52.dll 53.346 94.561 99.438

icutu52.dll 48.254 89.821 99.644

icuuc52.dll 55.786 96.379 99.865

libEGL.dll 94.087 97.646 97.443

libGLESv2.dll 98.124 98.548 98.430

mangle.exe 80.390 99.425 99.197

modutil.exe 92.977 97.540 98.116

mozalloc.dll 82.175 98.977 98.885

mozglue.dll 98.722 99.493 99.708

nss3.dll 94.158 98.660 98.898

nssckbi.dll 98.845 99.960 99.934

pk12util.exe 88.201 96.349 97.770

shlibsign.exe 82.962 96.063 96.896

vmwarerecordinghelper.dll 94.044 97.011 97.535

browsercomps.dll 96.990 98.273 99.897

firefox.exe 90.916 99.785 99.742

IA2Marshal.dll 93.556 99.113 98.989

js.exe 88.561 97.354 98.161

mozjs.dll 88.489 97.379 98.064

ssltunnel.exe 97.932 99.641 99.575

Table 5.5: Disassebly accuracy % compared to IDA

The accuracy is defined as follows:

common true positives

total true positives+ false positives
(5.1)

The numerator of the this fraction corresponds to the common assembly

lines between the evaluated output and IDA­pro’s output. The denominator

is formed by adding the total IDA lines (ground­truth) and the extra lines of

the evaluated output (false positives).

As we can see in the table 5.5, recursive disassembler achieves better

accuracy in some cases than binCFI (libEGL.dll, mozalloc.dll, nssckbi.dll,

firefox.exe, etc.). This anomaly appears because, binCFI algorithm has

cases that overestimate function borders. Therefore, ends up adding more

false positives to the total output lines than the recursive approach. How­

ever, the disassembly technique proposed in binCFI achieves more true

positives. Similarly, for the linear disassembly compared to the recursive



34 CHAPTER 5. EVALUATION

one, the former produces more false positives than the latter. On the other

hand, the linear disassembly covers every region on the text segment such

as unreachable code included by static linking. The recursive disassem­

bler fails to cover such regions but avoids completely the alignment bytes

between functions.



6
Related Work and Conclusions

6.1 Related Work

The improvement of the disassembly process for the x86 and x86-64 archi­

tecture is still an open issue. There are various publications that address

disassembly correctness and effectively differentiate code from alignment

patching bytes inside the text section of the binaries. Most of these publica­

tions, are based on a similar approach. They use the targets of control­flow

instructions in order to recognize the regions of basic blocks and functions

borders. They make several disassembly passes on these code regions until

the given conditions of correctness are satisfied. Finally, they construct the

final call graph and discard the unreachable regions [3,6,7,25]. However,

there is also a dynamic approach that leverages machine learning tech­

niques [22,26]. This approach uses decision trees, that are constructed by

feeding binaries, compiled from various compilers and optimization flags as

training sets. They perform exhaustive disassembly on the binary to pro­

duce all the possible assembly output. Lastly, they use the constructed tree

to match and recognize the entry and exit points of functions.

GPUs continuously become more powerful and with extended compu­

tational capabilities that can support more applications. In the scientific

community, there are several security analysis tools that exploit the paral­

lelism offered by GPUs for fast processing such as network packet process­

ing [13,14,27].
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6.2 Limitations

The implementation of our prototype comes with limitations. The size of

the decoded instructions for all the threads can be enormous and as a

result, we can easily run out of memory. Also, memory constrains occur on

the fast memory interfaces such as constant memory, shared and register

usage per thread. Furthermore, GPU limitations with regards to dynamic

memory allocation, forces us to use static allocation and requires rewriting

of the dynamic parts of the disassembler.

We are unable to further exploit GPU parallelization due to memory

stalls that occur at decoding time. GPU threads, make arbitrary accesses to

memory at the decoding process which under­utilize the access throughput.

Although, we can hide memory stalls by spawning more threads, there is

a limit on how the cuda­process scales. The GPU hides stalled threads by

context­switching to threads that are ready to execute. However, complex

programs, that have high needs in resources and frequently access memory,

can generate more stalls when excessively utilizing threads. Thus, it is not

trivial to determine the optimal number of threads for a GPU­Disassembler;

it really depends on the implementation and the disassembly algorithm

(linear, exhaustive, etc.).

6.3 Future Work

Although our prototype was mainly designed for accelerating the disassem­

bling process on static analysis tools, it can also find application on other

systems and tools. We are planning using our prototype for building a GPU­

Based x86 emulator that disassembly process is a basic component of the

emulation. Having the decoding process of the binaries offloaded on the

GPU, we can achieve a better integration of x86 emulator on the GPU.

6.4 Conclusion

GPUs are powerful co­processors, which we can use to accelerate compu­

tationally intensive tasks like binary disassembly through parallelization.

In this work we have built a GPU based x86­disassembler that exploits the

hardware features offered from GPUs to accelerate disassembly. We eval­

uate our GPU­based x86­disassembler in terms of performance and cost.

Our prototype performs two times faster in linear disassembly and 4.4x

faster in exhaustive disassembling of the same binary compared to a CPU

implementation. In terms of performance over power consumption; GPU

performs similar with a full utilized CPU at 8.34 µJ/Line.
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